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Chapter 1

Introduction: 3/21/01

The title of this course is “Empirical Research Methods in Financial Engi-
neering.”

“Empirical” means derived from experience, observation, or experiment
4 4
— so we are going to work with data. We'll be doing statistics.

Financial engineering is the construction of financial products such as stock
options.

Financial engineering uses probability models, e.g., those used to derive
the famous Black-Scholes formula.

e are these models supported by financial markets data?

e how are the parameters in these models estimated?

Let’s look ahead to the Black-Scholes formula for the price of a European
call option. “Now” is called time 0. The maturity date of the option is 7.
The option gives us the right to purchase one share of stock for E dollars
at time 7'. Let St be the price of the stock at time 7T'. At time 0, 7 and E are
known but S is unknown.

At time T', St will become known. If at time 7" we learn that S > E then

1



2 CHAPTER 1. INTRODUCTION: 3/21/01

we will exercise the option and purchase one share. We can immediately
sell the share for Sy dollars and earn a profit of S; — E dollars.

If at time 7', S < E then we do not exercise the option. The option expires
and we lose the original cost of the option, but no more.

The value of the option at time 7 is, therefore, max{0, S — E'}. But right
now at time 0, what is the value of the option, i.e., the price for which it
should sell on the market?

Prior to the 1970’s, options were priced by “seat of pants”. Then Black, Sc-
holes, and Merton deduced the correct price of a call option from a math-
ematical model (and much hard thinking).

They assumed that one can lend and borrow at a risk-free rate r. Thus, if
B4 is the price at time ¢ of a risk-free bond purchased for $1 at time 0, then

B, = exp(rt).
Let S; be the price of the underlying stock. They assumed that
Sy =S5y exp(,ut + UWt)a

where 41 is a “drift” or “growth rate,” W, is a Brownian motion stochas-
tic process, and ¢ is a standard deviation that measures the volatility of
the stock. In this course, you will learn exactly what this model means.
Right now, the “take home” message is that there are precise mathemati-
cal models of stock price movements that we can check against the data.
Also, there are important parameters such as y and o that must be esti-
mated from data.

The Black-Scholes formula is
C = @(dl)S() — (I)(dQ)E exp(—rT)
where C'is the price of the option at time 0, ® is the standard normal CDF,

_ log(So/E) + (r +0°/2)T
= T ,

dl and dg = dl — O'\/T.



The formula is, quite obviously, complicated and it not easy to derive, but
it is easy to compute and was hard-wired into calculators almost immedi-
ately; the Black-Scholes formula and hand-held calculators both emerged
in the early 1970’s.

We will be interested in the underlying assumptions behind the formula.
Remember: GI — GO (garbage in, garbage out). If the assumptions don’t
hold, then there is no reason to trust the Black-Scholes formula, despite
the impressive mathematics behind it.

The equation B, = exp(rt) of continuous compounding is the solution to
the differential equation

W:T’Bt.

The general solution is B; = By exp(rt) and B, = 1 since we have assumed
that the bond can be purchased for $1 at time 0.

Where does

St = S() eXp(aWt + /,Lt)
come from? If o were 0, then this would be exponential growth, S; =
So exp(ut), just like the bond price B,. The term oW, comes from the ran-
dom behavior of stock prices. o is a standard deviation, essentially of the

changes in the stock prices. The random process W; is something we will
need to learn much more about; and we will.

In this course we will

e study models fo financial markets (they are complex but fascinating)

e learn to test the models — do they fit financial markets data ade-
quately?

e estimate parameters in the models such as p and ¢ that are essential
for correct pricing of financial products such as a call option.
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Key question: How do the prices of stocks and other financial assets be-
have?

Looking ahead to where this course is going
e We will start by defining “returns” on the prices of a stock
e We will then look at “ARIMA models”
— these are models for “time series,” which are sequences of data
sampling over time
- ARIMA models are stochastic processes
o After looking at returns and time series models of return behavior

we will look at optimal portfolios of risky assets (e.g., stocks) and of
risky assets and risk-free bonds (e.g., US Treasury bills).

- This will take us to the famous Capital Asset Pricing Model
(CAPM)

Looking even farther ahead, we will later return to the pricing of stock
options by the Black-Scholes formula and cover other areas of financial
engineering such as the term structure of interest rates.

But before we get into applications of probability and statistics in financial
engineering, we need to review probability and statistics so that we are all
up to speed.



Chapter 2

Review of Prob and Stats: 3/12/01

2.1 Densities, CDF’s, means, variances, and cor-
relation

random variable — large set of possible values but only one will actually
occur

continuous random variable — X is a continuous random variable if it has
a p.d.f. fx such that

P(X € A) :/Afx(x)dx for allsets A

The CDF of X if .
Fx(x) :=/ fx(u)du

The expectation of X is

+0o0

E(X) ::/ zfx(z)dx

—0o0

The variance of X is

0% = /{x ~B(X)Yfx(z)ds = B{X — E(X)}?

5



6 CHAPTER 2. REVIEW OF PROB AND STATS: 3/12/01
Useful formula: 0% = E(X?) — {E(X)}>.

The standard deviation is the square root of the variance.

A pair of random variables, (X, Y), as a bivariate density fxy(z,y)

Covariance:
oxy = E{X-EOHY-E(M)}] = [{o—B(OHy—E(Y)} fxy (2,y) da dy.
Useful formulas:

e oxy = E(XY) — E(z)E(y)

o oxy = B[{X - E(X)}Y]

o oxy = B[{Y — E(Y)}X]

e oxy = E(XY)if E(X)=0o0r E(Y)=0

The correlation coefficient between X and Y is pxy := oxy/ox0oy.

2.2 Best Linear Prediction

Suppose we observe X and want to predict Y; this can be done if pxy is
not zero.
Best linear prediction means finding 3, and 3; so that

H(fo, p1) == E{Y — (6o + A1 X)}?
is minimized.
H(fo, 1) = E(Y?) = 26E(Y) = 26 E(XY) + (8o + 1 X)*.
Setting the partial derivatives to zero we get

= —E(Y)+ fo+ AE(X) and
= —B(XY)+ BE(X)+ /E(X?).
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After some algebra we find that

By =oxy /0% (2.1)

and
Go=EY)-BAEX)=EY)—-oxy/ox E(X).
Thus, the best linear predictor of " is

V:=0+ 54X =EY)+oxy/o2{X — E(X)}

2.2.1 Prediction Error

The prediction error is Y — V. Tt is easy to prove that E{Y — Y} = 0 so
that the prediction is “unbiased.” With a little algebra we can show that
the expected squared prediction error is

2
B{Y =V =0} = 2 =0} (1 py).
Ox

If we do not observe X, then the best predictor of Y is E(Y') and the ex-
pected squared prediction error is o%. Therefore, p%, is the fraction by
which the prediction error is reduced when X is known.

Example: If pxy = .5, then the prediction error is reduced by 25% by
observing X. If 02 = 3, then the expected squared prediction error is 3 if

X is unobserved by only 2 1/4 if X is observed.

2.3 Conditional Distributions

Let fxy(z,y) be the joint density of a pair of random variables, (X,Y).
The marginal density of X is fx(z) := [ fxv(z, y)dz and similarly for fy..

The conditional density of ¥ given X is

frix(yle) = %@f)
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The conditional expectation of Y given X is just the expectation calculated
using fY|X(y|33)3
E(Y|X =) = [yfrix(yle)dy

which is, of course, a function of z.
The conditional variance of Y given X is

Var(Y|X =) = [{y— B(VIX = 2)}frix (ylz)dy.
Example: Suppose fxy(z,y) =2on0<z<landz <y < 1.
Then the marginal density of X is fx(z) = 2(1 — z).
The conditional density of Y given X is fyx(y|z) = (1—z) ' forz <y < 1.
The conditional expectation of Y is
1+z

BY|]X =) = .

The conditional variance of Y is

_

Var(YV|X =z) = u T

2.4 The Normal Distribution

The standard normal distribution has density

$(x) = \/12_7Texp <_;2> -

(1)

The N(p, 0?) density is

The standard normal CDF is
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® can be evaluated using tables (ugh!) or more easily using software such
as MATLAB or MINITAB.

If X ~ N(u,0?) then P(X < z)=®{(z — p)/c}.

Example: If X ~ N(5,4) then what is P(X < 7). Answer: ®(1) = .8413. In
MATLAB, “cdfn(1) ” gives “ans = 0.8413 ”.

24.1 Conditional expectations and variance

The calculation of conditional expectations and variances can be difficult
for some probability distributions, but it is quite easy for a pair (X, Y) that
has a bivariate normal distribution.

For a bivariate normal pair, the conditional expectation of Y given X equals
the best linear predictor of Y given X:

E(Y|X) = E(Y) + ‘;X—QY{X — B(X)).

The conditional variance of Y given X is the expectation squared predic-
tion error:
Var(Y|X) = o3 (1 — pky)

2.5 Linear Functions of Random Variables

E(aY +b) =aE(Y)+b
where Y is a random variable and a and b are constants. Also,

Var(aY +b) = a®Var(Y).

If X and Y are random variables and w; and w, are constants, then

E(’le + ’(UQY) = ’le(X) + wQE(Y),
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and

Var(w X + wpY) = wiVar(X) + 2w;wyCov(X,Y) + wiVar(Y).

Check that

var X )=o) oty Sy ) (i)

Let X = (Xi,...,Xy)" be a random vector. We define the expectation
vector of X to be

E(X:)
E(Xy)
The covariance matrix of X is
Var(Xl) COV(XI,XQ) ce COV(Xl,XN)
Cov(Xy, X Var(X <o Cov(Xg, X
Covix) = | CovC X Var(Xe) e Cov(Xa, )
Cov(Xy,z1) Cov(Xy,Xs) --- Var(Xy)
Letw = (wy,...,wy)' be a vector of weights. Then

N
i=1
is a weighted average of the components of b.X; it is a random variable.

One can show that
Ew'X)=w"{E(X)}.

Also
N N

Var(w'X) =Y > w;w; Cov(X;, X;)

i=1j=1

This result can be expressed more simply using vector/matrix notation:

Var(w'X) = w'COV(X)w. (2.2)
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Important fact: If X has a multivariate normal distribution, then w' X is
a normally distributed random variable.

Example: Suppose that E(X;) = 1, B(X;) = 1.5, 0%, = 1, 0%, = 2, and
Cov(Xy, Xy) = .5. Find E(.3X; + .7X5) and Var(.3X; + .7X5).
If (X, X,)T is bivariate normal, find P(.3X; + .7X, < 2).

Answer: E(.3X; + .7X,) = 1.35, Var(.3X; + .7X,) = 1.28, and P(.3X; +
TX, < 2) = ®{(2 —1.35)//1.28} = ®(.5745) = .7172.

2.6 Maximum Likelihood Estimation

Maximum likelihood is the most important and widespread method of
estimation. Many well-known estimators such as the sample mean and the
least-squares estimator in regression are maximum likelihood estimators.
Maximum likelihood is a very useful in practice and tends to give more
precise estimates than other methods of estimation.

LetY = (Y3,...,Y,)" be a vector of data and let @ = (64, ...,6,)" be a vec-
tor of parameters. Suppose that f(y; 6) is the density of Y which depends
on the parameters.

Example: Suppose that Y1, ..., Y, are IID N(u,0?). Then 0 = (u.0?). Also,

“11 2o (™ “)—Un(;)mexp{%f(n—u)?}-

=19 i=1

L(0) := f(Y;0) is called the “likelihood function” and is the density eval-
uated at the observed data. It tells us the likelihood of what was actually
observed. The maximum likelihood estimator (MLE) is the value of 0 that
maximizes the likelihood function. In other words, the MLE is the value
of @ that maximizes the likelihood of the data that was observed. We will
denote the MLE by 0 wmr. Often it is mathematically easier to maximize
log{L(0)}; since the log function is increasing, maximizing log{L(0)} is
equivalent to maximizing L(6).
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Example: In the example above, it is an easy calculus exercise to show that
fivr = Y. Also, with p fixed at its MLE, the MLE of 2 solves

d N n 1 & .
0= ﬁ log{L(,uML,a2)} = ——F 4 ? Z(Y; — ,UML)2-

The solution to this equation is

PSR R
0-12\4L = E Z(Y; — Y)2

i=1

The MLE of ¢2 has a small bias. The “bias-corrected” MLE is the so-called
“sample variance” defined as

1
n—1

82:

> (=T

In a “textbook example” such as the one above, it is possible to find an ex-
plicit formula for the MLE. With more complex models, there is no explicit
formula for the MLE. Rather, one writes a program to compute log{L(8)}
for any value of 8 and then using optimization software to maximize this
function numerically. For some models such as the ARIMA time series
models discussed in Chapter 4, there are software packages, e.g, MINITAB
and SAS, that compute the MLE; the computation of the log-likelihood
function has been pre-programmed.

2.7 Likelihood Ratio Tests

Likelihood ratio tests, like maximum likelihood estimation, are a conve-
nient, all-purpose tool. We will consider likelihood ratio tests when we
wish to test a restriction on a subset of the parameters. Let

- (2)

be a partitioning of the parameter vector into two components. Suppose
we want to test a hypothesis about 8; without making any hypothesis
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about the value of 8,. For example, we might want to test that a population

mean is zero; then 8; = p and 0, = o2

Let 6, be the hypothesized value of 8, e.g., 8, = 0 if we want to test
that 4 is zero. Then the hypotheses are

HO : 01 = 0170 and H1 . 0() # 01’0.
For example, if we are testing that y is zero then the hypotheses are
Ho:u=0 and H;:pu #0.

Let 0 w1, be the maximum likelihood estimator and let 92,0 be the value of
0, that maximizes L(6) when 6; = 6, .

Idea: If Hj is true, then L(6,, 52,0) should be similar to L(8). Otherwise,
L(81,0, 85,) should be smaller that L(8).

The likelihood ratio test rejects H if
2[log{L(Bu1)} — log{L(B:,,820)}] > X dim@,-

Here dim(#,) is the dimension (number of components) of 8; and x2, is
the o upper-probability value of the chi-squared distribution with & de-
grees of freedom; the probability above x?, , is a.

Example: Suppose again that Y7, ...,Y, are IID N(u,0?) and 8 = (u.0?).
We want to test that yu is zero. Note that

log(L) = —— log(27r) - log Z
If we evaluate log(L) at the MLE, we get

log{L(Y,53,)} = —5 {1+ log(2) + log(5%,.)}.

The value of 02 that maximizes L when p = 0 is

_ L5y
_n;Yi'
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Therefore,

o . 52 i Y
Q[IOg{L(Y,O'?ML)}_lOg{L(O’US)}] = nlog <312\/(I)L> = nlog ( n (}_fj - 7)2) '
i=1

The likelihood ratio test rejects Hj if

i Y7 2
nlog( S >>Xa'
(Y1 =Y)? !



Chapter 3

Returns: 3/12/01

3.1 Prices and returns

Let P, be the price of an asset at time ¢.

Assuming no dividends the net return is

P, P, — P,
R=—t —1=2t_"t1
Py Py
The simple gross return is
Py
=14+R
Py T

Example: If P, = 2 and P,;; = 2.1 then

1+ R, =105 and R,=.05.
The gross return over the most recent k periods (¢t — k to t) is
1+ Rt(k) =
P _ (B)(Pt—l>.“<Pt—k+l>
Py i Py ) \ Py Py i

= (1+R) -1+ Ri—gys1)

15
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Returns are scale-free, meaning that they do not depend on units (dollars,
cents, etc.). Returns are not unitless. Their unit is time; they depend on the
units of ¢ (hour, day, etc.).

Example:

Time t—2 t—-1 t t+1
P 200 210 206 212

R 1.05 981 1.03
Ri(2) 1.03 1.01
R,(3) 1.06

3.2 Log returns

Continuously compounded returns, also known as “log returns” are:

P,
ry :=log(1 + R;) = log (P—t> =Pt — Pt—1
t—1
where
Py := log(P)

[Notation: log(z) will mean the natural logarithm of z throughout these
notes. log;y(z) will be used to denote the logarithm to base ten, if it is
needed.]

Advantage — simplicity of multiperiod returns

ri(k) = log{l+ Ri(k)}
log{(14+ R)---(1+ Ry_ys1)}
log(14+ Ry) + - - +1og(1 4+ Ri—g41)

= Tt Tt Tk
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3.3 Behavior of returns

What can we say about returns?
e They cannot be perfectly predicted — i.e., they are random.

e If we were ancient Greeks, we would think of the returns as deter-
mined by the Gods or Fates (three Goddesses of destiny). The Greeks
did not seem to realize that random phenomena do exhibit some reg-
ularities such as the law of large numbers and the central limit theo-
rem.

Peter Bernstein has written an interesting popular book “Against the Gods:
The Remarkable Story of Risk.” He chronicles the developments of prob-
ability theory and our understanding of risk.

It took a surprisely long time for proability theory to develop. The ancient
Greeks did not have probability theory.

Probability arose out of gambling during the Renaissance.

University of Chicago economist Frank Knight (1916 Cornell PhD) distin-
guishes between

e measurable uncertainty or “risk proper” (e.g., games of chance) where
the probabilities are known

e unmeasurable uncertainty (e.g., finance) where the probabilities are
unknown

At time t — 1 P, and R; are not only unknown, but we do not know their
probability distributions.

However, we can estimate this probability distribution if we are willing to
make an assumption.

Leap of Faith
Future returns will be similar to past returns.
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More precisely, the probability distribution of P, can be determined from
past data
With this (big) assumption, we can get somewhere — and we will!

Asset pricing models (e.g. CAPM) use the joint distribution of a cross-
section { Ry, ..., Rt} of returns on N assets at a single time ¢

Other models use the time series {R;, Ro, ..., R;} of returns on a single
asset. We will start with a single asset.

3.4 Common Model — IID Normal Returns

Here R;, R;, ... are the returns from a single asset. A common model is
that they are

1. mutually independent
2. identically distributed, i.e., they have the same mean and variance
3. normally distributed

IID = independent and identically distributed

There are (at least) two problems with this model:

e The model implies the possbility of unlimited losses, but liability is
usually limited; R; > —1 since you can lose no more than your in-
vestment

o 1+Ri(k)=01+R;)(1+ Ri—1)--- (1 + Rt_g41) is not normal — sums
of normals are normal but not so with products.

3.5 The Lognormal Model

A second model assumes that the continuously compounded single-period
returns, a.k.a. the log returns and denoted by r;, are IID. Recall that the log
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return is
re = log(1 + Ry)

where 1 + R; is the simple gross return

Thus, we assume that
log(1 + R;) ~ N(p,0?)

so that 1 + R; = exp(normal r.v.) > 0 so that R; > —1. This solves the first

problem.
Also,

1 + Rt(lf) - (1 + Rt) R (1 + Rtfk—}—l)
= exp(ry) - --exp(ri—k+1)
= exp(ry+ -+ re_gy1)-

Therefore,

log{l + Rt(k)} =T —+ e Ti—k+1

Sums of normals are normal = the second problem is solved — normality
of single period returns implies normality of multiple period returns.

The lognormal distribution goes back to Louis Bachelier (1900).
e dissertation at Sorbonne called The Theory of Speculation

e Poincare: “M. Bachelier has evidenced an original and precise mind
[but] the subject is somewhat remote from those our other candidates
are in the habit of treating.”

e Bachelier was awarded “mention honorable” rather than “mention
trés honorable” — Bachelier never found a decent academic job.

e Bachelier anticipated Einstein’s (1905) theory of Brownian motion.

In 1827, Brown, a Scottish Botanist, observed the erratic, unpredictable
motion of pollen grains under a microscope
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Einstein (1905) — movement due to bombardment by water molecules
— Einstein developed a mathemetical theory giving precise quantitative
predictions.

Later, Norbert Wiener, an MIT mathematician, developed a more precise
mathematical model of Brownian motion. This model is now called the
Wiener process.

[Aside: 1905 was a good year for Einstein. He published:
e the paper on introducing special relativity

e a paper on quantization of light which led quantum theory (which
he never embraced — “God does not play dice with the world”)

e the paper on Brownian motion]
Bachelier stated that

e “The mathematical expectation of the speculator is zero” (this is es-
sentially true of short-term speculation but not of long term invest-

ing)

e “Itis evident that the present theory solves the majority of problems
in the study of speculation by the calculus of probability”

Bachelier’s thesis came to light accidently more than 5 years after he wrote
it. Jimmie Savage found a book by Bachelier in the U. Chicago library and
asked other economists about it. Paul Samuelson found Bachelier’s thesis
in the MIT library. The English translation was published in 1964 in The
Random Character of Stock Market Prices, an edited volume.

Example: A simple gross return, (1 + R), is lognormal(0,(.1)?). What is
P(1+R<.9)2
Answer: Since log(.9)= —.105,

P(14R < .9) = P(log(1+R) < log(.9)) = ®{(—.105—0/.1} = ®(—1.05) = .1469
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In MATLAB, cdin( —1.05) = .1469 .

Example:

Assume again that 1 + R is log normal(0,(.1)?). Find the probability that a
simple gross two-period return is less than .9.

Answer: The two-period gross return is log normal(0, 2(.1)?) so this proba-
bility is

log(:9) | _ /_ _
o {m} = @(—.745) = .2281.

Let’s find a general formula for the kth period returns:
Assume that

o 1+ Ry(k) =1+ R (1 + Rp—psr)-
e log(1+ R;) ~ N(u,0?) forall 5
e The {R;} are mutually independent.

Then log{1 + R;(k)} is the summ of k independent N (1, 0%) random vari-
ables, so that log(1 + Ry(k)) ~ N(ku, ko?).

P(1+ Ri(k) <z)= @{bg(\x/)_ik;]w}.

3.6 Random Walk

Let Z;, Z,, . .. be IID with mean p and standard deviation ¢. 7, is an arbi-
trary starting point. Let Sy = Z; and

St C:ZO+Z1+"'+Z75, tZl

So, 51, ... is called a random walk. We have E(S;|Zy) = Z; + pt and
Var(S;|Zy) = o?t.
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Random Walk
T T

— mean
8r - = mean + SD P!
- - mean - SD Pie

time

Figure 3.1: Mean and probability bounds on a random walk with Sy = 0, p = .5
and o = 1. At any given time, the probability of being between the probability
bounds (dashed curves) is 68%.

3.6.1 Geometric Random Walk

Recall that log{1 + R;(k)} = 7+ + - - - + 7t—g+1- Therefore

P,
Py

=14 Ry(k) = exp(rs + -+ -+ 1—p41)

so taking k =t we have
P, =Pyexp(ry+riq1+---+11).

Conclusion: If the log returns are IID normals, then the process {P, : t =
1,2,...} is the exponential of a random walk. We call such a process a
“geometric random walk”.

If r = log(1 + R) is N(u, 0?), then the median of R is exp(u) — 1 since

P(R < exp(u)~1) = PI+R < exp(u) = P(r < p) = P(N(1,0%) < ) = 3.
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Lognormal densities

— p=0, 0=1
-- p=l,0=1
-- u=0,0=1.2 [

density

Figure 3.2: Log normal densities.

3.7 Are log returns really normally distributed?

There are several ways to check whether log returns are really normally
distributed. One way is to look at a normal probability plot of the log
returns to see if the plot is approximately a straight line. Another method
is to look at the sample skewness and kurtosis of the log returns and to
check if their values are near those of the normal distribution; any normal
distribution has a skewness coefficient of 0 and a kurtosis of 3.

Suppose with have a time series of log returns, ry,..., 7, ..., on some
asset. The sample skewness, denoted by S, is

1 -
§=_ ( )
T

o

The sample kurtosis is The sample skewness, denoted by S, is

= 1 Tt—ﬁ4
K=— .
72 ("57)
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The “excess kurtosis” is K — 3. Both the sample skewness and the excess
kurtosis should be near 0 if the log returns are normally distributed.

Table 1.1 of Campbell et al. gives S and K — 3 for several market indices
and common stocks. In that table, S is generally close to zero, which indi-
cates that log returns are not very skewed. However, the excess kurtosis is
typically rather large for daily returns and positive though not as large for
monthly returns. By the CLT, the distribution of log returns over longer
periods should approach the normal distribution. Therefore, the smaller
excess kurtosis for monthly log returns, in contrast to daily log returns, is
expected. The large kurtosis of daily returns indicates that the are “heavy-
tailed.”

Normal probability plots can be supplemented by tests of normality based
on the sample CDF, F. F(z) is defined to be the proportion of the sam-
ple that is less than or equal to z; if 10 out of 40 data points are 3 or
less then F\(3) = .25. Normality is tested by comparing the sample CDf
with the normal CDF with mean and variance equal to the sample mean
and variance, i.e., with compare F(z) with ®{(z — fi)/s}. Three common
tests of normality that compare the sample CDF with the normal CDF are
the Anderson-Darling test, the Shapiro-Wilks test, and the Kolmogorov-
Smirnov test. All three are available on MINITAB. Actually, MINITAB
uses the Ryan-Joiner test which is close to the Shapiro-Wilks test. In MINI-
TAB, go to “Stat,” then “Basic Statistics,” and then “Normality test.” You
will need to choose one the three tests. The output is a normal plot plus
the results of the test. You can re-run the procedure to run the other tests.

The Kolmogorov-Smirnov test is based on the maximum distance between
the sample CDF and the normal CDF.

The Shapiro-Wilks test is closely tied to the normal probability plot, since
it is based on the correlation between the normal quantiles and the sample
quantiles. The correlation measures how close the normal plot is to being
a straight line.
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CDF’s and quantiles are closely related. In fact, quantiles are given by the
inverse of the CDF function; if a random variable X has CDF F then the
pth quantile of X is F~1(p) since P{X < F~1(p)} = F{F~'(p)} = p.

Let’s look at daily returns for GE common stock from December 1999 to
December 2000. The daily price P, is taken to be the average of the high
and the low for the day. It might have been better to use the closing price
for each day. Why?

As can be seen ifn Figure 3.3, the net returns R and the log returns R are
very similar. A normal plot is roughly linear.

The log return have a sample mean, standard deviation, skewness, and
excess kurtosis of .00014, .0176, -.094, and .094, respectively. The values of
the sample skewness and excess kurtosis suggest than the log returns are
approximately normally distributed.

From MINITAB, the Kolmogorov-Smirnov, Anderson-Darling, and Ryan-
Joiner tests of normality have a p-values of .15, .40, and .10, respectively.
Since each p-value exceeds .05, each test would accept the null hypothesis
of normality at a = .05.

3.7.1 Do the GE daily returns look like a geometric random
walk?

Figure 3.4 shows five independent simulated geometric random walks
with the same parameters as the GE daily log returns. Note that the ge-
ometric random walks seem to have “patterns” and “momentum” even
though they do not. The GE log returns look similar to the geometric ran-
dom walks.

It is somewhat difficult to distinguish between a random walk and a geo-
metric random walk. Figure 3.5 shows three independent simulated time
series. For each pair, the log price series (a random walk) is plotted on
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the left while the price series (a geometric random walk) is plotted on the
right. Note the subtle differences between the prices and the log prices.

We prefer the geometric random walk model to the random walk model,
because the geometric random walk model is more realistic: the geometric
random walk implies non-negative prices and net returns that are at least
—1.

This graphical comparison of GE prices to geometric random walks is not
strong evidence in favor of the geometric random walk hypothesis. This
hypothesis implies that the log returns are mutually independent and, there-
fore, uncorrelated. Therefore we should check for evidence that the log
returns are correlated. If we find no such evidence, then we have more
reason to believe the geometric random walk hypothesis.
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GE, daily - 12/17/99 to 12/15/00
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Figure 3.3: GE daily returns. The first plot is the prices. The second and third are
the net returns and the log returns. The fourth plot is a normal probability plot of
the log returns. The final plot is of the absolute log returns; there is a scatterplot
smooth to help show whether the volatility is constant.
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Figure 3.4: Five independent geometric random walks and GE daily log returns.
The geometric random walks have the same expected log return, volatility, and

starting point as the GE log returns.
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3.8 Portrait of an econometrician, Eugene Fama

This material is taken from Chapter 7 of Capital Ideas by Peter Bernstein.

Fama was born in 1939 in Boston, majored in French at Tufts, and was an
outstanding student-athlete.

In college, Fama earned extra money working for Harry Ernst who pub-
lished a stock market newsletter:

e Fama’s job was to find workable buy and sell signals.

e Ernst believed that trends, once in place, would continue because of
“price momentum.”

e Bernstein writes that “Fama’s efforts to develop profitable trading
rules were by no means unsuccessful” but “the ones he found worked
only on the old data, not on the new.”

— like many other investors Fama found that rules that worked
well on “backtests” couldn’t beat the market when applied in
real time.

— the market environment would shift or too many people would
be using the same strategy

Fama decided to go to business school to learn what was really going on.
e 1964 doctorate at University of Chicago.

e he thought of going to Harvard but was told that he was “more in-
tellectual than the typical Harvard type”

Fama stayed at Chicago where he taught finance.

e scholars at Chicago were keenly interested in collecting facts (empir-
ical research!)
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e at Chicago, James Lorie and Lawrence Fisher were demonstrating
what the computer could offer to economic research

— 1964: Lorie and Fisher published a “bombshell” — $1000 in-
vested in 1926 would grow to almost $30,000 in 1960, a growth
of over 9% a year (log(30)/35 =.097)

* Remember: 1929 was the great crash and the ensuing great
depression lasted until the US entered WW 1I in the 40’s.
This was not exactly a favorable time for investing.

* These findings increased the interest in stocks as long-term
investments

e 1965: Fama published “The Behavior of Stock Market Prices” (his
thesis) in Journal of Business.

— aless technical version was published in 1966 as “Random Walks
in Stock Market Prices” in Financial Analysts Journal.
— the less technical version was reprinted in Institutional Investor.

e Fama’s first target was “technical analysis” as practiced by so-called
“chartists.”

— technical analysts believe that future prices can be predicted
from past patterns

— Charting stock prices was once fashionable

* I remember as a young child my grandmother explaining
to me how to chart stock prices.

— Fama: “The chartist must admit that the evidence in favor of the
random walk model is both consistent and voluminous, whereas
there is precious little published in discussion of rigorous em-
pirical test of various technical theories.”

e Fama’s next target was “fundamental analysis” as practiced by secu-
rities analysts.
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— Fundamental analysts examine accounting data, interview man-

agement, and look at economic forecasts, interest rates, and po-
litical trends.

Selecting stocks by fundamental analysis seems to do no better
than using a dartboard

Of course, good management, favorable economic trends, etc.
influence the prices of assets, but Fama claimed that this infor-
mation is already fully reflected in stock prices by the time we
learn it — markets react instantaneously to information.

Security analysis is essential in order for stocks to be priced cor-
rectly, but ironically it means that there are few discrepancies
between actual prices and the values of stocks

William Sharpe discussed the antagonism of professional in-
vestors to the random walk theories of Fama and other aca-
demics. He stated that “Interestingly, professional economists
seem to think more highly of professional investors than do
other professional investors.” (Later we will learn more about
Sharpe, the economist who developed the CAPM and winner
of the Nobel Prize.)

3.9 Other empirical work related to Fama’s

Fama’s work was preceded by that of other researchers.

e In 1933 Alfred Cowles published “Can stock market forecasters fore-
cast?” The three-word abstract stated “It is doubtful.” The article
appeared in the brand-new journal Econometrica. Econometrica is now
the leading journal in econometrics.

— Cowles analyzed the track records of:

* 16 leading financial services that furnished their subscribers
with selected lists of common stocks
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* purchases and sales of stock by 20 leading fire insurance
companies

% 24 publications by financial services, financial weeklies, bank
letters, etc.

* editorials in The Wall Street Journal by William Peter Hamil-
ton, an expounder of the “Dow Theory” due to Charles
Dow (the Dow of Dow-Jones). Dow compared stock prices
to tides and ocean waves; the tides were a way to explain
“price momentum.”

— Cowles found that only 6 of 16 financial services had achieved
any measure of success

* even the best record could not be definitely attributed to
skill rather than luck (one needs statistical analysis to reach
such a conclusion)

— In 1944, Cowles published a new study with basically the same
conclusions.

e In 1936, Holbrook Working published a paper in The Journal of the
American Statistical Association on commodity prices.

— These were once believed to have rhythms and trends.

- Working found that he could not distinguish the price changes
from an independent sequence of random changes.

— Perturbed, Working took his data to professional commodity
traders.

* He also showed them graphs of random series.

* The professionals could not distinguish the random series
from real commodity prices.

* of course, Working’s study does not prove anything about
stock returns, but it is an interesting example of a finan-
cial time series where momentum was thought to exist, but
where no evidence of momemtum was found in a statistical
analysis.
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e Maurice Kendall published the paper “The analysis of economic time
series” in the Journal of the Royal Statistical Society in 1953.

- Kendall wrote “the patterns of events in the price series was
much less systematic than is generally believed,” and

— “Investors can, perhaps, make money on the Stock Exchange,
but not, apparently by watching price movements and coming
in on what looks like a good thing ... But it is unlikely that any-
thing I say or demonstrate will destroy the illusion that the out-
side investor can make money by playing the markets, so let us
leave him to his own devices.”

There is no question as to whether one can make money in the stock mar-
ket. Over the long haul, stocks outperform bonds which outperform sav-

ings accounts. The question is rather whether anyone can “beat the mar-
ket.”

3.10 Technical Analysis

“A Random Walk Down Wall Street” was written by Burton G. Malkiel, a
professor of economics at Princeton. It is a perennial best seller and has
been revised several times. It contains much sensible advice for the small
investor. This book is also quite humorous, and the discussion of technical
analysts is particularly amusing (unless you are a technical analyst).

Malkiel writes

I, personally, have never known a successful technician, but I
have seen the wrecks of several unsuccessful ones. (This is, or
course, in terms of following their own technical advice. Com-
missions from urging customers to act on their recommenda-
tions are very lucrative.)

Malkiel describes many of the technical theories, including the Dow The-
ory, the Filter System, and the Relative-Strength system, which advises
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buying stocks that have done well recently. There is also the hemline the-
ory which predicts price changes by the lengths of women’s dresses and
the super bowl indicator which says that “a victory by an NFL team pre-
dicts a bull market, whereas a victory by a former AFL team is bad news
for stock-market investors.” There is also the odd-lot theory. It is based
on the impeccable logic that a person who is always wrong is a reliable
source of information—just negate whatever that person says. The believe
is that the odd-lot trader is precisely that sort of person. It turns out that
the odd-lotter isn’t such a dolt after all.

Human nature seems to find randomness very hard to accept. For exam-
ple, sports fans have many theories of streaks in athletics, e.g., the “hot
hand” theory of basketball. Extensive testing of basketball players” per-
formances have show no evidence of streaks beyond what would be ex-
pected by pure chance. The point is that streaks will occur by chance, but
you cannot make money on the basis of random streaks since you cannot
predict if they will continue.

Why are technicians hired? Malkiel has the skeptical view that it is because
their theories recommend a lot of trading. “The technicians do not help
produce yachts for the customers, but they do help generate the trading
that provides yachts for the brokers.”

3.11 Fundamental Analysis

The practitioners of fundamental analysis are called security analysts. Their
job is basically to predict future earnings of companies, since it is future
earnings that ultimately drive prices.

Although few on Wall Street still have much faith in technical analysis,
there is much faith in fundamental analysis. However, some academics
studying the financial markets data have come to the conclusion that secu-
rity analysts can do no better than blindfolded monkeys that throw darts
at the Wall Street Journal.
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3.12 Efficient Markets Hypothesis (EMH)

As evidence accumulated that stock price fluctuated like random walks,
economists sought a theory as to why that would be so. In 1965 Paul
Samuelson published a paper “Proof that properly anticipated prices fluc-
tuate randomly.” The idea is that random walk behavior is due to the very
efficiency of the market.

e A market is information efficient if prices “fully reflect” available in-
formation

o A market is “efficient with respect to an information set” if prices
would be unchanged by revealing that information to all participants

— this implies that it is impossible to make economic profits by
trading on the basis of this information set

e This last idea is the key to testing (empirically) the EMH.

3.12.1 Three types of efficiency

weak-form efficiency the information set includes only the history of prices
or returns

semi-strong efficiency the information set includes all information that is
publically available

strong-form efficiency the information set includes all information known
to any market participant
Weak-form efficiency = technical analysis will not make money

Semistrong-form efficiency = fundamental analysis will not help the av-
erage investor



3.12. EFFICIENT MARKETS HYPOTHESIS (EMH) 37

3.12.2 Testing market efficiency

The research of Fama, Cowles, Working, and Kendall just described tests
the various forms of the EMH. Cowles’s work supports the semi-strong
and perhaps the strong form of the EMH.

