IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002 803

Robust Kalman Filters for Linear Time-Varying
Systems With Stochastic Parametric Uncertainties

Fan Wang Member, IEEEand Venkataramanan Balakrishnafember, IEEE

Abstract—We present a robust recursive Kalman filtering wherek = 0,1,2,...,z(k) € R" is the statey;(k) € R™
algorithm that addresses estimation problems that arise in linear s the input noisey(k) € R"» is the measured output, and
time-varying systems with stochastic parametric uncertainties. um(k) € R™ is the measurement noise, with and

:I'h.e filter has a one-step predictor-corrector structure and min- being ind dent whit . d E i 1
imizes an upper bound of the mean square estimation error at P€!Ng INEPendent white noise random processes. £quation @)
each step, with the minimization reduced to a convex optimization Models systems that are affected by both actuator and sensor
problem based on linear matrix inequalities. The algorithm is noises {; and u,,, respectively). A fundamental problem
shown to converge when the system is mean square stable andassociated with such systems is that of state estimation, i.e., the
the state space matrices are time invariant. A numerical example otima| estimation of the state(k) from the noisy measure-
consisting of equalizer design for a communication channel N . . .
demonstrates that our algorithm offers considerable improvement ments{y(z), 0=0,1,....k} .the gorrespondlng sf[ate_ estimate
in performance when compared with conventional Kalman is denotedi(k | k). Such estimation problems arise in several
filtering techniques. applications in signal processing, communications, and control,
Index Terms—Linear matrix inequality, linear time-varying sys- €€, for example, [2], [3], and the references therein.
tems, robust Kalman filters, stochastic parametric uncertainty. Recursive minimum mean-square error (MMSE) estimators
form an important class of optimal state estimators for system
(1) and have many applications in signal processing, communi-
cations, and automatic control [3]-[7]. MMSE estimators min-
HE NOTATIONS in this paper are fairly standadd] - | de- imize the expected value of the square of the estimation error,
notes the expectation of a random variable (matrix)( Var i.e., E[(x(k) — 2(k | k))* (z(k) — 2(k | k))], at eachk. When
denotes the variance of a random variable (vec®r): 0(P > the random processes andu,,, are Gaussian, it turns out that
0) means thaf is a symmetric and positive definite (positivethe MMSE estimator is a linear filter whose coefficients can be
semi-definite) matrixA 2 B meansthatl > B andA # B. determined by solving a Riccati difference equation. (This is the
Tr(-) is the trace of a matrixCo{ - } denotes a convex hull. celebrated Kalman filter.) When andu,,, are not Gaussian, the
diag(-) defines a (block) diagonal matri{.- || is the matrix Kalman filter yields the best linear MMSE estimator. An impor-
norm, that is, the largest singular value of a mafiridenotes the tant (and desirable) property of the Kalman filtering algorithm
Moore—Penrose pseudo inverse of a mafsy! and(+*)T are is that it converges when system (1) is time invariant and de-
used in some places to represent tBel) and(3,1) terms of tectable as well as stabilizable [8].
a symmetric matrix when th@, 2) and(1, 3) terms are given.  The Kalman filter consists of the following two patts:
#(m | n) is the estimation of:(m) with observations up totime 1) One-step prediction update:
n.Ifm > n, Z(m|n)isknown as apredicted estimationatf=
n, #(m | n) is known as a filtered estimation. For discrete-time ~ 7(k) = A(k — Dz y(k — 1)
systems considered in the paper, the state matissaid to be + Kk —1)(Ck—Dazpk—1)—ylk—1))
stable if all the eigenvalues dff are strictly inside the unit circle. (k| k—1) =z (k). (2a)
Adiscrete-time system(k + 1) = A(k)z(k), whereA(k) is a
random process, is said to bean square stableee [1]) iffor ~ 2) Filtered estimation update:
I i . T
altalcondions 0wl Eb(H 11 0.4y -5k k2 FOYC3H14 1) i), @

I. INTRODUCTION

Consider the linear system When the matricesA(k), B(k),C(k), andD(k) in (1) can
be measured exactly, computing the Kalman gdif{g — 1)

z(k+1) = A(k)z(k) + B(k)u; (k) and F(k) in (2) is equivalent to a quadratic optimization

y(k) = C(k)x(k) + D(k)um (k) (1) problem: one that can be solved analytically [8]. However,
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TABLE |
COMPARISON OFSEVERAL ESTIMATION METHODS
[ Inputsignal | Uncertainty | Design criterion | Filter structure

Robust Kalman white noise white noise MMSE recursive

Kalman ([8}) white noise — MMSE recursive
Robust H, ([15]) white noise norm bounded H, LTI
Robust Ho, ([14]) £y signal norm bounded Ho, LTI
Stochastic Hy ([17]) mean encrgy white noise stochastic H, LTI

