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(2.9) Proposition. P [tim, o /ZE7n,(c) = L, for everyt] = 1.

Proof. Let ¢, = 2/mk?; then f([ex, oof) = k and the sequence {N:sm - Nxek} is

~ Omrr i ot P A J, (SR, 4 i = s T wrad s i o . - xr 4 a4l
a sequence of independent Poisson r.v.’s with parameter 7. Thus, for fixed ¢, the

law of large numbers implies that a.s.
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lim —N{" = lim [ —2N/" =1.
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As N7 increases when ¢ decreases, for g, < & < &g,
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We may find a set X' of probability 1 such that for w € X,

lim. /22N (w) =1
eloy 27 a

for every rational 1. Since N; increases with ¢, the convergence actually holds for
all 1’s. For each w € X', we may replace 1 by L,(w) which ends the proof.

and plainly

Remarks. 1°) A remarkable feature of the above result is that »,(¢) depends only
on the set of zeros of B up to ¢. Thus we have an approximation procedure for
L,, depending only on Z. This generalizes to the local time of regenerative sets
(see Notes and Comments).

2°) The same kind of proof gives the approximation by downcrossings seen
in Chap. VI (see Exercise (2.10)).

(2.10) Exercise. 1°) Prove that

n (sup lu(t)| > x) =1/x.

<R

[Hint: If A, = {u :sup,_pu(t) > x}, observe that Ly, is the first jump time
of the Poisson process N* and use the law of Ly, found in Sect. 4 Chap. V1]

2°) Using 1°) and the method of Proposition (2.9), prove, in the case of BM,
the a.s. convergence in the approximation result of Theorem (1.11) Chap. VI,

3°) Let a > 0 and set M, (1) = SUP, <g,. u(t) where, as usual, gr, 1s the last
zero of the Brownian path before the time 7, when it first reaches a. Prove that
M, is uniformly distributed on [0, a]. This is part of Williams’ decomposition
theorem (see Sect. 4 Chap. VII).

THint* IfF J (voern T Y1
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(2.11) Exercise. Prove that the process X defined, in the notation of Proposition
(2.5), by Xi(w) = les (1 — 7y (w), w)| — s, if 7,_(w) <t < T,(w), is the BM

rt

B = j sgn(B,)d B,
0

and that ¥,(w) = s + |e; (t — - (w), w)| if 7,_(w) <1 < 1,(w), is a BES3(0).

(2.12) Exercise. 1°) Let A € #/; be such that n(A) < oo. Observe that the
number C4 of excursions be'ong'ng to A in the interval [0, 4,] {i.e. whose two end
points lie betwee 0 and d;) 1s defined unambiguously and prove that E [ j‘] =

2°) Prove that on {d, < t},

A A A
Cyp —Co=C; 4 0bs, Ly—Ly=Ls_g4o06,

and consequently that Cj,‘ —n(A)L, is a (.7 )-martingale.
[Hint: Use the strong Markov property of BM.]

(2.13) Exercise (Scaling properties). 1°) For any ¢ > 0, define a map s, on W
or Us by
s(w) (@) = wlcr)/+/c.

Prove that e, (sc(w)) = 5. (¢, /z(w)) and that for A € #;
n (sLT](A)) = n(A)/+/c.

[Hint: See Exercise (2.11) in Chap. VL]
2°) (Normalized excursions) We say that u € U is normalized if R(u) = 1.
Let U! be the subset of normalized excursions. We define a map v from U to U
by
V(u) = Span (1).

Prove that for I' C U!, the quantity
yIMy=n, (v IR 2 0)) /ni(R = c)

is independent of ¢ > 0. The probability measure y may be called the law of the
normalized Brownian excursion.
3°) Show that for any Borel subset S of R,

ne (WM NReS)) =y(Mni(ReS)

which may be seen as displaying the independence between the length of an
excursion and its form.
4°) Let e be the first positive excursion e such that R(e) > c. Prove that

y(I = Plue) er).

[Hint: Use Lemma (1.13).]
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# (2.14) Exercise. Let A,(e) be the total length of the excursions with length < ¢,
strictly contained in [0, ¢[. Prove that

ol — -

P llim 1A,(g) = L, for every tJ =1.
eJ0 Y 2¢

[Hint: A,(e) = — f; xn.(dx) where 7, is defined in Proposition (2.9).]

# (2.15) Exercise. Let S, = sup, ., B; and n,(g) the number of flat stretches of § of
length > £ contained in [0, t]. Prove that

) me
P 1811101 Tn,(e) =5 foreveryt|=1.

(2.16) Exercise (Skew Brownian motion). Let (¥,) be a sequence of indepen-
dent r.v.’s taking the values 1 and —1 with probabilities @ and 1 — (0 < < 1)
and independent of B. For each w in the set on which B is defined, the set of
excursions e, (w) 1s countable and may be given the ordering of N. In a manner
similar to Proposition (2.5), define a process X“ by putting

X7 =Y, les(t — 1y_(w), w)|

if ,_(w) <1 < 7,(w) and e; is the n-th excursion in the above ordering. Prove
that the process thus obtained is a Markov process and that it is a skew BM by

showing that its transition function is that of Exercise (1.16), Chap. 1. Thus, we
see that the skew BM may be obtained from the reflecting BM by changing the

sign of each excursion with probability 1 — . As a result, a Markov process X is
a skew BM if and only if | X| is a reflecting BM.

* (2.17) Exercise. Let A} = | l(g0ds. A; = [; 1(5,<0,ds.
1°) Prove that the law of the pair L;2(A}, A;) is independent of ¢ and that
A7 and A7 are independent stable r.v.’s of index 1/2.
[Hint: A7 + A_ = 1, which is a stable r.v. of index 1/2.]
2°) Let a* and a~ be two positive real numbers, S an independent exponential
r.v. with parameter 1. Prove that

Elexp(—Ls’ (a* A5 +a”Ag))] = fo exp(—¢ ()¢’ (s)ds

1 1/2 172
where ¢(s) = _Jli (s2 +a+) + (52 +a ) ] Prove that, consequently, the
maier T =20 A+ A=\ hac tha camea law ac i/T"‘ T whara T and T ara twn
pair L, " {Aa,, A, } N4AS e samc 1aw as 4L .4 ) WIKTC 1 aill 1 al® WO

independent r.v.’s having the law of 7; and derive therefrom the arcsine law.of
Sect. 2 Chap. VI (see also Exercise (4.20) below). The reader may wish to compare
this method with that of Exercise (2.33) Chap. VI.

(2.18) Exercise. Prove that the set of Brownian excursions can almost-surely be
labeled by Q. in such a way that ¢ < g’ entails that e, occurs before e .
[Hint: Call e; the excursion straddling 1, then e;,, the excursion straddling

g1/2,...]
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§3. Excursions Straddling a Given Time

From Sect. 2 in Chap. V1, we recall the notation
g =supf{s <t: B, =0}, di=inf{s >¢:B, =0},

and set
Afzt_gf, Atzdr_"g;.

Plainly, d, > g, if and only if there is an excursion which straddles ¢ and in
that case, A, is the age of the excursion at time ¢ and A, 15 its length. We have
A = R(i,,).

(3.1) Lemma. The map t — g, is right-continuous.

Proof. Let t, | t; if there exists an » such that 8, <t then g, =g, for m > n;
if g, >t for every n, then t < 81, <ty for every n, hence ¢ is itself a zero of B
and g, =t = lim, g, .

5}

Y. + ANS—p
b ! Lj"gr T ay ot

-« Az —>
+—Ar~—p

Fig. 8.

For a positive r.v. S we denote by . 7 the o-algebra generated by the variables
Hs where H ranges through the optional processes. If S is a stopping time, this
coincides with the usual o-ficld .7%. Let us observe that in general § < § does
not entail .5 C .7, when S and S’ are not stopping times; one can for instance
findaryv. S <1 such that. % = . 7.

Before we proceed, let us recall that by Corollary (3.3), Chap. V, since we are
working in the Brownian filtration (.7 ), there is no difference between optional
and predictable processes.

(3.2) Lemma. The family (7)) = (-%#,) is a subfiltration of (7 ) and ifTisa
(-7%)-stopping time, then .7, C .77 C.7.
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Proof. As g, is .7 -measurable, the same reasoning as in Proposition (4.9) Chap. |
shows that, for a predictable process Z, the r.v. Z, is .Z-measurable whence
%r— /ﬁ followe

[ B ST L0 3 L0 L [

Now choose u in R, and set Z, = Z,,,; thanks to Lemma (3.1) and to what
we have just proved, Z’ is (.7 )-optional hence predictable. Pick v > u; if g, < u,
then g, = g, and since g,, = g, for every ¢,

7
Z, =2, =12,

and if g, > u, then Z, = Z, . As a result, each of the r.v.’s which generate f

is among those which generate / It follows that .7, i{ C 7v, that 1s, (7) IS a
filtration.

Let now T be a (F) -stopping time. By definition, the o-algebra %,  is gen-
erated by the variables Z, with Z optional; but Z,, = (ZgA)T and Z, is .7, -

optional because of Lemma (3.1) which entails that Z,, 1s .;E-measurable, hence
that .77, < .7 . On the other hand, since .7 C .7, the time T is also a (7% )-
stopping time from which the inclusion .4 C .7 is easily proved. O

We now come to one of the main results of this section which allows us to
compute the laws of some particular excursions when n 1s known. If F is a positive
¢¢-measurable function on U, for s > 0, we set

(R > s)! [ Fdn=n(F|R>ys).

q(s R > |
J{R>7}

28]
L

I

L)

We recall that 0 < n(R > s5) < oo for every s > 0.

(3.3) Proposition. For every fixed t > 0,
E [F (is) 17,] — g(A,.F)  as.
and for a (.?’v‘,—)-stopping time T,
E [F (ig,) |}7] =qg(Ar. F) as.ontheset {0 <gr <T}

Proof. We know that, a.s., 7 is not a zero of B hence 0 < g, <t and q(A,, F) 1s
defined; also, if s € G, and s < ¢, we have s = g, if and only if s + Ro 6, > 1.
As a result, g, isthe only s € G, such that s <fand s+ Ro b, > t. If Zis a
positive (.7 )-predictable process, we consequently have

E [ZSIF (’g:)] = E[ Z ZYF(I..Y)}{ROHV>!*S>O} ]

seGy

We may replace Ro#; by R(i;) and then apply the master formula to the right-hand
side which yields

E[Z,F (ig)] [[ deZ (W) F (1) Yrayse- rc(w>>01"(d")]



490 Chapter XII. Excursions

Since by Proposition (2.8), for every x > 0, we have n(R > x) > 0, the right-hand
side of the last displayed equality may be written

oG
E [[ ds Z; (wn(R >t - 1, (w))gt — t:(w), F)] .
0
And, using the master formula in the reverse direction, this is equal to

E| S Zq(t — 5. F)ligeg,oi—so0) | = E [Zeq(t — 5. F)]

L = d L 4
s€Gy,

which yields the first formula in the statement.

To get the second one, we consider a sequence of countably valued (j?,')-
stopping times 7T,, decreasing to 7. The formula is true for 7,, since it is true for
constant times. Moreover, on {0 < gr < T}, one has {gr, = gr} from some n,
onwards and lim, 1y, .7,) = 1; therefore, for bounded F,

E[F (ier) |7‘7] = lmE [F(i%) ligr, <1y | 5, |7r]
= limE [q (A7, F) Ligy <1,y l%] =q(Ar, F)

because lim, A7 = Ay, the function ¢(-, F) is continuous and Ay is .-
measurable. The extension to an unbounded F is easy. O

The foregoing result gives the conditional expectation of a function of the
excursion straddling ¢ with respect to the past of BM at the time when the ex-
cursion begins. This may be made still more precise by conditioning with respect
to the length of this excursion as well. In the sequel, we write E[- | % Al
for E[- | .ﬁ;’v o (A)]. Furthermore, we denote by v(-; F) a function such that
V(R; F) 15 a version of the conditional expectation n(F | R). This is well de-
fined since n is o-finite on the o-field generated by R and by Proposition (2.8),
the function r — v(r; F) is unique up to Lebesgue equivalence. We may now
state

(3.4) Proposition. With the same hypothesis and notation as in the last proposition,
E[F i) 1.7, A = vAs ),

and
E [F (ig)) | .77, AT] —v(Ar: F) on {0 <gr <T).

Proof. Let ¢ be a positive Borel function on R; making use of the preceding
result, we may write

AY

E[Zg¢(A)F (i, i

E[Zgo (R (ig)) F (ig)]
= E[Z,q (A, ¢(R)F)].
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But, looking back at the definition of ¢, we have

(-, ¢

1

—

RYF) =q(,¢(R)V(R; F)),

4

so that using again the last proposition, but in the reverse direction, we get
E[Zyp(A)F (ig)] = E[Zo ¢ (A)v( A1 P)]

which is the desired result. The generalization to stopping times is performed as

in the preceding proof. O

We now prove an independence property between some particular excursions
and the past of the BM up to the times when these excursions begin. A (.ZO)-
stopping time T is said to be terminal if T =t + T o6, as. on the set {T > t};
hitting times, for instance, are terminal times. For such a time, T = gr +7Tof,, as.
on {gr < T}. A time T may be viewed as defined on U by setting for u = iy(w),

T(u)=T(w) if R(w) > T(w), T(u) = +oo otherwise.

By Galmarino’s test of Exercise (4.21) in Chap. I, this definition is unambiguous.
If T(u) < oo, the length A7 of the excursion straddling 7 may then also be
viewed as defined on U. Thanks to these conventions, the expressions in the next
proposition make sense.

(3.5) Proposition. If' T is a terminal (.7, °)-stopping time, then on {0 < gr < T},
E[F (ig)) | Z ) =n(Fl-n)/n(R>T)=n(F|R>T)

and
E[F (i) | 7. Ar] = v(A7; Flrany) /v (AT o)) -

Proof. For a positive predictable process Z, the same arguments as in Proposition
(3.3) show that

E [ZSTF (igr) l(0<g:r-<T):|

=E| ) 1(s<'r)ZsF(is)l(R(:‘»T(i;))]

| seGy
- 00
=E [ ds erl(r¢<T) /‘F(“);(R(u)>T(u))n(du)-|

=E f ds Z: 1 <ryn(R > T)] n (FI(R>T)) /a(R > T)
0

= E[ Zglo<gr<n]n (Fig>1) /n(R > T)

which proves the first half of the statement. To prove the second half we use the
first one and use the same pattern as in Proposition (3.4).
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Remark. As the right-hand side of the first equality in the statement is a constant,
it follows that any excursion which straddles a terminal time T is independent

of the past of the BM un to time or This is the indenendence nronertv we had

iiiw ariv Wi WWondiaav 7. LA L WA P R S

announced. We may observe that, by Proposition (3.3), this property does not hold
with a fixed time ¢ in lieu of the terminal time T (see however Exercise (3.11)).

We close this section with an interesting application of the above results which
will be used in the following section. As usual, we set

T.(w)y=1inf{t > 0:w@) > ¢}.
On U, we have {T, < oo} = {T, < R}, and moreover
(3.6) Proposition. n (SupsER(u) u(s) > &) = n(T, < 00) =1/2e.

Proof. Let 0 < x < y. The time 7, is a terminal time to which we may apply the
preceding proposition with F = 17 .g,; it follows that

P [T, (6,,) < o0] = n(Ty < o0)/n(T; < o0).

The left-hand side of this equality is also equal to P, [T_\, < To] = x/y; as a result,
n(T, < 00) = c/e for a constant ¢ which we now determine.
Proposition (2.6) applied to H (s, -; u) = 11, <o) () I 5<,y yields
a(T. < co)ETL. 1 = gl' Ny N
(L < }LaLL;[ =r LJ I(TF'(OO)US}J’
$€G,N[0.1]

which, in the notation of Sect. 1 Chap. VI, implies that
cE[L,]=E[e(d:(t) £ D];

letting £ tend to 0, by Theorem (1.10) of Chap. VI, we get ¢ = 1/2.

Remark. This was also proved in Exercise (2.10).

(3.7) Exercise. Use the results in this and the preceding section to give the con-
ditional law of d, with respect to g,. Deduce therefrom another proof of 4°) and
5°) in Exercise (3.20) of Chap. IIL

(3.8) Exercise. 1°) Prove that conditionally on g = u, the process (B, < u) is
a Brownian Bridge over [0, u]. Derive therefrom that B, /./g/, 0 <t <l isa
Brownian Bridge over [0, 1] which is independent of g; and of {Bg,+u, u > 0}
and that the law of g, is the arcsine law. See also Exercise (2.30) Chap. VL.

2°) The Brownian Bridge over [0, 1] i1s a semimartingale. Let /¢ be the family
of its local times up to time 1. Prove that L§ has the same law as /g 19/V& whete
g1 is independent of the Bridge. In particular, LY = ,/g1/°; derive therefrom that
1% has the same law as +/2e, where e is an exponential r.v. with parameter 1.

[Hint: See Sect. 6 Chap. 0.]
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3°) Prove that the process M, = |Bgl+u(1—g.)’ /V1—g1,0 <u <1, is in-

dependent of the o-algebra .#; M is called the Brownian Meander of length 1.
Prove that M, has the law of /’7; mql‘ as [0 above.

& ALt ACIW wEAW LOLVY WX EARR S

[Hint: Use the scaling properties of n described in Exercise (2.13).]
4°) Prove that the joint law of (g,. L,. B/) is

lisor ] ( lz) X1 ( x* )d di d
(=0 1(s< e —— X — S X.
(=07 ”\/ P Sontosy P\ 20 -5

. d .
[Hint: (g1, Ly, B1) @ (g1, V811% /T —giM;) where g1, I°, M| are indepen-
dent.]

(3.9) Exercise. We retain the notation of the preceding exercise and put moreover
A, = fot 1g,>0ds and U = fol 1,p,~0)ds where B is a Brownian Bridge. We recall
from Sect. 2 Chap. VI that the law of A 1s the Arcsine law; we aim at proving
that U is uniformly distributed on [0, 1].

1°) Let T be an exponential r.v. with parameter 1 independent of B. Prove
that A,, and (A7 — A,,) are independent. As a result,

(d)

d
Ar =2 (d)

TA, =TgU+Te(l —g)

where ¢ is a Bernoulli r.v. and T, g, U, ¢ are independent.
2°) Using Laplace transform, deduce from the above result that
]
NU @ N2y

2 2
where N is a centered Gaussian r.v. with variance 1 which is assumed to be
independent of U on one hand, and of V on the other hand, and where V is
uniformly distributed on [0, 1]. Prove that this entails the desired result.

(3.10) Exercise. Prove that the natural filtration (.7 *) of the process g, is strictly

v

coarser than the filtration (;7,) and is equal to (Z L).

(3.11) Exercise. For a > 0 let T = inf{r : r — g, = a}. Prove the independence
between the excursion which straddles T and the past of the BM up to time g7.

§4. Descriptions of 1td’s Measure and Applications

In Sects. 2 and 3, we have defined the Itd measure n and shown how it can be
used in the statements or proofs of many results. In this section, we shall give
several precise descriptions of # which will lead to other applications,

Let us first observe that when a o-finite measure is given on a function space,
as is the case for n and U, a property of the measure is a property of the “law” of
the coordinate process when governed by this measure. Moreover, the measure is
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the unique extension of its restriction to the semi-algebra of measurable rectangles;
in other words, the measure is known as soon as are known the finite-dimensional
distributions of the coordinate process.

Furthermore, the notion of homogeneous Markov process makes perfect sense
if the time set is ]0, oo[ instead of [0, oo[ as in Chap. III. The only differ-
ence is that we cannot speak of “initial measures” any longer and if, given the
transition semi-group P,, we want to write down finite-dimensional distributions

P[X, € Ay,.... X, € Ac] for k-uples 0 < #; < ... < &, we have to know the
measures A, = X,{P). The above distribution is then equal to

f Ay (dxy) P (x1.dxy) ... [ Py (X, dxy).
Ay Ar Ay
The family of measures A, is known as the entrance law. To be an entrance law,
(A;) has to satisfy the equality A, P, = A, for every s and ¢ > 0. Conversely,
given (A,) and a t.f. (P,) satisfying this equation, one can construct a measure on
the canonical space such that the coordinate process has the above marginals and
therefore is a Markov process. Notice that the A,’s may be o-finite measures and
that everything still makes sense; if ¢ is an invariant measure for P,, the family
A, = u for every t is an entrance law. In the situation of Chap. III, if the process
is governed by P,, the entrance law is (v P,). Finally, we may observe that in this
situation, the semi-group needs to be defined only for t > 0.

We now recall some notation from Chap. III. We denote by Q, the semi-group
of the BM killed when it reaches 0 (see Exercises (1.15) and (3.29) in Chap. III).
We recall that it is given by the density

N 1 1
q(x,y) = 2nrt)~/? (exp (—E(y - x)z) — exp (—E;(y + X)z)) Lixy>0-

We will denote by A, (dy) the measure on R\{0} which has the density

mi(y) = (2;:;3)"’2 |y| exp(—y?/21)

with respect to the Lebesgue measure dy. For fixed v, this is the density in ¢ of
the hitting time 7, as was shown in Sect. 3 Chap. IIL
Let us observe that on 0, oo

Our first result deals with the coordinate process w restricted to the interval
10, R[, ot to use the devices of Chap. Il we will consider - in this first result only
— that w(t) is equal to the fictitious point § on [R, oo[. With this convention we
may now state

4 A L .. rr_J.__ __ sl o oo di ok n an -y
(4.1) Theorem. Under n, tne coorainate p a

strong Markov process with Q, as transition semi-group and A, t > 0, as entrance
law.

)
]
~
-
"
~
/
-
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Proof. Everything being symmetric with respect to 0, it is enough to prove the
result for n, or n_. We will prove it for n,, but will keep » in the notation for
the sake of simplicity.

The space (U;, #4;) may serve as the canonical space for the homogeneous
Markov process (in the sense of Chap. IIl} associated with Q,, in other words
Brownian motion killed when it first hits {0}; we call (Q,) the corresponding
probability measures on (Us, #45). As usual, we call 6, the shift operators on Uj.

Our first task will be to prove the equality

eq. (4.1) n (@) e A)NOT (M) =n (14w) Queny ()

for I' € ¥, A € 2R, — {0}) and r > 0. Suppose that n(u(r) € A) > 0 failing
which the equality is plainly true. For r > 0, we have {u(r) € A} C {r < R}
hence n(u(r) € A) < oo and the expressions we are about to write will make
sense. Using Lemma (1.13) for the process e!*"<4) we get

1 () (15 06,)) /n(u(r) € A) = P [e‘s“(”“”(w) < 9;'(1*)]

where P is the Wiener measure.

The time § which is the first jump time of the process e!“'A! is a (7Z)-
stopping time; the times ts_ and ts are therefore (.7 )-stopping times. We set
T = t5_ + r. The last displayed expression may be rewritten

P[{Br € A}N{B 087 & I'}]

where § stands for thc BM killed when it hits {0}. By the strong Markov property
for the (.75 )-stopping time T, this is equal to

E 11z, Q5,1T1].

As a result
n ((u(r) € A) HQ;I(F)) =n(u(r) € A)[y(dx)Qx[F]

where y is the law of Br under the restriction of P to {Br € A}. For a Borel
subset C of R, make I' = {u(0) € C} in the above formula, which, since then
0,[I'] = 1¢(x), becomes

n(u(r)y e ANC) =n(u(r) € A)y(C),;

it follows that y(-) = n(u(r) € AN -)/n(u(r) € A) which proves eq. (4.1).

Letnow 0 <tj <h < ... <k <£be real numbers and let fy,..., fi, f be
positive Borel functions on R. Since B, the BM killed at 0, is a Markov process
we have, for every x

[ & 1 [k 1
eq. (4.2) O, “_[fz (w(t;)) f(w(t))J = 0 Lnﬁ (w)) Q- f(w(fk))-l :
i=1 i=1
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Set F = ]—[f.;z Ji (w(#; — 1)). By repeated applications of equations (4.1) and
(4.2), we may now write

[/ \ B

k
n [ 1 (w(n))) fw(@) J
i=1

n[fi (w(n)) (F - fw(t — 1)) o6, ]

= n[fi (W) Quay [F - f (wlt = 0))]]
= n [fl (w(tl)) Qw(n) [FQt—tkf((w(tk - tl))]]
n [f] (w(n)) F Oec,Qr—tk f(w(tk))]

k
=n I:l—[ Ji (W) Oy, f(w(fk))]
i=1

which shows that the coordinate process w is, under n, a homogeneous Markov
process with transition semi-group Q,. By what we have seen in Chap. I1l, B has
the strong Markov property, using this in eq. (4.2) instead of the ordinary Markov
property, we get the analogous property for n; we leave the details as an exercise
for the reader.

The entrance law is given by A,(A) = n(u(t) € A) and it remains to ptove
that those measures have the density announced in the statement. It is enough to
compute A, ([y,o0[) fory > 0. For0 <e < y,

Ay, o0 ) =nu@)=2y)=n) >y, T, <1)

where T, = inf{t > 0 : u(t) > e}. Using the strong Markov property for n just
alluded to, we get

My, 00[) = n(T. <t; Quer,ut =T.) = y))
= n (Te <t Q_1.(e, [y, 00[ )) :

Applying Proposition (3.5) with F(u) = 11, ()< Qr—T. 0 (&, [y, 00[ ) yields
A(ly.0ol) = E[1z Q5 (e. [y, 00D ] n(T: < R)

where ’T} =T (igTF). Using Proposition (3.6) and the known value of Q,, this is
further equal to

E[lg o (@ 5y +6) = ®_5(y—8) /2]

PR 5 to2 & 11U

P-a.s. and we get A, ([y, oo[ } = g (v) which completes the proof.

with @,(y) = [’ g(z)dz. If we let ¢ tend to zero, then T converges to zer

Remarks. 1°) That (A;) is an entrance law for Q, can be checked by elementary
computations but is of course a consequence of the above proof.
2°) Another derivation of the value of (A,) is given in Exercise (4.9),

The above result permits to give /té's description of n which was hinted at in
the remark after Proposition (2.8). Let us recall that according to this proposition
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the density of R under n, is (2+/27r*)~!. In the following result, we deal with

F

the law of the Bessel Bridge of dimension 3 over [0, r] namely P(i o Which we
will abbreviate to 7,. The following result shows in particular that the law of the
normalized excursion (Exercise (2.13)) is the probability measure ;.

(4.2) Theorem. Under n_, and conditionally on R = r, the coordinate process w
has the law 7,. In other words, if ' € 2¢;,

n (I = [ m([‘m{R—_—r})__E{,_r: .
Jo 2273

Proof. The result of Theorem (4.1) may be stated by saying that for 0 < #, <
th < ... <t, and Borel sets A; C ]0, oo[ , if we set

r=({u) € A},
i=1

then

n+(1“)=f m, (xl)dxlf qu—n(xl,xz)dxz-.-/ Gty (Xn—1, Xn)d Xy,
A Ay

Ay

On the other hand, using the explicit value for 7, given in Sect. 3 of Chap. XI, and
taking into account the fact that I N {R < t,} = @, the formula in the statement
reads

* dr
no(IN = _— 2 2arim, (x))dx f o (xp, x)dxs ...
+( ) L zm A l]( 1) | A, q!z f]( l 2) 2

f Qr,,—f,,_|(xnf1a xn)mr—r,,(xn)dxn‘
Aq

But

© dr
_— 3 p—
[r,, 2\/2_7'(?2\/ 2rrime_y, (xp) =1

as was seen already several times. Thus the two expressions for n_(I") are equal
and the proof is complete.

This result has the following important

(4.3) Corollary. The measure n is invariant under time-reversal; in other words,
it is invariant under the map u — u where

u(t) = u(R@w) — Nl(ruwzn.

Proof. By Exercise (3.7) of Chap. XI, this follows at once from the previous
result.

This can be used to give another proof of the time-reversal result of Corollary
(4.6) in Chap. VIL
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(4.4) Corollary. If B is a BM(0) and fora > 0, T, =inf{t : B, = a}, if Z is a
BES*(0) and o, = sup(t : Z, = a), then the processes Y, = a — Br,_,, t < T, and

Z;, t < g, are equivalent.

Proof. We retain the notation of Proposition (2.5) and set 8, = L, — |B,| =
s —les(t — ;)| if T, <t < 1. We know from Sect. 2 Chap. VI that 8 is a
standard BM.

Ifweset Z, =L, +|B|=s5+]e(t — ;)| if ;- <t <1,
(see Corollary (3.8) of Chap. VI) asserts that Z is a BES? (0).

----------- J i a23L1L L3Y >

For a > 0 it is easily seen that

Pitman’s theotrem

T, =Iinfl{t : L, = a} =inf{t : B, = a};
moreover
T, = sup{f : Z, = aj

since Z,, = L, + |B;,| =a and for r > 7, one has L, > a.
We now define another Poisson point process with values in (U, #4¢) by setting

e, = e ifs>a,
Es(t) = €4 (R(eaws) — 1), 0<t< R(ea—s)s if s =d.

In other words, for s < a, &, = &, in the notation of Corollary (4.3). Thus, for
a positive ./ (R.) x #4s-measurable function f,

Yo S8 =) fla—s.é),

O<s<a O<s<a

and the master formula yields

E[Z f(s,’é})] =E[[0ads[f(a*s,ﬁ)n(du):|;

O<s<a

by Corollary (4.3), this is further equal to

E [fa ds [ f (s, u)n(du)] .
0

This shows that the PPP ¢ has the same characteristic measure, hence the same
law as e, Consequently the process Z defined by

Z, =5+ et — 7o) if - <t <71,
has the same law as Z. Moreover, one moment’s reflection shows that
Z,:a—ﬁ(ra—t) for0 <t <1,

which ends the proof. a
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Let us recall that in Sect. 4 of Chap. X we have derived Williams’ path decom-
position theorem from the above corollary (and the reversal result in Proposition
(4.8) of Chap. VII). We will now use this decomposition theorem to give another
description of n and several applications to BM. We denote by M the maximum
of positive excursions, in other words M is a r.v. defined on U;" by

M(u) = sup u(s).
s<R(u)

The law of M under n, has been found in Exercise (2.10) and Proposition (3.6)
and is given by n,. (M > x) = 1/2x.

We now give Williams’ description of n. Pick two independent BES*(0) pro-
cesses p and o and call T, and T, the corresponding hitting times of ¢ > 0. We

define a process Z¢ by setting

pfi OSISTCW
Z{C: C_E(I—Tc), n'StSIC-FTCa
0, t>T.+T,.

For I' € "/4;’, we put N(c, ') = P [Z_" € F]. The map N is a kemel; indeed
(Zf)f>0 @ (cZ}/CZ) K thanks to the scaling properties of BES?(0), so that N
> >

maps continuous functions into continuous functions on R and the result follows
by a monotone class argument. By Proposition (4.8) in Chap. VII, the second part
of Z¢ might as well have been taken equal to (T, + T, —t}, T, <t < T, + T..

(4.5) Theorem. Forany I' € 25

1 o0
ny (I = 5[0 N(x, MNx2dx.

In other words, conditionally on its height being equal to c, the Brownian excursion
has the law of Z°.

Proof. Let U, = {u : M(u) > c}; by Lemma (1.13), for I" € %4,
1 ‘
c

where e is the first excursion the height of which is > ¢. The law of this excursion
is the law of the excursion which straddles T, i.e. the law of the process

Yf == Bng_+r. 0 S t S dT( - gT(.

By applying the strong Markov property to B at time 7., we see that the procesS
Y may be split up into two independent parts ¥! and Y2, with

Y =Bg 4, O0<t<T.—gr; Y’=Br,, 0<i<d;—T.

By the strong Markov property again, the part Y2 has the law of B,, 0 <t < Tp,
where B is a BM(c). Thus by Proposition (3.13) in Chap. VI, Y? may be described
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as follows: conditionally on the value M of the maximum, it may be further split
up into two independent parts V! and V2, with

V:}:BT‘-+19 0<t=Ty-1, V,2=BTM+rs 0<t=<dr,—Tu

Moreover V! is a BES?(c) run until it first hits M and V2 has the law of M — p,
where p is a BES?(0) run until it hits M.