In their book Investments, Bodie, Kane, and Marcus discuss some of the
issues involved when testing the EMH. One is the magnitude issue. No
one believes that markets are perfectly efficient. The small inefficiencies
might be important to the manager of a large portfolio. If one is managing
a $5 billion portfolio, beating the market by .1% results in a $5 million
increase in profit. This is clearly worth achieving. Yet, no statistical test is
likely to undercover a .1% inefficiency amidst typical market fluctuations.
The S&P 500 index has a 20% standard deviation in annual returns.

Another issue is selection bias. If there is someone who can consistently
beat the market, they probably are keeping that a secret. We can only test
market efficiency by testing methods of technical or fundamental analy-
sis that are publicized. These may be the ones that don’t reveal market
inefficiencies.

Another problem is that for any time periods, by chance there will be some
investment managers that consistently beat the the market.

e if 2,000 people each toss a coin 10 times, it is likely that at least one
will get 10 heads since

2,000 % 2719 = 1.95.

Using the Poisson approximation to the binomial, the probability
that no one tosses 10 heads is exp(—1.95) = .14.

If some does toss 10 heads, it would be a mistake to say that that
person has skill in tossing heads.

e Peter Lynch’s Magellan Fund outperformed the S&P 500 in 11 of 13
years ending in 1989. Was Lynch a skilled investment manager or
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just lucky? (If he really was skilled, then this is evidence against the
semi-strong form of the EMH.)

Campbell, Lo, and MacKinlay and Bodie, Kane, and Marcus discuss much
of the empirical literature on testing the EMH and give references to the
original studies.

Fama was written a review article:
Fama, E. (1970), “Efficent Captial Markets: A Review of Theory and Em-
pirical Work,” Journal of Finance, 25, 383—417.

There is a sequel as well:
Fama, E., (1991), “Efficient Capital Markets: II,” Journal of Finance, 46,
1575-1618.

The Journal of Finance, as well as many other journals in economics and
finance, are available online at JStor:

http:/ /www.jstor.org/cgi-bin/jstor/listjournal

However, the most recent five years of these journals are not available
online.

Good course project: Read one or more of the studies of the EMH and
prepare a report summarizing the work. The two review articles by Fama
could help you find studies that would interest you. Using some new
financial markets data, try to replicate some of original work.

3.13 Summary

Let P, be the price of an asset at time ¢. Then P,/P,_, is the simple gross
return and R; = P;/P,_; — 1 is the simple net return. (“Simple” means one
period.) The gross return over the last k periods is 1+ R,(k) = P,/ P,—. Let
pt — log(P;). The (one-period) log return is r, = py — pi_1. Ry = 14
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Log returns are often models as geometric random walks. This model im-
plies that log returns are mutually independent; one cannot predict future
returns from past returns. The model also implies that R, is lognormally
distributed.

Empirical research by Eugene Fama, Alfred Cowles, Holbrook Working,
Maurice Kendall, and other ecomometricians supports the geometric ran-
dom walk model.

The geometric random walk suggest the efficient market hypothesis (EMH)
that states that all valuable information is reflected in the market prices;
price changes occur because of unanticipated new information. There are
three forms of the EMH, the weak form, the semi-strong form, and the
strong form.
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Chapter 4

Univariate Time Series Models:
3/12/01

4,1 Time Series

A univariate time series is a sequence of observations taking over time, for
example, a sequence of daily returns on a stock. A multivariate time series
is a sequence of vectors of observations taking in time, for example, the
sequence of vectors of returns on a fixed set of stocks.

In this chapter, we will study statistical models for univariate times series.
These models are widely used in econometrics as well as in other business
and OR applications. For example, time series models are routinely used
to model the output of simulations.

4.2 Stationary Processes

A process is stationary if its behavior is unchanged by shifts in time. More
precisely X, X»,...1is a weakly stationary process if

e E(X;) = p(aconstant) for all 4

e Var(X;) = o2 (a constant) for all ;

41
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e Corr(X;, X;) = p(|¢ — j|) for all i and j

Thus, the mean and variance do not change with time and the correla-
tion between two observations depends only on the time distance between
them. For example, if the process is stationary then the correlation be-
tween X, and Xj is the same as the correlation between X; and X, since
each pair are separated from each other by three units of time.

p is called the correlation function of the process. Note that p(h) = p(—h).
Why?

The covariance between X; and X, is denoted by (k). ¥(-) is called the
autocovariance function. Note that y(h) = 0?p(h) and that 7(0) = o2 since

p(0) = 1.

421 Weak White Noise

White noise is the simplest example of a stationary process. X, Xs,...isa
WN(0,0?%) process (weak white noise process) if

e F(X;)=0forall¢
e Var(X;) = 02 (a constant) for all i
e Corr(X;,X;)=0foralli# j
If in addition, X;, X, ... are independent normal random variables, then

the process is called a Gaussian white noise process. (The normal distribution
is sometimes called the Gaussian distribution.)

A weak white noise process is weakly stationary with

p(0) = 1
p(t) = 0if t#0.
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Properties of Gaussian white noise

E(Xz'+t|X1, e ,XZ) =0 forall ¢ > 1.

(You cannot predict the future, because the future is independent of the
past and present.)

To us, “white noise” will mean weak white noise, which includes Gaussian
white noise as a special case.

White noise (either weak or Gaussian) is uninteresting in itself but is the
building block of important time series models used for economic data.

4.2.2 Estimating parameters of a stationary process

Suppose we observe y, ..., y, from a stationary process. To estimate the

mean p and variance o? of the process we use the sample mean 3 and

sample variance s*.

To estimate the autocovariance function we use

n—h

Y(h) =n"" 3 (Wien = T)(y; = 7)-

Jj=1

To estimate p(-) we use the sample autocorrelation function (SACF) de-
fined as

4.3 AR(1) processes

Let €1, €2, ... be WH(0,02). We say that yi, s, . .. is an AR(1) process if for
some constant parameters p and ¢

Y — = O(Ys—1 — 1) + & (4.1)
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for all ¢.

If |¢| < 1, then yy, ... is a weakly stationary process. Its mean is p. Simple
algebra shows that (4.1) can be rewritten as

Y= (1—@)u+ dys1 + e (4.2)

Remember the linear regression model, y; = 3y + 312, + €; from your statis-
tics courses. (4.2) is just a linear regression model with §y = (1 — ¢)u and
B = ¢. If it is assumed that x = 0, then 5, = 0 as well. Linear regression
with 3, = 0 is the “linear regression through the origin model.” The term
autoregression refers to the regression of the process on its own past values.

When |¢| < 1 then

o0
Y =p+ e+ g1+ ¢l o+ = p+ Z ¢"ern (4.3)
h=0

(infinite moving average (MA(co)) represention).

4.3.1 Properties of a stationary AR(1) process

When |¢| < 1 (stationarity), then

1.
E(y)=p Wt
2.
o2
v(0) = Var(y;) = . ‘¢2 Vit
3.
o2gM
v(h) = Cov(ys, Yesn) = A Vt.

-4



4.3. AR(1) PROCESSES 45
4.

p(h) = Corr(ys, yrin) = ¢ V.

It is important to remember that these formulas hold only if |¢| < 1 and
only for AR(1) processes. If |¢| > 1, then the AR(1) process is nonstation-
ary, and the mean, variance, and correlation are not constant.

These formulas can be proved using (4.3). For example

o0 00 2
Var(y;) = Var (Z qﬁhet_h) —o?y gt = T
h=0 h=0 1-¢

Also, for h > 0

00 . ] 2 4|k
Cov (Z 6t—i¢zaz€t+h—j¢J) = fi¢¢2-

i=0 §=0

Be sure to distinguish between o2 which is the variance of the stationary
white noise process €y, €, ... and v(0) which is the variance of the AR(1)
process yi, ys, - - .. We can see from the result above that v(0) is bigger than
o2 unless ¢ = 0 in which case y; = .

4.3.2 Nonstationary AR(1) processes
Random Walk

If p =1 then
Y= Y—1 T €

and the process is not stationary. This is the random walk process we saw
in Chapter 3.

It is easy to see that
Yt =Yo+ €1+ 6.
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Suppose we start at the process at an arbitrary point yo. Then E(vy:|y0) = vo
for all ¢, which is constant but depends entirely on the arbitrary starting
point. Moreover, Var(y;|yo) = to? which is not stationary but rather in-
creases linearly with time. The increasing variance makes the random
walk “wander.”

AR(@) processes when |¢| > 1

When |¢| > 1, an AR(1) process has explosive behavior. This can be seen in
Figure 4.1. This figure shows simulations of 200 observations from AR(1)
processes with various values of ¢. The explosive case where ¢ = 1.02
clearly is different than the other cases where |¢| < 1. However, the case
where ¢ = 1 is not that much different than ¢ = .9 even though the former
is non-stationary while the latter is stationary.

The ability to distinguish the three types of AR(1) processes (stationary,
random walk, and explosive) depends on the length of the observed se-
ries. For short AR(1), it is very difficult to tell if the process is stationary,
random walk, or explosive. For example, in Figure 4.2, we see 30 obser-
vations from processes with the same parameter values as in Figure 4.1.
If we observe the AR processes for longer than 200 observations, then the
the behavior of ¢ = .9 and ¢ = 1 processes would not look as similar as
in Figure 4.1. For example, in Figure 4.3 there are 1,000 observations from
each of the processes. Now the processes with ¢ = .9 and ¢ = 1 look dis-
similar. The stationary process ¢ = .9 continues to return to its mean of
zero. The random walk (¢ = 1) wanders without tending to return to zero.

Suppose an explosive AR(1) process starts at y, and has y» = 0. Then

Y=y 1+ & =Yoo+ e1)Fe = =€+ de_1 + o+ -+ dle.

Therefore,

2¢2(t+1) 1
O' e —

Var(y,) = o*(1+ ¢* + ¢* + - + ¢™) = b—1
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This variance increase geometrically fast at ¢ — oo.

Explosive AR processes are not widely used in econometrics since eco-
nomic growth is usually not explosive, though these processes may serve
as good models of rabbit populations.
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AR(1): ¢=0.9

0 50 100 150 200

AR(1): 9=0.2

0 50 100 150 200

AR(L): ¢=1

0 50 100 150 200

AR(1): 9=0.6
i
50 100 150 200
AR(1): 9=-0.9
50 100 150 200
AR(1): 9=1.02
50 100 150 200

Figure 4.1: Simulations of 200 observations from AR(1) processes with various
values of ¢ and p = 0. The white noise “residual” or “error” process €1, €, . . .

the same for all six AR(1) processes.

is
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AR(1): 9= 0.9

0 10 20 30

AR(1): 9=0.2

0 10 20 30

AR(1): =1

0 10 20 30

49
AR(1): 9= 0.6
10 20 30
AR(1): 9=-0.9
10 20 30
AR(1): p=1.02

10 20 30

Figure 4.2: Simulations of 30 observation from AR( 1) processes with various
values of ¢ and . = 0. The white noise “residual” or “error” process €, €3, . . . is

the same for all six AR(1) processes.
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AR(1): ¢=0.9

200 400 600 800 1000

AR(1): 9=0.2

200 400 600 800 1000

AR(1): =1

200 400 600 800 1000

AR(1): =0.6

0 200 400 600 800 1000

AR(1): 9=-0.9

0 200 400 600 800 1000

« 10° AR(L): @=1.02

0 200 400 600 800 1000

Figure 4.3: Simulations of 1000 observation from AR( 1) processes with various
values of ¢ and p = 0. The white noise “residual” or “error” process €, €, . . . is
the same for all six AR(1) processes.
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4,3.3 Estimation

Depending upon the application, one will want to fit an AR(1) to either
one of the variables in the raw data or a variable that has been constructed
from the raw data. In finance applications, one often has the prices as
the raw data but wants to fit an AR(1) to the log returns. To create the
log returns, one first log-transforms the prices and then differences the log
prices. MINITAB and SAS both have functions to do differencing. For ex-
ample, in MINITAB, go to the “Stat” menu, then the “Time Series” menu,
and then select “differences.” Once a variable containing the log returns
has been created, one then can fit an AR(1) model to it.

Let’s assume we have a time series ¥y, . .., ¥, and we want to fit an AR(1)
model to this series. Since an AR(1) model is a linear regression model,
it can be analyzed using linear regression software. One creates a lagged
variable in y, and uses this as the “z-variable” in the regression. MINITAB
and SAS both support lagging. For example, in MINITAB, go to the “Stat”
menu, then the “Time Series” menu, and then select “lag.”

The least squares estimation of p and y minimize

i v — 1} = {(w1 — u)}]Q-

t=2
If errors (e, ...,€,) are Gaussian white noise then the least-squares esti-
mate is also the MLE.

Moreover, both MINITAB or SAS have special procedure for fitting AR
models.

In MINITAB, go the the “Stat” menu, then the “Time Series” menu, and
then choose ARIMA. Use 1 autoregressive parameter, 0 differencing, and
0 moving average parameters.

In SAS, use the “AUTOREG” or the “ARIMA” procedure.

Once ¢ has been estimated, one can calculate the residuals, €, ¢€,,...,¢,,
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defined by

&=y —B— o(p—1 — 1)-
The residuals estimate €y, €, . . ., €, and can be used to check the assump-
tion that y1, ys, . . ., yn is an AR(1) process; any autocorrelation in the resid-

uals is evidence that against the assumption of an AR(1) process.

To test for residual autocorrelation one can use the “test bounds” provided
by MINITAB’s or SAS’s autocorrelation plots. One can also use the Ljung-
Box test that simultaneously tests that all autocorrelations up to a specified
lag are zero.

Example: GE daily returns
Autoregressive models can be analyzed in both MINITAB and SAS.

The MINITAB output was obtained by running MINITAB interactively.
Here is the MINITAB output.
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2/2/01 10:45:25 AM
Welcome to Minitab, press F1 for help.
Retrieving worksheet from file:

# Worksheet

Results for:  GE_DAILY.MTW
ARIMA Model: logR
ARIMA model for logR
Estimates at each iteration
Iteration SSE Parameters

0 2.11832 0.100 0.090

1 0.12912 0.228 0.015

2 0.07377 0.233 0.001

3 0.07360 0.230 0.000

4 0.07360 0.230 -0.000

5 0.07360 0.230 -0.000
Relative  change in each estimate less than
Final Estimates of Parameters
Type Coef SE Coef T
AR 1 0.2299 0.0621 3.70
Constant  -0.000031 0.001081 -0.03
Mean -0.000040 0.001403
Number of observations: 252
Residuals: SS = 0.0735911 (backforecasts

MS = 0.0002944 DF = 250

Modified  Box-Pierce  (Ljung-Box) Chi-Square
Lag 12 24 36
Chi-Square 23.0 33.6 47.1
DF 10 22 34
P-Value 0.011 0.054 0.066

C:\COURSES\OR473\MINITAB\GE_DAILY.MTW
was saved on Wed Jan 10 2001

0.0010

0.000
0.977

excluded)

statistic
48
78.6
46
0.002
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The SAS output comes from running the following program.

options  linesize =72 ;

comment Restrict the linesize to 72 characters ;
data ge ; comment Start the data step ;

infile ‘c:\courses\or473\data\ge.dat’ ;

comment Specify the input data set
input close

comment Create a new variable ;
D_p = dif(close);

comment Take first differences ;
logP = log(close)

logR = dif(logP)

comment logR = log returns

run ;

title 'GE - Daily prices, Dec 17, 1999 to Dec 15, 2000
title2 "AR(L)

proc autoreg

model logR =/nlag =1 ;

run ;
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Here is the SAS output.

GE - Daily prices, Dec 17,

AR(2) 10:32 Friday,

The AUTOREGProcedure

1999 to Dec 15,

55

2000 1
February 2, 2001

Dependent Variable logR
Ordinary Least Squares Estimates
SSE 0.07762133 DFE 251
MSE 0.0003092 Root MSE 0.01759
SBC -1316.8318 AIC -1320.3612
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 1.5299
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 -0.000011 0.001108 -0.01 0.9917
Estimates of Autocorrelations
Lag Covariance Correlation
0 0.000308 1.000000
1 0.000069 0.225457
Estimates of Autocorrelations
Lag -1 98765432101234567891
O | |***************~k****|
1 I |*****
Preliminary MSE 0.000292
Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
1 -0.225457 0.061617 -3.66
GE - Daily prices, Dec 17, 1999 to Dec 15, 2000 2
AR(2) 10:32 Friday, February 2, 2001
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The AUTOREGProcedure

Yule-Walker  Estimates

SSE 0.07359998 DFE 250
MSE 0.0002944 Root MSE 0.01716
SBC -1324.6559 AIC -1331.7148
Regress R-Square 0.0000 Total R-Square 0.0518
Durbin-Watson 1.9326
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 -0.000040 0.001394 -0.03 0.9773

From MINITAB we see that ¢ = .2299 and the estimated standard devia-
tion of ¢ is 0.0621. The t-value for testing Hy : ¢ = OversusH; : ¢ # 0
is .2299/.0621 = 3.70 and the p-value is .000 (zero to three decimals). Since
the p-value is so small, we reject the null hypothesis.

[Note: Recall from your statistics course that small p-values are significant;
we reject the null hypothesis if the p-value is less than ¢, e.g., less than .05.]

The null hypothesis is that the log returns are white noise and the alter-
native is that they are correlated. Thus, we have evidence against the ge-
ometric random walk hypothesis. However, ¢ = .2299 is not large. Since
p(h) = ¢", the correlation between successive log returns is .2299 and the
squared correlation is only .0528 — only about five percent of the variation
in a log return can be predicted by the previous days return.

We have seen that an AR(1) process fits the GE log returns better than a
white noise model. Of course, this is not proof that the AR(1) fits these
data, only that it fits better than a white noise model. To check that the
AR(1) fits well, one looks at the sample autocorrelation function (SACF)
of the residuals. A plot of the residual SACF can be requested when using
either MINITAB or SAS.
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The SACF of the residuals from the GE daily log returns shows high nega-
tive autocorrelation at lag 6; 5(6) is outside the test limits so is “significant”
at a = .05; see Figure 4.4. This is disturbing.

2 Bei1y g raturrs ACF of Residuals for logR

(with 95% confidence limits for the autocorrelations)

1.0 -
08—
06
0.4 —
02
00 v v |I||. II| ||||"|Il||'||'|'||"|'l||"|'
0.2 I '

-04 —
-0.6
-0.8 4
-1.0 4

Autocorrelation

5 10 15 20 25 30 35 40 45 50 55 60

Figure 4.4: SACF of residuals from an AR(1) fit to the GE daily log returns.
Notice the large negative residual autocorrelation at lag 6. This is a sign that the
AR(1) model does not fit well.

Moreover, the more conservate Ljung-Box “simultaneous” test that p(1) =
---p(12) = 0 has p = .011. Since the AR(1) model does not fit well, one
might consider more complex models. These will be discussed in the fol-
lowing sections.

The SAS estimate of ¢ is —.2254. SAS uses the model

Yr = —Qys—1 + €
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so SAS’s ¢ is the negative of ¢ as we, and MINITAB, define it. The dif-
ference, .2299 versus .2254, between MINITAB and SAS is due to slight
variation in the estimation algorithm.

We can also estimate ;1 and test that s is zero. From the MINITAB output,
we see [i is nearly zero, the t-value for testing that y is zero is very small
while the p-value is near one. Remember that small values of the p-value
are significant; since the p-value is large we accept the null hypothesis that
u is zero.

4.4 AR(p) models

y; is an AR(p) process if

(e — 1) = d1(e—1 — 1) + D22 — 1) + - -+ Op(Ys—p — 1) + &

where €1, . .., €, is WN(0, o2).

This is a multiple linear regression model with lagged values of the time
series as the “x-variables.” The model can be reexpressed as

Y= 0o+ dY1+ ...+ SpYrp + €,

where 8y = {1 — (¢1 + ... + &) }u

The least-squares estimator minimizes

> e — (Bo+ et + -+ Sptip)

t=p+1

The least-squares estimator can be calculated using a multiple linear re-
gression program but one must create “x-variables” by lagging the time
series with lags 1 throught p. It is easier to use the ARIMA command in

MINITAB or SAS or SAS’s AUTOREG procedure; these procedures do the
lagging automatically.
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4.4.1 Example: GE daily returns

The SAS program shown above was rerun with
model logR =/nlag =1

replaced by
model logR =/nlag = 6 .

The output is on the course’s web site as “GE DAILY, AR(6) (SAS).”

The autoregression coefficients (the ¢;) are “significant” at lags 1 and 6
but not at lags 2 through 5. Here “significant” means at o = .05 which
corresponds to absolute t-value bigger than 2. MINITAB will not allow
p > 5 but SAS does not have such aconstraint.

4.5 Moving Average (MA) Processes

4.5.1 MA(1) processes
The moving average process of order [MA(1)] is

Y — p= € — Oer_1,

where as before the ¢,’s are WH(0, 0?).

One can show that
E(y) =,

Var(y,) = o7 (1 + 6°),

(1) = b0?

€)

() = 0f [B] > 1,
—0
p(l) = 156

and
p(h) = 0if |h| > 1.
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4.5.2 General MA processes
The MA(g) process is

Yy — =€ — by — - — 0464

One can show that y(h) = 0 and p(h) = 0 if |h| > q.

4.6 ARIMA Processes

Stationary time series with complex autocorrelation behavior are better
modeled by mixed autoregressive and moving average (ARMA) processes
than by either a pure AR or pure MA process. ARIMA (autoregressive,
integrated, moving average) processes are based on ARMA processes and
are models for nonstationary time series.

ARIMA processes are more easily described if we introduce the “back-
wards” operator, B.

4.6.1 The backwards operator

The backwards operator B is defined by
By =y

and, more generally,

By = yr -
Note that B c = c for any constant c since a constant does not change with
time.

4.6.2 ARMA Processes

The ARMA(p, q) process satisfies the equation
1-—¢B—--—¢,B)(yy—p)=(1—-6.B— ... —0,B%e.

A white noise process is ARMA(0,0).
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4.6.3 The differencing operator

The differencing operator is A = 1 — B so that

Ay, =y — By =y — Yp—1.

Thus, differencing a time series produces a new time series consisting of
the changes in the original series. For example, if p, = log(P;) is the log
price, then the log return is

re = Apy.

Differencing can be iterated. For example,

Azyt = A(Ayt) = A(yt - yt—l) = (yt - yt—l) - (yt_l - yt—2)
= Y — 2Y—1 + Yi—2-

4.6.4 From ARMA processes to ARIMA process

Often the first or second differences of nonstationary time series are sta-
tionary. For example, the first differences of random walk (nonstationary)
are white noise (stationary).

A time series y; is said to by ARIMA(p, d, q) if Ay, is ARMA(p, q). Also,
if log returns (r;) on an asset are ARMA(p, ¢), then the log prices (p;) are
ARIMA(p, 1, q).

The ARIMA procedures in MINITAB and SAS allow one to specify p, d,
and gq.

Notice that an ARIMA(p, 0, ¢) model is the same as an ARMA(p, ¢) model.
ARIMA((p, 0,0), ARMA(p, 0), and AR(p) models are the same. Also, ARI-
MA(0, 0, g), ARMA(0, ¢), and MA(q) models are the same. A random walk
is an ARIMA(0, 1, 0) model. Why?

The inverse of differencing is “integrating.” The integral of a process y; is
the process w; where

Wy = Wiy + Yto T Yto+1 + = Yt-
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where ? is an arbitrary starting time point and wy, is the starting value of
the w, process.

Figure 4.5 shows an AR(1), its “integral” and its “second integral,” mean-
ing the integral of its integral.
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ARIMA(1,0,0) withp=0and ¢=0.4
4 ‘

0 50 100 150 200 250 300 350 400
ARIMA(1,1,0)

20 ‘ ‘

0 50 100 150 200 250 300 350 400

ARIMA(1,2,0)
500 ‘ ‘

-500

_1000 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Figure 4.5: The top plot is of an AR(1) process with i = 0 and ¢ = 0.4. The
middle and bottom plots are, respectively, the integral and second integral of this
AR(1) process.
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4,7 Model Selection

Once the parameters p, d, and ¢ of an ARIMA process have been selected,
the AR and MA coefficients can be estimated by maximum likelihood. But
how do we choose p, d, and ¢?

Generally, d is either 0, 1, or 2 and is chosen by looking at the SACF of y,,
Ay, and A2y,.

A sign that a process is nonstationary is that its SACF decays to zero very
slowly. If this is true of y; then the original series is nonstationary and
should be differenced at least once.

If the SACF of Ay, looks stationary then we use d = 1. Otherwise, we look
at the SACF of A?y,; if this looks stationary we use d = 2.

I have never seen a real time series where A%y, did not look stationary, but
if one were encountered then d > 2 would be used.

Once d has been chosen, we know that we will fit an ARMA (p, ¢) process
to Ay, but we still need to select p and ¢. This can be done by comparing
various choices of p and ¢ by some criterion that measures how well a
model fits the data.

4,71 AIC and SBC

AIC and SBC are model selection criteria based on the log-likelihood.
Akaike’s information criterion (AIC) is defined as

—2log(L) +2(p +9),
where L is the likelihood evaluated at the MLE.

Schwarz’s Bayesian Criterion (SBC) is also called the Bayesian Information
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Criterion (BIC) and is defined as

—21log(L) + 2log(n)(p + gq),

where n is the length of the time series.

The “best” model according to either criterion is the model that minimizes
that criterion.

Either criteria will tend to select models with large values of the likelihood;
this makes perfect sense since a large value of L means that the observed
data are likely under that model.

The term 2(p + ¢) in AIC or log(n)(p + ¢) is a penalty on having too many
parameters. Therefore, AIC and SBC both try to tradeoff a good fit to the
data measured by L with the desire to use as few parameters as possible.

Note that log(n) > 2 if n > 8. Since most time series are much longer than
8, SBC penalizes p + ¢ more than AIC. Therefore, AIC will tend to choose
models with more parameters than SBC. Compared to SBC, with AIC the
tradeoff is more in favor of a large value of L than a small value of p + g.

This difference between AIC and SBC is due to the way they were de-
signed. AIC is designed to select the model that will predict best and is
less concerned with having a few too many parameters. SBC is designed
to select the true values of p and ¢ exactly.

In practice the best AIC model is usually close to the best SBC model; often
they are the same model.

Two model can be compared by likelihood ratio testing when one model
is “bigger” than the other. Therefore, AIC and SBC are closely connected
with likelihood ratio tests.
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4.7.2 Stepwise regression applied to AR processes

Stepwise regression is a way of looking at a variety of regression models
to see which ones fit the data well. You may encounter stepwise regres-
sion if you take an advanced regression course. In backwards regression,
sometimes called backstepping, one starts with all possible x-variables
and eliminates them one at time until all remaining variables are “signifi-
cant” by some criterion.

Stepwise regression can, of course, be applied to AR models since these are
a type of multiple regression model. SAS’s AUTOREG procedure allows
backstepping as an option.
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The following SAS program starts with an AR(6) model and backsteps.

options  linesize =72 ;

comment Restrict the linesize to 72 characters ;
data ge ; comment Start the data step ;

infile 'c:\courses\or473\data\ge_qu art. dat’ ;

comment Specify the input data set ;
input close ;

D _p = dif(close);

comment Take first differences ;

logP = log(close) ;

logR = dif(logP) ;

comment logR = log returns
run

title 'GE - Quarterly closing  prices, Dec 1900 to Dec 2000 ;
title2 'AR(6) with backstepping’ ;

proc autoreg ;

model logR =/nlag = 6 backstep ;

run ;
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Here is the SAS output:

GE - Quarterly closing  prices, Dec 1900 to Dec 2000 1
AR(6) with backstepping

23:32 Tuesday, January 30, 2001
The AUTOREGProcedure

Dependent Variable logR

Ordinary Least Squares Estimates

SSE 0.15125546 DFE 38
MSE 0.00398 Root MSE 0.06309
SBC -102.20076 AIC -103.86432
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 2.0710
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.0627 0.0101 6.21 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation
0 0.00388 1.000000
1 -0.00014 -0.036627
2 -0.00023 -0.059114
3 0.00152 0.392878
4 -0.00014 -0.035792
5 -0.00075 -0.193269
6 0.000337 0.086919

Estimates of Autocorrelations

Lag -1 98765432101234567891

|********************|
|
*

|********
*l

****l

OOk WNEO

|**

GE - Quarterly closing  prices, Dec 1900 to Dec 2000 2
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AR(6) with backstepping

69

23:32 Tuesday, January 30, 2001

The AUTOREGProcedure

Backward Elimination of
Autoregressive Terms
Lag Estimate t Value Pr > |t
4 0.020648 0.12 0.9058
2 -0.023292 -0.14 0.8921
1 0.035577 0.23 0.8226
6 0.082465 0.50 0.6215
5 0.170641 1.13 0.2655
Preliminary MSE 0.00328
Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
3 -0.392878 0.151180 -2.60
Expected
Autocorrelations
Lag Autocorr
0 1.0000
1 0.0000
2 0.0000
3 0.3929
Yule-Walker Estimates
SSE 0.12476731 DFE 37
MSE 0.00337 Root MSE 0.05807
SBC -105.5425 AlC -108.86962
Regress R-Square 0.0000 Total R-Square 0.1751
Durbin-Watson 1.9820

GE - Quarterly closing  prices, Dec 1900 to Dec 2000
AR(6) with backstepping

3

23:32 Tuesday, January 30, 2001
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The AUTOREGProcedure

Standard Approx

Variable DF Estimate Error t Value Pr > |t

Intercept 1 0.0632 0.0146 4.33 0.0001
Expected

Autocorrelations

Lag Autocorr
0 1.0000
1 0.0000
2 0.0000
3 0.3929

4.7.3 Using ARIMA in SAS: Cree data

Daily returns of Cree from December 1999 to December 2000 are shown in
Figure 4.6.
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CREE, daily — 12/17/99 to 12/15/00
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Figure 4.6: Cree daily returns. The first plot is the prices. The second and third
are the net returns and the log returns. The fourth plot is a normal probability plot
of the log returns. The final plot is of the absolute log returns; there is a scatterplot
smooth to help show whether the volatility is constant.
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In this example, we will illustrate fitting an ARMA model in SAS. We use
daily log returns on Cree from December 1999 to December 2000. The SAS
program is:

options  linesize =72 ;

data cree ;

infile 'U:\courses\473\data\cree_dail y.dat
input month day year volume high low close ;
logP = log(close) ;

logR = dif(logP) ;

run

title Cree daily log returns ;
title2 ARMA(1,1) ;

proc arima ;

identify var=logR ;

estimate p=1 g=1 ;

run ;
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The “identify” statement specifies the input series and tells SAS to com-
pute the SACF. It can also be used to specify the amount of differencing;
“identify var=logP(1) ;” would tell SAS to use the first differences of the
log prices as input.

Here is the SAS output. The result is that the Cree log returns appear to
be white noise since ¢; (denoted by AR1,1 in SAS), ¢, (denoted by MA1,1)
and p not significantly different from zero.

Cree daily log returns 1
ARMA(1,1) 15:18 Friday, February 2, 2001

The ARIMA Procedure

Name of Variable = logR
Mean of Working Series -0.00071
Standard Deviation 0.067473
Number of Observations 252

Autocorrelations

Lag Covariance Correlation -1 98765432101234567891

0 0 . 004552 6 1 . 00000 | I********************l

1 0.00031398 0.06897 | [* [
2 -0.0000160 -.00351 | | |
3 -5.5958E-6 -00123 | | |
4 -0.0002213 -.04862 | *| |
5 0.00002748 0.00604 | [ |
6 -0.0000779 -01712 | | |
7 -0.0000207 -.00454 | | |
8 -0.0003281 07207 | *| |
9 0.00015664 0.03441 | [* |
10 0.00057077 0.12537 | [ |
11 0.00023632 0.05191 | S |
12 -0.0003475 -07633 | ] |
13 -0.0001348 02961 | *| |
14 -0.0005590 -12278 | | |
15 0.00023425 0.05145 | [* |
16 -0.0001021 02242 | | |
17 -0.0000582 -01278 | o [
18 -0.0007147 -15699 | k| |
19 0.00006314 0.01387 | | |
20 -0.0000466 -01024 | | |
21 -0.0001681 03692 | *| |
22 -0.0001439 -.03161 | *| |
23 -0.0002135 -.04690 | *| |
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24 0.00007502 0.01648 | ]
marks two standard errors
Cree daily log returns 2
ARMA(1,1) 15:18 Friday, February 2, 2001
The ARIMA Procedure

Inverse  Autocorrelations

Lag Correlation -1 98765432101234567891
1 -0.11452 | | |
2 0.06356 | [* |
3 -0.08905 [ R |
4 0.12788 | s |
5 -0.04576 | #| |
6 0.07209 | |* |
7 -0.06322 | *| |
8 0.09828 | [+, |
9 -0.04639 | *| |
10 -0.05006 [ #| [
11 -0.09283 | A . |
12 0.10049 | N |
13 -0.02141 [ | [
14 0.15284 | i |
15 -0.09318 [ | [
16 0.05864 [ [* |
17 -0.02983 | *| |
18 0.16300 [ [ [
19 -0.05602 | *| |
20 0.05126 | |* |
21 0.01713 [ | [
22 0.04942 | |* |
23 0.00197 [ | [
24 -0.01745 [ | [

Partial Autocorrelations
Lag Correlation -1 98765432101234567891

0.06897 [
-0.00830 |
-0.00041 |
-0.04877 | .
0.01287 | o
|
|
|

|*
I
I

|

-0.01916 |
-0.00183 |
-0.07486

O~NO O WNBRE

i
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9 0.04628 | [* |
10 0.11841 | [+, |
11 0.03697 | R L |
12 -0.09207 | | . |
13 -0.01457 [ o [
14 -0.11485 | R |
Cree daily log returns 3
ARMA(1,1) 15:18 Friday, February 2, 2001
The ARIMA Procedure
Partial Autocorrelations
Lag Correlation -1 98765432101234567891
15 0.07540 | [+, |
16 -0.04385 | #| [
17 0.00180 | o |
18 -0.16594 [ | |
19 0.05041 | [* |
20 -0.06240 | *| |
21 -0.02732 [ #| [
22 -0.05643 | *| |
23 0.00111 [ | [
24 0.01957 | | [
Autocorrelation Check for White Noise
To Chi- Pr >
Lag Square DF ChiSq ------------- Autocorrelations------------
6 1.91 6 0.9276 0.069 -0.004 -0.001 -0.049 0.006 -0.017

12 10.02 12 0.6143 -0.005 -0.072 0.034 0.125 0.052 -0.076
18 2195 18 0.2344 -0.030 -0.123 0.051 -0.022 -0.013 -0.157
24 23.37 24 04978 0.014 -0.010 -0.037 -0.032 -0.047 0.016

Conditional Least Squares Estimation
Standard Approx

Parameter Estimate Error t Value Pr > |t Lag
MU -0.0006814 0.0045317 -0.15 0.8806 0
MA1,1 -0.18767 0.88710 -0.21 0.8326 1
AR1,1 -0.11768 0.89670 -0.13 0.8957 1

Constant  Estimate -0.00076

Variance  Estimate 0.004585

Std Error Estimate 0.067712

AIC -638.889
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SBC -628.301
Number of Residuals 252
* AIC and SBC do not include log determinant.
Cree daily log returns 4
ARMA(1,1) 15:18 Friday, February 2, 2001
The ARIMA Procedure
Correlations of Parameter Estimates
Parameter MU MA1,1 AR1,1
MU 1.000 0.005 0.006
MA1,1 0.005 1.000 0.998
AR1,1 0.006 0.998 1.000
Autocorrelation Check of Residuals
To Chi- Pr >
Lag Square DF ChiSq ------------- Autocorrelations------------
6 0.75 4 0.9444 0.000 0.004 0.001 -0.049 0.010 -0.019
12 8.54 10 0.5761 0.003 -0.075 0.032 0.118 0.050 -0.079
18 21.12 16 0.1741 -0.014 -0.127 0.062 -0.029 0.001 -0.159
24 2248 22 0.4314 0.025 -0.011 -0.035 -0.026 -0.045 0.016
30 32.65 28 0.2490 0.054 0.127 0.102 -0.023 -0.029 0.070
36 38.16 34 0.2858 -0.055 -0.038 -0.026 -0.079 0.021  0.083
42 47.23 40 0.2009 -0.061 -0.092 -0.004 -0.028 -0.118 -0.055
48 49.15 46 0.3480 -0.032 -0.011 -0.004 0.027 0.054 -0.036
Model for variable logR
Estimated Mean -0.00068
Autoregressive Factors
Factor 1: 1 + 0.11768 B**(1)

Moving Average Factors

Factor

10 1 + 0.18767 B*(1)
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4.8 Example: Three-month Treasury bill rates

The efficient market hypothesis predicts that log returns will be white
noise, and our empirical results are that log returns have little autocorre-
lation even if they are not exactly white noise. Other financial time series
do have substantial autocorrelation, as is shown in this example.