bounded
Game theoretic 2-norm bounded | norm bounded finite horizon recursive

estimator ({12]) quadratic objective

must be designed with graceful performance degradation in thaVe will demonstrate through an example that the robust
presence of modeling errors. This issue of “robust estimatioKalman filter can provide much improved transient perfor-
has been addressed in a number of recent publications; seance when compared with the conventional Kalman filter.
for example, [12], [14]-[16], and the references therein. Byerhaps more important, for systems with stochastic parametric
assuming the input signal has limited total energy/¢enorm), uncertainties, the performance of the conventional Kalman
linear time-invariant (LTI) filters have been designed (see [14iJter can be severely degraded, whereas the performance of the
and [17]) to optimize the steady-state performance measuretiust Kalman filter degrades fairly gracefully.
viathe H,, norm (or¢,-gain) of the map from the noise inputto  As with the conventional Kalman filtering algorithm for time-
the estimation error. In another scenario where the input sigwakying systems, the convergence of the robust Kalman filtering
is white noise with limited power, linear time-invariant filtersalgorithm that we present is not guaranteed in general. However,
have been designed (see [15]) to optimize the steady-staie prove convergence in the special case of the estimation of a
performance measured via tti&, norm of the map from the system with time-invariant state-space matrices and stochastic
noise input to the estimation error. parametric uncertainties, provided that the uncertain system is
The models considered in robust estimation problems fallean-square stable. Moreover, we show that the conventional
under two classes. One class consists of a linear time-invari&aiman filter is a special case of the proposed robust Kalman
system affected by parametric uncertainties that are deternfitiering algorithm for systems with no uncertainties.
istic and typically known only to lie in some bounded set [12], The organization of the paper is as follows. In Section Il, we
[14], [18]. The second class consists of linear time-invariadiscuss the mathematical framework underlying our problem
systems affected by stochastic uncertainties, which can alsoamel make some preliminary remarks. In Section IIl, we describe
viewed as a multiplicative noise inputs; see [17], [19], and [20fhe derivation of a robust Kalman filtering algorithm that min-
Table | summarizes the characteristics of several estimationizes an upper bound of the mean square of the estimation
problems and their solutions. While the above-cited works @mror at each step. We also present the convergence property of
robust estimation in the literature provide a fairly complete sehis recursive algorithm and its connection with the conventional
lution to several steady-state estimation problems, the solutidtealman filter. In Section IV, we apply the filtering technique de-
are linear time-invariant filters, and none of them consider tiveloped in this paper to design equalizers for a communication
transient behavior of their estimation algorithms. Indeed, evehannel. The proofs are given in Appendix A.
the conventional Kalman filter is initialized in aul hocfashion,
leaving room for improvement in its transient performance. Il. PROBLEM SETUP
In this paper, we consider MMSE estimation problems for
linear time-varying systems affected by stochastic uncertain-
ties, with a view toward optimizing the transient performance a(k +1) = Ax(B)a(k) + Ba(k)w(k)
of the estimation. The stochastic uncertainties that we consider (k) = Ca(k)a(k) + Da (k)w(k)
affect the system matrices; in addition, we assume that the cor- Y AN AW
relation of the state initial condition is known only to lie in a (k) = L(k)x (k) (3a)
polytope? For such systems, starting with the standard one-stgpqre
predictor-corrector filter structure (2), we develop a recursive .
estimation algorithm Where.at each step, an upper bound of t'he An(k) = A(k) + Z A2(R)C (k)
mean square of the estimation error over all possible uncertain- P

We consider the following linear time-varying systém:

ties is minimized. The minimization is performed via numerical m
convex optimization over linear matrix inequalities (LMIs). We Ba(k) = B(k)+ Y _ Bi (k)¢ (k)
will refer to our algorithm as the robust Kalman filtering algo- i=1
rithm. As a by-product of our robust filtering algorithm, we also Ca(k) = O(k) + Z 3 (k)C (k)
obtain a technique for optimally initializing a recursive filtering =

algorithm, for instance, the conventional Kalman filter. m
Da(k) = D(k)+ ) D; (k)G (k) (3b)
20ur framework is perhaps related closest with the one in [10], where the el
uncertainties affect the noise moments; a game-theoretic argument is used to
establish the existence of an optimal recursive scheme. 3w(k) is a vector containing both input noise and measurement noise.
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z(k) € R™, y(k) € R™, andw(k) € R™. 2(k) € R"= is v
the signal we wish to estimate: is a zero-mean white noise w fgag’g gAE’;; Fil 3
process and satisfie[w(i)w(j)T] = 6(i — 5)I, wheres(k) | o i iter
is the Dirac Delta function¢?,i = 1,...,m are zero-mean
random processes WIth'[(7 (k)5 (1)] = 6(i — 7)6(k — D). - .
The initial statex(0) of system (3a) is a random vector, with W
its correlationX(0) = E[z(0)x(0)7] known only to lie in
a polytopeCo{X1(0),...,X,(0)}. The random processes Fig. 1. Estimation of linear time-varying systems with stochastic parametric
s i=1,...,m, and the random vectar(0) are mutually in- Uncertainties.
dependent.

System (3) is said to bmean square stabisee [1]) if, with and .
w(k) =0fork =0,1,2,..., we have vy (k) = ZCf(k)Cf(k)a:(k)

hm E[ (B)z(k)T]=0 .

for any initial conditionz(0). + <D(k) + Z Di(k)G (k)> wik).

Our objective is to design an optimal robust filter of
the one-step predictor-corrector form given in (2), where, andv, are random processes. Sinfjg < = 1,...,m and

z(k) = L(k)z(k|k) is an estimate of(k) (see Fig. 1). (The w are independent zero-mean white-noise processes, the mean
caseL(k) = I corresponds to state estimation.) Specificallgnd the variance af, andwv, satisfy the following conditions
since the correlation (k) of the state at each depends on for everyk = 0,1,2,.. .
the correlationX (0) of the initial condition, X (k) is uncertain

when X (0) is uncertain. We wish to find the optimal Kalman Bl (K] =0, Efp, (k)] =0
gains K(k — 1) and F(k) to minimize the maximum value Var ve(k) |\ _ [ B(B)B(K)™  B(k)D(k)*
of the mean square of the estimation erijfz(k) — 2(k)|? y(B)| ) T | DE)B(K)Y  D(k)D(k)*

over all allowable values foX (k). (Here, the expectation .
is taken with respect to the random initial state, the inptthere B(k) and D(k) are defined at the bottom of the
and measurement noises, as well as the stochastic parameg@e, andX (k) = FEfz(k)z(k)T]. We also note that,
uncertainties.?). and v, are white-noise random processes so that when

Compared with the steady stat® and Ho filters in [14], ¢ # J» Elve(t)v2(5)*] = 0, E[v,(¢)v,(5)'] = 0, and
[15], and [17], the filters we design are recursive and optimiZ8[v=(i)v,(j)"] = 0. In addition, E[z(i)v.(5)"] = 0 and
the transient performance. In addition, the filters we design akdz(i)v, ( )¥] = 0fori < j. Therefore, random processes
robust to the stochastic parametric uncertainties, in comparidon, vy] and [B(k)v(k), D(k)u(k)] have the same (first- and
with the conventional (nonrobust) Kalman filters [8], [9], whicisecond-order) statistics, whevels a zero-mean unit-variance
are designed based on nominal models with no uncertaintievhite noise random process.