Furthermore, by Williams decomposition theorem (Theorem (4.9) Chap. VII),
the process ¥' is a BES*(0) run until it hits ¢. By the strong Markov property for
BES?, if we piece together ¥ and V!, the process we obtain, namely

BgT‘ + 0 <t =< TM = 8T.»

is a BES?(0) run until it hits M.

As a result, we see that the law of ¢° conditional on the value M of the
maximum is that of Z™. Since the law of this maximum has the density ¢/M? on
[c, oo[ as was seen in Proposition (3.13) of Chap. VI we get

Ple e I'] = Cf x2N(x, Ndx

which by the first sentence in the proof, is the desired result. O

To state and prove our next result, we will introduce some new notation. We
will call . the space of real-valued continuous functions o defined on an interval

[0, £ ()] C [0, 0o[. We endow it with the usual o-fields .7 and .Z? generated
by the coordinates. The It measure » and the law of BM restricted to a compact
interval may be seen as measures on (.4, . Z0).

If 4 and p' are two such measures, we define ¢ o 1’ as the image of u ® u’
under the map (w, @) —> w o w’ where

{(wow) = ((w)+(w),
wow'(s) = wo(s), f0<s<i(w)

= 0l@)+'s - o) ~o'(0) iffe) <s <@+ o).
We denote by Y u the image of x under the time-reversal map w — & where

(@)=L, o) =ol@-5), 0<s<{©)

Finally, if T is a measurable map from .2 to [0, 00], we denote by u” the image
of i by the map w — kr(w) where

k(@) = L(w) AT (@), kr(w)(s) = w(s) if0<s <f(w)AT(w).
We also define, as usual:

T,(w) = inf{t : w(t) = a}, L.(w) = sup{t : w(t) = a}.
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Although the law P, of BM(a) cannot be considered as a measure on .4, we will
use the notation P’ for the law of BM(a) killed at 0 which we may consider as
a measure on .#" carried by the set of paths @ such that {(w) = To(w). If S5 is
the law of BES?(0), we may likewise consider S3"“ “ and the time-reversal result of
Corollary (4.6) in Chap. VII then reads

V(PaTO) = S;da

In the same way, the last result may be stated

1 [ v
n, = 5[{) a”? (S3T"o (SAJ.T“)) da.

The space U of excursions is contained in .#" and carries #; on this subspace,
we will write R instead of ¢ in keeping with the notation used so far and also use
w or w indifferently. We may now state

(4.6) Proposition.
o] +00
f n“(-N{u < RNdu =f (Pl)da.
0 _

[e.¢]

Proof. Let (6,) be the usual translation operators and as above put

gi(w) =sup{s <t :w(s) =0} d;(w) = inf{s >t : w(s) = 0},

Gm = {g,(a)),l € R+}.

We denote by Ep the expectation with respect to the Wiener measure.
The equality in the statement will be obtained by comparing two expressions
of

J=E, [ f Wn<qe ™ Y ok, 08, dt]
0

where P, = ff;o P,da, Y is a positive .?;C())—measurable function and X is > 0.
From Proposition (2.6) it follows that

oQ
Ey I:[ e Y oki_y 0 Qg,dt]
0

[ d(w) "
= E, Z e [ Y ok,_; 08 (w)dt
| 5€G,, Js J

o0 R
=FE, f e““dLs] n ([ Yo k“du) .
0 0

Using the strong Markov property for P, we get

J= / daE, [e‘lT"] Ey l/ e_“dLsJ n (/ Yo k,,du) .
—00 0 0
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But E, [e7*T0] = e~V 5o that [ daE, [e7*] = +/2/X and by the results
in Sect. 2 of Chap. X, Eo[f,” e™dL,] = 1/+/2. As a result

o0
J:)L—l[ n(Yokul(KR)du.
0

On the other hand, because ¢ (k,_g, of ,) =1,

00
' -2 S )
J= jf Ep [Mry<ne™ ™Y o ki_y, 06, ] di
0
and since obviously (PL) = P},

where Z(w) = (Y OkTo) (C\(/)); indeed ¢ — g, is the hitting time of zero for the
process reversed at . Now the integrand under E! depends only on what occurs
before ¢ and therefore we may replace E!, by E,. Consequently

o0
J = Em [Z[ l[To<{]€-l(1’—T0)dt]
0

-1 g
y

Izl — a2~ L 171
mL&~) = 4~ j Lal+]
—00

Comparing the two values found for J ends the proof.

Remark. Of course this result has a one-sided version, namely

[ n’.(-N{u < R})du =[ V(PaT“)da.
0 0

We may now turn to Bismut’s description of n.
(4.7) Theorem. Let iiy be the measure defined on R, x Us by
fl+(d1, du) = 1(051513("))(12' n+(du).

Then, under n,. the law of the r.v. (t,u) — u(t) is the Lebesgue measure da and
C(’)iia"ifu?iiauy CF u\t) =da, the PrOCeSSEs [u \a), 0 =5 =< t,‘ and luu\\u) — .5),1 =<
s <

R(u)} are two independent BES?® processes run until they last hit a.

The above result may be seen, by looking upon Us as a subset of .47, as an
equality between two measures on R; x .#". By the monotone class theorem, it
is enough to prove the equality for the functions of the form f (t)H (w) where H

+ iy atin nd o th 14
bcluusa W0 a ulaoo atab]u., under }JOlﬂt‘vViac uluxupuvauuu ang suu\.lauus the G-uel

on .4". Such a class is provided by the r.v.’s which may be written
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H = ljfooo e fi(w(s))ds

where A, is a positive real number and f; a bounded Borel function on R. It is clear
that for each ¢, these r.v.’s may be written Z, - ¥, 08, where Z, is # 0_measurable.
We will use this in the following

Proof. Using the Markov description of n proved in Theorem (4.1), we have

jw,s FOZw)Y, 8, (w)) A @t du)

= [000 dt f(t) " l<k@nZ: (@)Y; (G:(u)) ny(du)
zjooodt f@) 1[1<R(u)]Z,(u)Equ,)[Y,]n+(du)

_ fo di f(r) Z,(u)Eu(,)[Yz]d"’Jr('ﬂ(f < R))

where ET° is the expectation taken with respect to the law of BM(x) killed at 0.
Using the one-sided version of Proposition (4.6) (see the remark after it), this is
further equal to

f da EN[ @@ Z @EL,[%]] .

A\
But for P!, we have { = L, as. hence in particular w({) = a a.s. and for P/,
we have £ = Ty as. so that we finally get

e v
| da EP[rLz.,] EP[¥a]
0

Using the time-reversal result of Corollary (4.4), this is precisely what was to be
proved.

(4.8) Exercise. (Another proof of the explicit value of A, in Theorem (4.1)).
Let f be a positive Borel function on R, and U, the resolvent of BM. Using the
formula of Proposition (2.6}, prove that

LIP [Jf _pT\- ds] I‘ C_l;u \4“ d(’&.
0

Compute A, (f) from the explicit form of U, and the law of ;.

(4.9) Exercise. Conditionally on (R = r), prove that the Brownian excursion is a
semlmartmgale over [0, r] and, as such, has a family 1, @ > 0, of local times up

Al tlhn A~~~z Er ion 1 mes £~ la Ao
l.U lllllc 2 lUl. Wlll\.«ll LG Ubbupat O1i (iINies 101nhiia UUlalllb
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(4.10) Exercise. For x € Ry, let 5, be the time such that e;_is the first excursion
for which R(e;) > x. Let L be the length of the longest excursion e,, u < s,.
Prove that

PIL < y] = (y/x)'/? for y <ux.

(4.11) Exercise. (Watanabe’s process and Knight’s identity). 1°) Retaining the
usual notation, prove that the process ¥, = §; already studied in Exercise (1.9) of
Chap. X, is a homogeneous Markov process on [0}, oo[ with semi-group T, given

by
To=LTf0) = f+ | o fy)dy.
x y

[Hint: Use the description of BM by means of the excursion process given in
Proposition (2.5)]. In particular,

P[S, < a] = exp(—t/2a).

Check the answers given in Exercise (1.27) Chap. VII.
2°) More generally, prove that

E[exp (—2%1,5/2) 1(s. <ay] = exp(—At coth(ar)/2)
t + Z4)

where 7,* = [ 1(5,.0/ds.
3°) Deduce therefrom Knight's identity, 1.e.

Prove that consequently,
1’,+/Si @ infls : U, = 2},
where U is a BES®(0).
[Hint: Prove and use the formula
](1 - exp(—R/2)1(M5x,)dn+ = (cothx)/2.
where M = sup,_p w(t).]
4°) Give another proof using time reversal.

(4.12) Exercise. (Continuation of Exercise (2.13) on normalized excursions).

Let p be the density of the law of M (see Exercise (4.13)) under y. Prove that

AL NBwILORL ANETw T A

f xp(x)dx = /m/2,
0

that is: the mean height of the normalized excursion is /7 /2.

[Hint: Use 3°) in Exercise (2.13) to write down the joint law of R and M
under n as a function of p, then compare the marginal distribution of R with the
distribution given in Proposition (2.8).]
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(4.13) Exercise. 1°) Set M (w) = sup,.z w(?); using the description of n given
in Theorem (4.1), prove that

ne(M > x) = lim (j (@) 0, [T, < T0]+j As (dy))

and derive anew the taw of M under n,, which was already found in Exercise
(2.10) and Proposition (3.6).
2°) Prove that M, = sup { Bt <gr, } is uniformly distributed on [0, x] (a part

A V21 ) PR = PR T thanea

0[ yviliamnis UC\—UHI}JUDILIUII tucunci‘ﬁ}

[Hint: If M, is less than y, for y < x, the first excursion which goes over x is
also the first to go over y.]

3°) By the same method as in 1°), give another proof of Proposition (2.8).

(4.14) Exercise. (An excursion approach to Skorokhod problem). We use the
notation of Sect. 5 Chap. VI; we suppose that iy, is continuous and strictly in-
creasing and call ¢ its inverse.

1°) The stopping times

=inf{r: S =¥, (B)} and T =inf{r:|B| =L, — (L)}

have the same law.

2°) Prove that, in the notation of this chapter, the process {s, e;} is a PPP with
values in R, x Us and characteristic measure ds dn(u).

3 Let I, ={(s,u) e Ry xUs: 0 <s <x and M(u) > s —¢(s)} and N, =
Y . lr.(s,e). Prove that P[Ly > x] = P[N, = 0] and derive therefrom that
@ (St) = Bt has the law u.

4°) Extend the method to the case where v, is merely right-continuous.

(4.15) Exercise. If A = L*, z > 0, prove that the Lévy measure m, of A, defined
in Proposition (2.7) is given by

ma( ]x,00[ ) = 22) ' exp(—x/2z), x > 0.

(4.16) Exercise. 1°) Using Proposition (3.3) prove, in the notation thereof, that if
f is a function such that f(|B,|) is integrable,

E [f('BrD I 77] = A,"[O exp (—y?/24,) yf (»)dy.

[Hint: Write B, = By, 4y, = Ba, (iz)-]
2°) By applying 1°) to the functions f(y) = y* and |y|, prove that r — 2g, and

A\
V5t —g) — L, are (7 )-martingales.

3°) If f is a bounded function with a bounded first derivative f’ then

fiL) =[5 8)f L)

A\
is a (% )-martingale.
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(4.17) Exercise. Let 7, = inf{r : L, = a}. Prove that the processes {B;,? < 7,}
and {Btﬂ_,,t < ra} are equivalent.
[Hint: Use Proposition (2.5) and Corollary (4.3).]

(4.18) Exercise. In the notation of Proposition (4.6) and Theorem (4.7), for P;-
almost every path, we may define the local time at 0 and its inverse 7,; thus Py’
makes sense and is a probability measure on .#".

1°) Prove that

File o] £ 00
0

j Pldt .—_/ Potsdsoj n*(-0 (u < R))du.
0 0

This formula in another guise may also be derived without using excursion theory
as may be seen in Exercise (4.26). We recall that it was proved in Exercise (2.29)

of Chap. VI that
o0 o0 du
Prds =f 0,——
j(; 0 0 V2mu

where @, is the law of the Brownian Bridge over the interval [0, «].
2°) Call M’ the law of the Brownian meander of length ¢ defined by scaling
from the meander of length 1 (Exercise (3.8)) and prove that

(NI <R)=M[/V2r1.

As a resuit

( ) foo M! dr foo SLad
* = a.
0 V2t 0 }

3°) Derive from (*) Imhof’s relation, i.e., for every ¢

+) M' = (m1/2)V2x 18]

where X, (w) = w(t) is the coordinate process.

[Hint: In the left-hand side of (%) use the conditioning given L, = ¢, then use
the result of Exercise (3.2) Chap. X1.]

By writing down the law of (¢, X,) under the two sides of (x), one also finds
the law of X, under M’ which was already given in Exercise (3.8).

4°) Prove that (+) is equivalent to the following property: for any bounded
continuous functional F on C([0, 1], R),

M\(F) = lriln(}(x/2)”2E, [Flin=n]/r

where P, is the probability measure of BM(r) and Ty is the first hitting time of
0. This question is not needed for the sequel.
[Hint: Use Exercise (1.22) Chap. X1.]

£ O (D 11T Y cat 3B — (Y. o < #)
-t } S U\L\J’, IJ’ l.I.\\I U\[ls,.) _II-

3 DL iy

S /22 x| . B8] = X, o (0 — 7' 2X)
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where ¢(a) = [ exp(—y?/2)dy. Observe that this shows, in the fundamental
counterexample of Exercise (2.13) Chap. V, how much 1/X, differs from a mar-
tinagala
tlllsul\.«.

[Hint: Use the Markov property of BES?.]
6°) Prove that, under M', there is @ Brownian motion 8 such that

B ! 2’ X, ds
X’—ﬁ”’fo (¢)(J1—s) a= ==t

which shows that the meander is a semimartingale and gives its decomposition in
its natural filtration.
[Hint: Apply Girsanov’s theorem with the martingale of 5°).]

xx (4.19) Exercise. If B; = 0, call D(s) the length of the longest excursion which
occured before time s. The aim of this exercise is to find the law of D(g,) for a
fixed ¢. For 8 > 0, we set

e oc
0 X
and

¢s(x, B) = E [1(ney=r) exp(—BT5)]
1Y If Lg(x) =E [fooo exp(—ﬁt)l(p(g,bx)dt], prove that

BLp(x) = Cﬁfo ¢s(x, Blds.

2°) By writing

¢r(X, 18) =FE |:Z {l(D(rx)>x) exp(_ﬂts) - l(D(r‘_)>Jr) exp(—ﬁrs—)}:l s

s<t

prove that ¢ satisfies the equation

¢i(x. ) = = (cp + dp(x) fo ¢s(x, B)ds + dp(x) fo e ¥ ds.

3°) Prove that
BLg(x) = dy(x)/ (cp + dp(x)) .

[Hint: {D(z,) > x} = {D(75-) > x} U {1y — 1,- > x}.]

4°y Solve the same problem with D(d;) in lieu of D(g,).

5°) Use the scaling property of BM to compute the Laplace transforms of
(D(gi)™" and (D(d)™".

*x  (4.20) Exercise. Let A be an additive functional of BM with associated measure
w and Sy an independent exponential r.v. with parameter 2 /2.
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1°) Use Exercise (4.18) 1°) to prove that for A > 0,

Eqy [exp (—AAS,,)]

92 92 +00 92
- Eo eXp —AAT - —T de Ea €xXp )LATO — —-To da.
— 2 C 2 . 2

2°) If ¢ and ¢ are suitable solutions of the Sturm-Liouville equation ¢” =
2 (Au + ) ¢, then

+0C

E [exp(—1As,)] = (6°/2¢'(04)) [ V(a)da.

-0

3°) With the notation of Theorem (2.7) Chap. VI find the explicit values of the
expressions in 1°) for A, = A and derive therefrom another proof of the arcsine
law. This question is independent of 2°).

[Hint: Use the independence of A] and A7, the fact that 7, = A} + A, and
the results in Propositions (2.7) and (2.8).] '

+% (4.21) Exercise (Lévy-Khintchine formula for BESQ’). IfI is a family of local
times of the Brownian excursion (see Exercise (4.9)), call M the image of nt
under the map w — {§(w). The measure M is a measure on W, = C (R, R,).
If f €W, and X is a process we set

Xy :j; f(H)X,dr.

1°) With the notation of Sect. 1 Chap. XI prove that for x > 0
QY [exp(—X;)] = exp { —X / (I —exp(—(f, M (d¢>)}

where (f, ¢) = [ f()$(dr.
[Hint: Use the second Ray-Knight theorem and Proposition (1.12).]

2°) For ¢ € W, call ¢* the function defined by ¢*(t) = ¢ ((r — s)*) and put
N = fooo M,ds where M, is the image of M by the map ¢ — ¢°. Prove that

Q% [exp(—X )] = exp{—z f (1 — exp(—({f, ¢>>))N(d¢)] :

[Hint: Use 1°) in Exercise (2.7) of Chap. XI and the fact that for a BM the
process |B! + L is a BES*(0).]

The reader is warned that M, has nothing to do with the law M* of the meander
in Exercise (4.18).

3°) Conclude that

Q% [exp(—X/)] = exp {— f(l —exp(—{f. o (xM + rSN)(dcb)] :
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4°) Likewise prove a similar Lévy-Khintchine representation for the laws 02 _
of the squares of Bessel bridges ending at 0; denote by M and Ny the correspond-
ing measures, which are now defined on C([0, []; R,).

5°) For a subinterval 7 of Ry, and x,y € I, with x < y, let P, , be the
probability distribution on C* (/) of a process X, , which vanishes off the interval
(x, y), and on (x, y), is a BESQ?_ (0, 0) that is

vV—X

Xx.y(v) = (y ~-x)Z (

N o

) lix<u<y) (vel)

where Z has distribution Q.
Prove that the Lévy measures encountered above may be represented by the
following integrals:

1 o0 1 o0 oo
M= —f y 2Py ,dy; N = —[ dx[ (y —x) 2P, ,dy
2 0 2 0 X

1 1 7! 1
My = —[ )’—ZPO_ydy; Ny = —f dxf y- x)_ZPx.ydy'
2 0 2 0 X

(4.22) Exercise. Let ¢ and f be positive Borel functions on the appropriate
spaces. Prove that

r R(e) r R(e)
| n+(de)j ¢ (s) f (es)ds =2j n+(de)¢(R(e))j f(2e;)ds.
0 0
[Hint: Compute the left member with the help of Exercise (4.17) 2°) and the
right one by using Theorem (4.1).]

(4.23) Exercise. Prove that Theorem (4.7) is equivalent to the following result.
Let £ be the measure on R, x W x W given by

&(dt,dw,dw’) = l(,>0)dt S3(dw)S3(dw')

and set L(w) = sup{s : w(s) = t}. If we define an U-valued variable ¢ by

w(s) if 0 <s < L(w)
es(w,w)=13 w{Lw)+Lw)—s) ifL{w)<s<Lw)+ Lw"
0 if s > L(w) + L(w),

then the law of (L, e) under £ is equal to 7.

(4.24) Exercise (Chung-Jacobi-Riemann identity). Let B be the standard BM
and T an exponential r.v. with parameter 1/2, independent of B.
1° Prove that for every positive measurable functional F,

. —_ — .
E[F(B;u<gr)| Lt =s]=¢E[F(B;u <1)exp(-t

/]
si=r]-

and consequently that
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E[F (B,;u <gp)l= foo E[F (Buiu < 15)exp(—15/2)] ds.
0

2°) Let 5%, 7% and {° denote respectively the supremum, the opposite of the in-
fimum and the local time at 0 of the standard Brownian bridge (4(2); t < 1). Given
a.-77(0, 1) Gaussian r.v. N independent of b, prove the three variate formula

P[IN|S® < x; INI® < y; IN|I® € dl] = exp(—I(coth x + coth y)/2)d!.
3°) Prove as a result that
P[IN|S? < x; INII° < y] = 2/(coth x + coth y)
and that, if M® = sup{|b(s));s < 1},
P [INIM0 < x] = tanh x.
Prove Csaki’s formula:
P(S%/S°+1° < v} = (1 —v)(1 —mvcot(y)) (0 <w<]l)

[Hint: Use the identity:

0o . 2
ZUZ[O di (%&%) =1 —mvcot(mv). ]

4°) Prove the Chung-Jacobi-Riemann identity:
(57 + 19" € () + (31°)

where M0 is an independent copy of M°,
5°) Characterize the pairs (S, ) of positive r.v.’s such that

iy P[IN|S < x;|NH <y]=2/(h(x)+ h(y)) for a certain function h,
i) (S+ 122 M+ M2,
where M and M are two independent copies of S v /.

(4.25) Exercise. (Brownian meander and Brownian bridges). Let @« € R, and
let I1, be the law of the Brownian bridge (B;,t < 1), with By = () and By = a.
Prove that, under I7,, both processes (2S5, — B;,t < |) and (|B,| + L;,t < 1)
have the same distribution as the Brownian meander (m,,t < 1} conditioned on
(my > {al).

[Hint: Use the relation (+) in Exercise (4.18) together with Exercise (3.20) in
Chap. V1]

In particular, the preceding description for @ = 0 shows that, if (b, f < 1) is
a standard Brownian bridge, with o, = sup,, b, and (I;,1 < 1) its local time at
0, then

(d) (d)

(m,t<1)= Qo —b,t <= (b|+1,t=<1),

Prove that under the probability measure (o /c) - [Ty (resp. (I1/c) - [Ty) the process
(20, — b, t < 1) (resp. (|b;| +I;.t < 1)) is a BES’.
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(4.26) Exercise. 1°) With the notation of this section set J = f; P§ dt and prove

that o oo
[ daf P(,’fduc:f da [ (P% o P5) ds.
Jo Joo S0 N /
[Hint: Use the generallzed occupation times formula of

Chapter VI1.]
2°) Define a map w — @ on .25 by

~

Tlm) = rn\ and
cl\y

alVy

(1) = w(0) +
and call ji the image by this map of the measure . Prove that J = J and that
(mou)=i'op
for any pair (u, u’) of measures on .4".
37} Prove that Por’0 = (PJ“O) and conclude that

J= ([OwPJ?ds) 0 ([_Z V(POT")da).

[Hint: See Exercise (2.29) Chapter VL]

Sect. 1. This section is taken mainly from Ité [5] and Meyer [4].
Exercise (1.19) comes from Pitman-Yor [8].

Seet. 2. The first breakthrough in the description of Brownian motion in terms of
excursions and Poisson point processes was the paper of Itd [5]. Although some
ideas were already, at an intuitive level, in the work of Leévy, it was It6 who put
the subject on a firm mathematical basis, thus supplying another cornerstone to
Probability Theory. Admittedly, once the characteristic measure is known all sorts
of computations can be carried through as, we hope, is clear from the exercises of
the following sections. For the results of this section we also refer to Maisonneuve
[6] and Pitman [4].

The approximation results such as Proposition (2.9), Exercise (2.14) and those
already given in Chap. VI were proved or conjectured by Lévy The proofs were
slVCll culu sladuau_y Blllll}liﬁcd in ILU'IKV{UKCGJI Llj, ‘V‘VIllliamS LUJ, Chuus—uuuuﬁ
[1] and Maisonneuve [4].

Exercise (2.17) may be extended to the computation of the distribution of the
multidimensional time spent in the different rays by a Walsh Brownian motion

(see Barlow et al. [1] (1989)).

Sect. 3. In this section, it is shown how the global excursion theory, presented
in Section 2, can be applied to describe the laws of individual excursions, i.e.
excursions straddling a given random time 7. We have presented the discussion
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Vv
only for stopping times T w.r.t. the filtration (%) = (.%,), and terminal (.7 )
stopping times. See Maisonneuve [7] for a general discussion. The canevas for

this section is Getoor-Sharpe [5] which is actually written in a much more general

setting. We also refer to Chung [1]. The filtration (78, was introduced and studied
in Maisonneuve [6].

The Brownian Meander of Exercise (3.8) has recently been much studied (see
Imhof ([1] and [2]), Durrett et al [1], Denisov [1] and Biane-Yor [3]). It has found
many applications in the study of Azéma’s martingale (see Exercise (4.16) taken
from Azéma-Yor [3]).

Sect. 4. Theorems (4.1) and (4.2) are fundamental results of [t [5]. The proof of
Corollary (4.4) is taken from lkeda-Watanabe [2].

Williams® description of the Ito measure is found in Williams [7] and Rogers-
Williams [1] (see also Rogers [1]) and Bismut’s description appeared in Bismut
[3). The formalism used in the proof of the latter as well as in Exercise (4.18)
was first used in Biane-Yor [1]. The paper of Bismut contains further information
which was used by Biane [!] to investigate the relationship between the Brownian
Bridge and the Brownian excursion and complement the result of Vervaat [1].

Exercise (4.8) is due to Rogers [3]. Knight's identity (Knight [8]) derived in
Exercise (4.11) has been explained in Biane [2] and Vallois [3] using a pathwise
decomposttion of the pseudo-Brownian bridge (cf. Exercise (2.29) Chap. VI);
generalizations to Bessel processes (resp. perturbed Brownian motions) have been
given by Pitman-Yor [9] (resp. [23]). The Watanabe process appears in Watanabe
[2]. Exercise (4.14) is from Rogers [1]. Exercise (4.16) originates with Azéma
[2] and Exercise (4.17) with Biane et al. [1]. Exercise (4.18) is taken partly from
Azéma-Yor [3] and partly from Biane-Yor ([1] and [3]) and Exercise (4.19) from
Knight [6]. Exercise (4.20) is in Biane-Yor [4] and Exercise (4.21) in Pitman-Yor
[2]; further results connecting the Brownian bridge, excursion and meander are
presented in Bertoin-Pitman [1].

With the help of the explicit Lévy-Khintchine representation of Q° obtained
in Exercise (4.21), Le Gall-Yor [5] extend the Ray-Knight theorems on Brownian
local times by showing that, for any § > 0, QF is the law of certain local times
processes in the space variable. In the same Exercise (4.21), the integral represen-
tations of M, N, My and N in terms of squares of BES* bridges are taken from
Pitman [5]. Exercise (4.22) is in Azéma-Yor [3], and Exercise (4.23) originates
from Bismut [3].

The joint law of the supremum, infimum and local time of the Brownian bridge
is characterized in Exercise (4.24), taken from work in progress by Pitman and
Yor. The presentation which involves an independent Gausstan random variable,
differs from classical formulae, in terms of theta functions, found in the literature
(see e.g. Borodin and Salminen [1]). Csaki’s formula in question 3°) comes from
Csaki [1] and is further discussed in Pitman-Yor [13]. Chung’s identity of question
4°) remains rather mysterious, although Biane-Yor [1] and Williams [9] explain

partly its relation to the functional equation of the Riemann zeta function. See also
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Smith and Dtaconis [1] for a random walk approach to the functional equation,
and Biane-Pitman-Yor [1] for further developments.

Evercice (4 78 ic 2 Adevelanment and an imnrovement of the correenondinge
LAVILVISY (T.40) 13 d GUVCIUPILIIVIIL Giild Gir Silpa vV diivin Vi uiv LuURnivSpUnUlLE

result found in Biane-Yor [3] for @ = 0, and of the remark following Theorem 4.
in Bertoin-Pitman [1]. The simple proof of Exercise (4.26) is taken from Leuridan

[,






Chapter XIII. Limit Theorems in Distribution

§1. Convergence in Distribution

In this section, we will specialize the notions of Sect. 5 Chap. 0 to the Wiener
space W, This space is a Polish space when endowed with the topology of
uniform convergence on compact subsets of R, . This topology is associated with
the metric

© supg,|o(t) — o ()]

d(w, @) = XI: 1+ sup,o, o) —o'()]

The relatively compact subsets in this topology are given by Ascoli’s theorem.
Let
V¥(w,8) =sup {lw(t) — (@)}, It =1 <sandt, ' < N}.

With this notation, we have
(1.1) Proposition. A subset I' of W? is relatively compact if and only if

(i) the set {w(0), w € I'} is bounded in R,
(ii) for every N,
lim sup V¥ (w, 8) = 0.
810 wer
In Sect. 5 Chap. 0, we have defined a notion of weak convergence for prob-
ability measures on the Borel o-algebra of WY; the latter is described in the
following

(1.2) Proposition. The Borel o-algebra on W is equal to the o-algebra .7 gen-
erated by the coordinate mappings.

Proof. The coordinate mappings are clearly continuous, hence .7 is contained
in the Borel o-algebra. To prove the reverse inclusion, we observe that by the
definition of d, the map @ — d(w, @) where «' is fixed, is .7 -measurable. As a
result, every ball, hence every Borel set, is in .7 .

Before we proceed, let us observe that the same notions take on a simpler
form when the time range is reduced to a compact interval, but we will generally
work with the whole half-line.
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(1.3) Definition. A sequence (X") of R¥-valued continuous processes defined on
probability spaces (2", ", P") is said to converge in distribution to a process
X if the sequence (X" (P™)) of their laws converges weakly on W9 to the law of

X. We will write X" -2 x.

In this definition, we have considered processes globally as W?-valued random
variables. If we consider processes taken at some fixed times, we get a weaker
notion of convergence.

. s urny

(1.4) Definition. A sequence (X™) of (not necessarily continuous) R?-valued pro-
cesses is said to converge to the process X in the sense of finite distributions if’

for any finite collection (11, ..., ) of times, the R%*-valued rv.’s (X:’ e X;l)
. . . f.d.
converge in law to (X,], e X,,‘). We will write X" — X.
Since the map @ — (w()), ..., w({)) is continuous on W¥, it is easy to see

. d fd. . . )
that, if X,, LN X, then X, —> X. The converse is not true, and in fact contin-

uous processes may converge in the sense of finite distributions to discontinuous
processes as was seen in Sect. 4 of Chap. X and will be seen again in Sect. 3.
The above notions make sense for multi-indexed processes or in other words
for C (R4, R? ) in lieu of the Wiener space. We leave to the reader the task of
writing down the extensions to this case (see Exercise (1.12)).
Convergence in distribution of a sequence of probability measures on W¢ is
fairly often obtained in two steps:

i) the sequence is proved to be weakly relatively compact;
ii) all the limit points are shown to have the same set of finite-dimensional dis-
tributions.

In many cases, one gets it) by showing directly that the finite dimensional
distributions converge, or in other words that there is convergence in the sense
of finite distributions. To prove the first step above, it is usually necessary to use
Prokhorov’s criterion which we will now translate in the present context. Let us
first observe that the function V¥ (-, §) is a random variable on W¢,

(1.5) Proposition. A sequence (P,) of probability measures on WY is weakly rel-
atively compact if and only if the following two conditions hold:
i) for every € > 0, there exist a number A and an integer ny such that

Pllw0) > Al <e, for every n > ng;

ii} for every n, ¢ > 0 and N € N, there exist a number § and an integer ny
such that
P,,[VN(-,S) > n] <&  foreveryn > ny.

Remark. We will see in the course of the proof that we can actually take ny = 0.

Proof. The necessity with ny = 0 follows readily from Proposition (1.1) and
Prokhorov’s criterion of Sect. 5 Chap. 0.
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Let us turn to the sufficiency. We assume that conditions i) and ii) hold. For
every no, the finite family (P,),<,, is tight, hence satisfies i) and ii) for numbers
A" and §'. Therefore, by replacing A by A v A’ and § by § A §’, we may as well

assume that conditions i) and ii) hold with ny = 0. This being so, for £ > 0 and
N €N, let us pick Ay, and 8y s such that

sup P, [ |o(0) > Ane] = 27Vl

sup P, [VV (-, 8wre) > 1/k] = 27V *Tg,

and set Ky = [0 |0(0)] < Ave, VV(w.8yvae) < 1/k forevery k > 1}. By
Proposition (1.1), the set K, = [}, K 1s relatively compact in W¢ and we have
P, (KS) <Yy Pv(Ky ) <&, which completes the proof. O

We will use the following

(1.6) Corollary. /f X" = (X " ..., X}) is a sequence of d-dimensional continuous
processes, the set (X"(P")) of their laws is weakly relatively compact if and only
if. for each j, the set of laws X (P") is weakly relatively compact.