The time series in this example is monthly interest rates on three-month
US Treasury bills from December 1950 until February 1996. The data come
from Example 16.1 of Pindyck and Rubin (1998), Econometric Models and
Economic Forecasts. The rates are plotted in Figure 4.7. The first differences
look somewhat stationary, and we will fit ARMA models to the first dif-
ferences.
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Figure 4.7: Time series plot of 3 month Treasury bill rates, plot of first differences,
and sample autocorrelation function of first differences. Monthly values from
January 1950 until March 1996.
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First we try fitting an AR(10) model with ARIMA. Here is the SAS pro-
gram. Note statement “identify var=z(1) ;” specifies that the model should
be fit to the first differences of the variance z; z is the interest rate.

options  linesize =72 ;

data ratel ;

infile 'c:\courses\or473\data\fygn. dat ;
input date $ z;

title 'Three  month treasury  bills’ ;

title2 'ARIMA  model - to first differences’ ;
proc arima ;

identify var=z(1) ;
estimate  p=10 plot;
run

Here is the SAS output.

Three month treasury  bills 1
ARIMA model - to first differences
14:41 Saturday, February 3, 2001

The ARIMA Procedure

Name of Variable = z
Period(s) of Differencing 1
Mean of Working Series 0.006986
Standard Deviation 0.494103
Number of Observations 554
Observation(s) eliminated by differencing 1

Autocorrelations
Lag Covariance Correlation -1 98765432101234567891
0 0 . 244 138 1 . 00000 | I********************l

1 0.067690 0.27726 | e |
2 -0.026212 -10736 | o |
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-0.022360
-0.0091143
0.011399
-0.045339
-0.047987
0.022734
0.047441
0.014282
-0.0017082
-0.022600
0.0087638
0.038426
-0.024885
0.0012018
0.020048
0.019043
-0.0081609
-0.056547
-0.038945
-0.0035774
-0.0018465
-0.0080554

-.09159
-.03733
0.04669
-.18571
-.19656
0.09312
0.19432
0.05850
-.00700
-.09257
0.03590
0.15739
-.10193
0.00492
0.08212
0.07800
-.03343
-.23162
-.15952
-.01465
-.00756
-.03300

*ﬂ
A
I*.
****I
****I
|**
I****
[*.
I
**I
[*.
I***
**I
I
I**
|**
|
*****I

**ﬂ

|

marks two standard errors

bills 2
differences
14:41 Saturday,

Three month treasury
ARIMA model - to first
February 3, 2001
The ARIMA Procedure

Inverse  Autocorrelations

Correlation -1 98765432101234567891

Lag

© oo ~NOOOh WNPRF

e N e el =
O U~ WNEO

-0.38226
0.17388
-0.03944
0.09813
-0.15403
0.16052
0.03458
-0.07833
-0.01029
-0.01264
-0.07557
-0.00166
0.12786
-0.22060
0.19060
-0.10958

********l .
|***
H
|**
***I
|***
[*.

**I

**I

|***
****I
|****

**I
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17 0.03736 | |*. |
18 -0.05356 | Al |
19 0.07262 | |*. |
20 0.03663 | |*. |
21 0.03580 | |*. |
22 0.02890 | |*. |
23 0.00507 | | |
24 0.00765 | | |
Partial Autocorrelations
Lag Correlation -1 98765432101234567891
1 0.27726 | [raex |
2 -0.19958 | k| |
3 -0.00061 | | |
4 -0.03172 | X |
5 0.05661 | |*. |
6 -0.25850 | Fokokk | |
7 -0.05221 | A |
8 0.14071 | x> |
9 0.08439 | [** |
10 -0.04699 | A |
11 0.06148 | |*. |
12 -0.11389 | **| |
13 0.05561 | L |
14 0.13716 | N |

Three month treasury  bills 3
ARIMA model - to first differences
14:41 Saturday, February 3, 2001
The ARIMA Procedure

Partial Autocorrelations

Lag Correlation 1 98765432101234567891
15 -0.13273 [ k| [
16 0.15741 [ [ [
17 0.02301 | | |
18 0.01777 | | |
19 -0.13330 | ok |
20 -0.08447 | | |
21 -0.07718 | | |
22 -0.04553 | A |
23 -0.01479 | [ |
24 -0.01071 | | |

Autocorrelation Check for White Noise
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To Chi- Pr >
Lag Square DF ChiSq ------------- Autocorrelations------------

6 75.33 6 <.0001 0.277 -0.107 -0.092 -0.037 0.047 -0.186
12 130.15 12 <.0001 -0.197 0.093 0.194 0.059 -0.007 -0.093
18 158.33 18 <.0001 0.036 0.157 -0.102 0.005 0.082 0.078
24 205.42 24 <.0001 -0.033 -0.232 -0.160 -0.015 -0.008 -0.033

Conditional Least Squares Estimation
Standard Approx

Parameter Estimate Error t Value Pr > |t Lag
MU 0.0071463 0.02056 0.35 0.7283 0
AR1,1 0.33494 0.04287 7.81 <.0001 1
AR1,2 -0.16456 0.04501 -3.66 0.0003 2
AR1,3 0.01712 0.04535 0.38 0.7060 3
AR1,4 -0.10901 0.04522 -2.41 0.0163 4
AR1,5 0.14252 0.04451 3.20 0.0014 5
AR1,6 -0.21560 0.04451 -4.84 <.0001 6
AR1,7 -0.08347 0.04522 -1.85 0.0655 7
AR1,8 0.10382 0.04536 2.29 0.0225 8
AR1,9 0.10007 0.04502 2.22 0.0267 9
AR1,10 -0.04723 0.04290 -1.10 0.2714 10

Constant  Estimate 0.006585

Variance  Estimate 0.198648

Std Error Estimate 0.445699

Three month treasury  bills 4

ARIMA model - to first differences
14:41 Saturday, February 3, 2001

The ARIMA Procedure

AIC 687.6855
SBC 735.1743
Number of Residuals 554

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates
Parameter MU AR1,1 AR1,2 AR1,3 AR1,4 ARL1,5
MU 1.000 0.001 -0.000 -0.001 -0.001 -0.000
AR1,1 0.001 1.000 -0.315 0.160 -0.020 0.095
ARL1,2 -0.000 -0.315 1.000 -0.357 0.166 -0.033
ARL1,3 -0.001 0.160 -0.357 1.000 -0.350 0.204
ARL1,4 -0.001 -0.020 0.166 -0.350 1.000 -0.375

AR1,5 -0.000 0.095 -0.033 0.204 -0.375 1.000
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ARL,6
ARL1,7
ARL1,8
AR1,9
AR1,10

Parameter

MU
AR1,1
AR1,2
AR1,3
ARL,4
AR1,5
AR1,6
ARL,7
ARL,8
AR1,9
AR1,10

To Chi-
Lag Square

6 0.00
12 9.56
18 42.72
24 62.06
30 65.76
36 73.52
42 74.14
48 82.20

Lag Covariance

0  0.198648
1 0.00057812
2 -0.0020959
3 0.00068451

14:41 Saturday,

The ARIMA Procedure

Autocorrelation

Pr >
DF ChiSq
0 <.0001 0.003 -0.011
2 0.0084 0.036 -0.001
8 <.0001 -0.076 0.177
14 <.0001 -0.062 -0.149
20 <.0001 0.002 0.008
26 <.0001 -0.070 -0.004
32 <.0001 -0.007 0.028
38 <.0001 -0.011 -0.000
Autocorrelation Plot
Correlation
1.00000 |
0.00291 |
-.01055 |
|

0.00345

Check of Residuals

0.003 0.021 -0.015
-0.031 0.018 0.105
-0.115 0.081 0.019
-0.078 -0.025 -0.024

0.045 0.048 -0.043
-0.051 -0.003 -0.053
-0.007 -0.005 0.010
-0.006 0.001 -0.103

of Residuals

I******************** |

-0.001 -0.131 0.122 -0.068 0.218 -0.367
-0.001 0.200 -0.178 0.161 -0.078 0.218
-0.001 0.080 0.163 -0.166 0.161 -0.068
-0.001 -0.106 0.123 0.163 -0.178 0.122
-0.003 -0.085 -0.106 0.080 0.200 -0.131
Correlations of Parameter Estimates
ARL1,6 ARL1,7 ARL1,8 ARL1,9 AR1,10
-0.001 -0.001 -0.001 -0.001 -0.003
-0.131 0.200 0.080 -0.106 -0.085
0.122 -0.178 0.163 0.123 -0.106
-0.068 0.161 -0.166 0.163 0.080
0.218 -0.078 0.161 -0.178 0.200
-0.367 0.218 -0.068 0.122 -0.131
1.000 -0.375 0.204 -0.033 0.096
-0.375 1.000 -0.350 0.166 -0.020
0.204 -0.350 1.000 -0.357 0.161
-0.033 0.166 -0.357 1.000 -0.315
0.096 -0.020 0.161 -0.315 1.000
Three month treasury  bills
ARIMA model - to first differences

February 3, 2001

-0.031
-0.040
0.025
-0.013
-0.007
-0.052
0.006
0.050

-1 98765432101234567891

83
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4 0.0041792 0.02104 | [ [
5 -0.0030362 -01528 | O |
6 -0.0061377 -.03090 | A |
7 0.0071315 0.03590 | I*. |
8 -0.0001693 -.00085 | C |
9 -0.0061781 -03110 | A |
10  0.0036055 0.01815 | [ |
11 0.020788 0.10465 | [ |
12 -0.0078818 -.03968 | A |
13 -0.015171 07637 | o |
14 0.035240 0.17740 | e |
15 -0.022934 -11545 | | |
16  0.016000 0.08054 | [+ |
17 0.0037288 0.01877 | | |
18 0.0049781 0.02506 | I*. |
19 -0.012221 -.06152 | A |
20 -0.029590 -14896 | | |
21 -0.015566 -07836 | | |
22 -0.0050098 -02522 | A |
23 -0.0048445 02439 | [ |
24 -0.0026174 -01318 | | |

marks two standard errors
Three month treasury  bills 6
ARIMA model - to first differences
14:41 Saturday, February 3, 2001

The ARIMA Procedure

Inverse  Autocorrelations

Lag Correlation 1 98765432101234567891
1 -0.04462 [ A [
2 0.02988 | I*. |
3 0.02921 | I*. |
4 -0.04817 | A |
5 0.00308 | [ |
6 0.02072 | | |
7 -0.02134 | | |
8 -0.01272 | | |
9 0.01308 | C |
10 -0.02753 [ A [
11 -0.10241 | | |
12 0.03617 | I*. |
13 0.06350 | I*. |
14 -0.16306 | k| |
15 0.12298 | O |
16 -0.08990 | | |
17 -0.02141 | [ |
18 -0.00130 | | [

| |

[y
[(e]

0.04419
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20
21
22
23
24

Lag

© 0O ~NOO O~ WNPR

[ S
A WNPFEO

Lag

15
16
17
18
19
20
21
22
23
24

0.11901
0.08929
0.02613
0.00628
0.00879

|**
I**
"
|
|

Partial Autocorrelations

Correlation

0.00291
-0.01056
0.00351
0.02091
-0.01534
-0.03040
0.03569
-0.00204
-0.02966
0.01926
0.10200
-0.04035
-0.07248
0.17834

-1 98765432101234567891

|

|

I

|

| .

I S
| S
I |-
| ]

| |

| |**
| a

I

H

| . |****

Three month treasury  bills

ARIMA

model - to first differences

14:41 Saturday, February 3, 2001

The ARIMA Procedure

Partial Autocorrelations

Correlation

-0.13109
0.09936
0.02268
0.00293

-0.05597

-0.13881

-0.10044

-0.02905

-0.00750

-0.00979

Estimated
Period(s)

-1 98765432101234567891

***l

|**

|

**l
|
I
I

| ***l

Model for variable z

Mean 0.007146
of Differencing 1
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Autoregressive Factors

Factor 1. 1 - 0.33494 B*(1) + 0.16456 B*(2) - 0.01712 B*(3) +
0.10901 B*(4) - 0.14252 B*(5) + 0.2156
B*(6) + 0.08347 B**(7) - 0.10382 B**(8)
- 0.10007 B*(9) + 0.04723 B**(10)
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The AR(10) model does not fit well. Next we try an AR(24) model with
backfitting. Here is the SAS program:

options  linesize =72 ;

data ratel ;

infile ‘c:\courses\or473\data\fygn.dat’

input date $ z;

zdif=dif(z) ;

title 'Three  month treasury  bills’ ;
title2 'AR(24) model to first differences with  backfitting’

proc autoreg ;
model zdif= / nlag=24 backstep;

run
Here is the output.
Three month treasury  bills 1
AR(24) model to first differences with  backfitting
10:32 Wednesday, February 14, 2001
The AUTOREGProcedure
Dependent Variable zdif
Ordinary Least Squares Estimates
SSE 135.25253 DFE 553
MSE 0.24458 Root MSE 0.49455
SBC 797.34939 AIC 793.032225
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 1.4454
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.006986 0.0210 0.33 0.7397

Estimates of Autocorrelations

Lag Covariance Correlation
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0 0.2441 1.000000
1 0.0677 0.277260
2 -0.0262 -0.107364
3 -0.0224 -0.091587
4 -0.00911 -0.037332
5 0.0114 0.046690
6 -0.0453 -0.185710
7 -0.0480 -0.196558
8 0.0227 0.093118
9 0.0474 0.194318

Estimates of Autocorrelations

Lag -1 98765432101234567891
O | |********************|
1 I |****** I
2| = |
3| - |
4| " |
5 | I |
6 I ****l I
7 | ****l |
8 | I |
9 I |**** I

Three month treasury  bills 2

AR(24) model to first differences with  backfitting
10:32 Wednesday, February 14, 2001

The AUTOREGProcedure

Estimates of Autocorrelations

Lag Covariance Correlation
10 0.0143 0.058501
11 -0.00171 -0.006997
12 -0.0226 -0.092572
13 0.00876 0.035897
14 0.0384 0.157393
15 -0.0249 -0.101930
16 0.00120 0.004923
17 0.0200 0.082117
18 0.0190 0.078001
19 -0.00816 -0.033427
20 -0.0565 -0.231618
21 -0.0389 -0.159520
22 -0.00358 -0.014653
23 -0.00185 -0.007563

24 -0.00806 -0.032995
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Estimates  of Autocorrelations
Lag -1 98765432101234567891

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

|*

I
**l

|*

|***
**l

I

|**

|**

|
*****I

***l

|

Three month treasury  bills 3
AR(24) model to first differences with  backfitting
10:32 Wednesday, February 14, 2001

The AUTOREGProcedure

Backward Elimination of
Autoregressive Terms
Lag Estimate t Value Pr > |t
10 0.007567 0.16 0.8721
23 0.010212 0.22 0.8241
17 0.008951 0.19 0.8492
3 -0.014390 -0.32 0.7496
24 0.015798 0.40 0.6907
13 0.041434 0.92 0.3605
7 0.038880 0.85 0.3964
18 -0.037456 -0.90 0.3702
22 0.042555 1.02 0.3090
20 0.058230 1.31 0.1912
4 0.059903 1.48 0.1389
9 -0.058141 -1.42 0.1562
Preliminary MSE 0.1765
Estimates of Autoregressive Parameters

Standard
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Lag Coefficient Error t Value
1 -0.388246 0.040419 -9.61
2 0.200242 0.040438 4.95
5 -0.108069 0.040513 -2.67
6 0.249095 0.039719 6.27
8 -0.103462 0.039668 -2.61

11 -0.102896 0.040278 -2.55
12 0.119950 0.040704 2.95
14 -0.204702 0.040427 -5.06
15 0.223381 0.042441 5.26
16 -0.151917 0.040811 -3.72
19 0.103356 0.038847 2.66
21 0.108074 0.039511 2.74
Three month treasury  bills 4

AR(24) model to first differences with  backfitting
10:32 Wednesday, February 14, 2001

The AUTOREGProcedure

Expected
Autocorrelations

Lag Autocorr
0 1.0000
1 0.2840
2 -0.1196
3 -0.0801
4 0.0273
5 0.0656
6 -0.1914
7 -0.1923
8 0.0880
9 0.1549

10 0.0223
11 -0.0229
12 -0.0737
13 0.0767
14 0.1628
15 -0.1000
16 -0.0017
17 0.0685
18 0.0437
19 -0.0638
20 -0.1968
21 -0.1296

Yule-Walker  Estimates
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SSE 97.7597462 DFE 541
MSE 0.18070 Root MSE 0.42509
SBC 695.767655 AIC 639.644514
Regress R-Square 0.0000 Total R-Square 0.2772
Durbin-Watson 2.0627
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.006664 0.0192 0.35 0.7289
Three month treasury  bills 5

AR(24) model to first differences with  backfitting
10:32 Wednesday, February 14, 2001

The AUTOREGProcedure

Expected
Autocorrelations

Lag Autocorr
0 1.0000
1 0.2840
2 -0.1196
3 -0.0801
4 0.0273
5 0.0656
6 -0.1914
7 -0.1923
8 0.0880
9 0.1549

10 0.0223
11 -0.0229
12 -0.0737
13 0.0767
14 0.1628
15 -0.1000
16 -0.0017
17 0.0685
18 0.0437
19 -0.0638
20 -0.1968

N
=

-0.1296
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4.9 Forecasting

ARIMA models are often used to forecast future values of a time series.
Consider first an AR(1) process. Suppose that we have data y, ..., y, and
estimates /i and ¢. Then we estimate y,, 1 by

Ins1 == fi+ G(yn — 1)
and ;42 by . o
Int2 = fi+ S(Gnt1 — ) = d{d(yn — 1)},
etc. In general, {4, = 1+ " (yn— ). If b < lasis expected for a stationary
series, then as £ increases the forecasts will decay exponentially fast to ji.

Forecasting general AR(p) processes is similar. For example, for an AR(2)
process
gnJrl = /Aj' + (bl(yn - /Aj') + ¢2(yn71 - /l)

and

~
A

Jnio = it + &1 (Jnyr — 1) + bo(yn — ).

Forecasting ARMA and ARIMA processes is only slightly more compli-
cated than forecasting AR processes and is discussed in time series courses
such as ORIE 563. Moreover, the forecasts can be generated automatically
by MINITAB and SAS, so you don’t need to know the details in order to
forecast.

4.9.1 GE daily returns

We have learned that fitting an ARIMA(1,0,0) model to log returns is equiv-
alent to fitting an ARIMA(1,1,0) model to the log prices. Here we will fit
both models to the GE daily price data. Figure 4.8 shows the forecasts of
the log returns up to 24 days ahead. The forecasts are given in red and
95% confidence limits on the forecasts are show in blue. The observed
time series is plotted in black.
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Time Series Plot for logR

(with forecasts and their 95% confidence limits)
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Figure 4.8: Time series plot of the daily GE log returns with forecasts from an
AR(1) model.

Next we fit an ARIMA(1,1,0) model to the log prices. Although this model
is equivalent to the last model, it generates forecasts of the log prices, not
the log returns. (MINITAB always forecasts the input series.) The forecasts
are given in Figure 4.9. Notice that the forecasts predict that the price of
GE will stay constant, but the confidences limits on the forecasts get wider
as we forecast further ahead. This is exactly the type of behavior we would
expect from a random walk [ARIMA(0,1,0)] model. The ARIMA(1,1,0)
model for the log prices isn’t quite a random walk model, but it is sim-
ilar to a random walk model with zero drift (u = 0) since 6 is close to 0
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Time Series Plot for logP

(with forecasts and their 95% confidence limits)
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Figure 4.9: Time series plot of the daily GE log prices with forecasts from an
AR(1) model.

and /i is extremely close to 0.

The forecast limits suggest that accurately forecasting future GE stock prices

is pretty hopeless. For practical purposes the log prices behave like a ran-
dom walk so that the prices behave like a geometric random walk.



Chapter 5

Portfolio Selection: 3/12/01

5.1 Trading off expected return and risk

How should we invest our wealth? There are two principles:

e we want to maximize the expected return

e we want to minimize the risk = variance of return

These goals are somewhat at odds. Nonetheless, there are optimal com-
promises between expected return and risk. In this chapter we will see
how to maximize expected return subject to an upper bound on the risk,
or to minimize the risk subject to a lower bound on the expected return.

The key concept that we will discuss is reduction of risk by diversifying
the portfolio of assets held. Diversification was not always considered as
favorably as it is now.

The investment philosophy of Keynes

The famous economist, John Maynard Keynes, did not believe in diversi-
fying a portfolio. He wrote:

... the management of stock exchange investment of any kind is
alow pursuit ... from which it is a good thing for most members
of society to be free

95
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I am in favor of having as large a unit as market conditions will
allow ... to suppose that safety-first consists in having a small
gamble in a large number of different [companies] where I have
no information to reach a good judgement, as compared with
a substantial stake in a company where ones’s information is
adequate, strikes me as a travesty of investment policy

This quote is taken from Bernstein, Capital Ideas: The Improbable Origins of
Modern Wall Street.

Keynes is advocating stock picking or “fundamental analysis.” But the
semi-strong version of the EMH says that fundamental analysis does not
lead to economic profit. Of course, Keynes lived well before the EMH
and one wonders what Keynes with think about diversification if he were
alive now. Modern portfolio theory takes a very different viewpoint than
Keynes. This is not to say that Keynes was wrong. Keynes was investing
on a long time horizon, and fundamental analysis, if done well, might be
very successful in the long run. However, portfolio managers are judged
on short-term successes. Also, using fundamental analysis to find bargains
is probably more difficult now than in Keynes’s time.

5.2 One risky asset and one risk-free asset

We will start with a simple example where we have
e one risky asset, which could be a portfolio, e.g., a mutual fund

- expected return is .15

— standard deviation of the return is .25
e one risk-free asset, e.g., a 30-day T-bill

- expected value of the return is .06

— standard deviation of the return is 0 by definition of “risk-free.”
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We are faced with the problem of constructing an investment portfolio that
we will hold for one time period which could be an hour, a day, a month,
a quarter, a year, ten years, etc. At the end of the time period we might
want to readjust the portfolio, so for now we are only looking at returns
over one time period. Suppose that

e a fraction w of our wealth is invested in the risky asset
e the remaining fraction 1 — w is invested in the risk-free asset
e then the expected return is E(R) = w(.15)+ (1 —w)(.06) = .06 +.09w.
e the variance of the return is
or =w? (.25)% + (1 —w)? (0)® = w?(.25)%
or ogp = .25w.

Would w > 1 make any sense?

0 0.2 0.4 0.6 0.8 1
w

Figure 5.1: Expected return for a portfolio with allocation w to the risky asset
with expected return 0.15 and allocation 1 — w to the risk-free return with return
0.06.
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Question: Suppose you want an expected return of .10? What should w
be? [answer: 4/9]

Question: Suppose you want oz = .05. What should w be? [answer: 0.2]

More generally, if the expected returns on the risky and risk-free assets
are 1 and py and if the standard deviation of the risky asset is oy, then
the expected return on the portfolio is wyy + (1 — w)p; while the standard
deviation of the portfolio’s return is w ;.

This model is simple but not as useless as it might seem at first. Finding
an optimal portfolio can be achieved in two steps.

1. finding the “optimal” portfolio of risky assets, called the “tangency
portfolio”

2. finding the appropriate mix of the risk-free asset and the tangency
portfolio from step one

So we now know how to do the second step. What we need to learn is
how to mix optimally a number of risky assets; we will do that in the next
sections. First, we look at a related example.

5.2.1 Example

In the February 2001 issue of PaineWebber’s Investment Intelligence: A Re-
port for Our Clients, the advantages of holding municipal bonds are touted.
PaineWebber says “The chart at the right shows that a 20% municipal /80%
S%P 500 mix sacrificed only 0.42% annual after-tax return relative to a
100% S&P 500 portfolio, while reducing risk by 13.6% from 14.91% to
12.88%. The chart is show here as Figure 5.2. Although PaineWebber’s
point is correct, the chart is cleverly designed to over-emphasize the re-
duction in volatility; how?
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Municipal/S&P 500 Balanced Portfolios
Annualized After-Tax Returns 1981-2000 and Portfolio Volatility

14%
12%

Annualized Afler-Tax Return
|
Alnpeop

Relum S 0%
Valatility =—lill=—

100% B% 60%s 40% 20% 0%

%, ol Portlalio Invested In Municipal Bonds (balance invested in S&P 500)

Source: Nuveen Iivestmenss, "Twa It Greater Than One,” fanuary 2001,
Past performance i no guarantee af future remlts,

Figure 5.2: Chart from PaineWebber newsletter showing reduction in volatility
by mixing municipal bonds with the S&P 500 index.
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5.2.2 Estimating F(R) and oy

The risk-free rate, 117, will be known; Treasury bill rates are published in
most newspapers.

What should we use as the values of E(R) and og? If returns on the asset
are assumed to be stationary, then we can take a time series of past returns
and use the sample mean and standard deviation. Whether the station-
arity assumption is realistics or not is always debatable. If we think that
E(R) and o will be different than in the past, we could subjectively adjust
these estimates upward or downward according to our opinions, but we
must live with the consequences if our opinions prove to be incorrect.

Another question is how long a time series to use, that is how far back in
time when should gather data. A long series, say 10 or 20 years, will give
much less variable estimates. However, if the series is not stationary but
rather has slowly drifting parameters, then a shorter series (mabye 1 or 2
years) will be more representative of the future.

5.3 Two risky assets

The mathematics of mixing risky assets is most easily understood when
there are only two risky assets. This is where we will start.

Suppose the two risky assets have returns R, and R, and that we mix them
in proportions w and 1—w, respectively. The returnis R = wR; +(1—w)Ro.
The expected return on the portfolio is E(R) = wpy + (1 — w)us. Let p12 be
the correlation between the returns on the two risky assets. The variance
of the return on the portfolio is

0% = w?o? + (1 — w)?05 + 2w(1 — w)p1z 0109.

[Note: GRl,R2 = p120'10'2.]

Example:
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If,ul ]_4 Mo = 08 g1 = 2 09 = ]_5 andp12 —0 then
E(R) = .08 + .06w.
Also, because rhois = 0
or = (22w’ + (.15)* (1 — w)>.
Using differential calculus, one can easily show that the portfolio with the
minimum risk is w = .045/.125 = .36. For this portfolio E(R) = .08 +
(.06)(.36) = .1016 and o = 1/(.2)2(.36)2 + (.15)*(.64)? = .12.
Here are values of E(R) and o for some other values of w:
w  E(R) og
0 .080 .150
1/4 .095 123
1/2 110 125

3/4 125 155
1 140 .200

The somewhat parabolic curve in Figure 5.3 is the locus of values of (o, E(R))
when 0 < w < 1. The points labeled R; and R, corresponds to w = 1 and

w = 0, respectively. The other features of this figure will be explained in
the next section.

5.3.1 Estimating means, standard deviations, and covari-
ances

Estimates of ;1; and o; can be obtained from a univariate times series of
past returns on the first risky asset; denote this time seriesby Ry 1,..., Ri
where the first subscript indicates the asset and the second subscript is for
time. Let R, and sg, be the sample mean and standard deviation of this
series. Similarly, p; and o, can be estimated from a time series of past
returns on the second risky asset. The covariance oy, can be estimated by
sample covariance

012 =n" 12 th_Rl R2,t_ﬁ2)-
t=1
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0.125f

E(R)

0.1

0.075f

0.05 ‘ ‘
0.05 0.1 0.15 0.2

o+

Figure 5.3: Expected return versus risk. The parabola is the locus of portfolios
combining the two risky assets. The lines are the locus of portfolios of two risky
assets and the risk-free asset. F = risk-free asset. T = tangency portfolio. R, is the
first risky asset. Ry is the second risky asset.

The correlation p;2 can be estimated by the sample correlation

p12, sometimes denoted by 75, is called the cross-correlation coefficient
between R; and R; at lag 0, since we are correlating the return on the first
risky asset with the return on the second during the same time periods.
Cross-correlations at other lags can be defined but are not needed here. In
fact, we can define a cross-correlation function, which is a function of lag.
The cross-correlation function plays an important role in the analysis of
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multivariate time series.

Sample correlations and covariances can be computed on MINITAB. Go to
“Stat,” then “Basic statistics,” and then “Correlation” or “Covariance.”

54 Combining two risky assets with a risk-free
asset

As mentioned at the end of the last section, each point on the parabola in
Figure 5.3 is (o, E(R)) for some value of w between 0 and 1. If we fix w,
then we have a fixed portfolio of the two risky assets. Now let us mix that
portfolio of risky assets with the risk-free asset. The point F in Figure 5.3
gives (o, E(R)) for the risk-free asset; of course oy = 0 at E The possible
values of (og, E(R)) for a portfolio consisting of the fixed portfolio of two
risky assets and the risk-free asset is a line connecting the point F with a
point on the parabola, e.g., the dashed line. The dotted line connecting F
with R; mixes the risk-free asset with the first risky asset.

Notice that the dotted line lies above the dashed line. This means that for
any value of op, the dotted line gives a higher expected return than the
dashed line. The slope of any line is called the “Sharpe ratio” of the line;
it is named after William Sharpe whom we have met before in Section 3.8
and will meet again in Chapter 6. Sharpe’s ratio can be thought of as a
“reward-to-risk” ratio. It is the ratio of the “excess exprected return” to
the risk as measure by the standard deviation.

Clearly, the bigger the Sharpe ratio the better. Why? The point T on the
parabola represents the portfolio with the highest Sharpe ratio. It is the
optimal portfolio for the purpose of mixing with the risk-free asset. This
portfolio is called the “tangency portfolio” since its line is tangent to the
parabola.

Key result: The optimal or “efficient” portfolios mix the tangency portfo-
lio of two risky assets with the risk-free asset. Each efficient portfolio has
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two properties:

e it has a higher expected return than any other portfolio with the same
(or smaller) risk

e it has a smaller risk than any other portfolio with the same (or smaller)
expected return.

Thus we can only improve (reduce) the risk of an efficient portfolio by ac-
cepted a worse (smaller) expected return, and we can only improve (in-
crease) the expected return of an efficient portfolio by accepting worse
(higher) risk.

Note that all efficient portfolios use the same mix of the two risky assets,
namely the tangency portfolio. Only the proportion allocated to the tan-
gency portfolio and the proportion allocated to the risk-free asset vary.

5.4.1 Tangency portfolio with two risky assets

Given the importance of the tangency portfolio, you may be wondering
“how do we find it?”

Again let iy, p19, and pf be the expected returns on the two risky assets and
the return on the risk-free asset. Let o; and o, be the standard deviations
of the returns on the two risky assets and let p;5 be the correlation between
the returns on the risky assets.

Define Vi = py — py and Vo = po — py; Vi and Vi are called the “excess
returns.” Then the tangency portfolio uses weight

_ Vio: — Vapra 0109
Viod + Vool — (Vi + Vo) p1a 0109

(5.1)

wr
This formula will be derived in Section 5.6.5.

The tangency portfolio allocates a fraction wy of the investment to the first
risky asset and (1 — wr) to the second risky asset.
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Let Ry, E(Rr), and o7 be the return, expected return, and standard devia-
tion of the return on the tangency portfolio.

Example: Suppose as before that j1y = .14, uo = .08, 0y = .2, 05 = .15, and
pi2 = 0. Suppose as well that yy = .06. Then V; = .14 — .06 = .08 and
Vo = .08 — .06 = .02. Using (5.1) we get wr = .693. Therefore,

E(Rr) = (.693)(.14) + (.307)(.08) = .122,

and

or = /(.693)2(:2)2 + (.307)2(.15)2 = .146.

Let R be the return on the portfolio that allocates a fraction w of the invest-
ment to the tangency portfolio and 1 — w to the risk-free asset.
Then R = wRy + (1 — w)uy = py + w(R, — Ry) so that

E(R) = ps+w{E(Rr) — us} and op=wor.
Continuation of previous example: What is the optimal investment with
OR = .05?
answer: The maximum expected return with oz = .05 mixes the tangency
portfolio and the risk-free asset such that o = .05. Since o7 = .146, we
have that .05 = op = wor = .146w, so that w = .05/.146 = .343 and
1 —w=.657.
So 65.7% of the portfolio should be in the risk-free asset. 34.3% should be
in the tangency portfolio. Thus (.343)(69.3%) = 23.7% should be in the first

risky asset and (.343)(30.7%) = 10.5 should be in the second risky asset.

In summary
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Asset | Allocation
risk-free 65.7%
risky 1 23.7%
risky 2 10.5%
Total 99.9%

The total is not quite 100% because of rounding errors.

Now suppose that you want a 10% expected return. Compare

e The best portfolio of only risky assets

e the best portfolio of the risky assets and the risk-free asset

Answer:
o (best portfolio of risky assets)

- 1=w(.14) + (1 — w)(.08) implies that w = 1/3.

— This is the only portfolio of risky assets with E(R) = .1, so by
default it is best.

— Then

or = Jw?(:2)2 + (1 — w)2(.15)2 = /(1/9)(:2)% + 4/9(.15)? = .120.

e (best portfolio of the two risky assets and the risk-free asset)

- .1 = E(R) = .06 + .062w = .06 + .4250R, since ogp = wor Or
w = og/or = og/.146.

— This implies that o = .04/.425 = .094 and w = .04/.062 = .645.

So combining the risk-free asset with the two risky assets reduces oy from
120 to .094 while maintaining E'(R) at .1. The reduction in risk is (.120 —
.094)/.094 = 28%.

More on the example: What is the best we can do combining the risk-
free asset with only one risky asset? Assume that we still want to have
ER)=1
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e Second risky asset with the risk-free

— Since p1y = .06 < .1 and p; = .08 < .1, no portfolio with only the
second risky asset and the risk-free asset will have an expected
return of .1.

e First risky asset with the risk-free
- 1=w(14)+(1-w)(.06) = .06+w(.08) imples that w = .04/.08 =
1/2.

— Then og = w(.20) = .10 which is greater than .094, the small-
est risk with two risky assets and the risk-free asset such that
E(R) = .1.

The minimum value of oz under various combinations of available assets

are given in Table 5.4.1.
Available Assets | Minimum oy
1st risky, risk-free 0.1
2nd risky, risk-free -
Both riskies 0.12
All three 0.094

Table 5.1: Minimum value of o as a function of the available assets.

5.4.2 Effect of pio

Positive correlation between the two risky asets is bad. With positive cor-
relation, then two assets tend to move together which increases the volatil-
ity of the portfolio. Conversely, negative correlation is good. If the assets
are negatively correlated, a negative return of one tends to occur with a
positive return of the other so the volatility of the portfolio decreases. Fig-
ure 5.4 shows the efficient frontier and tangency portfolio when p; = .14,
pe = .09, oy = .2, 0o = .15, and puy = .03. The value of p;, is varied
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from .7 to —.7. Notice that the standard deviation of the portfolio returns
decreases as p;2 decreases.
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Figure 5.4: Efficient frontier and tangency portfolio when iy = .14, py = .09,
o1 = .2,09 = .15,and py = .03. The value of pi, is varied from .7 to —.7.
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5.5 Harry Markowitz

Chapter Two of Capital Ideas: The Improbable Origins of Modern Wall Street
by Peter Bernstein is titled “Fourteen Pages to Fame.” The title refers to the
paper “Portfolio Selection” by Harry Markowitz that was published in the
Journal of Finance in 1952. This article is indeed only fourteen pages though
it was later expanded to the book Portfolio Selection: Efficient Diversification
of Investments that was published by Markowitz in 1959.

Markowitz was not primarily interested in the stock market or investing.
Rather, he was drawn to the more general issue of how people make trade-
offs. Investors are faced with a trade-off between risk and expected return.
The maxim “nothing ventured, nothing gained” isn’t quite true, but risk-
free rates of return can be smaller than many investors find acceptable.
Markowitz’s solution to the problem of risk also can be expressed as a
maxim, “don’t put all your eggs in one basket.” (Keynes, would have
agreed with Mark Twain who said, “put all your eggs in one basket —
and then, watch that basket!”

Markowitz was born in 1927 and grow up in Chicago. His high school
grades were not impressive, but he was intellectually curious and read
a great deal on his own. At fourteen, he read Darwin’s Origin of Species
and later his hero was the philosopher David Hume. The knowledge he
acquired on his own got him into the University of Chicago and even ex-
empted him from the required science courses there. This self-study may
have been ideal preparation for the highly original work that came later.

After graduation, Markowitz became a research associate at the Cowles
Commission and a graduate student at his Alma Mater. While waiting
outside his advisor’s office one day, he began a conversation with a stock
broker who suggested that he write his thesis on the stock market. Markowitz
was somewhat surprised when later his advisor was enthusiastic over this
idea.

