
The Pricing of Exotic Options by Monte-Carlo
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Abstract

Recently, stock price models based on Lévy processes with stochastic

volatility were introduced. The resulting vanilla option prices can be

calibrated almost perfectly to empirical prices. Under this model, we will

price exotic options, like the barrier, lookback and cliquet options, by

Monte-Carlo simulation. The sampling of paths is based on a compound

Poisson approximation of the Lévy process involved. The precise choice

of the terms in the approximation is crucial and investigated in detail.

In order to reduce the standard error of the Monte-Carlo simulation, we

make use of the technique of control variates. It turns out that there are

significant differences with the classical Black-Scholes prices.
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1 Introduction

The most famous continuous-time model for stock prices or indices is the cel-
ebrated Black-Scholes model (BS-model) [11]. It uses the Normal distribution
to fit the log-returns of the underlying: the price process of the underlying is
given by the geometric Brownian Motion

St = S0 exp

((

µ− σ2

2

)

t+ σWt

)

,

where {Wt, t ≥ 0} is standard Brownian motion, i.e. Wt follows a Normal
distribution with mean 0 and variance t. Under this model pricing formulae for
a variety of options are available. We are particularly interested in the pricing
of so-called exotic options of European nature, i.e. the payoff function can be
path-dependent, however there is a fix maturity date and no-early exercise is
allowed.

Path-dependent options have become popular in the OTC market in the last
decades. Examples of these exotic path-dependent options are lookback options
and barrier options. The lookback call option has the particular feature of
allowing its holder to buy the stock at the minimum it has achieved over the life
of the option. The payoff of a barrier options depends on whether the price of
the underlying asset crosses a given threshold (the barrier) before maturity. The
simplest barrier options are ”knock in” options which come into existence when
the price of the underlying asset touches the barrier and ”knock-out” options
which come out of existence in that case. For example, an up-and-out call has
the same payoff as a regular ”plain vanilla” call if the price of the underlying
assets remains below the barrier over the life of the option but becomes worthless
as soon as the price of the underlying asset crosses the barrier. Under the Black-
Scholes framework closed-form option pricing formulae for the above types of
barrier and lookback options are available (see for example [24]). We also focus
on cliquet options, these options depend on the relative returns of the asset over
a series of predetermined periods. These options are popular in mutual funds
with capital protection. However, even in the BS-model, no closed-form pricing
formulae exits for the pricing of these types of derivatives.

It is well known however that the log-returns of most financial assets are
asymmetrically distributed and have an actual kurtosis that is higher than that
of the Normal distribution. The BS-model is thus a very poor model to de-
scribe stock price dynamics. In real markets traders are well aware that the
future probability distribution of the underlying asset may not be lognormal
and they use a volatility smile adjustment. The smile-effect is decreasing with
time to maturity. Moreover, smiles are frequently asymmetric. To price a set of
European vanilla options, one uses for every strike K and for every maturity T
another volatility parameter σ. This is fundamentally wrong since this implies
that only one underlying stock/index is modeled by a number of completely
different stochastic processes. Moreover, one has no guarantee that the chosen
volatility parameters can be used to price exotic options.
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In order to deal with the non-Gaussian character of the log-returns, in the
late 1980s and in the 1990s several other models, based on more sophisticated
distributions, where proposed. In these models the stock price process is now the
exponential of a so-called Lévy process. As the Brownian motion, a Lévy process
has stationary and independent increments; the distribution of the increments
now has to belong to the general class of infinitely divisible laws. The choice of
this law is crucial in the modeling and it should reflect the stochastic behavior
of the log-returns of the asset.

Madan and Seneta [28] have proposed a Lévy process with Variance Gamma
(VG) distributed increments. We mention also the Hyperbolic model [20] pro-
posed by Eberlein and Keller and their generalizations [30]. In the same year
Barndorff-Nielsen proposed the Normal Inverse Gaussian (NIG) Lévy process
[3]. The CGMY model was introduced in [16] as a generalization of the VG
model. Finally, we mention the Meixner process which was introduced in [37]
(see also [38], [39], [40] and [22]). All models give a much better fit to historical
data. Also, one is able to calibrate model prices of vanilla options to market
options much better than under the BS-model. Overall one thus observes a
significant improvement over the BS-model.

Several attempts have been made to obtained closed-form expressions to
price exotic options under these Lévy models. However finding explicit formulae
for exotic options in the more sophisticated Lévy market is very hard. Barrier
options under a Lévy market were considered by [14]. The results rely on
the Wiener-Hopf decomposition and one uses analytic techniques. Similar and
totally general results by probabilistic methods for barrier and lookback options
are described by [41]. The numerical calculations needed are of high complexity:
numerical integrals with dimension 3 or 4 are needed, together with numerical
inversion methods; it is not clear at all whether these pricing techniques are
more accurate than Monte-Carlo based pricing.

Moreover, although there is a significant improvement in accuracy with re-
spect to the BS-model, there still is a discrepancy between model prices and
market prices. The main feature which these Lévy models are missing, is the
fact that the volatility or more general the environment is changing stochasti-
cally over time. Stochastic volatility is a stylized feature of financial time series
of log-returns of asset prices.

