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Robust Kalman Filters for Linear Time-Varying
Systems With Stochastic Parametric Uncertainties

Fan Wang, Member, IEEE,and Venkataramanan Balakrishnan, Member, IEEE

Abstract—We present a robust recursive Kalman filtering
algorithm that addresses estimation problems that arise in linear
time-varying systems with stochastic parametric uncertainties.
The filter has a one-step predictor-corrector structure and min-
imizes an upper bound of the mean square estimation error at
each step, with the minimization reduced to a convex optimization
problem based on linear matrix inequalities. The algorithm is
shown to converge when the system is mean square stable and
the state space matrices are time invariant. A numerical example
consisting of equalizer design for a communication channel
demonstrates that our algorithm offers considerable improvement
in performance when compared with conventional Kalman
filtering techniques.

Index Terms—Linear matrix inequality, linear time-varying sys-
tems, robust Kalman filters, stochastic parametric uncertainty.

I. INTRODUCTION

T HE NOTATIONS in this paper are fairly standard. de-
notes the expectation of a random variable (matrix). Var

denotes the variance of a random variable (vector).
means that is a symmetric and positive definite (positive

semi-definite) matrix. means that and .
is the trace of a matrix. denotes a convex hull.

defines a (block) diagonal matrix. is the matrix
norm, that is, the largest singular value of a matrix.denotes the
Moore–Penrose pseudo inverse of a matrix. and are
used in some places to represent the and terms of
a symmetric matrix when the and terms are given.

is the estimation of with observations up to time
. If is known as a predicted estimation. If

is known as a filtered estimation. For discrete-time
systems considered in the paper, the state matrixis said to be
stable if all the eigenvalues ofare strictly inside the unit circle.
A discrete-time system , where is a
random process, is said to bemean square stable(see [1]) if for
all initial conditions , we have ,
i.e., almost surely.

Consider the linear system

(1)
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where is the state,
is the input noise, is the measured output, and

is the measurement noise, with and
being independent white noise random processes. Equation (1)
models systems that are affected by both actuator and sensor
noises ( and , respectively). A fundamental problem
associated with such systems is that of state estimation, i.e., the
optimal estimation of the state from the noisy measure-
ments ; the corresponding state estimate
is denoted . Such estimation problems arise in several
applications in signal processing, communications, and control;
see, for example, [2], [3], and the references therein.

Recursive minimum mean-square error (MMSE) estimators
form an important class of optimal state estimators for system
(1) and have many applications in signal processing, communi-
cations, and automatic control [3]–[7]. MMSE estimators min-
imize the expected value of the square of the estimation error,
i.e., , at each . When
the random processes and are Gaussian, it turns out that
the MMSE estimator is a linear filter whose coefficients can be
determined by solving a Riccati difference equation. (This is the
celebrated Kalman filter.) When and are not Gaussian, the
Kalman filter yields the best linear MMSE estimator. An impor-
tant (and desirable) property of the Kalman filtering algorithm
is that it converges when system (1) is time invariant and de-
tectable as well as stabilizable [8].

The Kalman filter consists of the following two parts:1

1) One-step prediction update:

(2a)

2) Filtered estimation update:

(2b)

When the matrices and in (1) can
be measured exactly, computing the Kalman gains
and in (2) is equivalent to a quadratic optimization
problem: one that can be solved analytically [8]. However,
in many cases, there exist uncertainties in model parameters
and/or model structure because of errors from system identifi-
cation or model reduction routines; see, for example, [4], [7],
[10]–[12]. The performance of estimators designed without
accounting for these uncertainties can be severely degraded
and sometimes even unacceptable [13], [12]. Thus, estimators

1A more complete introduction to Kalman filter can be found in the literature;
see, for example, [8] and [9].
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TABLE I
COMPARISON OFSEVERAL ESTIMATION METHODS

must be designed with graceful performance degradation in the
presence of modeling errors. This issue of “robust estimation”
has been addressed in a number of recent publications; see,
for example, [12], [14]–[16], and the references therein. By
assuming the input signal has limited total energy (or-norm),
linear time-invariant (LTI) filters have been designed (see [14]
and [17]) to optimize the steady-state performance measured
via the norm (or -gain) of the map from the noise input to
the estimation error. In another scenario where the input signal
is white noise with limited power, linear time-invariant filters
have been designed (see [15]) to optimize the steady-state
performance measured via the norm of the map from the
noise input to the estimation error.