Hereafter, we will need a condition which is slightly stronger than condition ii)
in Proposition (1.5).

(1.7) Lemma. Condition ii) in Proposition (1.5) is implied by the following con-
dition: for any N and g, 1 > 0, there exist a number 8, 0 < § < 1, and an integer
no, such that

§7'P, Ha) cosup | ew(s) —w(t) = r]” <e¢e forn>ngand forallz < N.

t<s<t 448

Proof. Let N be fixed, pick €, n > 0 and let ny and é be such that the condition
in the statement holds. For every integer / such that 0 < i < N§ !, define

i8<s=<(i+1)8AN

A = { sup |w(@d) — w(s)}] > n} .

As 1s easily seen {VN(-, §) < 31]} D [); A{., and consequently for every n > nq,
we get

PV .8 2 30) < P (JAi] = 0+ INED8s < (W + e

which proves our claim. 0
The following result is very useful.

(1.8) Theorem (Kolmogorov’s criterion for weak compactness). Let (X") be a
sequence of R?-valued continuous processes such that
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i) the family { X3 (P™)} of initial laws is tight in R?,
ii) there exist three strictly positive constants «, B, y such that for every s, t € R,
and every n,

E.[| X3 = X7[7] < Bls — e"*;
then, the set {X"(P")} of the laws of the X, s is weakly relatively compact.

Proof. Condition i) implies condition 1) of Proposition (1.5), while condition ii)
of Proposition (1.5) follows at once from Markov inequality and the resuit of
Theorem (2.1) (or its extension in Exercise (2.10)) of Chap. 1. D

We now turn to a first application to Brownian motion. We will see that the
Wiener measure is the weak limit of the laws of suitably interpolated random
walks. Let us mention that the existence of Wiener measure itself can be proved
by a simple application of the above ideas.

In what follows, we consider a sequence of independent and identically dis-
tributed, centered random variables & such that E [£7] = 0® < oo. We set Sy = 0,
Se =Y ;-1 &. If [x] denotes the integer part of the real number x, we define the
continuous process X" by

X, = (Cfx/fT)a1 (Stne1 + (1t = [1EDE 111 -

(1.9) Theorem (DonsKer). The processes X" converge in distribution to the stan-
dard linear Brownian motion.

Proof. We first prove the convergence of finite-dimensional distributions. Let f; <
ty < ... < t; by the classical central limit theorem and the fact that {nt]/n con-
verges to 1 as n goes to 400, it is easily seen that (X', X7 — X7, ..., X7 — X7 )
converges in law to (Bn By, — B, ... By, — B,k_,) where B is a standard linear
BM. The convergence of finite-dimensional distributions follows readily.

Therefore, it is sufficient to prove that the set of the laws of the X,,’s is weakly
relatively compact. Condition i} of Proposition (1.5) being obviously in force, it
is enough to show that the condition of Lemma (1.7) is satisfied.

Assume first that the &,’s are bounded. The sequence |Si|* is a submartingale

and therefore for fixed n
P [max S| > Aoﬁ] < E[IS.1*] (Aoﬁ)"“.
i<n

One computes easily that £ [S}] = nE [£]] + 3n(n — 1)o*. As a result, there is
a constant K independent of the law of & such that

lim P I:maxlS,-l > Aaﬁ] < Kr» ™4,

n—00 i<n

By truncating and passing to the limit, it may be proved that this is still true if
we remove the assumption that & is bounded. For every k > 1, the sequence
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{Sn+x — Sk} has the same law as the sequence {S,]} so that finally, there exists an
integer n; such that

T 1
P l_max |1Sivk — Skl > AaﬁJ < K14

for every k > 1 and n > n;. Pick ¢ and 5 such that 0 < ¢, < 1 and then choose
X such that KA =2 < ne?; set further § = 212 and choose ny > m8~'. If n > n,,
then [n8] > n,, and the last displayed inequality may be rewritten as

P l:m[afs(] 1Sisk — Sk > Aa\/[né]] < ne’A 2,
1<|n
Since A+/[n8] < e/n, we get
s7'p [‘m[a?s(] [Sivi — Skl > saﬁ] <n

for every k = 1 and n > ny. Because the X, s are linear interpolations of the
random walk (S,), it is now easy to see that the condition in Lemma (1.7) is
satisfied for every N and we are done. O

To illustrate the use of weak convergence as a tool to prove existence results,
we will close this section with a result on solutions to martingale problems. At
no extra cost, we will do it in the setting of 1t0 processes (Definition (2.5), Chap.
VII).

We consider functions a and b defined on R, x W7 with values respectively
in the sets of symmetric non-negative d x d-matrices and R“-vectors. We assume
these functions to be progressively measurable with respect to the filtration (.7 %)
generated by the coordinate mappings w(z). The reader is referred to the beginning
of Sect. 1 Chap. IX. With the notation of Sect. 2 Chap. VII, we may state

(1.10) Theorem. If a and b are continuous on R, x W, then for any probability
measure i on RY, there exists a probability measure P on WY such that

) Plw(0) € A] = u(A);
ii) for any f € C%, the process f(a)(z)) - f(w(O)) - fot Lsf(w(s))ds is a
(Z 0 P)-martingale, where

A [, L A — af =
L f{w(s)) = 5 D aij(s, w)ax,-c';xk (w(s))+Lb,-(s, w)5”;j-(w(s)).

Proof. For each integer n, we define functions @, and b, by
an(t, w) = a({nt]/n, w), b, (t, w) = b([nt]/n, w).

These functions are obviously progressively measurable and we call L? the cor-
responding differential operators.
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Pick a probability space (£2,.7, P) on which ar.v. X of law w and a BM“(0)
independent of X, say B, are defined. Let o, be a square root of a,. We define
inductively a process X" in the following way; we set X§ = X, and if X" 1s
defined up to time k/n, we set for k/n <t < (k + 1}/n,

X! = Xi +oulk/n, X") (B, — Byn) + bo(k/n, X")(t — k/n).
Plainly, X" satisfies the SDE
[ [

X7 :j a, (s, Xj")db"s+‘l bo(s, X")ds
0 0

and if we call P" the law of X" on WY then P"[w(0) € A] = u(A) and
f@@) — f(@(0)— [y L" f(w(s))ds is a P"-martingale for every f € C%.

The set (P") is weakly relatively compact because condition i) in Theorem
(1.8) is obviously satisfied and condition ii) follows from the boundedness of a
and b and the Burkholder-Davis-Gundy inequalities applied on the space £2.

Let P be a limit point of (P") and (P") be a subsequence converging to
P. We leave as an exercise to the reader the task of showing that, since for
fixed 7 the functions f(; L} f(w(s))ds are equi-continuous on W¢ and converge to

for L f{w(s))ds, then

Ep [(f(w(t)) —fﬂ Lsf(w(S))dS) ¢] =

im_ Epe | (S~ [ 1 7@ds) 0|

n 0

for every continuous bounded function ¢. If 1| < t; and ¢ is .7 ®_measurable it
follows that

Ep [(f(w(fz)) — flo@)) - f Lsf(w(S))dS) ¢] =0

141

since the corresponding equality holds for P"" and L”". By the monotone class
theorem, this equality still holds if ¢ is merely bounded and .7 0.measurable; as

a result, f(w () — f(w(0)) — f(; L; f(w(s))ds is a P-martingale and the proof is
complete. d

Remarks. With respect to the results in Sect. 2 Chap. IX, we see that we have
dropped the Lipschitz conditions. In fact, the hypothesis may be further weakened
by assuming only the continuity in @ of a and b for each fixed 7. On the other
hand, the existence result we just proved is not of much use without a uniqueness

result which is a much deeper theorem.

(1.11) Exercise. 1°) If (X") converges in distribution to X, prove that (X")*
converges in distribution to X* where, as usual, X = sup, ., | X;|.

2°) Prove the reflection principle for BM (Sect. 3 Chap. liI) by means of the
analogous reflection principle for random walks. The latter is easily proved in
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the case of the simple random walk, namely with the notation of Theorem (1.9),
P& =1]= P& =—-11=1/2.

(1.12) Exercise. Prove that a family (P;) of probability

is weakly relatively compact if there exist constants o, ,6, ¥, p > 0 such tha
sup, Er{ |Xo|?] < oo, and for every pair (s, t) of points in k

sup Ex [ 1X; — X 1°] < Bls — t|**”
A

where X is the coordinate process.

(1.13) Exercise. Let 87, s € [0,1] and y", t € [0, 1] be two independent se-
quences of independent standard BM’s, Prove that the sequence of doubly indexed

processes
-172
(s 1y T =n Z 16 V:

converges in distribution to the Brownian sheet. This 1s obviously an infinite-
dimensional central-limit theorem,

(1.14) Exercise. In the setting of Donsker’s theorem, prove that the processes

oy
(O-X/E) (S[nr] + (nt — [nt])s[nﬂﬂ‘-l - tSn) ) 0<r=1,
converge in distribution to the Brownian Bridge.

same ﬁltered space and such that

ARl eihs LAl he LR RN

i) the sequence (M") converges in distribution to a process M;
i} for each 1, the sequence (M7 ) is uniformly integrable.

Prove that M 1s a (super) martingale for its natural filtration.

(1.16) Exercise. Let (M") be a sequence of continuous local martingales vanish-
ing at 0 and such that ((M”, M")) converges in distribution to a deterministic
function a. Let P, be the law of M".

1°) Prove that the set (P,) i1s weakly relatively compact.

[Hint: One can use Lemma (4.6) Chap. IV.]

2°) If, in addition, the M"’s are defined on the same filtered space and if, for
each ¢, there is a constant a(f) such that (M", M"), < «{r) for each n, show that
(P,) converges weakly to the law W, of the gaussian martingale with increasing
process a(t) (see Exercise (1.14) Chap. V).

[Hint: Use the preceding exercise and the ideas of Proposition (1.23) Chap:
V]

3°) Let (M") = (M{’,i =1,..., k) be a sequence of multidimensional local
martingales such that (M) satisfies for each i all the above hypotheses and, in
addition, for i # j, the processes (M7, M;’) converge to zero in distribution. Prove
that the laws of M" converge weakly to W, ® ... ®@ W,,.

[Hint: One may consider the linear combinations ) u; M/".]



.

522 Chapter XIII. Limit Theorems in Distribution

The two following exercises may be solved by using only elementary properties
of BM.

(1.17) Exercise (Scaling and asymptotic independence). 1°) Using the notation
of the following section, prove that if 8 is a BM, the processes 8 and B\ are
asymptotically independent as ¢ goes to 0.

[Hint: For every A > 0, (B, t < A) and (B4 — Bea, 4 = 0) are
independent.]

2°) Deduce from 1°) that the same property holds as ¢ goes to infinity. (See
also Exercise (2.9).)

Prove that for ¢ # 1, the transformation x — X© which preserves the Wiener
measure, is ergodic. This ergodic property is the key point in the proof of Exercise
(3.20), 1°), Chap. X.

3°) Prove that if (y,, ¢t < 1) is a process whose law P? on C([0, 1], R) satisfies

P, <« Wiz foreveryr <1,
then the two-dimensional process V,(C) = ((y,("), v:), t < 1) converges in law as ¢
goes to 0 towards ((8;, y1), t < 1), where B is a BM which is independent of y.

[Hint: Use Lemma (5.7) Chap. 0.]

4°) Prove that the law of () converges in total variation to the law of 8 i.e. the
Wiener measure. Can the convergence in 3°) be strengthened into a convergence
in total variation?

5°) Prove that V'“ converges in law as ¢ goes to O whenever y is a BB, a
Bessel bridge or the Brownian meander and identify the limit in each case.

(1.18) Exercise. (A Bessel process looks eventually like a BM). Let R be a
BES’(r) with § > 1 and r > 0. Prove that as s goes to infinity, the process
(R,+s — R, s = 0) converges in law to a BM'.

[Hint: Use the canonical decomposition of R as a semimartingale. It may be
necessary to write separate proofs for different dimensions.]

§2. Asymptotic Behavior of Additive Functionals
of Brownian Motion

This section is devoted to the proof of a limit theorem for stochastic integrals with

SRS, T TRSRUR, (SL SRR WP JSEPY S S o
rougnly speaking) the growtn rate ol

respeci to BM. As a corollary, we will get (
occupation times of BM.
In what follows, B is a standard linear BM and L“ the family of its local

times. As usual, we write L for L°. The Lebesgue measure is denoted by m.

(2.1) Proposition. If f is integrable,

lim nflf(nBs)ds =m(f)L  as.,
¢

n—o0
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and, for each t, the convergence of n fot f(nBs)ds tom(f)L, holds in L? for every
p > 1. Both convergences are uniform in t on compact intervals.

Proof. By the occupation times formula

+00

I
nf f(nB)ds = fla@)L¥"da.
0 —00
For fixed ¢, the map a — L¢ is a.s. continuous and has compact support; thus, the
r.v.sup, L{ is as. finite and by the continuity of L, and the dominated convergence
theorem,

limn/ f(nBds = m(f)L, a.s.
" 0

Hence, this is true simultaneously for every rational r; moreover, it is enough to
prove the result for f > 0 in which case all the processes involved are increasing
and the proof of the first assertion is easily completed.

For the second assertion, we observe that

< sl (SUP Lf)

and, since by Theorem (2.4) in Chap. XI, sup, L{ is in L? for every p, the result
follows from the dominated convergence theorem.
The uniformity follows easily from the continuity of L? in both variables. 0O

+o0
f(a)Lf/"da

— 00

The following is a statement about the asymptotic behavior of additive func-
tionals, in particular occupation times. The convergence in distribution involved
is that of processes (see Sect. 1), not merely of individual r.v.’s.

(2.2) Proposition. If A is an integrable CAF,
lim =va(1)L in distribution.

1
=00 ﬁAn
Proof. Since (see Exercise (2.11) Chap. VI) L% @ \/EL?/\/H, it follows that

1 1 d
—A, = —fLﬁ va(da) @ [ La/ﬁvA(da)
and the latter expression converges a.s. to v4{l)L by the same reasoning as in
the previous proposition. O

The above result is satisfactory for va(1) # 0; it says that a positive inte-
grable additive functional increases roughly like v4(1)+/f. On the contrary, the
case v4(1) = 0 must be further investigated and will lead to a central-limit type
theorem with interesting consequences. Moreover, measures with zero integral are
important when one wants to associate a potential theory with linear BM.

If we refer to Corollary (2.12) in Chap. X, we see that we might as well work
with stochastic integrals and that is what we are going to do. To this end, we
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need a result which will be equally very useful in the following section. It is an
asymptotic version of Knight'’s theorem (see Sect. 1 Chap. V).

In what follows, (MJ?’, | < j <k) will be a sequence of k-tuples of continuous
local martingales vanishing at 0 and such that (M}, M[')oc = o0 for every n and
Jj. We call 7/(r) the time-change associated with (M}, M) and B} the DDS
Brownian motion of M?.

(2.3) Theorem. [f, for every t, and every pair (i, j) withi # j

iim (M, M Yony = lim (M, M)
e G i e 0 i M

Il
<

in probability, then the k-dimensional process 8" = (ﬁf’, 1<j= k) converges in
distribution to a BM¥.

Proof. The laws of the processes ] are all equal to the one-dimensional Wiener
measure. Therefore, the sequence {8"} is weakly relatively compact and we must
prove that, for any limit process, the components, which are obviously linear BM’s,
are independent.

[t is no more difficult to prove the results in the general case than in the case
k = 2 for which we introduce the following handier notation. We consider two
sequences of continuous local martingales (M") and (N"). We call z"(¢) and 5" ()
the time-changes associated with (M", M") and (N", N") respectively and 8" and
y" the corresponding DDS Brownian motions.

fO0=1t <t <...<t, =1 and if we are given scalars fy, ..., fp,—1 and

80 ..., 8p-1, We set

F=Y Flyan Bn=3 1 (8. -8)
7 i

g = Zgjl]rj.r,“]a y"(g) = Zg] (Vrf” - yljn) :
J J
Let us first observe that if we set
s by
ur =f f (M, M), am?, v :[ g ((N", N"™),)dN?,
0 0

then B(f) = UZ and y"(g) = V2. Therefore writing E [% (i (U" + V")),,] =1
yields

— . _ e . / l r Vs e ) Re BN = \
Elexp(i(B" (/) + y"(g))) - H'] = exp k_ij (f"+2g°) (t)dl)
where

H" = exp(fo f((M",M")s)g((N”,N”)s)d(M”,N”)s)

\
= CXp Zﬁgj ((M", N"Yun g ponn @ — (M7, N")u”(t;)w;"(t,-))) :

Ly

—
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The hypothesis entails plainly that H” converges to 1 in probability; thus the
proof will be finished if we can apply the dominated convergence theorem. But

K nifn_“’o*onn]ﬁ\a inan~iia Thoaw T A tha + P RO
A ufliid- vwatanaoc s iiivyua “llap. 1v ) anda inc u;uc-uuaugc

formulas yield
H" <exp(llfl2lgll2)

and we are done. m]

We will make a great use of a corollary to the foregoing result which we now
describe. For any process X and for a fixed real number # > 0, we define the
scaled process X™ by

X™ = h7 X ().

The importance of the scaling operation has already been seen in the case of BM.
If M is a continuous local martingale and 8 its DDS Brownian motion, then g8
is the DDS Brownian motion of A~!M as is stated in Exercise (1.17) of Chap. V.

We now consider a family M;, i = 1,2, ..., k of continuous local martingales
such that (M;, M;),, = oo for every i and call §; their DDS Brownian motions.
We set M = M;/./n and call g/ the DDS Brownian motion of M. As observed

above, B (1) = B;(nt)//n .

(2.4) Corollary. The k-dimensional process " = (ﬁ,.",i =1,..., k) converges in
distribution to a BM* as soon as

hm(MuM) /(MuMi)r =0

—0Q

almost surely for every i, j < k withi # .

Proof. If 7,(tr) (resp. t/'(t)) is the time-change associated with (M;, M;)
(resp. (M, M), then /(1) = t;(nt) and consequently (M, M),

n Y (M;, M;}¢ ). The hypothesis entails that t ' (M;, M;), , converges as. to
0 as ¢t goes to +00, so that the result follows from Theorem (2.3). |

The foregoing corollary has a variant which often comes in handy.

(2.5) Corollary. Ifthere is a positive continuous strictly increasing function ¢ on
R, such that

i) @) L(M;, M), — U i=1,2,... .k where U; is a strictly positive r.v.,
n) fh(f\ I'eun |IM M y | — 0in nrnhnh:hh) fnr evervi, ] <k withi = i
Yl 9By [N s 1 prODRON Lz it =

I—00

then the conclusion of Corollary (2.4) holds.

Proof. Again it is enough to prove that, for i # j, t~!(M;, M), converges to 0
in probability and in fact we shall show that 1~ X, converges to 0 in probability
where X, = sup {|(M;, M}),| ;s < (1)}

Hypothesis i) implies that ¢t ~'¢(z;(t)) converges to U,._" in distribution. For
A > 0 and x > 0, we have, using the fact that X is increasing,
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P[Xomy>2) <= Plp@(t) > tx]+ P{Xr0y > At 1) < ¢~ (1x)]
< PLp@®) > tx]+ P [Xprim > M].

Pick &€ > 0; since U; is strictly positive we may choose x sufficiently large and
T > 0, such that, for every ¢t > T,

Plo(ri(t)) > tx] <e.

Hypothesis ii) implies that there exists 77 > T such that for every t > T’,
P[Xp14xy > M| <.

It follows that for t > 77,
P[Xyu > A] < 28,

which is the desired result. 0

We now return to the problem raised after Proposition (2.2). We consider Borel
functions f;, i = 1,2,...,k in L'(m) N L?*(m) which we assume to be pairwise
orthogonal in L2, i.e. [ f fidm = 0 for i # j. We set

- \/E['ﬁ(nBast.
0

(2.6) Theorem (Papanicolaou-Stroock-Varadhan). The (k+ 1)-dimensional pro-

cess (B, Mi, ..., Mk) converges in distribution to (8, ||f,ll2y, Ji=1,2,...,k)
where (B, v!,....v*) is a BM*t! and | is the local time of B at zero.

Proof. We have
!
(M, M), = nj (fi f;)(nB;)ds.
0
so that by Proposition (2.1), we have as,

lim (M}, M}'), = || fil5L,; fori # j, lim (M}, M}), = lim (M, B), = 0
n—00 n—ro0 n—oQ
uniformly in ¢ on compact intervals. Thus it is not difficult to see that the hypothe-
ses of Theorem (2.3) obtain; as a result, if we call B” the DDS Brownian motion
of M”, the process (B Bf, ..., BY) converges in distribution to (B, ¥!, ..., ¥*).
Now (B, M7, ..., Mk is equal to (B B! ((M" M")).i=1,..,k)anditis
plain that (B, (M, M]'),i = ... kB i=1, K) converges in distribution

o (B lfil31i=1..... k.y'i=1,...k). The result follows. O

Remark. lnstead of n, we could use any sequence (a,) converging to +oc or, for
that matter, consider the real-indexed family

and let A tend to +o00. The proof would go through just the same.
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We will now draw the consequences we have announced for an additive func-

tional A which is the difference of two integrable positive continuous additive

Fureantinnale foaa Rvaraica £ 27 Mhaw VY Ty — f\ Ter Aardor ¢~ ha
TUncuonais LL LAUIVIIC (&.24) dlap. Al d."u buhll llldl VA \l} V. L1l ViuLl W UG

able to apply the representation result given in Theorem (2.9) of Chap. X, we will
have to make the additional assumption that

f 1x[val(dx) < 0.

As in Sect. 3 of the Appendix, we set

Flx) = f x — ylva(dy).

The function F is the difference of two convex functions and its second derivative
in the sense of distributions is 2v4. Let F” be its left derivative which is equal to
va(] — 00, -[). We have the

(2.7) Lemma. The function F is bounded and F' is in %' (mYN %2 (m). Moreover
HEZIZ = 1(va)

where 1(v,) = —(1/2) [ [ Ix — ylva(dx)va(dy) is called the energy of va.

Proof. Since

flx—yllvAI(dy)s |x|||vAn+j|y||vA|<dy),

the integral f(v,) is finite and we may apply Fubini’s theorem to the effect that

Ivg) = - ff (x = y)va(dx)va(dy)
x>y

_ - [ f f va(dx)va(dy)dz
+oz>z>y o0 ¢
_f dz (f vA(dx)) (f VA(d)’)) :

The set of z’s such that v4({z}) # 0 is countable and for the other z’s, it follows
from the hypothesis v4(1) = 0 that

va(] — 00, 2[) = —va(lz, oo[).

Thus the proof of the equality in the statement is complete.
By the same token

[Tirldx = [ dxivarooD = [ Ival (e, coDd

o U

o0
- f xlval(dx) < oo,
0



528 Chapter XIII. Limit Theorems in Distribution

and likewise 0 0
[ 1P wdx < [ xivaldx) < oc.

Consequently, F’ is in ¥ ! and it follows that F is bounded. |

We may now prove that additive functionals satisfying the above set of hy-
potheses are, roughly speaking, of the order of ¢'/# as ¢ goes to infinity.

(2.8) Proposition. [f v (1) = 0 and df Ix|lval{dx) < oo, the 2-dimensional pro-
cess (n_I/ZB,,_, n_1/4A,,_) converges in distribution to (ﬂ, [(UA)UZ)/[), where (B, v)
is a BM? and [ the local time of B at 0.

Proof. By the representation result in Theorem (2.9) of Chap. X and Tanaka’s
formula,

n~\*A, =n"VF(B,) - F(0)] —n~!/* f F(B,)dB,.
0

Since F is bounded, the first term on the right goes to zero as » goes to infinity
and, therefore, it is enough to study the stochastic integral part.
Setting s = nu, we see that we might as well study the limit of

(n—”zs,,,,n"/“f F’(Bm)dB,m),
0
{d)

and since B, = /nB, this process has the same law as

(B_,n'/“fO. F (ﬁB,,)dB,,).

Because F' is in £ !(m) N ¥ 2(m), it remains to apply the remark following
Theorem (2.6). O

Remark. Propositions (2.2) and (2.8) are statements about the speed at which
additive functionals of linear BM tend to infinity. In dimension 4 > 2, there is no
such question as integrable additive functionals are finite at infinity but, for the
planar BM, the same question arises and it was shown in Sect. 4 Chap. X that
integrable additive functionals are of the order of log:. However, as the limiting
process 1s not continuous, one has to use other notions of convergence.

(2.9) Exercise. 1°) In the situation of Theorem (2.3), if there is a sequence of
positive random variables L, such that

1) lim, (M, M}, = 400 in probability for each i;
= 0 in probability for each pair 7, j with i # j,

i) Tim, sup,r, | (M7 M),

prove that the conclusion of the Theorem holds.

2°) Assume now that there are only two indexes and write M” for M7 and N”
for MJ. Prove that if there is a sequence (L,) of positive random variables such
that
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i) lim,(M”", M"); = oo in probability,
ii) lim, sup,; |{M", N");| =0,

then the conclusion of the Theorem hoids.

3°) Deduce from the previous question that if 8 is a BM, and if ¢ converges
to +00, then B and B© are asymptotically independent.

Remark however that the criterion given in Corollary (2.4) does not apply in
the particular case of a pair (M, 1 M) as ¢ — oo. Give a more direct proof of the

asymptotic independence of 8 and 8.

(2.10) Exercise. For f in L2 N L', prove that for fixed ¢, the random variables
Jn for f(nBs)dB; converge weakly to zero in L% as n goes to infinity. As a
resuit, the convergence in Theorem (2.6) cannot be improved to convergence in
probability.

(2.11) Exercise. Let0 < a; < ... < gy < oc be a finite sequence of real numbers.
Prove that the (k + 1)-dimensional process

(Bf, ‘/7'7 (Lf"/" _ L?“’"),i =1,2, k)

converges in distribution to

(B, Vai —aisy,i=1.2,...k)

where (y',i =1,2,..., k) is a k-dimensional BM independent of 8 and [ is the
local time of 8 at 0.

(2.12) Exercise. 1°) Let

t
X(r,a):f L10.a1(Bs)d By.
0

Prove that for p > 2, there exists a constant C, such that for 0 <s <7 <1 and
0<a<bc<l,

E[1X(@t,b) — X(s,a)P] = C, ((t — )PP + (b —a)"?).

2°) Prove that the family of the laws P, of the doubly indexed processes

!
(Bh )\-1/2[ l[O.a](ABs)st)
(]

[Hint: Use the preceding Exercise (2.11).]
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4°) For v > 0, prove that

>0 o0
v f g~ B/2+v) fra _ 7 0y da ) o [ —rl/2up (f uy
& j o \Lr ) —?Ljo [ \ . € }au.
£

5°) Let 7, = inf{u: LY > x}; the processes 1'/> (Li/A - x) /2 converge in
distribution, as A tends to +00, to the process /xy, where y, is a standard BM.

This may be derived from 3°) but may also be proved as a consequence of the
second Ray-Knight theorem (Sect. 2 Chap. XI).

(2.13) Exercise. With the notation of Theorem (1.10) in Chap. VI, prove that

H
lim—=\ed.()— =L | =
ﬁg%\/_(e () 2 ) VI
in the sense of finite distributions, where as usual, / is the local time at 0 of a BM
independent of y.

[Hint: If M; = ﬁ for 0:d B, and P® is the law of (B, L;, M?), prove that the
set (P¢, ¢ > 0) 1s relatively compact.]

(2.14) Exercise. In the notation of this section, if (x;),i =1, ...,k is a sequence
of real numbers, prove that (B, e~!/2(L**¢ — L*),i=1,..., k) converges in

distribution as ¢ — 0, to (B,2B}.,,i =1,....k), where (B,B', ..., B%) is a
RN A+

(2.15) Exercise. Prove, in the notation of this section, that for any x € R,
g2 [e7" [; Vixx4e1(Bs)ds — L*] converges in distribution to (2/\@) B+, as &
tends to 0. The reader will notice that this is the “central-limit” theorem associated
with the a.s. result of Coroliary (1.9) in Chap. VI.

[Hint: Extend the result of the preceeding exercise to (L""J"“Z — Lx') and get
a doubly indexed limiting process.]

(2.16) Exercise (A limit theorem for the Brownian motion on the unit sphere).
Let Z be a BM%(a) with a # 0 and d > 2; set p = |Z|. Let V be the process
with values in the unit sphere of R? defined by

Z,=pVc,
I‘J IJ ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

- d
‘uruuuLt UCUUIIIPUDIL]U[[ Uf BJ‘V’{ -

, independent of p and such that

- v ay

a ol
IIG M A

[°) Prove that there is a BM¢, say

H d _ 1 f
V, = Vo+ f s (VodB, — =L [ v.ds
0 2 J

where o is the field of matrices given by

cr,-j(x) = 5,-j — XiXj.
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2°) If X, = ] 0 (V,)dB,, prove that (X', X/}, = (X', Bi},.
[Hint: Observe that o (x)x = 0, o (x)y = y if (x, y) = 0, hence 0 *(x) = 7 (x).]
3°) Show that

lim ¢ Y(Xx', By, =8,;(1 —d™ ") as.
t— oo
2
4%y Prove that the 2d-dimensional process (c‘chz,, (2¢)! 0‘ ! V_;ds) con-
verges in distribution, as ¢ tends to oo, to the process

(B,d™" (B, +(d—1)""B)))
where (B, B’) is a BM*?,

§3. Asymptotic Properties of Planar Brownian Motion

In this section, we take up the study of some asymptotic properties of complex BM
which was initiated in Sect. 4 of Chap. X. We will use the asymptotic version of
Knight’s theorem (see the preceding section) which gives a sufficient condition for
the DDS Brownian motions of two sequences of local martingales to be asymp-
totically independent. We wil} also have to envisage below the opposite situation
in which these BM’s are asymptotically equal. Thus, we start this section with a
sufficient condition to this effect.

(3.1) Theorem. Let (M), i = 1,2, be two sequences of continuous local martin-
gales and B! their associated DDS Brownian motions. If R,(t) is a sequence of
processes of time-changes such that the following limits exist in probability

) hm, (M7, MR,y = limn(M;’;, M;)R,,(r) =1,

i) lim, (M} — M}, M} — M})g, ¢y =0,

then, lim, sup,_, |B}(s) — B3(s)| = 0 in probability.

Proof. If T is the time-change associated with (M, M),

|87 (1) = B5 (1) < M (T(0)) = M} (R, ()| + [M] (R, (1)) — M3 (R, ()]
+ | M3 (R, (1)) — M; (T3 (1))

By Exercise (4.14) Chap. 1V, for fixed 1, the left-hand side converges in probability
to zero if each of the terms

TRy
A

Rty

TH sy
1yl

(M, M{) (MY — M3, MY = M3)R, . (M7 M3)g )

converges in probability to zero. Since (M{, M{ )7y = ¢, this follows readily
from the hypothesis.

As a result, |87 — 7| 1% 0. On the other hand, Kolmogorov’s criterion (1.8)

entails that the set of laws of the processes B — B3 1s weakly relatively compact;

thus, B! — B% 9, 0. This implies (Exercise (1.11)) that sup, -, |81 (s) — B3 ()|
O

converges in distribution, hence in probability, to zero.
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The following results are to be compared with Corollary (2.4). We now look
for conditions under which the DDS Brownian motions are asymptoticaily equal.

(3.2) Corollary. If M;, i = 1,2, are continuous local martingales and R is a
process of time-changes such that the following limits exist in probability

. M 1

i) im —(M;, Mij)puy = 1fori=1,2,
U—0o0 |y

ey 1" ] B Y 4 | W 4 b I\

i) lim — (M, — My, My — M2} gy =
u—oo iy

then ﬁ (B (u-) — Ba(u-)) converges in distribution to the zero process as u fends
to infinity.