In order to deal with this problem, one starts from the Black-Scholes setting
and makes the volatility parameter itself stochastic. Different choices can be
made to describe the stochastic behavior of the volatility. We mention the Cox-
Ingersoll-Ross (CIR) process and the models of Barndorff-Nielsen and Shephard
(see [6], [7], [8], and [9]) based on Ornstein-Uhlenbeck processes (OU-processes).
We will not follow this approach, but focus on the introduction of the stochastic
environment through the stochastic time change as proposed in [17]. This tech-
nique can not only be used starting from the BS-model, but also from the Lévy
models. In these stochastic volatility models one makes the (business) time (of
the Lévy process) stochastic. In times of high volatility time is running fast,
and in periods with low volatility the time is going slow. For this rate of time
process, one proposes in [17] the classical example of a mean-reverting positive
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process: the CIR process. These models are called the Lévy Stochastic Volatility
models (Lévy-SV models). In [17] and [40] it was shown that by following this
procedure, one can almost perfectly calibrate Lévy-SV model option prices to
market prices. Finding explicite formulae for exotic options is almost hopeless
in these models. However, once you have calibrated the model to a basic set of
options, it is possible to price other (exotic) options using Monte-Carlo simula-
tions. Moreover, the complexity of the simulations does not increase drastically;
besides the Lévy process, one only has to simulate the time-changing process,
which is in our case the classical and easily simulated CIR process. The Lévy
process can be simulated based on a compound-Poisson approximation. Special
care has to be taken for the very small jumps; as proposed in [2] these small
jumps can in some cases be approximated by a Brownian motion.

Throughout this paper we make use of a data set with the mid-prices of a
set of European call options on the SP500-index at the close of the market on
the 18h of April 2002. At this day the SP500 closed at 1124.47. The short rate
was at that time equal to r = 0.019 per year and we had a dividend yield of
q = 0.012 per year.

First, we look at the exotic options we want to price, together with general
pricing techniques for vanilla options. In Section 3, we give an overview of
some popular Lévy processes. We focus on the VG-process, the NIG-process
and the Meixner process. In the next section, we will use these Lévy processes
in the construction of Lévy-SV models. Basically, a Lévy-SV model exist of a
combination of a Lévy processes with a stochastic time changing process. As
in the paper [17], our rate of time change is the CIR process. We explain a
procedure to simulate all these ingredients of the Lévy-SV models. Next, we
calibrate the different Lévy-SV models to our data set of market prices. The
calibration procedure gives us the risk-neutral parameters of our model which
we will use to produce a significant number of stock price paths. Finally, we
will perform a number of simulations and compute option prices for all the
mentioned models. In order to reduce the standard error of the Monte-Carlo
simulation, we make use of the technique of control variates. This technique
is particularly useful in this setting, since we can make use of the vanilla call
prices available in the market as control variates.

2 Pricing of Derivatives

Throughout the text we will denote by r the daily interest rate and q the divi-
dend yield per year. We assume a fixed planning horizon T . Our market consist
of one riskless asset (the bond) with price process given by B = {Bt = ert, 0 ≤
t ≤ T } and one risky asset (the stock) with price process S = {St, 0 ≤ t ≤ T }.
We focus on European-type derivatives, i.e. no early exercise is possible. Given
our market model, let G({Su, 0 ≤ u ≤ T }) denote the payoff of the derivative
at its time of expiry T .

According to the fundamental theorem of asset pricing (see [18]) the arbi-
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trage free price Vt of the derivative at time t ∈ [0, T ] is given by

Vt = EQ[e−r(T−t)G({Su, 0 ≤ u ≤ T })|Ft],

where the expectation is taken with respect to an equivalent martingale measure
Q and F = {Ft, 0 ≤ t ≤ T } is the natural filtration of S = {St, 0 ≤ t ≤ T }.
An equivalent martingale measure is a probability measure which is equivalent
(it has the same null-sets) to the given (historical) probability measure and un-
der which the discounted process {e−(r−q)tSt} is a martingale. Unfortunately
for most models, in particular the more realistic ones, the class of equivalent
measures is rather large and often covers the full no-arbitrage interval. In this
perspective the BS-model, where there is an unique equivalent martingale mea-
sure, is very exceptional. Models with more than one equivalent measures are
called incomplete.

2.1 Vanilla options

A pricing method which can be applied in general when the characteristic func-
tion of the risk-neutral stock price process is known, was developed by Carr
and Madan [15] for the classical vanilla options. More precisely, let C(K,T ) be
the price of a European call option with strike K and maturity T . Let α be a
positive constant such that the αth moment of the stock price exists. Carr and
Madan then showed that

C(K,T ) =
exp(−α log(K))

π

∫ +∞

0

exp(−iv log(K))ψ(v)dv (1)

where

ψ(v) =
e−rTE[exp(i(v − (α+ 1)i) log(ST ))]

α2 + α− v2 + i(2α+ 1)v
.

The Fast Fourier Transform can be used to invert the generalized Fourier trans-
form of the call price. Put options can be priced using the put-call parity. This
Fourier-method was generalized to other types of options, like power options
and self-quanto options in [31].

2.2 Exotic options

2.2.1 Barrier and Lookback Options

Let us consider contracts of duration T , and denote the maximum and minimum
process, resp., of a process Y = {Yt, 0 ≤ t ≤ T } as

MY
t = sup{Yu; 0 ≤ u ≤ t} and mY

t = inf{Yu; 0 ≤ u ≤ t}, 0 ≤ t ≤ T.

Using risk-neutral valuation, we have that the time t = 0 price of a lookback
call option is given by

LC = e−rTEQ[ST −mS
T ].

