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Preface!

Limit theorems for stochastic processes are an important part of probability theory and
mathematical statistics.

One model that has attracted the attention of many researchers in this area is that
of limit theorems for randomly stopped stochastic processes and for compositions of
stochastic processes.

This model can appear in a natural way: for example, when studying limit theorems
for additive or extremal functionals of stochastic processes; in models connected with a
random change of time, change point problems and problems related to optimal stopping
of stochastic processes; and in different renewal models, particularly those which appear
in applications for risk processes, queuing systems, etc.

The model also appears in statistical applications connected with studies of samples
with a random sample size. Such sample models play an important role in sequential
analysis. They also appear in sample survey models, or in statistical models where
sample variables are associated with stochastic flows. The latter models are typical for
insurance, queueing and reliability applications, as well as many others.

A large number of works in the area is devoted to studies of limit theorems for ran-
domly stopped stochastic processes and compositions of stochastic processes under as-
sumptions, which imply independence or asymptotical independence of external pro-
cesses and internal stopping moments. In general limit theorems, the assumption of
asymptotical independence is replaced by the condition of joint weak convergence of
external processes and internal stopping moments. These theorems are oriented to be
applied to models with dependent external processes and internal stopping moments.

The first book on this subject was published by the author in 1974. Since that time
many new results and applications have been developed by the author and other re-
searchers. At the moment there is no book that would provide a ’state of the art’ reflec-
tion of general limit theorems for randomly stopped stochastic processes. These realities
have stimulated me to begin work on a new book on this subject that should fill the gap
in the existing literature.

The aim of this book is to present general limit theorems about weak convergence of
randomly stopped stochastic processes and compositions of stochastic processes as well

!This is an extended book version of the work: Silvestrov, D. S. Limit Theorems for Randomly Stopped
Stochastic Processes. Research Reports 2002 - 1-4. Department of Mathematics and Physics, Mélardalen
University.
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as functional limit theorems about convergence of compositions of cadlag stochastic
processes in topologies U and J.

This book contains four chapters. Chapter 1 is a survey of basic results related to
weak convergence of random variables and stochastic processes, including basic facts
concerning the convergence of cadlag processes in topologies J and U. In Chapter 2,
general conditions of weak convergence of randomly stopped stochastic processes and
compositions of cadlag processes are presented. In Chapter 3, functional limit theorems
about convergence of compositions of cadlag processes in topologies J and U are given.
Chapter 4 presents a summary of applications to random sums, extremes with random
sample size, generalised exceeding processes, sum-processes with renewal stopping, ac-
cumulation processes, max-processes with renewal stopping, and shock processes.

Many results included in the book are published for the first time. In particular, these
include limit theorems for randomly stopped processes and compositions of stochastic
processes based on new weaken continuity conditions as well as their applications to
generalised exceeding processes. Other new results are indicated in the reference re-
marks at the end of each chapter.

The bibliography, which contains more than 750 references, is also supplemented
with short bibliographic remarks.

The presentation of material in the chapters is organised in a way that I hope will
be appreciated by readers. Each chapter has a preamble in which the main results are
outlined and the chapter content (by sections) is presented. The first section of each
chapter contains introductory remarks. Here models, basic conditions and results are
introduced in an informal way. In addition, examples and counter-examples, illustrated
by figures if possible, are given along with comments. Each section is broken up into
titled subsections. Subsections containing formulations and proofs of main theorems are
given first. These are followed by subsections that present various modifications to the
main theorems and their conditions. The reference remarks, at the end of each chapter,
highlight the origins of main results as well as indicate new results.

I would like also to comment on the notation system used in the book. Throughout
the text I make use of several basic classes of conditions. Conditions that belong to a spe-
cific class are denoted by the same letter. For example, the letter A is used for all weak
convergence conditions, the letter B for continuity conditions, and so forth. Conditions
belonging to a specific class have subscripts numbering conditions in the class. A list of
all conditions is given in a special index. Local conditions used in theorems, lemmas,
definitions or remarks are indicated by small Greek letters in brackets as (), (), etc.
Local conditions in the text can be indicated as (a), (b), etc. This indication always acts
within the limits of a subsection where these conditions are introduced. Subsections,
theorems, lemmas, definitions and remarks have a triple numeration. For example, The-
orem 1.2.3 means Theorem 3 of Section 1.2. Formulas also have a triple numeration.
For example, label (1.2.3) refers to formula 3 in Section 1.2.

I hope that the publication of this new book and the comprehensive bibliography
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of works related to limit theorems for randomly stopped stochastic processes will be a
useful contribution to the continuing intensive studies in this area. In addition to research
and reference purposes, the book can be used in special courses on the subject and as
a complementary reading in general courses on stochastic processes. In this respect,
the book may be useful for specialists as well as doctoral and advanced undergraduate
students.

I would like to thank Dr Evelina Silvestrova for her continuous encouragement and
support of various aspects of my work on this book.

I am also indebted to Professor Victor Korolev, who placed additional references
at my disposal, Dr Yury Chapovsky for thorough language editing of the text, and Dr
Anatoliy Malyarenko, who helped me to improve the formatting of the book and to
design the graphics.

I would also like to thank all the colleagues at the Department of Mathematics and
Physics for creating inspiring research enviroment and friendly atmosphere, which stim-
ulated my work.

Visteras, October 2002 — March 2003
Dmitrii Silvestrov
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Chapter 1

Weak convergence of stochastic processes

In this chapter we present a survey of results concerning weak convergence of random
variables in metric spaces and functional limit theorems for cadlag processes. These
results form a basis for the study of limit theorems for randomly stopped stochastic
processes and compositions of stochastic processes.

As usual, we first present general results concerning weak convergence of random
variables in the space R,, and in a Polish space. Then we give basic results concern-
ing functional limit theorems for cadlag processes. As is known, the space D of cadlag
functions can be equipped with a metric in such a way that convergence in this metric is
equivalent to convergence in the topology J. Correspondingly, cadlag processes can be
considered as random variables taking values in D, and their convergence in the topology
J can be regarded as weak convergence of these random variables. We also describe an
alternative approach to functional theorems for cadlag processes, which is based on the
Skorokhod representation theorem. According to this theorem, if random variables that
take values in a Polish space weakly converge, then one can construct new random vari-
ables with the same distributions that converge with probability 1. Using this theorem
one can often reduce the corresponding functional limit theorems to simpler analogues
of these theorems for non-random cadlag functions.

Section 1.1 contains examples and introductory comments. In Sections 1.2 and 1.3,
general results concerning weak convergence of random variables that take values in
the space R,, and in a Polish space are formulated. Section 1.4 gives general facts
concerning the space D of cadlag functions. Section 1.5 describes the main classes
of J-continuous functionals. In Section 1.6, the main limit theorems concerning J-
convergence of cadlag stochastic processes are formulated. The last subsection also
contains bibliographical remarks.

It is necessary to note that Chapter 1 contains only a survey of the corresponding
results. The proofs are omitted in most cases. 1 refer to the well known books by
Billingsley (1968, 1999), Gikhman and Skorokhod (1965, 1971), Pollard (1984), Ethier
and Kurtz (1986), and Jacod and Shiryaev (1987), which give a full presentation of the
theory. These books also contain bibliographies on works in the area.

1



2 Chapter 1. Weak convergence of stochastic processes

1.1 Introductory remarks

In this section, some examples that clarify the concept of weak convergence for random
variables are considered. The concept of weak convergence is introduced for the simplest
case of real-valued random variables. Possible ways to generalise this concept to the case
of general metric spaces, in particular, to the spaces C of continuous functions, and D of
cadlag functions are also discussed.

1.1.1. Weak convergence of random variables. Let E., & > 0 be a family of real-
valued random variables depending on a parameter € > 0. We denote by F.(x) = P{E; <
x}, x € Ry, the distribution function of a random variable &,.

The concept of weak convergence plays a central role in probability theory and its
applications. It is enough to recall that the fundamental limit theorems such as the weak
law of large numbers and the central limit theorem are, actually, statements about weak
convergence of random variables.

We say that random variables E, weakly converge to a random variable §; as € — 0
if Fe(x) = Fo(x) as € — 0O for all points x which are points of continuity for the limiting
distribution function. This is denoted by & = &j as € — 0.

Weak convergence of random variables is, actually, a convergence of their distribu-
tion functions. That is why we can also talk about weak convergence of distribution
functions F¢(-), instead of random variables &, and to use the notation F(-) = Fy(-) as
e— 0.

To distinguish the weak convergence of random variables from the weak convergence
of their distributions, the term convergence in distribution could be used instead of the
term weak convergence, when one talks about weak convergence of random variables.

In such a case, the notation &, R o as € — 0 would be more appropriate. However, we
prefer to use the term weak convergence and the symbol = in both cases. Usually, it is
obvious what objects (random variables or distribution functions) are considered in the
corresponding relation of weak convergence.

It is also useful to note that random variables can be indexed in different ways. For
example, a sequence of random variables §, that depends on the indexn = 1,2, ...can be
an object of consideration. The notation of weak convergence is modified in an obvious
way: &, = §yasn — oo.

The definition of weak convergence gives rise to the following question. Why is the
pointwise convergence of distribution functions required only in points of continuity of
the corresponding limiting distribution function?

The following standard example explains why should points of discontinuity be ex-
cluded from the set of pointwise convergence. Let us consider a sequence of numbers
a,, n = 1,2,..., such that a, — ag as n — oo, where qy is a finite real constant. The
constant a, can be considered as a random variable. It is natural to expect that weak
convergence a, = a, as n — oo would be equivalent to the usual convergence a, — ay
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as n — oo. The distribution function of a,, considered as a random variable, is the indi-
cator function F,(x) = Y4,.«)(x). It is easy to check that a, — ay as n — oo if and only
if F,(x) > Fy(x) asn — oo for all x # ay, i.e., F,(xX) > 0asn — oo for x < ay and
F,(x) > 1 asn — oo for x > ay. Note that convergence of F,(x) to Fy(x) in the point
ay, which is the only point of discontinuity of the limiting distribution function F(x), is
not required to provide convergence of a, to ay. If also, for example, a, is a decreasing
sequence, then F,(ap) = O foralln = 1,2,..., but Fo(ap) = 1. Therefore, convergence
of a, to ay does not imply convergence of F,(ap) to Fo(ap).

It should also be noted that weak convergence of random variables is equivalent to
the usual pointwise convergence of their distribution functions in all points x € Ry, if
the limiting distribution function is continuous.

The definition of weak convergence given above can easily be extended from ran-
dom variables to random vectors, i.e., random variables that take values in the space
R,,. In this case, one-dimensional distribution functions should be replaced by the cor-
responding multi-dimensional distribution functions. One can use the definition of week
convergence as pointwise convergence in points of continuity of the corresponding lim-
iting multi-dimensional distribution function.

However, if the random variables take values in a metric space, the definition of
weak convergence should be modified. It can happen that direct analogues of the dis-
tribution functions do not exist. In this case, the definition can be given with the use of
convergence of values of the probability measures generated by the random variables.
Convergence should be required for values of these measures on sets of continuity for
the corresponding limiting measure.

1.1.2. Extension of convergence to Borel sets. As well known, any distribution
function F¢(x) = P{E. < x} uniquely determines a measure F.(A) on the o-algebra B,
of Borel subsets of R;. By the definition, F.(A) = P{E. € A}. In particular, F¢(x) =
Fe((—00, x]).

The following natural question arises. Does the weak convergence F¢(-) = Fy(-) as
¢ — 0 implies convergence of F.(A) to Fy(A) ase — O forall A € B,?

In some special cases, the answer is affirmative. For example, let§,, n = 0,1,2,...
be a sequence of discrete random variables which take values k with probabilities p,(k)
for k = 0,1,.... Itis easy to show that the random variables §, = Ej; as n — oo if
and only if p,(k) — po(k) as n — oo for every k = 0, 1,.... In this case, we also have
P{E, € A} — P{§j € A} as n — oo for any Borel set A.

In the general case, the answer is negative. Let us consider the following example.
Letn,, n = 1,2,..., be a sequence of random variables which have geometrical dis-
tributions with parameters p, = 1/n. So, the random variable 1), takes a value k with
probability p,(1 — p,)*"! for k = 1,2,.... It is easy to show that the random variables
E, = pMn = Ep as n — oo, where & is a random variable that has exponential dis-
tribution with parameter 1. Let us define the set Ay = {k/n: k,n = 1,2,...}. The set
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Ay is a countable Borel set. Obviously, P{§, € Ay} = 1 for every n = 1,2,.... But
P{Ey € Ay} = 0, since the limiting exponential distribution is continuous. That is why
the probabilities P{E, € A} do not converge to P{§, € Ay} as n — oo.

Let us denote by 0A the boundary of a Borel set A, i.e., the set of all points x such that
any interval (x — 8, x + 8) contains points which belong to both sets A and A. Obviously,
the class of all Borel sets A with Fy(0A) = 0 (the sets of continuity for the measure
Fy(A)) is a o-algebra.

It can be shown that weak convergence F¢(-) = Fy(-) as € — 0 implies that F.(A) —
Fy(A) as ¢ — 0 for all sets of continuity of the measure Fy(A). Obviously, d(—oo, x] =
{x}. An interval (—oo, x] is a set of continuity for the measure F((A) if and only if x is a
continuity point for the distribution function F(x).

That is why F.(A) — F((A) as € — 0 for all sets of continuity of the measure F(A)
if and only if F.(-) = Fy(-) ase — 0.

This is one of the key general statements concerning weak convergence. It can be
used to define weak convergence of random variables that take values in a metric space.

1.1.3. Subsequence approach to weak convergence. Let F.(x),e > 0 be a family
of distribution functions depending on parameter € > 0.

It follows from the definition of weak convergence that, in order to prove that distri-
bution functions F.(x) weakly converge as ¢ — 0, one can use the following subsequence
approach.

First, an arbitrary subsequence ¢, — 0 as n — oo should be selected. Second,
it should be shown that a subsequence &, = ¢, can be selected from the first subse-
quence such that F' 82(-) = F(-), where F(x) is a distribution function. Third, it should
be shown that the distribution function F(x) = Fy(x) does not depend on the choice of
subsequences ¢, and g;. Then F¢(-) = Fy(-) as ¢ — 0.

Let R be a subset of R;. A set § C R is dense in R, if inf,cs [x — y| = O for every
X ER.

Let us choose a set S dense in R;. Note that S can be a countable subset of R;. Due to
continuity from the right, any distribution function F(x) is completely determined by its
values in points of the set S. In this sense, S can be referred to as a defining set. Let now
€, > 0 be an arbitrary sequence such that ¢, — 0 as n — co. Using Cantor’s diagonal
method it is always possible to find a subsequence ¢, = ¢, such that F 8;{(x) — F(x)
as k — oo for all x € §, where the limits F(x) € [0,1]. The function F(x), defined
on the set S, is non-decreasing. Using this fact one can always define this function at
every point x € Ry \ § as the right limit of the values F(x;) for some sequence of points
X €S, x¢ > x, x; = x. The function F(x), defined on R, in this way, is non-decreasing,
continuous from the right, and F(x) € [0, 1] for every x € R;. So, it is a distribution
function. However, it can be an improper distribution function, i.e., it can be such that
F(4+00)—F(—00) < 1, where F(£00) = lim,_,.. F(x). For example, let F.(x) = 4, .00)(X),
where a, — ay = o0 as € — 0. In this case, F¢(x) — Fyo(x) =0ase — 0.
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In order to prove that F(x) is a proper distribution function (for any subsequences
g, and €, chosen as is described above), one should require that the initial family of
distribution functions F¢(x), € > 0 be stochastically bounded as € — O:

jcl: limx—mo m{;—)O(Fb(_x) +1- Ft(x)) =0.

Condition X, implies that, for any subsequence ¢, — 0 as n — oo, a subsequence
g, = &, can be selected from the first subsequence in such a way that the distribution
functions F’ 8;{(-) = F(-) as k — oo, where F(x) is a proper distribution function.

Now, let us also require convergence of distribution functions F(x) in points of the
defining set S:

Ay: Fe(x) = Fo(x)ase > Oforx e S.

Note that limits in A, are some numbers from the interval [0, 1]. The function F(x),
defined in A,, is automatically non-decreasing. But it is not required that the corre-
sponding limits of Fy(x), as x tends to —oo or +o0, be equal to 0 and 1, respectively. The
function Fy(x) can be continued to the whole real line, as it was described above, by
using right limits. It is a proper or improper distribution function.

Condition A, implies, obviously, that F(x) = Fy(x), x € S. Since S is a defining set,
F(x) = Fo(x), x € Ry. So, the distribution function F(x) does not depend on the choice
of the subsequences ¢, and &;.

Summarising the remarks made above one can conclude that, in order to prove weak
convergence of distribution functions F(-) as € — 0 it is sufficient to assume that both
conditions X, and A, hold.

Moreover, it can be easily shown that conditions K, and A, are not only sufficient
but also necessary for weak convergence.

All the remarks made above can be repeated in the case where random variables take
values in R,,,.

Moreover, the method of proof of weak convergence described above can be gener-
alised and effectively used when dealing with weak convergence in metric spaces. The
corresponding theory was developed by Prokhorov (1956).

1.1.4. Skorokhod representation theorem. Let us consider a family of random
variables E;,& > 0 depending on a parameter ¢ > 0. Let us assume that the random
variables &, are defined on the same probability space (Q, ¥, P) for all € > 0 and &,
converge a.s. (almost sure) to E; as ¢ — 0, i.e.,, P{w: lime_oE(w) = Ey(w)} = 1. It
can easily be shown that, in this case, the random variables &, weakly converge to & as
e— 0.

The inverse implication does not need to hold. For example, let §, = &) if n =
1,3,..,and §, = 1 =&y if n = 2,4,..., where & is a random variable uniformly dis-
tributed on [0, 1]. In this case, the random variables §, converge to &, weakly but not
a.s., as n — oo.
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Note also that weak convergence of random variables is actually a convergence of
their distribution functions. For this reason, random variables &, can be defined on dif-
ferent probability spaces for different €. This is a typical situation, when one considers
the so-called triangular array models. In such cases, the random variables can converge
weakly but not almost sure.

However, if & = §j as ¢ — 0, then it is possible to construct a probability space
(Q, &, P) and random variables és, € > 0, defined on this space, such that (a) for every
€ > 0 the random variables ét and &, have the same distribution, and (b) the random
variables &, a.s. converge to £ as & — 0.

Let, for example, a random variable &, have an exponential distribution with param-
eter A > 0, i.e., P{E; < x} = Fo(x) = 1 — exp{—A¢x} for x > 0. Let also A, = Ao > 0 as
e — 0. In this case, it is obvious that &, = &; as ¢ — 0. Let us consider the function
F.'(y) = (=1/\)log(1 — y), which is the inverse of the exponential distribution func-
tion F¢(x) introduced above. Let also p be a random variable uniformly distributed on
[0,1]. Let us now consider the random variables E& = —(1/h)log(1 — p). It is easy
to check that the random variable £, has the exponential distribution with parameter
A > 0. So, for every € > 0, the random variables &, and és have the same distribu-
tion. Also, the random variables és a.s. converge to éo as € — 0. This is so, because
(—=1/A) log(1—y) — (=1/Ag) log(1—y) ase — O foreveryy € [0, 1) and P{p € [0, 1)} = 1.

In the case of real-valued random variables, the above construction can be realised
in a similar way. Let F.(x) be a distribution function of a random variable &, and
F; '(y) = inf(x: Fe(x) > y) for y € [0,1]. Let also p be a random variable uniformly
distributed on [0, 1]. For example, we can use the probability space with the space of
outcomes [0, 1], the Borel o-algebra of random events, and the Lebesgue measure as
the corresponding probability measure. Then we can define p(w) = . As is known,
the random variable és = F; !(p) has the distribution function F,(x). It is not difficult
to show that the pointwise convergence of F.(x) to Fo(x) as € — 0 (in all points of
continuity of the limiting distribution function Fy(x)) implies that their inverses, F;'(y),
pointwise converge to F;'(y) as ¢ — 0 (in all points of continuity of the limiting function
Fy '(y)). Since this function is monotone, it has at most a countable set of discontinuity
points. So, the set C, of continuity points of this function has Lebesgue measure 1, i.e.,
P{p € C}} = 1. Obviously, {p € C}} C {lim., & = E}. Hence, P{lim,_, & = &) = 1.

The Skorokhod representation theorem generalises this result to random variables
that take values in a complete separable metric space. This generalisation is not trivial.
The theorem allows to simplify proofs of some important limit theorems.

1.1.5. Weak convergence of transformed random variables. One of the important
statements connected with weak convergence deals with weak convergence of trans-
formed random variables.