Thus, the model in (3) can be rewritten as

Ill. RoOBUST KALMAN FILTERING

A Svetern Model z(k+1) = A(k)z(k) + B(k)v(k)
. yzerrj b0 e ) | —_ y(k) = C(k)x(k) + D(k)u(k)
We begin by rewriting (3) in an equivalent form (k) = L(F)a(k). 4)
ok +1) = A(k)z(k) + v (k) If the varianceX (0) = E[z(0)x(0)7] is known, then it is
y(k) = C(k)z (k) + vy (k) easily verified thatX (k) is uniquely determined by the fol-
z2(k) = L(k)z(k) lowing recursion:
where X(k+1)=h(X(K) 2 AR)X (E)AR)Y + B(k)! B(k)
= > ARG () (k) + 2 (A5 XRATE)T + By (B (B)T) - ()
+ <B(k) + zm: B?(k)C?(k)) w(k) However, in our settingX (0) is only known to lie in a polytope
— Co{X,(0),...,X,(0)}. Since in the recursion (5Y (k +1) is

Blk) = [AI0X(R)M2 - AL X(R)MY2 B Bi(k) - Bk

m

m

D(k) = [C{ )X (R} - Co(X(R)Y? D(k) Di(k) - Dy (k)]
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alinear function ofX (&), it can be shown recursively that(k) discussed in Section IlI-A. At this stage, we focus our attention
also lies in a polytop€o{X:(k),..., X,(k)}, where on the recursions. We assume that at daclie have available
a matrix P(k — 1) with
Xi(k+1) = AR)X; (k) A(R)T + B(k)B(k)*
m Pk—1)> E[(z(k—-1)—2(k-1|k-2))
s . s T s s T
+ g (A5(k) X (k) A3 (k)T + B2 (k)B3(k)") . (6) )l — 1) — 2k — 1|k — 2))1].

If the system is mean square stable and the state-space matrld&
are time-invariant, the polytope converges to a fixed point as

k — oo; see Proposition A.3 in Appendix A. Ef(x(k) — &k |k = 1))(z(k) - &k |k - 1))7]
< sup (Ak-1D+K(Ek-1)Ck-1))

B. Robust Kalman Filter Recursions X(k=1)

While (4) is similar to the setting for the conventional Kalman x P(k = 1D)(A(k — 1) + K(k — Ok — )"
filtering problem, we note that the system matridegt) and +(Bk-1)+ K(k—1)D(k-1))

D(k) depend on the second moment of the states and are, thus, X (B(k - 1) + K(k— 1)D(k — 1))T 9)
uncertain. For this reason, the optimal linear recursive MMSE A
filter design problem is considerably harder than the conven- =Pk —1),K(k—1)) (10)
gglr;sl[éalman filtering problem, which can be solved analytl here X (i — 1) lies in Co{ Xy (k — 1), ..., X, (k — 1)}

With uncertain system (3), at eaéh we are given the fol- Then, we gan_obtam?( ) 2 El(x(k) —2(k | k—1))(x(k) -
lowing: (k| k — 1))*] simply by requiring that

N1) L(k), as well asA(k), B(k), C(k), andD(k), which f(P(k—1),K(k—1)) < P(k). (11)

are the measurements of the system matritgék),
Ba(k), Ca(k), and DA (k). Note that the measure-Next, we have
ment noise in system matrices is characterized by the
terms of¢; in (3b). E(x(k) — @(k| k) (x(k) — &(k] k))"]
N2) y(k), which is the measurement of the noisy output. < sup (I 4+ F(k)C(E)P(k)I + F(k)C(E)T
Note that the measurement noise in output is charac- X (*)=h(X(k-1))

terized by the terms af in (3a). + (F(E)YD(k))(F(k)D(k)* (12)
N3) From (6), the verticeX;(k), ..., X, (k) of the poly- A ] ]
tope in whichX (k) Iies.1 = T(E k), P(k)) (13)
Our objective is to design a linear MMSE estimator whereX (k —1) liesinCo{ X, (k—1),..., X,(k—1)}. Then,
(k) = Ak — Dk — 1) + K(k — 1) for any matrixM (k) that satisfies
X (Ck = Dap(k = 1) —y(k - 1)) T(F(k), P(k)) < M (k) (14)
B[k — 1) = 24(k) (7a)

Bk k) = 2(k |k — 1) + F)CER)Ek |k — 1) — y(k)) ¢ have

(7b) E[(2(k) — 2(k))(2(k) — 2(k))"] < L(k)M (k) L(k)"

where the Kalman gain&'(k — 1) andF'(k) are obtained from which implies thatTr(L(k)M (k)L(k)T) is an upper bound of
the solution of the following minimax optimization problem: the objective function in (8).

We can now formulate the problem of determinigk — 1
Minimize: max E[|z(k) — 2(k)|’] P gk —1)

K(=1),F() X (k) and F'(k) to minimize an upper bound on the the mean square
Subject to: Data(N1-N3) of thziestir?attion errlort'over atII.possfibIIIe va!ues for the corre-
Equations (7) and (4) ®) sponding state correlation matrix as follows:
C T
The minimax problem (8) is difficult to solve directly. We Py OLIZe Te(L(F)M(E)L(K)T)
therefore first define an upper bound on the quantity Subject to: Conditions (11) and (14)  (15)
J(K (k= 1), F(k)) = pax Ell|z(k) — 2(8)|1%] whereP(k), M(k), K (k — 1), andF(k) are optimization vari-

ables.

and then determin& (k — 1) and (k) to minimize the upper  While the optimization problem (15) has no analytical solu-

bound. We will show that this results in a convex optimizatiotion in general, we establish via the following theorem that it

problem. it can be reformulated as a convex optimization problem: that
We now proceed with the derivation of an upper bound aaf minimizing a linear objective subject with linear matrix in-

J(K(k— 1), F(k)). The estimation algorithm we will derive is equality (LMI) constraints. This problem can be solved numer-

arecursive algorithm. The initialization of the recursions will becally very efficiently using standard algorithms [21], [22] so
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that Theorem 3.1 provides for an efficient and effective numer- Since (17) and (18) hold for alh; < [0,1] such that
ical solution of problem (15); for details on LMIs, see [1] and_%_, A; = 1, they are equivalent, respectively, to
the references therein.