For single barrier options, we will focus on the following types:
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• The down-and-out barrier is worthless unless its minimum remains above
some ”low barrier” H , in which case it retains the structure of a European
call with strike K. Its initial price is given by:

DOB = e−rTEQ[(ST −K)+1(mS
T > H)]

• The down-and-in barrier is a normal European call with strike K, if its
minimum went below some ”low barrier” H . If this barrier was never
reached during the life-time of the option, the option is worthless. Its
initial price is given by:

DIB = e−rTEQ[(ST −K)+1(mS
T ≤ H)]

• The up-and-in barrier is worthless unless its maximum crossed some ”high
barrier” H , in which case it retains the structure of a European call with
strike K. Its price is given by:

UIB = e−rTEQ[(ST −K)+1(MS
T ≥ H)]

• The up-and-out barrier is worthless unless its maximum remains below
some ”high barrier”H , in which case it retains the structure of a European
call with strike K. Its price is given by:

UOB = e−rTEQ[(ST −K)+1(MS
T < H)]

We note that the value, DIB, of the down-and-in barrier call option with
barrierH and strikeK plus the value, DOB, of the down-and-out barrier option
with same barrierH and same strikeK, is equal to the value C of the vanilla call
with strike K. The same is true for the up-and-out together with the up-and-in:

DIB +DOB = exp(−rT )EQ[(ST −K)+(1(mS
T ≥ H) + 1(mS

T < H))]

= exp(−rT )EQ[(ST −K)+]

= C;

UIB + UOB = exp(−rT )EQ[(ST −K)+(1(MS
T ≥ H) + 1(MS

T < H))]

= exp(−rT )EQ[(ST −K)+]

= C. (2)

We thus clearly see that the price of a vanilla call is correlated with the prices
of the corresponding barrier options.

An important issue for barrier and lookback options is the frequency that
the stock price is observed for purposes of determining whether the barrier has
been reached. The above given formula assume a continuous observation. Often,
the terms of the contract are modified and there are only a discrete number of
observations, for example at the close of each trading day. [13] provide a way of
adjusting the formulas under the Black-Scholes setting for the situation of dis-
crete observations in case of lookback options. For barrier options the adjusting
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is described in [12]: The barrier H is replaced by H exp(0.582σ
√

T/m) for an

up-and-in or up-and-out option and by H exp(−0.582σ
√

T/m) for a down-and-
in and down-and-out barrier, where m is the number of times the stock prices
is observed; T/m is the time interval between observations. In the numerical
calculations below, we have assumed a discrete number of observations, namely
at the close of each trading day. Moreover, we have assumed a year consists of
250 trading days.

2.2.2 Cliquet Options

We also consider a more involved option, a cliquet option. These options are
popular in mutual funds: investor’s capital is protected and they benifit in a
limited way of possible stock price rises. It has a payoff function which depends
on the relative returns of the stock after a series of predetermined dates (in our
case after 1, 2 and 3 years). These (yearly) returns are first floored with zero
(capital is protected) and capped with a return cap (gains are limited). We will
consider caps ranging in cap ∈ [0.05, 0.15]. The final payoff is the sum of the
modified relative returns:

CLIQ = exp(−rT )EQ

[

3
∑

i=1

min

(

max

(

Si − Si−1

Si−1
, 0

)

, cap

)

]

3 Lévy Processes

Suppose φ(z) is the characteristic function of a distribution. If for every positive
integer n, φ(z) is also the nth power of a characteristic function, we say that
the distribution is infinitely divisible. One can define for every such an infinitely
divisible distribution a stochastic process, X = {Xt, t ≥ 0}, called Lévy process,
which starts at zero, has independent and stationary increments and such that
the distribution of an increment over [s, s + t], s, t ≥ 0, i.e. Xt+s − Xs, has
(φ(z))t as characteristic function.

The function ψ(z) = logφ(z) is called the characteristic exponent and it
satisfies the following Lévy-Khintchine formula [10]:

ψ(z) = iγz − σ2

2
z2 +

∫ +∞

−∞

(exp(izx) − 1 − izx1{|x|<1})ν(dx),

where γ ∈ R, σ2 ≥ 0 and ν is a measure on R\{0} with
∫ +∞

−∞ (1∧x2)ν(dx) <∞.
We say that our infinitely divisible distribution has a triplet of Lévy character-
istics [γ, σ2, ν(dx)]. The measure ν(dx) is called the Lévy measure of X . From
the Lévy-Khintchine formula, one sees that, in general, a Lévy process consists
of three independent parts: a linear deterministic part, a Brownian part, and
a pure jump part. The Lévy measure ν(dx) dictates how the jumps occur.
Jumps of sizes in the set A occur according to a Poisson process with parameter
∫

A ν(dx). If σ2 = 0 and
∫ +1

−1 |x|ν(dx) <∞ it follows from standard Lévy process
theory [10] [36], that the process is of finite variation.
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3.1 Examples of Lévy Processes

3.2 The Variance Gamma Process

The characteristic function of the VG(σ, ν, θ) law is given by

φV G(u;σ, ν, θ) = (1 − iuθν + σ2νu2/2)−1/ν.

This distribution is infinitely divisible and one can define the VG-processX(V G) =

{X(V G)
t , t ≥ 0} as the process which starts at zero, has independent and station-

ary increments and where the increment X
(V G)
s+t −X

(V G)
s over the time interval

[s, t+ s] follows a VG(σ, ν/t, tθ) law. Clearly (take s = 0 and note that V0 = 0),

E[exp(iuX
(V G)
t )] = φV G(u;σ

√
t, ν/t, tθ)

= (φV G(u;σ, ν, θ))t

= (1 − iuθν + σ2νu2/2)−t/ν .