Markowitz started to read what he could about investing. In the 1937 book
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The Theory of Investment Value by John Burr Williams, he found Williams’s
prescription for selecting stocks: one estimated the “instrinsic value” of
a stock by forecasting all future dividends and calculating the “present
value” all future dividends, that is, the discounted sum of all future divi-
dends. William then recommends that one put all one’s capital in the stock
with the highest intrinsic value.

Markowitz had enough knowledge of the world to realize that this is not
how investors actually operated. He had the key insight that humans are
risk-averse, and he began to explore the relationship between diversifica-
tion and risk.

Interestingly, Markowitz did not recommend that expected returns be es-
timated from past data but rather from Williams’s Dividend Discounted
Model.

5.6 Risk-efficient portfolios with N risky assets

5.6.1 Efficient-set mathematics

Efficient-set mathematics generalizes our previous analysis with two risky
assets to the more realistic case of many risky assets. This material is taken
from Section 5.2 of Campbell, Lo, and MacKinlay.

Assume that we have N risky assets and that the return on the ith risky

()

to be the random vector of returns. Then

asset is p;. Define

E(R)=p=| :
KN
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Let €2;; be the covariance between R; and R;. Also, let o; = 1/€);; be the
the standard deviation of R,. Define p;; = ;;/(00;) as the correlation
between R; and R;. Finally, let Q2 be the covariance matrix of R, i.e.,

Q = COV(R),

so that the ¢, jth element of € is ;.

(3

be a matrix of portfolio weights and let

-

be a column of N ones. We assume that w; + -+ +wy = 17w = 1. The
expected return on a portfolio with weights w is ¥ | wiu; = w' .

Let

When N = 2, wy = 1 — w;y. Suppose there is a target value, pp, of the
expected return on the portfolio. We assume that

i ;< < ;
z:IEH,lN Hi = pp = z:nl,a),(N i,
since no portfolio can have an expected return higher than the individual
asset with the highest expected return or smaller than the individual asset
with the lowest expected return. When N = 2 the target, up, is achieved
by only one portfolio and its w; value solves

pp = wipn + wolly = o + wi(f1 — f2)-

For N > 3, there will be an infinite number of portfolios achieving the
target, ;1p. The one with the smallest variance is called the “efficient” port-
folio. Our goal is to find the efficient portfolio.
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By equation (2.2), the variance of the return on the portfolio with weights
wis
N N
ZZwi Wy Qij = wTQw. (52)
i=1 j=1

Thus, given a target up, the efficent portfolio minimizes (5.2) subject to
w'p=pp (5.3)

and
w'l=1. (5.4)

We will denote the weights of the efficient portfolio by w,,,. To find w,,,,
form the Lagrangian

L=w"Qw+ 6 (up — w;P/J,) +8(1—w'p).

Then solve

0= a%L = 2Quw,, — o1 — 621, (5.5)

Definition: Here 5

—L

ow
means the gradient of L with respect to w with the other variables in L
held fixed.

Fact: For an n x n matrix A and an n-dimensional vector x,
0

%wTAm =(A+ ANz

The solution to (5.5) is

1
Wyp = 5sz—l((slu +6,1) = Q7 (A p 4 Ao1)
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where \; and ), are new Lagrange multipliers:

1 1
)\1 = 5(51 and )\2 = 552

Thus,
Wip = A T+ Q71

where \; and ), are yet to be determined scaler quantities. We need to use
the constraints to determine \; and \,. Therefore,

=P Wy, = Mp" Q4+ Aop Q7N

and
1=1Tw,, = 1TQ 'u+ 170 1.

Define

A= p'Q'1=1"0"y

B = pu'Q 'y,

C = 1"Q'1,

D = BC — A%
Then

Mp = B/\1+A)\2
1 = A\ +Ch.

These are equations in A; and )y; A, B, and C are known quantities. The
solution is

-A+C B—A
)\1 = T,u'p and)\2: TMP
It follows after some algebra that
wup =g +hup, (5.6)

where
_BQ'1-AQ 'p

g - D I

(5.7)
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and

CQ'u—AQ 11
o) )

Notice that g and h are fixed vectors, since they depend on the fixed vector

p and the fixed matrix €. Also, the scalars A, C, and D are functions of u

and  so they are also fixed. The target expected return, up, can be varied

over the range

h =

(5.8)

in u < pup < max ;.
z':l,...,N’uz = Hp = i:l,...,N'uZ

As pp varies over this range, we get a locus w,, of efficient portfolios

called the “efficient frontier.” We can illustrate the efficient frontier by the
following algorithm:

1. Vary pp along a grid. For each value of ;p on this grid, compute o,
by:
(a) computingw,, =g+ hpup

(b) then computing 0, = /w,,Qw,,

2. Plot the values (up,0,,)
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This algorithm is implemented in the MATLAB program “portfolio02.m”
on the course’s web site and listed below:

% Input mean vector and covariance  matrix of returns  here

bmu = [.08;.03;.05]
bOmega=1[ .3 .02 .01
.02 .15 .03 ;
.01 .03 .18 1] ;

bone = ones(length(bmu),1)

short =1 ; %short = 1 implies extensive short selling

% short = 0 reduces the short selling, but
% does not eliminate short  sell

ngrid = 200 ;

if short ==

muP = linspace(-.02,.2,ngrid) ;
w = linspace(-5,7,ngrid) ;

else

muP = linspace(min(bmu),max(bmu),ngrid)
w = linspace(0,1,ngrid) ;

end ;

sigmaP = zeros(1,ngrid)
omegaP = zeros(3,ngrid)

mul2 = zeros(1,ngrid) ;
sigmal2 = mul2 ;

mul3 = zeros(1,ngrid)
sigmal3 = mul2 ;

mu23 = zeros(1,ngrid) ;
sigma23 = mul2 ;
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ibOmega = inv(bOmega)

A = bone™*ibOmega*bmu
B = bmu*ibOmega*bmu ;
C = bone*ibOmega*bone ;

D=B* - A2 ;
bg = (B*ibOmega*bone - A*ibOmega*bmu)/D
bh = (C*ibOmega*bhmu - A*ibOmega*bone)/D

for i=1:ngrid ;
omegaP(;,i) = bg + muP(i)*bh ;
sigmaP(i) = sqgrt(omegaP(:,i)*bOmega*omegaP(:,i))

mul2() = w(i)*bmu(l1) + (1-w(i))*bmu(2) ;
sigmal2(i) = sgrt(w(i)"2*bOmega(1,1) + 2*w(i)*(1-w(i))*bOmega(1,2)
+ (1-w(i))"2*bOmega(2,2)) ;

mul3(@) = w(i)*bmu(l) + (1-w(i))*bmu(3)

sigmal3(i) = sgrt(w(i)"2*bOmega(1,1) + 2*w(i)*(1-w(i))*bOmega(1,3)
+ (1-w(i))"2*bOmega(3,3)) ;

mu23() = w(i)*bmu(2) + (1-w(i))*bmu(3)

sigma23(i) = sgrt(w(i)"2*bOmega(2,2) + 2*w(i)*(1-w(i))*bOmega(2,3)
+ (1-w(i))"2*bOmega(3,3))

end ;

fsize = 16 ;

figure(1)

p = plot(sigmaP,muP,sigmal2,mul2,’--';s igmal3 ,mul3 /-’ ,sigma 23,mu?23,: )
set(p,'linewidth’,6) ;

xlabel(’standard deviation of return  (\sigma_P)’,'fontsize’,fsize) ;
ylabel('expected return  (\mu_P)’, 'fontsize’ fsize) ;
text(sqrt(bOmega(1,1)),bmu(1),'1’, font size’, 24)
text(sqrt(bOmega(2,2)),bmu(2),2’, font size’, 24)
text(sqrt(bOmega(3,3)),bmu(3),'3’, font size’, 24) ;
set(gca,’'fontsize’,fsize) ;

if short ==

set(gca,’ylim’,[.025,.085])

end ;

if short == ;

set(gca,’'ylim’,[-.02,.2]) ;

set(gca,’xlim’,[.2,2]) ;

end ;



5.6. RISK-EFFICIENT PORTFOLIOS WITH N RISKY ASSETS 117

grid

if short == ;

print  portfolio02.ps -depsc

Imv portfolio02.ps “Ipublic_html/or473/LectNotes/por tfoli  002.ps ;
else

print  portfolio02SH.ps -depsc

Imv portfolio02SH.ps “Ipublic_html/or473/LectNotes/portfo lio02S H.ps ;
end ;

figure(2)

p2 = plot(muP,omegaP(1,:),muP,omegaP(2,:) muP,omegaR3,:), -.) :

set(p2,’linewidth’,6) ;
set(gca,'fontsize’,fsize)

grid

xlabel("\mu_P’,'fontsize’ fsize) ;
ylabel('weight’,'fontsize’,fsize) ;
legend('w_1')w_2''w_3",0)

if short == 0

print  portfolio02_wt.ps -depsc  ;

Imv portfolio02_wt.ps “/public_html/or473/LectNotes/portf olio02 _wtp s ;
else

print  portfolio02_wtSH.ps -depsc

Imv portfolio02_wtSH.ps “Ipublic_html/or473/LectNotes/por tfolio 02_wt SH.ps ;
end ;

To use this program replace bmuand bOmegain the program by the vector
of expected returns and covariance matrix of returns for the assets you
wish to analyze. The parameter “short” should be set equal to 0 or 1. If
“short” is 1, then there is extensive short selling, i.e., weights get quite
negative. If “short” is 0, then the amount of short selling is small.
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Figure 5.5 was produced by this program with “short” equal to 0.
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Figure 5.5: Efficient frontier (solid) plotted for N = 3 assets by the program
“portfolio02.m"” with the parameter “short” equal to 0. “1,” “2,” and “3” are the

three single assets. The efficient frontiers for just two assets are dashed (1 and 2),
dashed-and-dotted (1 and 3), and dotted (2 and 3).
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The portfolio weights as functions of up are plotted in Figure 5.6. The
weights can be negative. Negative weights can be obtained by the tech-
nique of selling short which is described in Section 5.6.2.

.4 | | | |
0.03 0.04 0.05 " 0.06 0.07 0.08
P

Figure 5.6: Weights for assets 1, 2, and 3 as functions of ,. Note that the weights
for assets 1 and 2 can be negative, so that short selling would be required.
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If one wants to avoid short selling, then one must impose the additional
constraints that w; > 0 fori =1,..., N. Minimization of portfolio risk sub-
jecttow™pu = pp, w1 =1, and these additional nonnegativity constraints
is a quadratic programming problem. (This minimization problem cannot
be solved by the method of Lagrange multipliers because of the inequality
constraints.) Quadratic programming algorithms are not hard to find. For
example, the program “quadprog” in MATLAB’s Optimization Toolbox
does quadratic programming.

Figure 5.7 and 5.8 were produced by the program “portfolio02QP.m” that
uses “quadprog” in MATLAB. Quadratic programming in MATLAB and
“portfolio02QP.m are discussed in Section 5.9.
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Figure 5.7: Efficient frontier plotted by the program “portfolio02QP.m” for
N = 3assets. “1,” “2,” and “3"” are the three single assets. The efficient fron-
tiers are found with and without the constraint of no negative weights. The con-
strained efficient frontier is computed using MATLAB’s quadratic programming
algorithm.
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Figure 5.8: Weights for assets 1, 2, and 3 as functions of p,,. The weights for all
three assets are constrained to be nonnegative.
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The portfolio weights with the nonnegativity constraint are plotted as func-
tions of pp in Figure 5.8. That figure was made using the program “port-
folio02QP.m” listed here:

% Input mean vector and covariance  matrix of returns  here

bmu = [.08;.03;.05]
bOmega=1[ .3 .02 .01

.02 .15 .03 ;

.01 .03 .18 1] ;
A = [ones(1,3);bmu’]
ngrid = 50 ;

muP = linspace(.03,.08,ngrid)’

icompute = 0 ;

if icompute == 1 ;
sigmaP = muP ;

sigmaP2 = sigmaP ;
omegaP = zeros(3,ngrid) ;
omegaP2 = omegaP ;

for i = 1:ngrid

omegaP(;,i) = quadprog(bOmega,zeros(3,1),-eye(3 ),zer o0s(3, 1),A[ 1,muP(i)])
omegaP2(:,i) = quadprog(bOmega,zeros(3,1),zeros(1,3 ),00A [1;mu P@)] ) ;
sigmaP(i) = sqgrt(omegaP(:,i)*bOmega*omegaP(:,i )

sigmaP2(i) = sqrt(omegaP2(:,i)*bOmega*omegaP?2( i)

end ;

end ;

fsize = 16 ;

figure(1)

clf

p = plot(sigmaP,muP,sigmaP2,muP,’--") ;

I=legend('no negative  wts’,’unconstrained wts’,4)

set(gca,'fontsize’,fsize)
set(l,'fontsize’,fsize) ;

xlabel(’standard deviation of return  (\sigma_P)’,'fontsize’,fsize)
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ylabel('expected return  (\mu_P)’, 'fontsize’ fsize)
text(sqrt(bOmega(1,1)),bmu(1),'1’, font size’, 24)
text(sqrt(bOmega(2,2)),bmu(2),'2’, font size’, 24) ;
text(sqrt(bOmega(3,3)),bmu(3),'3’, font size’, 24) ;

set(gca,’'ylim’,[.025,.085]) ;

set(p,’linewidth’,4)

grid ;

print  portfolio02QP.ps -depsc  ;

Imv  portfolio02QP.ps “Ipublic_html/or473/LectNotes/port folio0O 2QP.ps ;
figure(2)

p2 = plot(muP,omegaP(1,:),muP,omegaP(2, ), -- "muP ,omegaP(3,: ),-. )

set(p2,’linewidth’,6) ;
set(gca,'fontsize’,fsize)

grid

xlabel("\mu_P’,’fontsize’ fsize) ;
ylabel('weight’,'fontsize’,fsize) ;
legend(w_1')w_2''w_3",0)

print  portfolio02_wtQP.ps -depsc

Imv  portfolio02_wtQP.ps “Ipublic_html/or473/LectNotes/portfol i002_ wtQP. ps ;
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Now suppose that we have a risk-free asset and we want to mix the risk-
free asset with some efficient portfolio. One can see geometrically that there
is a tangency portfolio; see Figure 5.9. The optimal portfolio always is
a mixture of the risk-free asset with the tangency portfolio. This is a
remarkable simplification.

mu =
expected
return

T= tangency
portfolio efficient

frontier

& arbitrary portfolio of

. risky assets
best portfolios of

risky and

risk-free assets . . .
P = arbitrary efficient portfolio of

risky assets

mixtures of P
and R

R =
risk-free

sigma

Figure 5.9: Finding the best portfolios that combine risky and risk-free assets. R
is the risk-free asset. T is the tangency portfolio. The optimal portfolios are on the
line connecting R and T. The efficient frontier gives the set of optimal portfolios of
risky assets.
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5.6.2 Selling short

Selling short is a way to profit if a stock price goes down. To sell a stock
short, one sells the stock without owning it. The stock must be borrowed
from a broker or another customer of the broker. At a later point in time,
one buys the sale and gives it back to the lender. This closes the short
position.

Suppose a stock is selling at $25/share and you sell 100 shares short. This
gives you $2,500. If the goes down to $17 share, you can buy the 100 shares
for $1,700 and close out your short position.

Suppose that you have $100 and there are two risky assets. With your
money you could buy $150 worth of risky asset 1 and sell $50 short of risky
asset 2. The net cost would be exactly $100. If R; and R; are the returns on
risky assets 1 and 2, then our the return on your portfolio would be

3 1

3+ (=) e
Your portfolio weights are w; = 3/2 and wy = —1/2. Thus, you hope that
risky asset 1 rises in price and risky asset 2 falls in price.

Here, as elsewhere, we have ignored transaction costs.

Figure 5.10 is the same as Figure 5.5 except that the range of values of 1p
has been expanded. Values of yp below min(y;) and above max(y;) are
possible by using short selling. In principle, there is no upper limit to up,
but in practice security exchanges place limits on the amount of stock one
can sell short becausing selling short increases risk.
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Figure 5.10: Efficient frontier (solid) plotted for N = 3 assets by the program
“portfolio02.m"” with the parameter “short” equal to 1. “1,” “2,” and “3” are the
three single assets. The efficient frontiers for just two assets are dashed (1 and
2), dashed-and-dotted (1 and 3), and dotted (2 and 3). This figure is the same as
Figure 5.5 except that the range of p, has been expanded.
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5.6.3 The Interior decorator fallacy

It is often thought that a stock portfolio should be tailored to the financial
circustances of a client, as an interior decorator furnishes your home to suit
your tastes. For example, widows and orphans should hold conservative
“income stocks,” or so it is said.

Bernstein, in his book Capital Ideas, calls this the “interior decorator fal-
lacy.” Bernstein tells the story of a woman in her forties who came to him
in 1961 for investment advice. She was married to a clergyman with a
modest income. She had just inherited money which she wanted to in-
vest. Bernstein recommended a portfolio that included stocks with good
growth potential but low dividends, e.g., Georgia Pacific, IBM, and Gillette.
The client was worried that these were too risky, but she eventually took
Bernstein’s advice, which turned out to be sound. Bernstein reasoned
that even someone with modest means should benefit from the long-term
growth potential of the “hot” stocks.

In another case, Bernstein recommended electric utilities, a conservative
choice, to a young business excecutive who wanted a more aggressive
portfolio. Again, this recommendation was at odds with conventional wis-
dom.

A new view, based both on mathematical theory and experience, is that
there is a best portfolio (the tangency portfolio) that is the same for every-
one. An individual’s circumstances only determines the appropriate mix
between risk-free assets and the tangency portfolio. The clergyman’s wife
should invest a higher percentage of her money in risk-free assets than the
young business executive. In 1961, Bernstein had the right intuition but he
had not yet heard of the Efficient Frontier or the tangency portfolio.

5.6.4 Back to the math

Here’s the mathematics behind Figure 5.9. We now remove the assump-
tion that w™1 = 1. The quantity 1 — w1 is invested in the risk-free asset.
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(Does it make sense to have 1 — w'1 < 0?). The expected return is
wp+(1-wl)yy, (5.9)

where i is the return on the risk-free asset. The constraint to be satisfied
is that (5.9) is equal to pp. Thus, the Lagrangian function is

L=w"Qw+6{pup—wp—(1-w'1)u}

Here 6 is a Lagrange multiplier. Since

0
0= 5—L=20w+5(—p+1p),

the optimal weight vector, i.e., the vector of weights that minimizes risk
subject to the constraint on the expected return, is

Wip = AQ (1 — pfl), (5.10)
where A = §/2. To find ), we use our constraint:
whp+ (L—w, )= pp. (5.11)
Rearranging (5.11), we get
wy, (1= pig1) = pp — piy. (5.12)
Therefore, substituting (5.10) into (5.12) we have
A — )" (e — ppl) = pp — g,
or

Hp — pf
)= _ . (5.13)
(b= pp)TQ (e — pyl)

Then substituting (5.13) into (5.10)

Wy, =Cpw,

where
Up — py

(k= p)TQ™ (1 — ps1)

cp
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and
w=0Q"(u— psl). (5.14)

Note that (¢ — 1£1) is the vector of “excess returns,” that is, the amount by
which the expected returns on the risky assets exceed the risk-free return.
The excess returns measure how much the market buys for assuming risk.

w is not quite a portfolio because these weights do not necessarily sum to

one. The tangency portfolio is a scalar multiple of @:
w

1w’

(5.15)

Wwr =

cp tells us how much weight to put on w and therefore on the tangency
portfolio. The amount of weight to put of the risk-free asset is 1 — w'1
=1— ¢, (@"1). The weight on the tangency portfolio is ¢, (@'1).

Note that @ and wy do not depend on p,,.

The MATLAB program “portfolio03.m” on the course web site is an ex-
tension of “portfolio02.m.” portfolio03.m, which is listed below, also plots
of the tangency portfolio (T) and the line connecting the risk-free asset (F)
with the tangency portfolio.

% portfolio03 - extension  of portfolio02
% Input mean vector and covariance matrix of returns  here

bmu = [.08;.03;.05] ;
bOmega=[ .3 .02 .01 ;

.02 .15 .03 ;
.01 .03 .18 ] ;
muf = .02 ;

bone = ones(length(bmu),1) ;
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muP = linspace(min(bmu),max(bmu),50 )
sigmaP = zeros(1,50) ;

ibOmega = inv(bOmega)

A = bone™*ibOmega*bmu

B = bmu™*ibOmega*bmu

C = bone*ibOmega*bone ;
D=B*C - A2 ;

bg = (B*ibOmega*bone - A*ibOmega*bmu)/D
bh = (C*ibOmega*bhmu - A*ibOmega*bone)/D

for i=1:50 ;
omegaP = bg + muP(i))*bh ;

sigmaP(i) = sqgrt(omegaP*bOmega*omegaP)
end ;
bomegabar = ibOmega*(bmu - muf*bone) ;

bomegaT = bomegabar/(bone’*bomegabar) ;
sigmaT = sqrt(bomegaT*bOmega*bomegaT)
muT = bmu*bomegaT

fsize = 16 ;

fsize2 = 28 ;

bomegaP2 = [0;.3;.7]

sigmaP2 = sqgrt(bomegaP2*bOmega*bomegaP 2)
muP2 = bmu™*bomegaP2 ;

clf ;

pl = plot(sigmaP,muP)

11 = line([0,sigmaT],[muf,muT])

tl= text(sigmaP2,muP2,™ P’ fontsize’,fsize2) ;
t2= text(sigmaT,muT,* T’ fontsize’,fsize2) ;
t3=text(.01,muf+.006, F’,'font size’ ,fsi ze2)

t3B= text(0,muf,™* fontsize’,fsiz e2)
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set(pl,’linewidth’,2) ;
set(I1,’linewidth’,2) ;
set(11, linestyle’,’--")

xlabel(’standard deviation of return’,fontsize’,fsize)
ylabel(’expected return’,’ fontsize’,fsize) ;

print  portfolio03.ps -deps ;
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Figure 5.11: Efficient frontier and line of optimal combinations of risky and risk-
free assets plotted by the program “portfolio03.m” for N = 3 assets. “P” is the
portfolio with weights (0 .3 .7) that is not on the effcient frontier. “T” is the
tangency portfolio and “F” is the risk-free asset.
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5.6.5 Example: N =2

If N =2, then
0= ( U% p120102> .
P120102 0%
You should check that
1 0! = ( o’ —P1201 09 )
PR = -1 2
1—pfsy —pP1201 09 02
Also,
M1 — Ky
= ppl = )
d (Nz — Mf
Therefore,
pr—ps  pr2(p2—pr)
w=0 '(p—pl)= ! ( o o102 )
1— pio _ pr2(pa—py) + ,U2;2Nf

g102 2

Next, let V; = puy — pg and Vo = po — puy. Then,

_ Vioh + Vool — (Vi + V3) p1aoiog

1'w
oio3(1 — pr2)

It follows that

@ 1 ( Viod — Va p120102 )
1" Vooy +Vo0? — (Vi + Vo) praoiog \ Vool — Vi p1acios )

Compare the first element of this vector with (5.1), the formula that gives
the weight of the first of two risky assets in the tangency portfolio.

5.7 Is the theory useful?

This theory of portfolio selection could be used if N were small. We would
need estimates of u and €. These would be obtained from recent returns
data. Of course, there is no guarantee that future returns will behave like
returns in the past, but this is the working assumption.
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The next section gives an example of using portfolio theory to allocate
capital among the various international markets.

However, suppose that we were considering selecting a portfolio from all
500 stocks on the S&P index. Or, even worse, consider all 3000 stocks on
the Russell index. Ugh! There would be (3000)(2999)/2 = 4.5 million co-
variances to calculate. Moreover, £2 would be 3000 by 3000 and its inverse
is required. However, the most serious difficulty would not be the com-
putations. It would be data collection.

Porfolio theory was an important theoretical development; Markowitz
was awarded the Nobel Prize in economics for this work. However, a
practical version of this theory awaited the work of Sharpe and Lintner.
Sharpe, who was Markowitz’s PhD student, shared the Nobel Prize with
Markowitz.

Sharpe’s CAPM assets that the tangency portfolio is also the market port-
folio. This is a tremendous simplification.

5.8 Example—Global Asset Allocation

This example is taken from Efficient Asset Management by Richard O. Michaud.
The problem is to allocate capital to eight major classes of assets: U.S.
stocks, U.S. government and corporate bonds, Euros, and the Canadian,
French, German, Japanese, and U.K. equity market. The historic data used

to estimate expected returns, variances, and covariances consisted of 216
months (Jan 1978 to Dec 1995) of index total returns in U.S. dollars for all
eight asset classes and for U.S. 30-day T-bills.

The efficient frontier, with all weights constrained to be non-negative, was
found by quadratic programming and is shown in Figure 5.12. There are
three reference portfolios. Michaud states that

The index portfolio is roughly consistent with a capitalization
weighted portfolio relative to a world equity benchmark for the
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six equity markets. The current portfolio represent a typical

U.S.-based investor’s global portfolio asset allocation. ... An
equal weighted portfolio is useful as a reference point.

1A |Expected Return France

14

- Current
[

Equa.l We ight 9 Germany

US Bonds
Euros -9

o 5 1] =) | 25

Annualized Return Standard Deviation

Figure 5.12: Efficient frontier for the global asset allocation problem.
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5.9 Quadratic programming

Quadratic programming can be used to solve problems such as minimiz-
ing

1
inH z+ flax
subject to
Ax < b,
and
A,z = b,

Here for some N, x and f are N x 1 vectors and H is an N x N matrix.
Also, Aism x N and bis m x 1 for some m, while A., isn x N and b,, is
n X 1 for some n.

We can impose nonnegativity constraints on the weights of a portfolio by

solving the minimization problem above with * = w, H = €2, f equal to
a N x 1 vector of zeros, A = —I (the N x N identity matrix), b equal to a

N x 1 vector of zeros,
1T
A, = <”T> ,

1
b., = ]
! <MP>

Here is the documentation for MATLAB’s “quadprog” illustrating several

and

ways that this program can be used. In our applications, e.g., in the pro-
gram “portfolio02QP.m,” we call the program “quadprog” with a com-
mand of the type “X=QUADPROG(H,f,A,b,Aeq,beq)”. This can be seen in
the listing of “portfolio02QP.m” which is given later.

QUADPRO®uadratic ~ programming. X=QUADPROG(H,f,A,b) solves the quadratic programming
problem:

min  0.5*X™*H*x + f*x subject  to: A*x <= b
X
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X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while additionally satisfying
the equality constraints Aeg*x = beq.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper bounds on the design

variables, X, so that the solution is in the range LB <= X <= UB. Use empty matrices
for LB and UB if no bounds exist. Set LB(@) = -Inf if X(i) is unbounded below; set
UB(@) = Inf if X() is unbounded above.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to XO.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,0PTION S) minimizes with the default  optimization
parameters replaced by values in the structure OPTIONS, an argument created with the

OPTIMSET function. See OPTIMSET for details. Used options are Display, Diagnostics,

TolX, TolFun, HessMult, LargeScale, Maxlter, PrecondBandWidth, TypicalX, TolPCG, and
MaxPCGilter. Currently, only ‘final and ’off’ are valid values for the parameter Display
(iter is not available).

X=QUADPROG(Hinfo,f,A,b,Aeq,beq,LB,UB,X0,0P TIONS,P1,P2,.. ) passes the problem-dependent
parameters  P1,P2,... directly to the HMFUNfunction when OPTIMSET('HessMult’,HMFUN)

is set. HMFUNis provided by the user. Pass empty matrices for A, b, Aeq, beqg, LB,
UB, XO, OPTIONS, to use the default values.

[X,FVAL]=QUADPROG(H,f,A,b) returns  the value of the objective function at X: FVAL =
0.5*X™*H*X  + f*X.

[X,FVAL,EXITFLAG] = QUADPROG(H,f,Ab) returns a string EXITFLAG that describes the

exit condition of QUADPROGIf EXITFLAG is: > 0 then QUADPROGonverged with a solution
X. 0 then the maximum number of iterations was exceeded (only occurs with large-scale
method). < 0 then the problem is unbounded, infeasible, or QUADPROGailed to converge
with a solution X.

[X,FVAL,EXITFLAG,OUTPUT] = QUADPROG(H,f,Ab) returns a structure OUTPUTwith the number
of iterations taken in OUTPUT.iterations, the type of algorithm used in OUTPUT.algorithm,
the number of conjugate gradient iterations (if used) in OUTPUT.cgiterations, and a
measure of first order optimality (if used) in OUPUT.firstorderopt.

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=QUADPROG(Hf,A,b) returns  the set of Lagrangian  multipliers
LAMBDA, at the solution: LAMBDA.ineqlin  for the linear inequalities A, LAMBDA.eqlin
for the linear equalities Aeq, LAMBDA.lower for LB, and LAMBDA.upper for UB.

Here is the program “portfolio02QP.m":

% Input mean vector and covariance  matrix of returns  here

bmu = [.08;.03;.05] :
bOmega=[ .3 .02 .01 ;
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.02 .15 .03

.01 .03 .18 ] ;
A = [ones(1,3);bmu’] ;
ngrid = 50 ;

muP = linspace(.03,.08,ngrid)’

icompute = 0 ;

if icompute == ;

sigmaP = muP ;

sigmaP2 = sigmaP

omegaP = zeros(3,ngrid) ;
omegaP2 = omegaP ;

for 1 = 1:ngrid

omegaP(:,i) = quadprog(bOmega,zeros(3,1),-e
zeros(3,1),A,[1;muP(i)]) ;

omegaP2(:,i) = quadprog(bOmega,zeros(3,1),
0,A,[1;muP()]) ;

sigmaP(i) = sqgrt(omegaP(;,i)”*bOmega*omegaP
sigmaP2(i) = sqgrt(omegaP2(:,i)*bOmega*omeg
end ;

end ;

fsize = 16 ;

figure(1)

clf

p = plot(sigmaP,muP,sigmaP2,muP,’-- D)
I=legend('no negative  wts’,’unconstrained

set(gca, fontsize’,fsize) ;
set(l, fontsize’,fsize) ;

139
ye(3) ,...
zeros (1,3 ),...
G o)
aP2(: i) ;

wts’,4)

xlabel(’standard deviation of return (\sigma_P)’,...
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'fontsize’,fsize) ;
ylabel(’expected return  (\mu_P)’,’fontsize’,fsize)

text(sgrt(bOmega(1,1)),bomu(l ), Jfo ntsiz e,2 4) ;
text(sgrt(bOmega(2,2)),bmu(2 )2 Jfo ntsiz e\2 4) ;
text(sqrt(bOmega(3,3)),bmu(3 )3 Jfo ntsiz e,2 4)

set(gca,’ylim’,[.025,.085])

set(p,’ linewidth’,4) ;
grid

print  portfolio02QP.ps -depsc  ;
Imv portfolio02QP.ps
“Ipublic_html/or473/LectNote s/por tfol i002Q P.ps

figure(2)

p2 = plot(muP,omegaP(1,:),muP,ome gaP(2,), -~ ,muP, ...
omegaP(3,:),-.") ;

set(p2,’linewidth’,6)

set(gca, fontsize’,fsize)

grid
xlabel(\mu_P’, fontsize’,fs ize) ;

ylabel('weight’,'fontsize’,f size)
legend('w_1',w_2'’'w_3',0) ;

print  portfolio02_wtQP.ps -depsc  ;
Imv portfolio02_wtQP.ps
“Ipublic_html/or473/LectNote s/por tfol i002_ wtQP.ps



Chapter 6

The Capital Asset Pricing Model:
3/26/01

6.1 Introduction to CAPM

The CAPM (capital asset pricing model has a variety of uses:

e It provides a theoretical justification for the widespread practice of
“passive” investing known as indexing.

- Indexing means holding a diversified portfolio in which securi-
ties are held in the same relative proportions as in a broad mar-
ket index such as the S&P 500. Individual investors can do this
easily by holding shares in an index fund.

e CAPM can provide estimates of expected rates of return on individ-
ual investments

e CAPM can establish “fair” rates of return on invested capital in reg-
ulated firms or in firms working on a cost-plus basis — what should
the “plus” be?

e CAPM starts with the question, what would be the risk premiums
on securites if the following assumptions were true?

141
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- The market prices are “in equilibrium.”
* In partcular, for each asset, supply equals demand.
- Everyone has the same forecasts of expected returns and risks.

— Allinvestors chose portfolios optimally according to the prinici-
ples of efficient diversification discussed in Chapter 5.

* This implies that everyone holds the tangency portfolio of
risky assets.

- The market rewards people for assuming unavoidable risk, but
there is no reward for needless risks due to inefficient portfolio
selection.

* Therefore, the risk-premium on a single security is not due
to its “stand alone” risk, but rather to its contribution to the
risk of the tangency portfolio.

- The various components of risk will be discussed in Sec-
tion 6.4.

As in Chapter 5, “return” can either refer to one-period net returns or one-
period log returns.

Suppose that there are exactly three assets with a total market value of
$100 billion.

e Stock A: $60 billion
e Stock B: $30 billion
e risk-free: $10 billion

The market portfolio of Stock A to Stock B is 2:1. CAPM says that under
equilibrium, all investors will hold Stock A to Stock B in a 2:1 ratio. There-
fore, the tangency portfolio puts weight 2/3 on Stock A and 1/3 on Stock B
and all investors will have two-thirds of their allocation to risky assets in
Stock A and one-third in Stock B.
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Suppose there was too little of Stock A and too much of Stock B for every-
one to have a 2:1 allocation. For example, suppose that there were one mil-
lion shares of each stock and the price per share was $60 for Stock A and
$40 for Stock B. Then the market portfolio must hold Stock A to Stock B
in a 3:2 ratio, not 2:1. Not everyone could hold the tangency portfolio,
though everyone would want to. Thus, prices would be in disequilibrium
and would change. The price of Stock A would go up since the supply
of Stock A is less than the demand. Similarly the price of Stock B would
go down. As these prices changed, so would expected returns and the
tangency portfolio would change. These changes in prices and expected
returns would stop when the market portfolio was equal to the tangency
portfolio, so that prices were in equilibrium. At least, this adjustment to
equilibrium would happen under the ideal conditions of economic theory.
The real world would be a little messier. The underlying message from
theory, is however, correct. Prices adjusts as all investors look for an effi-
cient portfolio and supply and demand converge to each other.

The market portfolio is 9:1 risky to risk-free. In total, investors must hold
risky to risk-free in a 9:1 ratio — they are the market.

For an individual investor, the risky:risk-free ratio will depend on that
investor’s risk aversion.

e At one extreme, a portfolio of all risk-free has a standard deviation
of returns equal to 0

o At the other extreme, all risky assets, the standard deviation is max-
imized. (This assumes no margin. If we allow negative positions in
the risk-free, then there is no limit to the risk)

At equilibrium, returns on risky and risk-free assets are such that aggre-
gate demand for risk-free assets equal supply.
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6.2 The capital market line (CML)

The capital market line (CML) relates the excess expected return on an
efficient portfolio to its risk; “excess expected return” means the amount
by which the expected return exceeds the risk-free rate of return. The CML

18
Um Mfa
oM

MR = pf + R» (6.1)

where R is the return on a given efficient portfolio (mixture of the market
portfolio and the risk-free asset), ur = E(Rum), piy is the rate of return
on the risk-free asset, R, is the return on the market portfolio, o), is the
standard deviation of the return on the market portfolio, and o is the
standard deviation of return on the portfolio. The slope of the CML is, of

course,
Uy — pf
oM
which can be interpreted as the ratio of the “risk premium” to the standard

deviation of the market porffolio. This is Sharpe’s “reward-to-risk ratio.”
Equation (6.1) can be rewritten as

Hr — HF _ M — HF
OR OM ’

which says that the reward-to-risk ratio for any efficient portfolio equals
that ratio for the market portfolio.

Example: Suppose that risk-free rate of interest is uy = 0.06, that the ex-
pected return on the market portfolio is pjs = .15, and the risk of the mar-
ket portfolio is oy = 0.22. Then the slope of the CML is (.15 —.06)/.22 =
9/22. The CML of this example is illustrated in Figure 6.1.

The CML is easy to derive. Consider an efficient portfolio that allocates a
proportion w of its assets to the market portfolio and (1 —w) to the risk-free
asset. Then

R=wRy + (1 —w)ps = py +w(Bu — piy)-
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Therefore,
pr = pif +w(pr — py).
Also,
OR = WO M,

or

OR

w=—.
oM

Substituting (6.3) into (6.2) gives the CML.