Proof. By the remarks in Sect. 5 Chap. 0, it is equivalent to show that the con-
vergence holds in probability uniformly on every bounded interval. Moreover, by
Exercise (1.17) Chap. V (see the remarks before Corollary (2.4)), w\/'—;ﬁ,-(u-) is the

DDS Brownian motion of \/L;M"' Thus, we need only apply Theorem (3.1) to

4 A
(M Fo2). .
The above corollary will be useful later on. The most likely candidates for R

are mixtures of the time-changes p! associated with (M, M"Y and actually the
following result shows that x| v w2 will do.

(3.3) Proposition. The following two assertions are equivalent:

1
(1) r]im }—(Ml — My, My — M) 102 = 0 in probability;
. | | . .
(i) lim —(M\, My},: = lim —(M;, My),1 =1 in probability,
t—00 t ! t—oo f !

i
and  lim — (M, — Ma, M| — M) i

t—oo f

» = 0 in probability.

ul A
Under these conditions, the convergence stated in Corollary (3.2) holds.

Proof. From the “Minkowski” inequality of Exercise (1.47) in Chap. IV, we con-
clude that

1/\

le:—1ns ar
l [

\ A\l/z |
\IVII,IVIII“IA} |

I(IAV/I’I T OiVEG, iYE] T M ) :)
By means of this inequality, the proof that i) implies ii) is easily completed.
To prove the converse, notice that
PV
(My — My, My — Ma) i

(M) = My, My — Ma),) — (My — Ma, My — M3),2|
|M1,M| 2 — (M, Ma),2 + 2 ((My, Ma),) — (M, Mb),2)|.
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Since by Kunita-Watanabe inequality

(M1, M), — (M, M) 3] < |r — (M, My 2|7 [t — (Mo, Moy |2
the equivalence of ii) and 1) follows easily. o
The foregoing proposition will be used under the following guise.

(3.4) Corollary. If(M], Ml)oo = (Mz, MZ)oo = o0 and

flir{’]o(Ml — My, M\ — M), /(M;. M), = 0 almost-surely,

SJor i = 1,2, then the conclusion of Proposition (3.3) holds.

Proof. The hypothesis implies that u! is finite and increases to +00 as ¢ goes to
infinity. Moreover

1
(My — My, My — My) . [(M;, My, = 7(M| — My, My — M3),i,

so that condition 1) in the Proposition is easily seen to be satisfied. O

From now on, we consider a complex BM Z such that Zy = z3 a.s. and pick
points zy, ..., Zz, in C which differ from zg. For each j, we set

x; = f{ er _ iOg | Zy ~ 7j
! t]O ZS - Z_} Z() - Zj

| el
| + i/,

i : . Z—zj : .
where ] is the continuous determination of arg ( Zor — z{) which vanishes for
j

t = 0. The process (2n}“19,j is the “winding number” of Z around z; up to time ?;
we want to further the results of Sect. 4 in Chap. X by studying the simuitaneous
asymptotic properties of the 8/, j = 1,..., p.

Let us set t
; -2
c/ =[ |Z, — z;| " ds
0

and denote by T, the time-change process which is the inverse of C/. As was
shown in Sect. 2 Chap. V, for each j, there is a complex BM ¢/ = B/ +iy/ such
that . _ _

vl — 4 Al 4 .0 — ]

Xi =Ses pr Ay = Xgi-
We observe that up to a time-change, 8/ is < 0 when Z is inside the disk D; =
D (zj.1z0 — z;1) and > 0 when Z is outside D;.

We now recall the notation introduced in Chap. VI before Theorem (2.7). Let

B be a standard linear BM and / its local time at . We put

t !
M7 =[0 lg,>00dBs, M. :[0 1ig, <0)dPps.
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and call o* the time-changes associated with (M*, M*). Let 8% and 8~ be the
positive and negative parts of 8 and put p* = ,6:1. By the results in Chapter VI,

o o —\ / A xr— \ b . ™R E ] L4 N
(6%,87) = (Mo, M, ) is a planar BM such that

!
pi =48 + 5l

The process §* is the DDS Brownian motion of M*. Moreover, p* arc reflecting

I’)“T Qg {ial ’\ I\‘“I‘l
1aW as (jpj, £) ana

lla+ = sup (—8;), -l-l - =sup (8;).

2™ s<t s 2® s<t
The processes 1,2 are the local times at 0 of p* (Exercise (2.14) Chap. VI).

(3.5) Proposition. The processes p* and p~ are independent. Moreover, there are
measurable functions f and g from W x W 10 W such that

B=f(p".07) =g, 8.
Proof. The first part follows from the independence of §* and §~. To prove the
second part, we observe that g, = p* ((M*+, M*),) + p~ ((M~, M~),); thus, it is

enough to prove that (M*, M*) are measurable functions of p*. Calling L* the
local time of p* at zero, we have

I=L"((M*, M) =L"((M",M™)).
Moreover, as (M, M*), + (M~, M~); =, one can guess that
(M*, M*), =inf{s: L} > L,

which is readily checked. Since p™ and p~ are functions of §* and §~, the proof
is complete.

Remark. To some extent, this is another proof of the fact that Brownian motion
may be recovered from its excursion process (Proposition (2.5) Chap. XII), as
p* and p~ may be seen as accounting respectively for the positive and negative
excursions,

In the sequel, we are going to use simultaneously the above + notational pattern
for several BM’s which will be distinguished by superscripts; the superscripts will
be added to the +. For instance, if B/ is the real part of the process ¢/ defined
above

gl =g (3J'+’ 31'—) .

The following remark will be important.

(3.6) Lemma. The process 8'* is the DDS Brownian motion of the local martin-
gale
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dZ,
Zs ke Zj '

t
N/ = Ref 1p:(Zs)
1]

The same result holds for 8/~ with D; instead of D} and, naturally, the correspond-
ing local martingale will be called N/~ .
Proof. It is easily scen that N/* = M’} and since 8/* is the DDS Brownian

motion of M/*, by Exercise (1.17) in Chap. V, it is also the DDS Brownian
motion of N/, Q

We now introduce some more notation pertaining to the imaginary part y/ of
¢/, We call /™ and y/” the DDS Brownian motions of the local martingales

. f . 2 f
6" = f 1o (Zs)d0], 0] = f Ip, (Z;)df;.
0 0

As in the previous proof, it is seen that

(o
(91+, 91+)r — L l(ﬁ,{zO)dS’

and, by the same reasoning, y,j T is also the DDS Brownian motion of fof Lpi>0d ysj ,
namely -

ot
n ,
vt = [ Ltz Vs -

v U

The same result holds for y/~ with the obvious changes.

Moreover, it is plain that y/ = y/*((MJ*, M/T))+y/~((M’/~, M/7)) so that,
by Proposition (3.5), the knowledge of the four processes (p/*, p/=, y/*, y/ ) is
equivalent to the knowledge of (p/, y/).

Our next result will make essential use of the scaling operation. Let us msist
that for h > 0,

XM @y = h ' X (0.

In particular, we denote by ¢/ the Brownian motion
()" 0 =" ).

We must observe that the family (8/*, M/%, §/*, p/=) of processes associated
with the planar BM ¢/ by the above scheme is actually equal to

(B0, MI*0_g7e0  pixiy.
Indeed, it is obvious for 8 and we have

f ) I i j
: ! = — ;
[0 Lgim >0 4B5 - hfo l(ﬁ,fzs>0)d'6h2s

M ally
1 [h . .
(h
- Ejo LB = M.
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As 8/7 is the DDS Brownian motion of M/*, Exercise (1.17) in Chap. V tells us
that §/+® is the DDS Brownian motion of M,j *® which entails our claim in the
case of §*. Finally, the claim is also true for p* since it is a function of 8%,

We may now state

(3.7) Theorem. The 2p-dimensional process ((”h’, 4 ”“") converges in dis-
tribution as h tends to infinity 1o a process (¢, ..., £P°), the law of which is
characterized by the following three properties:

i) each ¢t/ is a complex BM;

it) if we keep the same notational device as above with the obvious changes,
then the processes p’*™® +iyi™> are all identical;

iii) if we call p*® + iy the common value of the processes p/+t> +iy/+>,
then the processes pt™® +iyt® pl=® £ jp!=0  pP® L iyP~® gre inde-
pendent.

Proof. By Corollary (1.6), the set of laws under consideration is weakly relatively
compact. Therefore, all we have to prove is that every limit law satisfies i) through
i) of the statement.

We first observe that property i) is obvious. Next, to prove that the p/ ™™ are
identical, we may as well prove that the §/+ are identical. Now, by Corollary
(5.8) Chap. 0, the processes 8/ are the limits in distribution of the processes
87! Furthermore, by Lemma (3.6), the processes 8/*™" are the scaled DDS
Brownian motions of the local martingales N/*. Thus, it remains to prove that we
can apply Corollary (3.4) to the local martingales N/*. But by Sect. 2 Chap. V

t
(NTT NT*Y, = f fl(zds
]
with f7(2) = |z — ;|7 1p(2) and likewise
t
(Nj+'—Nk+, Nj+'—Nk+)p ___f fjk(zs)ds
]

2 ’
=1y (2) - EJ—Z}(ID"‘ (z)I . As the functions f7% are integrable

with f7%(z) =
with respect to the Lebesgue measure in the plane, whereas the functions f/ are
not, the ergodic theorem of Sect. 3 Chap. X (see Exercise (3.15) Chap. X) shows
that the hypotheses of Corollary (3.4) are satisfied. As a result, the processes p/ ™
are identical. The same pattern of proof applies to the processes ¥/t without
any changes. This proves it).

We now iurn to the proof of iii). By the same reasoning as in the proo
it 1s enough to prove that

(8%, y1+. 5 L s yp—)"’)

converges in distribution to a BM?”+2, By Lemma (3.6) and Exercise (1.17) in
Chap. V, 8!+ (resp. 87~y is the DDS Brownian motion of 1 N'* (resp. 1 N/7)
and likewise y!'*™® (resp. y/~™) is the DDS Brownian motion of 16'* (resp.
£677). Thus, we need only apply Corollary (2.4) to the

=z Y
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local martingales
(N”,B N7, 61’....,Np_,9”_).

Let M be any of these martingales; then, as in the first part of the proof

(M, M), = f £(Z,)ds
0

for a function f which is not integrable with respect to the Lebesgue measure. On
the other hand, if M, N are two local martingales of the above list

t
(M,N), = [ f(Zs)ds
0
where, this time, f is integrable. For instance, for N/~ and N*~, we get

f@=G—-z.2-2) |z 5|z — 2l 1pn0,(2)

which is integrable since

-1 _
If@)) < |z=2z| lz—zl ' 1pan,(2);

the other cases are either trivial or similar. In any case, it is easily deduced from
the ergodic theorem (see Exercise (3.15) Chap. X) that the hypotheses of Coroliary
(2.4) are satisfied. This completes the proof. m]

The foregoing theorem allows to generalize Theorem (4.2) of Chap. X to
several points. As in there, A, will be an additive functional and we will assume
that |A|| = 27.

(3.8) Theorem. As ¢t goes to infinity,

2 ()=

converges in distribution to (W, W/™), j = 1,..., p, A) where, for each j, the
triple (W*, W™, A) has the law described in Theorem (4.2) of Chap. X, and,
conditionally on A, the p+ 1 variables (W+, W/~, j = 1,..., p) are independent.
Prnnf From Theorem IA ')\ in phnn X, we know that for each Js lozgr (Bf'f" H_J ,
A,) converges to (W/ +, W7, A); thus what we have to prove is the relationship
between these triples when j varies, that is between W/* and W/~ j =1,..., p,
given A. In the remark after Theorem (4.2) Chap. X, we pointed out that

_2_ 9 i {f LY [T(Jlogr/z}L | dl(vj\
log1 /

- f (p: =) Yy Jo (B <0y



538 Chapter XIIL. Limit Theorems in Distribution

where T/ = inf{r : B/ = a}, converges in probability to zero. With each planar
BM Z = X 4+ iY we associate a bidimensional r.v. W(Z) by setting

s AT

W(Z)z(/ Lxa0ydYe, j 1(x,go>dn)
0 0

where T = inf{f : X, = 1}. Thanks to the scaling properties of the family T it
is not hard to see that

J s
7 / T, N I‘T“sg,/g;

: \
2 e N
log 1 Uo Lpiz0) @i jo 1<ﬁigo>d”"1) —veE)

if h = % logr. By another application of Corollary (5.8) Chap. 0, it fol-
lows that @((B,H,B,j_), j =1,..., p) converges in distribution to (W (£/°),
i=1,...,p).

! Asa resll)llt, the r.v.’s W/* which depend on B’"> alone are all equal to the
same variable W*. For the same reason, T l’ > does not depend on j. Furthermore,
conditionally on A, each W/~ is independent of W+, hence of le * and becomes
a function of p/~>° 4 iy/~> alone. The independence follows from Theorem
3.7). O

We now record the asymptotic distribution for the windings 6/ themselves.

(3.9) Corollary. The limiting distribution Uf{ 2 g/ i=1,2,.. n\ is the law
( Co y. St ion of g7+ J v p) s the
( + Wi =1, ) which may be described as follows:

i Wi-= HYj, where

ii) the r.v.’s Y; are independent Cauchy variables with parameter | which are
also independent of the pair (W, H);

iii) the Laplace-Fourier transform of the pair (W, H) is given by

E [exp (—aH + ivW+)] = [coshv + (a/v) sinh v]™!
Proof. This 1s a reformulation of Corollary (4.4) in Chap. X with H = A/2. O

In Theorem (4.2) of Chap. X, we saw that the result is independent of the
radius of the disk used to distinguish between “small” and “big” windings. In this
section, we have used, for convenience sake, the disks D; of radius {zo — z;], but
it is, likewise, inessential. This is implied by the next result which will also be

used in the proof of the last theorem of this section.

(3.10) Proposition. If f is locally bounded and square-integrable with respect to
the 2-dimensional Lebesgue measure, then

1
—M, = f f(Z)HAZ,
log ¢t Iogt 0

converges in probability to zero as t goes to infinity.
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Proof. Since M is conformal,
I
(ReM, ReM), = (ImM, ImM), = J[ | FI2(Z)ds
0

and we know that E‘g—[ fo | f1(Z5)ds converges in distribution to a finite r.v. It

follows that (ReM, ReM), /(logt)? converges in probability to zero and by Exer-
cise (4.14) in Chap. 1V, ReM,/(logt) and ImM,/(logr) converge in probability
to zero. 0

Remark. The assumption that f is locally bounded is only made to ensure that
f(; | f1>(Z)ds is Py-a.s. finite for every t > 0.

The foregoing discussion entails further asymptotic results. We keep the same
setting and notation and we write Res(f, a) for the residue of f at a.

(3.11) Theorem. Ler f be holomorphic in C\ {zl, ceey zp} and I an open, rela-
tively compact set such that {zl, e z,,} C I'; then

ff(Z)l (Z,)dZ, ——>ZRes(f z;) {A+1W1—}

If f is moreover holomorphic at infinity with lim,_, o, f(2) = 0, then
2 [
log s jo

converges in distribution as t — 00, to

f(Z5)dZ;

P A A N
ZRCS(f.,Zj){E—f—IWJ }+Res(f,oo){3—1+zW }

j=1

Proof. By the preceding Proposition, we may as well suppose that [ is the union
of disjoint disks I'; = D(z;, ;) with sj > 0 and sufficiently small, so that we look

for the limit of 37 F’ with F/ = logr fo f(ZH [ (Z,)dZ,. Within T; we may
write f(z) = h;(z) + g; ( ) with /; holomorphic in a neighborhood of I'; and

g;(2) = Res(f, z))z + §;(2)7°

Py

for an entire function 8] W cL

dz,
_[ lr(Z)gJ( - )(z ~

By Proposition (3.10),

. i 2 I .
Frf_ReS(ﬁZj){logtj F( s)Z _Z‘]_Hrj
s T %
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converges to zero in probability. We moreover claim that H/ converges to zero
in probability.

Let G; be the antiderivative of g; vanishing at 0. By 1t6’s formula for conformal
martingales,

~ | ~ 1 ! ] dZ
G =G, f -
J(Zr—zj) J(ZO"‘ZJ') g’(z —zf)(Z«—zj)z

Since Z, converges to infinity in probability, the left hand side converges to

N i vrnhalo iy A,-. A waotil
v 1l pruvavullity. o a Cbult

2 ’~( ] ) dZ,
logt Jo 8 Z, —z2; ) (Z; — z;)?

converges to 0 in probability. But the real part of the conformal martingale

o) s
o S\z, =g ) 5z, Ty

has a bracket equal to for ¢ (Z)ds where

|

a
|2

omn
)

0@ =& (=) ") le=al 15

is integrable. By the same reasoning as in Proposition (3.10), our claim is proved.
The first statement is then an easy consequence of Theorem (3.8) and of Propo-
sition (4.6) of Chap. X.

For the second statement, we write f(z) = —Res(f, oo)% + leg(l /z) for
|z| = n and g holomorphic in a neighborhood of {|z| < 1/n} where n has been
chosen sufficiently large. We have to add to the previous limit that of

2 _R ) dzZ; [’ { 1 \dZ,
o0 - . — .
log es( f, f (Zz) + A (Z,zp8& z.) 7

This first part converges in distribution to —Res(f, oc) (% — 1+ W) thanks to
Theorem (3.8) and to Proposition (4.6) of Chap. X and the second part converges
in probability to zero by the same reasoning as for g; above. O

(3.12) Exercise. Let n be an integer and let 1, be the time-change inverse of

!

jr lnZ |2/M= D ds.
A .
Prove that, with the notation of this section
2
6,,....67)

logt
converges in law to n (W!= + W, ..., WP~ + WT).
[Hint: Use Theorem (3.7).]
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(3.13) Exercise (Mutual windings). Let B!,..., B” be p complex BM’s on a
filtered probability space (£2,.%,.%, P) which are correlated as follows: for every
k and I, k # 1, there exists a matrix Ay, such that for every u and v in R?(=~ C),

(u, B,") (v, Bf') — (u, A o), >0,

is a martingale.
1°) S_how that, if for every k # [, the matrix A, is not an orthogonal matrix
and if By # 0 a.s. for every i, then

2 :
EE?(G:’i < P)%O(Ciai <p)
where the C;’s are independent Cauchy r.v.’s with parameter 1.

[Hint: Show that for i £ j, [y |d(0".67)|/logt, [ |d(log|B'|,87)| /logt
and f; |d{log|B|,log|B/|)s| /logt are bounded in probability as 1 — oo.]

2°) Let B be a BM? and D', ..., D?, p different straight lines which intersect
at zero. Assume that By is a.s. not in D' for every i. Define the winding numbers
68, i < p, of B around D', i < p. Show that as a consequence of the previous
question, the same convergence in law as in 1°) holds.

3°) Let B',..., B", be n independent planar BM’s such that Bé %+ Bg a.s.

Call 6,/ the winding number of B — B/ around 0. Show that

2 ;s . . d : ; .
— 6,7 1<i<j<n Q>(C"’;IS!<J.‘S”)

10g1 N 7 =0

where the C'/’s are independent Cauchy r.v.’s with parameter 1.

Notes and Comments

Sect. 1. For the basic definitions and results, as well as for those in Sect. 5 Chap. 0,
we refer to the books of Billingsley [1] and Parthasarathy [1]. A more recent
exposition is found in the book of Jacod and Shiryaev [1]. Our proof of Donsker’s
theorem (Donsker [1]) as well as Exercise (1.14) are borrowed from the former.
This theorem is constantly being used as a tool to obtain properties of Brownian
motion which have first been remarked on its random walk skeletons. This method,
which we have refrained from using in this book, is, for instance, found in Pitman
[1] and Le Gall [S]. It is interesting to note that conversely some original limit
laws on random walks can only be understood in terms of Brownian motion as is
seen in the work of Le Gall [7] completing former work of Jain and Pruitt.

Proposition (1.10) is taken from Stroock-Varadhan [1]; although it is of
marginal importance in our development it is fundamental in theirs and, as is
more generally the case with Martingale problems, has been extended to many
situations.

For Exercise (1.13), see Nualart [1] and Yor [14]. Exercise (1.15) is due to
Pages [1] and Exercise (1.16) is inspired by Rebolledo ([1] and 2]).
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Exercises (1.17) and (1.18) were suggested respectively by J. Pitman and
L. Dubins. Exercise (1.17) allows to simplify the proofs of some limit theorems
found in Getoor-Sharpe [4] (see also Jeulin [2] page 128).

Sect. 2. The main result of this section is due to Papanicolaou et al. [1], but
their proof was different. The asymptotic version of Knight’s theorem comes from
Pitman-Yor [5]; another proof is found in Le Gall-Yor [2] and Exercise (2.9) is a
variation on the same theme.

Kasahara and Kotani [1] have studied the same problem as Papanicolaou et al.
[1] in the case of BM?. We also refer to Kasahara [4] to whom Exercise (2.13)
is due. Biane [3] unifies the asymptotic limit theorems for (multiple) additive
functionals of several Brownian motions in R?,

A number of extenstons of Exercises (2.11) through (2.15) have been obtained
in recent years by Berman, Borodin [1] and in particular Rosen in the case of
stable Lévy processes.

The SDE presentation of the Brownian motion on the sphere found in Exercise
(2.16), is a very particular case of that given in Lewis [1] and Van den Berg-Lewis
[1]; more generally, see Rogers-Williams [1] and Elworthy [1] for constructions
of Brownian motions on surfaces.

Sect. 3. This section is entirely taken from Pitman and Yor ([4], [5] and [7]).
Exercise (3.13) is taken from Yor [22] who answers a question of Mitchell Berger.
The result in question 2°) of this exercise was originally obtained in a different
manner in Le Gall-Yor [3]. More general asymptotic studies for the windings of
BM? around curves in R are obtained in Le Gall-Yor [4]; the computation of the
characteristic functions of the limit laws led the authors to some extension of the
Ray-Knight theorems for Brownian local times, presented in Le Gall-Yor [5]; see
also the Notes and Comments on Sect. 4 of Chap. XII.

Knight [11] and Yamazaki [1] give convergence results in the sense of fdd’s
which are closely related to what is called “log-scaling laws”, namely limit theo-
rems such as

6 (exp i) /u —> F(L)

found in Pitman-Yor [7].

Another extension of these results is provided by Watanabe [5] who studies
asymptotics of Abelian differentials along Brownian paths on a Riemann surface.

Supplementing these multidimensional limits in law, there are also deep in-
vestigations of the pathwise behavior of multiwindings, such as for example of
their speed of transience originating with Lyons-McKean [1] and continuing with
Gruet [1], Gruet-Mountford [1] and Mountford [1].

We also mention that limit theorems for a large class of diffusions, including
the Jacobi processes (see, e.g., Warren-Yor [1]) are developed in Hu-Shi-Yor [1].
These limit theorems are closely related to the asymptotics of diffusion processes
in random environments (Kawazu-Tanaka [1], Tanaka [4]).

Intensive discussions of recent studies on the geometry of the planar Brownian
curve are found in Le Gall [9] and Duplantier et al. [1].
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§1. Gronwall’s Lemma

Theorem. If ¢ is a positive locally bounded Borel function on R, such that

.
¢(t) <a +b[ P (s)ds
0

for every t and two constants a and b, then ¢(t) < ae®. If in particular a = 0
then ¢ = 0.

Proof. Plainly,

¢p(t) < a—f—b([r (a+bfs¢>(u)du)ds)
0 0

= a-+tabt+ sz.(t —u)¢(u)du < a+ abt +b2tjr ¢(u)du.
0 0

Proceeding inductively one gets in this fashion

" bn+ltn t
¢>(t)§a+abt+...—]—abn;l_|+ ~ / ¢ (w)du.

Since ¢ is locally bounded, the last term on the right converges to zero as # tends
to infinity and the result follows.

§2. Distributions

Let U be a fixed open set in RY. We denote by C° the space of infinitely differ-

entiable functions on U/ which have a compact support contained in U.

(2.1) Definition. A4 sequence (¢,) in Cg° is said to converge to an element ¢ of
Cy’ if the supports of the ¢, 's are contained in a fixed compuct subset of U and if
the k-th derivatives of ¢, — ¢ converge uniformly to zero for every k > 0.

(2.2) Definition. 4 distribution T on U is a linear form on C¥ such that T (¢n)
converges to 0 whenever (¢,) is a sequence in CF which converges 1o zero as n
tends to infinity.
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We will also write (T, ¢) for the value taken by the distribution T on the
function ¢ of C¥°. With every Radon measure x4 on U, we associate a distribution
T, by setting

(T, ¢) = ffbdu-

Likewise, if f is a locally integrable Borel function we write 7, for 7,, where
u(dx) = f(x)dx; in other words

Y B
(lf,<P)=J plx)flx)ax.

(2.3) Definition. If' T is a distribution and 8*/9x\" ...0x," a partial derivation
operator, we define the corresponding partial derivative of T by setting for ¢ € C3°

S A — RS A -
axi' ... oxg’ a Toxyt .. axyf

where |a| = o +...a4.

This obviously defines another distribution and in the case of Ty above, if f
is || times continuously differentiable, then

9o T,
[+3] I [+ ¥] = Tg’
axl ...axd

where
o f

gzax;’"_..axf;d ‘

§3. Convex Functions

We recall that a real-valued function f defined on an open interval 7 of R is
convex if

fx+ ({0 =Dy) tf(x)+ U =1)f(y),

forevery0 <t < l and x, y € I. It follows from this definition that for fixed x, the
ratio (f(¥)— f(x))/(y—x) increases with y. This, in turn, entails immediately that
in each point x the function f has a left-hand derivative f’(x) and a right-hand

!
derivative f (x) and that, for y > x

ey < I IO ey
y—x

We moreover have the

(3.1) Proposition. The functions f’ and f are increasing, respectively left and
right-continuous and the set {x D fL(x) # fL (x)} is at most countable.
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Proof. Since f’(x) < f/(x), the first property follows at once from the above
inequality. To prove that f7 is right-continuous, we interchange increasing limits

i 11

Jim fi(x+a) = lim (mlew f(x +ay +b;:) — flx+ an))
: + ) — ,
= mll_{noo f(‘x b’: f(X) = f+(x)'

Finally, f_ and f| have only countably many discontinuities and where f’ is
continuous, we have f’ = f| thanks to the above inequalities. O

We now study the second derivative of f. If f is C?, then f” is positive, as
is easily seen. More generally, we have the

(3.2) Proposition. The second derivative f" of f in the sense of distributions is
a positive Radon measure; conversely, for any Radon measure p on R, there is a

o]
convex function f such that f" = u and for any interval I and x € |,

|
fxy = Efix—alu(da)+alx+5l
7

]

flx) = Ef’sgn(x —a)u(da)y+e;

where oy and By are constants and sgn x = | if x > 0 and —1 if x < 0.

Proof. Let ¢ € Cg; the derivative Df of f in the sense of distributions is given
by

(Df,¢) = - f FOF (x)dx = — f (lim P+ ‘2 - ‘“’”) F)dx

-0
_ _Elirgofqb(x)(f(X—e;——f(X))dx=f¢(x)fi(x)dx_

By the integration by parts formula for Stieltjes integrals, the second derivative is

the measure associated with the increasing function f’. Of course by the above

results, we could have used f| instead of f’ without altering the result.
Conversely, if I C J the integrals

i I f
E/{Ix—al.u(da) and 5,/, Ix — alu(da)

<
are convex on J and differ by an affine function. As a result one can define a

O
convex function f on the whole line such that on

1
flx) = 5[|X —aju(da) +ajx + B;.
!
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An application of Lebesgue’s theorem yields, for x € ; ,

and if ¢ is a test function with support in J, then

+0o

[fi(x)fb'(X)dx = [ﬂ(da) (% ¢’ (x)sgn(x —a)dX) = - [¢(a)u(da)
which proves that the second derivative of f is u.

The convex function determined by u is of course unique only up to addition
of an affine function. If the measure y is such that [ |x — a|u(da) is finite for
every x, which will in particular be the case if u has compact support, then one
can globally state that

|
fo = f Ix — alu(da) + ax + B.

The constants & and B8 can be fixed by specifying special values for f in two
points. If in particular for @ < b we demand that f(a) = f(b) = 0 then one can
give for f a more compact expression which we now describe in a slightly more
general setting.

Let s be a continuous, strictly increasing function on / = [a, b]. We will say
that f is s-convex if fi. 1 <c; <x <y < b,

(s(c2) — s(c1)) f(x) 2 (s(e2) — s(x)) fe) + (s(x) — s(cy)) f(c2).

Exactly as above one can define the right and left s-derivatives dfL/ds by taking
the appropriate limits of the ratios ( f(y)— f(x))/(s(¥)—s(x)). At the points where
they are equal we say that f has an s-derivative. The functions thus defined are
increasing and determine as above a measure (.

If for x < y we set

G(x,y) =Gy, x) = (s(x) —s(@)(s(b) — s(¥))/(s(b) — s(a)),
then if f is s-convex and if f(a) = f(b) =0,

b
f(x)=- [ G(x. y)u(dy).
Ja
Indeed, using the integration by parts formula for Stieltjes integrals,

s(b) — s(x)

5(b) — 5(a) Jiax
s(x) —s(a) [

T3t = 5@ S

b
f Gx. y)u(dy) = () = s(@)u(dy)

s(b) — s(y))(dy)
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s(b) —5(x) dfy f+
_ - _ - - d
() — @) [( $(x) = s@) = (x) — -~ ) S(y)]

s(x)—s(a)
s(b) — s(a)
= —f(x).

Naturally, all we have said is valid for concave functions with the obvious changes.

[ (s (b)—s(x))—( ) + j (y)ds(y)J

§4. Hausdorff Measures and Dimension

Let 7 be a strictly increasing continuous function on R such that 4(0) =
and h{oo) = oo. Let B be a Borel subset of a metric space E. The Hausdorff
h-measure of B is the number

h _ - .
A*(B) = lim mf(; h(unn)

where the infimum is over all coverings | J I, of B where [, is a closed set in E
with diameter |/,| < €. Of special interest is the case where A(¢) = 1*, a > 0,
in which case we will write A% and speak of a-measure. If E = R?, A9 is the
ordinary Lebesgue measure.

(4.1) Lemma. If h(t) = v(t)k(t) with lim,ov(t) = 0, then my(F) > 0 implies
my(F) =

Proof. Pick ¢ > 0; there is an n > 0 such that v < 5 implies v(v) < . Let |J I,
be a covering of F with [/,] < v < 5. Then

1
PRI CNESRITAVE A ESSIITAE

it follows that |
D k(b 2 ~ma(F),

hence |
my(F) > gmh(F),

and since ¢ is arbitrary, the proof is complete.

A consequence of this lemma is that there is a number «q such that A*(F) =
+oo ifa < ap and A%(F) =0 if a > agp (the number A% (F) itself may be zero,
non zero and finite or infinite). The number a4 is called the Hausdorff dimension
of F. For instance, one can prove that the dimension of the Cantor “middle third”
set is log 2/ log 3.
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§5. Ergodic Theory

Let (E, ¥ ,m) be a o-finite measure space. A positive contraction T of L!(m)
is a linear operator on L'(m) with norm < 1 and mapping positive (classes of)
functions into positive (classes of) functions. A basic example of such a contraction
is the map f — f o8 where 6 is a measurable transformation of (E, #) which
leaves m invariant.

(5.1) Theorem. (Hopf’s decomposition theorem). There is an m-essentially

R S S L PR N e se e ama s s
unigue pariition C U D of E such that for any f € L\ (m)
+ )

i) Z:onka=00r+000nC,

i) Yoo T*f < o00on D.

If D = @, the contraction T is said to be conservative. In that case, the
sums Y poo TXf for f € L. (m) take on only the values 0 and +oco. The sets
[35°T*f = 0o} where f runs through L' (m) form a o-algebra denoted by
7 and called the invariant o-algebra. If all these sets are either @ or E (up to
equivalence) or in other words if ¥ is m-a.e. trivial then T is called ergodic.

We now state the basic Chacon-Ornstein theorem.