In [25], it was shown that the VG-process may also be expressed as the
difference of two independent Gamma processes. This characterization allows
the Lévy measure to be determined:

νV G(dx) =

{

C exp(Gx)|x|−1dx x < 0
C exp(−Mx)x−1dx x > 0

,

where

C = 1/ν > 0

G =

(
√

θ2ν2

4
+
σ2ν

2
− θν

2

)−1

> 0

M =

(
√

θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

> 0.

The Lévy measure has infinite mass, and hence a VG-process has infinitely
many jumps in any finite time interval. Since

∫ +∞

−∞
|x|νV G(dx) < ∞, a VG-

process has paths of finite variation. A VG-process has no Brownian component
and its Lévy triplet is given by [γ, 0, νV G(dx)], where

γ =
−C(G(exp(−M) − 1) −M(exp(−G) − 1))

MG

With the parameterization in terms of C,G and M , the characteristic func-

tion of X
(V G)
1 reads as follows:

φV G(u;C,G,M) =

(

GM

GM + (M −G)iu+ u2

)C

.

In this notation we will refer to the distribution by the notation VG(C,G,M).
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The class of Variance Gamma distributions was introduced by Madan and
Seneta [27] in the late 1980s as a model for stock returns. There (and in [28]
and [26]) the symmetric case (θ = 0) was considered. In [25], the general case
with skewness is treated.

3.3 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) distribution with parameters α > 0, −α <
β < α and δ > 0, NIG(α, β, δ), has a characteristic function [3] given by:

φNIG(u;α, β, δ) = exp
(

−δ
(

√

α2 − (β + iu)2 −
√

α2 − β2
))

.

Again, one can clearly see that this is an infinitely divisible characteristic func-

tion. Hence we can define the NIG-process X(NIG) = {X(NIG)
t , t ≥ 0}, with

X
(NIG)
0 = 0, stationary and independent NIG distributed increments: To be

precise X
(NIG)
t has a NIG(α, β, tδ) law.

The Lévy measure for the NIG process is given by

νNIG(dx) =
δα

π

exp(βx)K1(|x|)
|x| dx,

where Kλ(x) denotes the modified Bessel function of the third kind with index
λ (see [1]).

A NIG-process has no Brownian component and its Lévy triplet is given by
[γ, 0, νNIG(dx)], where

γ = (2δα/π)

∫ 1

0

sinh(βx)K1(αx)dx.

The density of the NIG(α, β, δ) distribution is given by

fNIG(x;α, β, δ) =
αδ

π
exp

(

δ
√

α2 − β2 + βx
) K1(α

√
δ2 + x2)√

δ2 + x2
.

The NIG distribution was introduced by Barndorff-Nielsen [3]. See also [4]
[32] [33] and [34].

3.4 The Meixner Process

The density of the Meixner distribution (Meixner(α, β, δ)) is given by

fMeixner(x;α, β, δ) =
(2 cos(β/2))2δ

2απΓ(2d)
exp

(

bx

a

) ∣

∣

∣

∣

Γ

(

δ +
ix

α

)∣

∣

∣

∣

2

,

where α > 0,−π < β < π, δ > 0.
The characteristic function of the Meixner(α, β, δ) distribution is given by

φMeixner(u;α, β, δ) =

(

cos(β/2)

cosh αu−iβ
2

)2δ
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Clearly, the Meixner(α, β, δ) distribution is infinitely divisible and we can
associate with it a Lévy process which we call the Meixner process. More

precisely, a Meixner process X(Meixner) = {X(Meixner)
t , t ≥ 0} is a stochastic

process which starts at zero, i.e. X
(Meixner)
0 = 0, has independent and sta-

tionary increments, and where the distribution of X
(Meixner)
t is given by the

Meixner distribution Meixner(α, β, δt).

It is easy to show that our Meixner processX(Meixner) = {X(Meixner)
t , t ≥ 0}

has no Brownian part and a pure jump part governed by the Lévy measure

ν(dx) = δ
exp(βx/α)

x sinh(πx/α)
dx;

The first parameter in the Lévy triplet equals

γ = αδ tan(β/2) − 2δ

∫ ∞

1

sinh(βx/α)/ sinh(πx/α)dx

Because
∫ +∞

−∞
|x|ν(dx) = ∞ the process is of infinite variation.

The Meixner process was introduced in [37] (see also [38]) and originates
from the theory of orthogonal polynomials. Later on it was suggested to serve
for fitting stock returns in [22]. This application in finance was worked out in
[39] and [40].

4 The Lévy-Stochastic Volatility Model

4.1 The Lévy-Stochastic Volatility Model: Theory

It has been observed that the volatilities estimated (or more general the para-
meters of uncertainty) change stochastically over time and are clustered as can
be seen in Figure 1, where the absolute log-returns of the SP500-index over a
period of 32 years is plotted. One clearly sees that there are periods with high
absolute log-returns and periods with lower absolute log-returns.