Theorem 3.1:Consider the optimization problem [ P(k)  Tia(k)  Tis(k)
N T Wt Pk-1) 0 ]zo (19)
QSR py TREBIMIRILGE)) 162) | ™ 0 I
Subject to: and
Qk) Tio(k—1) Tis;(k—1) i A
Tio(k— 1T Q(k 1) 0 >0 (16b) M(k) I+ F(k)C(k)P(R)  F(k)Di(k)
| T1a,i(k — nt 0 1 ()" P(k) 0 ] > 0. (20)
[ M@ [+ F(k)C(k) F(k)Di(k) [ ()" 0 !
I+ CE)TF(R)T Qk) 0 >0
Di(k)TF(k)T 0 I 1) Suppose thatP(k), M(k), K(k — 1), and F(k) sat-
=1 (16¢) isfy (11) and (14) and thus satisfy LMIs (19) and
ook (20). Then, multiplying LMI (19) on the left and
where right by diag(P(k)",P(k—1)t,I) yields LMI
(16b); muItipIying LMI (20) on the left and right
Tia(k — 1) = Q(R)A(k — 1) + Y(K)C(k — 1) by diag(I, P(k),I) yields LMl (16c), where
Tlg,xk— 1) = Q(k)Bi(k —1>+Y<> i(k—1) Q) = PR andY(k) = PR)IK(k — 1). In
k‘ |: (/{} 1/2 . ( ) ( )1/2 additlon,P(/{}) >0 |mp||eSQ(k) > 0.
2) Following the same line as in item 1), multiplying LMI
B(k) Bi(k)--- B (k)} (16b) on the left and right biliag (Q(k)t, Q(k — 1)T, I)
. yields LMI (19); multiplying LMI (16c) on the left
Dilk) = [ () Xi(R)2 - €3, (R) X ()2 and right bydiag(I, Q(k)*, I) yields LMI (20), where
. P(k) = Q(k)t andK (k — 1) = Q(k)'Y (k). Therefore,
D(k) D (k)- 'Dm(k)} (16d) the result of item 2) is established.

. . , . 3) Item 1) implies that the optimal value of (16) is less than
and X;(k) is defined in (6). . or equal to the optimal value of (15). Item 2) implies that
1) Suppose that’(k), M(k), K(k — 1), and F'(k) satisfy the optimal value of (15) is less than or equal to the op-
(11) and (14); then@(k) = P(k)", M(k),Y (k) = timal value of (16). Therefore, we established that the op-
P(k) K (k — 1), and (k) satisfy (16b) and (16c). timal values of (16) and (15) are equal. n
2) Suppose tha®(k), M (k),Y (k), andF(k) satisfy (16b)
and (16c); thenP(k) = Q(k)T, M(k),K(k — 1) =
Q(k)'Y (k), and F(k) satisfy (11) and (14).

3) The optimal value of (16) equalsthe optimal value of (15) Initialization of the Robust Kalman Filter

Proof: Let X (k — 1) = _\iX(k — 1), where); € Theorem 3.1 paves the way for a robust Kalman filtering algo-
[0,1]and>>7_, \; = 1. SinceX( )[see (5)]is a linear function rithm. To start the algorithm, we need to initialig®0), which
in’X(k -, we havex (k) = L \:X; (k) for the same set is the process that we describe next. b:g(o) = 0.4Then,
of \;, ¢ = 1,...,p. By Schur's complements lemma, (11) idve haveQ(0) = E[z(0)x(0 F1F = X(0)F, whereX(0) €
equivalent to Co{X1(0),...,X,(0)}. Using Theorem 3.1(1) can be com-

. . puted as an optlmizer to the following problem:

P P(k)  To(k) Tiz(k)Ai(k—1)

N (T P(k-1) 0 >0 (17) Minimize: Tr(L(1)M(1)L(1)")
im1 (**)T 0 X}(k _ ) Q(1),M(1),Y (1),F(1)
. Subject to:
yvhere(*) is the (1, 2) term of thg symmetric matrix, agek) [ Q) T12(0) Tis,(0)
is the (1, 3) term of the symmetric matrix T2(0)"  X(0)f 0 >0

~ . T

Tio(k) = (A(k = 1) + K(k = 1)C(k - 1))P(k - 1) :Tlgz(O)( 1) : I 117( )C(1)  F(1)Dy(1)

- AL D + (1 1)D;(1

Tia(k)=B;(k— 1)+ K(k —1)D;(k — 1). [+ 0T F)T o) 0 >0

Similarly, (14) is equivalent to | Di()TF()F 0 1
p M(k) Tm(k) Tlg(k)X(k) X(0) € Co{X1(0),..., Xp(0)}, i=1,...,p (21)
; [ e P f)’f) X;)( . 20 (8)  yhereM(1) = M(1)T,Q(1) = Q(1). We then haveP(1) =

Q1) andK(0) = Q(1)'Y (1).