(5.2) Theorem. If T is conservative and g is an element of L. (m) such that
m(g) > 0, then for every f € L'(m),

lim (Z T"f/z Tkg) =E[f|CV/Elg1C] m-ae
0 0

The conditional expectations on the right are taken with respect to m. If m is
unbounded this means that the quotient is equal to E[(f/h) | Z 1/E[(g/h) | €]
where % is a strictly positive element in L!(m) and the conditional expectations
are taken with respect to the bounded measure % - m; it can be shown that the
result does not depend on A. If T is ergodic the quotient on the right is simply

m(f)/m(g).

The reader is referred to Revuz [3] for the proof of these results.

§6. Probabilities on Function Spaces

Let £ be a Polish space and set 2 = C(R,, E). Let us call X the canonical
process and set . % = o (X;.5 < 1) and .7, = a (X, 5 = 0).

(6.1) Theorem. [fforeveryt > 0, there exists a probability measure P' on .7 such
that for every s < t, P' coincides with P* on .7, then there exists a probability
measure P on .7, which for every t coincides with P' on 7.

For the proof of this result the reader can refer to the book of Stroock and
Varadhan [1] p. 34; see also Azéma-Jeulin [1].
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§7. Bessel Functions

The modified Bessel function 1, is defined for v > —1 and x > 0, by
1,(x) = Z(x/z)z"*“/k!r(v +k+1).

Observe that for v = —1 and k = 0 the term I'(v + k + 1) is infinite, and
therefore the first term in the above series vanishes. By using the relationship
I'(z 4+ 1) = zI'(2), one thus sees that /; = [ ;. For some details about these
functions we refer the reader to Lebedev [1], pages 108-111.

This family of functions occurs in many computations of probability laws. Call
for instance d*’ the density of a random variable with conditional law y, 4
where k is random with a Poisson law of parameter x > 0 and v > —1. Then

d(y) = ZE" (/1) y e M4k + 1)

= e (xﬂ)(y/x)”/zl., (2,/xy) .
Replacing x and y by x /2t and y/2t we find that, for v > —1,

g/ (x. ) = (1/20) exp(—(x + 1)/20(y/x) "L, (xy /1)
where t > 0, x > 0, y > 0, is also a probability density, in fact the density of

BESQ"’ as found in section 1, Chapter 1X. At that point we needed to know the
Laplace transform of this density which is easily found from the above. Indeed, the
Laplace transform of y; is equal to (A + 1) * and therefore the Laplace transform

of d{) is equal to

D e TR+ )T = 4 1T D exp(—Ax /(A + 1)
k=0

From this, using the same change of variables as before, one gets that the Laplace
transform of ¢’ (x, -) is equal to
At + 1)~V exp(—Ax/(2At + 1)).

Another formula involving Bessel functions and which was of interest in Sect.3,
Chap. VIII, is the following. If x € R¢ we call £(x) the angle of Ox with a fixed
axis, and if u“ is the uniform probability measure on the unit sphere 547!, then

f exp(p cosE(xNu(dx) = 2/p) T (v + 1) 1,(p/2)
Sd—l

where v = (d/2) — 1. This can be proved directly from the definition of /, by
writing the exponential as a series and computing de“] cos&(x)?ud(dx); to this

Du‘d ‘l 18 hnlnpnl fn use the dnpllnnflr\n Fnrmnlo

rQz = Qr)y V25U r@re + (1/2)).
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§8. Sturm-Liouville Equation

Let u be a positive Radon measure on R. Then there exists a unique, positive,
decreasing function ¢, such that

() (pu 0)=1, ¢Z = qb,u,us

where ¢ is the second derivative in the sense of distributions (Appendix 2).
Observe from (*) that since ¢, is positive, it is convex, and d)ﬂ is equal to dd),;
where ¢, 1s the right derivative of ¢, (Appendix 3).

To prove this existence and uniqueness result we transform (*) into the Riccati
equation

(+) g(x) =14+ u(la, x]) —[ g2 (y)dy,

where a € R. We claim that this equation has a unique solution g on [a, oo[ which
satisfies the inequality g(x) > 1/(1 + x — a), for x > a.

Indeed, since the function x — x? is locally Lipschitz, there is a unique
maximal solution to (+) on an interval [a, ¢ with ¢ > a. Obviously g is of finite
variation on every bounded interval. We will first prove that g is > 0 on [a, «f.
Indeed, suppose that g(x—) < 0 for some x € [a, o[ and set y = inf{x € [a, «f:
g{x—) < 0}. Fora < x < y, we have

ey g(x) = g(x—) + pu({x}) > 0.
On the other hand, by Proposition (4.6) Chap. 0, we may write

1/g(x) = l—f] ](g(y)g(y—))“dg(y)

= 1+ (x—a) —f gMe(—N""du(y) < L+ (x —a).
Ja.x]

As aresult, g(y) = /(1 +y —a) + u({y}) > 0, and since g is right-continuous
this contradicts the definition of y. That g is > 0 then follows from (f).
Now, since g is > 0 on [a, ¢[, if « is finite, rewriting (+) as

g(x) +f g (ndy =1+ pda. x]),

«

we see that g is bounded on Ja. «[ and by letting x increase to @ we get

o(a—) +f 2 (Wdy = |+ u(la. al).

[f we set g(a) = g(e—) + u({e}) and solve the equation (+) for x > «, we see
that ¢ cannot be maximal. As a result @ = o0 and we have proved our claim.
Next, if g is the solution to (+), we set, for x > a,

¥ (x) = exp ( j g(y)d.v) -
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One sees rapidly that ¢ (x) > | +x —a on [a. oo and that ¢ = . We further
set

$(x) = ¥ (x) j v (v)2dy.

The function ¢ is > 0 and is another solution to the equation ¢” = ¢u. Morcover,
because ¥’ is increasing, we have

: , [ 5,
$(x) = BHX)], y(y)ydy — (1/y(x))

< f (v’ () /w0 ) dy — (1/4(x)) = 0,

which shows that ¢ is decreasing.

The space of solutions to the equation ¢” = ¢u 1s the space of functions
uy + veg with u, v € R. Since y increases to 400 at infinity, the only positive
bounded solutions are of the form v with v > 0. If fora < 0 we put ¢, = ¢/ (0)
we get the unique solution to (*) that we were looking for.






Bibliography

Airault, H. and Féllmer, H.
[1] Relative densities of semimartingales. Invent. Math. 27 (1974) 299-327.

Albeverio, S., Fenstad, J.E., Hoegh-Krohn, R., and Lindstrom, T.
[1] Non standard methods in stochastic analysis and mathematical physics. Academic
Press, New York 1986.

Aldous, D.
[{] The continuous random tree II: an overview. In: M.T. Barlow and N.H. Bingham
(eds.) Stochastic analysis. Camb. Univ. Press 1991.

Alili, L.
[1] Fonctionnelles exponentielles et certaines valeurs principales des temps locaux brown-
iens. These de doctorat de 'université de Paris VI. 1995

Alili, L., Dufresne, D., and Yor, M.
[1} Sur Pidentit¢ de Bougerol pour les fonctionnelles exponentielles du mouvement
brownien avec drift. In: Biblioteca de la Revista Matematica Iberoamericana, 1997,

pp. 3-14.
Aronszajn, N.
[11 Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404.

Atsuji, A.

[1] Some inequalitics for some increasing additive functionals of planar Brownian motion
and an application to Nevanlinna theory. J.F. Sci. Univ. Tokyo Sect. I-A, 37 (1990)
171-187.

[2] Nevanlinna theory via stochastic calculus. J. Funct. Anal. 132, 2 (1995) 437-510.

[3] On the growth of meromorphic functions on the unit disc and conformal martingales.
J. Math. Sci. Univ. Tokyo 3 (1996) 45-56.

Attal, S., Burdzy, K., Emery, M., and Hu, Y.
[1] Sur quelques filtrations et transformations browniennes. Sém. Prob. XXIX. Lecture
Notes in Mathematics, vol. 1613. Springer, Berlin Heidelberg New York 1995, 56-69.

Auerhan, I., and Lépingle, D.

[IT Les filtrations de certaines martingales du mouvement brownien dans R” (IT). Sém.
Prob. XV. Lecture Notes in Mathematics, vol. 850. Springer, Berlin Heldelberg New
York 1981, pp. 643-668.

Azéma, J.
{11 Quelques applications de la théorie générale des processus 1. Invent. Math, 18 (1972)
293-336.
Représentation multiplicative d’une surmartingale bornée. Z.W. 45 (1978) 191-212.
{3] Sur les fermés aléatoires. Sém. Prob. XIV. Lecture Notes in 1v13tuei‘nati(,b vol. 1123.

Springer, Berlin Heidelberg New York 1985, pp. 397-495.



554 Bibliography

Azéma, J., Duflo, M., and Revuz, D.
[I] Mesure invariante sur les classes récurrentes des processus de Markov, Z.W. 8 (1967)
157-181.

Azéma, J., Gundy, R.F., and Yor, M.
[1] Sur I'intégrabilité uniforme des martingales continues. Sém. Prob. XIV. Lecture Notes
in Mathematics, vol. 784, Springer, Berlin Heidelberg New York 1980, pp. 53-61.

Azéma, J., and Jeulin, T.
[1] Precisions sur la mesure de Féllmer. Ann. LH.P. 22 (3) (1976) 257-283,

Azéma, 1, and Rainer, C.
[1] Sur I’équation de structure d[X, X], = dt — X "dX,. Sém. Prob. XXVIII, Lecture
Notes in Mathematics, vol. 1583. Springer, Berlin Heidelberg New York 1994, 236—

255.

Azéma, J., and Yor, M.

{11 En guise d’introduction. Astérisque 52-53, Temps Locaux (1978) 3-16

{2] Une solution simple au probleme de Skorokhod. Sém. Prob. XIII. Lecture Notes in
Mathematics, vol. 721. Springer, Berlin Heidelberg New York 1979, pp. 90-115 and
625-633

[3] Etude d’une martingale remarquable. Sém. Prob. XXIII. Lecture Notes in Mathemat-
ics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 88-130.

[4] Sur les zéros des martingales continues. Sém. Prob. XXVI. Lecture Notes in Mathe-
matics, vol. 1526. Springer, Berlin Heidelberg New York 1992, pp. 248-306.

Azencott, R.

{1] Grandes déviations et applications. Ecole d’Ete de Probabilités de Saint-Flour VIII.
Lecture Notes in Mathematics, vol. 774. Springer, Berlin Heidelberg New York 1980,
pp. 1-176.

Barlow, M.T.

[1] L(B,,t) is not a semi-martingale. Sem. Prob. XVI. Lecture Notes in Mathematics,
vol. 920. Springer, Berlin Heidelberg New York 1982, pp. 209-211.

[2] One-dimensional stochastic differential equation with no strong solution. J. London
Math. Soc. 26 (1982) 335-345.

[3] Continuity of local times for Levy processes. Z.W. 69 (1985) 23-35.

[4] Skew Brownian motion and a one dimensional stochastic differential equation.
Stochastics 25 (1988) 1-2.

[5] Necessary and sufficient conditions for the continuity of local times of Lévy processes.
Ann. Prob. 16 (1988) 1389-1427.

Barlow, M.T., Emery, M., Knight, F.B,, Song, S., Yor, M.

[1] Autour d’un théoréeme de Tsirel’son sur des filtrations browniennes et non-brown-
iennes. Sém. Probab. XXXII, Lect. Notes in Mathematics, vol. 1686. Springer, Berlin
Heidelberg New York 1998, pp. 264-305.

Rarlow M T Jacka S D and Yor M
pariow, M, 1, Jacka, > 1., and YOor, V1.

[1] Inequalities for a pair of processes stopped at a random time. Proc. London Math.
Soc. 52 (1986) 142-172.

Barlow, M.T., and Perkins, E.

[I] One-dimensional stochastic differential equations involving a singular increasing pro-
cess. Stochastics 12 (1984) 229-249.

[2] Strong existence and non-uniqueness in an equation involving local time. Sém. Prob.
XVII. Lecture Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York
1986, pp. 32-66.



Bibliography 555

Barlow, M.T.,, Pitman, J.W., and Yor, M.

[1] Une extension multidimensionnelle de la loi de I’arc sinus. Sém. Prob. XXIII. Lecture
Notes in Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp.
294-314.

[2] On Walsh’s Brownian motions. Sém. Prob. XXIII. Lecture Notes in Mathematics, vol.
1372. Springer, Berlin Heidelberg New York 1989, pp. 275-293.

Barlow, M.T., and Yor, M.

[11 (Semi-)martingale inequalities and local times. Z.W. 55 (1981) 237-254,

[2] Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma and applica-
tions to local times. J. Funct. Anal. 49 198-229.

Bass, R.F.

[11 Joint continuity and representation of additive functionals of d-dimensional Brownian
motion. Stoch. Proc. Appl. 17 (1984) 211-228.

[2] Lp-inequalities for functionals of Brownian motion. Sém. Prob. XXI. Lecture Notes
in Mathematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 206-217.

[3] Probabilistic techniques in Analysis. Prob. and its App. Springer, Berlin Heidelberg
New York 1995.

[4] Diffusions and Elliptic Operators. Springer, Berlin Heidelberg New York 1997.

Bass, R.F., and Burdzy, K.
[11 Stochastic Bifurcation Models. Preprint 1998

Bass, R.F., and Griffin, P.S.
{11 The most visited site of Brownian motion and simple random walk. Z.W. 70 (1985)
417-436.

[l]anon existence of strong non-anticipating solutions to SDE’s; Implications for func-
tional DE’s, filtering and control. Stoch. Proc. Appl. § (1977) 243-263.
[2] Realizing a weak solution on a Probability space. Stoch. Proc. Appl. 7 (1978) 205-225.

Bertoin, J.
[11 Sur une intégrale pour les processus a a-variation bornée. Ann. Prob. 17 (1989) 1521-
1535.

[2] Applications de la théorie spectrale des cordes vibrantes aux fonctionnelles additives
principales d’un brownien reflechi. Ann. I.LH.P. 25, 3 (1989) 307-323.

[3] Complements on the Hilbert transform and the fractional derivatives of Brownian
local times. J. Math. Kyoto Univ. 30 (4) (1990) 651-670.

[4] On the Hilbert transform of the local times of a Lévy process. Bull. Sci. Math. 119
(2) (1995) 147-156.

[5] An extension of Pitman’s theorem for spectrally positive Lévy processes. Ann. Prob.
20 (3) (1993) 1464—1483.

[6] Excursions of a BESp(d) and its drift term (0 < d < 1). Prob. Th. Rel. F. 84 (1990)
231-250.

[7] Lévy processes. Cambridge Univ. Press 1996,

[8] Subordinators: examples and applications. XXVII® Ecole d’Eté de St. Flour: Summer
1997. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York 1998.

[91 Cauchy’s principal value of local times of Lévy processes with no negative jumps via
continuous branching processes. Elec. J. of Prob. 2 1997, Paper 6.

Bertoin, J., and Le Jan, Y.
1
]

[l by b

Dawsacantntiam Af mangiirag
NDLCPIVOLIILAlIiVvIL Ul LLIVAdSWlvO

20 (1992) 538-548.



556 Bibliography

Bertoin, J., and Pitman, 1.

[1] Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci.
Math. 118 (1994) 147-166.

Bertoin, J., and Werner, W.

[1] Comportement asymptotique du nombre de tours effectués par la trajectoire browni-
enne plane. Sém. Prob. XXVIII Lecture Notes in Mathematics, vol. 1583. Springer,
Berlin Heidelberg New York 1994, pp. 164-171.

[2] Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck
process. Sem. Prob. XXVIII Lecture Notes in Mathematics, vol. 1583. Springer, Berlin

[3] Stable windings. Ann. Prob. 24, 3, July 1996, pp. 1269-1279.

Bernard, A., and Maisonneuve, B.
[1] Décomposition atomique de martingales de la classe H'. Sém. Prob. XI. Lecture Notes
in Mathematics, vol. 581. Springer, Berlin Heidelberg New York 1977, pp. 303-323.

Besicovitch, A.S., and Taylor, S.J.
[1] On the complementary intervals of a linear closed set of zero Lebesgue measure.
J. London Math. Soc. (1954) 449-459.

Biane, P.

[11 Relations entre pont brownien et excursion normalisée du mouvement brownien. Ann.
LH.P. 22, 1 (1986) 1-7.

[2] Sur un calcul de F. Knight. Sém. Prob. XXII, Lecture Notes in Mathematics, vol.
1321. Springer, Berlin Heidelberg New York 1988, pp. 190-196.

[3] Comportement asymptotique de certaines fonctionnelles additives de plusieurs mou-
vements browniens. Sem. Prob. XXIII. Lecture Notes in Mathematics, vol. 1372.
Springer, Berlin Heidelberg New York 1989, pp. 198-233.

[4] Decomposition of Brownian trajectories and some applications. In: A. Badrikian, P.A.
Meyer, J.A. Yan (eds.) Prob. and Statistics; rencontres franco-chinoises en Probabilités
et Statistiques, Proceedings of WuHan meeting, pp. 51-76. World Scientific, 1993.

Biane, P., Le Gall, J.F. and Yor, M.
[1] Un processus qui ressemble au pont brownien. Sem. Prob. XXI. Lecture Notes in
Mathematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 270-275.

Biane, P., Pitman, J., and Yor, M.
[1] Representations of the Jacobi theta and Riemann zeta functions in terms of Brownian
excursions, In preparation (1998).

Biane, P., and Yor, M.

[1} Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111 (1987)
23-101.

[2} Variations sur une formule de P. Lévy, Ann. LH.P. 23 (1987) 359-377.

[3] Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112 (1988) 101-109.

[4] Sur la loi des temps locaux browniens pris en un temps exponentiel. Sém. Prob. XXII,
Lecture Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988,
pp. 454-466.

Billingsley, P.
[11 Convergence of probability measures. Wiley and Sons, New York 1979.

Bingham, N.H.

[11 Limit theorem for occupation times of Markov processes. Z.W. 17 (1971) 1-22,

[2] The strong arc sine law in higher dimensions. In: Bergelson, March, Rosenblatt (eds.)
Convergence in Ergodic Theory and Probability. de Gruyter 1996, pp. 111-116.



Bibliography 557

Bismut, J.M.

[1] Martingales, the Malliavin calculus and Hypoellipticity under general Hrmander’s
conditions. Z.W. 56 (1981) 469-506.

[2] On the set of zeros of certain semi-martingales. Proc. London Math. Soc. (3) 49 (1984)
73-86.

[3] Lastexit decomposition and regularity at the boundary of transition probabilities. Z.W.
69 (1985) 65-98.

[4] The Atiyah-Singer theorems. J. Funct. Anat. 57 (1984) 56-99 and 329-348.

[5] Formules de localisation et formules de Paul Lévy. Astérisque 157-158, Colloque
Paul Levy sur les processus stochastiques (1988) 37-58.

Blumenthal, R.M.
[1] Excursions of Markov processes. Probability and its applications. Birkhduser 1992.

Blumenthal, R.M.,, and Getoor, R.K.
[I7 Markov processes and potential theory. Academic Press, New York 1968.

Borodin, AN,
[1] On the character of convergence to Brownian local time I and 1I. Z.W. 72 (1986)
231-250 and 251-277.

Borodin, A.N., and Salminen, P.
[11 Handbook of Brownian motion — Facts and formulae, Birkhduser 1996,

Bougerol, P.
[1] Exemples de théorémes locaux sur les groupes résolubles. Ann, 1HP 29 (4) (1983)

Bouleau, N.
[ < 1 Y : a ~ 3 A M 3 5
{11 Sur la variation quadratique de certaines mesures vectorielles. Zeit. fiir Wahr, 61

(1982) 261-270.

Bouleau, N., and Yor, M.
[1] Sur la variation quadratique des temps locaux de certaines semimartingales. C.R.
Acad. Sci. Paris, Série 1 292 (1981) 491-494.

Boylan, E.S.
1] Local times of a class of Markov processes. 1il. J. Math. 8 (1964) 19-39.

Brassesco, S.
[1] A note on planar Brownian motion, Ann. Prob. 20 (3) (1992) 1498-1503.

Bremman, L.
[1] Probability. Addison-Wesley Publ, Co., Reading, Mass, 1968,

Brosamier, G.
[11 Quadratic variation of potentials and harmonic functions. Trans. Amer. Math. Soc.
149 (1970) 243-257.

Brossard, 1., and Chevalier, L.
[1] Cilasse Llog L et temps local. C.R. Acad. Sci. Paris, Ser. A Math. 305 (1987) 135-137.

Brown, T.C., and Nair, M.G.
[17 A simple proof of the multivariate random time change theorem for point processes.
J. Appl. Prob. 25 (1988) 210-214.

Burdzy, K.
[1] Brownian paths and cones. Ann. Prob. 13 (1985) 1006-1010.
[2] Cut points and Brownian paths. Ann. Prob. 17 (1989) 1012-1036.



558 Bibliography

[3] Geometric properties of two-dimensional Brownian paths. Prob. Th. Rel. F. 81 (1989)
485-505.

Burkholder, D.L.

[11 Martingale transforms. Ann. Math. Stat. 37 (1966) 1494-1504.

[2] Distribution function inequalities for martingales. Ann. Prob. 1 (1973) 1942,

[3] Exit times of Brownian motion, harmonic majorization and Hardy spaces. Adv. Math.

26 (1977) 182-205.

Burkholder, D.L., and Gundy, R.F.
[1] Extrapolation and interpolation of quasi-linear operators on martingales. Acta. Math.
124 (1970) 249-304.

Calais, 1.Y., and Génin, M,

[1] Sur les martingales locales continues indexées par 10, oo[. Sém. Proba. X VII, Lecture
Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York 1988, pp.
454--466.

Cameron, R.H., and Martin, W.T,

[1] Transformation of Wiener integrals under translations. Ann. Math. 45 (1944) 386-396.

[2] Evaluations of various Wiener integrals by use of certain Sturm-Liouville differential
equations. Bull. Amer. Math. Soc. 51 (1945) 73-90.

[3] Transformation of Wiener integrals under a general class of linear transformations.
Trans. Amer. Math. Soc. 18 (1945) 184-219.

Carlen, E.

[1] The pathwise description of quantum scattering in stochastic mechanics. In: S. Albev-
erio et al. (eds.) Stochastic processes in quantum physics, Lecture Notes in Physics,
vol. 262. Springer, Berlin Heidelberg New York 1986, pp. 139-147.

Carlen, E., and Elworthy, D.

[1] Stochastic and quantum mechanical scattering on hyperbolic spaces. In: D. Elworthy
and N. Ikeda (eds.) Asymptotic problems in probability theory: stochastic models and
diffusions on fractals. Pitman Research Notes (1993) vol. 283.

Carlen, E., and Krée, P.
[1] Sharp L?-estimates on multiple stochastic integrals. Ann. Prob. 19 (1) (1991) 354-368.

Carmona, P., Petit, F., and Yor, M.

[1] Some extensions of the Arcsine law as partial consequences of the scaling property
of Brownian motion. Prob. Th. Rel. Fields 100 (1994) 1-29.

[2] Beta variables as times spent in [0, co) by certain perturbed Brownian motions. J. Lon-
don Math. Soc. (1998).

[3] Further relations between perturbed reflecting Browntan motions and Bessel processes.
Preprint (1998)

Carne, T.K.
1] The algebra of bounded holomorphic functions. I. Funct. Anal. 45 (1982) 95-108.

d i I
{2] Brownijan motion and Nevanlinna Theory, Proc. London Math. Soc. (3) 52 (1986)

349-368.
{31 Brownian motion and stereographic projection. Ann. LH.P. 21 (1985) 187-196.
Centsov, N.V.

{17 Limit theorems for some classes of random functions. Selected Translations in Math-
ematics. Statistics and Probability 9 (1971) 37-42.



Bibliography 559

Chacon, R., and Walsh, J.B.
[1] One-dimensional potential embedding. Sém. Prob. X. Lecture Notes in Mathematics,
vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 19-23.

Chaleyat-Maurel, M., and Yor, M.
[1] Les filtrations de X et X+, lorsque X est une semimartingale continue. Astérisque
52-53 (1978) 193-196.

Chan, J., Dean, D.S,, Jansons, K.M., and Rogers, L.C.G.
[1T On polymer conformations in elongational flows. Comm. Math. Phys. 160 (2) (1994)

230_9787

Lad T haed T

Chen, LH.Y.
[1] Poincare-type inequalities via stochastic integrals. Z.W. 69 (1985) 251-277.

Chevalier, L.
[1] Un nouveau type d’inégalités pour les martingales discretes. Z.W. 49 (1979) 249-256.

Chitashvili, R., and Mania, M.
[1] On functions transforming a Wiener process into a semimartingale. Prob. Th. Rel.
Fields 109 (1997) 57-76.

Chitashvili, R.J., and Toronjadze, T.A.
[1] On one dimensional stochastic differential equations with unit diffusion coefficient;
structure of solutions. Stochastics 4 (1981) 281-315.

Chou, S.

[1] Sur certaines généralisations de I’inégalité de Fefferman. Sém. Prob. XVIII, Lecture
Notes in Mathematics 1059. Springer, Berlin Heidelberg New York 1984, pp. 219-
222,

Chover, J.
[1] On Strassen’s version of the loglog law. Z.W. 8 (1967) 83-90.

Chung, K.L.

[1] Excursions in Brownian motion. Ark. fér Math. 14 (1976) 155-177.

[2] Lectures from Markov processes to Brownian motion. Springer, Berlin Heidelberg
New York 1982.

[3] Green, Brown and Probability. World Scientific, Singapore (1995).

Chung, K.L., and Durrett, R.
[17 Downcrossings and local time. Z.W. 35 (1976) 147-149.

Chung, K.L., and Williams, R.T.
[1] Introduction to stochastic integration. Second edition. Birkhduser, Boston 1989.

Chung, K.L., and Zhao, Z.
[1] From Schridinger’s equation to Brownian motion, Grundlechren 312. Springer, Berlin
Heidelberg New York 1995.

Cinlar, E., Jacod, J., Protter, P., and Sharpe, M.J.
[1] Semi-martingales and Markov processes. Z.W. 54 (1980) 161-219.

Clark, JM.C.
[1] The representation of functionals of Brownian motion by stochastic integrals, Ann.
Math, Stat. 41 (1970) 1282-1295; 42 (1971) 1778.



560 Bibliography

Cocozza, C., and Yor, M.

[I] Démonstration d’un théoréme de Knight 4 I'aide de martingales exponenticlles. Sém.
Prob. XIV. Lecture Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New
York 1980, pp. 496-499.

Csaki, E.

[1] On some distributions concerning maximum and minimum of a Wiener process. In
B. Gyires, editor, Analytic Function Methods in Probability Theory, number 2! in
Colloquia Mathematica Societatis Janos Bolyai, p. 43-52. North-Holland, 1980 (1977,
Debrecen, Hungary).

Dambis, K.E.
[1] On the decomposition of continuous martingales. Theor. Prob. Appl. 10 (1965) 401-
410.

Darling, D.A., and Kac, M.
[1] Occupation times for Markov processes. Trans. Amer. Math. Soc. 84 (1957) 444-458.

Davis, B.

[1] Picard’s theorem and Brownian motion. Trans. Amer. Math. Soc. 213 (1975) 353-362.

[2] On Kolmogorov’s inequality || fll, < ¢,llfll1, 0 < p < 1. Trans. Amer. Math. Soc.
222 (1976) 179-192.

[3] Brownian motion and analytic functions. Ann. Prob. 7 (1979) 913-932.

[4] On Brownian slow points. Z.W. 64 (1983) 359-367.

[5] On the Barlow-Yor inequalities for local time. Sém. Prob. XXI. Lecture Notes in
Mathematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 218-220.

[6] Weak limits of perturbed random walks and the equation Y, = B, + asup,_, Y, +
Binf,., Y;. Ann. Prob. 24 (1996) 2007-2017. )

[7] Perturbed Brownian motion. Preprint (1998)

Davis, M.H.A,, and Varaiya, P.
[1] The multiplicity of an increasing family of o-fields. Ann. Prob. 2 (1974) 958-963.

Dean, D.S., and Jansons, K.M,
[1] A note on the integral of the Brownian Bridge. Proc. R. Soc. London A 437 (1992)
792-730.

De Blassie, R.D,

[1] Exit times from cones in R" of Brownian motion. Prob. Th. Rel. F. 74 (1989) 1-29.

[2] Remark on: Exit times from cones in R of Brownian motion. Prob. Th. Rel. F. 79
(1989) 95-97.

Deheuvels, P.
[1] Invariance of Wiener processes and Brownian Bridges by integral transforms and
applications. Stoch. Proc. Appl. 13, 3, (1982) 311-318.

Delbaen, F., and Schachermayer, W.

[1] Arbitrage possibilities in Bessel processes and their relations to local martingales.
Prob. Th. Rel. F, 102 (3) (1995) 357-366.

Dellacherte, C.

[1] Intégrales stochastiques par rapport aux processus de Wiener et de Poisson. Sém.
Prob. VIII. Lecture Notes in Mathematics, vol. 381. Springer, Berlin Heidelberg New
York 1974, pp. 25-26.

Dellacherie, C., Maisonneuve, B., and Meyer, P.A,
[1] Probabilités et Potentiel. Hermann, Paris, vol. V. Processus de Markov (fin). Complé-
ments de Calcul stochastique. 1992.



Bibliography 561

Dellacherie, C., and Meyer, P.A.
[1] Probabilités et potentiel. Hermann, Paris, vol. I 1976, vol. II 1980, vol. 1II 1983, vol.
IV 1987.

Dellacherie, C., Meyer, P.A., and Yor, M.
[1] Sur certaines propriétés des espaces H' et BMO. Sém. Prob. XII. Lecture Notes in
Mathematics, vol. 649. Springer, Berlin Heidetberg New York 1978, pp. 98-113.

De Meyer, B.

[1] Une simplification de I’argument de Tsirel’son sur le caractere non-brownien des
processes de Walsh. Sém. Prob. XXXIII. Lecture Notes in Mathematics. Springer,
Berlin Heidelberg New York (1999).

Denisov, 1.V.
[1] A random walk and a Wiener process near a maximum. Theor. Prob. Appl. 28 (1984)
821-824.

Deuschel, 1.D., and Stroock, D.W,
[1] An introduction to the theory of large deviations. Academic Press, New York 1988.

Doléans-Dade, C.

[1] Quelques applications de la formule du changement de variables pour les semi-
martingales. Z.W. 16 (1970) 181-194.

[2] On the existence and unicity of solutions of stochastic integral equations. Z.W. 36
(1976) 93-101.

Doleans-Dade, C., and Meyer, P.A.

[1] Intégrales stochastiques par rapport aux martingales locales. Sém. Prob. IV. Lecture
Notes in Mathematics, vol. 124, Springer, Berlin Heidelberg New York 1970, pp.
77-107.

Donati-Martin, C.
[1] Transformation de Fourier et temps d’occupation browniens. C.R. Acad. Sci. Paris,
Série 1 308 (1989) 515-517.

Donati-Martin, C., and Yor, M.

[1] Mouvement brownien et inégalité de Hardy dans L2, Sém. Prob. XXIII, Lecture Notes
in Mathematics, vol. 1372, Springer, Berlin Heidelberg New York 1989, pp. 315-323,

[2] Fubini’s theorem for double Wiener integrals and the variance of the Brownian path.
Ann. LH.P. 27 (1991} 181-200.

[3] Some Brownian Functionals and their laws. Ann. Prob. 25, 3 (1997) 1011-1058.

Donsker, M.D.
[1] An invariance principle for certain probability limit theorems. Mem. Amer. Math.
Soc. 6 (1951) 1-12.

Donsker, M.D., and Varadhan, S.R.S.
[1] Asymptotic evaluation of certain Markov processe

Doob, J.L.

[1] Stochastic processes. Wiley, New York 1953,

[2] Classical potential Theory and its probabilistic counterpart. Springer, New York Berlin
1984,

Doss, H.
[1] Liens entre équations differenticlles stochastiques et ordinaires. C.R. Acad. Sci. Paris,
Sér. A 233 (1976) 939-942 et Ann. LH.P. 13 (1977) 99-125.



562  Bibliography

Doss, H., and Lenglart, E.
[1] Sur Pexistence, 'unicité et le comportement asymptotique des solutions d’équations
différentielles stochastiques. Ann, .H.P. 14 (1978) 189-214,

Douglas, R.
[1] On extremal measures and subspace density. Michigan Math. J. 11 (1964) 644-652.