In order to incorporate such an effect Carr, Madan, Geman and Yor [17]
proposed the following: One increase or decrease the level of uncertainty by
speeding up or slowing down the rate at which time passes. Moreover, in order
to build clustering and to keep time going forward one employs a mean-reverting
positive process as a measure of the local rate of time change. They use as the
rate of time change the classical example of a mean-reverting positive stochastic
process: the CIR process yt that solves the SDE

dyt = κ(η − yt)dt+ λy
1/2
t dWt,

where W = {Wt, t ≥ 0} is standard Brownian motion.
The economic time elapsed in t units of calender time is then given by Yt

where

Yt =

∫ t

0

ysds
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Figure 1: Volatility clusters: absolute log-returns SP500-index between 1970
and 2001

The characteristic function of Yt is explicitly known:

φ(u, t) =
exp(κ2ηt/λ2) exp(2y(0)iu/(κ+ γ coth(γt/2)))

(cosh(γt/2) + κ sinh(γt/2)/γ)2κη/λ2 ,

where
γ =

√

κ2 − 2λ2iu

Note, that for c > 0, ỹ = cy = {cyt, t ≥ 0}, satisfies the SDE

dỹt = κ(cη − ỹt)dt+
√
cλỹ

1/2
t dWt, (3)

and the initial condition is ỹ0 = cy0.
The (risk-neutral) price process of the stock S = {St, 0 ≤ t ≤ T } is now

modeled as follows:

St = S0
exp((r − q)t)

E[exp(XY (t))]
exp(XY (t)), (4)

where q is the dividend yield and X = {Xt, 0 ≤ t ≤ T } is a Lévy process with

E[exp(iuXt)] = exp(tψX(u)).

The characteristic function for the log of our stock price is given by:

φ(u) = E[exp(iu log(St)] = exp(iu((r − q)t+ logS0))
φ(−iψX(u), t)

φ(−iψX(−i), t)iu
. (5)

The characteristic function is important for the pricing of vanilla options (see
formula (1)). Recall that in these methods we only needed the characteristic
function of log(St). By the above formula, explicit formulae are at hand.
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Note that if our Lévy process X = {Xt, t ≥ 0} is a VG-process, we have for
c > 0, that X̃ = {Xct, t ≥ 0} is again a Lévy process of the same class, with
the same parameters except the C-parameter, which is now multiplied with the
constant c. The same can be said for the NIG and the Meixner process. The
parameter which takes into account the same time-scaling property is now the
δ-parameter. In combination with (3) this means that in these cases there is
one redundant parameter. We therefore, can set y0 = 1, and scale the present
rate of time change to one. More precisely, we have that that the characteristic
function φ(u) of (5) satisfies:

φV G−CIR(u;C,G,M, κ, η, λ, y0) = φV G−CIR(u;Cy0, G,M, κ, η/y0, λ/
√
y0, 1)

φMeixner−CIR(u;α, β, δ, κ, η, λ, y0) = φMeixner−CIR(u;α, β, δy0, κ, η/y0, λ/
√
y0, 1)

φNIG−CIR(u;α, β, δ, κ, η, λ, y0) = φNIG−CIR(u;α, β, δy0, κ, η/y0, λ/
√
y0, 1)

Also, instead of setting the y0 parameter equal to one, other involved parame-
ters, e.g. δ or C, can be scaled to 1.

Actually, this time-scaling effect lies at the heart of the idea of incorporating
stochastic volatility through making time stochastic. Here, it comes down to
the fact that instead of making the volatility parameter (of the BS-model) sto-
chastic, we are making the parameter C, in the VG case, or the parameter δ, in
the NIG and the Meixner case, stochastic (via the time). Note that this effect,
does not only influences the standard deviation (or volatility) of the processes;
also the skewness and the kurtosis are now fluctuating stochastically.

4.2 Calibration to Market Data

Using formula (1) one can easily compute plain vanilla option prices under the
above Lévy-SV models. By this one can calibrate model prices to markets
prices for example in the least-squared sense. In Figures 2-4, one can see that
the Lévy-SV models give a very good fit to the empirical option prices of our
SP-500 data set. The o-signs are market prices the +-signs are model prices. In
Table 1 an overview is given of the risk-neutral parameters coming out of the
calibration procedure.

For comparative purposes, one computes the average absolute error as a
percentage of the mean price. This statistic, which we will denote with ape, is
an overall measure of the quality of fit:

ape =
1

mean option price

∑

options

|Market price − Model price|
number of options

Other measures which give also an estimate of the goodness of fit are the average
absolute error (aae), the root mean square error (rmse) and the average relative
percentage error (arpe):

aae =
∑

options

|Market price − Model price|
number of options
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rmse =

√

√

√

√

∑

options

(Market price − Model price)2

number of options

arpe =
1

number of options

∑

options

|Market price − Model price|
Market price

In Table 2 an overview of these measures of fit are given.
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Figure 2: Meixner-CIR calibration on SP500 options (o’s are market prices, +’s
are model prices)

5 Monte Carlo simulation of SV-Lévy processes:

Theory

5.1 Introduction

Basically, the method goes as follows: we simulate, say m, paths of our stock
prices process and calculate for each path the value of the payoff function Vi,
i = 1, . . . ,m. Then the Monte-Carlo estimate of the expected value of the payoff
is

V̂ =
1

m

m
∑

i=1

Vi. (6)
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Figure 3: NIG-CIR calibration on SP500 options (o’s are market prices, +’s are
model prices)

The final option price is then obtained by discounting this estimate: exp(−rT )V̂ .
The standard error (SE) of the estimate is given by:

√

√

√

√

1

(m− 1)2

m
∑

i=1

(V̂ − Vi)2.

The standard error decreases with the square root of the number of sample
paths: to reduce the standard error by half, it is necessary to generate four
times as many sample paths.

To simulate a stock price path, we first simulated our time change. For the
CIR process, this is quite easy and classical: we follow the ”Euler Scheme”.
Basically, we discretize the SDE as:

∆yt = κ(η − yt)∆t+ λy
1/2
t d∆Wt.