whereX; (k) = diag(Xi(k)l/Q, e in(k)l/Qv I,....I),and 4f E[x(0)] = a is known andr # 0, we may definer ;(0) = a, andQ(0)
- - . becomeg X (0) —aa™)1. The initialization process (22) can still be applied by
Tio(k) = (I + F(K)C(k))P(k), Tis(k)=Fk)D;(k). replacingX (0) by X (0) — aa” and X, (0) by X;(0) — aa™, respectively.
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The matrix inequalities in (21) are not linear in all the vari- Consider the following optimization problem of the conven-
ables because the first LMI constraint has the té&f()". How-  tional Kalman filtering algorithm (see [8] for details):
ever, following the same line as in the proof of Theorem 3.1, it 3
is easily shown that (21) is equivalent to the LMI Prk+1)= }}1(1111) f(P*(k), K(k)),” and
Minimize: Tr(L(1)M(1)L(1)T) K7 (k) = argmineqy /(P (k). K(R)) - (242)
Q(1),M(1),Y(1),F(1)

where
Subject to:
T Q1) T12(0)X;(0)  Tis,(0) J(P(K), K(k)) = (A+ K(R)O)P(k)(A+ K (k)O)T
X;(0)175(0) X;(0) 0 >0,i=1,...,p +(K(k)D + B)(K(k)D +B)* (24b)
L T13,4(0) 0 d ) and where(A, B,C, D) are the state space matrices of the
I M(1) I+ F(1)C(1) F(1)Di(1) system. The optimal solution to (24a) is
I+C(OTFT 1 0 >0
I 52(1()T)F(1()T Q(() ) 7 K*(k) = —(AP*(k)CT + BD)(CP*(k)C* + DDT)™!

(22) P(k+1)=(A+K"(k)C)P (k) (A+ K*(k)o)t
+ (K*(k)D + B)(K*(k)D + B)*. (24c)
whereT5(0), 713 :(0), D;(1) are defined in (16d), anf (0) = - _ o
Q)Y (1). Here, we fassum@D is _nonsmgular, which is a standard
Remark: The solution to the optimization problem (21) car@SSUMPtion in Kalman filtering; see, for example, [2], [3], and
also be applied toward optimally initializing other recursive alSl- The well-known condition for the convergence of the recur-
gorithms, for instance, the conventional Kalman filtering algd*©NS in (24) is given by Proposition A.2 in the Appendix.

rithms, with an attendant improvement in transient performance. '€ récursions in the robust Kaiman filter are based on
solving an optimization problem (16) or equivalently (15)

at each step. In order to show the equivalence between the
robust and the conventional Kalman filtering algorithms under
We now summarize the various steps in our robust Kalmame condition¢?(k) = 0, it suffices to show that the optimal

D. Robust Kalman Filtering Algorithm

filtering algorithm. solution to (24) is the same as the optimal solution to (15), in
Robust Kalman Filtering Algorithm: which B(k) = B, D(k) = D.
Step 1) Solve (22) to initializeQ(1), M (1), K(0), and  Theorem 3.2:Let P(0) > 0 be given. Le{ P*(k), K*(k)}
F(1). Letk = 1. be the sequence consisting of the solutions to the optimization
Step 2) Attimek + 1, let problem (24). Let{ P*(k), M*(k), K*(k), F*(k)} be the se-

guence consisting of the solutions to the optimization problem
Xi(k+1) = A(R)X,;(k)A(k)* + B(k)B(k)*

) Te(M(k)), k=1,2... (25a)
+ 2 (A (RXa(R) A (R)T + B (k) B (k)T

min
P(k),M(k),K (k—1),F (k)

where

i=boor @3 g1y K- 1))

Step 3) Solve the optimization problem (16) &%), M (k) = (A+ K(k = DOYP(k = 1)(A+ K(k—1)O)"
andK (k — 1), F(k). +(K(k—1)D+B)(K(k—1)D+ B (25b)
Step 4) Repeat Steps 2 and 3. Pk)=f(P(k—-1),K(k-1)) (25¢)

We note that if we have ;(0) = E[z(0)] in the estimator (7), M(E) = (I + F(R)C)P(k)(I + F(k)C)T
then the robust Kalman filtering algorithm is unbiased. T T

In the following, we will discuss the connection of the robust +F(k) DD F(k) (25d)
Kalman filter with the conventional Kalman filter. We will also g4 p pT
provide the condition for the convergence of the recursions intpqn
the robust Kalman filtering algorithm.

is assumed to be positive definite.

P*(k)=P*(k), and K*(k)=K*(k), k=1,2,....
E. Connection With the Conventional Kalman Filtering ] ) ]
Algorithm _We note that (25) is a special case of (15) with

) ) ) o B(k) = B,f)(k) = D. We also note that if the system
If there is no stochastic parametric uncertainty in system (3}, time varying, the equivalence between the robust and

i.e., ¢7(k) = 0, it can be shown that the robust Kalman filtet,e  conventional Kalman filters still holds by replacing
reduces to the conventional Kalman filter. Therefore, the robu(sA B,C, D) with (A(k), B(k), C(k), D(k)) in Theorem 3.2.
Kalman filter can be viewed as an extension of the conventionmé p7ro<’)f of Theorem 3’_2 is g;iven in Appendix A.

Kalman filter to SyStemS with stochastic parametrlc uncertalngAI'[hough the set of positive semidefinite matrices is only a partially ordered set, itis well

ties. known that the problemuing (xy f(P* (k), K(k)) is well defined; see [8].
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As a simple corollary of Theorem 3.2, we have the following w(k)

conclusion: If the correlation matriX (0) is exactly known in s(k) o(k) 5(k)
advance, the polytope covering(k) is a fixed point at each Channel O Equalizer | ——
k; see the recursion (5). The optimization problem (16) turn

out to be equivalent to the optimization problem encountered in _ o _ _
the conventional Kalman filtering problem, wiff replaced by Fig. 2. Communication channel with an equalizer.
B(k) and D replaced byD(k) in (24). In this case, the MMSE

estimation problem can be solved analytically, and the solutiearcommunication channel. Consider the following system:
satisfies the Riccati difference equation in (24).