Dubins, L.

[11 Rises and upcrossings of non-negative martingales, III. J. Math. 6 (1962) 226-241.
[2] A note on upcrossings of martingales. Ann. Math. Stat. 37 (1966) 728.

[3] On a theorem of Skorokhod. Ann. Math. Stat. 39 (1968) 2094-2097.

Dubins, L., Emery, M., and Yor, M.

[1] On the Levy transformation of Brownian motions and continuous martingales. Sém.
Prob. XXVII. Lecture Notes in Mathematics, vol, 1577. Springer, Berlin Heidelberg
New York 1993, pp. 122-132.

Dubins, L., Feldman, J., Smorodinsky, M., and Tsirel’son, B.
[11 Decreasing sequences of o-fields and a measure change for Brownian motion. Ann.
Prob. 24 (1996) 882-904.

Dubins, L., and Gilat, D.
[I] On the distribution of maxima of martingales. Proc. Amer. Math. Soc. 68 (1978)
337-338.

Dubins, L., and Schwarz, G.

[11 On continuous martingales. Proc. Nat. Acad. Sci. USA 53 (1965) 913-916.

[2] On extremal martingales distributions. Proc. Fifth Berkeley Symp. 2 (1) (1967) 295—
297.

Dubins, L., and Smorodinsky, M.

[1] The modified discrete Lévy transformation is Bernoulli. Sém. Prob. XXVI. Lecture
Notes in Mathematics, vol. 1528. Springcr, Berlin Heidelberg New York 1992, pp.
157-161.

Dudley, R.M.
[1] Wiener functionals as [t0 integrals. Ann. Prob. 5 (1) (1977) 140-141.

Duplantier, B.
[1] Areas of planar Brownian curves. J. Phys. A. Math. Gen. 22 (13) (1989) 3033-3043.

Duplantier, B., Lawler, G.F., LeGall, J.F., and Lyons, T.J.
[1] The geometry of the Brownian curve. Bull. Sci. Math. 117 (1993) 91-106.

Durbin, I

[1] The first passage density of the Brownian motion process to a curved boundary (with
an appendix by D, Williams). J. Appl. Prob. 29 (2) (1992) 291-403.

[2] A reconciliation of two different expressions for the first passage density of Brownian
motion to a curved boundary. J. Appl. Prob. 25 (1988) 829-832.

Durrett, R.

[11 A new proof of Spitzer’s result on the winding of 2-dimensional Brownian motion.
Ann. Prob. 10 (1982) 244-246.

[2] Brownian motion and martingales in analysis, Wadsworth, Belmont, Calif. 1984.

[3] Probability: Theory and examples. Duxbury Press, Wadsworth, Pacific Grove, Cal.
2md ad 1996



Bibliography 563

Durrett, R., and Iglehart, D.L.
[1] Functionals of Brownian meander and Brownian excursion. Ann. Prob. 5 (1977) 130~
135.

Durrett, R.T., Iglehart, D.L., and Miller, D.R.
[1] Weak convergence to Brownian meander and Brownian excursion. Ann. Prob. 5 (1977)
117-129.

Dvoretsky, A., Erdos, P., and Kakutani, S.
[1] Non increase everywhere of the Brownian motion process. Proc. Fourth Berkeley
Symposium 2 (1961) 103-116.

Dwass, H.
[1] On extremal processes I and 1. Ann. Math. Stat. 35 (1964) 17181725 and IlI. J. Math.
10 (1966) 381-391.

Dynkin, E.B.

[1] Markov processes. Springer, Berlin Heidelberg New York 1965.

[2] Self-intersection gauge for random walks and Brownian motion. Ann. Prob. 16 (1988)
1-57.

[3] Local times and random ficlds. Seminar on Stoch. Proc. 1983. Birkhduser 1984, pp.
69-84.

El Karoui, N.
[1] Surles montées des semi-martingales. Astérisque 52-53, Temps Locaux (1978) 63-88.

El Karoui, N., and Chaleyat-Maurel, M.
[1] Un probléme de réflexion et ses applications au temps local et aux équations

différenticlles stochastiques sur R-cas continu. Astérisque 52-53, Temps Locaux

(197%\ 117_14/1
\l/IU] i

El Karoui, N., and Weidenfeld, G.
[1] Théorie générale et changement de temps. Sém. Prob. XI. Lecture Notes in Mathe-
matics, vol. 581. Springer, Berlin Heidelberg New York 1977, pp. 79-108.

Elworthy, K.D.
[1] Stochastic differential equations on manifolds. London Math. Soc. Lecture Notes Se-
ries 70. Cambridge University Press (1982).

Elworthy, K.D., Li, X.M., and Yor, M.

{1] On the tails of the supremum and the quadratic variation of strictly local martingales.
Sém. Prob. XXXI, Lect. Notes in Mathematics 1655. Springer, Berlin Heidelberg New
York 1997, pp. 113-125.

Elworthy, K.D., and Truman, A.

[1] The diffusion equation: an elementary formula. In: S, Albeverio et al. (eds.) Stochastic
processes in quantum physics. Lecture Notes in Physics, vol. 173. Springer, Berlin
Heidelberg New York 1982, pp. 136-146.

Emery, M.

[1] Une définition faible de BMO. Ann. 1.LH.P. 21 (1) (1985) 59-71.

[2] On the Azéma martingales. Sém. Prob. XXIII, XXIV. Lect. Notes in Mathemallcs
1372, 1426. Springer, Berlin Heidelberg New York (1989), (1990), pp. 66-87; pp.
442-447.

[3] Quelques cas de représentation chaotique. Sém. Prob. XXV. Lect. Notes in Mathe-
matics 1485. Springer, Berlin Heidelberg New York (1991), pp. 10-23.

[4] On certain probabilities equivalent to coin-tossing, d’aprés Schachermayer. Sém. Prob.
XXXIII, Lect. Notes in Mathematics, Springer, Berlin Heidelberg New York (1999).



564 Bibliography

Emery, M., and Perkins, E.
[1] La filtration de B + L. Z.W. 59 (1982) 383-390.

Emery, M., and Schachermayer, W.

[1] Brownian filtrations are not stable under equivalent time changes. Sém. Prob. XXXIII,
Lect. Notes in Mathematics, Springer Berlin Heidelberg New York (1999).

[2] A remark on Tsirel’son’s stochastic differential equation. Sém. Prob. XXXIII, Lect.
Notes in Mathematics, Springer Berlin Heidelberg New York (1999).

Emery, M., Stricker, C., and Yan, J A.
[1] Valeurs prises par les martingales locales continues a un instant donné. Ann. Prob. 11
(1983) 635-641.

Emery, M., and Yor, M.

[1]7 Sur un théoréme de Tsirel’son relatif 3 des mouvements browniens correlés et a la
nullité de certains ternps locaux. Sém. Prob. XXXII, Lect. Notes in Mathematics 1686.
Springer, Berlin Heidelberg New York 1998, pp. 306-312.

Engelbert, H.J., and Hess, J.
[1] Integral representation with respect to stopped continuous local martingales. Stochas-
tics 4 (1980} 121-142.

Engelbert, H.J., and Schmidt, W.
[1] On solutions of stochastic differential equations without drift. Z.W. 68 (1985) 287-
317.

Ethier, S.N., and Kurtz, T.G.
[1] Markov processes. Characterization and convergence. Wiley and Sons, New York
1986.

Evans, S.
[1] On the Hausdorff dimension of Brownian cone points. Math. Proc. Camb. Philos. Soc.
98 (1985) 343-353.

Ezawa, H., Klauder, J.R., and Shepp, L.A.

[1] Vestigial effects of singular potentials in diffusion theory and quantum mechanics.
J. Math, Phys. 16, 4 (1975) 783-799.

[2] A path-space picture for Feynman-Kac averages. Ann. Phys. 88, 2 (1974) 588-620.

[3] On the divergence of certain integrals of the Wiener process. Ann. Inst. Fourier, XXIV,
2 (1974) 189-193

Feldman, J., and Smorodinsky, M.
[1]  Simple examples of non-generating Girsanov processes. Sém. Prob. XXXI, Lect. Notes
in Mathematics 1655. Springer, Berlin Heidelberg New York 1997, pp. 247-251.

Feldman, J., and Tsirel’son, B.
[1] Decreasing sequences of o -fields and a measure change for Brownian motion, II. Ann,
Prob. 24 (1996) 905-911.

Feller, W.

[1] Diffusion process in one dimension. Trans. Amer. Math. Soc. 77 (1954} I-31.

[2] On second order differential operators. Ann. Math. 61 (1955) 90-105.

[3] Differential operators with the positive maximum property. Ill. J. Math. 3 (1959)
182-186.

Fisk, D.L.
[1] Sample quadratic variation of sample continuous, second order martingales. Z.W. 6
(1966) 273-278.



Bibliography 565

Fitzsimmons, P.J.
[1] A converse to a theorem of P. Levy. Ann. Proh. 15 (1987) 1515-1523.

Fitzsimmons, P.J., and Getoor, R.K.

[1] Limit theorems and variation properties for fractional derivatives of the local time of
a stable process. Ann. 1.H.P. 28 (1992) 311--333.

[2] On the distribution of the Hilbert transform of the local time of a symmetric Lévy
process. Ann. Prob. 20 (1992) 1484-1497.

Fitzsimmons, P.J,, Pitman, J.W., and Yor, M.
[1] Markovian bridges: Construction, Palm interpretation, and splicing. Seminar on
Stochastic Processes 1992. Birkhduser, pp. 101-134.

Follmer, H.

[1] Stochastic holomorphy. Math. Ann. 207 (1974) 245-265.

[2] Calcul d’Ito sans probabilités. Sém. Prob. XV. Lecture Notes in Mathematics, vol.
850. Springer, Berlin Heidelberg New York 1981, pp. 143-150.

[3] Von der Brownsche Bewegung zum Brownschen Blatt: einige neuere Richtungen in
der Theorie der stochastischen Prozesse. In: W. Jiger, J. Moser, R. Remmert (eds.)
Perspectives in Mathematics, Anniversary of Oberwolfach, 1984, Birkhduser, Basel
1984.

[4] The exit measure of a supermartingale. Z.W. 21 (1972) 154-166.

[5] On the representation of semimartingales. Ann. Prob. 1 (4) (1973} 580-589,

Follmer, H., and Imkeller, P.
[1] Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann.
1.LH.P. 29 (4) (1993) 569-586.

- A

Follmer, H., and Protter, P.
[11 On 1to’s formula for d-dimensional Brownian motion. Preprint (1998).

Fotlmer, H., Protter, P, and Shiryaev, A N.
(1] Quadratic covariation and an extension of Ito’s formula. Bermoulli 1 (1/2) (1995)
149-169.

Follmer, H., Wu, C.T., and Yor, M.
[1] Canonical decomposition of linear transformations of two independent Brownian mo-
tions. Preprint 1998

Freedman, D.
[1] Brownian motion and diffusion. Holden-Day, San Francisco 1971.

Freidlin, M.1.
[1] Action functionals for a class of stochastic processes. Theor. Prob. Appl. 17 (1972)
511-515.

Friedman, A.
RN Ctacrhnctic differantial a
Ll] APMWGIIQIONEW WAl Wi wWiibICiL W

1975 and 1976.

Fujisaki, M., Kallianpur, G., and Kunita, H.
[1] Stochastic differential equations for the non-linear filtering problem. Osaka J. Math
9 (1972) 19-40.

Fukushima, M., and Takeda, M
[i] A transformation of symmetric Markov processes and the Donsker-Varadhan theory.

Osaka J. Math. 21 (1984) 311-326.

Noaatinng an
\luﬂll\-’llﬂ KELAY



566  Bibliography

Galmarino, A.R.

[11 Representation of an isotropic diffusion as a skew product. Z.W. 1 (1963) 359-378.

Galtchouk, L., and Novikov, A.A.

[1] On Wald’s equation. Discrete time case. Sém. Prob. XXXI, Lect. Notes in Mathematics
1655. Springer, Berlin Heidelberg New York 1997, pp. 126—135.

Garsia, A., Rodemich, E., and Rumsey, J., Jr.
[1] A real variable lemma and the continuity of paths of some Gaussian processes. Indiana
Univ. Math. J. 20 (1970/1971) 565-578.

Gaveau, B.
[17 Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur
certains groupes nilpotents. Acta. Math, 139 (1977) 96-153.

Geiger, J., and Kersting, G.
[17 Winding numbers for 2-dimensional positive recurrent diffusions. Potential Analysis
3, 2 (1994) 189-201.

Geman, D., and Horowitz, J.
[1] Occupation densities. Ann. Prob. 8 (1980) 1-67.

Geman, D., Horowitz, J., and Rosen, J.
[1] A local time analysis of intersections of Brownian paths in the plane. Ann. Prob. 12
(1985) 86--107.

Getoor, R.K.
[11 Another limit theorem for local time. Z W. 34 (1976) 1-10.

[2] The Brownian escape process. Ann, Prob. 7 ( 79) 864—-867.
(3] Infinitely divisible probabilities on tlc“: hyperbolic plane. Pacific J. Math. 11 (1961)

1287-1308.

Getoor, R.K., and Sharpe, M.J.

[11 Conformal martingales. Invent. Math. 16 (1972) 271-308.

[2] Last exit times and additive functionals. Ann. Prob. 1 (1973) 550-569.

[3] Last exit decompositions and distributions. Indiana Univ. Math. J. 23 (1973) 377-404.
[4] Excursions of Brownian motion and Bessel processes. Z.W. 47 (1979) 83-106.

[5] Excursions of dual processes. Adv. Math. 45 (1982) 259-309.

[6] Naturality, standardness and weak duality for Markov processes. Z.W. 67 (1984) 1-62.

Gikhman, 1.1, and Skorokhod, A.V.
[I] Theory of stochastic processes I, II and III. Springer, Berlin Heidelberg New York
1974, 1975, and 1979.

Girsanov, IV,

[1] On transforming a certain class of stochastic processes by absolutely continuous sub-
stitution of measures. Theor. Prob. Appl. 5 (1960) 285-301.

[2] An example of non-uniqueness of the solution to the stochastic differential equation

of K. It6. Theor. Prob. Appl. 7 (1962) 325-331.

Going, A
[1] Some generalizations of Bessel processes. Ph. D. Thesis, ETH Ziirich (January 1998).

Goswami, A., and Rao, B.V.
[1T Conditional expectation of odd chaos given even. Stochastics and Stochastics Reports
35 (1991) 213-224.



Bibliography 567

Graversen, S.E.
[1] “Polar’-functions for Brownian motion. Z.W. 61 (1981) 261-270.

Greenwood, P., and Perkins, E.
[1] A conditional limit theorem for random walks and Brownian local times on square
root boundaries. Ann. Prob. 11 (1983) 227-261.

Gruet, J.C.

[1] Sur la transience et la récurrence de certaines martingales locales continues a valeurs
dans le plan. Stochastics 28 (1989) 189-207.

[2] Semi-groupe du mouvement brownien hyperbolique. Stochastics and Stochastic Re-
ports 56 (1996) 53—61.

[3] Windings of hyperbolic Brownian motion. In: M. Yor {(ed.) Exponential Functionals
and Principal Values related to Brownian Motion. Bib. Rev. Ibero-Amer. (1997)

[4] On the length of the homotopic Brownian word in the thrice punctured sphere. Prob.
Th. Rel. F. (1998).

Gruet, J.C., and Mountford, T.S.
[T The rate of escape for pairs of windings on the Riemann sphere. J. London Math.
Soc. 48 (2) (1993) 552-564.

Gundy, R.F.
[1] Some topics in probability and analysis. Conf. Board of the Math. Sciences. Regional
Conf. Series in Maths. 70 (1989)

Hardin, C.D.
[1] A spurious Brownian motion. Proc. Amer. Math. Soc. 93 (1985) 350.

Harrison, J.M., and Shepp, L.A.
[I] On skew Brownian motion. Ann. Prob. 9 (1981) 309-313.

Hartman, P., and Wintner, A.
[1] On the law of the iterated logarithm. Amer. J. Math. 63 (1941) 169-176.

Haussmann, U.G.
[1] Functionals of 1td processes as stochastic integrals. Siam J. Contr. Opt. 16, 2 (1978)
252-269.

Hawkes, J., and Barlow, M.T.
[11 Application de I’entropie métrique a la continuité des temps locaux des processus de
Lévy. C.R. Acad. Sci. Paris 301, Série I, 5 (1985) 237-239.

Hawkes, J., and Truman, A.

[1] Statistics of local time and excursions for the Omstein-Uhlenbeck process. In: M.T.
Barlow, N. Bingham (eds.) Stochastic Analysis. London Math. Soc. Lect. Notes, vol.
167, 1991.

Hobson, D. ,
[1] The maximum maximum of a martingale. Sém. Prob. XXXII. Lecture Notes in Math-
ematics, vol. 1686. Springer, Berlin Heidelberg New York 1998, pp. 250-263.

Hu, Y., Shi, Z., and Yor, M.
[1] Rates of convergence of diffusions with drifted Brownian potentials. Trans. Amer.
Math. Soc. (1999).

Hunt, G.A.
[1] Markov processes and potentials I, II and IIL IIl. J. of Math. 1 (19657) 44-93 and
316-369; 1. J. Math. 2 (1958) 151-213.



568 Bibliography

Ibragimov, 1.
[1] Sur la régularité des trajectoires des fonctions aléatoires. C.R. Acad. Sci. Paris, Série
A 289 (1979) 545-547.

&0F 17 STFST IS

Idrissi Khamlichi, A.
[1] Problémes de polarité pour des semimartingales bidimensionnelles continues. Thése
de 3° Cycle, Université de Paris VII, 1986.

Ikeda, N., and Manabe, S.

[1] Integral of differential forms along the paths of diffusion processes. Publ. RIM.S .
Kyoto Univ. 15 (1978) 827-852.

lkeda, N., and Watanabe, S.

[1] A comparison theorem for solutions of stochastic differential equations and its appli-
cations. Osaka J. Math. 14 (1977) 619-633.

[2] Stochastic differential equations and diffusion processes. Second edition North-
Holland Publ. Co., Amsterdam Oxford New York; Kodansha IL.td., Tokyo 1989.

Imbhof, J.P.

[1] Density factorizations for Brownian motion and the three-dimensional Bessel Pro-
cesses and applications. J. Appl. Prob. 21 (1984) 500-510.

[2]1 On Brownian bridge and excursion. Studia Scient. Math. Hungaria 20 (1985) 1-10.

[3]1 A simple proof of Pitman’s 2M — X theorem. Adv. Appl. Prob. 24 (1992) 499-501.

Isaacson, D,
[1] Stochastic integrals and derivatives. Ann. Math. Sci. 40 (1969) 1610-1616.

1t5, K.

[1] Stochastic integral. Proc. Imp. Acad. Tokyo 20 (1944) 519-524.

[2] Stochastic differential equations. Memoirs A M.S. 4, 1951.

[3] Multiple Wiener integrals. J. Math. Soc. Japan 3 (1951) 157-169.

[4] Lectures on stochastic processes. Tata Institute, Bombay 1961,

[5] Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp.
Math. Stat. Prob., vol. 3. University of California, Berkeley, 1970, pp. 225-239.

[6] Extension of stochastic integrals. Proc. Internat. Symp. SDE Kyoto 1976, pp. 95-109.

[Most of K. 1t6’s papers are reprinted in: D. Stroock, S. Varadhan (eds.) Kiyosi Ité Selected
Papers. Springer (1987)]

Ito, K., and McKean, H.P.
[1] Diffusion processes and their sample paths. Springer, Berlin Heidelberg New York
1965.

It6, K., and Watanabe, S.
[1] Transformation of Markov processes by multiplicative functionals. Ann. Inst, Fourier
15 (1965) 15-30.

Jacod, J.
[1] A general theorem of representation for martingales. Proc. AMS Prob. Symp. Urbana
1976, 37-53.

[2] Calcul stochastique et problemes de martingales. Lecture Notes in Mathematics, vol.
714. Springer, Berlin Heidelberg New York 1979,

3] Equations différentielles linéaires: la méthode de variation des constantes. Sém. Prob.
XVI. Lecture Notes in Mathematics, vol. 920. Springer. Berlin Heidelberg New York
1982, pp. 442-446.



Bibliography 569

Jacod, J., and Mémin, J.

[1] Caractéristiques locales et conditions de continuité absolue pour les semimartingales.
Z.W. 35 (1976) 1-37.

[2] Sur I'intégrabilité uniforme des martingales exponentielles. Z.W. 42 (1978) 175-204.

Jacod, J., and Shiryaev, AN.
[1} Limit theorems for stochastic processes. Springer, Berlin Heidelberg New York 1987.

Jacod,,J ., and Yor, M.
[1} Etude des solutions extrémales et représentation intégrale des solutions pour certains
problemes de martingales. Z.W. 38 (1977) 83-125

AvS aw 111 G il Ol el

Janson, S.
[1] On complex hypercontractivity. J. Funct. Anal. 151 (1997) 270-280.
[2] Gaussian Hilbert spaces. Cambridge Univ. Press (1997)

Jeulin, T.

[1] Un théoreme de J. Pitman. Sém. Prob. XIII. Lecture Notes in Mathematics, vol. 721.
Springer, Berlin Heidelberg New York 1979, pp. 332-359.

[2] Semi-martingalcs et grossissement d’une filtration. Lecture Notes in Mathematics, vol,
833. Springer, Berlin Heidelberg New York 1980,

[3] Application de la théorie du grossissement a 1’étude des temps locaux browniens. In:
Grossissements de filtrations: Exemples et applications. Lecture Notes in Mathematics,
vol. 1118. Springer, Berlin Heidelberg New York 1985, pp. 197-304.

[4] Sur la convergence absolue de certaines intégrales. Sém. Prob. XVI1. Lecture Notes in
Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982, pp. 248-256.

[5] Ray-Knight’s theorems on Brownian local times and Tanaka formula. Seminar on
Stoch. Proc. 1983, Birkhauser 1984, pp. 131--142.

Jeulin, T., and Yor, M.

[1] Autour d’un théoreme de Ray. Astérisque 52-53, Temps locaux (1978) 145--158.

[2] Inégalité de Hardy, semimartingales et faux-amis. Sém. Prob. XIII. Lecture Notes in
Mathematics, vol. 721. Springer, Berlin Heidelberg New York 1979, pp. 332-359.

[3] Sur les distributions de certaines fonctionnelles du mouvement brownien. Sém. Prob.
XV. Lecture Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York
1981, pp. 210-226.

[4] Filtration des ponts browniens et équations differentielles linéaires, Sem. Proba, XXIV,
Lecture Notes in Mathematics, vol., 1426. Springer, Berlin Heidelberg New York 1990,
pp- 227-265.

{5] Une décomposition non canonique du drap brownien. Sem. Prob. XXVI. Lecture
Notes in Mathematics, vol. 1528. Springer, Berlin Heidelberg New York 1992, pp.
322-347.

[6] Moyennes mobiles et semimartingales. Sém. Prob. XXVII, Lect. Notes in Mathemat-
ics, vol. 1557. Springer, Berlin Heidelberg New York 1993, pp. 53-77.

Johnson, G., and Helms, L.L.
47 e P 23" P ;) . ™. M A _ a1 oy P OrE FaY s AN 48 Vel )
{1] Class (D) supermartingales. Bull. Amer. Math. Soc. 69 (1963) 59-62.

Kac, M.
[1] On distribution of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949)
1-13

2] On some connections between probability theory and differential and integral equa-
tions. Proc. Second Berkeley Symp. Math. Stat, Prob. Univ. California Press 1951,
nn. 189251
Pre 19Tes 2.

[3] Integration in Function spaces and some of its applications. Lezioni Fermiane. Acc.
Nat. dei Lincei. Scuola Normale Sup. Pisa (1980).



570 Bibliography

Kahane, I.P.

[I] Some random series of functions. Second edition, Cambridge studies in Advanced
Mathematics, 5, 1985.

[2] Brownian motion and classical analysis. Bull. London Math. Soc. 7 (1976) 145-155.

[3] Le mouvement brownien. In: Matériaux pour [’histoire des Mathématiques au XX¢
siecle. Soc. Math, France (Dec, 1997).

Kallenberg, O.

[1] Some time change representation of stable integrals, via predictable transformations
of local martingales. Stoch. Proc. and their App. 40 (1992) 199-223,

[2] Onanindependence criterion for multiple stochastic integrals. Ann. Prob. 19, 2 (1991)
483-485.

[3] On the existence of universal Functional Solutions to classical SDE’s, Ann. Prob. 24,
1 (1996) 196-205.

[4] Foundations of Modern Probability. Springer 1997.

Kallianpur, G.

[1] Stochastic filtering theory. Springer, Berlin Heidelberg New York 1980.

[2] Some recent developments in nonlinear filtering theory. In: N. Ikeda, S. Watanabe,
M. Fukushima, H. Kunita (eds.) It0’s Stochastic Calculus and Probability Theory.
Springer, Berlin Heidelberg New York 1996, pp. 157-170.

Kallianpur, G., and Robbins, H.
[1] Ergodic property of Brownian motion process. Proc. Nat. Acad. Sci, USA 39 (1953)
525-533.

Kallssen, J.
[1] An up to indistinguishability unique solution to a stochastic differential equation that

1s not strong. Sém. Prob. XXXIII, Lect. Notes in Mathematics. Springer, Berlin Hei-
delberg New York 1999,

Karandikar, R.L.

[1] A.s. approximation results for multiplicative stochastic integrals. Sem. Prob. XVI.
Lecture Notes in Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982,
pp. 384-391.

Karatzas, 1., and Shreve, S.E.
[1] Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York 1988.

Karlin, S., and Taylor, H.M.
[1] A second course in stochastic processes. Academic Press 1981.

Kasahara, Y.

[1] Limit theorems of occupation times for Markov processes. R.I.M.S. 3 (1977) 801-818.

[2] Limit theorems for occupation times of Markov processes. Japan J, Math. 7 (1981)
291-300,

{31 A limit theorem for slowly increasing occupation times. Ann. Prob. 10 (1982) 728-
736.

[4] On Levy’s downcrossing theorem. Proc. Japan Acad. 56 A (10) (1980) 455-458.

Kasahara, Y., and Kotani, S.
[1] On limit processes for a class of additive functionals of recurrent diffusion processes.
Z.W. 49 (1979) 133-143.

Kawabata, S., and Yamada, T.
[1] On some limit theorems for solutions of stochastic differential equations. Sém. Prob.
XVI. Lecture Notes in Mathematics, vol. 920. Springer, Berlin Heidelberg New York

1982, pp. 412-441.



Bibliography 571

Kawazu, K., and Tanaka, H.
[1] A diffusion process in a Brownian environment with drift. J. Math. Soc. Japan 49
(1997) 189-211.

Kazamaki, N.

[1] Change of time, stochastic integrals and weak martingales. Z.W. 22 (1972) 25-32.

[2] On a problem of Girsanov. Tohoku Math. J. 29 (1977) 597-600.

[3] A remark on a problem of Girsanov. Sém. Prob. XII. Lecture Notes in Mathematics,
vol. 649, Springer, Berlin Heidelberg New York 1978, pp. 47-50.

[4] Continuous Exponential martingales and BMO. Lect. Notes in Mathematics, vol. 1579.
Quringoar Rorlin Haidallvare Neow Varl 1004

ul_uxuspl, v ] Ijik ll\./l.ublubls ENUW LULRN | 775,

Kazamaki, N., and Sekiguchi, T.

[11 On the transformation of some classes of martingales by a change of law. Tohoku
Math. J. 31 (1979) 261-279.

[2] Uniform integrability of continuous exponential martingales. Tohoku Math. J. 35
(1983) 289-301.

Kennedy, D.
[11 Some martingales related to cumulative sum tests and single-server queues. Stoch.
Proc. Appl. 4 (1976) 261-269.

Kent, J.

[1] The infinite divisibility of the Von Mises-Fischer distribution for all values of the
parameter in all dimensions. Proc. London Math. Soc. 35 (1977) 359-384.

[2] Some probabilistic properties of Bessel functions. Ann. Prob. 6 (1978) 760-770.

Kertz, R.P., and Rosler, U.

[1] Martingales with given maxima and terminal distributions. Israel J. of Maths. 69, 2
(1990) 173-192.

Khintchine, A.Y.

[1] Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. (Ergebnisse der Mathema-

tik, Bd. 2). Springer, Berlin Heidelberg 1933, pp. 72-75.

Knight, F.B.
[11 Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143 (1969) 173—
185.

[2] Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math.
Soc. 107 (1963) 56-86

[3] A reduction of continuous square-integrable martingales to Brownian motion. Lecture
Notes in Mathematics, vol. 190. Springer, Berlin Heidelberg New York 1970, pp.
19-31.

[4] An infinitesimal decomposition for a class of Markov processes. Ann. Math. Stat. 41
(1970) 1510-1529.

[5] Essentials of Brownian motion and diffusion. Math. Surv. 18 Amer. Math. Soc.,
Providence, Rhode-Island 1981.

[6] On the duration of the longest excursion. Sem. Stoch. Prob. 1985. Birkhduser, Basel
1986, pp. 117-147.

[7] On invertibility of Martingale time changes. Sem. Stoch. Proc. 1987. Birkhiuser, Basel
1988, pp. 193-221.

[8] Inverse local times, positive sojourns, and maxima for Brownian motion. Astérisque
157-158 (1988) 233-247.

[9] Calculating the compensator: methods and examples. Sem. Stoch. Proc. 1990. Birk-
hiuser, Basel 1991, pp. 241-252,

[10] Foundations of the prediction process. Clarendon Press, Oxford 1992.



572 Bibliography

[11] Some remarks on mutual windings. Sem. Prob. XXVIL Lecture Notes in Mathematics,
vol. 1557. Springer, Berlin Heidelberg New York 1993, pp. 36—43.

[12] A remark about Walsh’s Brownian motion. Colloque in honor of J.P. Kahane (Orsay,
June 1993). In: The Journal of Fourier Analysis and Applications, Special Issue, 1995,
pp- 1600-1606.

[13] On the upcrossing chains of stopped Brownian motion. Sém. Prob. XXXII, Lect. Notes
in Mathematics 1686. Springer, Berlin Heidelberg New York 1998, pp. 343-375.

Kolmogorov, A.N.
[1] Uber das Gesetz des itierten Logarithmus. Math. Ann. 101 (1929) 126135,

Koval’chik, LM.
[1] The Wiener integral. Russ. Math. Surv. 18 (1963) 97-135.

Koéno, N.

[1] Deémonstration probabiliste du théoréme de d’Alembert. Sém. Prob. XIX. Lecture
Notes in Mathematics, vol, 1123. Springer, Berlin Heidelberg New York 1985, pp.
207-208.

Khoshnevisan, D.
[11 Exact rates of convergence to Brownian local time. Ann. Prob. 22,3 (1994) 1295-1330.

Krengel, U,
[1] Ergodic theorems. de Gruyter, Berlin New York 1983,

Kiichler, U.
[1] On sojourn times, excursions and spectral measures connected with quasi-diffusions.
Jour. Math, Kyoto U. 26, 3 (1986) 403—421.

Kunita, H.
[1] Absolute continuity of Markov processes and generators. Nagoya Math. J. 36 (1969)
I-26.

[2] Absolute continuity of Markov processes. Sém. Prob. X. Lecture Notes in Mathemat-
ics, vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 44-77.

[3] On backward stochastic differential equations. Stochastics 6 (1982) 293-313.

[4] Stochastic differential equations and stochastic flows of diffeomorphisms. Ecole d’Eté
de Probabilites de Saint-Flour XII. Lecture Notes in Mathematics, vol. 1097. Springer,
Berlin Heidelberg New York 1984, pp. 143-303.

[S] Some extensions of Ito’s formula. Sém. Prob. XV. Lecture Notes in Mathematics, vol.
850. Springer, Berlin Heidelberg New York [981, pp. 118-141.

[6] Stochastic flows and stochastic differential equations. Cambridge University Press
1990.