Next, we simulate our Lévy process upto time YT =
∫ T

0
ysds. To simulate a Lévy

process, we exploit the well-known (compound-Poisson) approximation of the
process, which we describe below in detail. It reduces the simulation of a Lévy
process to the simulation of a number of independent Poisson process. Simu-
lating independent Poisson distributed random numbers, and as such Poisson
processes, is easy. We refer to [19].
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Figure 4: VG-CIR calibration on SP500 options (o’s are market prices, +’s are
model prices)

Finally, we rescale our Lévy path according to the path of our stochastic
business time and plug this into our formula (4) for the stock price behavior.

5.2 The Compound-Poisson Approximation of a Lévy Process

The compound-Poisson approximation procedure is explained in detail for ex-
ample in [35]. Further support can be given by [2] and [29]. The procedure goes
as follows: Let X be a Lévy process with characteristic triplet [γ, σ2, ν(dx)].

First, we will discretize the Lévy measure ν(dx). We choose some small
0 < ε < 1. Then we make a partition of R \ [−ε, ε] of the following form. We
choose real numbers a0 < a1 < . . . < ak = −ε, ε = ak+1 < ak+2 < . . . < ad+1.

The jumps larger than ε are approximated by a sum of independent Poisson

processes in the following way: We take an independent Poisson process N
(i)
t

for each interval, [ai−1, ai), 1 ≤ i ≤ k and [ai, ai+1), k+1 ≤ i ≤ d, with intensity
λi given by the Lévy measure of the interval. Furthermore we choose a point ci
in each interval such that the variance of the Poisson process matches the part
of the variance of the Lévy process corresponding to this interval.

16



VG-CIR

C G M κ η λ y0
11.9896 25.8523 35.5344 0.6020 1.5560 1.9992 1
NIG-CIR

α β δ κ η λ y0
18.4815 -4.8412 0.4685 0.5391 1.5746 1.8772 1
Meixner-CIR

α β δ κ η λ y0
0.1231 -0.5875 3.3588 0.5705 1.5863 1.9592 1

Table 1: Parameter estimation for Lévy SV models

Model ape aae rmse arpe

VG-CIR 0.69 % 0.4269 0.5003 1.33 %
NIG-CIR 0.67 % 0.4123 0.4814 1.32 %
Meixner-CIR 0.68 % 0.4204 0.4896 1.34 %

Table 2: ape, aae, rmse and arpe for Lévy SV models

5.2.1 Approximation of the Small Jumps by their Expected Value

Next, we look at the very small jumps. The first method is by just replacing
them by their expected value. Putting all things together, we approximate
X by a process X(d), consisting of a Brownian motion W = {Wt, t ≥ 0} and d

independent Poisson processes N (i) = {N (i)
t , t ≥ 0}, i = 1, . . . , d with parameter

λi:

X
(d)
t = γt+ σWt +

d
∑

i=1

ci(N
(i)
t − λit1|ci|<1), (7)

λi = ν([ai−1, ai)) for i ≤ k,

= ν([ai, ai+1)) for k + 1 ≤ i ≤ d,

c2iλi =

∫ ai−

ai−1

x2ν(dx) for i ≤ k,

=

∫ ai+1−

ai

x2ν(dx) for k + 1 ≤ i ≤ d.

When the original process does not have a Brownian component (σ = 0), then
also the approximating process has not one.

5.2.2 Approximation of the Small Jumps by a Brownian Motion

A further improvement is to incorporate also the contribution from the variation
of small jumps. Denote by

σ2(ε) =

∫

|x|<ε

x2ν(dx).
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We let all (compensated) jumps smaller than ε contribute to Brownian part
of X . To be precise, we again approximate X by a process X(d), consisting
of a Brownian motion W = {Wt, t ≥ 0} and d independent Poisson processes

N (i) = {N (i)
t , t ≥ 0}, i = 1, . . . , d with parameter λi. Only the Brownian part

is different from above. We have now:

X
(d)
t = γt+ σ̃Wt +

d
∑

i=1

ci(N
(i)
t − λi1|ci|<1t), (8)

where
σ̃2 = σ2 + σ2(ε),

and the λi and ci, i = 1, . . . , d as above.
Note that a Brownian term appears even when the original process does not

have one (σ = 0). In [2] a rigorous discussion is presented of when the latter
approximation is valid. It turns out that this is the case if and only if for each
κ > 0

lim
ε→0

σ(κσ(ε) ∧ ε)
σ(ε)

= 1. (9)

This condition is implied by

lim
ε→0

σ(ε)

ε
= ∞. (10)

Moreover, if the Lévy measure of the original Lévy process does not have atoms
in some neighborhood of the origin the condition (10) and condition (9) are
equivalent. Results on the speed of convergence of the above approximation can
be found in [2].

We conclude by noting that the Meixner and the NIG process satisfy the
condition (9), but the VG does not. In the simulations below we thus use a
Brownian motion in the approximation for the Meixner and the NIG, but not
for the VG process.

5.3 On the Choice of the Approximating Poisson Processes

The choice of the intervals [ai−1, ai), 1 ≤ i ≤ k and [ai, ai+1), k + 1 ≤ i ≤ d
is crucial. We typically set k = 100 and d = 2k, so we have the same number
of Poisson processes reflecting a positive as a negative jump. Next, we look at
three different ways to choose the intervals. First we look at equally spaced,
then at equally weighted and finally at intervals with inverse linear boundaries.
We illustrate this for the VG, NIG and Meixner processes, with parameters
taken from Table 1.