Let real-valued random variables & = &j as ¢ — 0. Let also f(x) be a measurable
real-valued function (the inverse image of any Borel set is a Borel set) defined on the
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real line. In this case, f(&;) is also a real-valued random variable. The question arises if
the random variables f(E.) = f(§)) as e — 0?

It can be shown that this is true for all measurable functions f(x) that are a.s. contin-
uous with respect to the distribution of the limiting random variable &.

This statement can be easily proved by using the Skorokhod representation theorem.
Indeed, let f(x) be a function that is a.s. continuous with respect to the distribution of
the limiting random variable ;. Then the random variables f (ée) a.s. converge to f (éo)
as € — 0. Since a.s. convergence implies weak convergence, the random variables f(E,)
converge weakly to f (éo) as ¢ — (. But the random variables f (ég) and f(&) have the
same distribution, since this is so for the random variables &, and &, Therefore, the
random variables f(E;) converge weakly to f(&j) as € — 0.

This statement plays a very important role in the general theory of weak convergence
of random variables in metric spaces. In the case of functional metric spaces, random
variables that take values in such spaces are, actually, stochastic processes. While the
corresponding transformed random variables are functionals defined on trajectories of
these processes.

1.1.6. Weak convergence in the spaces of continuous and cadlag functions. Let
us consider the space Cjg ; of real-valued continuous functions defined on the interval
[0, 1]. This space can be equipped with a uniform metric that transforms the space Cj
in a metric space,

dy(x(-), y()) = sup |x(r) = y(1)|.

0<r<1

Let now §, = {&,(¢),t € [0,1]} be a continuous stochastic process for every n =
0,1,.... One can consider §, as a random variable taking values in the functional metric
space Cjo1;. Weak convergence of such random variables (stochastic processes) is a
subject of the so-called functional limit theorems for continuous stochastic processes.

An approach to functional limit theorems for continuous stochastic processes, which
is based on their reduction to weak limit theorems for random variables taking values in
the functional metric space Cjo ), was developed by Prokhorov (1956).

However, the class of continuous stochastic processes does not include many impor-
tant stochastic processes. For example, general processes with independent increments
have discontinuous trajectories.

An appropriate space for discontinuous stochastic processes is the space Dy ;; of real-
valued cadlag functions defined on the interval [0, 1], i.e., functions that are continuous
from the right and possessing finite left limits at all points of the interval (0, 1].

The uniform metric dy(x(-), y(-)) is not an appropriate metric for the space Dy,
since some sequences of cadlag functions, which would be expected to converge, do not
converge.

For example, let us consider the functions x,(t) = (1 — %)X(% - % <1),t€]0,1]. These
functions converge pointwise to the limiting function x(¢) = X(% <t),te[0,1]. Figure
1.1 illustrates this example.
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Figure 1.1: Functions, which J-converge.

These functions obviously do not converge in the uniform metric, since dy(x,(+), xo(+))
1

=1- % for n > 1. Let us define a function A,(f) to be equal to (1 — %)t for0 <r< 3,
and (1 + 2)r — 2 for 1 <t < 1. This function is continuous, strictly monotone, and
M (0) = 0, A,(1) = 1. Moreover, supy.,.; [A, (1) =t/ = 0 as n — oo.

Now, x,(A,(1)) = (1 — %)xo(t) and, hence, dy(x,(M, (%)), xo(*)) = % — 0asn — oo.
This shows that small deformations of time applied to the functions x,(¢) can transform
these functions to new ones that converge uniformly to x((z).

Skorokhod (1956) invented the so-called J-topology of convergence in the space
Dyo.1;- This topology is based on the use of small time deformations that transform cadlag
functions in uniformly convergent functions. More precisely, cadlag functions x,(7) J-
converge to a cadlag function xo(f) as n — oo if there exists a sequence of continuous
strictly monotone mappings A,(¢) of the interval [0, 1] onto itself such that A,(0) = 0,
M(1) = 1, and supy_,; (M (1) — 2] + dy(xa (M (), X0(+))) = O as n — oo.

To better understand the meaning of J-convergence, let us give two examples of
sequences of cadlag functions that converge pointwise but do not J-converge.

In the first example, consider the functions x,(1) = 1x(3 < N+ixG -1 <n,r€[0,1].
These functions converge pointwise to the limiting function x((z) = X(% <rn,tel0,1].
But these functions do not J-converge. There always exists a point in which the function
x,(\,(+)) takes the value % for any mapping A,(¢) with the properties described above.
Figure 1.2 illustrates this example.

As the second example, consider the functions x,(¢f) which take the values O for
t < %— %, n(t — %)+ 1 for%—ﬁ <t< %, and 1 for% <t < 1. Again, the functions
X,(t) converge pointwise to the limiting function x((z) = X(% < 1),t € [0,1]. But these
functions do not J-converge. As in the first example, there always exists a point in
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Figure 1.2: Functions, which do not J-converge.

which the function x,(A,(-)) takes the value % for any mapping A, (¢) with the properties
described above. Figure 1.3 illustrates this example.

In both examples, the functions do not J-converge, because there are close points
t" <t < t” such that both increments x, () — x,(t') and x,(#'") — x,(¢) are large (separated
from zero) uniformly for all n large enough. Let us formulate this more precisely.

The modulus of J-compactness A,(x,(-), c, 1) can be introduced to be the maximum
of the quantities |x,,(t) — x,,(¢")| A lx,(t"")— x,(¢)| taken over all points O < ¢/, ¢,t” < 1,t—c <
' <t <t <t+c. Using this, the condition of J-compactness can be formulated. It
requires that A(x,(-), c, 1) tend to O as, first, n — oo (here the upper limit must be used)
and then ¢ — 0. As was shown by Skorokhod, the pointwise convergence of functions
X, () and their J-compactness do imply J-convergence of the functions x,(¢).

In both examples given above, A(x,(:),c, 1) = % for n > ¢~'. Therefore, the iterated
limit of A(x,(-), c, 1) equals % This means that the condition of J-compactness does not
hold.

What is very important that the space Dy ;; can be equipped with a metric d,;(x(-), y(+))
such that convergence of cadlag functions in this metric is equivalent to their conver-
gence in the J-topology. An explicit formula that defines this metric is not simple. It
will be given in Section 1.4.

Let now &, = {E,(r), 1 € [0, T]} be a cadlag stochastic process for every n =0, 1,. . ..
One can consider §, as a random variable that takes values in the functional metric
space Dyo ;. Weak convergence of such random variables (J-convergence of stochastic
processes) is a subject of the so-called functional limit theorems for cadlag stochastic
processes. Weak limit theorems for the random variables f(§,) play an important role in
the theory. Actually, f(§,) are random functionals defined on trajectories of the process
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Figure 1.3: Functions, which do not J-converge.

€, = {&.(¢),t € [0, T]}. In particular, functional limit theorems give effective conditions
of weak convergence for important functionals (defined on cadlag processes) such as
maxima, exceeding times, integral functionals, etc.

In the case of stochastic processes, the condition of weak convergence of the so-
called finite dimensional distributions, which replaces the condition of pointwise con-
vergence, plus the condition of J-compactness of these processes in probability consti-
tute conditions for J-convergence of stochastic processes. Fortunately, realisations of
cadlag stochastic processes usually possess the property of J-compactness in probabil-
ity under some natural minor conditions that should be added to those conditions that
provide weak convergence of finite dimensional distributions. This makes J-topology a
very natural instrument in limit theorems for cadlag processes.

We will give a detailed description of basic results concerning functional limit theo-
rems in Sections 1.2—1.6.

1.2 Weak convergence in R,,

1.2.1. Weak convergence in R,,. Let & = (E.,...,E), € > 0 be a family of random
variables (vectors) taking values in the Euclidian space R,, and depending on a parame-
ter ¢ > 0. We denote by F(x) = P{&; < x1,...,8m < X}, X = (x,...,Xx,) € R, the
distribution function of the random variable &,.

We start with the following traditional definition of weak convergence of random
variables.

Definition 1.2.1. Random variables &, weakly converge to §, as ¢ — 0 (§, = §, as
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e = 0)if Fe(x) = Fy(x) as € — 0 for all points x € R,, in which the limiting distribution
function is continuous.

We denote the set of continuity of the distribution function Fy by Cy. In the one-
dimensional case, the set 60 is at most countable. In multi-dimensional case, this is not
true. However, the set Cy € Uy, where Uy is the union of at most countable number
of hyper-planes parallel to one of the coordinate hyper-planes. Namely, U is the set of
points x € R,, that have at least one of the coordinates belonging to V,,. Here V is the
set of points x € R, such that )2, P{§,, = x} > 0. Obviously, the set Cy is dense in R,,.

Let B, be the Borel 0-algebra of subsets of R,, (the minimal o-algebra containing all
balls in R,,) and F.(A) = P{§, € A} be the probability measure on B, generated by the
random variable §,. This measure is called a distribution of the random variable §,. It is
connected with the distribution function F¢(x) by the formula F.(A(X)) = F¢(x), where
A(X) = (=00, x1] X -+ X (=00, x,], X € R,,, and is uniquely defined by this distribution
function via the corresponding extension theorem of measure theory.

Let 0A denote the boundary of a set A, i.e., the set of points x such that every ball
B,(x) = {y: |x — y| < r}, with centre in x and radius r > 0, has non-empty intersections
with both sets A and A. If Fy(dA) = 0, then A is called a set of continuity for the
distribution F. The class of such sets, B,,(Fy), is a o-algebra of subsets of B,,.

The following statement shows that weak convergence of random variables §,, which
is actually the convergence of the probabilities F¢(A(x)) for x € Cy, can be extended to

all sets of continuity for the distribution F.

Theorem 1.2.1. Weak convergence &, = §, as € — 0 is a necessary and sufficient
condition for the following relation to hold:

F.(A) = Fo(A) ase — 0, A€ B,,(Fy). (1.2.1)

Theorem 1.2.1 shows a way to introduce weak convergence of random variables that
take values in a general metric space. It can happen that this space does not possess a
partial order similar to the one defined by the relation x < y in R,,. In the sequel, ran-
dom variables do not possess distribution functions similar to those defined for random
variables taking values in R,,. In this case, one can use relation (1.2.1) to define weak
convergence of random variables.

The next natural step is to characterise weak convergence via convergence of ex-
pectations for the transformed random variables. In particular, it is possible to show
that weak convergence of random variables §, is equivalent to weak convergence of the
transformed random variables f(&,) for all continuous functions f, as well as to conver-
gence of expectations E f(§,) for all bounded continuous functions f. These results are
absolutely analogous for the space R,, and for general complete separable metric spaces.
The latter case is considered in Section 1.3.
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1.2.2. Characteristic functions. Characteristic functions provide a very powerful
tool for weak limit theorems. Let us consider a parametric class of exponential functions,
Ji(x) = expli(t,x)}, t € R,,, where (t,X) = t1x; + ... + t,,Xx,,. The characteristic function
of a random variable &, is the expectation @.(t) = Ef;(E,) considered as a function of
t € R,,. Let us formulate the condition:

A, @e(t) = EfA(E) — @o(t) = Efi(§)) ase — O fort € R,,.

Theorem 1.2.2. Condition A, is necessary and sufficient for the weak convergence
E. > Eyase > 0.

It is useful to note that the assumption of existence of a limiting random variable &,
can be omitted in condition A,. It is enough to assume that the following holds: (a)
the characteristic functions E f;(§,) converge pointwise to some limiting function g(t)
as ¢ — O for t € R,, and (b) the limiting function ¢((t) is continuous at the point 0. In
this case, it is possible to show that (¢) ¢o(t) is a characteristic function of some random
variable, i.e., it can be represented in the form @y(t) = Ef(E,). If (¢) is proved, then
weak convergence of random variables g, to §, as € — 0, follows from Theorem 1.2.2.

The following useful lemma, known as the Wold—Cramér device allows to prove
weak convergence of m-dimensional random variables by proving weak convergence
of one-dimensional random variables from some related parametric family. The proof
of the latter could be simpler. Let us consider a parametric class of linear functions,
gt(x) = (t,x), t € R,,. Let us introduce the following condition:

Aj: gi(E,) = gu(§y) ase —» Ofort e R,

Lemma 1.2.1. Condition A is necessary and sufficient for the weak convergence &, =
Eyase — 0.

This lemma is a corollary of Theorem 1.2.2. Indeed, the expectation E exp{isg(§;)}
is characteristic function of the one-dimensional random variable g¢(&,) taken at the point
s € R;. At the same time, it is a characteristic function of the m-dimensional random
variable &, taken at the point st € R,,.

1.2.3. Reduction of the set determining weak convergence. According to the
initial definition, in order to prove that random variables &, converge weakly to §, as
e — 0, one must check the pointwise convergence of their distribution functions, F(x),
for all continuity points of the limiting distribution function Fy(x). Due to monotonicity
of the distribution functions F¢(x) (if x <y, then F.(x) < F.(y)), it is possible to limit
this verification to some set S dense in R,,. This set can be a countable set and it is not
required to contain only points of continuity of the limiting distribution function F. Let
us formulate the following condition:
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Ay Fe(x) = Fo(x)ase — 0 forx € S, where S is a set dense in R,,,.

Lemma 1.2.2. Condition A, is necessary and sufficient for the weak convergence &,
= Eyase — 0.

The statement of necessity of this lemma can be improved. In condition A, ex-
istence of the limiting distribution is assumed. However, instead of A,, one can only
assume that: (a) the limits lim,_,o F.(X) = Fy(x) exist for x € §, where S is a set
dense in R,,, and (b) Fp(x) — 0 as xp;, = minjg<, X; — —oco and Fp(x) — 1 as
Xmin — ©0. The limiting function F(x), defined in (a) for x € S, can also be defined as
Fo(x) = limycyes yx Fo(y) forx € S. Under conditions (a) and (b), the function F(x) is
a distribution function and, according to (a), condition A4 holds.

Note that assumption (b) plays here an essential role. Without this condition there
is no guarantee that the function Fy(x) is a distribution function. It is easy to give an
example where (a) is satisfied but the limits Fy(x) = O for all x € S and, consequently,
forallx € R,,.

1.2.4. Slutsky theorem and related results. Weak convergence of random variables
is a convergence of their distributions. For this reason, it is possible for random variables
E., which weakly converge to §, as ¢ — 0, to be defined on different probability spaces
for different € > 0.

A special and important case is where the limiting random variable §, = const with
probability 1. The following simple lemma shows that, in this case, weak convergence
can be interpreted as convergence in probability, despite the possibility that the random
variables &, can be defined on different probability spaces.

Lemma 1.2.3. Random variables &, = &, as € — 0, where &, = const with probability
1, if and only if (a) P{|g, — §,| > 8} = 0 as e — 0 for 6 > 0.

Let random variables &, = (E/,,...,E,) and &' = (E/,...,E)) be defined on the
same probability space for every € > 0 (possibly different for different €) and take val-
ues in the spaces R,, and R;, respectively. In this case, the vector §, = (§,,...,&,,
€/, ..., is arandom variable that takes values in the space R,,;.

Suppose that the random variables &, and &, converge weakly to &, and E; as ¢ — 0,
respectively. This does not imply that the random variables &, weakly converge to &, as

¢ — 0. However, this is true if at least one of the limiting variables & or &; is a constant.

Theorem 1.2.3. Let () &, = Eyase — 0, and (P) &, = & ase — 0, where & = const
with probability 1. Then &, = &, as ¢ — 0.

As a corollary we have that, under conditions of Theorem 1.2.3, the random variables
f(E,) = f(Ey) as € — 0 for any measurable function f acting from R,,,; to R; and a.s.
continuous with respect to the distribution Fy of the random variable &,.

In particular, we have (for the case where m = I) that the sums &, + €, = & + & as
¢ — 0. In the case where ) = 0, we obtain the following very useful result.
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Lemma 1.2.4. Let (a) &, = &y as e — 0, and () P{|E)| > 8} > 0 ase — 0 for d > 0.
Then &, + & = & ase — 0.

This lemma can be generalised in the following way. Suppose that the random vari-
ables &, can be represented, for every € > Oand n = 0, 1, ..., as a sum of two random
variables,

& =&, + & (1.2.2)
Lemma 1.2.5. Let () &, = &, ase > 0forn=0,1,..., (B) &, = & asn — oo, and

() lim,,_ o0 limg0 P{|EL| > 8} — 0 for & > 0. Then &, = &, as ¢ — O.

The following lemma deals with the case where random variables &, possess upper
and lower approximations &, . Here &2 are random variables such that, for every £ > 0

andn =0, 1, ..., the following inequalities hold (for every component):
EnSE <E, (1.2.3)
Lemma 1.2.6. Let (@) E., = &, ase —» O0forn=0,1,...,and B) &, = &, asn — o,

Then&, = §,ase — 0.

Let F(x) and FZ (x) be distribution functions for the random variables &, and &,
respectively. Approximation inequalities (1.2.3) can be replaced in Lemma 1.2.6 by
the family of stochastic inequalities: (a) F (x) < F.(x) < F_,(x), x € R,,, which
obviously hold if (1.2.3) holds. Under (a), conditions of Lemma 1.2.6 imply that (b)
lim  lim_ F;(x) > Fy(x) and 1im,, 0 lime_s F_,(x) < Fy(x) for x € Cy, where Cj
is the set of contlnulty points for the distribution function Fy(x). Conditions (a) and (b)
form a combination, minimal in some sense, of conditions that are based on the upper
and the lower approximations and provide weak convergence of the random variables &,
to §,ase — 0.

If the stronger approximation inequalities (1.2.3) hold, then condition (f§) in Lemma
1.2.6 can be replaced with the condition (¢) lim,_,., P{|§;, — &,,| > 8} = 0 for & > 0.
Obviously, (c) implies (), due to inequality (1.2.3) for € = 0.

1.3 Weak convergence in metric spaces

1.3.1. Weak convergence in metric spaces. Let X be a metric space with a metric
d(x,y).

The space X is complete if for any fundamental sequence of points x, € X, i.e., a
sequence such that d(x,, x,,) — 0 as n,m — oo, there exists a point x € X such that
d(x,,x) > 0asn — co.

The space X is separable if there exists a countable subset Y = {y;, y,,...} € X such
that ming<, d(yx, x) — 0 as n — oo for any point x € X.
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The term Polish space is used to indicate that X is a complete separable metric space.
Below, X is always a Polish space.

A set K is a compact (set) in a Polish space X if there exists a countable set ¥ =
{y1,¥2, ...} € X such that miny., sup,.x d(yx, x) = 0 asn — oo.

Let B be the Borel o-algebra of subsets of X (the minimal o-algebra containing any
ball B,(x) = {y: d(x,y) < r} in the space X).

The space R,, is a particular example of a Polish space. Other examples that we
will be interested in are the functional spaces of continuous functions, C, and cadlag
functions, D. These spaces become Polish spaces if appropriate metrics are introduced
in these spaces.

Random variables that take values in a Polish space may not possess distribution
functions defined in the same way as for random variables with values in the space R,,.
For this reason, the definition of weak convergence in R, can not be directly extended
to Polish spaces. However, as it was mentioned above, such a definition can be made by
using a condition analogous to relation (1.2.1).

Let &, e > 0 be a family of random variables that take values in X and depend on a
parameter € > 0. We denote by F(A) = P{E; € A}, A € B, the distribution of the random
variable E.

Let 0A denote the boundary of the set A, i.e., the set of points x such that every ball
B,(x), with centre in x and a radius r > 0, has non-empty intersections with both sets A
and A. If Fy(AA) = 0, then A is called a set of continuity for the distribution Fo. The
class of such sets, B(Fy), is a o-algebra of subsets of B.

Definition 1.3.1. Random variables &, weakly converge to E§y as € — 0 (§, = & as
e > 0)if F.(A) —> Fy(A) as € — 0 for all sets A € B(F).

1.3.2. Convergence of expectations for transformed random variables. It is ob-
vious that if f(x) is a measurable real-valued function defined on a space X (the inverse
image of any Borel set in R; is a Borel set in X), then f(&) is a real-valued random
variable.

The indicator function y4(x) of a Borel set A is a measurable function and it has the
set of discontinuity points, dA. The condition Fy(0A) = 0 means that y4(x) is an a.s.
continuous function with respect to the measure Fy. The definition of weak convergence
given above requires that Eyx,(&;) = F.(A) = Eya(&y) = Fo(A) as ¢ — 0 for all sets of
continuity for the limiting distribution F.

Let us denote by €,(F) the class of all real-valued measurable bounded functions f
that are a.s. continuous with respect to the limiting distribution F.

The following theorem connects weak convergence with convergence of expectations
of the transformed random variables for the class of bounded a.s. continuous functions.
This class is wider than the class of indicator functions.
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Theorem 1.3.1. Weak convergence &, = §, as € — 0 is a necessary and sufficient
condition for the following relation to hold:

Ef(€) — Ef(E) ase = 0, f e &y(Fo). (1.3.1)

The statement of sufficiency in Theorem 1.3.1 is substantial. A standard proof of this
statement is based on approximating a function f from the class €,(F), appropriately,
by linear combinations of indicator functions. As far as the statement of necessity is
concerned, it is useful to note that the requirement of a.s. continuity of the functions f
can be replaced with the requirement of them being continuous.