Kunita, H., and Watanabe, S.
[1] On square-integrable martingales. Nagoya J. Math. 30 (1967) 209-245.

Kurtz, T.G.

M Danracantatin
L1 J l.\blll COLLILALIY

(1980) 682-71

5.
Lamperti, J.

[1] Continuous state branching processes. Bull. A.M.S. 73 (1967) 382-386.
[2] Semi-stable Markov processes 1. Z.W. 22 (1972) 205-255.

Lane, D.A.
[17 On the fields of some Brownian martingales. Ann. Prob. 6 (1978) 499-508.



Bibliography 573

Lebedev, N.N,

[1] Special functions and their applications. Dover Publications, 1972,

Ledoux, M.

[1] Inégalités isopérimétriques et calcul stochastique. Sém. Prob. XXII, Lecture Notes in
Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp. 249-259.

Ledoux, M., and Talagrand, M.
[1] Probability on Banach spaces. Springer, Berlin Heidelberg New York 1991.

Le Gall, J.F.

[1] Applications du temps local aux équations differentielles stochastiques unidimension-
nelles. Sém. Prob. XVII. Lecture Notes in Mathematics, vol, 986, Springer, Berlin
Heidelberg New York 1983, pp. 15-31.

[2] Sur la saucisse de Wiener et les points multiples du mouvement Brownien. Ann. Prob.
14 (1986) 1219-1244,

[3] Sur la mesure de Hausdorft de la courbe brownienne. Seém. Prob. XIX. Lecture Notes
in Mathematics, vol. 1123. Springer, Berlin Heidelberg New York 1985, pp. 297-313.

[4] Sur le temps local d’intersection du mouvement brownien plan et la méthode de
renormalisation de Varadhan. Sem. Prob. XIX. Lecture Notes in Mathematics, vol,
1123. Springer, Berlin Heidelberg New York 1985, pp. 314-331.

[5] Une approche élémentaire des théoremes de décomposition de Williams. Sém. Prob.
XX. Lecture Notes in Mathematics, vol. 1204. Springer, Berlin Heidelberg New York
1986, pp. 447-464.

[6] Sur les fonctions polaires pour le mouvement brownien. Sém. Prob. XXII. Lecture
Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp.
186-189.

[7] Proprietés d’intersection des marches aléatoires, I. Convergence vers le temps local
d’intersection, 1I. Etude des cas critiques. Comm. Math. Phys. 104 (1986) 471-507
and 509-528.

[8] Introduction au mouvement brownien. Gazette des Mathématiciens 40, Soc. Math.
France (1989) 43-64.

[9] Some properties of planar Brownian motion. Ecole d’ét¢ de Saint-Flour XX, 1990.
Lecture Notes in Mathematics. vol. 1527. Springer, Berlin Heidelberg New York 1992,
pp. 112-234.

[10] The uniform random tree in a Brownian excursion. Prob, Th. Rel. Fields 96 (1993)
369-383,

[11] Mouvement brownien et calcul stochastique. Cours de troisiéme cycle. Université
Paris VI, 1994.

Le Gall, J.F., and Meyre, T.
[1] Points cones du mouvement brownien plan, le cas critique. Prob. Th. Rel. Fields 93
(1992) 231-247.

Le Gall, JF., and Yor, M,

[1] Sur ’équation stochastique de Tsirel’son. Sém. Prob. XVII. Lecture Notes in Mathe-
matics, vol. 986. Springer, Beriin Heidelberg New York 1983, pp. 81-88.

[2] Etude asymptotique de certains mouvements browniens complexes avec drift. Z.W.
71 (1986) 183-229.

[3] FEtude asymptotique des enlacements du mouvement brownien autour des droites de
I’espace. Prob. Th. Rel. Fields 74 (1987) 617-635.

[4] Enlacements du mouvement brownien autour des courbes de I’espace. Trans. Amer.
Math. Soc. 317 (1990) 687-722.

[5] Excursions browniennes et carrés de processus de Bessel. C.R. Acad. Sci. Paris, Série
1 303 (1986) 73-76.



574 Bibliography

Lehoczky, J.
[1] Formulas for stopped diffusion processes with stopping times based on the maximum.
Ann. Prob. 5 (1977) 601-608.

Le Jan, Y.
[I] Martingales et changements de temps. Sém. Prob. XIII. Lecture Notes in Mathematics,
vol, 721. Springer, Berlin Heidelberg New York 1979, pp. 385-389.

Lenglart, E.

[1] Sur la convergence p.s. des martingales locales. C.R. Acad. Sci. Paris 284 (1977)
1085-1088.

[2] Relation de domination entre deux processus. Ann. L.H.P. 13 (1977) 171-179.

[3] Transformation de martingales locales par changement absolument continu de proba-
bilités. Z.W. 39 (1977) 65-70.

Lenglart, E., Lépingle, D., and Pratelli, M.

[1] Une présentation unifiée des inégalités en théorie des mattingales. Sém. Prob. XIV.
Lecture Notes in Mathematics, vol. 784, Springer, Berlin Heidelberg New York 1980,
pp. 26-48,

Lépingle, D.

[1] Sur le comportement asymptotique des martingales locales. Sém. Prob. XIL Lecture
Notes in Mathematics, vol. 649. Springer, Berlin Heidelberg New York 1978, pp.
148-161.

[2] Une remarque sur les lois de certains temps d’atteinte. Sem. Prob. XV. Lecture Notes
in Mathematics, vol. 850, Springer, Berlin Heidelberg New York 1981, pp. 669—670.

>
iy oUl 1 il

Leuridan, C.

[1] Une démonstration élémentaire d’une identit¢ de Biane et Yor. Sém. Prob. XXX,
Lecture Notes in Mathematics, vol. 1626. Springer, Berlin Heidelberg New York
1996, pp. 255-260.

[2] Le théoreme de Ray-Knight a temps fixe. Sém. Prob. XXXII, Lecture Notes in Math-
ematics, vol. 1686. Springer, Berlin Heidelberg New York 1998, pp. 376-406.

[3] Les théoremes de Ray-Knight et la mesure d’Ito pour le mouvement brownien sur le
tore R/Z. Stochastics and Stochastic Reports 55 (1995) 106-128.

Levy, P.

[1] Le mouvement brownien plan. Amer. J. Math. 62 (1940) 487-550.

[2] Processus stochastiques et mouvement brownien. Gauthier-Villars, Paris 1948.

[3] Wiener random functions and other Laplacian random functions. Proc. Second Berke-
ley Symp., vol. II, 1950, pp. 171-186.

[4] Sur un probleme de M. Marcinkiewicz. C.R. Acad. Sci. Paris 208 (1939) 318-321.

Errata p. 776.
rel o i O | VR o B . N s Al RA L A 1AMy A0 AN
2] Our Cceriains processus stocnasiiques NOmogencs, LomposIitio viatn, / (I1Y5Y7) 205—223Y.
Lewis, J.T.

{1] Brownian motion on a submanifold of Euclidean space. Bull. London Math. Soc.
(1986) 616-620.

Liptser, R.S., and Shiryaev, AN.
[1] Statistics of random processus, I and II. Springer Verlag, Berlin, 1977 and 1978.



Bibliography 575

Lorang, G., and Roynette, B.
[1] Etude d’une fonctionnelle liée au pont de Bessel. Ann. Inst. H. Poincaré 32 (1996)
107-133.

Lyons, T.J., and McKean, H.P., Jr.
[1] Windings of the plane Brownian motion. Adv. Math. 51 (1984) 212-225,

Lyons, T.J., and Zhang, T.S.
[1] Decomposition of Dirichlet processes and its application. Ann. Prob. 22 (1994) 494
524.

McGill, P,

[17 A direct proof of the Ray-Knight theorem. Sém. Prob. XV. Lecture Notes in Mathe-
matics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 206-209.

[2] Markov properties of diffusion local time: a martingale approach. Adv. Appl. Prob.
14 (1982) 789-810.

[3] Integral representation of martingales in the Brownian excursion filtration. Sém. Prob.
XX. Lecture Notes in Mathematics, vol. 1204, Springer, Berlin Heidelberg New York
1986, pp. 465-502.

McGill, P., Rajeev, B., and Rao, B.V.

[1] Extending Lévy’s characterization of Brownian motion. Sém. Prob. XXII, Lecture
Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp.
163-165.

McKean, H.P., Ir,
[1] The Bessel motion and a singular integral equation. Mem. Coll. Sci. Univ. Kyoto,
Ser. A, Math. 33 (1960) 317-322.

[2] Stochastic integrals. Academic Press, New York 1969,

L<] [RS8 e 10§ Fgpyicieioy § J S0 ]

[3] Brownian local time. Adv. Math. 1§ (1975) 91-111.

Maisonneuve, B.

[1] Systemes régénératifs. Astérisque 15. Societé Mathématique de France 1974.

[2] Exit systems. Ann. Prob. 3 (1975) 399-411.

[31 Une mise au point sur les martingales locales continues définies sur un intervalle
stochastique. Sém. Prob. XI. Lecture Notes in Mathematics, vol. 528, Springer, Berlin
heidelberg New York 1977, pp. 435-445.

[4] On Lévy’'s downcrossing theorem and various extensions. Sém. Prob. XV. Lecture
Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp.
191-205.

[5] Ensembles régénératifs de la droite. Z.W. 63 (1983) 501-510.

[6] On the structure of certain excursions of a Markov process. Z.W. 47 (1979) 61-67.

[7] Excursions chevauchant un temps aléatoire quelconque. In: Hommage a P.A. Meyer
et ). Neveu. Astérisque 236 (1996) 215-226.

Malliavin, P.

bmdrmatin Anmali.io e anly ey ~arle oy ~ R -
rti Q T M Q n 11 T1Taidalls N YVl 100
Ll J LUV EIadLLv I‘\llﬂlyblb Ql)l lllBDl, UL JIC VN IUCT INCW 1UIA 177
Malric, M.

[1] Filtrations browniennes et balayage. Ann. LH.P. 26 (1990) 507-540,

Mandelbrot, B.B., and Van Ness, J.W.
[17 Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968)
422-437.



576 Bibliography

Mand], P.
[I] Analytical treatment of one-dimensional Markov process. Springer, Berlin Heidelberg
New York 1968,

March, P., and Sznitman, A.S.
[1] Some connections between excursion theory and the discrete random Schrodinger
equation with random potentials. Prob. Th. Rel. Fields 67 (1987) 11-54.

Marcus, M.B., and Rosen, J.

[11 Sample path properties of the local times of strongly symmetric Markov processes
via Gaussian processes. Ann. Prob. 20, 4 (1992) 1603-1684.

[2] Gaussian chaos and sample path properties of additive functionals of symmetric
Markov processes. Ann. Prob. 24, 3 (1996) 1130-1177.

Maruyama, G.

[1] On the transition probability functions of Markov processes. Nat. Sci. Rep. Ochano-
mizu Untv. § (1954) 10-20.

[2] Continuous Markov processes and stochastic equations. Rend. Circ. Palermo 10 (1955)
48-90.

Maruyama, G., and Tanaka, H.
[1] Ergodic property of n-dimensional Markov processes. Mem. Fac. Sci. Kyushu Univ.
13 (1959) 157-172.

Meilijson, 1.

[1] There exists no ultimate solution to Skorokhod’s problem. Sém. Prob. XVI. Lecture
Notes in Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982, pp.
392-399.

[2] On the Azéma-Yor stopping time. Sém. Prob. XVII. Lecture Notes in Mathematics,
vol. 986. Springer, Berlin Heidelberg New York 1983, pp. 225-226.

Méléard, S.
[1] Application du calcul stochastique a 1’é¢tude des processus de Markov réguliers sur
[0, 1]. Stochastics 19 (1986) 41-82.

Messulam, P., and Yor, M.
[t] On D. Williams’ “pinching method™ and some applications, J. London Math, Soc. 26
(1982) 348-364.

Meétivier, M.
[1] Semimartingales: a course on stochastic processes. de Gruyter, Berlin New York 1982.

Meyer, P.A.

[1] Processus de Markov. Lecture Notes in Mathematics, vol. 26. Springer, Berlin Hei-
delberg New York 1967.

[2] Processus de Markov: La frontiere de Martin. Lecture Notes in Mathematics, vol. 77.
Springer, Berlin Heidelberg New York 1979.

[3] Démonstration simplifiée d’un théoréme de Knight. Sém. Prob. V. Lecture Notes in
Mathematics, vol. 191. Springer, Berlin New York 1971, pp. 191-195,

[4] Processus de Poisson ponctuels, d’apres K. Ito. Sém. Prob. V. Lecture Notes in Math-
ematics, vol. 191. Springer, Berlin Heidelberg New York 1971, pp. 177-190.

[5] Un cours sur les intégrales stochastiques. Sém. Prob. X. Lecture Notes in Mathematics,
vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 245-400.

[6] Démonstration probabiliste de certaines inégalités de Littlewood-Paley. Sém. Prob.

Y11 T ontiire Natoe in Mathamatice val §11 Qnrincger Rerlin Heidelhoro Naw Vorle
JRll. LAwLlUulvy LYULLD LD LYEIGALEIWILICA I D, V2L, /10, L)l_ll Liipniedy EFWLALLL jluluuluwlb 1YW ¥Y PRI ¥ N

1976, pp. 125-183.



Bibliography 577

[7] La formule d’1t6 pour le mouvement brownien d’aprés Brosamler. Sém. Prob. XII.
Lecture Notes in Mathematics, vol. 649. Springer, Berlin Heidelberg New York 1978,
pp. 763-769.

[8] Flot d’une équation différentielle stochastique. Sém. Prob. XV. Lecture Notes in Math-
ematics, vol, 850. Springer, Berlin Heidelberg New York 1981, pp. 103-117.

[9] Sur Vexistence de Popérateur carré du champ. Sém. Prob. XX. Lecture Notes in
Mathematics, vol. 1204. Springer, Berlin Heidelberg New York 1986, pp. 30-33.

[10] Formule d’Ito généralisée pour le mouvement brownien lincaire, d’aprés Follmer,
Protter, Shiryaev. Sém. Prob. XXXI, Lect. Notes in Mathematics 1655. Springer,
Berlin Heidelberg New York 1997, pp. 252-255.

Meyer, P.A., Smythe, R.T., and Walsh, J.B.
[11 Birth and death of Markov processes. Proc. Sixth Berkeley Symposium II1. University
of California Press, 1971, pp. 295--305.

Miltar, P.W.

[1] Martingale integrals, Trans. Amer. Math. Soc. 133 (1968) 145-166.

[2] Stochastic integrals and processes with stationary independent increments. Proc. Sixth
Berkley Symp. 3 (1972) 307-332.

Mokobodzki, G.
[1] Opeérateur carré¢ du champ: un contre-exemple. Sém. Prob. XXIII. Lecture Notes in
Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 324-325.

Molchanov, S.
[1] Martin boundaries for invariant Markov processes on a solvable group. Theor. Prob.
Appl. 12 (1967) 310-314.

Molchanov, S.A., and Ostrovski, E.
[I1 Symmetric stable processes as traces of degenerate diffusion processes. Theor. Prob.
Appl. 14 (1) (1969) 128-131.

Monroe, 1.
[1] Processes that can be imbedded in Brownian motion. Ann. Prob. 6, 1 (1978) 42-56.

Mortimer, T.M., and Williams, D.
[1] Change of measure up to a random time: theory. J. Appl. Prob. 28 (1991) 914-918.

Mountford, T.S.

[1] Transience of a pair of local martingales. Proc. A.M.S. 103 (3) (1988) 933-938.

[2] Limiting behavior of the occupation of wedges by complex Brownian motion. Prob.
Th. Rel. F. 84 (1990) 55-65.

[3] The asymptotic distribution of the number of crossings between tangential circles by
planar Brownian motion. J. London Math. Soc. 44 (1991) 184-192.

Mueller, C,
[1] A unification of Strassen’s law and Lévy’s modulus of continuity. Z.W. 56 (1981)
163-179.

Nagasawa, M.
[1] Time reversions of Markov processes. Nagoya Math. J. 24 (1964) 177-204.
{2] Transformations of diffusions and Schrodinger processes. Prob. Th. Rel. F. 82 (1989)

106-136.
[3] Schrodinger equations and diffusion theory. Birkhduser 1993.
Nakao, S.

[11 On the pathwise uniqueness of solutions of one-dimensional stochastic diffferential
equations. Osaka J. Math. 9 (1972) 513-518.



578 Bibliography

(2] Stochastic calculus for continuous additive functionals of zero energy. Zeit. fiir Wahr.
68 (1985) 557-578.

Neveu_ J

[1] Processus aléatoires gaussiens. Les Presses de I'Univ. de Montréal, 1968.

[2] Intégrales stochastiques et application. Cours 3° Cycle. Laboratoire de Probabilites,
Université de Paris VI, 1972,

[3] Sur 'espérance conditionnelle par rapport a un mouvement Brownien. Ann. I.H.P.
12, 2 (1976} 105-110.

[4] Bases mathématiques du calcul des probabilités, 2éme édition. Masson, Paris 1971.

Ndumu, N.M,
[1] The heat kernel formula in a geodesic chart and some applications to the eigenvalue
problem of the 3-sphere. Prob. Th. Rel. F. 88 (3) (1991) 343-361.

Norris, J.R., Rogers, L.C.GG., and Williams, D.
[1] Self-avoiding random walk: A Brownian model with local time drift. Prob. Th. Rel.
F. 74 (1987) 271-287.

Novikov, A.A.

[1] On moment inequalities for stochastic integrals. Theor. Prob. Appl. 16 (1971) 538~
541.

[2] On an identity for stochastic integrals. Theor. Prob. Appl. 17 (1972) 717-720.

Nualart, D.

[1] Weak convergence to the law of two-parameter continuous processes. Z.W. 55 (1981)
255-269.

[2] The Malliavin calculus and related topics. Springer, Berlin Heidelberg New York
1995.

Ocone, D.L.

[1] A symmetry characterization of conditionally independent increment martingales. In:
D. Nualart and M. Sanz (eds.) Proceedings of the San Felice workshop on Stochastic
Analysis (1991). Birkhauser 1993, 147-167,

[2] Malliavin’s calculus and stochastic integral representations of functionals of diffusion
processes. Stochastics and Stochastic Reports 12 (1984) 161185,

Orey, S.
[11 Two strong laws for shrinking Brownian tubes. Z.W. 63 (1983) 281-288.

Orey, S., and Pruitt, W,
[1] Sample functions of the N-parameter Wiener process. Ann. Prob. 1 (1973) 138-163.

Orey, S., and Taylor, S.J.
[11] How often on a Brownian path does the law of the iterated logarithm fail? Proc.
London Math. Soc. 28 (1974) 174-192.

Oshima, Y., and Takeda, M.

[1] On a transformation of symmetric Markov processes and recurrence property. Lecture
Notes in Mathematics, vol. 1250, Proceedings Bielefeld. Springer, Berlin Heidelberg
New York 1987.

Ouknine, Y., and Rutkowski, M.
[1] Local times of functions of continuous semimartingales. Stochastic Anal. and Appli-
cations 13 (1995) 211-232.

Pagés, H.
[1] Personal communication.



Bibliography 579

Paley, R., Wiener, N., and Zygmund, A.
[I[] Note on random functions. Math. Z. 37 (1933) 647-668.

1 M Al CepQ
Papanicolacu, G., Stroock, D.W., and Varadhag, S.R.S.

1] Martingale approach to some limit theorems. Proc. 1976. Duke Conf. On Turbulence.
Duke Univ. Math. Series III, 1977.

Parthasarathy, K.R.
[1] Probability measures on metric spaces. Academic Press, New York 1967.

Pazy, A.
[I] Semi-groups of linear operators and applications to partial differential equations. (Ap-
plied Mathematical Sciences, vol. 44). Springer, Berlin Heidelberg New York 1983.

Perkins, E.

{11 A global intrinsic characterization of Brownian local time. Ann. Prob. 9 (1981) 800
817.

{2] The exact Hausdorff measure of the level sets of Brownian motion. Z.W. 58 (1981)
373-388.

{3] Local time is a semimartingale. Z.W. 60 (1982) 79-117.

{4] Weak invariance principles for local time. Z.W. 60 (1982) 437-451.

[5] Local time and pathwise uniqueness for stochastic differential equations. Sém. Prob.
XVI, Lecture Notes in Mathematics, vol. 920. Springer, Berlin Heidelberg New York
1982, pp. 201-208.

{6] On the Hausdorff dimension of Brownian slow points. Z, W, 64 (1983) 369-399.

{7] The Cereteli-Davis solution to the H'!-embedding problem and an optimal embedding
in Brownian motion. Seminar on stochastic processes. Birkhauser, Basel 1985, pp.
172-223.

Petit, F.
[1]1 Quelques extensions de la loi de 1’arcsinus. C.R. Acad. Sci. Paris 315 Série I (1992)
855-858.

Pierre, M.

[1] Le probleme de Skorokhod: une remarque sur la démonstration d’Azéma-Yor. Sém.
Prob. XIV. Lecture Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New
York 1980, pp. 392-396.

Pitman, J.W.

[1] One-dimensional Brownian motion and the three-dimensional Bassel process. Adv.
Appl. Prob, 7 (1975) 511-526.

[2] A note on L, maximal inequalities. Sém. Prob. XV. Lecture Notes in Mathematics,
vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 251-258.

[3} Stationary excursions. Sém. Prob. XVI. Lecture Notes in Mathematics, vol. 1247,
Springer, Berlin Heidelberg New York 1987, pp. 289-302.

[4] Lévy systems and path decompositions. Seminar on stochastic processes. Birkhduser,
Basel 1981, pp. 79-110.

[5] Cyclically stationary Brownian local time processes. Prob, Th. Rel. Fields 106 (1996)
299-329.

[6] The SDE solved by local times of a Brownian excursion or bridge derived from the
height profile of a random tree or forest. To appear in Ann. Prob. (1999).

[71 The distribution of local times of a Brownian bridge. Sém. Prob. XXXIII, Lect. Notes
in Mathematics. Springer, Berlin Heidelberg New York 1999,

Pitman, J.W., and Rogers, L.C.G.

[11 Markov functions. Ann. Prob. 9 (1981) 573-582.



580 Bibliography

Pitman, JW., and Yor, M
[11 Bessel processes and infinitely divisible laws. In: D. Williams (ed.) Stochastic inte-

orals, Lecture Notes in Mat!\mnnhne vol 851, Qﬁﬁnﬂ'pl‘ Rerlin I—lmd»lhnﬂr New York

BraiS, LA GL AN IviliCeviLS g, 11l favn | 4 4.4

1981,

{2] A decomposition of Bessel bridges. Z.W. 59 (1982) 425-457.

{31 Sur une décomposition des ponts de Bessel. In: Functional Analysis in Markov pro-
cesses. Lecture Notes in Mathematics, vol. 923. Springer, Berlin Heidelberg New York
1982, pp. 276-285.

[4] The asymptotic joint distribution of windings of planar Brownian motion. Bull. Amer.
Math. Soc. 10 (1984) 109-111.

[51 Asymptotic laws of planar Brownian motion. Ann. Prob. 14 (1986) 733-779.

[6] Some divergent integrals of Brownian motion. In: D. Kendall (ed.) Analysis and
Geometric Stochastics, Supplement to Adv. Appl. Prob. (1986) 109-116.

[71 Further asymptotic laws of planar Brownian motion. Ann. Prob. 17 (3) (1989) 965-
1011

[81 Arcsine laws and interval partitions derived from a stable subordinator. Proc. London
Math. Soc. 65 (3) (1992) 326--356.

[9] Dilatations d’espace-temps, réarrangements des trajectoires browniennes, et quelques
extensions d'une identité de Knight. C.R. Acad. Sci. Paris, t 316, Série T (1993)
723-726.

[10] Decomposition at the maximum for excursions and bridges of one dimensional dif-
fusions. In: N. lkeda, S. Watanabe, M. Fukushima, H. Kunita (eds.) Itd’s stochastic
calculus and Probability Theory. Springer, Berlin Heidelberg New York 1996, pp.
293-310.

[11] Quelques identités en loi pour les processus de Bessel. Hommage a P.A. Meyer and
J. Neveu. Astérisque 236, Soc. Math. France 1996.

[12} Ranked Functionals of Brownian excursions. Comptes Rendus Acad. Sci. Paris, t 326,
Série 1, January 1998, 93-97.

[13] Path decompositions of a Brownian bridge related to the ratio of its maximum and
amplitude. Preprint (1999).

Port, S.C., and Stone, C.J.
[1] Brownian motion and classical potential theory. Academic Press, New York 1978.

Pratelli, M.

[11 Le support exact du temps local d’une martingale continue. Sém. Prob. XIII. Lecture
Notes in Mathematics, vol. 721. Springer, Berlin Heidelberg New York 1979, pp.
126--131.

Priouret, P.

[1]1 Processus de diffusion et équations différentielles stochastiques. Ecole d’Et¢ de Prob-
abilités de Saint-Flour III. Lecture Notes in Mathematics, vol. 390. Springer, Berlin
Heidelberg New York 1974, pp. 38-113.

Priouret, P., and Yor, M.
[1] Processus de diffusion a valeurs dans R et mesures quasi-invariantes sur C(R, R).
Astérisque 22-23 (1975) 247-290.

Rauscher, B. _
[11 Some remarks on Pitman’s theorem. Sém. Prob. XXXI, Lect. Notes in Mathematics

1655. Springer, Berlin Heidelberg New York 1997, pp. 266-271.

Ray, D.B.
[1] Sojourn times of a diffusion process. Il. J. Math. 7 (1963) 615-630.



Bibliography 581

Rebolledo, R.
[1] Laméthode des martingales appliquée a I’étude de la convergence en loi des processus.
MAmaira de 1a S M‘F' 52 (!979)

LVALAIIV/BLG W EER kA el¥

[2] Central limit theorems for local martingales. Z.W. 51 (1980) 269-286.

Resnick, S.I
[1] Inverses of extremal processes. J. Appl. Prob. (1974) 392-405.

Revuz, D.

[1] Mesures associées aux fonctionnelles additives de Markov 1. Trans. Amer. Math. Soc.
148 (1970) 501-531.

[2] Lois du tout ou rien et comportement asymptotique pour les probabilités de transition
des processus de Markov. Ann. LH.P. 19 (1983) 9-24,

[3] Markov chains. North-Holland, Amsterdam New York 1984.

[4] Une propriété ergodique des chaines de Harris et du mouvement Brownien linéaire

(unpublished).

Robbins, H., and Siegmund, D.
[1] Boundary crossing probabilities for the Wiener process and sample sums. Ann, Math.
Stat. 41 (1970) 1410-1429.

Rogers, L.C.G.

[11 Williams characterization of the Brownian excursion law: proof and applications. Sém.
Prob. XV. Lecture Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New
York 1981, pp. 227-250.

[2] Characterizing all diffusions with the 2M — X property. Ann. Prob. 9 (1981) 561-572.

[3] TtO excursions via resolvents. Z.W. 63 (1983) 237-255.

[41 A guided tour through excursions. Bull. London Math. Soc. 21 (1989) 305-341.

[51 The joint law of the maximum and terminal value of a martingale. Prob. Th. Rel. F.
95 (4) (1993) 451-466.

[6] Continuity of martingales in the Brownian excursion filtration. Prob. Th. Rel. F. 76
(1987) 291-298.

Rogers, L.C.G., and Walsh, J.B.

[1] The intrinsic local time sheet of Brownian motion. Prob. Th. Rel. F. 88 (1991) 363—
379.

[2] The exact 4-variation of a process arising from Brownian motion. Stochastics and
Stoch. Reports 51 (1994) 267-291.

[31 A, B,) is not a semi-martingale. Seminar on Stoch. processes 1990. Prog. in Prob.
24 (1991) 275-283. Birkhduser.

[4] Local time and stochastic area integrals. Ann. Prob. 19 (1991) 457-482.

Rogers, L.C.G., and Williams, D.

[1] Diffusions, Markov processes and Martingales, vol. 2: 1té calculus. Wiley and Sons,
New York 1987.

[2] Diffusions, Markov processes and Martingales, vol. 1: Foundations. Wiley and sons,
New York 1994,

Root, D.H.
[1] The existence of certain stopping times on Brownian motion, Ann. Math. Stat. 40
(1969) 715-718.

Rosen, J.
[11 A local time approach to the self-intersection of Brownian paths in s

Math. Phys. 88 (1983) 327-338. C T T



582 Bibliography

Rosen, J., and Yor, M.
[1] Tanaka formulae and renormalization fo

i selrmune, Asen Doal. 10 71001
ine piainc. Aidnt. rivu. 17 \l77l) 142_}5

Roth, J.P.
[1] Operateurs dissipatifs et semi-groupes dans les espaces de fonctions continues. Ann.
Inst. Fourier 26 (1976) 1-97.

Ruiz de Chavez, J.
[1] Le théoréme de Paul Lévy pour des mesures signées, Sém. Prob. X VIIIL. Lecture Notes
in Mathematics, vol. 1059. Springer, Berlin Heidelberg New York 1984, pp. 245-255.

—

triple intersections of Brownian motion in

N2

Saisho, Y., and Tanemura, H.
[1] Pitman type theorem for one-dimensional diffusion processes. Tokyo J. Math. 18 (2)
(1990) 429-440.

Schilder, M.
1] Asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125 (1966) 63-85.

Schwartz, L.
1] Le mouvement brownien sur RY, en tant que semi-martingale dans Sy. Ann. LH.P.
21, 1 (1985) 15-25.

Seshadri, V.

[1] Exponential models, Brownian motion and independence. Can. J. of Stat. 16 (1988)
209-221.

[2] The inverse Gaussian distribution. Clarendon Press, Oxford 1993.

Sharpe, M.J.

[1] Local times and singularities of continuous local martingales. Sém. Prob. XiV, Lecture
Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 76—
101.

[2] Some transformation of diffusions by time reversal. Ann. Prob. 8 (1980) 6, 1157-1162.

[3] General theory of Markov processes. Academic Press, New York 1989.

Shepp, L.A.
[1] Radon-Nikodym derivatives of Gaussian measures. Ann. Math. Stat. 37 (1966) 321-
354,

[2] On the integral of the absolute value of the pinned Wiener process. Ann. Prob. 10
(1982) 234-239.

[3] The joint density of the maximum and its location for a Wiener process with drift.
J. Appl. Prob. 16 (1979) 423-427.

Sheppard, P.

[1] On the Ray-Knight Markov properties of local times. J. London Math. Soc. 31 (1985)
377-384.

Shi, Z.

[1] Lim inf behaviours of the windings and Lévy’s stochastic areas of planar Brownian
motion. Sém. Prob. XXVIII, Lecture Notes in Mathematics, vol. 1583. Springer, Berlin
Heidelberg New York 1994, pp. 122-137.

Shiga, T., and Watanabe, S.
[1] Bessel diffusion as a one-parameter family of diffusion processes. Z.W. 27 (1973)
37-46.



Bibliography 583

Skorokhod, A.
[1]1 Stochastic equation for diffusion processes in a bounded region, I and II. Theor. Prob.
Appl. 6 (1961) 264-274; 7 (1962) 3-23.

Sy & A2V

[2] Studies in the theory of random processes. Addison-Wesley, Reading, Mass. 1965.
[3]1 Ona generalization of a stochastic integral. Theor. Prob. and Appl. 20 (1975) 219-233.

Simon, B,
1] Functional integration and quantum physics. Academic Press, New York 1979.

Smith, L., and Diaconis, P.

[1] Honest Bernoulli excursions. J. Appl. Prob. 25 (3) (1988) 464477.

Song, S.Q., and Yor, M.

(11 Inégalités pour les processus self-similaires arretés a un temps quelconque. Sém. Prob.
XXI. Lecture Notes in Mathematics, vol. 1247. Springer, Berlin Heidelberg New York
1987, pp. 230--245.

Spitzer, F.

[1] Some theorems conceming 2-dimensional Brownian motion. Trans. Amer. Math. Soc.
87 (1958) 187-197.