145

6.2)

(6.3)
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Expected retum C M L
15 M
risk
an efficient
portfolio
reward slope =
(-15-.06)/.22
.06 F
intercept = .06
0 std dev of return 22

Figure 6.1: CML when py = 0.06, upy = 0.15, and oy = 0.22. All efficient
portfolios are on the line connecting the risk-free asset (F) and the market portfo-
lio (M). Therefore, the reward-to-risk ratio is the same for all efficient portfolios,
including the market portfolio.
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CAPM says that the optimal way to invest is to:

1. Decide on the risk op that you can tolerate, 0 < or < op. (0r > on
is possible by borrowing money to buy risky assets.)

2. Calculate w = og/oun.

3. Invest w proportion of your investment in an index fund, i.e., a fund
that tracks the index.

4. Invest 1 —w proportion of your investment in risk-free treasury bills,
or a money-market fund that invests in T-bills.

Alternatively,
1. Choose the reward pg — py that you want.
2. Calculate

_ MR Hy
Hnar — My

w

3. Do steps 3 and 4 as above.

One can view w = o /o, as is an index of the risk aversion of the investor.
The smaller the value of w the more risk averse the investor. If an investor
has w equal to 0, then that investor is 100% in risk-free assets. Similarly,
an invest with w = 1 is totally invested in the tangency portfolio of risky
assets.

6.3 Betas and the Security Market Line

The Security Market Line (SML) relates the excess return on an asset to the
slope of its regression on the market portfolio.

Suppose that there are many securities indexed by j. Define

ojm = covariance between the jth security and the market portfolio.
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Also, define o
iM

B = o
It follows from regression theory that §3; is the slope when the jth secu-
rity’s returns are regressed on the returns of the market portfolio. This
fact follows from equation (2.1) for the slope of a best linear prediction
equation. Another way to appreciate this fact is to suppose that we have a
bivariate time series (R;;, Ry)j—, of returns on the jth asset and the mar-
ket portfolio. Then, the estimated slope of the regression of R;; on Rp
is _ _

4, = Ltz B = 1) (Fan — R)
’ Sy (Ray — Rur)? ’

which is an estimate of ;,, divided by an estimate of o%,.

Let 11; be the expected return on the jth security. Then p; — iy is the “risk
premium” (or “reward for risk” or “excess expected return”) for that secu-
rity. Using CAPM, it can be shown that

i — py = Bi(par — pp)- (6:4)
This equation, which is called the security market line (SML), will be de-
rived in Section 6.5.2. In (6.4) 3, is a variable in the linear equation, not
the slope; more precisely, j1; is a linear function of 3; with slope iy — fi4.
This point is worth remembering. Otherwise, there could be some confu-
sion since 3; was defined earlier as a slope of a regression model. In other

words, f; is a slope in one context but is the independent variable in the
SML.

The SML says that the risk premium of the jth asset is the product of its
beta (3;) and the risk premium of the market portfolio (uas — ). 3; mea-
sures both the riskiness of the jth asset and the reward for assuming that
riskiness. f3; is, therefore, a measure of how “aggressive” the jth asset is.
By definition, the beta for the market portfolio is 1, i.e., 8y = 1. Therefore,

B; >1 = “aggressive”
Bi =1 = "average risk”

Bi <1 = “notaggressive”.
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Figure 6.2 illustrated the SML and an asset, J, that is not on the SML. This
asset contradicts the CAPM; according to CAPM no such asset exists.

Risk premium

SML

Market

portfolio
risk-free

aggressive

non aggressive

Figure 6.2: Security market line (SML) showing that the risk premium of an
asset is a linear function of the asset’s beta. | is a security not on the line and a
contradiction to CAPM. Theory predicts that the price of | will decrease until | is
on the SML.

Consider what would happen if an asset like J did exist. Investors would
not want to buy it because its risk premium is too low. They would in-
vest less in ] and more in other securities. Therefore the price of ] would
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decline and its expected return would increase. After that increase, the
asset ] would be on the SML, or so the theory predicts. In other words, J is
mispriced according to CAPM.
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Stock (symbol) Industry Stock’s 3 | Ind’s 3
Celanese (CZ) Synthetics 0.13 0.86
General Mills (GIS) Food - major diversif 0.29 0.39
Kellogg (K) Food - major, diversif 0.30 0.39
Proctor & Gamble (PG) | Cleaning Prod 0.35 0.40
Exxon-Mobil (XOM) Oil/gas 0.39 0.56
7-Eleven (SE) Grocery stores 0.55 0.38
Merck (Mrk) Major drug manuf 0.56 0.62
McDonalds (MCD) Restaurants 0.71 0.63
McGraw-Hill (MHP) Pub - books 0.87 0.77
Ford (F) Auto 0.89 1.00
Aetna (AET) Health care plans 1.11 0.98
General Motors (GM) | Major auto manuf 1.11 1.09
AT&T (T) Long dist carrier 1.19 1.34
General Electric (GE) Conglomerates 1.22 0.99
Genentech (DNA) Biotech 1.43 0.69
Microsoft (MSFT) Software applic. 1.77 1.72
Cree (Cree) Semicond equip 2.16 2.30
Amazon (AMZN) Net soft & serv 2.99 2.46
Doubleclick (Dclk) Net soft & serv 4.06 2.46

6.3.1 Examples of betas

Netscape’s home page has a link to stock quotes from Salomon Smith Bar-
ney. If you request a quote on a stock, you will be given menu for choosing
further information about the company. Under “profile” you will find the
five-year beta of the company, its industry, and the S&P 500. Table 6.3.1
has some “five-year betas” that I took from net on February 27 and March
5,2001. The beta for the S&P 500 is given as 1.00; why?

6.3.2 Comparison of the CML with the SML

The CML applies only to the return R of an efficient portfolio. It can be
arranged so as to relate the excess expect return of that portfolio to the
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excess expected return of the market portfolio:

PR — pf = ((Z—z) (tar — pg)- (6.5)

The SML applies to any asset and like the CML relates its excess expected
return to the excess expected return of the market portfolio:

wi — iy = Bi(par — py)- (6.6)

If we take an efficient portfolio and consider it as an asset, then yur and
1; both denote the expected return on that portfolio/asset. Both (6.5) and
(6.6) hold so that

OR
— = Br.
OMm

6.4 The security characteristic line

Let Rj; be the return at time ¢ on the jth asset. Similarly, let R and p 5, be
the return on the market portfolio and the risk-free return at time ¢. The
security characteristic line (sometimes shortened to the characteristic line)
is a regression model:

Rji = pge + Bi(Rare — oge) + €t (6.7)

where ¢, is N(0,07;). It is often assumed that the ¢;;s are uncorrelated
across assets, that is, that ¢j; is uncorrelated with ¢, for j # j'. This as-
sumption has important ramifications for risk reduction by diversification;

see Section 6.4.1.
Let p; = E(Rj;) and py = E(Ray). Taking expectations in (6.7) we get

i = g+ Bi(par — ),

which is our friend the SML again. The SML gives us information about
expected returns, but not about the variance of the returns. For the lat-
ter we need the characteristic line. The characteristic line is said to be a
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“returning generating process” since it gives us a probability model of the
returns, not just a model of their expected values.

An analogy to the distinction between the SML and characteristic line is
this. The regression line E(Y|X) = [, + (1X gives of the expected value of
Y given X but not the conditional probability distribution of ¥ given X.
The regression model

th = /60 +/61Xt + €, and €4 ~ N(O,OZ)

does give us this conditional probability distribution.

The characteristic line implies that

2

2 _ p2 2
o; = Bioy + 0y,

2
ojj = BilBjronm

for j # j', and that
onj = Biois-

The total risk of the jth asset is

2 +2 2
\V /BjUM + O¢j-

The risk has two components: (7073, is called the market or systematic
component of risk and o7, is called the unique, nonmarket, or unsystem-
atic component of risk.

6.4.1 Reducing unique risk by diversification

The market component cannot be reduced by diversification, but the unique
component can be reduced in this way.

Suppose that there are N assets with returns Ry, ..., Ry; for holding pe-
riod ¢. If we form a portfolio with weights wy, ..., wy then the return of
the portfolio is

Rpt = wiRy + -+ wn Ryt
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Let R be the return on the market portfolio. According to the character-
istic line model Rj; = g, + B;(Rune — juge) + €50 so that

N N
Rpy = pgp + (Z ﬂj%’) (Rt — pore) + Z W;€jt.
Jj=1 7j=1
Therefore, the portfolio beta is
N
ﬂP = Z w]/Bja
j=1

and the “epsilon” for the portfolio is

N
€pt — Z W;€jt.
Jj=1

We will now assume that €4, . . ., €5 are uncorrelated. Therefore,
N
2 _ 2 2
i=1
Example

Suppose that w; = 1/N for all j. Then

i B

fp = =2

and 1 N 2
- =2
o2, = N =% _ T
P N N’
2

where 77 is the average of the o2.

If 07, is a constant, say o7 for all j, then

O¢
Ocp = \/N

For example, suppose that o, is 5%. If N = 20, then o.p is 1.12%. If N =
100, then o.p is 0.5%. There are approximately 1600 stocks on the NYSE; if
N = 1600, then o.p = 0.0125%.
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Are the assumptions sensible?

A key assumption that allows risk to be removed by diversification is that
€1t - - -, €n¢ are uncorrelated. This assumption implies that all correlation
among the cross-section' of asset returns is due to a single cause and that
cause is measured by the market index. For this reason, the characteristic
line is a “single factor” or “single index” model with R, the “factor.”

This assumption of uncorrelated €;, would not be valid if, say, two energy
stocks are correlated over and beyond their correlation due to the market
index. In this case, unique risk could not be eliminated by holding a large
portfolio of all energy stocks.

6.5 Some theory

In this section we will show that o3, quantifies the contribution of the jth
asset to the risk of the market portfolio. Also, we will derive the SML.

6.5.1 Contributions to the market portfolio’s risk

Suppose that we have N risky assets and that wi, . .., wnu are the weights
of the market portfolio. Since

N
Ry = Z win R,
i=1
the correlation between the return on the jth asset and the return on the
market portfolio is

N N
OjimM = Cov <Rjt7 szMth> = ZwiMUij-
i=1

i=1

Therefore,
N

N N
012\4 = ZzijwiMaij = ijMO'jM- (6.8)

j=1l:=1 7j=1

1“Cross-section” returns means returns across assets within a single holding period.
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Equation (6.8) shows that w;xs0;s is the contribution of the jth asset to the
risk of the market portfolio.

6.5.2 Derivation of the SML

Consider a portfolio P with weight w; given to the ith risky asset and
weight (1 — w;) given to the market portfolio. The return on this portfolio
is

Rpy = wiRiy + (1 — w;) Ragy.

The expected return is
pp = wip; + (1 — w;) par,

and the risk is

op = \/11)120'12 + (1 — wi)Qa%,I + 2w,(1 — w,)azM

As we vary w; we get the locus of points on (o, ;1) space that is shown as a
blue curve in Figure 6.3.

Key idea: The derivative of this locus of points evaluated at the market
portfolio is equal to the slope of the CML. We can calculate this derivative
and equate it to the slope of the CML to see what we get. The result will
be the SML.
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CML
H Efficient frontier

portfolios of M and i

risk
free

Figure 6.3: Derivation of the SML. M is the market portfolio and T is the tan-
gency portfolio; they are equal according to the CAPM. The blue curve is the
locus of portfolios combining asset i and the market portfolio. The derivative of

this curve at M is equal to the slope of the CML, since this curve is tangent to the
CML at M.
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We have

d/LP
de - /J’Z /’[’M’
and J )
o _
d_uj: = o' {2wio? — 2(1 — wy)od, +2(1 — 2wi)oiar }
Therefore,
dpp _ dpp/dw; _ (1i — pp)op
dO’p dO’p/d’wi ’U)Z'O'zZ—O'JQW'f‘wZ'O']QV[—FO'Z'M—Qin'Z‘M.
Next,
dpp _ (i = ar)om
dop lwi=0 Oint — 0%
But
dup
dO’p w; =0

must equal the slope of the CML which is (1 — 17)/0am. Therefore,

(Hi — pa)om _ Pm — By
OiM — 0']2\/[ Opm

which, after some algebra, gives us

OiM
o

i — pp = —5(ar — pog) = By (piar — fy)

which is the SML given in equation (6.4).

6.6 Estimation of beta and testing the CAPM

Recall the security characteristic line

Rj = ppr + Bi (R — poge) + €51, (6.9)

Let R}, = Rj; — y, be the excess return on the jth security and let R}, =
Ry — pye be the excess return on the market portfolio. Then (6.9) can be
written as

R}, = Bi Ry + €t (6.10)
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Equation (6.10) is a regression model without an intercept and with §; as
the slope. A more elaborate model is

R;t = a;j + BiRyy + €t (6.11)

which includes an intercept.

Given series Rj;, Ry, and py fort = 1,...,n, we can calculate R, and
* * * : 2
R}, and regress R}, on R}, to estimate o, §;, and 0.

By testing the null hypothesis that o; = 0 we are testing whether the jth
asset is mispriced accoridng to the CAPM.

Here is an example done in MINITAB. The least squares line and the out-
put from the regression command are shown below. The variable X:-MS_1
is the excess return on Microsoft. Five years of monthly data, March 1996
to February 2001, were used. The raw data are in the Excel file “Datas-
tream01.xls” on the course home page. For Microsoft, we find that

B=1.44
and

a = .012.
Since the standard error of X:-MS_1 (i.e., of Bj) is 0.317, a 95% confidence
interval for 3; is 1.44 + (2)(.317) or (.81, 2.07).? The p-value for X:MS_1 is
0.000. This p-value is for testing the null hypothesis that 3; = 0, so it is not

surprising that the null hypothesis is strongly rejected. We do not expect
the beta of a stock to be zero.

The test that o = 0 has a p-value of 0.441 so we can accept the null hypoth-
esis. This implies that the data are consistent with the CAPM. Moreover,

62 = 0.01381,

2Here “2” is used as an approximate t-value. The exact t-value is 2.0017. This value can
be found in MINITAB. Go to the calc menu, then probability distrbutions, then “t.” Use
“inverse cumulative probability” with “noncentrality parameter” equal to 0 and “input
constant” equal to .975 (for a 95% confidence interval).
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the mean square residual error.

Here is the MINITAB plot.

Regression Plot
FMS_1 = 0.0118981 + 1.44111 XSE&F_1

S=0117516 R-Sq=262% R-Sglad)=24.9%

03 —

02 —

01 —

00 —

XMS_1
|

03 —

04 — .

041 0.0 0.1

Figure 6.4: Least squares line fit to the Microsoft data.
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Here is the MINITAB regression output.

Model with intercept:

Regression  Analysis: X:MS_1 versus X:S&P_1

The regression equation is
X:MS_1 = 0.0119 + 1.44 X S&P_1

Predictor Coef SE Coef T P
Constant 0.01190 0.01532 0.78 0.441
X:S&P_1 1.4411 0.3174 4.54 0.000
S = 0.1175 R-Sq = 26.2% R-Sq(adj) = 24.9%

Analysis  of Variance

Source DF SS MS F P
Regression 1 0.28464 0.28464 20.61 0.000
Residual  Error 58 0.80098 0.01381

Total 59 1.08562

Unusual Observations

Obs X:S&P 1 X:MS 1 Fit SE Fit Residual
49 0.129 0.1258 0.1973 0.0416 -0.0715
50 -0.044 -0.4040 -0.0518 0.0222 -0.3521
58 -0.020 -0.4249 -0.0166 0.0173 -0.4083
59 0.015 0.3164 0.0337 0.0154 0.2828

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

If we assume that a = 0, then we can refit the model using a no intercept
model. This is done with MINITAB’s regression program by NOT choos-
ing the “fit intercept” option; the default is to choose this option so you
need to go to “options” and unchoose that option. Here is the MINITAB
output when fitting a no intercept model.

Notice that the R? (R-sq) value for the regression is 26.2%. The interpreta-

St

Resid
-0.65 X
-3.05R
-3.51R
2.43R
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tion of R? is the percent of the variance in the excess returns on Microsoft
that is due to excess returns on the market. In other words, 26.2% of the
risk is due to systematic or market risk (3503,). The remaining 73.8% is
due to unique or nonmarket risk (c2).

Model without intercept:

Regression  Analysis: X:MS 1 versus X:S&P_1

The regression equation is
XMS_1 = 1.48 X:S&P_1

Predictor Coef SE Coef T P
Noconstant
X:S&P 1 1.4755 0.3133 4.71 0.000
S = 0.1171

Analysis  of Variance

Source DF SS MS F P
Regression 1 0.30432 0.30432 22.19 0.000
Residual  Error 59 0.80931 0.01372

Total 60 1.11362

Unusual Observations

Obs X:S&P_1 X:MS 1 Fit SE Fit Residual
15 0.100 0.1040 0.1479 0.0314 -0.0439
30 -0.100 -0.0705 -0.1473 0.0313 0.0767
33 0.109 0.1906 0.1606 0.0341 0.0300
45 0.084 -0.0017 0.1240 0.0263 -0.1257
49 0.129 0.1258 0.1899 0.0403 -0.0640
50 -0.044 -0.4040 -0.0653 0.0139 -0.3387
58 -0.020 -0.4249 -0.0292 0.0062 -0.3958
59 0.015 0.3164 0.0223 0.0047 0.2941

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

Now 3 = 1.48 and 2 = 0.0137 which are small changes from the value
from the intercept model.

St

Resid
-0.39
0.68
0.27
-1.10
-0.58
-2.91R
-3.38R
2.51R

X X X X X
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Regression using returns instead of excess returns

Often, as an alternative to regression using excess returns, the returns on
the asset are regressed on the returns on the asset.

Figure 6.5 show the least squares line using returns instead of excess re-
turns. The estimate of beta has changed from 1.44 to 1.38. The new value,
1.38, is well within the old confidence interval of (.81, 2.07) showing that
there is little difference between using returns and using excess returns.

Regression Plot
logR:MS = 0.0185260 + 1.37935 logR:S&P

S=00052255 FRSg=239% R-Sqlad)=233%

03 —

01 —

00 —

logR:MS

02—

03 —

\ I I
-0.1 0o a1

logR:S&P

Figure 6.5:
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6.6.1 Interpretation of alpha

If v is nonzero then the security is mispriced, at least according to CAPM.
If @ > 0 then the security if underpriced; the returns are too large on av-
erage. This is an indication of an asset worth purchasing. Of course, one
must be careful. If we reject the null hypothesis that a = 0, all we have
done is shown that the security was mispriced in the past.

Since for the Microsoft data we accepted the null hypothesis that a is zero,
there is no evidence that Microsoft was mispriced.

6.7 Summary

The CAPM assumes that prices are in equilibrium, that everyone has the
same forecasts of returns, and that everyone uses the principles of portfo-
lio selection introduced in Chapter 5.

The CAPM assumptions imply that everyone will hold risk efficient port-
folios which mix the tangency portfolio and risk-free assets. This fact im-
plies that the market portfolio will equal the tangency portfolio. A further
consequence is that the Sharpe ratio for any efficient portfolio will equal
the Sharpe ratio of the market portfolio:

OR oM ’ )

where R is any efficient portfolio. Equation (6.12) can be rearranged to
give the CML which is

HUm — MfaR

KR = fif +
oM

The CML applies only to efficient portfolios.

Another consequence of CAPM assumptions is the SML which applies to
any security, say the jth, and is

s = g+ (par — py) B;-
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Here §; is the “independent variable” of this linear relationship and mea-
sures the riskiness of the security. y; is the “dependent variable.”

The security characteristic line is a model for how actual returns are gen-
erated. (The SML only described expected returns.) The security charac-
teristic line is

Rjy = pg + Bi(Bue = ps) + €t

The variance of ¢, is 07;. The security characteristic line implies that the
risk of the jth asset can be decomposed into market and non market risks:

— /32,2 2
05 = \/Bioy + 05

If one assumes that €;; is uncorrelated with ¢j, for j # j' (that is, for two
different securities), then non market risk can be eliminated by portfolio
diversification.

Since the security characteristic line is a regression model it can be used to
estimate 3; and ¢7;. The R” value of the regression estimates the propor-
tion of o7 due to market risk, i.e., it estimates 503, /07
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Chapter 7

Pricing Options: 4/12/01

7.1 Introduction

The European call options mentioned in Chapter 1 are one example of
the many derivative now on the market. A derivative is a financial instru-
ment whose value is derived from the value of some underlying instru-
ment such an interest rate, foreign exchange rate, or stock price.

A call option gives one the right to buy a certain stock at the exercise or
strike price, while a put option gives one the right to sell the stock at the
exercise price. An option has an exercise date, which is also called the strike
date, maturity, or expiration date. American options can be exercised at any
time up to their exercise date, but European options can be exercised only
at their exercise date. European options are easier to analyze than Amer-
ican options since one does not need to consider the possibility of early
exercise.

In this chapter we will discuss the main ideas behind the pricing of op-
tions. We will not actually prove the Black-Scholes formula, since that
derivation requires advanced mathematics. However, I will present a heuris-
tic derviation of that formula to give an intuitive understanding of option
pricing. For lack of time, we will only study European call options in de-
tail. However, Black-Scholes type formulas exist for other derivatives as

167
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well. We will give one example of a put option. The book Introduction
to Futures and Options Markets by Hull is a nice overview of the options
markets and the uses of options. Financial Calculus by Baxter and Rennie
discuss the mathematics of many types of derivatives.

Why do companies purchase options and other derivatives? The answer is
simple, to manage risk. In its 2000 Annual Report, the Coca Cola Company
writes

Our company uses derivative financial instruments primarily
to reduce our exposure to adverse fluctuations in interest rates
and foreign exchange rates and, to a lesser extent, adverse fluc-
tuations in commodity prices and other market risks. We do
not enter into derivative finanicial instruments for trading pru-
poses. As a matter of policy, all our derivative positions are
used to reduce risk by hedging an underlying economic ex-
posure. Because of the high correlation between the hedging
instrument and the underlying exposure, fluctuations in the
value of the instruments are generally offset by reciprocal changes
in the value of the underlying exposure. The derivatives we use
are straightforward instruments with liquid markets.

Derivatives can and have been used to speculate, but that is not their pri-
mary purpose. The intent of this quote is clear. The Company is assuring
its stockholders that it is using derivatives to manage risk, not to gamble.

7.2 Call options

Suppose that you have purchased a European call option on 100 shares of
Stock A with a exercise price of $70. At the expiration date, suppose that
Stock A is selling at $73. The option allows you to purchase the 100 shares
for $70 and to immediately sell them for $73, with a gain of $300 on the 100
shares. Of course, the net profit for purchasing the option isn’t $300 since
you had to pay for the option. If the option cost $2/share, then you paid
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$200 for the option. Moreover, you paid the $200 up front but only got the
$300 at the expiration date. Suppose that the expiration date was 3 months
after the purchase data and the continuously compounded risk-free rate is
6% per annum or 1.5% for 3 months. Then the dollar value of your net
profit is

exp(—.015)300 — 200 = 95.53

at the time of purchase and is
300 — exp(.015)200 = 96.98

at the exercise date.

We will use the notation (z); = z if x > 0 and = 0 if z < 0. With this
notation, the value of a call at exercise date is

(ST - E)-H

where E is the exercise data and Sy is stock’s price on the exercise data, T'.

A call is never exercised if the strike price is greater than the price of the
stock, since exercising the option would amount to buying the stock for
more than it would cost on the market. If a call is not exercised, then one
loses the cost of the option.

One can lose money on an option even if it is exercised, because the amount
gained by exercising the option might be less than the cost of the option.
In the example above, if Stock A were selling for $71 at the exercise data,
then one would exercise the option and gain $100. This would be less than
the $200 paid for the option. Even though exercising the option results in
a loss, then loss is less than it would be if the option were not exercised.
An option should always be exercised if (S; — E) is positive.

7.3 The law of one price

The “law of one price” states that if two financial instruments have exactly
the same payoffs, then they will have the same price. This prinicple is used
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to price options. To valuate an option, one must find a portfolio or a self-
financing' trading strategy with a known price and which has exactly the
same payoffs as the option. The price of the option is then known; it must
be the same as the price of the portfolio or self-financing trading strategy.

Here’s a simple example of pricing by the law of one price. Suppose stock
in company A sells at $100/share. The risk-free rate of borrowing is 6%
compounded annually. Consider a futures contract obliging one party to
sell to the other party one share of Company A exactly one year from now
at a price P. (No money changes hands now.) What is the fair market
price, i.e., what should P be?

Note that this contract is not an option. The sale must take place. It would
seem that P should depend on the expected price of company A stock one
year from now. However, this is not the case. Consider the following strat-
egy. The party that, one year from now, must sell the share of company A
can borrow $100 and buy one share now; this involves no capital since the
share is purchased with borrowed money. A year from now that party
sells the share for P dollars and pays back $106 (principle plus interest) to
the lender, who could be a third party. The profit is P —106. The fair profit
is 0 since no capital was used and there is no risk. Therefore, P should be
$106.

Consider what would happen if P were not $106. You should be able to
see that any other value of P besides $106 would lead to unlimited risk-
free profits. As investors rushed in to take advantage of this situation, the
market would immediately correct the value of P to be $106.

! A trading strategy is “self-financing” if it requires no investment other than the initial
investment. After the initial investment, any further purchases of assets are financed by
the sale of other assets or by borrowing.
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7.3.1 Arbitrage

Arbitrage is the making of a guaranteed risk-free profit by trading in the
market with no invested capital®. Speaking informally, arbitrage is a “free
lunch.” The arbitrage price of a security is the price that guarantees no
arbitrage opportunities. The law of one price is equivalent to stating that
the market is free of arbitrage opportunities, i.e., that there are no free
lunches. Arbitrage pricing is the same as pricing by the law of one price.
The price of $106 that we just derived in the example of the future contract
is, therefore, the arbitrage price.

7.4 Time value of money and present value

“Time is money” is an old adage that is still true. A dollar a year from
now is worth less to us than a dollar now. In finance it is essential that
we be able to convert value in future payments to their present values, or
vice versa. For example, we saw in Section 7.1 that the arbitrage enforced
future price of a stock is simply the present price converted into a “future
value” by multiplying by 1 + r.

Let r be the risk-free annual interest rate. Then the “present value” of
$D dollars one year from now is $D/(1 + r) without compounding or
$D exp(—r) under continuous compounding. Another way of stating this
is that $D dollars now is worth $(1+7)D dollars a year from now without
compounding, or $(exp(r)) D dollars a year from now under continuous
compounding. When $D is a future cash flow, then its present value is
also called a discounted value and r is the discount rate.

The distinction between simple and compounding is not essential since an
interest rate of r without compounding is equivalent to an interest rate of
r’ with continuously compounding where

1+ 7 =exp(r)

Investing in risk-free T-bills guarantees a positive net return but is ot arbitrage since
capital is invested.
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so that
r=-exp(r')—1 or r' =log(l+r).

We will work with both simple and compound interest, whichever is most
convenient.

Examples

If r = 5%, then ' = log(1.05) = .0488 or 4.88%. If v’ = 4%, then r =
exp(.04) — 1 =1.0408 — 1 or 4.08%. In general, > 7'

Occasionally, we will simplify life by making the unrealistic assumption
that » = 0 so that present and future values are equal. This simplifying
assumption allows us to focus on other concepts besides discounting.

7.5 A simple binomial example

We will start our study of options with a very simple example. Suppose
that a stock is currently selling for $80. At the end of one time period it
can either have increased to $100 or decreased to $60. What is the current
value of a call option that allows one to purchase one share of the stock for
$80, the exercise price, after one time period?

At the end of the time period, the call option will be worth $20 ($100 —
$80) if the stock has gone up and worth $0 dollars if the stock has gone
down. See Figure 7.1. However, the question is “what is the option worth
now?” This question if vital since the answer is, of course, the fair market
price for the option at the current time.

One might think that the current value of the option depends on the prob-
ability that the stock will go up. However, this is not true. The current
value of the option depends only on the rate of risk-free borrowing. For
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Stock

100
30

60

Hedge natio = 1/2
Buy 1/2 share

Borrow: $30

Initial value of portfolio =

172{80) - 30= $10

Option 20

-

GIVEN: Exercise
price = $80

This must he the value of the call

option.

Figure 7.1: Example of one-step binomial option pricing. For simplicity, it is
assumed that the interest rate is 0. The portfolio of 1/2 share of stock and —$30 of
risk-free assets replicates the call option.
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simplicity, we will assume that this rate is 0; later we will see how to valu-
ate options when the rate of interest is positive. It turns out that the value
of the option is $10. How did I get this value?

Consider the following investment strategy. Borrow $30 and buy one-half
of a share of stock. The cost upfront is $40 — $30 = $10, so the value now
of the portfolio is $10. If after one time period the stock goes up, then the
portfolio is worth 100/2 — 30 = 20 dollars. If the stock goes down, then
the portfolio is worth 60/2 — 30 = 0 dollars. Thus after one time period,
the portfolio’s value will be exactly the same as the value of the call option,
no matter which way the stock moves. By the law of one price, the value
of the call option now must be the same as the value now of the portfolio
which is $10.

Let’s summarize what we have done. We have found a portfolio of the
stock and the risk-free asset that replicates the call option. The current
value of the portfolio is easy to calculate. Since the portfolio replicates
the option, the option must have the same value as the portfolio.

Suppose we have just sold a call option. By purchasing this portfolio we
have hedged the option. By hedging is meant that we have eliminated
all risk, because the net return of selling the option and purchasing the
portfolio is exactly 0 no matter what happens to the stock price.

How did I know that the portfolio should be 1/2 share of stock and —$30
in cash? I didn’t use trial-and-error; that would have been tedious. Rather,
I used the following logic. First, the volatility of the stock is $100 — $60
= $40 while the volatility of the option is $20 — $0 = $20. The ratio of the
volatility of the option to the volatility of the stock is 1/2; this is called
the hedge ratio. If the portfolio is to exactly replicate the option, then the
portfolio must have exactly the same volatility as the option; this means
the portfolio must have one-half a share.

Key point: The number of shares in the portfolio must equal the hedge
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ratio, where
volatility of option

hedge ratio = volatility of stock

If the stock goes down, the portfolio is worth $30 minus the amount bor-
rowed. But we want the portfolio’s value to equal that of the option, which
is $0. Thus, the amount borrowed is $30.

Key point: We can determine the amount borrowed by equating the value
of the portfolio when the stock goes down to the value of the option when
the stock goes down. (Alternatively, we could equate the value of the port-
folio to the value of the option when the stock goes up. This would tell us
that $50 minus the amount borrowed equals $20, or that $30 must be bor-
rowed.)

Now suppose that the interest rate is 10%. Then, we borrow $30/(1.1) =
$27.27 so that the amount owed after one year is $30. The cost of the port-
folio is 40 — 30/1.1 = $12.7273. Thus, the value of the option is $12.7273 if
the risk-free rate of interest if 10%. This value is higher than the value of
the option when the risk-free rate is 0, because the initial borrowing used
by the self-financing strategy is more expensive when the interest rate is
higher.

Here’s how to valuate one-step binomial options for other values of the
parameters. Suppose the current price is s; and after one time period the
stock either goes up to s3 or down to s,. The exercise price is E. The risk-
free rate of interest is r. It is assumed that s, < E' < s3, so the option is
exercised if and only if the stock goes up.?
Then the hedge ratio is

s3— B
53— Sy

§ = (7.1)

3If sy < s3 < E, then the option will not be exercised under any circumstances. We
are certain the option will be worthless, so its price must be 0. If E < s < s3, then the
option will always be exercised; it really isn’t an option, it is a futures contract. We have
already seen how to valuate a futures contract—that was done in Section 7.3.
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This is the number of shares of stock that are purchased; the cost is J s.

The amount borrowed is 5
592

147’
and the amount that will be paid back to the lender will be §5,. Therefore,
the price of the option is

—F
6{31 > }: 53 {51 _ % } (7.3)
1+r S3 — So 1+7r

(7.2)

If the stock goes up, then the option is worth (s; — E) and the portfolio
is also worth (s; — E). If the stock goes down, both the option and the
portfolio are worth 0. Thus, the portfolio does replicate the option.

Example

In the example analyzed before, s; = 80, s3 = 100, s = 60, and E = 80.
Therefore,
5— 100-80 1
T 100—-60 2

1 60
5{80_1+r}’

which is $10is r = 0 and $12.7273 is r = 0.1. The amount borrow is

The price of the option is

5sy  (1/2)60 30
1+r 14+r 147

which is $30 if r = 0 and $27.27 if r = .1.

7.6 'Two-step binomial option pricing

A one-step binomial model for a stock price may be realistic for very
short maturities. For longer maturities, multiple-step binomial models are
needed. A multiple-step model can be analyzed by analyzing the individ-
ual steps, going backwards in time.
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Stock

Option
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]

Given: exercise price
is $30

Figure 7.2: Two-step binomial model for option pricing.

To illustrate multi-step binomial pricing, consider the two-step model of
a European call option in Figure 7.2. The option matures after the sec-
ond step. The stock price can either go up $10 or down $10 on each step.
Assume that r = 0.

Using the pricing principles just developed and working backwards, we
can fill in the question marks in Figure 7.2. See Figure 7.3. For example,
at node B, the hedge ratio is § = 1 so we need to own one share which
at this node is worth $90. Also, we need to have borrowed ds,/(1 + r) =
(1)(80)/(1 + 0) = $80 so that our portfolio has the same value at nodes E
and F as the option, that is, the portfolio should be worth $0 at node E
and $20 at node F. Since at node B we have stock worth $90 and risk-free
worth —$80, the net value of our portfolio is $10. By the same reason-
ing, at node C the hedge ratio is 0 and we should have no stock and no
borrowing, so our portfolio is worth $0.
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Stock

D

- 9 e /B \
\ / © \ ©

®

0 shares
borrow §0 =
¢

®
Given: exercise price F

is $80

Figure 7.3: Pricing the option by backwards induction.

We can see in Figure 7.3 that at the end of the first step the option is worth
$10 is the stock is up (node B) and $0 if it is down (node C). Applying
one step pricing at node A, at the beginning of trading the hedge ratio is
1/2 and we should own 1/2 share of stock (worth $40) and we should
have borrowed $35. Therefore, the portfolio is worth $5 at node A, which
proves that $5 is the correct price of the option.

Note the need to work backwards. We could not apply one-step pricing at
node A until we had already found the value of the portfolio (and of the
option) at nodes B and C.

Let’s show that our trading strategy is self-financing. To do this we need
to show that we invest no money other than the initial $5. Suppose that
the stock is up on the first step, so we are at node B. Then our portfolio is
worth $90/2 — $35 or $10. At this point we borrow $45 and buy another
half-share for $45; this is self-financing. If the stock is down on the first
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step, we self the half share of stock for $35 and buy off our debt; again the
step is self-financing.

7.7 Arbitrage pricing by expectation

It was stated earlier that one prices an option by arbitrage, that is, the
price is determined by the requirement that the market be arbitrage-free.
The expected value of the option is not used to price the option. In fact, we
do not even consider the probabilities that the stock moves up or down.

However, there is a remarkable result showing that arbitrage pricing can
be done using expectations. More specifically, there exists probabilities of
the stock moving up and down such that the arbitrage price of the option is
equal to the expected value of the option according to these probabilities.
Whether these are the “true” probabilities of the stock moving up or down
is irrelevant. The fact is that these probabilities give the correct arbitrage
price when they are used to calculate expectations.

Let “now” be time 0 and let “one step ahead” be time 1. Because of the
time value of money, the present value of $D dollars at time 1 is $D/(1+r)
where 7 is the interest rate. Let f(2) = 0 and f(3) = s3 — F be the values of
the option if the stock moves up or down, respectively. We will now show
that there is a value of ¢ between 0 and 1, such that the present value of
the option is

—{l3)+ (1 - )@} 74

The quantity in (7.4) is the present value of the expectation of the option
at time 1. To appreciate this, notice that the quantity in curly brackets is
the value of the option if the stock goes up times g, which is the arbitrage
determined “probability” that the stock goes up, plus the option’s value
if the stock goes down times (1 — ¢). Thus the quantity in curly brackets
is the expectation of the value’s option at the end of the holding period.
Dividing by 1 + r converts this to a “present value.”
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Okay, how do we find this magical value of ¢? That’s easy. We know that
¢ must satisfy

1 s3—F S
S - =22 - 2k o)

since the left hand side of this equation is (7.4) and the right-hand side
is the value of the option according to (7.3). Substituting f(2) = 0 and
f(3) = s3 — E into (7.5) we get an equation that can be solved for ¢ to find
that

(1 + T)Sl — So
S3 — S9o )

(7.6)

We want ¢ to be between 0 and 1 so that it can be interpreted as a proba-
bility. From (7.6) one can see that 0 < ¢ < 1if s < (1 +7)s; < s3. Why
should the latter hold? We will show that sy < (1 +7)s; < s3 is required
in order for the market to be arbtrage-free. If we invest s; in a risk-free
asset at time 0, then the value of our holdings at time 1 will be (1 + r)s;. If
we invest s; in the stock, then the value of our holdings at time 1 will be
either s, or s3. If s < (1 +7)s; < s3 were not true, then there would be an
arbitrage opportunity. For example, if (1 + r)s; < sg < s3, then could bor-
row at the risk-free rate and invest the borrowed money in the stock with
a guaranteed profit; at time 1 we would pay back (1 + r)s; and receive at
least s, which is greater that (1 + r)s;.