The models considered in robust estimation problems fall
under two classes. One class consists of a linear time-invariant
system affected by parametric uncertainties that are determin-
istic and typically known only to lie in some bounded set [12],
[14], [18]. The second class consists of linear time-invariant
systems affected by stochastic uncertainties, which can also be
viewed as a multiplicative noise inputs; see [17], [19], and [20].

Table I summarizes the characteristics of several estimation
problems and their solutions. While the above-cited works on
robust estimation in the literature provide a fairly complete so-
lution to several steady-state estimation problems, the solutions
are linear time-invariant filters, and none of them consider the
transient behavior of their estimation algorithms. Indeed, even
the conventional Kalman filter is initialized in anad hocfashion,
leaving room for improvement in its transient performance.

In this paper, we consider MMSE estimation problems for
linear time-varying systems affected by stochastic uncertain-
ties, with a view toward optimizing the transient performance
of the estimation. The stochastic uncertainties that we consider
affect the system matrices; in addition, we assume that the cor-
relation of the state initial condition is known only to lie in a
polytope.2 For such systems, starting with the standard one-step
predictor-corrector filter structure (2), we develop a recursive
estimation algorithm where at each step, an upper bound of the
mean square of the estimation error over all possible uncertain-
ties is minimized. The minimization is performed via numerical
convex optimization over linear matrix inequalities (LMIs). We
will refer to our algorithm as the robust Kalman filtering algo-
rithm. As a by-product of our robust filtering algorithm, we also
obtain a technique for optimally initializing a recursive filtering
algorithm, for instance, the conventional Kalman filter.

2Our framework is perhaps related closest with the one in [10], where the
uncertainties affect the noise moments; a game-theoretic argument is used to
establish the existence of an optimal recursive scheme.

We will demonstrate through an example that the robust
Kalman filter can provide much improved transient perfor-
mance when compared with the conventional Kalman filter.
Perhaps more important, for systems with stochastic parametric
uncertainties, the performance of the conventional Kalman
filter can be severely degraded, whereas the performance of the
robust Kalman filter degrades fairly gracefully.

As with the conventional Kalman filtering algorithm for time-
varying systems, the convergence of the robust Kalman filtering
algorithm that we present is not guaranteed in general. However,
we prove convergence in the special case of the estimation of a
system with time-invariant state-space matrices and stochastic
parametric uncertainties, provided that the uncertain system is
mean-square stable. Moreover, we show that the conventional
Kalman filter is a special case of the proposed robust Kalman
filtering algorithm for systems with no uncertainties.

The organization of the paper is as follows. In Section II, we
discuss the mathematical framework underlying our problem
and make some preliminary remarks. In Section III, we describe
the derivation of a robust Kalman filtering algorithm that min-
imizes an upper bound of the mean square of the estimation
error at each step. We also present the convergence property of
this recursive algorithm and its connection with the conventional
Kalman filter. In Section IV, we apply the filtering technique de-
veloped in this paper to design equalizers for a communication
channel. The proofs are given in Appendix A.

II. PROBLEM SETUP

We consider the following linear time-varying system:3

(3a)

where

(3b)

3w(k) is a vector containing both input noise and measurement noise.



WANG AND BALAKRISHNAN: ROBUST KALMAN FILTERS FOR LINEAR TIME-VARYING SYSTEMS 805

, and . is
the signal we wish to estimate. is a zero-mean white noise
process and satisfies , where
is the Dirac Delta function. are zero-mean
random processes with .
The initial state of system (3a) is a random vector, with
its correlation known only to lie in
a polytope . The random processes

, and the random vector are mutually in-
dependent.