[2] Recurrent random walk and logarithmic potential. Proc. Fourth Berkeley Symp. on
Math. Stat. and Prob. II. University of California 1961, pp. 515--534,

[31 Electrostatic capacity in heat flow and Brownian motion. Z.W. 3 (1964) 110-121.
[These papers are reprinted in: Durrett, R. and Kesten, H. (eds.), Random walks,
Brownian motion and interacting particle systems. Birkhduser 1992.]

Stoll, A.
[11 Self-repellent random walks and polymer measures in two dimensions. Doctoral dis-
sertation. Bochum, 1985,

Strassen, V.
[11 An invariance principle for the law of the iterated logarithm, Z.W. 3 (1964) 211-226.

Stricker, C.,

{11 Quasi-martingales, martingales locales, semi-martingales et filtrations. Z.W. 39 (1977)
55-63.

[2] Sur un théoréme de H.J. Engelbert et J. Hess. Stochastics 6 (1981) 73-77.

Stricker, C., and Yor, M.
[1] Calcul stochastique dépendant d’un parametre. Z. W. 45 (1978) 109-133.

Stroock, D.W.

[1] On the growth of stochastic integrals. Z.W. 18 (1971) 340-344.

{2] Topics in stochastic differential equations. Tata Institute, Bombay 1982.

[3]1 Some applications of stochastic calculus to partial differential equations, Ecole d’Eté
de Probabilités de Saint-Flour X1, Lecture Notes in Mathematics, vol. 976. Springer,
Berlin Heidelberg New York 1983, pp. 268-382.

[4] An introduction to the theory of large deviations. (Universitext). Springer, Berlin
Heidelberg New York 1984.

[5] Probability Theory. An analytic view. Cambridge Univ. Press 1994.

Stroock, D.W., and Varadhan, S.R.S.
{11 Multidimensional diffusion processes. Springer, Berlin Heidelberg New York 1979.

Stroock, D.W., and Yor, M,
{11 On extremal solutions of martingale problems. Ann. Sci. Ecole Norm. Sup. 13 (1980)
95-164.



584 Bibliography

[2] Some remarkable martingales. Sém. Prob. XV. Lecture Notes in Mathematics, vol.
850. Springer, Berlin Heidelberg New York 1981, pp. 590-603.

Sussman, H.J.

[11 An interpretation of stochastic differential equations as ordinary differential equations
which depend on the sample point. Bull. Amer. Math. Soc. 83 (1977) 296-298.

[2] On the gap between deterministic and stochastic ordinary differential equations. Ann.
Prob. 6 (1978) 19-41.

Sznitman, A.S., and Varadhan, S.R.S.
[l] A multidimensional process involving local time. Proc.

Takaoka, K.

f1] On the martingales obtained by an extension due to Saisho, Tanemura and Yor of
Pitman’s theorem. Sém. Prob. XXXI, Lect. Notes in Mathematics 1655. Springer,
Berlin Heidelberg New York 1997, pp. 256-265.

Tanaka, H.

f11 Note on continuous additive functionals of the 1-dimensional Brownian path. Z.W. 1
(1963) 251-257.

[2] Time reversal of random walks in one dimension. Tokyo J. Math. 12 (1989) 159-174.

[3]1 Time reversal of random walks in R?. Tokyo J. Math. 13 (1990) 375-389.

[4] Diffusion processes in random environments. Proc. ICM (S.D. Chatterji, ed.). Birk-
hauser, Basel 1995, pp. 1047-1054.

Taylor, S.J.
[1] The a-dimensional measure of the graph and the set of zeros of a Brownian path.
Proc. Cambridge Phil. Soc. 51 (1955) 265-274.

Toby, E., and Wemner, W.
f1] On windings of multidimensional reflected Brownian motion. Stoch. and Stoch. Re-
ports, vol. 55 (1995), pp. 315-327.

Trotter, H.F,
[11 A property of Brownian motion paths. Ill. J. Math. 2 (1958) 425-433,

™

h. Re

——

_F. 71 (1986) 553-579.

Truman, A.
[1] Classical mechanics, the diffusion heat equation and Schrodinger equation. J. Math.
Phys. 18 (1977) 2308-2315.

Truman, A., and Williams, D.

[11 A generalized Arcsine law and Nelson’s mechanics of one-dimensional time-homo-
geneous diffusions. In: M. Pinsky (ed.) Diffusion processes and related problems in
Analysis 1. Birkhduser, Boston 1990, pp. 117-135.

Tsirel’son, B.

[11 An example of a stochastic differential equation having no strong solution. Theor.
Prob. Appl. 20 (1975) 427-430.

(2] Triple points: from non-brownian filtrations to harmonic measures. Geom. Funct. Anal.
(GAFA), vol. 7 (1997) 1071-1118.

Uppman, A.
[11 Sur le flot d’une équation différentielle stochastique. Sém. Prob. XVI. Lecture Notes
in Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982, pp. 268-284.



Bibliography 585

Vallois, P.

[1] Le probleme de Skorokhod sur R: une approche avec le temps local. Sém. Prob. X VII.
Lecture Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York 1983,
pp. 227-239.

[2] Sur la loi du maximum et du temps local d’une martingale continue uniformément
intégrable. Proc. London Math. Soc. 3 (69) (1994) 399-427.

[3] Surla loi conjointe du maximum et de I’inverse du temps local du mouvement brown-
ien: application & un théoréeme de Knight. Stochastics and Stochastics Reports 35
(1991) 175-186.

[4] Une extension des théoremes de Ray-Knight sur les temps locaux browniens. Prob.
Th. Rel. Ficlds 88 (1991) 443-482.

[5] Diffusion arrétée au premier instant ou I’amplitude atteint un niveau donné. Stoch.
and Stoch. Reports 43 (1993) 93-115.

[6] Decomposing the Brownian path via the range process. Stoch. Proc. and their Appl.
55 (1995) 211-226.

Van den Berg, M., and Lewis, J.T.
fi] Brownian motion on a hypersurface. Bull. London Math. Soc. 17 (1985) 144-150.

Van Schuppen, J.H., and Wong, E.
[1] Transformations of local martingales under a change of law. Ann. Prob. 2 (1974)
879-888.

Ventsel, A.D.
[1] Rough limit theorems on large deviations for Markov processes 1 and 2. Theory Prob.
Appl. 21 (1976) 227-242 and 499-512.

Ventsel, A.D., and Freidlin, M.

ft] On small random pertubations of dynamical systems. Russ. Math. Surv. 25 (1970)
1-55.

[2] Some problems concerning stability under small random perturbations. Theor. Prob.
Appl. 17 (1972) 269-283.

Vershik, A.

f1} Decreasing sequence of measurable partitions and their applications. Soviet Math,
Dokl. 11, 4 (1970) 1007-1011.

[2] The theory of decreasing sequences of measurable partitions. Saint-Petersburg Math. J.
6 (1994) 705-761.

Vervaat, W.
[1] A relation between Brownian bridge and Brownian excursion. Ann. Prob. 7 (1) (1979)
141-149.

Volkonski, V.A,
[11 Random time changes in strong Markov processes. Theor. Prob. Appl. 3 (1958) 310-
326.

von Weizsicker, H
1 Exchangmg the order of taking suprema and countable intersection of a—algebras
Ann. LH.P. 19 (1983) 91-100.

Vuolle-Apiala, J., and Graversen, S.E.
[1] Duality theory for self-similar processes. Ann. LH.P. 23, 4 (1989) 323-332.

Walsh, J.B.
nnnnn ~f rnnifrarmal warnlag VT T ands
1. LeChi

{}.] A plUFUlLJ O1 \.rUlllUl.lllal lllal uusalca CCTUT

Qary Denls = H
AL, 1 LUV | >
vol. 581. Springer, Berlin Heidelberg New York 1977, pp. 490-492.
[2] Excursions and local time. Astérisque 52-53, Temps locaux (1978) 159-192.



586 Bibliography

[3] A diffusion with a discontinuous local time. Astérisque 52-53, Temps locaux (1978)
37-45.

[41 The local time of the Brownian sheet. Astérisque 52-53, Temps locaux (1978) 47-62.

[51 Downcrossings and the Markov property of local time. Astérisque 52-53, Temps
locaux (1978) 89-116.

[6] Propagation of singularities in the Brownian sheet. Ann. Prob. 10 (1982) 279-288.

[7] Stochastic integration with respect to local time. Seminar on Stochastic Processes
1989. Birkhduser 1983, pp. 237-302.

[8] Some remarks on A(?, B;). Sém. Prob. XXVII, Lect. Notes in Mathematics 1557,

Qv\r;nn-nr Ber!ih Heidalhere Ne"x'r Yaork 100 nn 173174
, n N » PP

LRV diviuavvi g LVULN a7 [ W AN

Wang, A.T.

[1] Quadratic variation of functionals of Brownian motion. Ann. Prob. 5 (1977) 756-769.

[2] Generalized Ito’s formula and additive functionals of the Brownian path. ZW. 41
(1977) 153-159.

Warren, J.

[1] Branching processes, the Ray-Knight theorem and sticky Brownian motion. Sém. Prob.
XXXI, Lect. Notes in Mathematics 1655. Springer, Berlin Heidelberg New York 1997,
pp. 1-15.

[2] On the joining of sticky Brownian motion. Sém. Prob. XXXIII, Lect. Notes in Math-
ematics. Springer, Berlin Heidelberg New York 1999.

Warren, J., and Yor, M.

[11 Skew-products involving Bessel and Jacobi processes. Sém. Prob. XXXIV, Lect. Notes
in Mathematics. Springer, Berlin Heidelberg New York 2000.

[2] Identifying the Brownian burglar. Sém. Prob. XXXIV, Lect. Notes in Mathematics.
Springer, Berlin Heidelberg New York 2000.

[3] The Brownian burglar; conditioning Brownian motion by its local time process. Sém.
Prob. XXXII, Lect. Notes in Mathematics 1686. Springer, Berlin Heidelberg New
York 1998, pp. 328-342.

Watanabe, S.

[1] On time-inversion of one-dimensional diffusion processes. Z.W. 31 (1975) 115-124.

[2] A limit theorem for sums of i.i.d. random variables with slowly varying tail probability.
P.R. Krishnaia (ed.) Multivariate analysis, vol. 5. North-Holland, Amsterdam 1980,
pp. 249-261.

[3] Generalized Arcsine laws for one-dimensional diffusion processes and random walks.
In: M. Cranston and M. Pinsky (eds.) Proceedings of Symposia in pure mathematics,
vol. 57. Amer. Math. Soc., Providence, Rhode Island (1995) 157-172.

[4] Bilateral Bessel diffusion processes with drift and time inversion. To appear (1998).

[5] Asymptotic windings of Brownian motion paths on Riemann surfaces. Preprint (1998).

[6] The existence of a multiple spider martingale in the natural filtration of a certain
diffusion in the plane. Sém. Prob. XXXIII, Lect. Notes in Mathematics. Springer,
Berlin Heidelberg New York 1999.

Weber, M.

[1] Analyse infinitésimale de fonctions aléatoires. Ecole d’é¢t¢ de Saint-Flour XI-1981.
Lecture Notes in Mathematics, vol. 976. Springer, Berlin Heidelberg New York 1983,
pp. 383-465.

Weinryb, S.

[1] Etude d’une équation différentielle stochastique avec temps local. Sém. Prob. XVIL
Lecture Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York 1983,
pp. 72-77.



Bibliography 587

Weinryb, S., and Yor, M.

[1] Le mouvement brownien de Lévy indexé par R’ comme limite centrale de temps
locaux d’intersection. Sém. Prob. XXII. Lecture Notes in Mathematics, vol. 1321,
Springer, Berlin Heidelberg New York 1988, pp. 225-248.

Wendel, J.W.

[11 Hitting spheres with Brownian motion. Ann. Prob. 8 (1980) 164-169.

[2] An independence property of Brownian motion with drift. Ann. Prob. 8 (1980) 600—
601.

Widder, D.V.
[1] The Heat Equation. Academic Press 1975.

Wiener, N,
(1] Differential space. J. Math. Phys. 2 (1923) 132-174,
[2] The homogencous chaos. Amer. J. Math. 60 (1930) 897-936.

Williams, D.
[1]1 Markov properties of Brownian local time. Bull. Amer. Math. Soc. 76 (1969) 1035-
1036.

[2] Decomposing the Brownian path. Bull. Amer. Math. Soc. 76 (1970) 871-873.

{31 Path decomposition and continuity of local time for one dimensional diffusions I.
Proc. London Math. Soc. (3) 28 (1974) 738-768.

[4] A simple geometric proof of Spitzer's winding number formula for 2-dimensional
Brownian motion. University College, Swansea (1974).

[5] On a stopped Brownian motion formula of H M. Taylor. Sém. Prob. X. Lecture Notes
in Mathematics, vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 235-239.

[6] On Leévy’s downcrossing theorem. Z,.W. 40 (1977) 157-158,

[71 Diffusions, Markov processes and Martingales, vol. 1: Foundations. Wile ey and Sons

RS AT iie VARIAVY PIUVLIOWS Gl faindy VLS (3. PY

New York 1979.

[8] Conditional excursion theory. Sém. Prob. XIII. Lecture Notes in Mathematics, vol.
721. Springer, Berlin Heidelberg New York 1979, pp. 490-494.

[9] Brownian motion and the Riemann zeta function. In: D. Welsh and G. Grimmett
(eds.) Disorder in Physical Systems. Festschrift for J. Hammersley, Oxford 1990, pp.
361-372.

{10] Probability with Martingales. Cambridge Univ. Press 1990.

Wong, E.

[11 The construction of a class of stationary Markoff processes. In: Stoch. Processes in
Math. Physics and Engineering. Proc. of Symposia in Applied Maths., vol. XVI. Am.
Math. Soc. 1964, pp. 264-276.

Wong, E., and Zakai, M.
[1] The oscillation of stochastic integrals. Z.W. 4 (1965) 103~112.

Yamada, T.

[17 On a comparison thecorem for solutions of stochastic differential equations. J. Math.
Tokyo Univ. 13 (1973) 497-512.

f2] On some representations concerning the stochastic integrals. Proba. and Math. Statls-
tics 4, 2 (1984) 153-166.

31 On the fractional derivative of Brownian local times. J. Math. Kyoto Univ. 21, 1
(1985) 49-58.

[4] On some limit theorems for occupation times of one-dimensional Brownian motion
and its continuous additive functionals locally of zero energy. J. Math. Kyoto Univ.
26, 2 (1986) 309-222.



588  Bibliography

[5] Representations of continuous additive functionals of zero energy via convolution
type transforms of Brownian local time and the Radon transform. Stochastics and
Stochastics Repons 46 1 (1994) 1 15

N. Ikeda, S.

Watanabe M. Fukushima, H. Kumta (eds) t3’s stochastic calculus and Probability

theory. Springer, Berlin Heidelberg New York 1996, pp. 413-422,

Yamada, T., and Ogura, Y,
[1] On the strong comparison theorem for the solutions of stochastic differential equation.
Z.W. 56 (1981) 3-19.

Yamada, T., and Watanabe, S.
[1] On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto
Univ. 11 (1971) 155-167.

Yamazaki, Y.
[11 On limit theorems related to a class of “winding-type™ additive functionals of complex
Brownian motion. J. Math. Kyoto Univ. 32 (4) (1992) 809-84t.

Yan, JA.

[1] A propos de I'intégrabilit¢ uniforme des martingales exponenticlles. Sém. Prob. XVL
Lecture Notes m Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982,
pp. 338-347.

[2] Sur un théoreme de Kazamaki-Sekiguchi. Sém. Prob. XVII. Lecture Notes in Mathe-
matics vol. 986. Springer, Berlin Heidelberg New York 1983, pp. 121-122,

Yan, J.A., and Yoeurp, C.

[1] Représentation des martingales comme intégrales stochastiques de processus option-
nels. Sém. Prob. X. Lecture Notes in Mathematics, vol. 511. Springer, Berlin Heidel-
berg New York 1976, pp. 422-431.

p——
[«
nd
¥
g.
..
=
<
=
£
G
o
j=}
="
o
=
-
é
=
[ d
g
§
. B
.
E\
[¢]
w
C
S
[¢']
[ ld
=
d
R
@
[=N
8
=,
[¢]
m
=)
Zz

Yoeurp, C,

[11 Compléments sur les temps tocaux et les quasi-martingales. Astérisque 5253, Temps
locaux (1978) 197-218.

[2] Sur la dérivation des intégrales stochastiques. Sém. Prob. XIV, Lecture Nofes in
Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 249-253.

[3] Contribution au calcul stochastique. Thése de doctorat d’état, Universite de Paris VI,
1982,

[4] Théoreme de Girsanov généralisé et grossissement de filtrations. In: Grossissement
de filtrations: exemples et applications. Lecture Notes in Mathematics, vol. 1118.
Springer, Berlin Heidelberg New York 1985, pp. 172-196.

Yor, M. (ed.) )
[1] Exponential functionals and principal values related to Brownian motion, Bib. Revista
Mat. Ibero-Americana, 1997.

Yor, M.
r Qi 1a sealas stanhactinnac nnﬁnnnn"ne una anite remarananle rlp ﬁ\ﬂnlllf‘ﬁ
L] DUI IUD llltvsl QAIVO OIURIGOLIYULD UPLIVIIIIVIIVD Wi O L WLREGL M wiAs R

et un 1 bl
in Mathematics, vol. 511. Springer, Berlin

U)

exponenticiles. Sém. Prob. X. Lecture Note
Heidelberg New York 1976, pp. 481-500.
[2] Sur quelques approximations d'intégrales stochastiques. Sém. Prob. XI. Lecture Notes
in Mathematics, vol. 528. Springer, Berlin Heidelberg New York 1977, pp. 518-528.
[3] Formule de Cauchy relative a certains lacets browniens. Bull. Soc. Math. France 105
(1977) 3-31.
[4] Sur la continuité des temps locaux associ€s a certaincs semi-martinga

S
52-53, Temps locaux (1978) 23-36.



(3]
(6]

[7]

(8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

Bibliography 589

Un exemple de processus qui n’est pas une semi-martingale. Astérisque 52-53 (1978)
219221,

Sous-espaces denses dans L' et H' et représentation des martingales. Sém. Prob. XIL
Lecture Notes in Mathematics, vol. 649. Springer, Beriin Heidelberg New York 1978,
pp. 264-309.

Les filtrations de certaines martingales du mouvement brownien dans R”. Sém. Prob.
XIII. Lecture Notes in Mathematics, vol. 721. Springer, Berlin Heidelberg New York
1979, pp. 427440.

Sur le balayage des semi-martingales continues. Sém. Prob. XIII. Lecture Notes in
Mathematics, vol. 721, Springer, Berlin Heidelberg New York 1979, pp. 453—471.
Sur I’étude des martingales continues extrémales. Stochastics 2 (1979) 191-196.

Loi de I’indice du lacet brownien et distribution de Hartman-Watson. Z.W. 53 (1980)
71-95.

Remarques sur une formule de P. Lévy. Sém. Prob. XIV. Lecture Notes in Mathe-
matics, vol. 784. Springer, Berlin heidelberg New York 1980, pp. 343-346.

Sur un processus associé aux temps locaux browniens. Ann. Sci. Univ. Clermont-
Ferrand 11, 20 (1982) 140-148.

Sur ia transformée de Hilbert des temps locaux browniens et une extension de la
formule d’Ito. Sém. Prob. XVI. Lecture Notes in Mathematics, vol. 920. Springer,
Berlin Heidelberg New York 1982, pp. 238-247.

Le drap brownien comme limite en loi de temps locaux linéaires. Sém. Prob. XVII.
Lecture Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York 1983,
pp. 89-105.

Une inégalité optimale pour le mouvement brownien arreté a un temps quelconque.
C.R. Acad. Sci. Paris, Ser. A 296 (1983) 407—409.

A propos de I’inverse du mouvement brownien dans R" (n > 3). Ann. LH.P. 21, 1
(1985) 27-38.

Renormalisation et convergence en loi pour les temps locaux d’intersection du mou-
vement brownien dans R*. Sém. Prob. XIX. Lecture Notes in Mathematics, vol. 1123.
Springer, Berlin Heidelberg New York 1985, pp. 350-365.

Sur la représentation comme intégrale stochastique des temps locaux du mouvement
brownien dans R". Sém. Prob. XX. Lecture Notes in Mathematics, vol. 1204. Springer,
Berlin Heidelberg New York 1986, pp. 543-552.

De nouveaux résultats sur I’équation de Tsirel’son. C.R. Acad. Sci. Paris, Série I 309,
(1989) 511-514.

Remarques sur certaines constructions des mouvements browniens fractionnaires.
Sém. Prob. XXII Lecture Notes in Mathematics, vol. 1321. Springer, Berlin Hei-
delberg New York 1988, pp. 217-224.

On stochastic areas and averages of planar Brownian motion. J. Phys. A. Math. Gen.
22 (1989) 3049-3057.

Etude asymptotique des nombres de tours de plusieurs mouvements browniens com-
plexes corrélés. In: Durrett, R. and Kesten, H. (eds.), Random walks, Brownian motion
and interacting particle systems. Birkhduser, Basel 1992, pp. 441-455.

Some aspects of Brownian motion. Part 1: Some special functionals. Lectures in Math-
ematics ETH Ziirich. Birkhduser 1992. Part II: Some recent martingale problems. Lect.
Notes in Maths. ETH Ziirich. Birkhiuser 1997.

The distribution of Brownian quantiles, J. Appl. Prob, 32 (1995) 405-416.

Random Brownian scaling and some absolute continuity relationships. In: E. Bolt-
hausen, M. Dozzi, F. Russo (eds.) Progress in probability, vol. 36. Birkh&user (1995)
243-252.

Inégalités de martingales continues arrétées a un temps quelconque, I, II. In: Grossisse-
ments de filtrations: exemples et applications. Lect. Notes in Mathematics 1118.
Springer, Berlin Heidelberg New York 1985, pp. 110-171.



590  Bibliography

[27] Sur certaines fonctionnelles exponentielles du mouvement brownien reei. J. Appl.
Prob. 29 (1992) 202-208.

[28] On some exponential functionals of Brownian motion. Adv. App. Prob. 24 (1992)
509-531.

Zaremba, P.

[1] Skorokhod problem-elementary proof of the Azéma-Yor formula. Prob. Math. Stat. 6
(1985) 11-17.

Zvonkin, A K.
[1] A transformation of the phase space of a process that removes the drift. Math. USSR
Sbornik 2 (1974) 129-149.



Index of Notation

Ay AT

a.s., a.e.

B
BM

BM¢

BM“(x)

BB

BES?, BES?(x), BESY
BESQ’, BESQ"

BES! (x, y)
BESQ](x, y)

—m omom e w om e

BMO, BMO,

CAF
Cont. semi. mart.
Ck(E)

Co(E)

Ccr4

DDS
P

&y

b&

g*

E(M), 57, EXMM)
e(f, g), ex(o, b)

Space of finite variation processes 119

Almost sure, almost surely, almost everywhere

Brownian sheet 39
Brownian motion 19

d-dimensional Brownian motion 20

d-dimensional Brownian motion started at x 20

Brownian Bridge 37

Bessel processes of dimension §, of index v 445

Squares of Bessel processes 440

Bessel Bridge 463

Square of Bessel Bridge 463

Space of martingaies with bounded mean

oscillation 75

Continuous additive functional 401
Continuous semimartingale 127

Space of continuous functions with compact

support on the space E

Space of continuous functions with limit 0

at infinity 88, 281

Space of differentiable functions on a product

space

Dambis-Dubins-Schwarz

o-field of Borel sets and space of Borel functions

289

181

Space of positive Borel functions
Space of bounded Borel functions

Space of universally measurable functions
Exponential martingales

148, 149

Stochastic differential equations 366

P L 2 110
e vdaraunon o, iivy

o-field of the stopping time T 44

17



592 Index of Notation

gl‘a gl‘(x)

gl ((D), dl‘ (0))
HZ

K-M,K-X
fy KedX,

LA(M), £2(M),
leoc(M)

L7(X)

LlogL

loc. mart.

log, = loglog

M/
M*, M} = sup, |M;|

N,Nf,N,M,mN

L
ODE.
ou

5
q;(x,y)

Right-continuous and complete filtration
generated by X 98

Completion of .7 with respect tov 93

Density of centered Gaussian variables
with variance f 17
Last zero before t, first zero after ¢+ 239

Space of L?-bounded martingales 129
Space of L2-bounded continuous martingales
Space of L2-bounded continuous martingales
vanishing at 0 129

59

o -field of invariant events 423

Stochastic integrals 138, 140

Spaces of processes 137

140

Family of local times of X 222
Class of martingales 58

Local martingale 123

Iterated logarithm 56

Martingale additive functional 149, 284
Bilateral supremum 54

Kernel notation 80

Optional o-field 172
Ordinary differential equation 382
Ornstein-Uhlenbeck process 37

Predictable o-field 171

Predictable representation property 209
Semi-group 80

Law of X attime 7 104

Density of Bessel semigroup 446

Law of Bessel bridge 463

Law of Bessel process 445

Poisson point process 474

Law of Square of Bessel process 440
Law of Square of Bessel Bridge 463
Density of Square of Bessel semigroup 441

129



t.f.

U, Us

e, 25

W, W¢

x ()

9!7 BT
o(X,,teT)

Index of Notation
Life-time of an excursion 480
Random variable 2

Stochastic differential equation 366
Supremum process of BM: S; = sup,_, B;, 54

Transition function 80

Spaces of excursions 480
o -fieids of spaces of excursions 480

Wiener measure 35
Wiener space 35

Space of paths 500
Scaled process 535

Set of zeros of BM 109

Shift operators 36
o-field generated by the random variables
{X;,teT} 1

Cemetery 84
Modulus of subdivision A 4

Martingale problem 296

Measure associated with the additive
functional A 410

Brackets 120, 124, 125, 128

Equality in law 10

Convergence in the sense of finite distributions
Convergence in probability 10
Characteristic function of the set A 1

Absolute continuity on .% 325

593






Index of Terms

Absorbing point 84, 97
Action functional 342
Adapted process 42
Additive functional 401
continuous — 401
strong — 402
integrable — 410
o-integrable — 410

signed — 419
Arcsine law
First — 112
Second — 242
Area
Stochastic — 196, 396

Associativity of stochastic integrals 139

Asymptotic o-field 99
Atom 76
Augmentation

usual — of a filtration 45

Bachelier’s equation 268

Backward

equation 282

integral 144
Bemstein’s inequality 153
Bessel

bridges 463

processes 445

squared - - process 440

Bismut description of t6’s measure
502

Blumenthal zero one law 95

BMO-martingales 75

Bougerol’s identity 388

Boundary
entrance — 395
natural — 305
Bracket
of two continuous local martingales
125

of two semimartingales 128

Bridge
Brownian — 37, 154, 384
Bessel — 463

Squared Bessel — 463

Brownian — as conditioned Brownian

motion 41

pseudo-Brownian — 248
Brownian

motion 19

d-dimensional — 20

motion, standard linear — 19

Bridge 37, 154, 384

fiitrations

motion with drift 73, 352

sheet 39

(# )~ - motion 97

motion, skew — 87, 292
excursion 480
motion, reflected - 86, 238

motion, killed - 87

meander 493

motion on the sphere 530
Burkholder-Davis-Gundy inequalities

Cadlag 34

Cameron-Martin

formula 371, 445

space 339

Canonical

process 34

realization 92

Cauchy

rv. 13

process 116

Cemetery 84
Chacon-Ormstein theorem 548
Chain rule 6

Chaos, Wiener 201, 207
Chapman-Kolmogorov equation 80

160

Characteristic measure of a Poisson point

process 475



596 Index of Terms

Chemov inequality 292
Chung-Jacobi-Riemann identity 509
Clark’s formula 341
Comparison theorems 393
Conformal
local martingale 189
invariance of Brownian motion 190
Continuous process 17
Convergence
weak — 10
in distribution 516
in the sense of finite distributions 516
in law 10
Cooptional time 313
Covariance 294
Cramer transform 343

Dambis 181
Debut 46
Deviations of Brownian motion, large —
345
Differentiability of BM, non — 32
Diffusion
process 294
coefficient 294
Discrete
PP 471
o-discrete P.P. 471
Distribution, convergence in — 516
Dominated process 162
Donsker’s theorem 518
Doob’s inequality 54
Downcrossings 60
Doss-Siissmann method 382
Drift, Brownian motion with -
coefficient 294
Dubins-Schwarz 181
Dubins inequality 66
Dynkin’s operator 310

73, 352

Elastic BM 408

Energy 527

Enlargement
of a probability space 182
of a filtration 363

Entrance

boundary 305

law 494

Ergodic theorem 427, 548
for BM 548
Excessive

measure 409
function 423

Excursions

intervals 109

process 480

normalized — 486
Explosions, criterion for — 383
Exponential

formulas 476

local martingales 148

inequality 153

hoiding point 97
Extension

Kolmogorov —
Extremal

martingales 213

probability measures 210

process 406

—~ theorem 34

Fefferman’s inequality 76
Feller

process 90

semi-groups 88

property, strong 423
Feynman-Kac formula 358
Filtered space 41
Filtering 175, 207
Filtration 41

Brownian -

complete — 45

natural — 42

right-continuous — 42

usual augmentation of a -~ 45
Fine topology 98
Finite dimensional distributions 18

of BM 23

convergence in the sense of — 516
Fokker-Planck equation 282
Forward equation 282
Fractional Brownian motion 38
Fubini’s theorem for stochastic integrals

175

Galmarino’s test 47
Garsia-Neveu lemma 170
Gaussian

martingales 133, 186
random variable 11
process 36

measure 16

space 12

Markov process 86
Gebelein’s inequality 205
Generator

infinitesimal — 281
extended infinitesimal — 285



Girsanov

theorem 327
transformation 329
pair 329

Good A inequality 164
Gronwall’s lemma 543

Hardy’s inequality 75, 155
Heat process 20
Hermite polynomials 151
Hélder properties

of BM 28, 30

of semimarts. 187

of local times 237
Hoiding

point 97

exponential — time 97
Homogeneous

Markov process 81

transition function 80
Hypercontractivity 206

Image of a Markov process 87
Independent, increments 96
Indistinguishabie 19
Index

of a stable law 15

of a Bessel process 440
Inequality

Burkholder-Davis-Gundy - 160

exponential — 153

Chemov — 292

Dubins — 66

Bemnstein - 153

Fefferman - 76

Gebelein — 205

Doob’s — 54
Good A — 164
Hardy’s — 155

Kunita-Watanabe — 127

maximal — 53
Infinitely divisible 115
Infinitesimal generator 281

extended — 285
Initial distribution 81
Innovation process 175
Instantaneously reflecting 307
Integral, stochastic — 138, 140, 141
Integration by parts formula 146
Invariant

measure 409

function 423

o-field 423

events 423

Index of Terms 597

Irregular points 98
Iterated logarithm, law of the 56
It6
integral 138
formula 147
Tanaka formula 223
processes 298
measure of excursions 482

Kailath-Segal identity 159
Kazamaki’s criterion 331
Kemel 79
Killed 100

Brownian motion 87
Knight’s

theorem 183

asymptotic version of — 524

identity 504
Koimogorov’s continuity criterion 19
Kunita-Watanabe inequality 127

Lamperti’s relation 452
Langevin’s equation 378
Large numbers for local martingales
law of - 186
Large deviations of Brownian motion 345
Last exit times 408

Law
of a process 34
convergence in — 10

uniqueness in — 367
Lebesgue theorem for stochastic integrals
142
Levy
characterization theorem 150, 158
measure 115
Khintchine formula 115
process 96
LlogL class 58
Limit-quotient theorem 427
Linear continuous Markov processes 300
Linear stochastic equation 377
Localization 123
Local extrema of BM 113
Local martingales 123
exponential — 148

pure — 212

standard — 213

conformal — 189
Local time

of a continuous semimartingale 222
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Monotone class theorem 2

Natural boundary 305
Newtonian potential 100

Normalized excursion 486

SAFLiaieiadwns UAWRLSAY
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Quasi-left continuity 101
Quasi-martingales 134
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Reproducing kernel Hilbert space 21, 39,
339
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probability 80
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Weak solution to a stochastic differential
equation 367
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path decomposition theorem 318
description of It6’s measure 499
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