Exercise: How would we make a guaranteed profit if s, < s3 < (1 +7)s1?

Answer: Sell the stock short and invest the s; dollars in the risk-free asset.
At the end of the holding period (maturity) receive (1 +7)s; from the risk-
free investment and buy the stock for at most s3 < (1 +7)s;.

Thus, the requirement that the market be arbitrage-free ensures that 0 <
g <1
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Figure 7.4: Two-step non-recombinant tree. The q(j) is the risk-neutral probabil-
ity at node j of the stock moving upward.

7.8 A general binomial tree model

The material in this section follows Chapter 2 of Financial Calculus by Bax-
ter and Rennie. Consider a possibility non-recombinant* tree as seen in
Figure 7.4

Assume that:

e At the jth node the stock is worth s; and the option is worth f(j).

4The tree would be recombinant if the stock prices at nodes 5 and 6 were equal so that
these two nodes could be combined.
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e The jth node leads to either the 2j 4+ 1th node or the 2jth node after
one time “tick.”

e The actual time between ticks is dt.

e Interest is compounded continuously at a fixed rate r so that B, dol-
lars now is worth exp(rn dt) By dollars after n time ticks. (Or, B, dol-
lars after n ticks is worth exp(—rndt) By dollars now.)

Then at node j:
e The value of the option is
FG) = exp(=r6t){g;f (2 + 1) + (1 — ¢;) £(2) }.
where
e The arbitrage determined g; is

er&ts, — S,
= 77)

52541 — 525
e The number of shares of stock to be holding is

¢ = f@j+1) = 2)) = hedge ratio.

S2j41 — S2j

e Denote the amount of capital to hold in the risk-free asset by v;; typ-
ically 1); is negative because money has been borrowed. Since the
portfolio replicates the option, at node j the option’s value, which is
f(7), must equal the portfolio’s value which is s;¢; + ¢;. Therefore,

vy ={f(J) — b;85}- (7.8)
(1, increases in value to €% { f(j) — ¢;s;} after one more time tick).

Expectations for paths along the tree are computed using the ¢;’s. The
probability of any path is just the product of all the probabilities along the
path.
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An example

The tree for the example of Section 7.6 is shown in Figure 7.5. Because
r = 0 is assumed and because the stock moves either up or down the same
amount ($10), the ¢; are all equal to 1/2.°

The probability of each full path from node 1 to one of nodes 4, 5, 6, or 7 is
1/4.

Given the values of the option at nodes 4, 5, 6, and 7, it is easy to compute
the expectations of the option’s value at other nodes. These expectations
are shown in magenta in Figure 7.5.

The path probabilities are independent of the exercise price, since they
depend only on the prices of stock at the nodes and on r. Therefore, it is
easy to price options with other exercise prices.

Exercise

Assuming the same stock price process as in Figure 7.5, price the call op-
tion with an exercise price of $70.

Answer: Given this exercise price, it is clear that the option is worth $0,
$10, $10, and $30 dollars at nodes 4, 5, 6, and 7, respectively. Then we can
use expectation to find that the option is worth $5 and $20 at nodes 2 and
3, respectively. Therefore, the option’s value at node 1 is $12.50; this is the
price of the option.

7.9 Martingales

A martingale is a probability model for a fair game, that is, a game where
the expected changes in one’s fortune are always zero. More formally, a

°Tt follows from (7.7) that whenever r = and the up moves and down moves are of
equal length, then ¢; = 1/2 for all j.
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Figure 7.5: Two-step example with pricing by probabilities. Red is node number.
Blue is value of the stock. Magenta is value of the option. Path probabilites are in
dark green. The exercise price is $80.
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stochastic process Yy, Y1, Yo, . .. is a martingale if
E(Yi|Y) =Y,

for all t.

Let P, t = 0,1, ... be the price of the stock at the end of the tth step in a
binomial model. Then P} := exp(—rt dt) P, is the discounted price process.

Key fact: Under the {¢;} probabilities, the discounted price process P; is
a martingale.

To see that P} is a martingale, we calculate:

E(Py1|P = s;5) = gjs2j41+ (1 —¢qj)s25
= Soj + Qj(52j—|—1 - 52j)

= S9; + {exp(r dt)s; — s9;} = exp(r dt)s;.
This holds for all values of s;. Therefore,
E(P41|P,) = exp(r 0t) P,

so that
E{exp(—r(t+ 1) 6t)Pry1|P) = exp(—rt 6t) P,

or
E(PiL P = P

This shows that P} is a martingale.

Any set of path probabilities, {p;}, is called a measure of the process. The
measure {g; } is called the martingale measure or the risk-neutral measure. We
will also call {g;} the risk-neutral path probabilities.

7.9.1 The risk-neutral world

If all investors were risk-neutral, that is, indifferent to risk, then there
would be no risk premiums and all expected asset prices would rise at
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the risk-free rate. Therefore, all discounted asset prices, with discounting
at the risk-free rate, would be martingales.

We know that we do not live in such a risk-free world, but there is a gen-
eral prinicple that expectations taken with respect to a risk-neutral model
give correct, i.e., arbitrage-free, prices of options and other financial in-
struments.

Example

In Section 7.3 it was argued that if a stock is selling at $100/share and the
risk-free interest rate is 6%. then the correct future delivery price of a share
one year from now is $106. We can now calculate this value using the risk-
neutral measure—in the risk-neutral world, the expected stock price will
increase to exactly $106 one year from now.

7.10 Trees to random walks to Brownian motion

7.10.1 Getting more realistic

Binomial trees are useful because they illustrate several important con-
cepts, in particular:

e arbitrage pricing
e self-financing trading strategies
e hedging

e computation of arbitrage prices by expectations with respect to an
appropriate set of probabilities called the risk-neutral measure

However, binomial trees are not realistic, because stock prices are contin-
uous, or at least approximately continuous. This lack of realism can be
alleviated by increasing the number of step. In fact, one can increase the
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number of steps without limit to derive the Black-Scholes model and for-
mula. That is the goal of Section 7.11. The present section will get us closer
to that goal.

7.10.2 A three-step binomial tree

Figure 7.6 is a three-step tree where at each step the stock price either goes
up $10 or down $10. Assume that the risk-free rate is = 0.

Now consider the price of the stock, call it P, at time ¢ where t = 0,1, 2, 3.
Using the risk-neutral path probabilities, which are each 1/2 in this ex-
ample, P, is a stochastic process, that is a process that evolves randomly in
time. In fact, since P, equals P,=+ $10, this process is a random walk. We
have

P, =Py + ($10){2(Wy + - - -+ W)) — t} (7.9)

where W, - - -, W3 are independent and W; equal 0 or 1, each with proba-
bility 1/2. If W, is 1, then 2W; — 1 = 1 and the price jumps up $10 on the
tth step. If W, is 0, then 2, — 1 = —1the price jumps down $10.

The random sum W; + - - - + W, is Binomial(t, 1/2) distributed and so has
a mean of t/2 and variance equal to ¢/4.

The value of the call option is
B{(Ps — E)4} (7.10)

where z, equals z if z > 0 and equals 0 otherwise. The expectation in
(7.10) is with respect to the risk-neutral probabilities. Since W; + W + W3
is Binomial(3,1/2), it equals 0,1, 2, or 3 with probabilities 1/8, 3/8, 3/8,
and 1/8, respectively. Therefore,

B{(Py~E)s} = 3[{Ry—30— B+ (0)(0)}s +3{F— 30— B+ (20)(1)}
+ 3{Py— 30— E+(20)(2)}1 + {P — 30 — E+ (20)(3)}].
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All q's are 1/2 50

time=0 time=1 time=2 time=3

Exercise price = $80

Figure 7.6: Three-step example of pricing a European call option by probabilities.
Red is node number. Blue is value of the stock. Magenta is value of the option.
Risk-neutral path probabilites are not shown, but they are all equal to 1/2. The
exercise price is $80. The risk-free rate is r = 0.
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Examples

If P, =100 and F = 80, then P, — 30 — EF = —10 and

E{(P,—E);} = %{(—10 +0); + 3(=10 + 20),

+ 3(—10+40); + (~10 + 60)., }

1 170
= 5(0+30+90+50) = = =21.25

as seen in Figure 7.6.

Similarly, if P, = 100 and E' = 100, then P, — 30 — E = —30 and

E{(P;— E),} = é{(—?,o +0)4 + 3(—30 +20),

+ 3(—30+40)4 + (—30 +60) }

1 60

7.10.3 More time steps

Let’s consider a call option with maturity data equal to 1. Take the time
interval [0, 1] and divide it into n steps, each of length 1/n. Suppose that
the stock price goes up or down o//n at each step. Then the price after m
steps (0 < m < n) whent =m/nis

7

Since, W + - - - + W,, is Binomial(m, 1/2) distributed, it follows that

E(P|R) = F. (7.12)
and 42
Var(By|Py) = 2 = 52 — 452, (7.13)
n 4 n

and, in particular,
Var(Pl\PO) = 0'2. (714)
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Moreover, by the central limit theorem, as n — oo, P, converges to a
N(P,,0?) random variable.

Let E be the exercise price. Remember that the value of an option is the
expectation with respect to the risk-neutral measure of the present value
of the option at expiration. Therefore, in the limit, as the number of steps
goes to oo, the price of the option converges to

E{(Py+0Z — E)}} (7.15)
where Z is N(0,1) so that P, = Py + 0Z is N(Py, o).

For a fixed value of n, P, is a discrete time stochastic process since ¢t =
0,1/n,2/n,...,(n —1)/n, 1. In fact, as we saw before, for any finite value
of n, P, is a random walk. However, in the limit as n — oo, P, becomes
a continuous time stochastic process. This limit process is called Brown-
ian motion. In other words, the continuous time limit of random walks is
Brownian motion.

7.10.4 Properties of Brownian motion

We have seen that Brownian motion is a continuous-time stochastic pro-
cess that is the limit of discrete-time random walk processes. A Brownian
motion process, B, starting at 0, i.e., with By = 0, has the following math-
ematical properties:

1. E(B;) =0 forallt.
2. Var(B,) = to? for all t. Here o is the volatility of B,.

3. Changes over non-overlapping increments are independent. More
precisely, if t; < t, < t3 < t4 then By, — B;, and B,;, — B, are inde-
pendent.

4. B, is normally distributed for any ¢.

If B, is not zero, then each of these properties holds for the process B, — By,
which is the change in B; from times 0 to ¢. All of these properties but the
last are shared to random walks with mean-zero steps.
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711 Geometric Brownian motion

Random walks are not realistic models for stock prices, since a random
walk can go negative. Therefore, (7.15) is close to but not quite the cor-
rect price of the option. To get the correct price we need to make our
model more realistic. We saw in Chapter 3 that geometric random walks
are much better than random walks as models for stock prices since geo-
metric random walks are always non-negative.

We will now introduce a binomial tree model that is geometric random
walk. We do this by making the steps proportional to the current stock
price. Thusy, if s is the stock price at the current node, then price at the
next node is

sexp(p/n £ o/v/n) = (Sup, Sdown)-
Notice that the log of the stock price is a random walk since
W, o
-+ —.
n \/n
Therefore, the stock price process is a geometric random walk. There is a
drift if u # 0, but we will see that the amount of drift is irrelevant. We

could have set the drift equal to 0 but we didn’t to show later that the drift
does NOT affect the option’s price.

(log(sup), log(sdown)) = log(s) +

The risk neutral probability of an up jump is

sexp(r/n) — Sdown

Sup = Sdown

exp(r/n) — exp(u/n — o/\/n)
exp(u/n+o/y/n) —exp(u/n—o/y/n)
1 p—r+o*/2

s

Then
O_ m
P,=P,,,=PF t —E 2W; — 1) ¢ .
t / Oexp{,u +\/ﬁi:1( )}

where as before W; is either 0 or 1 (so 2W; — 1 = £1).
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Using risk-neutral probabilities, we have

- <r—u—%2>%=t(r—u—02/2)-

and \
UC 4 1-—
Var] S o, — 1| = domall=a) e
Vo n
since ¢ — 1/2 asn — oo.
Therefore, in the risk-neutral world
P, = Pyexp{(r — 0®/2)t + 0B}, (7.16)

where B; is Brownian motion and 0 < ¢ < 1. Time could be easily extended
beyond 1 by adding more steps. We will assume that this has been done.

Notice that (7.16) does NOT depend on y, only on o. The reason is that in
the risk-neutral world, the expectation of all assets increase at rate . The
rate of increase in the real world is p but this is irrelevant for risk-neutral
calculations. Remember that risk-neutral expectations DO give the correct
option price in the real world even if they do not correctly describe real
world probability distributions.

If E is the exercise or strike price and 7 is the expiration date of a European
call option, then the value of the option at maturity is

[Poexp{(r — 0*/2)T + oBr} — E]+ : (7.17)

Since By ~ N(0,T), we can write By = /TZ where Z ~ N(0,1). The
discounted value of (7.17) is

lPO exp {—UQTT + ax/TZ} — exp(—rT)E] . (7.18)
+
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We will again use the principle that the price of an option is the risk-
neutral expectation of the option’s discounted value at expiration. By this
prinicple, the call’s price at time ¢ = 0 is the expectation of of (7.18). There-
fore,

C= / lPO exp {—UQTT + Oﬁz} — exp(—rT)E] o(2)dz, (7.19)

_|_

where ¢ is the N (0, 1) pdf (probability density function).

Computing this integral is not easy, but it can be done. The result is the
famous Black-Scholes formula: Let Sy be the current stock price (we have
switched notation from F;), let E be the exercise price, let r to be contin-
uously compounded interest rate, let o be the volatility, and let 7" be the
expiration date of a call option. Then by evaluating the integral in (7.19) it
can be shown that

C= q)(dl)SO - (I)(dQ)E exp(—TT)
where ® is the standard normal CDF,

_ log(So/E) + (r + 0/2)T
_ ol |

d; and dy=d; — oVT.

Example

Here’s a numerical example. Suppose that Sp = 100, E = 90,0 = 4,7 = .1,
and T = .25. Then

_ 1og(100/90) + {.1 + (.4)?/2}(.25)
a 4V25

dy = (.7518

and
d2 == dl - .4\/ 25 = 5518

Then ®(d;) = .7739 and ®(d) = .7095. Also, exp(—rT) = exp{(.1)(.25)} =
.9753. Therefore,

C = (100)(.7739) — (90)(.9753)(.7095) = 15.1.
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7.12 Using the Black-Scholes formula

7.12.1 How does the option price depend on the inputs?

Figure 7.7 shows the variation in the price of a call option as the param-
eters change. The baseline values of the parameters are S, = 100, £ =
100exp(rT), T = .25, 7 = .06, and 0 = .1. The exercise price E and initial
price Sy have been chosen so that if invested at the risk-free rate, S, would
increase to E' at expiration time. In each of the subplots in Figure 7.7, one
of the parameters is varied while the others are held at baseline.

One see that the price of the call increases with o. This makes sense since
E = Spexp(rT) = E(Sr) in this example (E(Sr) is the risk-neutral ex-
pectation of S7). The expected value of E(Sy) is at the money. Thus,
St is equally likely to be in the money or out of the money. As o in-
crease, the likelihood that Sy is considerably larger than E also increases.
As an extreme case, suppose that 0 = 0. Then in the risk-neutral world
St = exp(rT)S, = E and the option at expiration is at the money so its
value is 0.

The value at maturity is (Sr — E); so we expect that the price of the call
will increase as Sy increases and decrease as E increases. This is exactly the
behavior seen in Figure 7.7. Also, note that the price of the call increases
as either r or 7" increases.

7.12.2 An example — GE

Table 7.12.2 gives the exercise price E, month of expiration, and the price
of call options on GE on February 13, 2001. This information was taken
from The Wall Street Journal, February 14. Traded options are generally
American rather than European and that is true of the options in Table 7.12.2.
However, under the Black-Scholes theory it can be proved that the price
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Figure 7.7: Price of a call as a function of volatility (o), exercise price (E), initial
price (Sy), risk-free rate (r), and expiration date (T'). Baseline values of the pa-
rameters are Sy = 100, E = 100 exp(rT), T = .25, r = .06, and o = .1. In each
subplot, all parameters except the one on the horizontal axis are fixed at baseline.



196 CHAPTER 7. PRICING OPTIONS: 4/12/01

of an American call option is identical to the price of a European call op-
tion.® See Section 7.12.3 for discussion of this point. Since an American
call has the same price as a European call, we can use the Black-Scholes
formula for European call options to price the options in Table 7.12.2. We
will compare the Black-Scholes prices with the actual market prices.

Only the month of maturity is listed in a newspaper. However, maturi-
ties (days until expiration) can be determined as follows. An option ex-
pires on 10:59pm Central Time of the Saturday after the third Friday in
the month of expiration (Hull, 1995, page 180). February 16, 2001 was the
third Friday of its month, so that on February 13, an option with a Febru-
ary expiration date had three trading days (and four calendar days) until
expiration. Since there are returns on stocks only on trading days, T" = 3
for options expiring in February. Similarly, on February 13 an option ex-
piring in March had 7' = 23 trading days until expiration. Since there are
253 trading days/year, there are 253 /12 ~ 21 trading days per month. For
June, Iused T' = 23 + (21)(3) and for September I used 7' = 23 + (6)(21).

GE closed at $47.16 on February 13, so we use S, = 47.16.

On February 13, the 3-month T-bill rate was 4.91%. Thus, the daily rate of
return on T-bills would be r = 0.0491/253 = .00019470, assuming that a
T-bill only has a return on the 253 trading days per year; see Section 7.12.4.

I used two values of 0. The first, 0.0176, was based on daily GE return
from December 1999 to December 2000. The second, 0.025, was chosen to
give prices somewhat similar to the actual market prices.

7.12.3 Early exercise of calls is never optimal

It can be proved that early exercise of an American call option is never
optimal. The reason is that at any time before the expiration date, the
price of the option will be higher than the value of the option if exercised.

®However, American and European put options will in general have different prices.
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E Month of | 7T (in | Actual | B&S calculated price | Implied
Expiration | days) | Price | 0 =.0176 | o = .025 | Volatility
35 Sep 149 | 14.90 13.40 14.03 | .0320
40 Sep 149 | 10.80 9.22 10.37 | .0275
42.50 Mar 23 5.30 5.03 538 | .0235
45 Feb 3 2.40 2.22 232 | .0290
45 Mar 23 3.40 3.00 3.57 | .0228
50 Feb 3 0.10 0.016 0.09 | .0258
50 Mar 23 0.90 0.64 1.23 | .0209
50 Sep 149 4.70 3.42 512 | .0232
55 Mar 23 0.20 0.06 0.28 | .0223
55 Jun 86 1.30 0.92 2.00 | .0204

Table 7.1: Actual prices and prices determined by the Black-Scholes for-
mula for options on February 13, 2001. E is the exercise price. T is the
maturity.

Therefore, it is always better to sell the option rather than to exercise it
early.

To see empirical evidence of this principle, consider the first option in Ta-
ble 7.12.2. The strike price is 35 and the closing price of GE was 47.16.
Thus, if the option had been exercised at the closing of the market, the op-
tion holder would have gained $(47.16 — 35) = $12.16. However, the op-
tion was selling on the market for $14.90 that day. Thus, one would gain
$(14.90 — 12.16) = $2.74 more by selling the option rather than exercising
it.

Similarly, the other options in Table 7.12.2 are worth more if sold than if
exercised. The second option is worth $(47.16 — 40) = $7.16 is exercised but
$10.80 if sold. The third option is worth $(47.16 — 42.5) = $4.66 if exercised
but $5.30 if exercised.

Since it is never optimal to exercise an American call option early, the abil-
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ity to exercise an American call early is not worth anything. This is why
American calls are equal in value to European calls with the same exercise
price and expiration date.

7.12.4 Are there returns on non-trading days?

We have assumed that there are no returns on non-trading days. For T-
bills, this assumption is justified by the way we calculated the daily in-
terest rate. We took the daily rate to be the annual rate divided by 253
on trading days and 0 on non-trading days. If instead we took the daily
rate to be the annual rate divided by 365 on every calendar day, then the
interest on T-Bills over a year, or a quarter, would be the same.

A stock price is unchanged over a non-trading day. However, the efficient
market theory says that stock prices change due to new information. Thus,
we might expect that there is a return on a stock over a weekend or holiday
but it is realized until the market reopens. If this were true, then returns
from Friday to Monday would be more volatile than returns over a single
trading day. Empirical evidence fails to find such an effect.

A reason why returns over weekends are not overly volatile might be that
there is little business news over a weekend. However, this does not seem
to be the explanation why there is not excess volatility over a weekend.
In 1968, the NYSE was closed for a series of Wednesday. Of course, other
businesses were open on these Wednesdays so there was the usual amount
of business news during the Wednesdays when the NYSE was closed. For
this reason, one would expect increased volatility for Tuesday to Thursday
price changes on weeks with a Wednesday closing compared to, say, Tues-
day to Wednesday price changes on weeks without a Wednesday market
closing. However, no such effect has been detected (French and Roll, 1986).

Trading appears to generate volatility by itself. Traders react to each other.
Stock prices react to both trading “noise” and to new information. Short
term volatility might be mostly due to noise trading.
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7.12.5 Implied volatility

Given the exercise price, current price, and maturity of an option and
given the risk-free rate, there is some value of ¢ that makes the price de-
termined by the Black-Scholes formula equal to the current market price.
This value of o is called the implied volatility. One might think of implied
volatility as the amount of volatility the market believes to exist currently.

How does one determine the implied volatility? The Black-Scholes for-
mula gives price as a function of o with all other parameters held fixed.
What we need is the inverse of this function, that is, o as a function of the
option price. Unfortunately, there is no formula for the inverse function.
The function exists, of course, but there is no explicit formula for it. How-
ever, using interpolation one can invert the Black-Scholes formula to get
o as a function of price. Figure 7.8 shows how this could be done for the
third option in Table 7.12.2. The implied volatility in Figure 7.8 is 0.0235
and was determined by MATLAB'’s interpolation function, interpl.m. The
implied volatilities of the other options in Table 7.12.2 were determined in
the same manner.

Notice that the implied volatilities are substantially higher than 0.0176,
the average volatility over the previous year. However, there is evidence
that volatility of GE was increasing at the end of last year; see the esti-
mated volatility in Figure 3.3. In that figure, volatility is estimated from
December 15, 1999 to December 15, 2000. Volatility is highest at the end of
this period and shows some sign of continuing to increase. The estimated
volatility on December 15, 2000 was 0.023, which is similar to the implied
volatilities in Table 7.12.2. It would be worthwhile to re-estimate volatility
with data from December 15, 2000 to February 13, 2001. It may be that the
implied volatilities in Table 7.12.2 are similar to the observed volatility in
early 2001.

The implied volatilities also vary somewhat among themselves. One rea-
son for this variation is that the option prices and closing price of GE stock
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Figure 7.8: Calculating the volatility implied by the option with an exercise price
of $42.50 expiring in March 2001. The price was $5.30 on February 13, 2001.
The blue curve is the price given by the Black-Scholes formula as a function of o.
The horizontal line is drawn where price is $5.30. This line intersects the curve
at 0 = .0242. This value of o is the volatility implied by the option’s price.
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are not concurrent. Rather, each price is for the last trade of the day for that
option or for the stock. This lack of concurrence introduces some error into
pricing by the Black-Scholes formula and therefore into the implied volati-
tities. Another problem with these prices is that the Black-Scholes formula
assumes that the stock pays no dividends, but GE does pay dividends.”

7.13 Puts

Recall that a put option gives one the right to sell a certain number of
shares of a certain stock at the exercise price. The pricing of puts is similar
to the pricing of calls, but as we will see in this section, there are some
differences.

7.13.1 Pricing puts by binomial trees

Put options can be priced by binomial trees in the same way that call op-
tions are priced. Figure 7.9 shows a two-step binomial tree where the stock
price starts at $100 and increases or decreases by 20% at each step. Assume
that the interest rate is 5% compounded continuously and that the strike
price of the put is $110.

In this example, European and American puts do NOT have the same
price at all nodes. We will start with a European put and then see how
an American put differs.

At each step,
_exp(.05) — .8
- 12-38
The value of a put after two steps is (110 — S); where S is the price of the
stock after two steps. Thus the put is worth $46, $14, and $0 at nodes 4, 5,

= .6282.

"Modifications of the formula to accommodate dividend payments are possible, but
we will not pursue that topic here.
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Exercise price = $110

1r=5%

Put Option

Figure 7.9: Pricing a put option. The stock price is in blue and the price of
a European put option is in magenta. The price of an Amercian put option is
shown in black with parentheses when it differs from the price of a European put.
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and 6 respectively. Therefore, the price of the option at node 3 is
e~ %{(g)(0) + (1 — ¢)(14)} = e {(.6282)(0) + (.3718)(14)} = 4.91.
The price of the option at node 2 is

e %{(q)(14) + (1 — ¢)(46)} = 24.63.
Finally the price of the put at node 1 is

e %{(q)(4.91) + (1 — ¢)(24.63)} = 11.65.

Now consider an American option. At nodes 4, 5, and 6 we have reached
the expiration time so that the American option has the same value as the
European option.

At node 3 the European option is worth $4.91. At this node, should we ex-
ercise the American option early? Clearly not, since the strike price ($110)
is less than the stock price ($120). Since early exercise is suboptimal at
node 3, the American option is equivalent to the European option at this
node and both options are worth $4.91.

At node 2 the European option is worth $24.63. The American option can
be exercised to earn ($110 — $80) = $30. Therefore, the American option
should be exercised early since early exercise earns $30 while holding the
option is worth only $25.89. Thus, at node 2 the European option is worth
$24.63 but the American option is worth $30.

Atnode 1, the American option is worth
e %{(g)(4.91) + (1 — ¢)(30)} = 13.65,

which is more than $11.65, the value of the European option at node 1.
The American option should NOT be exercised early at node 1 since that
would earn only $10. However, the American option is worth more than
the European option at node 1 because the American can be exercised
early at node 2 should the stock move down at node 1.
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7.13.2 Why are puts different than calls?

We saw that in the Black-Scholes model where changes in price are pro-
portional to the current price, it is never optimal to exercise an American
call early. Puts are different. In the Black-Scholes model, early exercise of
a call may be optimal. In the binomial model example just given, prices
changes are proportional to current prices as in the Black-Scholes model,
and in the binomial model early exercise of a put is again optimal at some
nodes.

So why are puts different than calls? The basic idea is this. A put increases
in value as the stock price decreases. As the stock price decreases, the size
of further price changes also decreases. At some point we are in the range
of diminishing returns. We expect further decreases in the stock price to
be so small that the put will increase in value at less than the risk-free
rate. Therefore, it is better to exercise the option and invest the profits in a
risk-free asset.

With calls, everything is reversed. A call increases in value as the stock
price increases. As the stock price increases, so does the size of future price
changes. The expected returns on the call (expectations are with respect to
the risk-neutral measure, of course) are greater than the risk-free rate of
return.

7.13.3 Put-call parity

It is possible, of course, to derive the Black-Scholes formula for a Euro-
pean put option by the same reasoning used to price a call. However, this
work can be avoided since there is a simple formula relating the price of a
European put to that of a call:

P=C+e™E - S, (7.20)

where P and C are the prices of a put and of a call, both with expiration
date 7" and exercise price E. Here, the stock price is Sy and r is the contin-
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uously compounded risk-free rate. Thus, the price of a put is simply the
price of the call pluse ™ E — .

Equation (7.20) is derived by a simple arbitrage argument. Consider two
portfolios. The first portfolio holds one call and Fe~"" dollars in the risk-
free asset. Its payoff at time 7 is E, the value of the risk-free asset, plus the
value of the call, which is (S; — F),. Therefore, its payoff is £ if Sy < E
and Sy if Sp > E. In other words, the payoff is either £ or Sy, whichever
is larger.

The second portfolio holds a put and one share of stock. Its payoff at time
T is Sy if Sp > E so that the put is not exercised. If S; < E, then the put is
exercised and the stock is sold for a payoff of E. Thus, the payoff is E or
St, whichever is larger, which is the same payoff as the first portfolio.

Since the two portfolios have the same payoff for all values of Sy, their
initial values at time 0 must be equal to avoid arbitrage. Thus,

C+e™TE=P+8,,

which can be rearranged to yield equation (7.20).

Relationship (7.20) holds only for European options. European calls have
the same price as European calls so that the right hand side of (7.20) is the
same for European and American options. American puts are worth more
than European puts, so the left hand side of (7.20) is larger for American
than for European puts. Thus, (7.20) becomes

P>C+e™E -5, (7.21)

for American options, and clearly (7.21) does not tell us the price of an
American put.

8 As usual in these notes, we are assuming that the stock pays no dividend, at least not
during the lifetime of the two options. If there are dividends, then a simple adjustment of
formula (7.20) is needed. The reason the adjustment is needed is that the two portfolios
will no longer have exactly the same payoff. One can see that the first portfolio which
holds the stock will receive a dividend and so receive a higher payoff than the second
portfolio which will not receive the dividend.
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7.14 The evolution of option prices

As time passes the price of an option changes with the changing stock
price and the decreasing about of time until the expiration date. We will
assume that r and o are constant, though in the real financial world these
could change too. The Black-Scholes formula remains in effect and can be
used to update the price of an option. Suppose that ¢ = 0 is when the
option was written and ¢ = 7 is the expiration date. Consider a time point
t such that 0 < ¢ < T. Then the Black-Scholes formula can be used with S
in the formula set equal to S; and T in the formula set equal to 7" — ¢.

Figure 7.10 illustrates the evolution of option prices for two simulations
of the geometric Brownian motion process of the stock price. Here T' = 1,
o=.,r=.06,S = 100, and E = 100 for both the put and the call. In
one case the call was in the money at expiration, while in the second case
it was the put that was in the money.

Notice that around ¢ = .18 the stock price is around 110 in the red simula-
tion but the put is still worth something, since there is still plenty of time
for the price to go down. Around ¢ = 1 the stock price of the blue simu-
lation is around 110 but the value of the put is essentially 0; now there is
too little time for the put to go in the money (the risk-neutral probability
is not 0, but almost 0).

7.15 Intrinsic value and time value

The intrinsic value of a call is (Sy — F);, the payoff one would obtain
for immediate exercise of the option (which would be possible only for
an American option). The intrinsic value is always less than the price, so
immediate exercise is never optimal. The difference between the intrin-
sic value and the price is called the time value of the option. Time value
has two components. The first is a volatility component. The stock price
could drop between now and the expiration date; by waiting until the last
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Figure 7.10: Evolution of option prices. The stock price is a geometric Brown-
ian motion. Two independent simulations of the stock price are shown and color
coded. HereT = 1,0 = .1, = .06, Sy = 100, and E = 100 for both the put
and the call. In the blue and red simulations the call, respectively, put are in the
money at the expiration date.
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Figure 7.11: Price (for European or American option), intrinsic value, and ad-
justed intrinsic value of a call option. The intrinsic value is the payoff if one
exercises early. Here E = 100, T = .25, r = 0.06, and 0 = 0.1.

moment, one can avoid exercising the option when Sy < E. The second
component is the time value of money. If you do exercise the option, it is
best to wait until time 7" so that you delay payment of the exercise price.

The adjusted intrinsic value is (Sy — e "7 E) ;. The difference between the
price and the adjusted intrinsic value is the volatility component of the
time value of the option. As Sy — oo, the price converges to the adjusted
intrinsic value and the volatility component converges to 0. The reason
this happens is that as Sy — oo you become sure that the option will be in
the money at the expiration date.

Figure 7.11 shows the price, intrinsic value, and adjusted intrinsic value of
a call option when S, = 100, £ =100, T = .25, 7 = 0.06, and o = 0.1
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Figure 7.12: Price (for European option), intrinsic value, and adjusted intrinsic
value of a put option. The intrinsic value is the payoff if one exercises early. The
price of an American put would be either the price of the European put of the
intrinsic value, whichever is larger. Here Sy = 100, E' = 100, T' = .25, r = 0.06,
and o = 0.1.

The intrinsic value of put is (E — Sp);, which again is the the payoff
one would obtain for immediate exercise of the option, if that is possi-
ble (American option). The intrinsic value is sometimes greater than the
price, in which case immediate exercise is optimal.

The adjusted intrinsic value is (e "7 E — Sy),. As Sy — 0, the likelihood
that the option will be in the money at the expiration date increase to 1
and the price converges to the adjusted intrinsic value.

Figure 7.12 shows the price, intrinsic value, and adjusted intrinsic value of
a put option when Sy = 100, E = 100, 7 = .25, 7 = 0.06, and 0 = 0.1
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7.16 Black, Scholes, and Merton

This section is based on chapter 11 of Bernstein’s (1992) book Capital Ideas.
Fischer Black graduated in 1959 from Harvard with a degree in physics.
In 1964 he received a PhD in applied mathematics from Harvard where he
studied operations research, computer design, and artifical intelligence.
He never took a course in either finance or economics.

Finding his doctorial studies at bit too abstract, he went to work at Arthur
D. Little where he became acquainted with the CAPM. He found this sub-
ject so fascinating that he moved into finance. At ADL, Black tried to apply
the CAPM to the pricing of warrants, which are much like options. Bern-
stein (1992) quotes Black as recalling

I applied the Capital Asset Pricing Model to every moment in a
warrant’s life, for every possible stock price and warrant value
... . I stared at the differential equation for many, many months.
I made hundreds of silly mistakes that led me down blind al-
leys. Nothing worked ...

[The calculations revealed that] the warrant value did not de-
pend on the stock’s expected return, or on any other asset’s ex-
pected return. That fascinate me. ... Then Myron Scholes and I
started working together.

Scholes received a bacheler’s degree from McMaster’s University in On-
tario in 1962, earned a doctorate in finance from Chicago, and then took
a teaching job at MIT. When Scholes meet Black he too was working in-
tensely on warrant pricing by the CAPM. Realizing that they were work-
ing on the same problem, they began a collaboration that proved to be
very fruitful.

Black and Scholes came to understand that the expected return on a stock
or option had no effect of what the current price of the option should be.
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With this insight and building on the CAPM, they arrived at the option
equation and derived the formula for the option price.

In 1970, Scholes described his work with Black on options pricing to Robert
C. Merton. Merton had studied engineering mathematics at Columbia and
then Cal Tech. He developed an interest in economics and planned to
study that subject in graduate school. His lack of formal training in eco-
nomics put off many graduate schools, but MIT offered him a fellowship
where he worked under the direction of Paul Samuelson.

Merton developed the “intertemportal capital asset pricing model” that
converted the CAPM from a static model describing the market for a sin-
gle discrete holding period to a model for finance in continuous time.
Merton realized that Ito’s stochastic calculus was a goldmine for some-
one working on finance theory in continuous time. In the preface to his
book, “Continuous-Time Finance,” Merton has written

The mathematics of the continuous-time model contains some
of the most beautiful applications of probability and optimiza-
tion theory. But, of course, not all that is beautiful in science
need also be practical. And surely, not all that is practical in
science is beautiful. Here we have both.

Merton developed a much more elegant derivation of the Black-Scholes
formula, a derivation based on an arbitrage argument. Black has said “A
key part of the options paper I wrote with Myron Scholes was the arbitrage
argument for deriving the formula. Bob gave us that argument. It should
probably be called the Black-Merton-Scholes paper.”