System (3) is said to bemean square stable(see [1]) if, with
for , we have

for any initial condition .
Our objective is to design an optimal robust filter of

the one-step predictor-corrector form given in (2), where
is an estimate of (see Fig. 1). (The

case corresponds to state estimation.) Specifically,
since the correlation of the state at each depends on
the correlation of the initial condition, is uncertain
when is uncertain. We wish to find the optimal Kalman
gains and to minimize the maximum value
of the mean square of the estimation error
over all allowable values for . (Here, the expectation
is taken with respect to the random initial state, the input
and measurement noises, as well as the stochastic parametric
uncertainties ).

Compared with the steady state and filters in [14],
[15], and [17], the filters we design are recursive and optimize
the transient performance. In addition, the filters we design are
robust to the stochastic parametric uncertainties, in comparison
with the conventional (nonrobust) Kalman filters [8], [9], which
are designed based on nominal models with no uncertainties.

III. ROBUST KALMAN FILTERING

A. System Model

We begin by rewriting (3) in an equivalent form

where

Fig. 1. Estimation of linear time-varying systems with stochastic parametric
uncertainties.

and

and are random processes. Since and
are independent zero-mean white-noise processes, the mean

and the variance of and satisfy the following conditions
for every :

Var

where and are defined at the bottom of the
page, and . We also note that
and are white-noise random processes so that when

and
. In addition, and

for . Therefore, random processes
and have the same (first- and

second-order) statistics, whereis a zero-mean unit-variance
white noise random process.

Thus, the model in (3) can be rewritten as

(4)

If the variance is known, then it is
easily verified that is uniquely determined by the fol-
lowing recursion:

(5)

However, in our setting, is only known to lie in a polytope
. Since in the recursion (5) is
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a linear function of , it can be shown recursively that
also lies in a polytope , where

(6)

If the system is mean square stable and the state-space matrices
are time-invariant, the polytope converges to a fixed point as

; see Proposition A.3 in Appendix A.

B. Robust Kalman Filter Recursions

While (4) is similar to the setting for the conventional Kalman
filtering problem, we note that the system matrices and

depend on the second moment of the states and are, thus,
uncertain. For this reason, the optimal linear recursive MMSE
filter design problem is considerably harder than the conven-
tional Kalman filtering problem, which can be solved analyti-
cally [8].

With uncertain system (3), at each, we are given the fol-
lowing:

N1) as well as and , which
are the measurements of the system matrices

and . Note that the measure-
ment noise in system matrices is characterized by the
terms of in (3b).

N2) , which is the measurement of the noisy output.
Note that the measurement noise in output is charac-
terized by the terms of in (3a).

N3) From (6), the vertices of the poly-
tope in which lies.

Our objective is to design a linear MMSE estimator

(7a)

(7b)

where the Kalman gains and are obtained from
the solution of the following minimax optimization problem:

Data N1–N3

Equations (7) and (4) (8)

The minimax problem (8) is difficult to solve directly. We
therefore first define an upper bound on the quantity

and then determine and to minimize the upper
bound. We will show that this results in a convex optimization
problem.

We now proceed with the derivation of an upper bound on
. The estimation algorithm we will derive is

a recursive algorithm. The initialization of the recursions will be

discussed in Section III-A. At this stage, we focus our attention
on the recursions. We assume that at each, we have available
a matrix with

Then

(9)

(10)

where lies in .
Then, we can obtain

simply by requiring that

(11)

Next, we have

(12)

(13)

where lies in . Then,
for any matrix that satisfies

(14)

we have

which implies that is an upper bound of
the objective function in (8).

We can now formulate the problem of determining
and to minimize an upper bound on the the mean square
of the estimation error over all possible values for the corre-
sponding state correlation matrix as follows:

Conditions (11) and (14) (15)

where and are optimization vari-
ables.