It is appropriate to note that Theorem 1.3.1 allows to give another definition of weak
convergence. This definition is based on the use of relation (1.3.1), and equivalent to
Definition 1.3.1.

1.3.3. Weak convergence of transformed random variables. Let us denote by
C(Fy) the class of all real-valued measurable functions f that are a.s. continuous with
respect to the limiting distribution F. Note that boundedness of the functions f is not
required.

The following statement shows a connection between weak convergence of random
variables and their transformations.

Theorem 1.3.2. Weak convergence &, = &, as € — 0 is a necessary and sufficient
condition for the following relation to hold:

fE) = f(E)ase — 0, feCFo). (1.3.2)

As in Theorem 1.3.1, the statement of sufficiency in Theorem 1.3.2 is substantial.
The proof can be based on the use of the characteristic functions E exp{izf(E;)}. Their
pointwise convergence follows from Theorem 1.3.1. As far as the statement of necessity
is concerned, the requirement of a.s. continuity of functions f can be replaced with the
requirement of their continuity.

It is appropriate to note that Theorem 1.3.2 allows to give the third definition of weak
convergence of random variables E,. This definition is based on the relation (1.3.2), and
is also equivalent to Definition 1.3.1.

Theorem 1.3.2 plays an essential role in the theory. In the case of the functional
spaces C and D, this theorem is the main tool in studies of weak convergence of func-
tionals defined on trajectories of stochastic processes.

Sometimes one can be interested in proving the joint weak convergence of several
functions of random variables which weakly converge. In this context, the following
remark is useful.

Let fi(x),..., fi(x) be functions a.s. continuous with respect to the measure Fj.
Then their linear combination g¢(x) = #; f1(x) + - - - + ; fr(x) is also a.s. continuous with
respect to the measure F for every t = (¢1,...,%) € Ry. This shows that, if §, = &
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as ¢ — 0, then, as follows from Theorem 1.3.2, g¢«(&) = g¢(&) as € — 0 for every
t € Ry. Due to Lemma 1.2.1, this implies joint weak convergence of the random vectors

(i), -s fi€)) = (fio)s .- -, fi(€o)) as € — 0.

1.3.4. A subsequence approach and Prokhorov’s theorems. In the case of a gen-
eral Polish space, some effective tools related to the weak convergence do not exist (for
example, characteristic functions) or do not work so effectively. The most effective ap-
proach in the case of a metric space is based on a subsequence approach and notions
of relative compactness and tightness of a family of distributions. The corresponding
general theory was developed by Prokhorov (1956).

First of all note that weak convergence is, actually, a convergence of distributions.
So, one can consider weak convergence of distributions (probability measures) F, in-
stead of weak convergence of the corresponding random variables &.; we will use the
symbol F, = Fyas ¢ — Oinstead of &, = §jas e — 0.

The following theorem is an analogue of the corresponding statement concerning
numerical limits: a. — ay as ¢ — 0 if and only if any subsequence 0 < g, — 0 as
n — oo contains a subsequence €; = ¢,,, where n;y — oo as k — oo, such that g — do as
k — oo.

Theorem 1.3.3. Distributions F, = Fy as ¢ — 0 if and only if (&) any subsequence
&, = 0 as n — oo contains a subsequence €, = ¢,,, where ny — oo as k — oo, such that
Fg;{ = Fyas k — oo.

The notions of tightness and relative compactness for a family of distributions play a
principle role in the theory. Let us introduce the following condition:

X,: There exists a sequence of compact sets K, € X, n = 1,2,.. ., such that
1imn—>c>o lim£—>0 Fa(Kn) =0.

Definition 1.3.2. A family of distributions F¢, € > 0, is tight as € — 0, if condition K,
holds.

Definition 1.3.3. A family of distributions F, € > 0, is relatively compact as ¢ — 0, if
any subsequence €, — 0 as n — oo contains a subsequence €, = ¢, , where n; — oo as
k — oo, such that distributions F,; weakly converge to some probability measure F ) as
k — oo (possibly depending of the subsequence ¢;).

The definition of tightness and relative compactness of a family of distributions given
above slightly differs from the standard ones, since we are interested in weak conver-
gence of the corresponding probability measures F only for ¢ — 0. Thus we only
consider subsequences €, that converge to 0, instead of arbitrary subsequences in the set
of the parameters {e > 0}.

The following Prokhorov theorem plays a fundamental role in the theory.
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Theorem 1.3.4. A family of probability measures F., ¢ > 0 is relatively compact as
€ — O ifand only if it is tight as € — 0.

Another notion of defining class for a distribution is also important.

Definition 1.3.4. A class of sets Dy from the o-algebra B is a defining class for a prob-
ability measure F, if any probability measure F’ that takes the same values as F on sets
from the class D coincides with F.

Let us introduce the following condition:

As: F(A) = Fo(A) ase — 0 for A € Dp,, where D, is some defining class for the
distribution Fy.

Now we can formulate the main Prokhorov theorem that gives effective conditions
for weak convergence of distributions in Polish spaces.

Theorem 1.3.5. Conditions X, and Ay are necessary and sufficient for the weak con-
vergence F, = Fyas e — 0.

It follows from Theorem 1.3.3 that, in order to prove that F, = Fyase — 0, itis
sufficient (a) to show that the family of distributions F'. is relatively compact as € — 0,
and (b) to prove that all weakly converging subsequences F have the same limiting
distribution F,. Claim (a) follows from Theorem 1.3.4. Claim (b) is also true. Indeed,
for any converging subsequence F', the corresponding limiting distribution F) takes the
same values as F, for sets in Df, and, therefore, coincides with F.

Obviously, if F, = F( as € — 0, then the family of distributions F¢, € > 0, is rela-
tively compact as € — 0. Therefore, due to Theorem 1.3.4, this family of distributions
is also tight as ¢ — 0. Also, the class of sets of continuity for the distribution Fy is
a defining class for this distribution. So, conditions X, and As are also necessary for
weak convergence F, = Fyase — 0.

Let us go back to the case of the space R,,. Here, Theorem 1.3.5 can be considered
as a generalisation of Lemma 1.2.2. Indeed, the class of sets A(x) = (=00, x;] X -+ X
(=00, x,], x € §, is a defining class for any probability measure F, if S is a set dense
in R,,. Thus A, implies condition A5. Condition A, also implies that the family F.,
e > 0, is tight, since A, includes the assumption of existence of a limiting distribution
function. Indeed, due to monotonicity of the distribution functions F.(A(X)), the set S,
in condition A, can be extended to the set S US . Here S is the set of continuity of the
limiting distribution function F(A(x)). Note that the set § is also dense in R,,. Let us
define a sequence of the compacts K, = {y: x;, <y <x; }, where x), = (x,,..., x,,,) and
x; = (x},...,x,,) are chosen in such a way that (¢) x;, X, € S, and (d) min, <, X, —
—oo and min; g, X, — oo as n — oco. Obviously, (e) Fg(f,,) — Fo(K,) as € — 0, and
the sequence K,, n > 1 satisfies the condition (f) FO(En) — 0asn — oo.
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1.3.5. Convergence in probability and convergence with probability 1. These
two types of convergence relate to a model where all random variables &, € > 0 are
defined on the same probability space. So, let us suppose that (€, &, P) is a probability
space and &, = E.(w) is a random variable for every € > 0, that is, a measurable function
acting from Q to X.

Let us first give a definition of convergence in probability.

Definition 1.3.5. Random variables &, converge in probability to Ej as € — 0 (& N Eo
as € — 0) if P{d(&;, &y > 0} - 0ase — 0 ford > 0.

It is easy to construct an example in which random variables are defined on the same
probability space and weakly converge but do not converge in probability. However
random variables, which converge in probability, always converge weakly.

Lemma 1.3.1. If&, LR Eoase = 0, then & = Eyase — 0.

Let us now give a definition of convergence with probability 1.

Definition 1.3.6. Random variables &, converge with probability 1 toEjase — 0 (&, SN
gy as € — 0) if there exists a random event Ay € & such that () E.(w) — Ey(w) ase — 0
for every o € Ay, and (f) P(Ap) = 1.

Convergence with probability 1 is also known as a.s. (almost sure) convergence. The

symbol =% can be used instead of l.

Definition 1.3.6 requires some comments. In the case of weak convergence and
convergence in probability, random variables &, converge to &, as ¢ — 0 if and only
if, for any subsequence 0 < ¢, — 0 as n — oo, the random variables &;, converge to
€y as n — oco. This follows from the corresponding property of limits of non-random
functions.

In the case of a.s. convergence, the situation is slightly different.

If there exists a monotone sequence €, | 0 asn — coand &, = §;, foreg, < & < g,44,
n > 1, we actually have a countable family of random variables. In this situation, the
a.s. convergence of random variables &, to §j as €, — 0 is obviously equivalent to the
a.s. convergence of Eenk to &y as g, — O for all subsequences n, — oo as k — oo.
The situation is different in the general case where a continuum of random variables is
considered. In such a case, the a.s. convergence of &, to §, as ¢ — 0, in the sense of the
definition given above, obviously implies that &, a.s. converge to §; as n — oo for any
subsequence 0 < g, — 0 as n — oco. But the opposite implication is not always true.

For example, let us consider the probability space with the space of outcomes [0, 1],
the Borel o-algebra of random events, and the Lebesgue measure as the corresponding
probability measure. Let us define, on this probability space, a random variable Ey(w) =
o that is uniformly distributed on [0, 1], and then the random variables &, = (&, # £2F)
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for27%!' <e <2* k=0,1,.... The random variables g, a.s. converge to &, for any
subsequence €, — 0 as n — oo, but E.(w) do not converges as € — 0 for 1/2 < w < 1.
Therefore, the random variables €, do not a.s. converge to E; as € — 0 in the sense of
the definition given above.

This remark leads us to a slightly different definition of convergence which one can
call sub-sequential convergence with probability 1 or sub-sequential a.s. convergence.

Definition 1.3.7. Random variables &, sub-sequentially converge with probability 1 to
Ease — 0 (& i o as ¢ — 0) if the random variables &, SN €y as n — oo for any

subsequence ¢, — 0 as n — oo.

According to the remarks made above both definitions coincide in the case of a count-
able family of random variables. In the case of a continuum family, the sub-sequential
convergence with probability 1 is weaker than the convergence with probability 1 in the
sense of the first definition.

It is easy to construct an example in which random variables, which are defined on
the same probability space, converge in probability but do not converge with probabil-
ity 1. However, random variables that converge with probability 1 always converge in
probability.

Lemma 1.3.2. If&, AR Eoase — 0, then & iR Epase — 0.

. P1 . .
Note that the assumption &, — &j as ¢ — 0 can be replaced in this lemma by a

weaker assumption, &, 1 € as ¢ — 0. This follows from the following useful lemma.

. P1
Lemma 1.3.3. For any subsequence 0 < €, — 0asn — oo, random variables §,, — &

as n — oo if and only if () max;s, d(E,, o) SN Oasn — oo.

Remark 1.3.1. It follows from Lemma 1.3.3 that the relations d(E;,, &) il Oasn —

co and d(E,,, &) i 0 as n — oo are equivalent if the sequence of random variables
d(&,.Eo), n =0,1,...1is monotonically non-increasing with probability 1.

Remark 1.3.2. In the case of random variables with values in R,,, if &, > &, for all
n=0,1,...or§, <& foralln=0,1,..., then the relations § L §, as n — oo and
&, iR E, as n — oo are equivalent.

The following lemma shows in which way the convergence in probability can be
characterised via the convergence with probability 1 for subsequences.

. P . .
Lemma 1.3.4. Random variables &, — &y as € — 0 if and only if any subsequence
0 <&, > 0asn — oo contains a subsequence €, = €,, where ny — oo as k — oo, such

P1
that &, — & as k — .
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Let also formulate the following useful lemma.

Lemma 1.3.5. If, for some subsequence ¢, — 0 as n — oo, (&) the random vari-
Pl P
ables E,, — &y as n — oo, and (B) the non-negative integer random variables n,, — oo

P
asn — oo, then &, — §yasn — oo.

1.3.6. Skorokhod representation theorem. This theorem helps to simplify proofs
of many results on weak convergence by replacing weakly converging random variables
with random variables that have the same distributions and converge almost sure.

We use the symbol &, C E: to indicate that the random variables &, and &,, which take
values in X, have the same distribution, i.e., P{E, € A} = P{E, € A} for A € B.

Theorem 1.3.6. If §. = &) as ¢ — 0, it is possible to construct a probability space
(Q, &, P) and random variables &, € > 0, defined on this probability space such that

(o) E, 4 E for every € > 0, and (B) &, AR Eyase — 0.

In the case of real-valued random variables, this construction was described in Sec-
tion 1.1. In the case of a Polish space, the proof is based on a much more sophisticated
construction which, however, resembles the one described above. Theorem 1.3.6 be-
longs to Skorokhod (1956). Let us briefly describe the original procedure from this
work, since it is not very easy to find it in the literature.

.....

i,...,Ik kK > 1, such that: (a) for every k > 1, the sets §;,__;, N Si..ip =0 if i # 1),

..........

D) YUis1Si i =Si iy k> 1,and U; 515, = X, (¢) SUD, yes, d(x,y) < 27% for all

.....

i1,.... 0 k>1,and (d) Fp(0S;, ;) =0foralliy,..., i, k> 1.

Such a hierarchical system can be constructed in the following way. Since the space
X is separable, it is possible to find, for every k > 1, a sequence of points x;x, i = 1,2,. ..,
such that every point of X lies at a distance not greater than 2-**! to at least one point
from this sequence. It is possible to find 2=**1 < r, < 27% such that Fo(B,,(x;x)) = 0
fori > 1 and every k > 1 (there exists at most a countable number of 2-*+D < p < 27*
for which this probability is positive). Then one can define S, =Wii0---NW, 4
where Wi = B, (xi1) \ B, (x16) N -+~ N B, (xi-14)-

The second step is to construct a similar hierarchical system of sub-intervals of the
interval [0, 1]. We define I, ., i1,...,ix kK > 1, to be sub-intervals of [0, 1] such that

----- i

(e) for k > 1, the intervals I,;, _;, N Ly, i =@ if iy # i}, (f) the interval I;, _; lies to
the left of I&i’l ,,,,, % if there exists r such that iy = i,...,i,_; =i _,, i, <1, (g) the length
of I = Fe(Sy,..i)foriy, ... i, k> 1.

The third step is to define appropriate measurable functions f.(y) acting from [0, 1]
into X. Let us choose a point x;, __; € S i i1,...,ik, K > 1, and then, for every
€ > 0 and k > 1, define functions fix(y) = x;,,.; fory € L; i, i1,...,i = 1. Since

d(fox (), forem)) < 27, there exist limits fi(y) = limy_e fix(y) for every y € [0, 1]
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and € > 0. The length of the intervals I, ;, _; converge to that of /y;, ; as € — 0 and,
therefore, for internal points y of the intervals [y, ., , one has that lim,_,o d(f:(y), fo()) <
2-*+D) " This shows that (h) lim._ £i(y) = fo(y) for all y € [0, 1] except for at most a
countable set of points.

Let now p be a random variable uniformly distributed in [0, 1]. Due to (h), the

random variables &, = f.(p) AR & = fy(p) as € — 0. It is also not difficult to check that
the random variable é& has the distribution F¢(A) for every € > 0.

A typical application of Theorem 1.3.6 relates to proofs of Theorems 1.3.1 and 1.3.2.
LetE& = Eyase — 0, and és be the random variables constructed according to Theorem
1.3.6. Then, for any function f a.s. continuous with respect to the distribution of the
limiting random variable &, the random variables f(E,) converge with probability 1 to

f(éo) But f(ée) 4 f(és) Since the a.s. convergence implies the weak convergence, the
random variables f (&) converge Weakly to f(Ep). Also, in the case where the function
f is bounded, Ef(E,) converge to E f(Ey) via the Lebesgue theorem. Hence, Ef(E,)

converge to Ef(&), since Ef(E,) = Ef(E,).

1.4 The space D of cadlag functions

In this section, we give a brief survey of facts related to the geometry of the space D
of cadlag functions. The special J-metric makes this space a Polish space. This allows
to consider cadlag processes as random variables that take values in the Polish space D
and, therefore, to study limit theorems for cadlag processes applying general results on
weak convergence in metric spaces.

First, we consider the basic case of the space of cadlag functions defined on a finite
interval [0, T']. Then we show in which way the results can be extended to the space of
cadlag functions defined on the semi-finite interval [0, co) and other types of intervals.

1.4.1. The space of cadlag functions. Let I C [0, o0) be a finite or semi-finite and
closed, semi-closed, or open sub-interval of [0, co).

In the two main cases, we will be dealing with [0, 7'] and [0, co). However, we will
also consider other intervals, e.g., the interval (0, c0). The intervals [0, T'] and [0, co)
contain the left endpoint 0. The first interval also contains the right endpoint 7', while
the second one has no right endpoint.

We now introduce Dy, a space of m-dimensional cadlag functions defined on the
interval 1.

Definition 1.4.1. Dy is a space of functions x(¢) = (x(?),..., x,,(?)), t € I, which are
defined on the interval I, take values in R,,, and are continuous from the right, that is,
possess finite right limits lim,., -, X(s) = X(¥) at every point ¢ € I which is not the right
endpoint of 7, and finite left limits lim,., ;,, X(s) = x(t — 0) € R,, at every point ¢ € 1
which is not the left endpoint of 1.
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To stress that a specific interval I is used, we employ the notations Do 71, Do .0, €tC.
The dimension m is indicated, if confusion can arise, with the notations D(Im), Dng)T], etc.
The notation D is used for the space of cadlag functions with no explicit reference to the
interval or the dimension of the space. Let us also list some important special subspaces
of the space Dj.

We denote by C; the space of m-dimensional continuous functions defined on the
interval I. To indicate a specific interval I, the notations Cj 7}, etc. are used. To specify
the dimension m, if needed, the notations C;’"), Cng)T], etc., are also utilised. The notation
C refers to the space of continuous functions without specifying the interval and the
dimension of the space.

We also denote by Dy, the space of m-dimensional functions x(¢) = (x(?), . . ., x,,(¢)),
t € I, with components x;(¢), t € I, that are non-negative and non-decreasing cadlag
functions for every i = 1,...,m. To indicate a specific interval I, the notations Do 7y,
etc. are used. The dimension m is indicated with the notations D;”j), DES?T] ., etc.

The following lemma permits to clarify the structure of the set of discontinuity
(jump) points for a cadlag function.

Lemma 1.4.1. If a function X(t) belongs to the space Dr, r,), then for every 6 > 0 there
exist points Ty =ty < -+ < tyu41 = T2 such that |X(t')—x(t")| < S fort', t" € [t5, ts,is1)s
= O, 1,...,1’[5.

This lemma implies that a cadlag function has at most a finite set of discontinuity
points in which the absolute values of jumps are greater or equal to any 0 > O, if 1
is a closed finite interval, and at most a countable set of such discontinuity points, if 1
is a semi-open or open interval. The total number of discontinuity points for a cadlag
function defined on an interval of any type is at most countable.

The following lemma supplements Lemma 1.4.1.

Lemma 1.4.2. If a function X(t) belongs to the space D7, r,yand Ty < 751 < -+ < Zopy <
T, are points of discontinuity for the function x(t) with the absolute values of jumps not
less than O, then there exists hs > 0 such that |x(t') — x(t")] < & for |t — 1’| < hs, t,
t” € [Zé,i’ Zé,i-%—l)) i = 0; 17 R (2 (here Z§,0 = T]: Z6JZ6+1 = TZ)'

Let us introduce the modulus of J-compactness which plays the same role for cadlag
functions as the modulus of continuity for continuous functions. We define, for 0 < 7' <
T, and ¢ > 0,

AJ(X(')’ c, Tl’ TZ) =
= sup min(|x(#") — x(@)], [x(r) — x(@")]).

T V(t—c)<t' <t<t” <(t+c)A\T>

(1.4.1)

The simplified notation A, (x(+), ¢, T) is usually used instead of A;(x(-), ¢, 0, T) in the
case of an interval [0, T'].
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Lemma 1.4.3. A function X(t) defined on an interval I with values in R,, belongs to
the space Dy if and only if: () X(t) is a function continuous from the right at points
t € I excluding, possibly, the right endpoint, if this interval has such a point, and
() 161_{% Ay(x(1),c, T, T2) =0, [Ty, T,] C L

Let [T,,T,] € [T{,T)]. Then A;(x(-),c,Ty,T>) < A;x(-),c,T{,T;). This means
that, in the case of a closed finite interval I = [T, T"], it is sufficient to require that
condition () in Lemma 1.4.1 holds only for this interval.