5.3.1 Equally Spaced Intervals

One can choose the intervals equally spaced, i.e. |ai−1 − ai| is kept fix for all
1 ≤ i ≤ d + 1, i 6= k + 1. This choice is illustrated in Figure 5, where we plot
for all Lévy processes λi versus ci. A width equal to 0.001 was chosen and we
zoomed in on the range [−0.05, 0.05]; k = 100. Note the explosion near zero.
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Figure 5: Equally spaced intervals

5.3.2 Equally Weighted Intervals

Here we opt to keep the intensities for the up-jumps and down-jumps corre-
sponding to an interval constant. Thus, for equally weighted intervals, the Lévy
measures of intervals on the negative part of the real line ν([ai−1 −ai)) are kept
fix for all 1 ≤ i ≤ k. Similarly also the measure of intervals corresponding to
up-jumps ν([ai − ai+1)) is kept fix for all k + 1 ≤ i ≤ d. Note, that for this
choice the outer intervals can become quite large.

5.3.3 Interval with Inverse Linear Boundaries

Finally, we propose the case where the boundaries are given by ai−1 = −αi−1

and a2k+2−i = αi−1, 1 ≤ i ≤ k + 1 and α > 0. This leads to much gradually
decreasing intensity parameters λi as can be seen from Figure 6, where α = 0.2
and k = 100. Moreover, there is no explosion to infinity near zero; the intensities
come even down again. Note, that in Figure 6, we now show the whole range
with ci ∈ [−0.2, 0.2] for the same examples as above. Note also that in all cases
the intensities of down jumps are slightly higher than those of the corresponding
up jumps; this reflects the fact that log stock returns are negatively skewed.
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Figure 6: ai−1 = −0.2/i and a2k+2−i = 0.2/i, 1 ≤ i ≤ k + 1

19



5.4 Variance Reduction by Control Variates

If we want to price exotic barrier and lookback options or other exotics (of
European type), we often have information on vanilla options available. Note
that we have obtained our parameters from calibration on market vanilla prices.
In this case, where we thus have exact pricing information on related objects, we
can use the variance reduction technique of control variates. The method is a
highly speed-up method, but the implementation depends on the characteristics
of the instruments being valued.

The idea is as follows. Let us assume that we wish to calculate some expected
value, E[G] = E[G({St, 0 ≤ t ≤ T })] of a (payoff) function G and that there
is a related function H whose expectation E[H ] = E[H({St, 0 ≤ t ≤ T })] we
know exactly. One has to think of G as the payoff function of the exotic option
we want to price via Monte-Carlo and of H as the payoff function of the vanilla
option whose price (and thus the expectation E[H ]) we observe in the market.

Suppose that for a sample path the value of the function G and H are
positively correlated, e.g. the value of a up-and-in call is positively correlated
with the value of a vanilla call with same strike price and time to expiry. This
can be seen for example from Equation (2).

Define for some number b ∈ R a new payoff function

Ĝ({St, 0 ≤ t ≤ T }) = G({St, 0 ≤ t ≤ T }) + b (H({St, 0 ≤ t ≤ T } − E[H ]) .

Note that the expected value of the new function Ĝ is the same as the expecta-
tion of the original function G. However there can be a significant difference in
the variance: We have

Var[Ĝ] = Var[G] − 2bcov[G,H ] + b2Var[H ].

This variance is minimized if b = cov[G,H ]/Var[H ]. For this minimizing value
of b we find

Var[Ĝ] = Var[G]

(

1 − cov2[G,H ]

Var[G]Var[H ]

)

= Var[G](1 − corr2(G,H))

≤ Var[G].

So if the absolute value of the correlation between G and H is close to 1, the
variance of Ĝ will be very small. Clearly, if we find such a highly correlated
function H , very large computational savings may be made. H is called the
control variate. Note that the method is flexible enough to include several
control variates.

The precise optimal value for b is not known but can be estimated from
the same simulation. Special care has to be taken however since estimating
parameters determining the result from the same simulation can introduce a
bias. In the limit of very large numbers of iterations, this bias vanishes. A
remedy for the problem of bias due to the estimation of b is to use an initial
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simulation, possibly with fewer iterates than the main run, to estimate b in
isolation. The control variate technique usually provides such a substantial
speed-up in convergence that this initial parameter estimation is affordable.

To summarize, we give an overview of the procedure (with an initial estima-
tion of b). Recall we want to price an European exotic option expiring at time
T with payoff function G({St, 0 ≤ t ≤ T }) and that we have a correlated option
expiring also at time T with payoff H({St, 0 ≤ t ≤ T }) whose option price is
observable in the market and given by

exp(−rT )E[H({St, 0 ≤ t ≤ T })] = exp(−rT )E[H ].

The expectation is under the markets risk-neutral pricing measure.
We proceed as follows:

1. Estimate the optimal b:

a) Sample a significant number n of paths for the stock price S =
{St, 0 ≤ t ≤ T } (see procedure below) and calculate for each path i
: gi = G({St, 0 ≤ t ≤ T }) and hi = H({St, 0 ≤ t ≤ T }).

b) An estimate for b is

b̂ =
1

n

(

n
∑

i=1

gihi − E[H ]

n
∑

i=1

gi

)

.

2. Simulate a significant number m of paths for the stock price S = {St, 0 ≤
t ≤ T } (see procedure below) and calculate for each path i: gi = G({St, 0 ≤
t ≤ T }) and hi = H({St, 0 ≤ t ≤ T }).

3. Calculate an estimation of the expected payoff by:

ĝ =
1

n

(

m
∑

i=1

gi − b̂(hi − E[H ])

)

.

4. Discount the estimated payoff ĝ at the risk-free rate r to get an estimate
of the value of the derivative: The option price is given by exp(−rT )ĝ.