While the optimization problem (15) has no analytical solu-
tion in general, we establish via the following theorem that it
it can be reformulated as a convex optimization problem: that
of minimizing a linear objective subject with linear matrix in-
equality (LMI) constraints. This problem can be solved numer-
ically very efficiently using standard algorithms [21], [22] so
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that Theorem 3.1 provides for an efficient and effective numer-
ical solution of problem (15); for details on LMIs, see [1] and
the references therein.

Theorem 3.1:Consider the optimization problem

(16a)

(16b)

(16c)

where

(16d)

and is defined in (6).

1) Suppose that and satisfy
(11) and (14); then,

and satisfy (16b) and (16c).
2) Suppose that and satisfy (16b)

and (16c); then,
and satisfy (11) and (14).

3) The optimal value of (16) equals the optimal value of (15).
Proof: Let , where
and . Since [see (5)] is a linear function

in , we have for the same set
of . By Schur’s complements lemma, (11) is
equivalent to

(17)

where is the (1, 2) term of the symmetric matrix, and
is the (1, 3) term of the symmetric matrix

Similarly, (14) is equivalent to

(18)

where ), and

Since (17) and (18) hold for all such that
, they are equivalent, respectively, to

(19)

and

(20)

1) Suppose that and sat-
isfy (11) and (14) and thus satisfy LMIs (19) and
(20). Then, multiplying LMI (19) on the left and
right by ) yields LMI
(16b); multiplying LMI (20) on the left and right
by ) yields LMI (16c), where

and . In
addition, implies .

2) Following the same line as in item 1), multiplying LMI
(16b) on the left and right by )
yields LMI (19); multiplying LMI (16c) on the left
and right by ) yields LMI (20), where

and . Therefore,
the result of item 2) is established.

3) Item 1) implies that the optimal value of (16) is less than
or equal to the optimal value of (15). Item 2) implies that
the optimal value of (15) is less than or equal to the op-
timal value of (16). Therefore, we established that the op-
timal values of (16) and (15) are equal.

C. Initialization of the Robust Kalman Filter

Theorem 3.1 paves the way for a robust Kalman filtering algo-
rithm. To start the algorithm, we need to initialize , which
is the process that we describe next. Let .4 Then,
we have , where

. Using Theorem 3.1, can be com-
puted as an optimizer to the following problem:

(21)

where . We then have
and .

4If E[x(0)] = a is known anda 6= 0, we may definex (0) = a, andQ(0)
becomes(X(0)�aa ) . The initialization process (22) can still be applied by
replacingX(0) byX(0)� aa andX (0) byX (0)� aa , respectively.
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The matrix inequalities in (21) are not linear in all the vari-
ables because the first LMI constraint has the term . How-
ever, following the same line as in the proof of Theorem 3.1, it
is easily shown that (21) is equivalent to the LMI

(22)

where are defined in (16d), and
.

Remark: The solution to the optimization problem (21) can
also be applied toward optimally initializing other recursive al-
gorithms, for instance, the conventional Kalman filtering algo-
rithms, with an attendant improvement in transient performance.

D. Robust Kalman Filtering Algorithm

We now summarize the various steps in our robust Kalman
filtering algorithm.

Robust Kalman Filtering Algorithm:

Step 1) Solve (22) to initialize and
. Let .

Step 2) At time , let

(23)

Step 3) Solve the optimization problem (16) for
and .

Step 4) Repeat Steps 2 and 3.
We note that if we have in the estimator (7),

then the robust Kalman filtering algorithm is unbiased.
In the following, we will discuss the connection of the robust

Kalman filter with the conventional Kalman filter. We will also
provide the condition for the convergence of the recursions in
the robust Kalman filtering algorithm.

E. Connection With the Conventional Kalman Filtering
Algorithm

If there is no stochastic parametric uncertainty in system (3),
i.e., , it can be shown that the robust Kalman filter
reduces to the conventional Kalman filter. Therefore, the robust
Kalman filter can be viewed as an extension of the conventional
Kalman filter to systems with stochastic parametric uncertain-
ties.