1.4.2. J-topology in the space Dy r;. It is obvious how the results concerning cadlag
functions defined on an interval [0, 7] can be carried over to the case of any interval
[Ty, T>]. So, the following consideration is reduced to the case of an interval [0, T'].

Let us introduce, in the space Do 7}, a natural topology of convergence.

The first candidate is the uniform topology U of convergence. It is generated by the
uniform metric

dyr(X(-),y(-)) = sup [x(r) - y(7)]. (1.4.2)

0<t<T

Definition 1.4.2. Functions x.(¢),7 € [0, T] converge in the topology U to a function

Xo(1),t € [0,T]ase — 0 (x(1),t € [0,T] L Xo(1),t € [0,T]ase — 0)if dyr(X:(-), Xo(+))
—0ase— 0.

U-topology is very natural for the space of continuous functions Cjy 7). Unfortu-
nately, this topology is too strong for the space Do 7.

Let, for example, x.(t) = x(a. < t), where a. # a fore # O buta, — ap ase — 0.
For € small enough, the function x,(¢) differs from the function x((¢) only by a small shift
in the time of the jump. However, dyr(x:(-), xo(-)) = 1 for all € # 0 and, therefore, the
functions x.(7) do not converge in the uniform topology to xy(?) as € — 0.

A natural so-called J-fopology of convergence in the space Dy 7} was introduced by
Skorokhod (1955a, 1956). Some times it is also referred to as the Skorokhod topology.

Let Ajo.r) be the space of all continuous strictly monotone mappings A(¢) of the inter-
val [0, T'] onto itself such that A\(0) = Oand M(T) = T.

Definition 1.4.3. Functions x.(¢),t € [0, T] converge in the topology J to a function

Xo(t),t € [0,T] as € —» 0 (x:(1),t € [0,T] i> Xo(?),t € [0,T] as € — 0) if there
exist mappings A, € Ajr such that: (@) supy.,.y h(r) —#] = 0 as e — 0, and (B)
dyr(X:(Ae(+)), Xo(-)) = O as € — 0.

Remark 1.4.1. Obviously, a mapping A belongs to the space A7 if and only if the
corresponding inverse mapping A~'(¢) = sup(s > 0 : A(s) < 1), € [0, T'] belongs to this
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space. Also,

dU,T(Xe(}\-s('))a XO(')) = sup |X8(7\-5(t)) - XO(I)l

0<t<T

= sup [X.(r) = Xo(h; (D) = dur(Xe(-), Xo(hy ' ())).

0<t<T

(1.4.3)

Thus, the condition () in Definition 1.4.3 can be replaced by the condition (f)
dyr(Xe(1), Xo(he(+))) — Oas e — 0.

It is easy to show that J-topology is weaker than U-topology.

Lemma 1.4.4. Let x,(),1 € [0,T] —> xo(1).t € [0,T] as ¢ — 0. Then x.(1), €
[0, 7] -5 xo(1), 1 € [0, T] as & — .

The proof follows immediately from the definitions of U and J topologies, since the
identical mapping A(#) = ¢ belongs to the space Ao 7.
Note also that the functions x.(f) = x(a. < 1), used in the example above, do J-

converge to x((t) as € — 0. This shows that the implication inverse to the one in Lemma
1.4.4 is not true.

1.4.3. The J-metrics in the space DEZ')T]. As is known, the space of continuous

functions CEZ’)T] with the uniform metric is a Polish space.
There is a question whether it is possible to construct an appropriate metric in space

DEZ’)T] that would make this space a Polish space.
(m)

The metric in the space Dy, that induces a topology of convergence equivalent
to the J-convergence was constructed by Kolmogorov (1956). It was simplified by
Prokhorov (1956). The simplest modification was given in Gikhman and Skorokhod
(1965). This metric can defined in the following way:

djr(x(), ¥() = lei}\l[;f ](du,rO\(-), ho(4) + dyr(x(A()), ¥(-)), (1.4.4)

where Ay(t) = t,t € [0, T].

Theorem 1.4.1. Formula (1.4.4) introduces a metric in the space DEZ’)T]. Convergence in

this metric is equivalent to the J-convergence, i.e., functions X.(t),t € [0, T] N xo(1),1 €
[0, T]as e — 0if and only if d) ;(x(-), Xo(-)) = O as e — 0.

(m)
The space D7,

complete metric space. For example, the sequence of functions x,,(f) = X(% <t< % + %),
1 € [0,T] is fundamental in the metric d);. But it does not converge in this metric to a
function in the space Do 1.

equipped with the metric d/ ;. 1s a separable. Unfortunately, itis not a
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The metric in the space DEST)T] that induces the topology of convergence equivalent to

the J-convergence and makes this space a Polish space was constructed by Billingsley
(1968).
Let us define, for a function A € Ao,

Mt) — M(s)
In ——

< oo (1.4.5)
t—s

IMlz = sup
0<t,s<T 1#s

The metric constructed by Billingsley (1968) is given by the following formula:

nf ([Mlr + dyr(x(A()), ¥())). (1.4.6)

i
EA[U’T]

dir(x().y() =

Theorem 1.4.2. Formula (1.4.6) introduces a metric in the space DEST)T]. This space,

equipped with the metric d,r, is a Polish space. The convergence in this metric is equiv-

alent to the J-convergence, i.e., functions X(t),t € [0, T] i> Xo(t),t€[0,T]ase = 0 if
and only if d;7(X¢(-), Xo(-)) = O as e — 0.

1.4.4. Necessary and sufficient conditions for J-convergence. By using the mod-
ulus Ay, it is possible to give necessary and sufficient conditions for the J-convergence
that would not include the mappings A € Ao in an explicit form.

First, let us assume that the following condition holds:

O xo(T - 0) = xo(T).
Let us also introduce the following condition of pointwise convergence:

Ag: x:(f) = x¢(t) as € = 0 forr € S, where S is a subset of [0, 7] that is dense in this
interval and contains the points O and 7.

We use also the following J-compactness condition:
31: lim,_,o m5—)0 Ay(x:(-),c,T) = 0.
Now we can formulate the corresponding Skorokhod theorem.

Theorem 1.4.3. Let condition O(IT) hold. In this case, conditions Aq and J, are neces-
sary and sufficient for J-convergence of cadlag functions x.(t),t € [0,T] R Xo(1),t €
[0,T]ase— 0.

In the general case, where it is not known whether (‘)gT) holds or not, condition A,
must be strengthen in the following way:
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A;: (a) x.(r) = xo(t) ase — Ofort € S, where S is a subset of [0, T'] that is dense in
this interval and contains the points 0 and 7';

(b) x,(T —0) - xo(T —0)as e — 0.
The conditions of J-convergence take, in this case, the following form.

Theorem 1.4.4. Conditions A, and J, are necessary and sufficient for J-convergence
of cadlag functions x,(1), t € [0, T] =5 xo(1), € [0, T] as & — 0.

Under conditions A¢ and d,, condition A, (b) is equivalent to the following condi-
tion:

OET)i 1irnO<c—>0 Es—)O |Xb(T - C) - X{:(T - O)l =0.

This remark permits to replace conditions A, and d, in Theorem 1.4.4 with condi-
tions O(ZT), Ay, and J;.

If condition (‘)gT) holds, conditions A4 and J; imply that conditions A, (b) and (‘);T)
hold. Thus the conditions of Theorem 1.4.4 reduce to the conditions of Theorem 1.4.3.

1.4.5. Compact sets in Dy 7;. Let a(?) be a continuous increasing function defined
for t > 0 such that (0 + 0) = 0, and a constant § > 0. Let us denote by K[a(-), 3, T'] the
set of cadlag functions x(¢), ¢ € [0, T'], such that sup,_,., [x(1)] < B and A;(x(-),c,T) <
a(c) for ¢ > 0.

The following lemma characterises compact sets in Dy 7).

Lemma 1.4.5. The set K[o(-),B,T] is the space Dy, and for any compact K in the
space Dyo ) there exists a compact K[a(-),3,T] 2 K.

Let condition A, hold. Using Lemma 1.4.5 it is possible to show that, in this case,
condition J; guarantees that for any €, — 0 the sequence of functions x,, () contains a
J-convergent subsequence.

For this reason, the quantity A;(x.(:),c,T) can be referred to as a modulus of J-
compactness, and conditions of type J, as J-compactness conditions.

1.4.6. J-convergence on subintervals. Let 0 < 77 < T. If (a) x.(¢),7 € [0, T] R
Xo(?),t € [0,T] as ¢ — O, then (b) x.(T") — xy(T’) for any point 7* € [0,T] that
is a point of continuity for the limiting function. Also, the corresponding modula of
J-compactness are connected by the inequality (¢) A;(X.(-), ¢, T") < Aj(Xc(+), ¢, T).

So, relation (a) implies that (d) x.(¢), ¢ € [0, T’] i> Xo(1),1€[0,T']ase - 0if T’ is
a point of continuity for the limiting function xy(?).

Assumption (a) does not automatically imply (b) without the assumption of conti-
nuity of the function x(#) at the point 7°. However, (a) does imply (b) without this
assumption, if it is assumed that (e) X.(7" £ 0) — xo(T" £ 0) as ¢ — 0.
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It is useful to note that one can replace (a) with the following weaker assumption: (f)
conditions A, and J, hold (as it was pointed out in Subsection 1.4.4, condition A, (b)
or (‘);T) would be required in this case to provide (a)). Assumption (f) also implies (d),
if T’ is a continuity point for the limiting function x((#). Indeed, one can always choose
apoint 7 < T” < T such that 7" is a continuity point for the function x((#). Obviously,
(f) is satisfied for the point 7" and, therefore, (a) holds for the functions x.(¢), ¢ € [0, T"'].
Consequently, (d) holds. By the same arguments, (f) implies (d) without the assumption
of continuity of the function x((¢) at the point 7" if (e) holds.

1.4.7. J-convergence of transformed cadlag functions. Let g(z, X) be a continuous
function defined on the space [0,7] X R,, with values in the space R;. Let us also
x.(1),t € [0, T] be cadlag function from the space DES?T]. Then functions g(z, X.(?)),t €
[0, T'] belong to the space DY . the following simple statement readily follows from

[0,7]*
Definition 1.4.3.

Lemma 1.4.6. If the functions x.(t),t € [0,T] i> Xo(t),t € [0,T] as € — 0, then the
functions g(t,X.(t)),t € [0, T] L> g(t,xo(1)),t€[0,T]as e — 0.

1.4.8. J-convergence of vector-valued cadlag functions. Let x,;(r),t € [0,T] be a
m-dimensional cadlag function for every j = 1,...,r and € > 0. Let us also consider the
rm-dimensional cadlag functions X.(1) = (X¢;(#), j=1,...,r),t €[0,T].

The following useful result belongs to Whitt (1973, 1980).

Lemma 1.4.7. Let (&) functions X¢(t),t € [0, T] i> Xo;(1),t € [0,T] as € — O for every
Jj=1,...,r, and (B) x0;(t), j = 1,...,r have no joint jump points in the interval [0, T],
then the functions X.(t),t € [0, T i> Xo(1),1€[0,T]ase — 0.

1.4.9. J-convergence to continuous functions. The case of J-convergence to a

continuous function deserves a special consideration.
Let us define the modulus of U-compactness for all ¢, T > 0,

Ay(x(-),c,T) = sup Ix(t") — x(t"). (1.4.7)

0<t’ 1" <T,|t —t"|<c

Lemma 1.4.8. A function x(t) defined on an interval [0, T] is continuous if and only if
lin& Ay(x(+),c,T) = 0.

In what follows we assume that condition A, holds. Let us introduce the following
condition of U-compactness:

Uy lime_o limeo Ay(xe(), ¢, T) = 0.
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Note that condition U, also includes the relation lim._ Ay(Xo(+), ¢, T) = 0. There-
fore, under condition W,, the limiting function x,(), ¢ € [0, T'] in condition A is con-
tinuous.

The following theorem is an extension of the Ascoli-Arzeld theorem for continuous
functions to the case where the pre-limiting functions are cadlag functions.

Theorem 1.4.5. Conditions A and W, are necessary and sufficient for U-convergence

of cadlag functions x,(t), 1 € [0, T] — xo(t), 7 € [0, T] as € — 0, where xo(t), 7 € [0, T]
is a continuous function.

The following simple inequality connects the modula A; and Ay.

Lemma 1.4.9. Let x(t) and y(t) be two functions from Do ry. Then, for every ¢,T > 0,
AyXC)+y0), e, T) < Ay(x(), ¢, T) + Ay(y(), ¢, T). (1.4.8)
Inequality (1.4.8) implies that for all ¢, T > 0,
Ajx(-),c,T) < Ay(x(-),c, T). (1.4.9)

As it was mentioned above, if cadlag functions x.(#) U-converge to a cadlag function
Xo(?) as € — 0, then they also J-converge to this function.

In general, the inverse statement is not true if the limiting function is not continuous.
However, it is possible to prove that the topologies of convergence J and U are equivalent
if the limiting function x,(¢) is continuous.

Theorem 1.4.6. Cadlag functions x(t),t € [0, T] i> Xo(1),t € [0,T] as € — 0, where

Xo(?), t € [0, T is a continuous function, if and only if X.(t),t € [0, T] L Xo(1),1 € [0,T]
ase — 0.

1.4.10. A decomposition of cadlag functions based on separation of large jumps,
and an alternative definition of J-convergence. Let us denote by A,(x(+)) = x(¢) — x(t —
0) the value of the jump of a cadlag function x(-) at a point .

Let us take 6 > 0 and decompose x(¢) into a sum of two components, X(f) = X(f)(t) +
xV(1),¢ € [0,T]. Here x{(1) = ¥ oo AON(AXO)] > 8), € [0,T], and x*(¢) =
x(1) — X(f)(t), t € [0,T]. By the definition, x(f)(t) is the sum of jumps, of the function
x() in the interval [0, 7], whose absolute values are greater than or equal to 8. According
Lemma 1.4.1, the function x(#) has at most a finite number of such jumps in the interval
[0,T]. So, X(f)(t) is a step cadlag function with absolute values of jumps greater than
or equal to 0, whereas x®t)is a cadlag function that has no jumps with absolute value
greater than or equal to d.

Let us also denote X;?)(t) = Y X(A;X()| = 8),t € [0, T]. By the definition, Xf)(t)
is the number of jumps of the function x(-) in the interval [0, #], whose absolute values
are greater than or equal to 0.
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In Skorokhod (1955a, 1964), the J-topology of convergence was defined in a form
equivalent to the one given in Definition 1.4.3. We formulate this alternative definition in
the form of a lemma. It is slightly modified to include the case where the right endpoint
T may be not a point of continuity of the limiting function.

Let us denote by Z[x((-)] the set of all > 0 such that the cadlag function x(¢),t €
[0, T'] has no jumps with absolute values equal to 8. The set Z[x((-)] is (0, co0) except
for at most a countable set of points. Let also S[x((-)] denote the set of all points of
continuity for the function x((¢), t € [0, T']. Note that 0 € S[x((-)].

Lemma 1.4.10. Functions x.(1),t € [0,T] i> Xo(?),t € [0,T] as € — 0 if and only if:
(o) X(b) (1) — x(b) () ase — 0 and Xg(t) - X(b)(l‘) as € — 0 for every 0 € Z[xy(")],

£ € S [%o(-)] U (T}, (B) limy o Time o dyr(x (), X () =

Using this lemma one can easily prove the following useful statement.

Lemma 1.4.11. Let functions x.(t),t € [0, T] i> Xo(t),t € [0,T] as € — 0. Then the

functions (x.(6), xXL(), X2 (1), 1 € [0, T] = (Xo(8), X5 (), X" (1), 1 € [0,T] as € —> 0
for every 0 € Z[XO( )].

In order to prove this lemma, one can apply Lemmas 1.4.6, 1.4.7 and 1.4.10 to the
cadlag functions X.(7) = X(é) () and X, (1) = X(é) (1), where 6 € Z[x,(")].

By the definition, (a) i(i)(t) = X(6 VES)(t) ~(6 )(t) = X(6 Vé)(t) and f((é,)(t) = Xg(t) -

(6 VES)(t) It is obvious that (b) Z [Xo()] = Z[ xo( )] U (0, 6) and S [xp(-)] € S[Xo(")]
S [x(b )( -)]. By the definition, x (t) is a step cadlag function. Also the set S [xq(- )] is
dense in [0, T']. That is why, (¢) 1f t € S[Xo(-)] then there exist points ¢’ <t < t",¢,t" €
S [Xo(-)] such that X(') = X§)(1) = X)) and X, (t') = &), (1) = X, (¢"). It follows
from (a) — (c¢) that conditions (o) and (B) of Lemma 1.4.10 hold for the functions X (7).
Thus, (d) X.(7),1 € [0, T] —> xo(t) tel0,T]ase — 0.

By the definition, (e) (1) = x0"V(1) — x"L(0), £%)() = xE"V(1) — xO)1) and
£2(1) = x,(6) = x%V (). It is obvious that (f) Z[%6()] = ZIXo(-)]U[S, 00) and § [xo(-)]
S[X()] €S [f((6 )( -)]. By the definition, X ( ) is a step function. Also the set S[x((-)]
is dense in [0, T] That is why, (g) if ¢t € S [Xo(-)] then there exist points ' < ¢t < t”,
t',1" € S[xo(-)] such that £, (#") = £0")(1) = &7(") and &) (1)) = &)(1)) = 8§, (). It
follows from (e) — (g) that condltlons ((1) and (B) of Lemma 1.4.10 hold for the functlons
%.(1). Thus, (h) &.(1), 7 € [0, T] - Ro(1), € [0, T] as € — 0.

Obviously, (i) the functions X,(¢) and X((¢) have no joint jump points in the interval
[0, T]. Using (d), (h), (i), and Lemma 1.4.7 we get that (j) the functions (X.(?), X.(?)), t €
[0,T] J — (Xo(1), Xo(1)),t € [0, T] as € — 0. To complete the proof one can apply Lemma
1.4.6. Indeed, the function (x.(?), X(é) (t),x(é) (1) = (x(é) (n + X(é) (1), X(é) (t),x(é) (1) is a
continuous transformation of the function (x(b) (0, x(b) (0)).
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1.4.11. The M-topology in the space Dy ;. The U-topology is stronger than the J-
topology of convergence. Let us also introduce an M-topology in this space. This topol-
ogy, introduced by Skorokhod (1956), is weaker than the J-topology. The M-topology
is connected with an important class of maximum and minimum functionals.

Let us introduce a notion of the graph of a function x(¢),¢ € [0, T] from the space

Definition 1.4.4. The graph I'[x(:)] is a closed set in R,, X [0, T'] that contains all pairs
(x, ¢) such that the point x belongs to the segment [x(z—0), x(¢)] (the set {x(r—0) + s(x(¢) —
x(t—-0)),0< s < 1}).

(m)

Let us define, for functions x(-), y(-) € D[o,r]’

dyr(x(-),y()) = sup inf (|t — 5|+ [x —yl). (1.4.10)
x,nelx()] ¥-9EyC)]

Definition 1.4.5. Functions x.(¢),t € [0,T] converge in the M-topology to a func-

tion xo(#),t € [0,T] as € — 0 (x:(1),t € [0,T] i xo(1),t € [0,T] as ¢ — 0) if
dur(Xe(), Xo(-)) > O as e — 0.

As was mentioned above, the J-topology is stronger than the M-topology.

Lemma 1.4.12. If cadlag functions x(t),t € [0, T] i> Xo(1),t € [0,T] as € — 0, then
x:(£), 1 € [0, T] ~ xo(1), 1 € [0, T] as e — O.

It is possible to give an example of cadlag functions that converge in the M-topology
but do not converge in the J-topology.

In what follows, we assume that condition A holds.

Let us introduce the modulus of M-compactness,

Ay(x(-),c,T) = sup Hx(t"), x(1), x(t")), (1.4.11)

1€[0. T eltz 17 + 5117 €lrf =5 48]

wheret, =0Vit—c,tf =t+cAT,and H(x, [x',x"”]) is the distance from the point x to
the segment [x’,x"], ¢, T > 0.
Let us introduce the following condition of M-compactness:

M,: limeyo limeo Ay (xe(-), ¢, T) = 0.

As in the case of the J-topology, we formulate the corresponding condition for M-
convergence in the case where the right endpoint 7 is a point of continuity for the corre-
sponding limiting function, i.e., condition (‘)(IT) holds.
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Theorem 1.4.7. Let condition (‘)(IT) hold. In this case, conditions Aq and M, are neces-

sary and sufficient for M-convergence of cadlag functions x.(t),t € [0, T] i Xo(1),t €
[0,T]ase— 0.