. x1(k+1) 0.9 0.5] [x(k) 1]
F. Convergence of the Robust Kalman Filter zo(k 4 1) 0 0.9] | z2(k) + 1 s(k)
If the system state-space matrices are time invariant, it is well _ z1(k)
known that the recursion in the conventional Kalman filtering ylk) =[L+C(k) 1+ C(F)] [xQ(k)
algorithm converges to a steady-state estimator under the con- + (54 C(k))s(k) + w(k). (28)

ditions listed in Proposition A.2. If system (3) is mean square
stable, the robust Kalman filtering algorithm has a similar con-,
vergence property.

Theorem 3.3:Consider the state estimation probléi= 1)
with system (3), with all the state space matrices being ti
invariant andD DT being positive definité.

1) If there exists) = QT with Q > 0 such that

s is a signal that has a power of 0 dB and is transmitted through
the channehw is a white noise that corrupts the received signal
ng(éwnh a power of— 10 dB. The channel model (28) is affected
Dy time-varying uncertaintie$ that are a combination of both
deterministic and stochastic parametric uncertainties (see for
example, [4]). The initial conditions of the state vectoig0)
. andz»(0) are random variables and satisfy the second moment
ATQA — Q+Z (A;)TQ (43) <0 (26) conditions
j=1
Elr1(0)21(0)] <1, E[z2(0)z2(0)] <1
then the system (3) is mean square stable, and E[21(0)22(0)] =0, E[z2(0)x1(0)] = 0.
lim .., X (k) = X, whereX is unique and independent

of the initial conditionX'(0) € Co{X1(0),..., X,(0)}.  For the channel (28), we design an equalizer to estimate the
Moreover, if the steady-state matricésl, B, C, D), input signals(k) (Fig. 2).

where We first add one more state variable in (28) so that the new
model of the channel is now
B=[43X ... A2X B B’ ... B]
D=[C:X ... ¢:X D D .. D3] @7 |[=uk+D) 09 0.5 ] k)] 0
za(k+1) | = 09 1 Y|+ 0| s(k+1)
satisfy the following condition: w3k +1) (k) 1
2) (A— BDT(DDT) ¢, B(I — DT(DDT)"1D))is sta- y(k) = 1+<’ _1+<’<_ 5+ (k)]
bilizable, or 1 (k)
za(k) | +w(k)
x3(k
{A_gj 1 g} has full row rank for alts € [0, 27) xfgkg
dk) =00 0 11| (k) (29)
then the robust Kalman filter converges to a steady-state | z3(k) |
LTI estimator, i.e., for anyP(0) > 0, we have
limy oo P*(k) = P > 0limp_o K*(k) = Assuming a zero mean white noise model for the input signal

K* limy o F*(k) = F™* and(A + K*O) is stable, s, we designan equalizer using the robust Kalman filtering tech-
where {P*(k), K*(k), F*(k)} is the sequence con-niques developed inthis paper. The first case considered is when

sisting of the solutions to the robust Kalman filter. the channel is on its nominal condition and does not have any
The proof of Theorem 3.3 is given in Appendix A. uncertainty, i.e.{(k) = 0; this is an ideal channel, and the cor-
responding equalizer is a conventional Kalman filter. In Fig. 3,
IV. NUMERICAL EXAMPLE: EQUALIZER FOR we compare a Kalman filter initialized optimally by solving
COMMUNICATION CHANNELS (22), with Kalman filters initialized using aad hocscheme [2]

(P(0) = 77] wheren = 10 and20). The mean square error

niques proposed in this paper toward the design of equalizers ghdition of¢(k) = 0 in channel (29), it can be easily checked

5This condition can be relaxed DT + Y7 (C:X(C:)T + Ds that the Kalr_n_an f_||ter forthi_s_ system converges (see the conver-
(D)T) > 0 wherelim,, o, X(k) = X. gence condition in Proposition A.2). Therefore, after ten steps,
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0.25 T T T

[ experimentally obtained mean square error values, averaged
' == over 200 runs, obtained with the conventional Kalman filters
" and the robust Kalman filter. For a fair comparison, we include
oz 1\ 1 the simulation results of both the conventional Kalman filter
" initialized using arad hocscheme and the conventional Kalman
filter initialized optimally by solving (22). For the nonoptimally
initialized conventional Kalman filter, the performance is sig-
nificantly worse than that of the other two filtering algorithms,
Yt which are initialized optimally. For the optimally initialized
1 conventional Kalman filter, since it has a similar initialization
as the robust Kalman filter, its transient performance at the
beginning of the recursion (less than ten steps) is similar to that
of the robust Kalman filter. However, since the conventional
Kalman filter does not consider the uncertainties in system
matrices, its performance degrades significantly thereafter.
2 o 20 50 e With the robust Kalman filtering algorithm, an upper bound of
Number oftorations the mean square estimation error over all possible uncertainties
Fig. 3. |lllustration of the performance improvement of the conventionelf mln.lmlzed recurswely, and therefore’ the performance IS
Kalman filter with optimal initialization. much improved. It can be seen from Fig. 4 that after ten steps
of recursions, the robust Kalman filter yields a much lower
mean-squared error than that with the conventional Kalman
filters.

T T
= Optimized initialization

MSE estimation
o
o
o
T

o
T
-
-
-

4.5 T T

T T
~= Robust Kalman filter

- =~ = Conventional Kaiman filter (optimized initialization)
al o e G ional Kaiman filter ( ptimized initialization) | |

V. CONCLUSION

We have developed a robust Kalman filtering algorithm for
linear time-varying systems with stochastic parametric uncer-
tainties. We have shown that for systems without uncertainties,
the robust Kalman filter reduces to the conventional Kalman
filter; for systems with stochastic parametric uncertainties, it
offers significant improvement in performance. If the system
is mean square stable and the state-space matrices are time
invariant, the robust Kalman filter converges to a steady-state
estimator. Our filtering algorithm is formulated as a convex
optimization problem with linear matrix inequality constraints
and can be implemented numerically efficiently. We have es-
tablished that the techniques presented in the paper can be used
to optimally initialize other recursive algorithms, including
the conventional Kalman filtering algorithm, with an attendant
Fig.4. Performance comparison between the robust and conventional Kalff&iProvement in transient performance. Finally, we have shown
filters. via a numerical example that the techniques developed in
this paper can be applied toward the design of equalizers for

we can see that the MSE of Kalman filters with different inic®mmunication channels with much improved results.
tializations are close to each other and converge to a constant.
However for the transient performance (less than 10 steps), the APPENDIX A
ad hociniti_alized _Kg!m_an filter is sign_ificantly_ worse than_thgt Lemma A.1 ([1, p. 131]):The system
of the optimally initialized Kalman filter. This example indi-
cates that the optimal initialization by solving (22) can be su-
perior to anad hocinitialization and can improve the transient a(k+1) = Aa(k)x(k) (30)
performance of conventional Kalman filters.