The simulation of the stock price process is summarized as follows:

i) Simulate the rate of time-change process y = {yt, 0 ≤ t ≤ T }.
ii) Calculate from i), the time change Y = {Yt, 0 ≤ t ≤ T }.
iii) Simulate the Lévy process X = {Xt, 0 ≤ t ≤ YT }. Note that we sample

over the period [0, YT ].

iv) Calculate the time-changed Lévy process XYt
, for t ∈ [0, T ].

v) Calculate the stock price process S = {St, 0 ≤ t ≤ T }.
In the Figure 7, one sees in the case of the Meixner-CIR combination a

sample of all ingredients: the rate of time change yt, the stochastic business
time Yt, the Lévy process Xt, the time changes Lévy process XYt

, and finally
the stock price St.
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Figure 7: Simulation of yt, Yt, Xt, XYt
, and St

6 Monte Carlo Pricing of Exotics under a SV-

Lévy Model

6.1 Barrier and Lookback Prices

We take for all barrier options the time to maturity T = 1, the strike K = S0

and the barrier H equal to

HUIB = 1.1×S0, HUOB = 1.3×S0, HDIB = 0.95×S0, HDOB = 0.8×S0.

For all models, we make n = 10000 simulations of paths covering a one year
period. The time is discretised in 250 equally small time steps. We run 100
simulations to find an estimate for the optimal b of the control variate. We con-
sider both Equally Weighted Intervals (EWI) and Interval with Inverse Linear
Boundaries (IILB).

In Tables 3, we compare the price along all model considered together with
Black-Scholes prices. The standard error of the simulation is given below the
option prices in brackets. The volatility parameter in the BS-model is taken
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equal to σlse = 0.1812, σmin = 0.1479 and σmax = 0.2259. These σ’s, which can
be read off form Figure 8, correspond to the volatility giving rise to the least
square-error of the Black-Scholes model prices compared with the empirical
SP500 vanilla options, the minimal, and maximal implied volatility parameter
over all strikes and maturities of our data set, respectively. The Black-Scholes
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Figure 8: Implied Volatilities

barrier prices are for adjusted for the discrete observation of the stock prices as
described above.

In Figure 9, one sees the effect of using control variates for the Monte-
Carlo pricing of the UIB and the lookback option in the Meixner-CIR case.
Simular figures can be obtained for the other options and cases; all show that
the standard error is declining much faster in case of control variates then in the
case without. In Figure 10 one sees how the Monte-Carlo prices converge over
the number of iterations in the Meixner-CIR case. Note that in both figures we
have logarithmic scales for the number of iterations.

6.2 Cliquet Option Prices

To price the cliquet option we have to rely even in the Black-Scholes world on
Monte-Carlo simulations, since as far as we know there are no closed-formulae
available. For the cliquet option, we calculated (using 50000 simulations) prices
for cap’s ranging from 0.05 to 0.15. We do this under the Black-Scholes model
with volatility parameters σlse = 0.1812, σmin = 0.1479 and σmax = 0.2259
and compare these with the Meixner-CIR-IILB prices in Figure 11. We clearly
see that Black-Scholes model is significantly underpricing the option. We fi-
nally remark that the option prices under the other Lévy-SV models are almost
identical with the Meixner-CIR-IILB case.
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Model LC UIB UOB DIB DOB

VG-CIR-EWI 135.27 78.50 63.18 17.71 86.07
(0.4942) (0.2254) (0.6833) (0.5306) (0.0811)

NIG-CIR-EWI 135.24 79.08 63.54 16.47 86.12
(0.4764) (0.2161) (0.6665) (0.4924) (0.0819)

Meixner-CIR-EWI 135.72 78.57 64.34 17.28 86.06
(0.4853) (0.2239) (0.7091) (0.5168) (0.0836)

VG-CIR-IILB 134.77 78.66 62.89 17.42 86.16
(0.4894) (0.2224) (0.7250) (0.5259) (0.0958)

NIG-CIR-IILB 135.48 78.66 63.27 16.76 86.18
(0.4817) (0.2203) (0.6841) (0.5409) (0.0609)

Meixner-CIR-IILB 134.83 78.66 63.87 17.24 86.08
(0.4712) (0.2193) (0.7087) (0.5560) (0.0794)

BS σmin 128.64 65.66 46.26 21.78 69.17
BS σlse 155.12 81.66 39.98 32.88 83.50
BS σmax 189.76 102.20 30.32 54.73 101.60

Table 3: Exotic Option prices

6.3 Conclusion

If we look at the prices of the exotic options in the Black-Scholes world, we
observe that the BS-prices depend heavily one the choice of the volatility pa-
rameter and that it is not clear which value to take. For the Lévy-SV models
the prices are very close to each other. We conclude that the BS-model it not
at all appropriate to price exotics. Moreover their is evidence that the Lévy-SV
models are much more reliable; they give a much better indication than the
BS-model.
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Figure 9: Standard error with and without control variates
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martingales. Commun. Statist.- Stochastic Models 14 (1 and 2), 335–349.

[38] Schoutens, W. (2000), Stochastic Processes and Orthogonal Polynomials.
Lecture Notes in Statistics 146. Springer-Verlag, New York.

28



[39] Schoutens, W. (2001), The Meixner Process in Finance. EURANDOM Re-
port 2001-002, EURANDOM, Eindhoven.

[40] Schoutens, W. (2002), The Meixner Process: Theory and Applications in

Finance. EURANDOM Report 2002-004, EURANDOM, Eindhoven.

[41] Yor, M. and Nguyen, L. (2001) Wiener-Hopf Factorization and the Pric-

ing of Barrier and Lookback Options under General Lévy Processes.
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