In the general case, if it is not known whether (‘)(IT) holds or not, A, and M, are

necessary and sufficient conditions for the M-convergence x.(t), ¢ € [0, T'] M, Xo(1),t €
[0,T]ase — O.

1.4.12. Geometry of the space Dy ,). The J-topology was introduced so far for
cadlag functions defined on a finite interval [0, T]. However, all results can be carried
over to cadlag functions defined on intervals of other types. The most interesting is the
case of the semi-infinite interval [0, c0).

We will follow the approach of Stone (1963), whereby the J-convergence of cadlag
functions on the interval [0, o) is equivalent to the J-convergence of these functions on
finite intervals [0, 7,] for some sequence T,, — oo as n — oo.

Let us consider the space DEK;) of m-dimensional cadlag functions defined on the
semi-infinite interval [0, co). In this case, the notation x(¢), ¢ € [0, co0) is usually replaced
by a simpler notation x(¢), t > 0.

(m)
[0,00)

. J . .
to a function xy(7),t > 0 as € = 0 (X¢(¢),t = 0 — X((¢),t > 0 as € — 0) if there exists a

Definition 1.4.6. Functions x.(¢), # > 0 from the space D converge in the topology J

sequence 0 < T, — oo as n — oo such that () x.(?),¢ € [0, T),] i> xo(1),t € [0,T,] as
e > Oforeveryn=1,2,....

As it follows from the remarks made in Subsection 1.4.7, existence of a sequence T,
in Definition 1.4.6 implies that (@) is satisfied for any other sequence 0 < 7, — oo as
n— oo if T,;,n > 1 are points of continuity for the limiting function.

There was a question whether the definition given above can be replaced with a
definition similar to the one used by Skorokhod for finite intervals. Another question
was whether there exists a metric that turns the space Dﬁﬁo) into a Polish space. Both
questions were answered in the affirmative by Lindvall (1973).

Let A be the space of all continuous strongly monotone functions A(t) defined on
[0, 00) such that A(0) = 0 and A(f) — oo as t — oo.

Lemma 1.4.13. Functions x.(t),t > 0 R Xo(t),t > 0 as € — 0 if and only if there
exist functions \e € A such that (&) supy.,.r [he(t) —t| — Oase — 0, T > 0, and
(B) supy<,<r 1Xe(Ae (1)) = X(®)] = 0ase = 0, T > 0.

Let us define, for a function A € A,

M) — M(s)
In ——=

Ml =
M= sup —

0<t,5<00,t#s

< oo (1.4.12)



1.4. The space D of cadlag functions 33

Let us also define the functions gy(f) = Iyt < N)+ (N+ 1 —-t)y(N <t < N+ 1),
t € [0,00), for = 1,2,.... By the definition, for any function x(¢), t+ > 0 from the space
DESZO), the product gy(1)x(7), t > 0 is a function from ngflo), continuous at the point N +1,
and equal to O fort > N + 1.

The following formula defines the desirable metric:

dy(x(), ¥ = D 27 A InfM) + i @uOCIXAO), guOYOD). (14.13)

N>1

Theorem 1.4.8. Formula (1.4.13) introduces a metric in the space DEK;). This space,

equipped with the metric dj, is a Polish space. The convergence in this metric is equiva-
J

lent to the J-convergence, i.e., functions X.(t),t > 0 — X(t),t > 0 as € — 0 if and only

if dj(Xe(-), Xo(-)) > O as e — 0.

The following condition is an analogue of the weak convergence condition A, but
relate to the semi-infinite interval [0, c0):

Ag: X.(t) = Xo(t) as € = 0 forz € §, where S is a subset of [0, o) that is dense in this
interval and contains the point O.

Also, the following condition is an analogue of the J-compactness condition J:
5: lime_o lime_o Aj(x.(-),¢,T) = 0,T > 0.

The following theorem is a direct corollary of Theorem 1.4.3 and the definition of
J-convergence on the semi-infinite interval [0, o).

Theorem 1.4.9. Conditions Ag and J, are necessary and sufficient for J-convergence

of cadlag functions, X¢(t),t > 0 R Xo(1),t > 0ase— 0.

It is useful to note that the J-compactness relation in condition J, holds for all 7 > 0
if and only if it holds for some sequence 7,, — oo as n — oo.

Condition g, can also be replaced in Theorem 1.4.9 with a similar condition in which
the modulus A;(x¢(-), ¢, T) is replaced with the modulus A (x.(-), ¢, T).

1.4.13. The U and M-topologies in the space Dy ,). Let us now carry over, to the
case of semi-infinite interval [0, o), the corresponding definitions and results concerning
the U and M-topologies.

(m)

Definition 1.4.7. Functions x,(), # > 0 from the space D 0c)

converge in the U-topology

. U . .
to a function xy(7),t > 0 as € = 0 (X.(¢),t > 0 — X((?),t > 0 as ¢ — 0) if there exists a

sequence 0 < T, — oo as n — oo such that (&) x.(?),¢ € [0, T},] i> xo(1),t € [0,T,] as
e > Oforeveryn=1,2,....
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The following U-compactness condition is an analogue of conditions U,, but it re-
lates to the semi-infinite interval [0, co):

U,: lim_o limeg Ay(xe(-), ¢, T) =0, T > 0.

Note that condition U, also includes the relation lim,_,o Ay(Xo(-),c,T) = 0,T > 0.
Therefore, under condition WU,, the limiting function xy(¢), # > 0 in condition Ay is
continuous.

Theorem 1.4.10. Conditions Ag and U, are necessary and sufficient for U-convergence

of cadlag functions, x.(1),1 = 0 — xo(1),1 > 0 as & — 0.

The case of the M-topology can be considered analogously.

(m)

Definition 1.4.8. Functions x.(7), ¢ > 0 from the space D[O’OO)

converge in the M-topology

. M . .
to a function xy(7),t > 0 as € = 0 (X¢(¢),t = 0 — X((¢),t > 0 as ¢ — 0) if there exists a

sequence 0 < T, — oo as n — oo such that () x.(?),¢ € [0, T),] i xo(1),t € [0,T,] as
e > Oforeveryn=1,2,....

The following M-compactness condition is an analogue of condition VM, but relates
to the semi-infinite interval [0, co0):

M,: lim_o lime_o Ay (Xe(-), ¢, T) = 0, T > 0.

Theorem 1.4.11. Conditions Ag and M, are necessary and sufficient for M-convergence

of cadlag functions, x.(1),1 = 0 — xo(1),1 > 0 as & — 0.

1.4.14. J-topology for other types of intervals. The cases of other types of open or
semi-open intervals can be treated in a similar way.

In the case of an interval I = (a,b), where 0 < a < b < oo, a nested sequence of
intervals is constructed, a < Ty, < T, < b, Ty, — a, To, — b asn — oo. For a
semi-closed interval I = [a,b), we take a = Ty, < T», < b, T, — b, and in the case
I=(bl,a< T, <Ty =b,T, — a.

One says that cadlag functions x.(¢),t € 1 i> Xo(#),t € I as ¢ — 0if x.(¢),t €

[T, Tl i> Xo(?),t € [T1,, T2,] as € — 0 for some sequence of intervals [T, T5,],n =
1,2, ... that satisfy that requirements described above.

In a way analogous to that used for the intervals [0, '] and [0, c0), it is possible to
define the J-topology in the space D; and then to construct a metric d;; that makes this
space a Polish space and that generates a topology of convergence in D; equivalent to
the J-topology.

The U and M topologies of convergence on intervals of other types are introduced in
a similar way.
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1.5 J-continuous functionals

Conditions of J-continuity for various functionals defined on the space D of cadlag func-
tions play an essential role in the theory. They lead to conditions of weak convergence
for random functionals defined on cadlag processes. In this section, we formulate con-
ditions of J-continuity for some important functionals.

1.5.1. A.s. J-continuous functionals in space Dy . Let %EK)T] be the Borel o-
(m)

algebra of subsets of the space Dy, equipped with the metric d;r (the minimal o-
algebra containing all balls in this space). Let also f(x(:)) be a measurable functional
(function) acting from the space DEK)T] into R; (the inverse image f~'(B) = {x(-): f(x(-))
€ B} belongs to the o-algebra B

(0.7 forevery B € B,, where B, is the Borel o-algebra of
subsets of R)).

Definition 1.5.1. A functional f is J-continuous at a cadlag function x(¢), t € [0, T'] if

Jf(X:(+)) = f(x0(-)) as € — O for any cadlag functions x.(¢), ¢ € [0, T] i> Xo(1),1 € [0,T]
ase — 0.

Definition 1.5.2. A measurable set ¢,[ f] of cadlag functions xy(¢), ¢ € [0, T] at which
the functional f is J-continuous is called the set of J-continuity of this functional.

Definition 1.5.3. A functional f is called J-continuous if €,[f] = DES?T] and it is called
a.s. J-continuous with respect to a probability measure F on %ng)n if F(C;[f]) = 1. The

class of all functionals a.s. J-continuous with respect to the measure F is denoted by

DyLF].

To indicate the interval, the notations €;7[f] and $;7[F] are used instead of €,[f]
and 9;[F].

Note that in order to show a.s. continuity of a functional f with respect to a measure
F it is enough to show that F(€/[f]) = 1 for some Borel set €[ f] € €,[f].

The problem concerning conditions under which a functional f is a.s. J-continuous
with respect to a measure F can be split into two subproblems. The first one is to describe
the structure of the set of J-continuity €[ f] or some appropriate set /[ f]. Below we
give an answer to this question for some important classes of functionals. The second
problem is to give conditions which would imply that F(€,[f]) = 1 or F(€[f]) = 1 for
the measure F' generated by a cadlag process from a given class.

1.5.2. The value of a cadlag function and the value of jump at a point. The
simplest measurable functional is f*(x(-)) = x( £ 0). Here 0 < ¢ < T.

Lemma 1.5.1. If 0 < ¢t < T, then §,[f] is the set of cadlag functions that are (a.)

continuous at point t. If t =0 ort =T, then €[ f*] = DES’)T].
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Note also that any cadlag function x(7) is continuous at 0. That is why, the assumption
of continuity can be omitted in (@) if = 0.

As it follows from Theorem 1.4.4, if cadlag functions x,(¢), 7 € [0, T] — Xo(7), €
[0,T] as € — O then x.(T + 0) — xo(T + 0) as € — 0. That is why the assumption of
continuity can also be omitted in (o) if # = T

Let us denote by A,(x()) = x(¢) — x(¢ — 0) the value of the jump of a cadlag function
x(-) at a point £. Here 0 < ¢ < T. Note that, for any cadlag function, Ay(x(:)) = 0. The
following lemma is a corollary of Lemma 1.5.1.

Lemma 1.5.2. If0 <t < T, then €,[A,] is a set of cadlag functions that are (o) contin-
uous at the point t. If t = 0 or t = T, then €;[A,] = DES”)T].

1.5.3. The sum of large jumps, the number of large jumps, and the maximal
jump. Let us denote by ZE?L(X(-)) = Yi<i<n AXO)(A,x())| > d) the sum of all
jumps, in the interval [z, 1;], the absolute values of which is greater than or equal to 9.

Here0<t; <, <T,d > 0.

Lemma 1.53. If0 <t <t, < T, then € J[Zﬁﬁ’h] is a set of cadlag functions that are (o)
continuous at the points t| and ty, and (B) A(x(-)) # O for all t € [t,,1,]. If at least one
of the points ty, t, coincides with O or T, then the condition of continuity in the definition
of the set €, [Eﬁ?’)tz] should be omitted for the corresponding endpoint.

We will also denote by N°) (X(-)) = X, <1<, X(IA(X())| = 8) the number of jumps, in
the interval [z, ;], that have absolute values greater than or equal to 6. Here 0 < | <
tL<T,6>0.

Lemma 1.5.4. The set € J[Nl(]éjz]: (0 1[2(6) | forevery0 <t <t, <T.

.,

Let us now define the functional M, ;,(Xc(*)) = sup,, <, 1A(X(-))| to be the maximal
(by absolute value) jump in the interval [#;,7,]. Here 0 < ¢, <, < T.

Lemma 1.5.5. If0 < t, <1, < T, then C,[M,, ] is the set of cadlag functions that are
(0) continuous at the points t; and t,. If at least one of the points t,,t, coincides with
0 or T, then the condition of continuity in the definition of the set C;[M,, , ] should be
omitted for the corresponding endpoint.

1.5.4. The moments of large jumps, the values of large jumps and the sums
of large jumps. Let us denote afT)(x(-)) = inf(s > af_)lT(x(-)) DA = ) AT,
k=1,2,..., where agéT) (x(+)) = 0. These functionals are the successive moments of large
jumps for a cadlag function x(¢) truncated in time by 7.

To simplify the formulation, we describe the corresponding subsets, instead of the

sets of J-continuity of the functionals introduced in this subsection.
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Lemma 1.5.6. The set ¢’ [a(é) ] of cadlag functions such that (o) |As(x(-))| # O fort €
[0, T] is a subset of €;[a )]for everyk=1,2,...

Also, let us denote B(é)(x( ) =A @ ))(x(-)) k =1,2,.... These functionals consti-

tute values of successive large jumps for a cadlag function x(#). More precisely, B(é)(x( ))
is the value of k-th large jump if a{(x()) < T. But BA(x(-)) = Ar(x() if &l (x(-)) =

Lemma 1.5.7. The set €’ [[3(6) ¢ [oc(b)] is a subset of €[ [.’),(c )]for everyk=1,2,.

Let us also introduce, for k = 0, 1,.. ., the functional p(b)(x( ) = 3

0.0 (x(+)), where
oyr = oc (x( )). This functional is the sum of large j ]umps for the cadlag function x(¢) if

al(x(- )) < T. But p(x(-)) = E0)(x() if af(x() =
Lemma 1.5.8. The set ¢’ [p(é)] (‘:'J[O((é)] is a subset of €[ p(é)]for everyk =1,2,.

1.5.5. The maximum and the minimum. Let us define m;  (x()) = (m; , (xi(")),
i =1,...,m), where m/ , (x;,(-)) = sup, ., xi(t) and m; , (x;()) = inf, <<, xi() for i =
I,....m.Here0 <t <1, <T.

Lemma 1.5.9. If0 <t < 1, < T, then §;[my ] is the set of cadlag functions, that are
(a) continuous at the pointst, and t,. If at least one of the points t,, t, coincides with 0 or
T, then the condition of continuity in the definition of the set €;[m; | should be omitted
for the corresponding endpoint.

Note that if (a) the functions x.(¢),t € [0, T] i> Xo(1),t € [0,T] as € — 0 and also
(b) x.(t £0) — xo(t £ 0) as ¢ = O forz € V C [0, T], then m , (x.(-)) = m;  (Xo(")) as
¢ — 0 without requiring that the limiting function be continuous at those endpoints ¢, t,
that belong to the set V.

1.5.6. The exceeding time and the over-jump. Exceeding times are functionals
dual to the maximum and the minimum functionals. Let us define TiT(X(')) = ('cjij(x,»(-)),
i=1,...,m), where rjij(xi(-)) =inf(t > 0: = x;(t) > xa;)) AT fori =1,...,m. Here
a=(a,...,a, €R,,.

Lemma 1.5.10. €,[x; ] is the set of cadlag functions such that (&) foreveryi=1,...,m
there do not exist points 0 < t; < t, < T such that mg"tl (x;(+) = mah(x,-(-)) = a;.

The formulation of Lemma 1.5.10 will not change if the inequalities > a; are replaced
with the inequalities > q;. in the definition of the functionals Tj,-,r(xi('))-

An over-jump is a functional defined as y;—"T(X(-)) = (yj{_](x,-(-)),i =1,...,m). Here
¥E (00 = X (6O — i fori = 1. m.
Lemma 1.5.11. The set €,[y; ;] is a set of cadlag functions that satisfy the condition (o)

given in Lemma 1.5.10, and (B) for every i = 1, ..., m, the functional mg . _o(xi(-)) # a; if
mg  (x:(-)) # a;, where T; = T, 1(x:(-)).
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1.5.7. The number of intersects of a strip. This functional can be defined as
v;’a,’f(x(-)) = (v;’a.,’af(x,-(-)), i =1,...,m). Here v;’a:af(x,-(-)) is the number of times
the cadlag function xl,»(s) intersects the strip [a;,a] from below in the interval [0, T].
This functional is set to be equal to k if there are k + 1 points 0 < 7p < t; < --- <
tv < T such that xi(ty) < a;, xi(t;) > a/, x(t,) < a;,... and there are no k + 2 points
that have this property. The functlonals Vi o (XC )) and Vi +(x,( )), which are the
number of intersects of the same strip from above, are defined analogously by replacing
the determining inequalities given above by the inequalities x;(t)) > a;, xi(t;) < a;,
xi(t) >af,....

Lemma 1.5.12. The set €,[v7 - .1 is the set of cadlag functions that satisfy the condi-
tions (a) and (P) given, respectively, in Lemmas 1.5.10 and 1.5.11 for both points a~
and a*.

1.5.8. Integral functionals. This is an important class of functionals. Let us con-
sider the case where an integral functional is defined as I,(x(:)) = f 011 h(t,x(t)) dt
(the Lebesgue integration), where & is a real-valued measurable functlon defined on
[0, o) X R,, and bounded in every finite cube of this set.

Lemma 1.5.13. Let h be a continuous function. Then €,[1,] = Dtgl)ﬂ

Let now consider the case when the function 4 can be discontinuous. Below, Cj, is
the set of continuity points for the function A.

In order to simplify the formulation, we prefer to describe an appropriate subset
rather than the corresponding set of J-continuity.

Lemma 1.5.14. The set €[I;] of cadlag functions that satisfy the condition
() f[o 7] (2, x(2)) € Cp) dt = 0 is a subset of €;[1,].

Note that condition (a) implies that the function A(¢, x(¢)) is Riemann integrable in
the interval [0, T'].

1.5.9. The modulus of J-compactness. The modulus of J-compactness, A ;.(X(-)) =
Aj(x(-),c,T), is also a measurable functional. Here ¢ > O.

Lemma 1.5.15. C;[A, ] is the set of cadlag functions that () have no jumps with the
absolute value equal to c.

1.5.10. A.s. J-continuous functionals for transformed cadlag functions. The
following construction allows to extend the results formulated above.
Let g(z, x) be a continuous function acting from [0, o) X R,, into R;. Obviously, the

function y(¢) = g(t, x(7)) belongs to the space DEQ’T] if the function x(#) belongs to the
(m)

space Dy 7.
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According to Lemma 1.4.6, if functions x,(z), 7 € [0, T] - xo(t), 7 € [0, T] as & — O,

then the functions y.(¢) = g(t, X(?)),t € [0, T] i> Yo(?) = g(t,Xo(1)),t € [0,T] as € — 0.
The conditions of J-continuity formulated in Lemmas 1.5.1 — 1.5.15 can be applied

to transformed cadlag functions. Let f be a measurable functional acting from DEQ’T] to

Ry. Then f,(x(-)) = f(g(-,x(-))) is a measurable functional acting from Dng)T] to R;.

Let us denote by (S(Jl) [f] the set of J-continuity of the functional f in the space DY

[0,7]
and by 023") [f,] the set of functions x(#) from the space DEK)T] such that the correspond-

ing transformed function y(¢) = g(z, x(¢)) belongs to (E(Jl) [f]. By the definition, the set
" f,]1 € €W [f,]. Here @f,”f [f,] is the set of J-continuity of the functional f,.

Therefore, condition F' (6(1'") [fe]) = 1 is a sufficient condition for a.s. J-continuity of
the functional f, with respect to the measure F.

1.5.11. A.s. J-continuous functionals on the space Dy ,). The definitions that
follow repeat those given above for the space Do 7.

Let %nglo) be the Borel o-algebra of subsets of the space DES?)O)

metric d; and f(x(-)) be a measurable functional acting from the space Dﬁﬁo) into R;.
A functional f is J-continuous at a cadlag function x( (), t > 0, if f(X.(-)) — f(Xo(+))

equipped with the

as € — 0 for any cadlag functions x.(¢),7 > 0 i> Xo(t),t > 0ase — 0.
The measurable set €[ f] of cadlag functions x((-) at which the functional f is J-
continuous is called the set of J-continuity of this functional.

A functional f is called J-continuous if €,[f] = DEK;)

continuous with respect to a probability measure F on %Eg’lo) if F(€,[f]) = 1. The class
of all functionals that are a.s. J-continuous with respect to the measure F' is denoted by

HIIF].

To exhibit the interval, the notations €, [f] and $;[F] are used instead of €,[f]
and $,[F], respectively.

J-convergence for cadlag functions that are defined on the interval [0, co) is defined
via J-convergence of their time-truncations on finite intervals. This makes it possible to
connect J-continuity of functionals defined on DEK;) with J-continuity of time-truncated
versions of these functionals.