In 1997, Merton shared the Nobel Prize in Economics with Scholes. Sadly,
Black had died at a young age and could not share the prize, since the
Nobel Prize cannot be awarded posthumously. Merton has been called
“the Isaac Newton of modern finance.”
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717 Summary

e An option gives the holder the right but not the obligation to do
something, for example, to purchase a certain amount of a certain
stock at a fixed price within a certain time frame.

o A call option gives one the right to purchase (call in) a stock. A put
gives one the right to sell (put away) a stock.

e European options can be exercised only at their expiration date. Amer-
ican options can be exercised on or before their expiration date.

e Arbitrage is making a guaranteed profit without investing capital.

e Arbitrage pricing means determining the unique price of a financial
instrument that guarantees that the market is free of arbitrage oppor-
tunities.

e Options can be priced by arbitrage using binomial trees.

e The “measure” of a binomial tree model or other stochastic process
model gives the set of path probabilities of that model.

o There exists a risk-neutral measure such that expected prices calcu-
lating with respect to this measure are equal to arbitrage determined
prices.

e In a binomial tree model with price changes proportional to the cur-
rent price, as the number of steps increases the limit process is a ge-
ometric Brownian motion and the price of the option in the limit is
given by the Black-Scholes formula.

e To price an option by the Black-Scholes formula, one needs an esti-
mate of the stock price’s volatility. This can be obtained from histor-
ical data. Conversely, the implied volatility of a stock is the volatility
which makes the actual market price equal to the price given by the
Black-Scholes formula.
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e Within the Black-Scholes model, the early exercise of calls is never
optimal but the early exercise of puts is sometimes optimal. There-
fore, European and American calls have equal prices, but American
puts are generally worth more than European puts.

e Put-call parity is the relationship
P:C+€_TTE—SO

between P, the price of a European put, and C, the price of a Euro-
pean call. It is assumed that both have exercise price £ and expira-
tion date 7. Sy is the price of the stock.
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Chapter 8

GARCH models: 4/24/01

8.1 Introduction

Despite the popularity of ARMA models, they have a significant limita-
tion, namely, that they assume a constant volatility. In finance, where cor-
rect specification of volatility is of the utmost importance, this can be a
severe limitation. In this chapter we look at time series models that have
randomly varying volatility.

ARMA models are used to model the conditional expectation of the cur-
rent observation, Y, of a process given the past observations. ARMA mod-
els do this by writing Y; as a linear function of the past plus a white noise
term. ARMA models also allow us to predict future observations given
the past and present. The prediction of Y;1; given Y;,Y;_; ... is simply the
conditional expectation of Y;; given Y}, Y;_; .. ..

However, ARMA models have rather boring conditional variances—the
conditional variance of Y; given the past is always a constant. What does
this mean for, say, modeling stock returns? Suppose we have noticed that
recent daily returns have been unusually volatile. We might suppose that
tomorrow’s return will also be more variable than usual. However, if we
are modeling returns as an ARMA process, we cannot capture this type of
behavior because the conditional variance is constant. So we need better

215
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time series models if we want to model the nonconstant volatility often
seen in financial time series.

In this chapter we will study models of nonconstant volatility. ARCH
is an acronym meaning AutoRegressive Conditional Heteroscedasticity.'
In ARCH models the conditional variance has a structure very similar to
the structure of the conditional expectation in an AR model. We will first
study the ARCH(1) model, which is similar to an AR(1) model. Then we
will look at ARCH(p) models which are analogous to AR(p) models. Fi-
nally, we will look at GARCH (Generalized ARCH) models which model
conditional variances much like the conditional expectation of an ARMA
model.

8.2 Modeling conditional means and variances

Before looking at GARCH models, we will study some general principles
on how one models non-constant variance.

The general form for the regression of Y; on X ,,..., X, is

Yi=f(Xig. .., Xpp) + & (8.1)
where ¢, has expectation equal to 0 and a constant variance o?. The func-
tion f is the conditional expectation of Y; given X4, ..., X, ;. To appreci-

ate this fact, notice that if we take the conditional (given the X;, values)
expectation of (8.1), f(Xi, ..., X,,) is treated as a constant and the condi-
tional expectation of ¢, is 0. Moreover, the conditional variance is simply
the variance of ¢, that is, 2. Frequently, f is linear so that

J( X1, Xpp) = Bo+ B1X1 + - + Bp Xy

Principle: To model the conditional mean of Y; given X4, ..., X, ;, write
Y, as the conditional mean plus white noise.

'Heteroscedasticity is a fancy way of saying non-constant variance. Homoscedasticity
means constant variance. Alternate spellings are heteroskedasticity and homoskedastic-

ity.
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Equation (8.1) can be modified to allow a nonconstant conditional vari-
ance. Let 0?(X1, ..., X,,) be the conditional variance of Y; given X4, ...,
X, ¢+ Then the model

th = f(Xl,t; e 7Xp,t) + O'(Xl,t, ceey Xp,t)et (82)
gives the correct conditional mean and variance.

Principle: To allow a nonconstant conditonal variance in the model, multi-
ply the white noise term by the conditional standard deviation. This prod-
uct is added to the conditional mean as in the previous principle.

The function o(Xi4,...,X,;) must be non-negative since it is a standard
deviation. If the function o(-) is linear, then its coefficients must be con-
strained to ensure non-negativity. Modeling non-constant conditonal vari-
ances in regression is treated in depth in the book by Carroll and Ruppert
(1988). Models for conditional variances are often called “variance func-
tion models.” The GARCH models of this chapter are a special class of
variance function models.

8.3 ARCH(1) processes

Let €1, €9, . .. be Gaussian white noise with unit variance, that is, let this
process be independent N(0,1). Then

E(Et‘Gt,h .. ) = 0,

and
Var(ﬁt‘thl, .. ) =1. (83)

Property (8.3) is called conditional homoscedasticity.

The process a, is an ARCH(1) process if

a; = e/ + ara? 4. (8.4)
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We require that oy > 0 and o; > 0 because a standard deviation cannot be
negative. It is also required that «; < 1in order for a, to be stationary with
a finite variance. If o; = 1 then ¢, is stationary but its variance is co; see
below. Equation (8.4) is somewhat like an AR(1) but in a?, not a;, and the
ARCH(1) model induces an ACF in a? that is like an AR(1)'s ACF.

Define
O't2 = Var(at|at,1, .. )

to be the conditional variance of a, given past values. Since ¢, is indepen-
dent of a;_; and Var(e;) = 1

E(at\at_l, .. ) = 0, (85)

and
ol =g+ aa;_ . (8.6)

Understanding equation (8.6) is crucial to understanding how GARCH
processes work. This equation shows that if a;_; has an unusually large
deviation from its expectation of 0, so that a?_, is large, then the condi-
tional variance of a, is larger than usual. Therefore, a, is also expected to
have an unusually large deviation from its mean. This volatility will prop-
agate since a; having a large deviation makes o7} ', large so that a;; will
tend to be large. Similarly, if a;—; is unusually small, then o7 will be small,
and a; is expected to also be small, etc. Because of this behavior, unusual
volatitity in a; tends to persist, though not forever. The conditional vari-
ance tends to revert to the unconditional variance provided that oy < 1 so
that the process is stationary with a finite variance.

The unconditional, i.e., marginal, variance of a; denoted by 7,(0) is gotten
by taking expectations in (8.5) which give us

7a(0) = ao + a174(0).
This equation has a positive solution if oy < 1:

Ya(0) = ap/(1 — a1).
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If oy > 1 then 7,(0) is infinite. It turns out that a; is stationary nonetheless.
The integrated GARCH model (I-GARCH) has «; = 1 and is discussed in
Section 8.10.

Straightforward calculations using (8.6) show that the ACF of a; is
pa(h) =0 if h#O.

In fact, any process such that the conditional expectation of the present
observation given the past is constant is an uncorrelated process. In intro-
ductory statistics courses, it is often mentioned that independence implies
zero correlation but not vice versa. A process, such as the GARCH pro-
cesses, where the conditional mean is constant but the conditional vari-
ance is non-constant is a good example of a process that is uncorrelated
but not independent. The dependence of the conditional variance on the
past is the reason the process is not independent. The independence of the
conditional mean on the past is the reason that the process is uncorrelated.

Although a, is uncorrelated just like the white noise process ¢, the process
a? has a more interesting ACF: if a; < 1 then

pa(h)=all, ¥V h

If a; > 1, then af is nonstationary, so of course it does not have an ACFE.

8.3.1 Example

A simulated ARCH(1) process is shown in Figure 8.1. The top-left panel
shows the independent white noise process, ¢,. The top right panel shows
ot = 4/1 + .95a7_,, the conditional standard deviation process. The bottom
left panel shows a; = o,¢;, the ARCH(1) process. As discussed in the next
section, an ARCH(1) process can be used as the noise term of an AR(1)
process. This is shown in the bottom right panel. The AR(1) parameters
are 4 = .l and ¢ = .8.

The variance of a; is 7,(0) = 1/(1 — .95) = 20 so the standard deviation is

V20 = 4.47.
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Figure 8.1: Simulation of 60 observations from an ARCH(1) process and an
AR(1)/ARCH(1) process. The parameters are ag = 1, oy = .95, p = .1, and

¢ =8,
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The processes were started out all equal to 0 and simulated for 70 observa-
tion. The first 10 observations were treated as a burn-in period where the
process was converging to its stationary distribution. In the figure, only
the last 60 observations are plotted.

The white noise process in the top left panel is normally distributed and
has a standard deviation of 1, so it will be less that 2 in absolute value
about 95% of the time. Notice that just before ¢ = 10, the process is a little
less than —2 which is a somewhat large deviation from the mean of 0. This
deviation causes the conditional standard deviation (0;) shown in the top
right panel to increase and this increase persists for about 10 observations
though it slowly decays. The result is that the ARCH(1) process exhibits
more volatility than usual when ¢ is between 10 and 15.

Figure 8.2 shows a simulation of 600 observations from the same processes
as in Figure 8.1. A normal probability plot of a, is also included. No-
tice that this ARCH(1) exhibits extreme non-normality. This is typical of
ARCH processes. Conditionally they are normal with a nonconstant vari-
ance, but there marginal distribution is non-normal with a constant vari-
ance.

8.4 The AR(1)/ARCH(1) model

As we have seen, an AR(1) has a nonconstant conditional mean but a con-
stant conditional variance, while an ARCH(1) process is just the opposite.
If we think that both the conditional mean and variance of a process will
depend on the past then we need the features of both the AR and ARCH
models. Thus, we will combine the two models. In this section we start
simple and combine an AR(1) model with an ARCH(1) model.
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Figure 8.2: Simulation of 600 observations from an ARCH(1) process and an
AR(1)/ARCH(1) process. The parameters are oy = 1, oy = .95, p = .1, and

6= 8.

White noise

200 400
ARCH(1)

600

200 400

normal plot of ARCH(1)

600

1]

Data

20

25

20

15

10

40

20

CHAPTER 8. GARCH MODELS: 4/24/01

Conditional std dev

bbbl

200

400 600

AR(1)/ARCH(1))

200

400 600



8.5. ARCH(Q) MODELS 223

Let a; be an ARCH(1) process and suppose that

up — = d(ug_1 — p) + a.

u; looks like an AR(1) process, except that the noise term is not indepen-
dent white noise but rather an ARCH(1) process.

Although q, is not independent white noise, we saw in the last section that
it is an uncorrelated process; a; has the same ACF as independent white
noise. Therefore, u; has the same ACF as an AR(1) process:

pu(h) ="V b
Moreover, a? has the ARCH(1) ACF:
pi(h)=af' V¥ h.

We need to assume that both |¢| < 1 and o; < 1 in order for u to be
stationary with a finite variance. Of course, oy > 0 and oy > 0 and also
assumed.

The process u; is such that its conditional mean and variance, given the

past, are both nonconstant so a wide variety of real time series can be mod-
eled.

Example

A simulation of an AR(1)/ARCHY(1) process is shown in the bottom right
panel of Figure 8.1. Notice that when the ARCH(1) noise term in the bot-
tom left panel is more volatile, then the AR(1)/ARCH(1) process moves
more rapidly.

8.5 ARCH(g) models

As before, let ¢, be Gaussian white noise with unit variance. Then a; is an
ARCH(q) process if

ay = Ot€y
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where

q
— E : 2
g = J&o + o;Qy_;

i=1
is the conditional standard deviation of a; given the past values of this
process. Like an ARCH(1) process, an ARCH(g) process is uncorrelated
and has a constant mean (both conditional and unconditional) and a con-
stant unconditional variance, but its conditional variance is nonconstant.
In fact, the ACF of a7 is the same as the ACF on an AR(p) process.

8.6 GARCH(p, q) models

The GARCH(p, ¢) model is

Gy = €0y

where

q p
or = Jao + > al i+ Bioks.
=1 =1

The process a; is uncorrelated with a stationary mean and variance and a?
has an ACF like an ARMA process.

A very general time series model lets a; be GARCH(pg, ¢¢) and uses a; as
the noise term in an ARIMA(p4, d, g4) model.?

GARCH models include ARCH models as a special case, and we will use
the term “GARCH” to refer to both ARCH and GARCH models.

Figure 8.3 is a simulation from a GARCH(1,1) process and from a AR(1)/
GARCH(1,1) process. The GARCH parameters are oy = 1, oy = .08, ) =
.9. The large value of 3; give the conditional standard deviation process a
long-term memory. Notice that the conditional standard deviation is less
“bursty” than for an ARCH(1) process.

2We use subscripts on p and g to distinguish between the GARCH (G) and ARIMA
(A) parameters.
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Figure 8.3: Simulation GARCH(1,1) and AR(1)/GARCH(1,1) processes. The
parameters are g =1, oy = .08, By = .9, and ¢ = .8.
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8.7 Heavy-tailed distributions

Researchers have long noticed that stock returns have “heavy-tailed” or
“outlier-prone” probability distributions. This means that they have more
extreme outliers than expected from a normal distribution. The reason for
the outliers may be that the conditional variance is not constant. In fact,
GARCH processes exhibit heavy-tails. Therefore, when we use GARCH
models in finance we can model both the conditional heteroscedasticity
and the heavy-tailed distributions of financial market data.

To understand how a non-constant variance induces outliers, we look at
a simple case. Consider a distribution which is 90% N(0,1) and 10%
N(0,25). This is an example of a “normal mixture” distribution. The vari-
ance of this distribution is (.9)(1) + (.1)(25) = 3.4 so its standard deviation
is 1.844. This distribution is MUCH different that a N(0, 3.4) distribution,
even though both distributions have the same mean (0) and variance (3.4).
To appreciate this, look at Figure 8.4.

You can see in the top left panel that the two densities look quite different.
The normal density looks much more dispersed than the normal mixture,
but we know that they actually have the same variances. What’s happen-
ing? Look at the detail of the right tails in the top right panel. The normal
mixture density is much higher than the normal density when z (the vari-
able on the horizontal axis) is greater than 6. This is the “outlier” region
(along with < —6). The normal mixture has more outliers and they come
from the 10% of the population with a variance of 25. Outliers have a pow-
erful effect on the variance and this small fraction of outliers inflates the
variance from 1.0 (the variance of 90% of the population) to 3.4.

Let’s see how much more probability the normal mixture distribution has
in the outlier range |z| > 6 compared to the normal distribution.? For a

3There is nothing special about “6” to define the boundary of the outlier range. I just
needed a specific number to make numerical comparisons. Clearly, |z| > 7 or |z| > 8, say,
would have been just as appropriate as outlier ranges.
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N (0, 0?) random variable X,
P{X| >z} =2(1-®(z/0)).
Therefore, for the normal distribution with variance 3.4,
P{|X|> 6} =2(1 — ®(6/v/3.4)) = .0011.

For the normal mixture population which has variance 1 with probability
.9 and variance 25 with probability .1 we have that

P{|X|> 6} =2{.9(1 — ®(6)) +.1(1 — ®(6/5)) = (.9)(0) + (.1)(.23) = .023.

Since .023/.001 ~ 21, the normal mixture distribution is 21 times more
likely to be in this outlier range than the normal distribution.

Normal probability plots of samples of size 200 from the normal and the
normal mixture distributions are shown in the bottom panels. Notice how
the outliers in the normal mixture sample give the data a nonlinear, almost
S-shaped, pattern. The deviation of the normal sample from linearity is
small and is due entirely to randomness.

In this example, the variance is conditional upon which component of the
mixture an observation comes from. The conditional variance is 1 with
probability .9 and 25 with probability .1. Because the conditional variance
is discrete, in fact, with only two possible values, the example was easy
to analyze. The marginal distribution of a GARCH process is also a nor-
mal mixture, but with a continuous distribution of components correspon-
dence to the continuous distribution of the conditional variance. Although
GARCH processes are more complex than the simple model in this section,
the same theme applies — conditional heteroscedasticity induces heavy-
tailed marginal distributions even though the conditional distributions are
light-tailed normal distributions.

8.8 Comparison of ARMA and GARCH processes

Table 8.8 compares Gaussian white noise, ARMA, GARCH, and ARMA/
GARCH processes according to various properties: conditional means,
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conditional variances, conditional distributions, marginal means, marginal
variances, and marginal distributions.

Property Gaussian | ARMA GARCH ARMA/

WN GARCH
Cond. mean constant | non-const 0 non-const
Cond. var constant constant non-const non-const
Cond. dist'n normal normal normal normal
Marg. mean & var. | constant | constant constant constant
Marg. dist'n normal normal heavy-tailed | heavy-tailed

All of the processes are stationary so that their marginal means and vari-
ances are constant. Gaussian white noise is the “baseline” process. Be-
cause it is an independent process the conditional distributions are the
same as the marginal distribution. Thus, its conditional means and vari-
ances are constant and both its conditional and marginal distributions are
normal. Gaussian white noise is the “driver” or “source of randomess” be-
hind all the other processes. Therefore, they all have normal conditional
distributions just like Gaussian white noise.

8.9 Fitting GARCH models

A time series was simulated using the same program that generated the
data in Figure 8.1, the only difference being that 300 observations were
generated rather than only 60 as in the figure. The data were saved as
“garch02.dat” and analyzed with SAS using the following program.

Listing of the SAS program for the simulated data

options  linesize = 65 ;
data arch ;
infile 'c:\courses\or473\sas\garchO 2dat ;

input vy ;
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run

title 'Simulated ARCH(1)/AR(1) data’ ;
proc autoreg

model y =/nlag = 1 archtest garch=(g=1);
run

This program uses the “autoreg” command that fits AR models. Since
nlag =1, an AR(1) model is being fit. However, the noise is not modeled as
independent white noise. Rather an ARCH(1) model is used because of the
specification “garch=(q=1)" in the “model” statement below the “autoreg”
command. More complex GARCH models can be fit using, for example,
“garch=(p=2,q=1).” The specification “archtest” requests tests of ARCH
effects, that is, tests the null hypothesis of conditional homoscedasticity
versus the alternative of conditional heteroscedasticity.

The output from this SAS program are listed below. The tests of condi-
tional homoscedasticity all reject with p-values of .0001 or smaller. The
estimates are ¢ = —.8226, which is +.8226 in our notation. This is close to
the true value of 0.8.

The estimates of the ARCH parameters are & = 1.12 and @; = .70. The
true values are oy = 1 and a; = .95. The standard errors of the ARCH
parameters are rather large. This is a general phenomenon; time series
usually have less information about variance parameters than about the
parameters specifying the conditional expectation. An approximate 95%
confidence interval for «; is

70 + (2)(0.117) = (.446,.934),

which does not quite include the true parameter, 0.95. This could have
just been bad luck, though it may indicate that @&; is downward biased.
The confidence interval is based on the assumption of unbiasedness and
is not valid if there is a sizeable bias.
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Listing of the SAS output for the simulated data

Simulated ARCH(1)/AR(1) data 1
13:01 Wednesday, Aprii 4, 2001
The AUTOREGProcedure
Dependent Variable y
Ordinary Least Squares Estimates
SSE 2693.22931 DFE 299
MSE 9.00746 Root MSE 3.00124
SBC 1515.48103 AlC 1511.77725
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 0.4373
Q and LM Tests for ARCH Disturbances
Order Q Pr > Q LM Pr > LM
1 119.7578 <.0001 118.6797 <.0001
2 137.9967 <.0001 129.8491 <.0001
3 140.5454 <.0001 131.4911 <.0001
4 140.6837 <.0001 132.1098 <.0001
5 140.6925 <.0001 132.3810 <.0001
6 140.7476 <.0001 132.7534 <.0001
7 141.0173 <.0001 132.7543 <.0001
8 141.5401 <.0001 132.8874 <.0001
9 142.1243 <.0001 132.8879 <.0001
10 142.6266 <.0001 132.9226 <.0001
11 142.7506 <.0001 133.0153 <.0001
12 142.7508 <.0001 133.0155 <.0001
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.8910 0.1733 5.14 <.0001
Estimates of Autocorrelations
Lag Covariance Correlation
0 8.9774 1.000000
1 7.0075 0.780567
Estimates  of Autocorrelations
Lag -1 98765432101234567891
0 I |********************|

1 I

|****************



232 CHAPTER 8. GARCH MODELS: 4/24/01

Simulated ARCH(1)/AR(1) data 2
13:01 Wednesday, April 4, 2001

The AUTOREGProcedure

Preliminary MSE 3.5076
Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
1 -0.780567 0.036209 -21.56

Algorithm  converged.

GARCHEstimates

SSE 1056.42037 Observations 300
MSE 3.52140 Uncond Var 3.72785257
Log Likelihood -549.43844 Total R-Square 0.6077
SBC 1121.69201 AIC 1106.87688
Normality  Test 1.5134 Pr > ChiSq 0.4692

Standard Approx

Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.4810 0.3910 1.23 0.2187
AR1 1 -0.8226 0.0266 -30.92 <.0001
ARCHO 1 1.1241 0.1729 6.50 <.0001
ARCH1 1 0.6985 0.1167 5.98 <.0001

8.9.1 Example: S&P 500 returns

This example is Example 10.5 in Pindyck and Rubinfeld (1998). The data
are monthly from 1960 to 1996. The variables are the S&P 500 index (FSP-
COM), the return on the S&P 500 (RETURNSP), the dividend yield on the
S&P 500 index (FSDXP), the 3-month T-bill rate (R3), the change in the 3-
month T-bill rate (DR3), the wholesale price index (PW), and the rate of
wholesale price inflation (GPW). In this analysis, only RETURNSP, DR3,
and GPW are used.
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It is expected that variation in stock returns are in part caused by changes
in interest rates and changes in the rate of inflation. Therefore, a regres-
sion model where RETURNSP is regressed on DR3 and GPW is used. Re-
gression models that regress returns on macroeconomic variables in this
way are sometimes called “factor models” — see Bodie, Kane, and Marcus
(1999). Figure 8.5 shows the residuals from this regression. The residu-
als represent the part of the S&P 500 returns that cannot be explained by
changes in interest rates and the inflation rate. In the figure, there is some
sign of nonconstant volatility. Also, there is no reason to assume that the
residuals are uncorrelated as is assumed in a standard regression model.
At the very least, this assumption should be checked. If the data contradict
the assumption, then a model with correlated errors should be used.
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Figure 8.5: Residuals when the S&P 500 returns are regressed against the change
in the 3-month T-bill rates and the rate of inflation.
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An analysis more appropriate for this data set is to use a regression model
to specify the conditional expectation of RETURNSP given DR3 and GPW,
but not to assume a “standard” regression model with errors (which the
residuals estimate) that are independent white noise. Rather we will as-
sume the model

RETURNSP = 7 + 71 DR3 + v,GPW + u, (8.7)
where u; is an AR(1)/GARCH(1,1) process.* Therefore,
U = P11 + ay,
where a; is a GARCHY(1,1) process:
a; = €04

where

— 2 2
o = \/040 + anai g + Biop .

Below is a listing of the SAS program used to fit this model. The regression
model with AR(1)/GARCH(1,1) errors is specified by the command:

proc autoreg
model returnsp = DR3 gpw/nlag = 1 archtest garch=(p=1,0=1);

In this command,

o the statement “returnsp = DR3 gpw ” specifies the regression model,
that is, that “returnsp” is the dependent variable and “DR3” and
“gpw” are the independent variables.

e “nlag = 1" specifies the AR(1) structure.
e “garch=(p=1,q=1)" specifies the GARCH(1,1) structure.

e “archtest” specifies that tests of conditional heteroscedasticity be per-
formed

“We denote the regression coefficients by gamma rather than beta, as is standard, be-
cause beta is used for parameters in the GARCH model for a;.
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Listing of the SAS program

options  linesize = 65 ;

data arch ;

infile 'c:\courses\or473\data\pindyck105. dat’ ;
input  month year RETURNSPFSPCOMFSDXP R3 PW GPW;
DR3 = dif(R3) ;

run ;

title 'S&P 500 monthly data from Pindyck & Rubinfeld, Ex 10.5 ;
title2 'AR(1)/GARCH(1,1) model’ ;

proc autoreg ;

model returnsp =/nlag = 1 archtest garch=(p=1,q=1);

run ;

title2 'Regression model with AR(1)/GARCH(1,1) ;

proc autoreg ;

model returnsp = DR3 gpw/nlag = 1 archtest garch=(p=1,g=1);

run ;

The SAS output is listed below.

From examination of the output, the following conclusions can be reached:

e The p-values of the Q and LM tests are all very small, less than .0001.
Therefore, the errors in the regression model exhibit conditional het-
eroscedasticity.

e Ordinary least squares estimates of the regression parameters are:

Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.0120 0.001755 6.86 <.0001
DR3 1 -0.8293 0.3061 -2.71 0.0070
GPW 1 -0.8550 0.2349 -3.64 0.0003

e Using residuals from the OLS estimates, the estimated residual au-
tocorrelations are:

Estimates of Autocorrelations
Lag Covariance Correlation

0 0.00108 1.000000
1 0.000253 0.234934
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e Also, using OLS residuals, the estimate AR parameter is:

Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
1 -0.234934 0.046929 -5.01

e Assuming AR(1)/GARCH(1,1) errors, the estimated parameters of
the regression are:

Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.0125 0.001875 6.66 <.0001
DR3 1 -1.0665 0.3282 -3.25 0.0012
GPW 1 -0.7239 0.1992 -3.63 0.0003

— Notice that these differ slightly from OLS estimates.

— Since all p-values are small, both independent variables are sig-
nificant.

— However, the Total R-square value is only 0.0551, so the regres-
sion has little predictive value.

e The estimated GARCH parameters are:

AR1 1 -0.2016 0.0603 -3.34 0.0008
ARCHO 1 0.000147 0.0000688 2.14 0.0320
ARCH1 1 0.1337 0.0404 3.31 0.0009
GARCH1 1 0.7254 0.0918 7.91 <.0001

— the estimate of ¢ is —.2016 in SAS’s notation but +.2016 in our
notation. Thus, there is a positive association between returns
and lagged returns

e Since all p-values are small, all GARCH parameters are significant.

e The GARCHI1 estimate (0.7254) is larger than the ARCH1 (0.1337)
estimate; this implies that the conditional variance will exhibit rea-
sonably long persistence of volatility.
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Listing of SAS output

S&P 500 monthly data from Pindyck & Rubinfeld,

SSE
MSE
SBC

Regression

Dependent Variable

model with  AR(1)/GARCH(1,1)

17:04 Tuesday, April

The AUTOREGProcedure

RETURNSP

Ordinary Least Squares Estimates

Regress R-Square

Durbin-Watson

Order

O©CoO~NOULWNPE

PP e
N O

Variable

Intercept
DR3
GPW

0.46677572 DFE
0.00109 Root MSE
-1711.5219 AIC
0.0551 Total R-Square
1.5203

Q and LM Tests for ARCH Disturbances

Q Pr > Q LM
26.8804 <.0001 26.5159
27.1508 <.0001 27.1519
28.2188 <.0001 28.4391
28.6957 <.0001 28.4660
33.4112 <.0001 32.6168
34.0892 <.0001 32.6962
34.4187 <.0001 32.9617
34.6542 <.0001 32.9636
35.2228 <.0001 33.3330
35.3047 0.0001 33.4174
35.8274 0.0002 33.9440
36.0142 0.0003 33.9507

Standard

DF Estimate Error t Value
1 0.0120 0.001755 6.86
1 -0.8293 0.3061 -2.71
1 -0.8550 0.2349 -3.64
Estimates of Autocorrelations

Lag Covariance Correlation

0 0.00108 1.000000

1 0.000253 0.234934

Ex 10.5 1

10, 2001

430
0.03295
-1723.7341
0.0551

Pr > LM

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0001
0.0002
0.0004
0.0007

Approx
Pr > |t

<.0001
0.0070
0.0003
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S&P 500 monthly data from Pindyck & Rubinfeld, Ex 10.5 2
Regression  model with AR(1)/GARCH(1,1)
17:04 Tuesday, Aprii 10, 2001
The AUTOREGProcedure

Estimates of Autocorrelations

Lag -1 98765432101234567891
0 I |********************|
1 | |*****

Preliminary MSE 0.00102

Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
1 -0.234934 0.046929 -5.01

Algorithm  converged.

GARCHEstimates

SSE 0.44176656 Observations 433
MSE 0.00102 Uncond Var 0.00104656
Log Likelihood 889.071523 Total R-Square 0.1058
SBC -1735.6479 AIC -1764.143
Normality  Test 43.0751 Pr > ChiSq <.0001

Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 0.0125 0.001875 6.66 <.0001
DR3 1 -1.0665 0.3282 -3.25 0.0012
GPW 1 -0.7239 0.1992 -3.63 0.0003
AR1 1 -0.2016 0.0603 -3.34 0.0008
ARCHO 1 0.000147 0.0000688 2.14 0.0320
ARCH1 1 0.1337 0.0404 331 0.0009
GARCH1 1 0.7254 0.0918 7.91 <.0001

8.10 I-GARCH models

I-GARCH or integrated GARCH processes were designed to model data
that has persistent changes in volatility. A GARCH(p, ¢) process is station-
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ary with a finite variance if

q p
ZCMZ' + Zﬂz < 1.
=1 =1

A GARCH(p, q) process is called an I-GARCH process if

q p
i+ Bi=1
i=1 i=1
I-GARCH processes are either non-stationary or have an infinite variance.

Infinite variance implies heavy-tailed, though a distribution can be heavy-
tailed with a finite variance. To appreciate what an infinite variance pro-
cesses can look like, we will do some simulation. Figure 8.6 shows 40,000
observations of ARCH(1) processes with a; = .9, 1, and 1.8. The same
white noise process is used in each of the ARCH(1) processes. All three
ARCH(1) processes are stationary but only the one with o4 = .9 has a
finite variance. The second process is an I-GARCH process (actually, I-
ARCH since ¢ = 0). The third process has o; > 1 and so is more extreme
than an I-GARCH process. Notice how all three processes do revert to
their conditional mean of 0. The larger the value of a; the more the volatil-
ity comes in sharp bursts. The processes with a; = .9 and a; = 1 looks
similar; there is no sudden change in behavior when the variance becomes
infinite. The process with oy = .9 already has a heavy-tail despite having a
finite variance. Increasing c; from 0.9 to 1 does not increase the tail weight
dramatically.

Normal plots of the simulated data in Figure 8.6 are shown in Figure 8.7.
Clearly, the larger the value of o, the heavier the tails of the marginal
distribution.
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Figure 8.6: Simulated ARCH(1) processes with oy = .9, 1, and 1.8.
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Figure 8.7: Normal plots of ARCH(1) processes in Figure 8.6.



242 CHAPTER 8. GARCH MODELS: 4/24/01

None of the processes in Figure 8.6 show much persistence of higher volatil-
ity. To model persistence of higher volatility, one needs an I-GARCH(p, q)
process with ¢ > 1. Figure 8.8 shows simulations from I-GARCH(1,1) pro-
cesses. Since o + 3; = 1 for these processes, 31 = 1 —;, and the process is
completely specified by oy and «;. In this figure, o is fixed at 1 and o is
varied. Notice that the conditional variance is very bursty when a; = .95.
When «; = .05, the conditional standard deviation looks somewhat like a
random walk.

I-GARCH processes can be fit by SAS by adding the specification “type =
integrated” into the program, e.g., for the previous example with S&P> 500
returns:

proc autoreg
model returnsp  =/nlag = 1 garch=(p=1,g=1,type=integrated);
run ;

For this example, the -GARCH(1,1) model seems to fit worse than a GARCH
(1,1) model according to AIC; see Section 8.13.

8.10.1 What does it mean to have an infinite variance?

A random variable need not have a finite variance. Also, its expectation
need not exist at all. To appreciate these facts, let X be a random variable
with density fx. The expectation of X is

/_ T fx(z)dz
provided that this integral is defined. If
0
/ zfx(z)dr = —oc0 (8.8)

and

/Ooo zfx(z)dr = oo (8.9)
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Figure 8.8: Simulations of -GARCH(1,1) processes.
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then the expectation is, formally, —oo+ oo which is not defined. If integrals
on the left hand sides of (8.8) and (8.8) are both finite, then F(X) exists and
equals the sum of these two integrals.

Exercise

Suppose that fx(z) = 1/6 if |z| < 1 and fx(z) = 1/(62?) if
|z| > 1. Show that

/O; fx(z)dz =1

so that fx really is a density, but that

/0 zfx(z)dr = —o0

—00

and

/Ooo zfx(z)dr = oo

One consequence of the expectation not existing is this. Suppose we have a
sample of iid random variables with density fx. The law of large numbers
says that the sample mean will converge to E(X) as the sample size goes to
infinity. However, the law of large numbers holds only if £(X) is defined.
Otherwise, there is no point to which the sample mean can converge and
it will just wander without converging.

Figure 8.9 shows the sample mean of the first ¢ observations plotted against
t for the data in Figures 8.6 and 8.10. The sample mean appears to con-
verge to 0 when a; = .9 or 1, but when oy = 1.8 it is unclear what the
sample mean is doing. The sample mean decays towards 0 when the pro-
cess is not in a high volatility period, but can shoot up or down during a
burst of volatility.
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Figure 8.9: Sample means of simulated ARCH(1) processes with c; = .9, 1, and

1.8.
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Now suppose that the expectation of X exists and equals pux. Then the
variance of X equals

| (@ = ) fx(a)da

If this integral is 400, then the variance is infinite.

The law of large numbers also implies that the sample variance will con-
verge to the variance of X as the sample size increases. If the variance of
X is infinity, then the sample variance will converge to infinity.

Figure 8.10 shows the sample variance of the first ¢ observations plotted
against ¢ for the data in Figure 8.6.

In the top panel, the sample variance should be converging to 10 = (1 —
a1)~t. Maybe it is converging to 10, but it is hard to tell even with 40,000
observations. In the middle and bottom panels the variance is infinity
so the sample variance will converge to infinity. This convergence does
appear to be happening in the bottom panel, but it is hard to see in the
middle panel. Of course, in the middle panel the value of oy is on the
borderline between finite and infinite variance, and the infinite variance
may take a very long time to have its effect.

8.11 GARCH-M processes

We have seen that one can fit regression models with AR/GARCH errors.
In fact, we have done that with the S&P 500 data. In some examples, it
makes sense to use the conditional standard deviation as one of the regres-
sion variables. For example, when the dependent variable is a return we
might expect that higher conditional variability will cause higher returns.
This is because the market demands a higher risk premium for higher risk.

Models where the conditonal standard deviation is a regression variable
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Figure 8.10: Sample variances of simulated ARCH(1) processes with oy = .9, 1,
and 1.8.
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are called GARCH-in-mean, or GARCH-M, models. They have the form
Y, = X/~ +d0, + ay,
where a; is a GARCH process with conditional standard deviation o;.

GARCH-M models can be fit in SAS by adding the keyword “mean” to
the GARCH specification, e.g.,

proc autoreg
model returnsp  =/nlag
run

or for -=GARCH-M

1 garch=(p=1,9=1,mean);

proc autoreg
model returnsp  =/nlag
run ;

1 garch=(p=1,9=1,mean,type=integrated );

For the S&P 500 returns data, a GARCH(1,1)-M was fit in SAS. The esti-
mate of § was .5150 with a standard error of .3695. This gives a t-value of
1.39 and a p-value of .1633. Since the p-value is reasonably large we could
accept the null hypothesis that § = 0. Therefore, we see no strong evi-
dence that there are higher returns during times of higher volatility. The
volatility of the S&P 500 is market risk so this finding is a bit surprising. It
may be that the effect is small (4 is positive, after all) and cannot be de-
tected with certainty. The AIC criterion does select the GARCH-M model;
see Section 8.13.

8.12 E-GARCH

The exponential GARCH, or E-GARCH, model is

q P
log(oy) = ap + 20419(675—1) + Zﬂz’ log(oy—),

i=1 =1

where
g(er) = Oer + v{|&s] — E(les])}
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and ¢, = a;/o;. Since log(o;) can be negative, there are no constraints on
the parameters.

Notice that
g(e) = —vE(la]) + (v +0)|e| if e >0,
and
g(er) = —vE(le]) + (v — O)|e| if € <O,
It is a good calculus exercise to show that E(|e;|) = 4/2/m =.7979.

Typically, =1 < < 0 so that 0 < v+ 8 < v — . For example, § = —.7 in
the S&P 500 example; see below. The function g with § = —.7 is plotted in
the top left panel of Figure 8.11. Notice that g(e;) is negative if |¢| is close
to zero; small values of noise decrease o;. If |¢;| is large, then o, increases.
With a negative value of 6, o; increases more rapidly as a function of |¢|
when ¢; is negative than when ¢, is positive,

In finance, the “leverage effect” predicts that a asset’s price will become
more volatile when its price decreases. This is the type of behavior ob-
tained when # < 0. The ability to acommodate leverage effects was the
reason that the E-GARCH model was introduced by "Daniel Nelson.