Consider the following optimization problem of the conven-
tional Kalman filtering algorithm (see [8] for details):

and

argmin (24a)

where

(24b)

and where are the state space matrices of the
system. The optimal solution to (24a) is

(24c)

Here, we assume is nonsingular, which is a standard
assumption in Kalman filtering; see, for example, [2], [3], and
[8]. The well-known condition for the convergence of the recur-
sions in (24) is given by Proposition A.2 in the Appendix.

The recursions in the robust Kalman filter are based on
solving an optimization problem (16) or equivalently (15)
at each step. In order to show the equivalence between the
robust and the conventional Kalman filtering algorithms under
the condition , it suffices to show that the optimal
solution to (24) is the same as the optimal solution to (15), in
which .

Theorem 3.2:Let be given. Let
be the sequence consisting of the solutions to the optimization
problem (24). Let be the se-
quence consisting of the solutions to the optimization problem

(25a)

where

(25b)

(25c)

(25d)

and is assumed to be positive definite.
Then

and

We note that (25) is a special case of (15) with
. We also note that if the system

is time varying, the equivalence between the robust and
the conventional Kalman filters still holds by replacing

with in Theorem 3.2.
The proof of Theorem 3.2 is given in Appendix A.

Although the set of positive semidefinite matrices is only a partially ordered set, it is well
known that the problem is well defined; see [8].
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As a simple corollary of Theorem 3.2, we have the following
conclusion: If the correlation matrix is exactly known in
advance, the polytope covering is a fixed point at each

; see the recursion (5). The optimization problem (16) turns
out to be equivalent to the optimization problem encountered in
the conventional Kalman filtering problem, with replaced by

and replaced by in (24). In this case, the MMSE
estimation problem can be solved analytically, and the solution
satisfies the Riccati difference equation in (24).

F. Convergence of the Robust Kalman Filter

If the system state-space matrices are time invariant, it is well
known that the recursion in the conventional Kalman filtering
algorithm converges to a steady-state estimator under the con-
ditions listed in Proposition A.2. If system (3) is mean square
stable, the robust Kalman filtering algorithm has a similar con-
vergence property.

Theorem 3.3:Consider the state estimation problem
with system (3), with all the state space matrices being time
invariant and being positive definite.5

1) If there exists with such that

(26)

then the system (3) is mean square stable, and
, where is unique and independent

of the initial condition .
Moreover, if the steady-state matrices ,
where

(27)

satisfy the following condition:
2) is sta-

bilizable, or

has full row rank for all

then the robust Kalman filter converges to a steady-state
LTI estimator, i.e., for any , we have

and is stable,
where is the sequence con-
sisting of the solutions to the robust Kalman filter.

The proof of Theorem 3.3 is given in Appendix A.

IV. NUMERICAL EXAMPLE: EQUALIZER FOR

COMMUNICATION CHANNELS

We present an application of the robust Kalman filtering tech-
niques proposed in this paper toward the design of equalizers for

5This condition can be relaxed toDD + (C X(C ) + D

(D ) ) > 0 wherelim X(k) = X .

Fig. 2. Communication channel with an equalizer.

a communication channel. Consider the following system:

(28)

is a signal that has a power of 0 dB and is transmitted through
the channel. is a white noise that corrupts the received signal
, with a power of 10 dB. The channel model (28) is affected

by time-varying uncertainties that are a combination of both
deterministic and stochastic parametric uncertainties (see for
example, [4]). The initial conditions of the state vectors
and are random variables and satisfy the second moment
conditions

For the channel (28), we design an equalizer to estimate the
input signal (Fig. 2).