Let us define, for a measurable functional f(x(-)) defined on D

[0.00)? the time-truncated
version of this functional, f7, defined on Dng)T] to be fr(xr(:)) = f(x(- A T)). Here,
x7(t) = x(¢), t € [0,T], is the truncation of the cadlag function x(¢), ¢ € [0, ), to the
interval [0, 7] and x(¢t A T), t € [0, o), is the cadlag function that coincides with the
function x(¢) for ¢ € [0, T'] and takes the constant value x(7") for > T.

In many cases, the functional f(x(-)) depends on values that the functions x(7) take
on some finite interval [0, T]. In particular, all the functionals considered above have
this property. The truncation operation described above allows to reduce consideration

(m)
to the space D 7.

and it is called a.s. J-
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However, some important functionals can also be defined in an essentially non-
truncated version. In this case, the reduction to the case of a finite interval still can
be accomplished in the following way.

Let us assume that, for a measurable functional f and a cadlag function x(?), ¢t €
[0, o), there exists a sequence O < T,, —» T < co as n — oo of continuity points for the
function x((¢) such that: (a) lim,,_,., ﬂs—m lf(xe(- A Tp)) — f(Xe(+))] = O for any cadlag

. J .
functions X.(¢),t € [0,00) — Xo(#),t € [0,00) as € — 0, and (b) the time-truncated
version of this functional, f7,, is J-continuous at the truncated function xy(¢), t € [0, T,,],

for every n = 1,2,.... Then the functional f is J-continuous at the function x(?),
t € [0, 00).

For example, exceeding times give an example of functionals that can be defined in
a non-truncated form as t;(x(-)) = (t;(x;(-)),i = 1,...,m), where T (x;(-)) = inf(z >
0: +x;(t) > +a;)fori=1,...,m.

Assume that (¢) lim,_. £m7 (xo,(-)) > *a;, i = 1,...,m, and (d) m{ (x0;i(-)) is a
strictly monotone function in ¢ for everyi=1,...,m. ’

Let 0 < T, — oo as n — oo be a sequence of continuity points of a cadlag function
Xo(?), t € [0, 00). It follows from Lemma 1.5.10 that (¢) and (d) imply (b). Obviously,
(e) T (x(1) — rj,Tn(x(-)) = 0if imng(xi(-)) > +a;. Thus (b), (c) and (e) yield that (f)
rji(xg,-(-)) <oo,i=1,...,m,for all £ sufficiently small, and (a) holds.

The following lemma follows from the remarks made above.

Lemma 1.5.16. The set €[t;] of cadlag functions that satisfy conditions (¢) and (d) is
a subset of €;[t,].

In a way similar to the above, the definitions of J-continuity can be extended to the
spaces Dj for other types of intervals.

1.5.12. A.s. J-continuous mappings. The definitions and some results concerned
a.s. J-continuous functionals can be generalised to the case of a.s. J-continuous map-
pings. Let I and I’ be subintervals of R; and g be a measurable mapping that acts from
the space D{" to the space D;l,). Let x(7), ¢ € I be a function from the space D{". Let us
consider a function x®(-) = g(x(-)). By the definition, the function x®(¢), t € I' belongs
to the space DY

Definition 1.5.4. A mapping g is J-continuous at a cadlag function x((¢), ¢+ € I if

J < 11 . J
ng)(t),t el — xgg)(t),t € I' as ¢ — 0 for any cadlag functions x.(¢),r € I —
Xo(t),t € ITase — 0.

Definition 1.5.5. A measurable set ¢ s[g] of cadlag functions xy(#),¢ € I at which the
mapping g is J-continuous is called the set of J-continuity of this mapping.

Definition 1.5.6. A mapping g is called J-continuous if €,[g] = D;m) and it is called a.s.
J-continuous with respect to a probability measure F on EBE’") if F(C,[g]) = 1. The class
of all mappings a.s. J-continuous with respect to the measure F is denoted by $,[F].
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A typical example is a transformation mapping g: x®(t) = g(t,x(1)),t € [0,T].
Hear g(, x) is a continuous function defined on the space [0, 7] X ]Rm with values in the
space R;. This mapping acts from the space DEO )T] to the space DY . The mapping g is
J-continuous that follows from Lemma 1.4.6.

Another typical example is a decomposition mapping d: xX9() = (x(©), x> (1), x¥(1)),
t € [0,T]. Here xXV(t) = 3., A O(AL(X())] > 8),¢ € [0,T], and x2(1) = x(r) -

(6)(t) t € [0, T]. This mapping acts from the space D[g’)ﬂ to the space DS"})]. The fol-
lowing lemma supplements the result of Lemma 1.4.11. ’

[o.ry

Lemma 1.5.17. The set of J-continuity for the mapping d coincides with the set cadlag
functions that (a) have not jumps with absolute values equal to d.

Let us also consider a max-mapping m: x™() = (x(t),x*(¢)),t € [0,T], where
x() = (x(0),i = 1,...,m) e DY x* (1) = (x{ (), = 1,...,m) and x; (£) = sup, ;g X:(5),
(2m)

i =1,...,m. This mapping acts from the space DES“T] to the space Dy .

The following simple lemma supplement the result of Lemma 1.5.9.
Lemma 1.5.18. The mapping m is J-continuous.

In order to prove this lemma one can apply Definition 1.4.3. According to this

definition, if cadlag functions x.(¢),t € [0,T] i> Xo(?),t € [0,T] as € — 0, then
there exist mappings A, € A such that (a) supy,.;[A(t) =/ — O ase — 0,
and (b) dyr(Xe(Ae(+)),X0(-)) — 0 as ¢ — 0. Obviously, (b) holds if and only if (c)
dyr(Xei(he()), x0;(-)) — 0 as e — 0, for every i = 1,...,m. Using (c) one get (d)
ot (0, 33 < SUPey SUPas i (ha(5)) — X0 = s (FiOre(), () = O
ase — 0,fori=1,...,m. But, (c) and (d) hold if and only if (€) dy7(x™™(he(-)), xI™(-))
— 0 as e — 0. By Definition 1.4.3, (e) implies J-convergence of the functions xém)(t), te
[0, T'] to the function xg“)(t), te[0,T]ase — 0.

In an obvious way the definitions given above can be generalised to the case where
g be a measurable mapping that acts from some closed with respect to J-convergence
sub-space D C D;’") to the space D(Il,).

In context of this book, an important composition mapping is an object of special
interest. It is defined as ¢: X©®) = (x;(y1(®)), ..., Xxu(u(®)),t € [O o) where X(7) =
D105 - s YD), x1(D), - . ., X(D)), 1 € [0, 00) belongs to the space D’ x D" . This

[0, oo>+ [0.00)"
mapping acts from the space Digflo) L X Dig” ) to the space DE:)"L)

The notation x o y(¢) can be used in order to show explicitly functions that are com-
posed.

Conditions of a.s. J-continuity for the composition mapping are studied in Chapter 3.
What is interesting that the compositions igc)(t) = (X1 Ve1 (1), + « + s XemYem(1))), t € [0, 00)
can J-converge even if the functions X.(f) = (Ve1(?), ..., Vem(®), Xe1(1), ..., Xem(?)),t €
[0, 0) do not J-converge. Such statements require to extend the concept of a.s. J-

continuous mappings.
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1.5.13. A.s. U-continuous and a.s. M-continuous functionals. Analogous defi-
nitions can be given for the topologies U and M. The definitions are given in a unified
form for both cases of the intervals I = [0, T] and I = [0, c0), as to avoid repetitions.

In the case of the U-topology, the only case of convergence to continuous functions
is considered.

A measurable functional f is called U-continuous at a continuous function x((¢) if

J(X(+)) = f(x0(+)) as € — O for any cadlag functions x.(-) L xo(-) as e — 0.

The measurable set €[ f] of continuous functions x((#) at which the functional f is
U-continuous is called the set of U-continuity of this functional.

A functional f is called U-continuous if €y[f] = D{” and it is called a.s. U-
continuous with respect to a probability measure F, defined on the Borel o-algebra of the
corresponding space of cadlag functions, if F(Cy[f]) = 1. The class of all functionals
that are a.s. U-continuous with respect to a measure F' is denoted by Hy[F].

To indicate the interval, the notations €y 7[f] and Hyr[F] or Cyo[f]1 and Hy e[ F]
replace €y [f] and Hy[F], respectively.

By the definition, the set €y [f] contains only continuous functions. Let us also
recall that J-convergence and U-convergence are equivalent if the limit functions are
continuous. So, for any measurable functional f, the set of U-continuity coincides with
the intersection of the set of J-continuity of this functional and the corresponding space
C of continuous functions.

Lemma 1.5.19. The set €[ f] = €,[f]1 N C.

This lemma makes it simple to describe the set €[ f] for most of the functional
described in Subsections 1.5.2 — 1.5.9. For example, the set € [ f] coincides with the
the space CEK)T] for all functionals introduced in Subsections 1.5.2 — 1.5.5.

It is also useful to note also that, due to Lemma 1.5.19, a measurable functional f
can be a.s. U-continuous with respect to a probability measure F only if the measure F
is concentrated on the corresponding space C of continuous functions.

In the case of the M-topology, all the definitions are analogous.

One says that a measurable functional f is M-continuous at a cadlag function x(?)

if f(xe(:)) = f(Xo(-)) as € = 0O for any cadlag functions x.(-) i xo(-) as e — 0.

The measurable set €[ f] of cadlag functions x((¢) at which the functional f is M-
continuous is called the set of M-continuity of this functional.

A functional f is called a.s. M-continuous if €[ f] = D;m) and it is called a.s. M-
continuous with respect to a probability measure F, defined on the Borel o-algebra of the
corresponding space of cadlag functions, if F(€[f]) = 1. The class of all functionals
that are a.s. M-continuous with respect to a measure F is denoted by $y,[F].

The cases of intervals [0, T] or [0, co) are specified, respectively, by the notations
Curlfland Hyr[F]or €y ol f]and Hao F1.
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A study of conditions for M-continuity of concrete functionals is beyond the scope
of this book. We will only formulate the related result for maximum and minimum
functionals that play an important role in limit theorems for randomly stopped cadlag
processes.

Lemma 1.5.20. €y, [m} | is the set of cadlag functions that are (&) continuous at the
points t; and t.

As it was pointed out by Skorokhod (1956), M-convergence can actually be char-
acterised in terms of convergence of maximum and minimum functionals. Namely,

x,(1),1 = 0 -5 xy(t),¢ > 0as & — 0 if and only if m$,(x.()) — m&,(x() as

e — 0 for all points 0 < #; <, < oo that are continuity points for the function x(?).

1.6 J-convergence of cadlag processes

In this section, we give a survey of general results related to functional limit theorems
for cadlag stochastic processes. These processes can be considered as random variables
taking values in the corresponding space of cadlag functions D. This space becomes
a Polish space if an appropriate metric is introduced. This allows to apply the general
theory of weak convergence in metric spaces for obtaining functional limit theorems for
cadlag processes.

1.6.1. Cadlag stochastic processes. Let us consider a stochastic process &(r) =
(E1(0),...,En(D)), t € I, defined on an interval I and taking values in the space R,,. Actu-
ally, the process &(t) is a family of m-dimensional random variables (7). These random
variables are defined on some probability space (Q, &, P) and depend on a parameter
t € I which should be interpreted as time.

A process &(t),t € I is a cadlag process if, for every outcome w € €, the realisation
of this process {&(¢, ), t € I} belongs to the space D;’").

1.6.2. Finite dimensional distributions and measures generated by cadlag pro-
cesses. Lett; < --- < ¢, be a finite sequence of times in the interval I. Obviously,
(§(t1),...,E&(t,)) is a random variable (vector) taking values in the space R,,,. Let us
consider the distribution function of this random vector,

Fl] ..... tm(i) = Fl] ..... tm(X17 LY ’Xn)
= P{g(tl) < Xy, .. -a%(tn) < Xn}’ X = (Xl,- . -,Xn) € ]Rmn-

The distribution function given above is in the form of a joint distribution function of
the random variables &(t;), ..., E(t,). It is called a finite-dimensional distribution of the
process &(7), t € I at the points t1,. .., 1,.

The family of all finite-dimensional distributions for arbitrary varying sequences of
timest; < --- <ty t,...,t, € I, n = 1,2,..., determines probability properties of the
process &(7), t € I in the following sense.
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Denote by Z; the class of all cylindric subsets Z;, , x..x, = {X() € D;: x(#;)
<xi,....x(t) <x,},X1,... X, €ER,, (1 <...<t,H,...t,€l,n=1,2,....

Let us also use the symbol QS;’") to denote the minimal o-algebra which contains all
cylindric subsets from the class Z;.

Via the extension measure theorem, the family of finite-dimensional distributions of
the process &(7),t € I uniquely determines a probability measure F(A) on the o-algebra
23;’"). This measure takes the values F(Zy, ., x..x,) = Fu. .., (X1,...,X,) on cylindric
sets from the class Z;. By the definition, F(A) = P{w: &) = {E(w,1),t € I} € A}
is a probability that the realisation of the process &(¢),7 € I belongs to a set A from
the o-algebra %;’"). This measure is called a measure generated by the cadlag process
E(),tel.

As was pointed out in Section 1.4, the space D;’") can be equipped with a metric
d;; that makes this space a Polish space and such that convergence in this metric is
equivalent to J-convergence. These metrics were explicitly introduced in Subsections
1.4.3 and 1.4.11 for two most important types of intervals, [0, 7] and [0, o), respectively.
The corresponding procedure was also described in Subsection 1.4.13 for other types of
intervals.

We will use the same symbol 23(1’") to denote the Borel o-algebra of subsets of D;’")
equipped with the metric d;; (the minimal o-algebra containing all balls in D(Im)). The
following theorem explains why the double use of the symbol EB;’") is justified.

Theorem 1.6.1. The minimal o-algebra that contains all cylindric subsets from the class
2 coincides with the Borel o-algebra of subsets of D(Im) equipped with the metric d;.

This theorem allows to consider a cadlag process & = {&(t),r € I} defined on a
probability space (€2, ¥, P) as a random variable defined on this probability space and
taking values in the Polish space D;’") endowed with the metric d;;. The distribution of
the random variable & is the measure F(A).

1.6.3. A.s. cadlag stochastic processes. Let us also give a definition of an a.s.
cadlag process. A process &(t),t € I is an a.s. cadlag process if there exists a set Ay € §
such that: (a) for every w € Ay, the realisation {E(#, w), t € I} belongs to the space D',
(b) P(Ap) = 1.

It is always possible to replace the realisation of an a.s. cadlag process &(z),t € I
by some fixed cadlag functions for » ¢ Ay. For example, one can define E'(¢, ) =
(1, w)ya, (), ® € Q, 1 € I. The new cadlag process &'(¢), t € I will be stochastically
equivalent to the old one, i.e., P{w: E(r,w) = €' (t,w)} = 1 for t € I. Moreover, since
E(t,w) = E'(t,w),t € I for w € Ay, we have that P{w: &(t,w) = E'(t,w),t € I} = 1.

This shows that both processes have the same finite-dimensional distributions and,
therefore, they generate the same measure F'(A) on the o-algebra 23(1'").

Let f be a measurable functional that is defined on D;’") and takes values in R;. If
E(1),t € I is a cadlag process, then f(&(-)) is a random variable that takes values in R;. It
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is called a random functional defined on the cadlag process &(t).

If E(r),t € I, is an a.s. cadlag process, then, formally, f(E(-, w)) is possibly not be
defined for w ¢ Ay. To avoid this problem, one can define f(x(-)) = 0 for x(-) ¢ D(Im) and
then use the cadlag modification &'(7), ¢ € I, defined above. Since f(E(-, w)) = f(E'(-, w))
for m € Ay, we have that P{w : f(E(-,w)) = f(E'(-,w))} = 1. So, the random variables
f(E'(-)) and f(E(-)) have the same distribution.

All definitions, limit theorems, and other statements concerning cadlag stochastic
processes can be immediately translated to a.s. cadlag stochastic processes and, hence,
one can always reduce the consideration to cadlag processes.

Absolutely similar remarks can be made about continuous and a.s. continuous sto-
chastic processes.

A process E(?) is a continuous process if, for every outcome w € Q, the realisation of
this process {§(¢, w), t € I} belongs to the space C;’").

A process E(7) is an a.s. continuous process if there exists a set Ay € & such that: (a)
for every w € Ay, the realisation {&(¢, ), t € I} belongs to the space C;’"), (b) P(Ap) = 1.

Any continuous process is a cadlag process, and any a.s. continuous process is an
a.s. cadlag process. Thus one can consider the measure F(A) generated by the process
{&(t, w), t € I} on the o-algebra 235'"). Actually, this measure is concentrated on the space
of continuous functions, C;’"), ie., F (C;’")) =1.

It is possible to replace realisations of the process {E(z, w),t € I} with some fixed
continuous functions for w € A,. For example, one can define &'(f, w) = E(7, 0)ya,(®),
w € Q, t € I. The new continuous process &'(¢), ¢ € I, will be stochastically equivalent
to the old one, moreover, P{ w: &(r,w) = E'(t,w),r € I} = 1. So, both processes have
the same finite-dimensional distributions and, therefore, they generate the same measure
F(A).

Again, all definitions, limit theorems, and other statements concerning continuous
stochastic processes can immediately be rephrased for a.s. continuous stochastic pro-
cesses. For this reason, the consideration can always be reduced to the case of continuous
processes.

1.6.4. Defining classes for measures generated by cadlag processes. Let §(7),¢ € 1
be a cadlag process defined on an interval I. Let also S be a subset of the interval I, which
is dense in this interval and contains its endpoints. Because the cadlag process &(t) is
continuous from the right, the measure F(B) generated by this process is uniquely deter-

mined by the family of finite-dimensional distributions, Fy, _, (X) = F, ;. (X1,...,Xy),
taken at the points X = (X,...,Xy) € Gy, 1, 1 < <ty ti,..., 0ty €S, m=1,2,..,
where C,, _, 1s the set of continuity points for the distribution function F,,_, (X).

Denote by Z[F, S ] the class of cylindric sets 2, _; x,..x,» X = (X1,...,X,) € C,,
< - < bty t,....t, €S, m = 1,2,.... Then the fact described above can be
formulated in the following way.
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Lemma 1.6.1. The class Z[F, S ] is a defining class for the measure F(A) generated by
a cadlag process &(1), t € L.

1.6.5. The set of stochastic continuity of a cadlag process. It follows from Lemma
1.4.1 that a cadlag process has, with probability 1, at most a finite number of disconti-
nuity points with the absolute values of jumps greater than a positive number 6 > 0 in
any finite closed interval. Therefore, a cadlag process has, with probability 1, at most a
countable set of discontinuity points.

Definition 1.6.1. A process &(¢), t € I is stochastically continuous at a point ¢ € I if
(@) &t + 5) — E(H) — O as 5 — 0.

If (a0) holds as 0 < s — 0 or 0 > s — 0, the process &(), t € I is called stochastically
continuous from the right or from the left, respectively.

By the definition, a cadlag process is continuous and, therefore, it is also stochasti-
cally continuous from the right at any point ¢ € I that is not the right endpoint of this
interval.

Lemma 1.6.2. The set S of stochastic continuity of a cadlag process &(t), t € I is the
whole interval I excluding at most a countable set of points. The process &(t) is contin-
uous with probability 1 at every point of stochastic continuity.

It follows from Lemma 1.6.2 that a stochastically continuous cadlag process can pos-
sess only random points of discontinuity. However, a stochastically continuous cadlag
process may be not an a.s continuous process. The following lemma gives conditions
for a.s. continuity of a cadlag process.

Lemma 1.6.3. A cadlag process &(t), t € I is a.s. continuous if and only if
(o) lim_o P{Ay(E(-),c, Ty, T5) > 8} = 0,8 > O, for every interval [T, T,] C I.

1.6.6. Weak convergence of cadlag processes. Let E.(¢), t € I be a cadlag stochastic
process for every € > 0. Note that the processes §,(7), ¢ € I can be defined on different
probability spaces for different € > 0.

Definition 1.6.2. We say that cadlag processes &,(¢) weakly converge to a cadlag process
Eft) onasetV C ITase — 0 (E.(1),t € V = E,(),t € V as e — 0) if for any
finite sequence of times t; < -+ < t,, t1,...,t, € V,n = 1,2,..., the random vectors
(E.(t1), ..., E.(t) = (Ey(t1),...,Ey(t,)) as € — 0. The set V is called a set of weak
convergence.

1.6.7. J-convergence of cadlag processes. There exist several equivalent ways to
define J-convergence of cadlag processes on various intervals 1.
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One universal way is to consider the cadlag process as a random variable §, =
{E.(t),t € I} taking values in the Polish space D(Im) with the metric generating the J-
topology, and then to reduce the definition of J-convergence to the definition of weak
convergence of the random variables &,. This method can be used for any kind of inter-
vals 1.