In the second example, we compare the performanaderez(k) € R"
of the conventional Kalman filtering algorithm with the
robust Kalman filtering algorithm in the presence of uncer- m
tainties. Specifically, the time-varying uncertainties satisfy Aa(k)=A+ ZA?Cf(k)
¢(k) = 0.1¢4(k) + 0.5¢;(k), where¢, (k) is deterministic, and i=1
|¢a(k)| < 1 forall k and can be measured in real tingg;is
a zero-mean white noise process with a power of 0 dB aadd(?,: = 1,...,m are zero-mean random processes with
is independent ofv and s. Fig. 4 shows a comparison of theE[(7 (k)(F(1)] = 6(i — j)6(k — 1), is mean square stable if and

MSE estimation

Number of iterations
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only if there exists a matrig) = Q1 € R"*" with @ > 0 such Proof: We first show that the sequen¢&’ (%)} obtained
that from (32) is convergent, and the limit is independeniaD) if
and only if the sequencgX (k)} obtained from

ATQA-Q+) (ANT Q(4)) <. (31) m
i=1 X(k+1) = AX(B)AT + ) 43X (k) (43)7 (34)
j=1

Moreover, the quadratic Lyapunov functioi(z(k)) =
E[z(k)Y Qz(k)] is a monotonically decreasing function bf . Gy
wWith Ty, e V (2()) = 0. is convergent, antimy, .., X (k) = 0.

Note that the correlation of the state in (30) satisfies the rﬁl—ilfiog,? kt)he: I(|)m'|:t O?;;@;?gﬂ%i?ﬁ%g ()]3) i“;}?kaﬂi)tiat
cursion X (k). X (k) satisfies the recursion (34) atith;, _.. X (k) = 0.
™ - Then, it can be shown thatX (%)} is convergent.
X(k+1) = AX(B)A" + > AsX (k) (43) To show that the limit of{ X (%)} is unique, suppose that
i=1 {X:1(k)} and{X.(k)} are two sequences of solutions to (32)
. o - corresponding to two different initial condition&;(0) and
whereX (k) = E[z(k)z(k)*],andX (0) is the initial condition. X5(0), with Limy,_ 0o X1 (k) = X, andlimy_ .o Xo(k) = Xo.
Lemma A.1 implies that (31) is sufficient and necessary to ha‘f‘l’qen, it is easily verified that wittf((k) = X, (k) — Xa(k),
hmkHooX(k)_ =0. the sequenceg X (k)} consists of solutions of the recursive
The following result about the convergence of the convegguation (34); therimy ..o X (k) = 0 implies X; = X,.

tional Kalman filtering algorithm is well known. More details N suppose the limit of the sequencE ()} exists and is

about Proposition A.2 can be found in the literature; see, for &¥dependent o (0). We show thatimy, .., X (k) = 0.

ample [8]. _ e o For any X(0), let X;(0) = X(0),X2(0) = 0 and
Proposition A.2:Let A€ R™", B ‘¢ R™™,C € fy,(k)},i = 1,2 be the corresponding sequences from recur-

R™7", andD € R™*"™. SupposeD D™ > 0. Ifone of the  gjon (32). By recursion (34), we havé(k) = X; (k) — Xa(k).

following conditions holds. Since limg—oo X1(k) = limg_oo Xa(k), We getlimg_ o
1) (A,0)is detectable, andd — BDT(DD™) *C,B(I- X (k) = 0.
DT(DD™)~'D)) is stabilizable; Finally by Lemma A.1, (33) is necessary and sufficient for
2) (A,C) is detectable, and {X (k)} to converge to zero. This completes the proof. [
. Proof of Theorem 3.2:Starting with the sequence
{A -l B} {P*(k), K*(k)} consisting of the solutions to the optimization
¢ D problem (24), it is clear that

has full row rank for alt, € [0, 271')7 P*(lﬂ/) — P*(lﬂ/) and K*(lﬂ/) _ K*(lﬂ/) E=1.2.. ..
then for any initial condition”(0) > 0, the sequence of so-

lutions { P*(k), K*(k)} to the recursion (24) converges to anust be (possibly nonunique) optimizers for (25) [this follows

unique steady-state solution immediately from (25d)]. Thus, it remains to be shown that
_ . . _ i} i} P*(k) = P*(k) andK*(k) = K*(k) are the only candidates
Jm P(k) =P and  lim K7(k) = K™ as optimizers for (25). In other words, it suffices to show that

for a givenP*(k — 1), the optimal solutiong>* (k) and K * (k)
FurthermoreP* > 0, K* = —(AP*CT + BDT)(CP*CT + in (25) are unique. However, note that givéti(k — 1) and

DDT)=! and(A + K*C) is stable. K*(k—1), P*(k)is given simply ag(P*(k—1), K*(k—1)),
Proposition A.3: Let {X (k)} be the sequence consisting ofind thus, we only need to show that givein(k—1), K*(k—1),
the solutions to the recursions which solves (25), is unique.
Now, let{ P*(k), K*(k), F*(k)} be the sequence consisting
X(k+1)=AX(K)AT + BBY of the solutions to the optimization problem (25). Assuming
m - - an optimal value forP(k — 1), we consider the optimization
+ Z (AfX(/f) (A3)" + B (B)) ) , k=0,1,... (32) problem (25). For convenience, we introduce new notation for
i=1 M(k):

with initial condition X (0) > 0, whereA, B, A7, B} are con- (K(k — 1), F(k)) = (I + F)O)F(P(k — 1), K(k — 1))
stant matrices. The sequen¢& (k)} is convergent, and the ’ T o T
limit is independent ofX (0) if and only if there exists some X (L+ F(R)C)" + F(k)DD7F(k)"

matrix 0 such that
@> We also denote

ATQA - Q+ Z (Aj)T Q(A3) <0 (33) Fopt (K (k — 1)) = argmin Tr(g(K(k — 1), F'(k))).