We first add one more state variable in (28) so that the new
model of the channel is now

(29)

Assuming a zero mean white noise model for the input signal
, we design an equalizer using the robust Kalman filtering tech-

niques developed in this paper. The first case considered is when
the channel is on its nominal condition and does not have any
uncertainty, i.e., ; this is an ideal channel, and the cor-
responding equalizer is a conventional Kalman filter. In Fig. 3,
we compare a Kalman filter initialized optimally by solving
(22), with Kalman filters initialized using anad hocscheme [2]
( , where and ). The mean square error
(MSE) estimates are obtained by averaging 200 runs. Under the
condition of in channel (29), it can be easily checked
that the Kalman filter for this system converges (see the conver-
gence condition in Proposition A.2). Therefore, after ten steps,
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Fig. 3. Illustration of the performance improvement of the conventional
Kalman filter with optimal initialization.

Fig. 4. Performance comparison between the robust and conventional Kalman
filters.

we can see that the MSE of Kalman filters with different ini-
tializations are close to each other and converge to a constant.
However for the transient performance (less than 10 steps), the
ad hocinitialized Kalman filter is significantly worse than that
of the optimally initialized Kalman filter. This example indi-
cates that the optimal initialization by solving (22) can be su-
perior to anad hocinitialization and can improve the transient
performance of conventional Kalman filters.

In the second example, we compare the performance
of the conventional Kalman filtering algorithm with the
robust Kalman filtering algorithm in the presence of uncer-
tainties. Specifically, the time-varying uncertainties satisfy

, where is deterministic, and
for all and can be measured in real time;is

a zero-mean white noise process with a power of 0 dB and
is independent of and . Fig. 4 shows a comparison of the

experimentally obtained mean square error values, averaged
over 200 runs, obtained with the conventional Kalman filters
and the robust Kalman filter. For a fair comparison, we include
the simulation results of both the conventional Kalman filter
initialized using anad hocscheme and the conventional Kalman
filter initialized optimally by solving (22). For the nonoptimally
initialized conventional Kalman filter, the performance is sig-
nificantly worse than that of the other two filtering algorithms,
which are initialized optimally. For the optimally initialized
conventional Kalman filter, since it has a similar initialization
as the robust Kalman filter, its transient performance at the
beginning of the recursion (less than ten steps) is similar to that
of the robust Kalman filter. However, since the conventional
Kalman filter does not consider the uncertainties in system
matrices, its performance degrades significantly thereafter.
With the robust Kalman filtering algorithm, an upper bound of
the mean square estimation error over all possible uncertainties
is minimized recursively, and therefore, the performance is
much improved. It can be seen from Fig. 4 that after ten steps
of recursions, the robust Kalman filter yields a much lower
mean-squared error than that with the conventional Kalman
filters.

V. CONCLUSION

We have developed a robust Kalman filtering algorithm for
linear time-varying systems with stochastic parametric uncer-
tainties. We have shown that for systems without uncertainties,
the robust Kalman filter reduces to the conventional Kalman
filter; for systems with stochastic parametric uncertainties, it
offers significant improvement in performance. If the system
is mean square stable and the state-space matrices are time
invariant, the robust Kalman filter converges to a steady-state
estimator. Our filtering algorithm is formulated as a convex
optimization problem with linear matrix inequality constraints
and can be implemented numerically efficiently. We have es-
tablished that the techniques presented in the paper can be used
to optimally initialize other recursive algorithms, including
the conventional Kalman filtering algorithm, with an attendant
improvement in transient performance. Finally, we have shown
via a numerical example that the techniques developed in
this paper can be applied toward the design of equalizers for
communication channels with much improved results.

APPENDIX A

Lemma A.1 ([1, p. 131]):The system

(30)

where

and are zero-mean random processes with
, is mean square stable if and
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only if there exists a matrix with such
that

(31)

Moreover, the quadratic Lyapunov function
is a monotonically decreasing function of,

with .
Note that the correlation of the state in (30) satisfies the re-

cursion

where , and is the initial condition.
Lemma A.1 implies that (31) is sufficient and necessary to have

.
The following result about the convergence of the conven-

tional Kalman filtering algorithm is well known. More details
about Proposition A.2 can be found in the literature; see, for ex-
ample [8].