Such an approach was used by Prokhorov (1956) to introduce U-convergence of con-
tinuous processes defined on a finite interval. Due to Kolmogorov (1956) and Billingsley
(1968), this approach was also extended to the case of J-convergence of cadlag pro-
cesses.

Theorem 1.3.2, which states that weak convergence of random variables &, that take
values in a Polish space is equivalent to weak convergence of the transformed random
variables f(&,) for all functions f that are a.s. continuous with respect to the distribution
of the limiting random variable &, gives another universal way to define J-convergence
of cadlag processes. J-convergence of cadlag processes can be defined via weak conver-
gence of random functionals f(§,(-)) for all functionals that are a.s. J-continuous with
respect to the measure generated by the corresponding limiting cadlag process.

This way was used by Skorokhod (1956) in his originating paper, where the topol-
ogy J was invented. The advantage of this approach is that it permits to avoid explicit
metric considerations and use the same functional approach for other topologies of con-
vergence, for example, U and M.

Both methods are described below in the basic case of a closed finite interval [0, T']
and the semi-infinite interval [0, co). There also exists the third equivalent method to
define J convergence of cadlag processes on the interval [0, co) and other types of semi-
open and open intervals. This method was proposed by Stone (1963). Similarly to the
case of non-random cadlag functions, one can define J-convergence of cadlag processes
E.(1),t € I via J-convergence of the time-truncations of these processes &.(¢),t € I,, for
some sequence of embedded closed finite intervals I,, C I such that U, I, = I.

This method yields an equivalent definition of J-convergence and, at the same time,
it has a certain advantage. It permits to avoid the explicit consideration of J-metrics for
the interval [0, co) and other semi-open or open intervals. These metrics have structures
too complicated to apply them effectively in calculations related to J-convergence.

It is appropriate to note that J-convergence of cadlag processes and their weak con-
vergence is not the same. In general, weak convergence of cadlag processes §.(¢) on a
interval I does not imply their J-convergence. Also, J-convergence of & () processes
does not imply weak convergence of these processes on the whole interval 1. But it does
imply that they weakly converge on the set of all points of stochastic continuity of the
limiting process.

Actually, the meaning of J-convergence for cadlag processes is that it is equivalent
to weak convergence of random functionals that are a.s. J-continuous with respect to the
measure generated by the corresponding limiting process.

The structures of the sets of J-continuity for various functionals have been described
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in Section 1.5 in the case where the cadlag functions are defined on the intervals [0, T']
or [0,00). Of course, the conditions that provide a.s. J-continuity of some specific
functional with respect to the measure generated by the limiting cadlag process from a
specific class require a special investigation. As a rule, the purpose of such an investiga-
tion would be to express J-continuity conditions in terms of some natural characteristics
of the corresponding limiting process.

For example, this can be effectively done for processes with independent increments
and Markov cadlag processes for the functionals listed in Section 1.5. An exposition of
the corresponding results is, however, beyond the scope of this work.

1.6.8. J-convergence of cadlag processes defined on the interval [0, T']. Let, for
every € > 0, E,(7), t € [0,T] be a m-dimensional cadlag stochastic process. As above,
the processes &,(7), t € I, can be defined on different probability spaces for different e.

The process &, = {E.(¢),t € [0, T]} can be considered as a random variable taking
values in the Polish space DES?T] with the J-metric d;7 introduced in Subsection 1.4.3.
The measure F.(A) generated by the process &.(¢), € [0, T] on the o-algebra EBES?T]
be regarded as distribution of the random variable ..

As follows from Theorem 1.3.2, the next two definitions of J-convergence of cadlag
processes are equivalent.

can

Definition 1.6.3. Cadlag processes §,(t), t € [0,T] converge in the topology J to a

cadlag process Eq(1), 7 € [0, T] as € — 0 (& (1), 1 € [0, T] - Eg(1), 1 € [0, T] as € — 0) if
() the random variables §, = &, as e — 0.

Definition 1.6.4. Cadlag processes &.(¢),t € [0,T] N Ey(1),t € [0,T] as ¢ — O if
() the random variables f(E,(-)) = f(§,(-)) as € — 0 for every functional f € $;7[Fo].

Let us introduce the following condition for weak convergence:

Ay: E(1),t €S = Ey(t),t € S as e — 0, where S is a subset of [0, 7] that is dense in
this interval and contains the points 0 and 7'.

We also use the following J-compactness condition:
Js: lim,_ lime_o P{A,(E.(),c, T) > 8} =0, & > 0.
The next condition is an analogue of condition (‘)(IT):
05" P(EWT ~0) = E(T)} = 1.

The following functional limit theorem belongs to Skorokhod (1956). It gives condi-
tions for J-convergence of cadlag stochastic processes in the case where the correspond-
ing limiting process is stochastically continuous at the right endpoint 7'.
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Theorem 1.6.2. Let condition (‘);T) hold. In this case, conditions Ay and J5 are neces-
sary and sufficient for J-convergence &.(t),t € [0, T] i> Ey(1),t€[0,T]ase — 0.

The original proof of this theorem was given by Skorokhod with the use of his
method of one probability space. Later, Billingsley constructed a metric making the
space DEK)T] a Polish space. This permitted to give a proof based on the use of general
Prokhorov’s theorems about weak convergence in a metric space. A detailed presenta-
tion of this proof can be found, for example, in Billingsley (1968, 1999). Let us briefly
describe the main steps of the proof based on applying Prokhorov’s Theorem 1.3.5.

Let F.(A) be measures generated by the cadlag processes &,(),¢ € [0, T] on the o-
algebra %EK)T]' Due to Lemma 1.6.1, condition A, implies convergence of values of the
measures F,(A) for sets A from the class Zo7[Fo,S]. This is a defining class for the
limiting measure Fy(A). Therefore, condition A4 of Theorem 1.3.5 holds.

According to this theorem, one should also prove the tightness of the family of mea-
sures F¢(A) as € — 0, that is to show that condition JC, holds for this family.

Here Lemma 1.4.5, which gives the form of compact sets in the space DES?T], can
be employed. Using this lemma it is possible to show that the tightness of the mea-
sures F¢(A) as ¢ — 0 follows from J; and the following two additional conditions: (a)
lim,_,o lime_,o P{supy,.y 1&.(1)] > &} = 0, & > 0, (b) lim,_, lim.,o(P{Ay(E.(-),0,¢c) >
0} + P{Ay(E.(-), T — ¢, T) > 8}) = 0, 6 > 0. However, it is not difficult to show that
conditions g5, Ay, and OgT) imply (a) and (b). Therefore, the tightness condition I,
holds.

By applying Theorem 1.3.5 to the measures F.(A), one obtains a proof of the state-
ment of sufficiency in Theorem 1.6.2.

The necessity of condition J5 follows from Lemma 1.5.15 that states that the func-
tionals A, are a.s. J-continuous with respect to the measure Fy(A) for all ¢ > 0 save
for at most a countable number of c-values. The necessity of condition A, follows
from Lemma 1.5.1 that provides a.s. J-continuity of the corresponding functionals f;,
f7,and £ (fi(x(-)) = x(¢ = 0)) for all points ¢ of stochastic continuity of the process
Ey(1),t € [0, T]. According to Lemma 1.6.2, this set is [0, '] excluding at most a count-
able set of points. This set is dense in [0, T]. It also contains the point O and, due to
condition (‘)gT), the point 7.

In the general case, where it is not known whether OgT) holds or not, condition A,
must be strengthen in the following way:

Ao E(0),E(T—-0)),t€S = (§y(1),E(T —0)),t €S as e — 0, where S is a subset of
[0, T'] that is dense in this interval and contains the points 0 and 7.

Conditions for J-convergence take, in this case, the following form.

Theorem 1.6.3. Conditions A,, and J5 are necessary and sufficient for J-convergence
E(1),1 € [0,T] -5 Ey(1),1 € [0, T] as & — 0.
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The following condition is an analogue of condition (‘)gT) :
O limoeyo lime_o P{E(T — ) = E(T = 0)] > 8} = 0, & > 0.

Note that, if J; and Of‘T) hold, conditions A, and A, are equivalent. Using this, it
possible to replace conditions A, and J; in Theorem 1.6.3 with conditions (‘)f‘T), A,
and J;.

If condition (‘)gT) holds, then conditions A, and J; imply conditions A, and OE‘T).
So, the conditions of Theorem 1.6.3 reduce to the conditions of Theorem 1.6.2 in this
case.

1.6.9. U-convergence of cadlag processes defined on the interval [0, T]. Let us
formulate conditions for U-convergence of cadlag processes for the case of an a.s. con-
tinuous limiting process. In this case, it is more suitable to use the definition that is based
on weak convergence of random a.s. J-continuous functionals.

Definition 1.6.5. Cadlag processes &.(¢), t € [0, T] converge in the topology U to an

a.s. continuous process &(t), t € [0,T] as e — 0 (§.(r),t € [0,T] L Ey(1),t € [0,T]
as ¢ — 0) if the random variables f(E.(-)) = f(E,(-)) as ¢ — O for every functional

f € SurlFol.
Let introduce the following continuity condition:
B,: §y(2),t € [0,T]is an a.s. continuous process.

As was mentioned in the Subsection 1.5.12, the equivalence of J-convergence and
U-convergence, if the limiting function is continuous, implies that the set Cy7[f] =
€,r[f1N Cjg},- Condition B, implies, obviously, that Fo(Cjg},) = 1. So, Fo(Cyr[f]) =
1 if and only if Fo(€,7[f]) = 1. The following lemma follows from these remarks.

Lemma 1.6.4. Let condition B, hold. Then §.(t),t € [0,T] LN Ey(1),t€[0,T]ase - 0
if and only if E,(1),1 € [0,T] =5 (), 1 € [0, T] as & — 0.

In the sequel, A, is assumed to hold. Let us introduce the following U-compactness
condition:

U, lime_o lime_o P{Ay(E.(-),c,T) > 8} =0, 8 > 0.

Note that condition U; includes the relation lim,_,o P{Ay(Ey(-), ¢, T) > 8} = 0,8 > 0.
Therefore, under condition U, the limiting process §,(:), ¢ € [0, T] (which appears in
condition Ay) is a.s. continuous.

The following functional limit theorem belongs to Prokhorov (1956). It gives condi-
tions for U-convergence of cadlag stochastic processes to an a.s. continuous process.
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Theorem 1.6.4. Conditions Ay and Uy are necessary and sufficient for U-convergence

E.(1),t€[0,T] Y Ey(1),t€[0,T]ase — 0, where Ey(t), t € [0, T] is an a.s. continuous
process.

Remark 1.6.1. Actually, the original Prokhorov’s formulation of Theorem 1.6.4 is con-
cerned the case, when the corresponding pre-limiting processes are also a.s. continuous.
Above, the theorem is formulated in the extended form given by Skorokhod (1956), that
is, when the limiting process is continuous but the pre-limiting processes can be cadlag
processes.

Due to inequality (1.4.9), condition U implies J;. Also, as was mentioned above,
U, implies B;.

Recall that Ay and J5 are necessary and sufficient conditions for J-convergence of
the processes (1), if condition (‘);T) holds. Obviously, B, implies (‘);T) . Hence, the
processes &,(7) J-converge and, therefore, they also U-converge.

So, under condition A, conditions J5 and B, are equivalent to condition U;.

1.6.10. M-convergence of cadlag processes defined on the interval [0, 7T']. Let us
formulate conditions for M-convergence of cadlag processes.

Definition 1.6.6. Cadlag processes &.(¢), ¢ € [0,T] converge in the topology M to a

cadlag process §,(7), t € [0,T] as € — 0 (E.(¢),7 € [0, T] R Ey(0),1€[0,T]as e — 0) if
the random variables f(E.(-)) = f(§,(-)) as € — O for every functional f € Hy.7[Fol.

We assume in what follows that condition A, holds. Let us introduce the condition:
M;: lim_g lim,_o P{Ay(E.().c,T) > 8} =0, 8 > 0.

The functional limit theorem gives conditions for M-convergence of cadlag pro-
cesses.

Theorem 1.6.5. Conditions A,y and M are necessary and sufficient for M-convergence
Es(t), re [07 T] i go(t), te [O, T] as € — 0

1.6.11. J-convergence of cadlag processes defined on interval the [0, co). Let, for
every € > 0, E.(¢), > 0 be a m-dimensional cadlag stochastic process. As above, the
processes E,(7), ¢ > 0 can be defined on different probability spaces for different e.

The process &, = {E.(¢),t > 0} can be considered as a random variable taking values
in the Polish space DEK;) with the J-metric d; that was introduced in Subsection 1.4.11.
The measure F¢(A) generated by the process &.(),r > 0 on the o-algebra EBES?)O) serves
as the distribution of the random variable E,.

As was mentioned above, in this case there exist three equivalent ways to define

J-convergence of cadlag processes.
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Definition 1.6.7. Cadlag processes E.(f), t > 0 converge in the topology J to a cadlag

process E,(f), t > 0ase — 0 (E,(r),t = 0 N Ey(1),t > 0 as ¢ — 0) if the random
variables &, = &, as € — 0.

Definition 1.6.8. Cadlag processes &, (7) R Ey(1),t > 0 as ¢ — 0if the random variables
FE.()) = f(Ey(+)) as € — O for every functional f € 9, .[Fol.

Definition 1.6.9. Cadlag processes E,(1), 1 > 0 — Ey(f),t > 0 as & — 0 if there exists
a sequence 0 < T, — oo as n — oo such that the time truncated processes &.(¢), €

[0, T,] -5 E,(1),1 € [0,T,] as e — O foreveryn = 1,2, ...

The equivalence of the first two definitions follows from Theorem 1.3.2, while their
equivalence to the third one follows from Theorem 1.6.6 formulated below.

Let us introduce the weak convergence and J-compactness conditions that are ana-
logues of conditions A4 and J5 in the case of the interval [0, c0):

Ay (1), €S = Ey),t €S ase — 0, where S is a subset of [0, o) that is dense in
this interval and contains the point 0.

Jy: lim o lime_o P{AS(.().c, T) > 8} =0, 8,T > 0.

Note that the asymptotic relation in g, holds for all 7 > 0 if it holds for some
sequence of T-values, 0 < T,, — oo as n — oo.

The functional limit theorem gives conditions for J-convergence of cadlag stochastic
processes defined on the interval [0, 00).

Theorem 1.6.6. Conditions Ay, and J, are necessary and sufficient for J-convergence
E(1),120 -1 E(1), 1> 0ase — 0.

1.6.12. Weak convergence of random a.s. J-continuous functionals. As was al-
ready mentioned in Subsection 1.6.7, the meaning of J-convergence of cadlag processes
is that it is equivalent to the weak convergence of random a.s. J-continuous functionals
defined on these processes.

In what follows, we use also the notion of joint weak convergence of random vari-
ables which belong to some parametric family. Let, for every € > E(e) 0 € O} be
a parametric family of m-dimensional random variables (vectors) deﬁned on the same
probability space.

Definition 1.6.10. Random variables §(e) 0 € O jointly weakly converge to random
vectors E(e), 0e®ase -0 (§§9>, 0e® = Ege), 0 € ® as ¢ — 0) if for any finite se-

quence of parameters 0;,...,0, € ®,n = 1,2,..., the random vectors (Ege‘), e ’ége")) =
(?;(e‘) ) ’é(e Yase — 0.
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Any linear combination of functional a.s. J-continuous with respect to some measure
is also an functional a.s. J-continuous with respect to this measure. Taking in account

) ) J
this fact and Lemma 1.2.1, one can easily prove that J-convergence §,(),r > 0 —
Ey(f),t > 0 as € — 0 implies the following relation of joint weak convergence for random
a.s. J-continuous functionals

JEO), [ € DiwlFol = f(E()), f € HiwlFolase — 0. (1.6.1)

Moreover, let us choose some points ¢y, ...,t, € S, where § is the set of weak conver-
gence in condition A,;. Consider the process gg(t) = (E.(1),E.(t),i=1,...,n),t > 0. If
the conditions of Theorem 1.6.6 hold for the processes &.(¢), t > 0, then these conditions
also hold for the processes és(t), t > 0. Thus, the following relation of J-convergence

holds: (a) és(t),t >0 i> éo(t),t > 0 as ¢ — 0. Taking into account (a), arbi}rariness
in the choice of the points 74, ...,t, € S, and applying (1.6.1) to the processes E,(¢), one
can write a relation generalising (1.6.1).

Theorem 1.6.7. Let conditions Ay, and J4 hold. Then

(gs(t)’ f(%a()))’ (Z’ f) €S X QJ,OO[FO]

1.6.2
= (E0), fEO)). (1. ) € S X HyealFol as e — 0. (1.6.2)

Let us use relation (1.6.2) to enlarge the set of weak convergence S, which appears
in condition A,;, by adding to the set S all points of stochastic continuity of the cor-
responding limiting process. Note that the set S can also include points of stochastic
discontinuity of the process (7). In principle, all points in this set can be points of
stochastic discontinuity of the process §(t).

Let S be the set of points of stochastic continuity of the process (), t > 0.

Lemma 1.6.5. Let conditions Ay, (with the set S) and J, hold and, therefore, §,(t),t >
0 N Ey(®),t>0ase — 0. Then & (1), t € SUSy = §y(1),teSUSpase — 0.

This statement follows from the fact that the functional f*(x(-)) = x(¢) is a.s. J-
continuous with respect to the measure generated by the limiting process §,(¢), ¢ € [0, T],
for every point ¢ € .

So, J-convergence of cadlag processes implies their weak convergence on the set
SUSy.

If the process §(7),t > 0, is stochastically continuous, the set of weak convergence
is [0, o0). However, the inverse implication does not hold, since weak convergence of
cadlag processes and their J-convergence is not the same.

For example, let us consider the process &,(f) = ¥jr—1/n.c0) () +X[r.00) (1), £ = 0, where T is
a random variable exponentially distributed with parameter 1. Obviously, the processes
Eu(0),t 2 0 = Ey(r),t > 0 as n — oo, where the process Eo(t) = 2¥[r.)(?),t = 0. At the
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same time, these processes do not J-converge, since the process E,(t), t € [0, T] has two
unit jumps in close points t—1/nand tif 1/n <t < T. So, Ay(E,(-),c, T) =y(1/n <1 <
7).

Let us formulate also conditions for weak convergence for some other J-continuous
functionals considered in Section 1.5.

Lemma 1.6.6. Let conditions Ay and J4 hold. The functional m;. , € $;[Fo] for 0
1 St < oo, 1,1 € S and, therefore, m; , (§.(1), 1 < t, 11,1 € So = my , (§(1)), 1

<
11,02 <
b,t,lh €Spase— 0.

Let Y, be the set of points a = (ay, . .., a,) € Ry, such that P{m{, () = mg, E0i(+)
=q}=0forall0<tyy<t,<T,i=1,...,m.

Lemma 1.6.7. Let conditions A,y and 34 hold. The functional t; € $;[Fol fora € Yy
and, therefore, T, 1(E.(")),a € Yo = 7, (§)(),a € Ypase — 0.

Let Zy be a set of all & > 0 such that P{|A(E,(:))| # 8,5 € [0,T]} = P{ﬁ,(g)(go(-)) #*
0,k > 1} = 0. The set Z, coincides with (0, co) except for at most a countable set of
points.

Lemma 1.6.8. Let conditions Ay, and J, hold. The functionals oz,(fT), ,(f’T) € HyelFol
fork > 1,8 € Zy, T € Sy and, therefore, (a3 (&,(), Bir(B.()). k > 1 = (4P (& (),

fr)(go(‘))), k>1ase— 0.

Lemma 1.6.9. Let conditions A, and J, hold. The functional EE?}Q € 9yl Fol for all
0<t <t <oo,t),th € Sy, O € Zy and, therefore, zﬁﬁlQ(gs(-)), Hh < thti,thh €Sy =
Z;i)h(?éo(-)), h<th,h,hEeSoase— 0.

Lemma 1.6.10. Let conditions Ay, and J4 hold. The functional Nt(fiz € 9yl Fol for all
0<t <t <oo,t),th €8y O € Zy and, therefore, Nfﬁ;z(gg(-)), t < byt hh €Sy =
NLEO) 1 <ty 1112 € Sgas € = 0.

1n,n

Let us note that, according to (1.6.2), one can also write relations of joint weak
convergence for random functionals considered above in Lammas 1.6.6 — 1.6.10.

In similar way, one can formulate conditions for weak convergence for other J-conti-
nuous functionals introduced in Section 1.5.

1.6.13. Joint J-convergence of several cadlag processes. In this subsection, a use-
ful “vector” extension of Theorem 1.6.7 is given. Let &, i), t > 0 be a m-dimensional
cadlag stochastic process for every j = 1,...,r and € > 0. It is assumed that the pro-
cesses &;(t),t > 0 for j = 1,...,r are defined on the same probability space for a fixed
€, but these spaces can be different for different e.