The function g for several other values of § are also shown in Figure 8.11.
When 6 = 0 (top right) the function is symmetric about 0. The bottom
right panel where §# = —1 shows an extreme case where g(¢;) is negative
for all positive ¢

SAS fits the E-GARCH model with 7 fixed as 1 and 6 estimated. The E-
GARCH model is specified by using “type=exp” as in

proc autoreg

model returnsp  =/nlag = 1 garch=(p=1,g=1,mean,type=exp);

run

This command specifies both a GARCH-in-mean effect and the E-GARCH
model. Omitting “mean” removes the GARCH-in-mean effect.
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Figure 8.11: The g function for the S&P 500 data (top left panel) and several
other values of 6.

8.13 Back to the S&P 500 example

SAS can fit six different AR(1)/GARCH(1,1) models since SAS allows “type”
to be “integrated,” “exp,” or “nonneg.” The last is the default and specifies
a GARCH model with non-negativity constraints. Moreover, for each of
these three types we can specify that a GARCH-in-mean effect be included
or not. Table 8.1 contains the AIC statistics for the six models. The models
are ordered from best fitting to worse fitting according to AIC—remember
that a smaller AIC is better.

It seems that the E-GARCH-M model is best, though the E-GARCH model
fits nearly as well. The E-GARCH-M model will be used in the remaining
discussion. To see if more AR or GARCH parameters would improve the
fit, AR(2) and E-GARCH(1,2)-M, E-GARCH(2,1)-M, and E-GARCH(2,2)-M
models were tried, but none of these lowered AIC or had all parameters
significant at p = .1. Thus, AR(1)/E-GARCH(1,1) appears to be a good fit
to the noise and adding a GARCH-in-mean term to the regression model
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Model AIC | A AIC
E-GARCH-M | —1783.9 0
E-GARCH —1783.1 0.8
GARCH-M —1764.6 19.3
GARCH —1764.1 19.8
I-GARCH-M | —1758.0 25.9
I-GARCH —1756.4 27.5

Table 8.1: AIC statistics for six AR(1)/GARCH(1,1) models fit to the S&P
500 returns data. A AIC is the change in AIC between a given model and
E-GARCH-M.

seems reasonable although it does not improve the fit very much.

The fit to this model is in the SAS output listed below.



252 CHAPTER 8. GARCH MODELS: 4/24/01

Listing of SAS output for the EEGARCH-M model:

S&P 500 monthly data from Pindyck & Rubinfeld, Ex 10.5 2
Regression model with AR(1)/E-GARCH(1,1)-M
11:52 Sunday, April 15, 2001

The AUTOREGProcedure

Estimates of Autoregressive Parameters
Standard
Lag Coefficient Error t Value
1 -0.234934 0.046929 -5.01

Algorithm  converged.

Exponential GARCHEstimates

SSE 0.44211939 Observations 433
MSE 0.00102 Uncond Var .
Log Likelihood 900.962569 Total R-Square 0.1050
SBC -1747.2885 AlC -1783.9251
Normality  Test 24.9607 Pr > ChiSq <.0001
Standard Approx
Variable DF Estimate Error t Value Pr > |t
Intercept 1 -0.003791 0.0102 -0.37 0.7095
DR3 1 -1.2062 0.3044 -3.96 <.0001
GPW 1 -0.6456 0.2153 -3.00 0.0027
AR1 1 -0.2376 0.0592 -4.01 <.0001
EARCHO 1 -1.2400 0.4251 -2.92 0.0035
EARCH1 1 0.2520 0.0691 3.65 0.0003
EGARCH1 1 0.8220 0.0606 13.55 <.0001
THETA 1 -0.6940 0.2646 -2.62 0.0087
DELTA 1 0.5067 0.3511 1.44 0.1490
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8.14 The GARCH zoo

There are many more types of GARCH models than the few mentioned
so far. I've discussed only the most widely used models that can be fit in
SAS. The number of models seems limited only by the number of letters in
the alphabet, not the imagination of econometricians! Here’s a sample of
other GARCH models mentioned in Bollerslev, Engle, and Nelson (1994):

QARCH = quadratic ARCH

TARCH = threshold ARCH

STARCH = structural ARCH

SWARCH = switching ARCH

QTARCH = quantitative threshold ARCH

vector ARCH

diagonal ARCH

factor ARCH

8.15 Applications of GARCH in finance

GARCH models were developed by econometricians working with busi-
ness and finance data, and their applications to finance have been ex-
tenisve. The review paper by Bollerslev, Engle, and Nelson lists hundreds
of references.

Finance models such as the CAPM and the Black-Scholes model for option
pricing assume a constant conditional variance. When this assumption is
false, use of these models can lead to serious errors. Therefore, generaliza-
tion of finance models to include GARCH errors has been a hot topic. See
Bollerslev, Engle, and Woolridge (1988) and Duan (1996a, 1996b) for some
examples of finance models with conditional heteroscedasticity.
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Rossi (1996) is a collection of papers, many reprinted from finance jour-
nals, on modeling stock market volatility with GARCH models.

8.16 Summary

The marginal, or unconditional, distribution of a stationary process
is the distribution of an observation from the process given no infor-
mation about the previous or future observations

— by stationarity the marginal distribution must be constant

— in particular, the marginal mean and variance are constant

Besides the marginal distribution, we are interested in the condi-
tional distribution of the next observation given the current infor-
mation set of present and past values of the process, and perhaps of
other processes

For ARMA processes the conditional mean is non-constant but the
conditional variance is constant

The constant conditional variance of ARMA processes makes them
unsuitable for modeling the volatility of financial markets

GARCH process have non-constant conditional variance and were
developed to model volatility

GARCH processes can be used as the “noise” term of an ARMA pro-
cess

- ARMA /GARCH processes have both non-constant conditional
mean and a non-constant conditional variance

- GARCH and ARMA/GARCH processes can be estimated by
maximum likelihood.

— Proc Autoreg in SAS fits AR/GARCH models
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e The simple ARCH(¢) models have burst of volatility but cannot model
persistent volatility

e The generalized ARCH (GARCH) models can model persistent volatil-
ity
e The marginal distribution of a GARCH process has heavier tails than
the normal distribution.
— heavy tails = outlier prone

— in fact, for certain parameter values a GARCH process will have
an infinite variance, which is an extreme case of heavy tails

* [-GARCH (integrated GARCH) models are examples of

GARCH models with infinite variance

e If the marginal variance is infinite, then the sample variance will con-
verge to infinity as the sample size increase

e For extremely heavy tails, the marginal expectation may not exist

- then there exists no point to which the sample mean can con-
verge
* the sample mean will wander aimlessly

o ARMA/GARCH processes can be used as the noise term in regres-
sion models

— SAS’s Proc Autoreg can use an AR/GARCH noise term in a re-
gression model

e The GARCH-M models use the conditional standard deviation as an
independent variable in the regression

e The “leverage effect” occurs when a negative return (drop in price)
increases the volatility of future returns because the denominator of
those returns is smaller.

e E-GARCH models were designed to capture the leverage effect
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- in an E-GARCH model, the log of the conditional standard devi-
ation is modeled as an ARMA process but with the white noise
process ¢; replaced by another white noise process g(e;)

— there is no need for non-negativity constraints on the parame-
ters, such as those in an ordinary GARCH model, since the log
standard deviation can be negative

— the parameter # in an E-GARCH model determines the leverage
effects
* § < 0= leverage effects
* § = 0 = no leverage

* § > 0 = positive returns increase volatiltiy (this would be
the opposite of the leverage effect and is not expected to
happen in practice)

e In the S&P 500 example we found that

- returns are negatively associated with changes in interest rates
(an increase in interest rates decreases returns)

- returns are negatively associated with changes in wholesale prices

— returns are positively associated with returns lagged one month
(¢ = —.2376 is negative in the SAS output, but SAS’s definition
of ¢ is the negative of ours—our ¢ is +.2376)

— there are leverage effects since a E-GARCH model fits better
than a GARCH model and 6 = —.7

— thereis slight evidence of a GARCH-in-mean effect, that is, there
is some reason to believe that there is a risk premium

e There is a wide variety of other GARCH models in the literature,
but the ones discussed here, ARCH(q), GARCH(p, q), E-GARCH,
GARCH-M, and I-GARCH, are probably enough to know about since
they can model a wide variety of data types

— the models discussed in these notes are the ones that can be fit
by SAS
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e There is a large and growing literature on financial models with re-
turns following GARCH processes
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Fixed Income Securities: 4/30/01

9.1 Introduction

Corporations finance their operations by selling stock and bonds. Owning
a share of stock means partial ownership of the company. You share in
both the profits and losses of the company, so nothing is guaranteed.

Owning a bond is different. When you buy a bond you are loaning money
to the corporation. The corporation is obligated to pay back the principle
and to pay interest as stipulated by the bond. You receive a fixed stream
of income, unless the corporation defaults on the bond. For this reason,
bonds are called “fixed-income” securities.

It might appear that bonds are risk-free, almost stodgy. This is not the case.
Many bonds are long-term, e.g., 20 or 30 years. Even if the corporation
stays solvent or if you buy a US Treasury bond where default is virtually
impossible, your income from the bond is guaranteed only if you keep
the bond to maturity. If you sell the bond before maturity, your return
will depend on changes in the price of the bond due to changes in interest
rates.

The interest rate of your bond is fixed, but in the market interest rates
fluctuate. Therefore, the market value of your bond fluctuations too. For

259
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example, if you buy a bond paying 5% and the rate of interest increases
to 6% then your bond is inferior to new bonds offering 6%. Consequently,
the price of your bond will decrease. If you sell the bond you would lose
money. So much for a “fixed income” stream!

If you ever bought a CD, which really is a bond that you buy from a bank
or credit union, you will have noticed that the interest rate depends on the
maturity of the CD. This is a general phenomenon. For example, on March
28, 2001, the interest rate of Treasury bills' was 4.23% for 3-month bills.
The yields on Treasurys were 4.41%, 5.01%, and 5.46% for 2, 10, and 30
year maturities, respectively. The term structure of interest rates describes
how rates of interest change with the maturity of bonds.

In this chapter we will study how bond prices fluctuate due to interest rate
changes. We will also study how the term structure of interest rates can be
determined.

9.2 Zero coupon bonds

Zero-coupon bonds, also called pure discount bonds, pay no principle or
interest until maturity. A “zero” has a par value which is the payment
made to the bond holder at maturity. The zero sells for less than par, which
is the reason it is a “discount bond.”

For example, consider a 20-year zero with a par value of $1000 and 6%
interest compounded annually. The price is the present-value of $1000
with discounting annually at 6%. That is, the price is

$1000
(1.06) = $311.80.

ITreasury bills have maturities of one year or less, Treasury notes have maturities from
one to ten years, and Treasury bonds have maturities from 10 to 30 years.
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If the interest is 6% but compounded every six months, then the price is

$1000
(1.03)%

= $306.56,

and if the interest is 6% compounded continuously then the price is
p y P

$1000

exp{(.06)(20)} = $301.19.

9.2.1 Price and returns fluctuate with the interest rate

For concreteness, assume semi-annual compounding. Suppose you just
bought the zero for $306.56 and then six months later the interest rate in-
creased to 7%. The price would now be

$1000
(1.035)3

so your investment would drop by ($306.56 — $261.41) = $45.15. You will
still get your $1000 if you keep the bond for 20 years, but if you sell it now
you will lose $45.15. This is a return of

—45.15
= —14.73
306.56 %

for a half-year or —29.46% per year. And the interest rate only changed
from 6% to 7%!

= $261.41

If the interest rate dropped to 5% after six months, then your bond would

be worth
$1000

(1.025)39
This would be an annual rate of return of

(381.74 — 306.56
306.56

If the interest rate remained unchanged at 6%, then the price of the bond

= $381.74.

) = 49.05%.

would be

$1000
Ty — 3155,
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The annual rate of return would be
(315.75 — 306.56

306.56 ) = 6%.
Thus, if the interest rate does not change, you can earn a 6% annual rate of
return by selling the bond before maturity. If the interest rate does change,
however, the 6% annual rate of return is guaranteed only if you keep the
bond until maturity.

9.3 Coupon bonds

Coupon bonds make regular interest payments.? Coupon bonds generally
sell at par when issued. At maturity, one receives the principle and the
final interest payment.

As an example, consider a 20-year coupon bond with a par value of $1000
and 6% annual interest with semi-annual coupon payments. Each coupon
payment will be $30. Thus, the bond holder receives 40 payments of $30,
one every six months plus a principle payment of $1000 after 20 years.
One can check that the present value of all payments, with discounting at
the 6% annual rate (3% semi-annual), equals $1000:

i‘): 30 1000
£ (1.03)" ' (1.03)%
After six months if the interest rate is unchanged, then the bond (including

the first coupon payment which is now due) is worth

3930 1000 4030 1000
= (1.03 = 1030
2 oz + wozym — 109 (; 03y * (1.03)40> !

which is a 6% annual return as expected. If the interest rate increases to
7%, then after six months the bond (plus the interest due) is only worth

39 40
30 1000 30 1000
= (1.035
2 (To3sy T (Lo — (1059) (2 (1.035)!  (1.035)

= 1000.

) = 924.49.

2At one time actual coupons were attached to the bond, one coupon for each interest
payment. When a payment was due, its coupon could be clipped off and sent to the
issuing company for payment.
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This is an annual return of

(924.49 — 1000)

= —15.1%.
1000 %

If the interest rate drops to 5% after six months then the investment is
worth

39 40
30 1000 30 1000
— (1.025
2 o2yt (ozsym — (10%) (t; (1.025)F  (1.025)

) =1, 153.70,

9.1)
and the annual return is

9 (1153.6 — 1000

= 30.72%.
1000 ) 30.72%

Some general formulas

Let’s derive some useful formulas. If a bond with a par value of PAR ma-
tures in 7" years and makes semi-annual payments of C' and the discount
rate (rate of interest) is r per half-year, then the value of the bond when it
is issued is

I C PAR C . PAR
;(Hr)t " (1+r)2T:?{1_(1+7’) %m
= % + {PAR - g} (1+r)~* (9.2)

If C = PARxr, then the value of the bond when issued is PAR. The value
six months later is (1 + ) times the value in equation (9.2). The MAT-
LAB function “bondvalue.m” computes (9.2). The call to this function is
bondvalue(c,T,r,par)

For example, if the coupon is C' = 30, if " = 30, and if after six months r =
6.2% /half-year (or 3.1%/year), then the bond is worth

30 1000
1.031) | —{1 — (1.031) Y + ——— | =1003.1.
(1.031) .031{ (1.031) }+(1.031)60 003

This value was computed by MATLAB with the call
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1.031*bondvalue(30,30,.031,1 000) .
Similarly, (9.1) was computed with the MATLAB call

1.025*bondvalue(30,20,.025,1 000) .

Derivation of (9.2)

The summation formula for a finite geometric series is

T ; 1— 'I'T+1
Z;T =0 (9.3)
provided that r # 1. Therefore,
2T C C 27T—-1 1 ci1-(1 + 7 —2T
2 P = 2 e L Bt ECY
= (1+r) 1+r = (1+7) Q+r)d -1+
= Sa-aenmny 9.5)

9.4 Yield to maturity

Suppose a bond with 7" = 30 and C' = 40 is selling for $1200, $200 above
par. If the bond were selling at par, then the interest rate would be .04 /half-
year (= .08/year). The 4% /half-year rate is called the coupon rate.

But the bond is not selling at par. If you purchase the bond at $1200 you
will make less than 8% per year interest. There are two reasons when the
rate of interest is less than 8%. First, the coupon payments are $40 or
40/1200 = 3.333%/half-year of the $1200 investment; 3.333% is called the
current yield. Second, at maturity you only get back $1000 of the $1200
investment. The current yield overestimates the return since it does not
account for this loss of capital.

The yield to maturity is a measure of the average rate of return, including
the loss (or gain) of capital because the bond was purchased above (or
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below) par. For this bond, the yield to maturity is the value of r that solves

1200 = 40 + {1000 — @} (1+7)7%, (9.6)
T

r

The right hand side of (9.6) is (9.5) with C' = 40, T' = 30, and PAR = 1000. It
is easy to solve equation (9.6) numerically. The MATLAB program yield.m
does the following:

e computes the bond price for each r value on a grid

e graphs bond price versus r (this is not necessary but it’s fun to see
the graph)
e interpolates to find the value of » when bond value equals 1200

One finds that the yield to maturity is 0.0324. Figure 9.1 shows the graph
of bond price versus r and shows that » = .0324 maps to a bond price of
$1200.

The yield to maturity of .0324 is less than the current yield of 0.0333 which
is less than the coupon rate of 40/1000 = .04. (All three rates are rates per
half-year.) Thus, we see that

e coupon rate > current yield
- since the bond sells above par
e current yield > yield to maturity

— since yield to maturity accounts for the loss of capital when at
the maturity date you only get back $1000 of the $1200 invest-
ment

Whenever, as in this example, the bond is selling above par, we have

coupon rate > current yield > yield to maturity (9.7)

Everything is reversed if the bond is selling below par. For example, if the
price of the bond were only $900, then
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par=1000, coupon payment=40, T=30
1800 ‘ ‘ ‘ ‘ ‘

1600

14001

price of bond

1200

1000+

800 1 1 1 1 1
0.02 0.025 0.03 0.035 0.04 0.045 0.05
yield to maturity

Figure 9.1: Bond price versus the interest rate r and determining by interpolation
the yield to maturity when the price equals $1200.

e the yield to maturity would be 0.0448 (as before, this value can be
determined by “yield.m” using interpolation)

e the current yield would be 40/900 = 0.0444

e The coupon rate would still be 40/1000 = .04

Therefore we would have

coupon rate < current yield < yield to maturity, 9.8)

which is just the opposite of (9.7).

9.4.1 Spot rates

The yield to maturity of a zero coupon bond of maturity n years is called
the n-year spot rate.
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A coupon bond is a bundle of zero coupon bonds, one for each coupon
payment and a final one for the priniciple payment. The component zeros
have different maturity dates and therefore different spot rates. The yield
to maturity of the coupon bond is a complex “average” of the spot rates of
the zeros in this bundle.

9.5 Term structure

On January 26, 2001, the Ithaca Journal stated that 1-year T-bill rate was
4.83% and the 30-year Treasury bond rate was 6.11%. This is typical—
short and long term rates usually do differ. Such differences can be seen
in Figure 10.5 of Campbell et al. or Figure 15.7 of Bodie, Kane, and Marcus
(1999).

Often short term rates are lower than long-term rates. This makes sense
since long term bonds are riskier. Long term bond prices fluctuate more
with interest rate changes and these bonds are often sold before maturity.
In contrast, a 90-day or even 1-year T-bill is often keep to maturity and
so is really a risk-free “fixed income security.” However, during periods
of very high short-term rates, the short-term rates may be higher than the
long term rates. The reason is that the market believes that rates will return
to historic levels and no one will commit to the high interest rate for, say,
20 or 30 years.

The term structure of interest rates is a description of how, at a given time,
yield to maturity depends on maturity. Term structure for all maturities
up to n years can be described by any one of the following;:

e prices of zero coupon bonds of maturities 1-year, 2-years, . . ., n-years
denoted here by P(1), P(2),..., P(n)

e spot rates (yields of maturity of zero coupon bonds) of maturities
1-year, 2-years, ... , n-years denoted by y1,...,yn

e forwards ratesrq,...,7,
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As will be seen below, each of the sets

o {P(1),...,P(n)}

g {yla .. ’yn}/
and
o {ri,...,rn}

can be computed from either one of the other sets. For example, (9.10)
gives {P(1),...,P(n)} in terms of {ry,...,r,}. Also, equations (9.11) and
(9.12) give {91, ..., yn} in terms of { P(1),..., P(n)} or {ry,...,r,}, respec-
tively.

Term structure can be described by breaking down the time interval be-
tween the present time and the maturity time of a bond into short time
segments with a constant interest rate within each segment, but with in-
terest rates varying between segments. For example, a 3-year loan can be
considered as three consecutive 1-year loans.

Example:
As an illustration, suppose that the three 1-year loans have the forward
interest rates listed in Table 9.1.

Year (;) Interest rate (r;)

1 6%
2 7%
3 8%

Table 9.1: Forward interest rate example

Using the forward rates in Table 9.1, we see that a par $1000 1-year zero

would sell for
1000 B 1000

1+7r  1.06

= $943.40 = P(1).
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A par $1000 2-year zero would sell for

1000 1000
= = $881.68 = P(2).
(1+7)(1+7r)  (1.06)(1.07) 8881.68 = P(2)

A par $1000 3-year zero would sell for
1000 1000

)0 +r)(i+75) — (Lo6) (07 (Log) — 1037 =PB)

The general formula for the present value of $1 paid n periods from now

1s
1

(IT+r)A+re) - (1+7)
Here r; is the forward interest rate during the ¢th period. By “forward
rate” we mean the price for that period that is agreed upon now.

(9.9)

Letting P(n) be the price of an n-year zero par $1000 coupon bond, P(n)
is $1000 times the discount factor in (9.9), that is,
1000

POO:(1+TO~-U+WJ' (9.10)

Back to the example
Let’s look at the yields to maturity. For a 1-year zero, the yield to maturity

1 solves
1000

(1+y1)
which implies that y; = .06. Nothing surprising here, since r; = .06! For a
2-year zero, the yield to maturity is y, that solves

1000

1000
=/ —1 = .0650.
Y271/ 381.63

= 993.40,

Thus,
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It is easy to show that ¥, is also given by

ys = /(L + 1)1+ 1) — 1 = /(1.06)(1.07) — 1 = .0650

For a 3-year zero, the yield to maturity y; solves

1000 1000
(1+ys)® 881.68°

Also,
ys = {(L+ 7)1+ 7)1 +73)}"* — 1 = {(1.06)(1.07)(1.08)}"/* — 1 = .0700,

or, more precisely .069969. Thus, (1 + y3) is the geometric average of 1.06,
1.07, and 1.08 and approximately equal to their arithmetic average.

Recall that P(n) is the price of a par $1000 n-year zero coupon bond. The
general formulas for the yield to maturity y, of an n-year zero are

1000 /"
Yn = {W} -1, (9.11)
and
yn = {(L471) - (L+r) /"= 1. (9.12)

Equations (9.11) and (9.12) give the yields to maturity in terms of the bond
prices and forward rates, respectively. Also,

1000
(1 + yn)n,

which give P(n) in terms of the yield to maturity.

P(n) = (9.13)

As mentioned before, interest rates for future years are called forward
rates. A forward contract is an agreement to buy or sell an asset at some
fixed future date at a fixed price. Since 79,73, ... are rates at future dates
that are fixed now when a long-term bond is purchased, they are forward
rates.
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maturity price

lyear  $920
2year  $830
3year  $760

Table 9.2: Bond price example

The general formula for determining forward rates from yields to maturity
is

=y, (9.14)
and
1 n
S i 9.15)
(1 + yn—l)n

Now suppose that we only observed bond prices. Can we calculate yields

to maturity and forward rates? The answer is “yes, using (9.11) and then
(9.15).”

Example:
Suppose that 1, 2, and 3-year par 1000 zeros are priced as Table 9.2. Then
using (9.11), the yields to maturity are:

1000
1= 920 087,
= {1000}1/2 1 =.0976
Ya2 = 330 - - ;
1000 /3
v { 760 } 09,
Then, using (9.14) and (9.15)
™ =Y = 087,

.y — (1+y2)* _ (1.0976)* L — 108
(1+w) 1.0876 o
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and

(1+ys)? (1.096)3
rs = —7—5 1=

= 1=.093.
(14 12)? (1.0976)2

The formula for finding r,, from the prices of zero coupon bonds is

P(n—1)
which can derived from
1000
P =
S T P
and 1000
Pn—1)=

(1+7r)Q+7r) - (1+7rm1)

To calculate r; using (9.16), we need P(0), the price of a 0-year bond, but
P(0) is simply the par value. (Trivially, a bond which must be be paid back
immediately is worth exactly its par value.)

Example
Thus, using (9.16)
1000
= ———1=.0870
"= 990 )
920
= ——1=.1084
27 330 ’
and 830
= — —1=.0921.
"= 760

9.6 Continuous compounding

Now we will assume continuous compounding with forward rates 4, ..., 7.
We will see that the use of continous compounding rates simplifies the
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relationships between the forward rates, the yields to maturity, and the
prices of zero coupon bonds.

If P(n) is the price of a $1000 par n-year zero coupon bond, then
1000

Pn) = - 9.17
(’I’L) exp(’rl +ro -+ Tn) ( )
Therefore,
P(n—l) eXp(T1+"'+Tn)
- = n/ 1
P(n) exp(ry + - -+ 7Th_1) exp(ry) (9.18)
and

The yield to maturity of an n-year zero coupon bond solves the equation

1
Pl =—
exp(nyy)

and is easily seen to be
Yo = (114 +1m0)/n.
Therefore, {ry,...,r,} is easily found from {y,. .., y,} by the relationship
1T = Yn;

and
Tn =Y, — (n— 1)y, 1 for n>1.

Example

Using the prices in Table 9.2 (converted from par 1000 to par 1) we have
P(1) =.930, P(2) = .850, and P(3) = .760. Therefore,

1
r = log{%} = 0725,
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.930
=1 {—} =.0899,
2= 1981 850
and 950
=1 %} = 1110.
s =08 { .760} ?
Also,
Y1 ="r1 = 0725,
Yo = (7‘1 +7‘2)/2 = 0813,
and

Yz = (T1+7"2+7"3)/3: .0915.

9.6.1 Continuous forward rates

So far, we have assumed that forward interest rates vary from year to year,
but that these rates are constant within each year. This assumption is, of
course, unrealistic. The forward rates should be modeled as a function
varying continuously in time, rather than as functions that are constant
for one year at a time. It is unrealistic to assume a starting time and that
interest rates change each year after this starting time. In fact, bonds are
issued repeatedly and bonds of many maturities are on the market.

To specify the term structure in a realistic way, we will assume that there
is a function r(¢) called the forward rate function such that the price of a
zero coupon bond of maturity 7" and with par equal to 1 is given by

P(T) = exp {- | Tr(t)dt} . (9.19)

Formula (9.19) is a generalization of formula (9.17). To appreciate this,
suppose that
r(t)=r, for k—1<t<k.

With this piecewise constant 7,

T
/0 r(t)dr=r1+ro+...+rp,
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so that
T
exp {—/0 r(t)dt} =exp{—(r+---+rp)}
and therefore (9.17) agrees with (9.19).

The yield to maturity of a bond with maturity date 7" is

yr = % /O Tr(t) dt. (9.20)

Think of (9.20) as the average of r(t) over the interval 0 < ¢ < T..

Jarrow, Ruppert, and Yu (2001) estimate 7(¢) in (9.19) under the assump-
tion that r(¢) is a member of a flexible class of functions called splines.
Figure 9.2 shows estimated forward rate curves for US Treasury bonds.
Figure 9.3 shows estimated forward rate curves AT&T bonds. These two
figures come from Jarrow, Ruppert, and Yu (2001).

0.075 T

0.07 T

0.065 -

0.06 -

— GCV, R&C

/ — - RSA, R&C

; — - GCV,QI2 7

, — . large A\R&C

) ; — - large A,QI2
4 —— Schwartz

0055 1 / R

forward rate

0.055

0.045 / bl

0.04 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

time to maturity

Figure 9.2: Spline estimates of forward rates of US Treaury bonds.
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Forward rates

0.055
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0.045 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time to maturity

Figure 9.3: Spline estimates of forward rates of AT&T bonds

9.7 Summary

9.7.1 Introduction

e buy a bond = making a loan to the company
— corporation is obligated to pay back the principle and interest
(unless it defaults)
— you receive a fixed stream of income
— bonds are called “fixed-income” securities

- for long term bond your income is guaranteed only if you keep
the bond to maturity
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9.7.2 Zero coupon bonds
e Zero-coupon bonds pay no principle or interest until maturity
e zero-coupon bond = pure discount bond

e par value is the payment made to the bond holder at maturity

a zero sells for less than par

Example: 20-year zero

— par value of $1000
— interest 6% compounded every six months = price is
$1000
= $306.56
(1.03)4 § ’

9.7.3 Risk due to interest rate changes
e bond prices fluctuate with the interest rate

- Example: assume semi-annual compounding
- you just bought the zero for $306.56
* six months later the interest rate increased to 7%

— price would now be

$1000
—— = $261.41
(1.035)% §26
- investment would drop by ($306.56 — $261.41) = $45.15
— return of 45,15
=14,
306.56 8%

for a half-year or —29.46% per year

- however, if the interest rate remains unchanged then the bond

is worth

$1000
o3 = (1.03)($306.56)

* 3% /half-year return
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9.74 Coupon bonds
e coupon bonds make regular interest payments

e consider a 20-year coupon bond with a par value of $1000 and 6%
annual interest with semi-annual coupon payments
— coupon payment will be $30
— bond holder receives 40 payments of $30
* plus a principle payment of $1000 after 20 years
— present value of all payments, with discounting at the 6% an-

nual rate (3% semi-annual), equals $1000:

40

1
}j 000 _ 900,
] 103 T 03)o

e General formula:

— Notation

* PAR = par value
* (' = coupon payment
* 1" = maturity

* 1 = interest rate per half-year

- bond price =
I C© PAR
2 (1+r)t  (1+7)T
t=1
- g +{PAR - g} (1+7)2"

¢ Yield to maturity
e Example: a bond with 7' = 30 and C = 40 is selling for $1200,
e bond selling at par = interest rate = .04 /half-year (= .08/year).

- 4%/half-year rate = coupon rate.



9.7. SUMMARY 279

e but not selling at par = if you purchase the bond at $1200 you will
make less than 8% per year

e two problems
— coupon payments are $40 or 40/1200 = 3.333% /half-year of the
$1200 investment
% 3.333% is called the current yield
— at maturity you only get back $1000 of the $1200 investment

— yield to maturity = the average rate of return
e Spot rates
— The yield to maturity of a zero coupon bond of maturity n years

is called the n year spot rate.

- A coupon bond is a bundle of zeros, each with a different matu-
rity and therefore a different spot rate

* the yield to maturity of a coupon bond is a complex “aver-
age” of these different spot rates

9.7.5 Term structure of interest rates

e term structure is description of how, at a given time, yield to maturity
depends on maturity

e term structure for all maturities up to n years can be described by
any one of the following sets:

— prices of zero coupon bonds of maturities 1-year, 2-years, ...,
n-years denoted here by P(1), P(2),..., P(n)

— spot rates (yields of maturity of zero coupon bonds) of maturi-
ties 1-year, 2-years, ... , n-years denoted by y1,...,y,

— forwards ratesry,..., 7,

e each of the above sets can be computed from either of the other sets.
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9.7.6 Continuous compounding
e continous compounding simplifies the relationships between

— forward rates
- yields to maturity of zeros (spot rates)

- prices of zeros

e prices from forward rates:

P(1) = 1000 ’
exp(ry)
1
P@)= L
exp(r1) exp(rz)
etc., so that
1000

P(n)

Cexp(ridre 41y
o forward rates from prices:

Pin—1)  exp(ri+---+7n) — exol(r
P(n)  exp(ri+---+rn1) p(rn)

e yield to maturity y, solves

P( ) 1000
n)=——
exp(ny,)’

Yo = (T1 4+ 1) /n.
o {ry,...,r,}is easily found from {y, ..., y,} by:
T =Y,

and
Tn =nYp — (n—1)yp—1 for n>1.
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Chapter 10

Behavioral finance: 5/1/01

10.1 Introduction

e behavioral finance is an alternative to the EMH

this material taken mostly from the 2000 book by Andrei Shleifer of
Harvard:

— Inefficient Markets: An Introduction To Behavioral Finance

EMH has been the central tenet of finance for almost 30 years

power of the EMH assumption is remarkable

EMH started in the 1960’s

immediate success in theory and empirically

early empircal work gave overwhelming support to EMH

EMH invented at Chicago and Chicago became a world center
of research in finance

Jensen (1978) “no other proposition in economics ... has more
solid empirical support”

e verdict is changing

283
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- efficiency of arbitrage is much weaker than expected
— true arbitrage possibilities are rare
- near arbitrage is riskier than expected

— “Markets can remain irrational longer than you can remain sol-
vent” — John Maynard Keyes

* quoted by Roger Lowenstein in When Genius Failed: The
Rise and Fall of Long-Term Capital Management

10.2 Defense of EMH

e three lines of defense of the EMH:

— investors are rational

- trading of irrational investors is random and their trades cancel
each other

— even if a “herd” of irrational investors trade in similar ways,
rational arbitrageurs will eliminate their influence on market
price

e each of these defenses is weaker that had been thought
e rational investing = “value a security by its fundamental value”

— “fundamental value” = net present worth of all future cash flows
e rational investing = prices are (geometric) random walks

e but prices being random walks (or nearly so) does not imply rational
investing

e there is good evidence that irrational trading is correlated
— look at the internet stock bubble

e initial tests of the semi-strong form of efficiency supported that the-
ory
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- event studies showed that the market did react immediately to
news and then stopping reactin

* so reaction to news, as EMH predictos

* also no reaction to stale news, again as EMH predicts
— Scholes (1972) found little reaction to “non news”

* block sales had little effect on prices

10.3 Challenges to the EMH

e it is difficult to maintain that all investors are rational.

- many investors react to irrelevant information

- Black calls them noise traders
e investors act irrationally when they

- fail to diversify
- purchase actively and expensively managed mutual funds

— churn their portfolios

e investors do not look at final levels of wealth when assessing risky
situations (“prospect theory”)

e there is a serious “loss aversion”

e people do not follow Bayes rule for evaluating new information
— too much attention is paid to recent history

e overreaction is commonplace

e these deviations from fully rational behavior are not random

e moreover, noise traders will follow each others mistakes

e thus, noise trading will be correlated across investors
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managers of funds are themselves human and will make these errors
too

managers also have their own types of errors

- buying portfolios excessively close to a benchmark

— buying the same stocks as other fund managers (so as not to
look bad)

— window dressing — adding stocks to the portfolio that have
been performing well recently

- on average, pension and mutual fund managers underperform
passive investment strategies

* these managers might be noise traders too

10.4 Can arbitrageurs save the day?

the last defense of the EMH depends on arbitrage

even if investor sentiment is correlated and noise traders create in-
correctly priced assets

— arbitrageurs are expected to take the other side of these traders
and drive prices back to fundamental values

a fundamental assumption of behavioral finance is that real-world
arbitrage is risky and limited

arbitrage depends on the existence of “close substitutes” for assets
whose prices have been driven to incorrect levels by noise traders

many securities do not have true substitutes
often there are no risk-less hedges for arbitrageurs
mispricing can get even worse, as the managers of LTCM learned

— this is called noise trader risk
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10.5 What do the data say?

e Schiller (1981), “Do stock prices move too much to be justified by
subsequent changes in dividends”:
- market prices are too volatile

- more volatile than explained by a model where prices are ex-
pected net present values

— this work has been criticized by Merton who said that Schiller
did not correctly specify fundamental value

e De Bondt and Thaler (1985), “Does the stock market overreact?”:

- frequently cited and reprinted paper
— work done at Cornell

— compare extreme winners and losers
- find strong evidence of overreaction

— for every year starting at 1933 they formed portfolios of the best
performing stocks over the previous three years

* “winner portfolios”
— they also formed portfolios of the worse performing stocks
* “loser portfolios”

- then examined returns on these portfolios over the next five
years

* losers consistently outperformed winners

— difference is difficult to explain as due to differences in risk, at
least according to standard models such as CAPM

— De Bondt and Thaler claim that investors overreact

* extreme losers are too cheap

* so they bounce back

- the opposite is true of extreme winners
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historically, small stocks have earned higher returns than large stocks

- no evidence that the difference is due to higher risk

— superior returns of small stocks have been concentrated in Jan-
uary

- small firm effect and January effect seem to have disappeared
over the last 15 years

market to book value is a measure of “cheapness”

— high market to book value firms are “growth” stock

* they tend to underperform

* also they tend to be riskier, especially in severe down mar-
kets

October 19, 1987 — Dow Jones index dropped 22.6%
- there was no apparent news that day

Cutler et al (1991): looked at 50 largest one-day market changes
- many came on days with no major news announcements

Roll (1988) tried to predict the share of return variation that could be
explained by

— economic influences
- returns on other stocks in the same industry
- public firm-specific news
Roll’s findings:
- R? = .35 for monthly data
- R? = 2 for daily data

Roll’s study also shows that there are no “close substitutes” for stocks
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- this lack of close substitutes limits arbitrage
e stocks rise if the company is put on the S&P 500 index

— this is reaction to “non news”

— America Online rose 18% when included on the S&P
e In summary, there is now considerable evidence against the EMH

— This evidence was not found during early testing of the EMH

— Researchers needed to know what to look for
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