Proposition A.2: Let
and . Suppose . If one of the

following conditions holds.

1) is detectable, and
is stabilizable;

2) is detectable, and

has full row rank for all
then for any initial condition , the sequence of so-
lutions to the recursion (24) converges to a
unique steady-state solution

and

Furthermore,
, and is stable.

Proposition A.3: Let be the sequence consisting of
the solutions to the recursions

(32)

with initial condition , where are con-
stant matrices. The sequence is convergent, and the
limit is independent of if and only if there exists some
matrix such that

(33)

i.e., the system is mean square stable.

Proof: We first show that the sequence obtained
from (32) is convergent, and the limit is independent of if
and only if the sequence obtained from

(34)

is convergent, and .
Suppose the limit of the sequence exists and that

. For any , define
. satisfies the recursion (34) and .

Then, it can be shown that is convergent.
To show that the limit of is unique, suppose that

and are two sequences of solutions to (32)
corresponding to two different initial conditions and

, with and .
Then, it is easily verified that with ,
the sequence consists of solutions of the recursive
equation (34); then, implies .

Now, suppose the limit of the sequence exists and is
independent of . We show that .

For any , let and
be the corresponding sequences from recur-

sion (32). By recursion (34), we have .
Since , we get

.
Finally by Lemma A.1, (33) is necessary and sufficient for

to converge to zero. This completes the proof.
Proof of Theorem 3.2:Starting with the sequence

consisting of the solutions to the optimization
problem (24), it is clear that

and

must be (possibly nonunique) optimizers for (25) [this follows
immediately from (25d)]. Thus, it remains to be shown that

and are the only candidates
as optimizers for (25). In other words, it suffices to show that
for a given , the optimal solutions and
in (25) are unique. However, note that given and

is given simply as ,
and thus, we only need to show that given ,
which solves (25), is unique.

Now, let be the sequence consisting
of the solutions to the optimization problem (25). Assuming
an optimal value for , we consider the optimization
problem (25). For convenience, we introduce new notation for

We also denote

Note that .
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Now, for any since
, it can be easily verified that if

, then

Therefore,
. Thus, is uniquely determined

from .
To show that is unique, it suffices to show

that for any
.

Let and
. Then, we have . We

now consider two cases.

1) If , then

Therefore,
.

2) If , then

After simple manipulations, we get

Since and , we have
. By (25d), this implies that

.
This completes the proof.
Now, we are ready to prove Theorem 3.3, wherein the robust

Kalman filtering algorithm is convergent.
Proof of Theorem 3.3:With all the state space matrices in

system (3) being time invariant, we have ,

and , defined at the bottom of the page. The corre-
lation of the state satisfies the recursion

The mean square stability of system (3) follows directly from
Lemma A.1.

By Proposition A.3, we have , where
is unique and independent of the initial condition

.
With and , where

and are defined in (27), we now define another set of recur-
sions (35a)–(35d), shown at the bottom of the page.

Let and denote the optimal Kalman gains of
(35). Let and denote the optimal Kalman gains
of the robust Kalman filter (15). From Theorem 3.2, (35) has
the same unique optimal solution of and as that
of (24), with replaced by and replaced by . From
Proposition A.2, we have , and

is stable. Thus

where is a uniform bound over and depends
only on .

Let denote the optimal
solution to (15). From (10) and (35b), it follows that for any
small number , there exists such that whenever , we
have

where argmin is a
constant that depends on . is finite if is
bounded.

By setting , we get
, where and are

(35a)

(35b)

(35c)

(35d)
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optimal solutions to recursions (15) and (35) respectively. Next,
we have

Recursively, for , we get

Using standard arguments, we obtain that is also
bounded, with the bound depending only on . Therefore,
there exist finite constants and that depend
on such that for any and

. Thus, we conclude that
is bounded and that

Since can be made arbitrarily small by choosing to be
large enough, we obtain

Similar arguments establish that
and that

.
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