= F(k)

i.e., the system is mean square stable. Note thatF™* (k) = Fopi(K*(k — 1)).
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Now, for any P(k) =
(CP(k)CT + DDT) >
F(k) 7& FOPt( ( )

g(K(k = 1), F(k))

fp
0,
then

)it
Z g(K(k = 1), Fop (K (k — 1))).

Therefore, Tr(g(K (k — 1), F(k))) > Tr(g(K(k — 1), F,
(K(k — 1)))). Thus, Fop (K(k —
from K(k — 1).

To show thatK*(k — 1) is unique, it suffices to show By Proposition A.3, we havéimy_..o X (k)

(k—1),K(k— 1)) > 0since andB(k),
it can be easily verified that if lation of the stateX (k) =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

D(k), defined at the bottom of the page. The corre-
E[z(k)x(k)T] satisfies the recursion

X(k41)=
+ Z (ASX

The mean square stability of system (3) follows directly from
Lemma A.l.

= AX(k)AT + BB?

A"+ B (B;)T), k=0,1,....

opt

1)) is uniquely determined

= X, where

that for any K(k — 1) # K*(k — 1), Tr(¢(K(k — 1), X is unique and independent of the initial conditiai{0) €
Fopu (K (k — 1)) > Te(g(K* (k — . Fope (K" (k — D). Golx,(0)..... X.(0)).
Let Pi(k) = f(P(k — 1),K(k — 1)) and Py(k) = With limg .00 B(k) = B andlimy_... D(k) = D, whereB
f(P(k — 1), K*(k — 1)). Then, we haveP; (k) 2 P»(k). We  and ) are defined in (27), we now define another set of recur-
now consider two cases. } sions (35a)—(35d), shown at the bottom of the page.
1) If Fope(K(k — 1)) # Fope(K*(k — 1)), then Let K*(k) and I™* (k) denote the optimal Kalman gains of
(35). Let K*(k) and F*(k) denote the optimal Kalman gains
gk = 1), Fope (K (k — 1)) ~ of the robust Kalman filter (15). From Theorem 3.2, (35) has
> g(K*(k — 1), Fope(K*(k — 1))).  the same unique optimal solution &F(k) and K*(k) as that
of (24), with B replaced byB and D replaced byD. From
Therefore, Tr(g(K(k — 1), Fop (K (k —1)))) ~  Proposition A.2, we havéimy_.., K*(k) = K*, and(A +
Tr(g(K" (k — 1), Fope (K™ (k = 1)))). K*C) is stable. Thus
2) If Fopy (K (k — 1)) = Fopy (K*(k — 1)), then

P(k)CT(cP(k)CT + DDY)!

= Py(k)CT (CPy(k)CT + DDT)~!

After simple manipulations, we get

Dpt(cr(k)C* + DDTHY!

= DD (CPy(k)CT + DDT)™!

O) A+ K*(R)C)T || < T1(P(0))

ZH (A+K*(k

j=1 k=j

whereT%(P(0)) is a uniform bound ovei > 0 and depends
only onP(0).

Let P*(k) = f(P*(k - 1),K*(k — 1)) denote the optimal
solution to (15). From (10) and (35b), it follows that for any
small numbek, there existsV such that wheneveér > N, we

SinceDD? > 0 and P, (K) > Py(K), we haveC(P; (k) — have
Py(k)) = 0. By (25d), this implies thaflr(g(K(k — 1), FPOS. K — F(P(R). K <
Fo = 1)) 5 (ol B 1), Fo R (h = 1)), IFCP) K ) f(P(/t), ()| < To(P(R))e
This completes the proof. O where K*(k) = argmirh(k)f(P(k) K(k), T(P(k)) is a
Now, we are ready to prove Theorem 3.3, wherein the robusinstant that depends di(k). T>(P(k)) is finite if P(k) is
Kalman filtering algorithm is convergent. bounded.
Proof of Theorem 3.3:With all the state space matricesin By settingP(N) = P(N), we get||P*(N + 1) — P*(N +

system (3) being time invariant, we haxék) = A, B(k)

=B

D] < To(P(N))e, where P*(N + 1) and P*(N + 1) are

Bk) = [Ai)((k)l/?
D(k) = [Cr X ()2

A3 X(k)Y? B B}

m

BS}

c:X(k)Y? D Di D’ } .

m

min
P(R),FI(k), K (k—1),F (k)

(35a)

FP(k—1),K(k—1)) 2(A+ K(k—1)C)P(k — 1)(A+ Kk — 1)C)" + (K(k — 1)D + B)(K(k — 1)D + B)" (35b)
P(k) = f(P(k - 1), K(k - 1)) (35¢)
M(k) =(I + F(k)O)P(k)I + F(k)O)T + F(k)YDDT F (k)T (35d)
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bounded, with the bound depending only B(0). Therefore,
there exist finite constantg;(P(0)) andZy(P(0)) that depend
on P(0) such that for any: > 0, Ty (P*(k)) < T3(P(0)) and
To(P*(k)) < Tu(P(0)). Thus, we conclude thfftP* (N +1) —
P*(N +1i)|| is bounded and that
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