Further, it is assumed that the following “vector” versions of conditions A, and J,
are satisfied:
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At E(t), .., 8 (1)), (t1, ... 1) €S X=X S8, = (§yi(11), ..., 8,(1)), (t1,..., 1) €
Six---xS,ase— 0,where §;,j=1,...,rare subsets of [0, co) that are dense

in this interval and contain the point 0.

Js: limeo limeo P{A;(E;(), e, T) > 8} =0, 8,T > 0,j=1,...,7.

According Theorem 1.6.6, conditions A,, and J5 guarantee that (a) the processes

(1, t=>0 R &;(1),t > 0ase — Oforevery j=1,...,r. Butthese conditions do not
imply (b) J-convergence of the vector processes (&, i0,j=1,...,r),t > 0. However,
these processes jointly weakly converge in the sense of condition A,,. This makes it
possible to write an analogue of relation (1.6.2).

Let us denote by F; the measure generated by the process &;(¢),t > 0, on the o-

algebraB”

[O’w)forj: 1,...,r.

Theorem 1.6.8. Let conditions A, and J5 hold. Then

Eej(1)), [1Ee i), (1, /7)) €S ;X Dyl Fosl j=1,....r

1.6.3
:>(§0j(t])’f](§0()))’ (lj,f})ESjX@J’m[Foj],j: 1,...,7’61S8—)O. ( )

The proof can be accomplished in the following way. First, one can take an arbitrary
n > 1 and arbitrary points t;;,...,%,; €S, j=1,...,r, and consider the process égl(t) =
(& (), Egj(tkj),k =1,...,n,j=1,...,r),t > 0. Obviously, condition A,, implies that
condition A, holds for these processes. The processes &,(r),7 > 0 and E,,(¢),7 > 0
have the same J-compactness modulus on every finite interval. That is why condition

ds implies that condition J, holds for the processes ésl(t), t > 0. So, ésl(t), t>0 J,
EOI(t),t > (0 as ¢ — 0. By applying (1.6.2) to the processes %sl(t) and taking into account
arbitrariness of the choice of the points #,;,...,%,; € §;,j = 1,...,r, we can write the
following relation:

(Esj(tj)’fl(ggl(')))a tj € Sj’j = 1,...,l’,f1 € QJ,M[FOI]

i (1.6.4)
= (on(tj),f1(§01(-))), tj € Sja] = 1,. . .,r,fl € Sz).l,oo[FOI] ase — 0.

Second, let us take arbitrary n > 1 points ty;,. .., 1, i€ S, j=1,...,r, and function-
als fit, ..., fin € Dseo[Fo1]. Letus consider the process §,(t) = (8, (1), & ; (), f1x(E.1 (),
k=1,...,n,j=1,...,r),t > 0. Obviously, condition .A,, implies that condition A,
holds for these processes. The processes &, (f),7 > 0 and E,, (1), > 0 have the same
J-compactness modulus on every finite interval. Thus, condition Js implies that con-

dition J, holds for the processes &,(7),7 > 0. That is why E,(0,1>0 R En(0),1 >
0 as ¢ — 0. By applying (1.6.2) to the processes &, (f) and taking into account arbi-
trariness of the choice of the points #;,...,t,; € S;,j = 1,...,r, and the functionals
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i1+« fin € DilFor1l, we can write the following relation:

Eej(1), B (D), t; €S s j=1,....1 fi € Dyl Forl, 1 = 1,2

) (1.6.5)
= (&o;(t), fiBo()), ;€S j=1,...,1 fi € Ds0lFoil, I = 1,225 — 0.

By proceeding in the same way, we get, after r steps, relation (1.6.3).
In conclusion, let us formulate one useful statement that belongs to Whitt (1973,
1980). Assume that the following condition holds:

Hy: PEEL (Al > 0) < 1 fort > 0} = 1.

Condition 3{; means that the processes §(t),t > 0, j = 1,...,r have no joint jump
points with probability 1.

For example, this condition satisfies if the corresponding jump components of the
processes &y, (1), > 0 and &,;(?), # > 0 are independent for every 7, j = 1,...,r,i # j.

Consider the vector processes ég(t) = (&, 0, j=1...,n,t=0.

Lemma 1.6.11. Let conditions Ay,, ds, and I, hold. Then
En, 205 E(n,r>0ase— 0. (1.6.6)

1.6.14. J-convergence of transformed cadlag processes. The following useful
lemma permits to extend J-convergence of cadlag processes to transformed cadlag pro-
cesses.

Lemma 1.6.12. Let the following conditions hold: () §.(1),t > 0 R Ey(0),t > 0 as
e — 0, and (P) g(t,X) is a continuous function that acts from [0, ) X R, to R;. Then the

cadlag processes g(t,&.(1)),t > 0 R g(t,Ey®),t>0ase — 0.

1.6.15. The continuous mapping theorem. Let, for every € > 0, E.(r), ¢ > 0 be a m-
dimensional cadlag process with real-valued components and g be a measurable mapping

that acts from the space DESZO) to the space DEQ’OO). Let also ’éég)(-) = g(&.(-)). By the

definition, ‘é(gg)(t), t > 0 is an /-dimensional cadlag process with real-valued components.
Denote also by F the measure generated by the process §,(7),¢ > 0 on the o-algebra

23('")
[0,00)"
The following statement is known as the continuous mapping theorem. It can be

found, for example, in Billingsley (1968).

Theorem 1.6.9. Let the following conditions hold: (&) E,(1),1 > 0 = E(1), = 0 as
e = 0, and (P) g is an a.s. J-continuous mapping with respect to the measure F. Then

the cadlag processes %ig)(t), t>0 R Ef)g)(t), t>0ase— 0.
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Recall that the processes §, = E (t) t > 0} can be considered as random variables
taking values in the Polish space D[;) ) €quipped with the metric defined in Subsec-
tion 1.4.12. In this context, continuous mapping theorem can be considered as a gen-
eralisation of the sufficiency statement of Theorem 1.3.2 about weak convergence of
transformed random variables. The only difference is that transformation functions take
values in the functional Polish space DEQ’OO) instead of R;.

An elegant proof of Theorem 1.6.9 can be given with the use of Skorokhod repre-

sentation Theorem 1.3.6. According to this theorem, condition () implies that random

variables ég, € > 0 can be constructed on some probability space such that (a) ét g g, for
every € > 0, and (b) é a.s. converge to EO as ¢ — 0. Relation (a) yields that the random

variable &, has the distribution Fy,. Relation (b) and condition (§) imply, in an obvious
way, that (¢) the random variables g(E ) a.s. converge to g(?;o) as ¢ — 0. Since a.s.
convergence implies weak convergence, (d) the random variables g(E ) weakly converge

to g(&,) as ¢ — 0. But, (e) g(§,) 4 g(E,) that follows from (a). It remains to note that
random variables g(,) take values in the Polish space DEQ «) and their weak convergence
means, actually, J-convergence of transformed cadlag processes Eig)(t), t>0.

It should be noted that the actual value of Theorem 1.6.9 must not be overestimated.
This theorem is just a convenient way to split the proof of J-convergence of cadlag
processes ‘éig)(t), t > 0 in two steps, namely, the proof of J-convergence of the initial
processes &,(7), t > 0 and the proof of a.s. J-continuity of the mapping g.

A gain can be usually achieved, when the mapping g has a comparatively simple
structure.

Lemma 1.6.12 gives the first example concerned transformed cadlag processes.

Let also give two examples that are used in our further considerations. The following
two statements are direct corollaries of Theorem 1.6.9, and Lemmas 1.5.17 and 1.5.18
that provide conditions of J-continuity for the corresponding mappings.

First, let us consider the process E(d)(t) = (E.(1), E(é)(t) E(é)(t)) t > 0 defined with the
use of the decomposition mapping.

Lemma 1.6.13. Let the following conditions hold: () §.(1),t > 0 R Ey(0),t > 0 as
e — 0, (P) Ey(®),t = 0 has not jumps with the absolute values equal & with probability 1.

Then the processes Eid)(t), t>0 4, Egd)(t), t>0ase— 0.

Second, let us consider the max-process Egm)(t) = (E.(1),E (1)), t > 0 defined with the
use of the max-mapping.

Lemma 1.6.14. Let the following condition holds: () §.(t),t > 0 R Ey(0),t > 0 as
€ — 0. Then the processes E(Sm)(t), t>0 g, Eg")(t), t>0ase— 0.

The main object of studies in this book is compositions of cadlag processes. Such
processes are defined with the use of the composition mapping as éic)(t) = (Ea(ver (1)), ...,
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$ésm(vsm(l‘))’l‘ > 0. Here Ea(t) = (Vsl(t)’ v avsm(t)’ %81(1‘), cee ’Esm(t)),t > 0is a 2m-
dimensional cadlag process with non-negative and non-decreasing first m components
and real-valued last m components.

The conditions of J-convergence for compositions of cadlag processes are thor-
oughly studied in Chapter 3. As was mentioned in Subsection 1.5.11, cadlag functions
defined with the use of composition mapping can J-converge when the corresponding

L oo = (

initial processes do not J-converge. Analogously, the compositions E;)(t), t > 0 can J-
converge when the initial processes &.(¢),# > 0 do not J-converge. The corresponding
results are not covered by the continuous mapping theorem.

1.6.16. U-convergence of cadlag processes defined on the interval [0, c0). Let us
define and formulate conditions for U-convergence of cadlag processes in the case where
the limiting process is continuous. We think that, in this case, the definition based on
U-convergence on embedded intervals is preferable.

Definition 1.6.11. Cadlag processes E,(1),7 > 0 — Ey(1),7 > 0 as ¢ — 0 if (cr) there
exists a sequence 0 < T,, — oo as n — oo such that the time truncated processes & (1), f €

[0,T,] LR Ey(1),1€[0,T,]ase - Oforeveryn=1,2,....
Let us introduce the following U-compactness condition:
U, lime_o limeo P{AY(E, (), ¢, T) > 8} =0, 8,T > 0.
The functional limit theorem gives conditions for U-convergence.

Theorem 1.6.10. Conditions A, and U, are necessary and sufficient for U-convergence

U . .
E.(1),t >0 — Ey(1),t > 0ase — 0, where Ey(¢), t > 0 is an a.s. continuous process.
Let introduce the following continuity condition:
B,: §y(?),t > 0 is an a.s. continuous process.

Note that condition U, implies J, and B,. Moreover, under condition A,,, condi-
tions J, and B, are equivalent to condition U,,.

Lemma 1.6.15. If condition B, holds, the processes &,(t), t € [0, T] L Ey(0),1€[0,T]
as e — 0 ifand only if E,(1), 1 € [0, T] = Eq(1), 1 € [0, T] as & — O.

Let us also formulate a theorem which is an analogue of Theorem 1.6.7.
Theorem 1.6.11. Let A, and W, hold. Then

(gs(t)’ f(%a())), (t7 f) € [07 OO) X S:')U,OO[F‘O]

(1.6.7)
= (Eo(0), f(Ey())), (1, f) €10,00) X HylFol as € — 0.



1.6. J-convergence of cadlag processes 59

In the case of the U-topology, condition U, is equivalent to the following condition:
Uy lim o lime_o P{Ay(Eei(-),c, T) > 8} =0, 8,T >0,i=1,....m.

This shows that there is no need to formulate an analogue of Theorem 1.6.8 for the
case of U-topology. Such a theorem would be equivalent to Theorem 1.6.11.

Let us also formulate the following useful lemma. Assume that a cadlag process
E.(1),t > 0 can be represented, for every € > 0, as a sum of two cadlag processes,

E.(N=E()+E/(®), t>0.

Lemma 1.6.16. Let the conditions (0) EL(t),t > 0 — Ey(f),t > 0 as € — 0 and (B)

E/(®),r >0 BN Ey(t) = 0,t > 0ase — 0 hold. Then the processes E,(t),t > 0 N
gy, t>0ase — 0.

1.6.17. M-convergence of cadlag processes defined on the interval [0, co0). Let us
now formulate conditions for M-convergence of cadlag processes.

Definition 1.6.12. Cadlag processes &, () M, Ey(),t > 0 as ¢ — 0 if there exists a
sequence 0 < T,, — oo as n — oo such that the time truncated processes &,(¢), t € [0, T,,]

i Ey(1),t€[0,T,]ase - Oforeveryn=1,2,....
Let us introduce the following M-compactness condition:
M,: lim,_olime_o P{Ay(E.(),c,T) > 8} =0, 8,7 > 0.
The gives conditions for M-convergence.

Theorem 1.6.12. Conditions A, and M are necessary and sufficient for M-convergence
E(1),1> 0 —5 E(1),1 > Oas e — 0.

Let us also introduce the following M-compactness condition:
M;: lime_o lime_o P{Ay(Eu(), e, T) > 8} =0, 8, T >0, i=1,...,m.

In the case of the M-topology, it is possible to formulate an analogue of Theorem
1.6.8.

Theorem 1.6.13. Let conditions Ay, and My hold. Then

G (1), [i(Eej (), (1), 7)) € S X Do Fojls j=1,...,7

. (1.6.8)
= (EOj(tj),fj(go('))), (@, f)) €S X DpelFojl,j=1,...,rase - 0.
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The following lemma, which is due to Skorokhod (1956), shows the connection be-
tween M-convergence of cadlag processes and the weak convergence of the maximum
and the minimum functionals.

Denote by S the set of points of stochastic continuity of the process &(), t > 0.

Lemma 1.6.17. Cadlag processes &,(t),t > 0 N Ey(®),t = 0 as e — 0 if and only if

((l) mz,tz(sés('))a tl < t2’ tl’tz € SO = m;,tz(séO('))’ tl < tZa tlaIZ € SO as € — O

1.6.18. Skorokhod representation theorems for cadlag processes. Let, for every
e > 0, (), € I be a m-dimensional cadlag process that is defined on an interval I.
Note that the processes &,(7), t € I can be defined on different probability spaces for
different «.

Let us introduce the following weak convergence condition:

Ay E(0),t € § = Eyt),t € S as &€ — 0, where S is a countable subset of I that is
dense in this interval and contains the endpoints of 1.

Let us also use the symbol gg(t), tell E.(1),t € I to indicate that the processes ég(t),
t € I and §(¢), t € I have the same finite-dimensional distributions.
The following results belong to Skorokhod (1956).

Theorem 1.6.14. Let condition A3 hold. Then it is possible to construct a probability
space (Q, §, P) and a.s. cadlag processes E(t), t € I defined on this probability space for
every € > 0 such that: () gg(t), rerd E.(t),t € I for every e > 0, (B) égn(s) RN éo(s)
asn — oo, s € § for any subsequence €, — 0 as n — co.

Theorem 1.6.15. Let the interval be I = [0, T], conditions Ay (with the set S), J5, and
OgT) be satisfied for the cadlag processes &,(t),t € [0,T] and S be a countable set that
is dense in [0, T], contains the points 0, T, and is a subset of S. Let also és(t), te€[0,T]
be a.s. cadlag processes constructed according to Theorem 1.6.14 with the use of the set
S and, therefore, defined on the same probability space for all € > 0 and such that: (o)
E.(0,1 € [0,T] £ &,(1),1 € [0, T] for every e > 0, (B") &, (s) > Ey(s) as n — 00,5 € §
for any sequence 0 < €, — 0 asn — oco. Then (Y') any sequence €, — 0 contains a
subsequence €, = ¢, — 0 as k — oo such that P{w : ggi(t, w),t€[0,T] i> %0(1‘, W), t €
[0,T] as k —> oo} = 1.

Let give a sketch of Skorokhod’s proofs. The proof of Theorem 1.6.14 is based on
the use of Theorem 1.3.6. Denote by X, the space of sequences x = (X, X», . ..), Where
X; € R,,. Define a metric in X, by the formula d(x’, x"’) = 5, 1/n!(1 —exp{—|x/,—X|}).
With this metric, X, is a Polish space. Choose some countable set S = . t,...),
which is dense in [0, T'], contains points 0,7 and is a subset of S. The sequence §, =
(§.(t1),E.(f2), . ..) can be considered as a random variable taking values in the space R.,.
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It follows from the weak convergence condition A5 that the random variables §, =
€, as ¢ — 0. So, one can construct, using Theorem 1.3.6, a probability space (Q, §, P)
and random variables &, = (E.(#1), E.(12), .. .) defined on this probability space such that
(a) & 2 g, forevery € > 0, (b) E, 25 &, as ¢ — 0. The condition (a) is equivalent to the
relation () £.(s), s € § < £,(s), s € §, and the condition (b) is equivalent to the relation
(d) EL(s) =5 E(s)ase > 0, s€S.

Since E,(7),t € I is an a.s. cadlag process, (b) implies that (e) the random variables
E.(s) a.s. converge to some limiting random variables E.(r) as t < s, s € S,s — tforev-
ery ¢ € I which is not the right endpoint of this interval. The process E.(¢), 7 € I, defined
in this way, has the same finite-dimensional distributions as the process §,(7),t € I.

The process E,(2), r € I possesses the following properties: (f) it takes values in R,
(g) it is an a.s. continuous from the right in every point ¢ € I that is not the right endpoint
of this interval, and (h) it has the same finite-dimensional distribution as the a.s. cadlag
process &.(1),t € I. It follows from (f) — (h) that there exists a stochastically equivalent
a.s. cadlag modification %E(t), t € I for the process (), € I.

Since the processes %E(t), t € I and E/(¢),r € I are stochastically equivalent, (c)
implies (') and (d) implies (f’). Note that the a.s. convergence in () is guaranteed for
subsequences but is not guaranteed in the case where ¢ — 0 continuously (see Subsection
1.3.5).

The proof of Theorem 1.6.15 is based on some estimates for the modulus of J-
compactness for the processes égn(t), t € 1. The possibility to construct such processes
possessing properties (') and (f’) is guaranteed by Theorem 1.6.14.

The conditions J; and (a’) imply that (i) for any sequence €, — O there exist se-
quences of numbers 0 < n(k) — o0, 0 < c(k) — 0, and 0 < 6(k) — 0 as k — oo such that
max,sux P{A J(ésn(-), c(k), T) > d(k)} < 1/k>. The proof given by Skorokhod (1956) is
based on some further estimates for the modulus of J-compactness, and involve condi-
tions J3, OgT) , and also (f’) and (i). These estimates prove, with the use of Borel-Cantelli
Lemma, that (j) there exist numbers n; > n(k) such that P{lim._, lim; o A J(Es;c(-), c,T)
= 0} = 1 for the subsequence ¢, = ¢,,.

Let A’ be the set of elementary events for which the random variables in (y”) converge
for all s € S. By ('), the probability P(A”) = 1. Let also A” be the set of elementary
events for which the convergence in (j) takes place. By (j), the probability P(A”) = 1.
Obviously, P(A” N A”) = 1. This implies that (y”) holds.

Conditions Ay, 5, and O(sT) can be replaced with conditions A, and J;. This can
be achieved by including the random variables &.(7 — 0) in the constructions described
in Theorems 1.6.14 and 1.6.15.

The result similar to that in Theorem 1.6.15 can also be formulated for the case of
the semi-infinite interval [0, co0).

Theorem 1.6.16. Let the interval be I = [0, o0), conditions A, (with the set S), and J,
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and be satisfied for the cadlag processes &,(t),t € [0, 00), and S be a countable set that
is dense in [0, 00), contains the point 0, and is a subset of S. Let also %E(t), t € [0, 00) be
a.s. cadlag processes constructed according to Theorem 1.6.14 with the use of the set S
and, therefore, defined on the same probability space for all € > 0 and such that. (o.’")
E.(1),1 € [0,00) = &, (1), 1 € [0,00) for every e > 0, (B”) &, (5) > Ey(s) asn — 00,5 € §
for any sequence 0 < ¢, — 0 asn — oo. Then (y") any sequence ¢, — 0 contains a

subsequence €, = €, — 0 as k — oo such that P{w : éelfc(t, ), € [0, 00) i> éo(t, ), €
[0,00) as k — oo} = 1.

The proof of Theorem 1.6.16 can be accomplished by the use of Theorems 1.6.14 —
1.6.15 and the Cantor selection procedure. A possibility to construct processes és(t), te
[0, o), possessing properties (a’’) and (’’) follows from Theorem 1.6.14. Then a se-
quence of intervals [0, 7,] can be chosen such that0 < 7, - coasr - ccand 7, r > 1,
are points of stochastic continuity of the limiting process éo(t), t € [0,00). Conditions
A,; and J, allow to include the points 7, r > 1, in the set S and then in the set S.

Let 0 < g — 0asn — oco. According to Theorem 1.6.15, there exists a subse-
quence € of the sequence ¢, such that (y’) holds for the processes ée(t),t e [0, Tq].
According the same theorem, there exists a subsequence €, of the subsequence €
such that (y’) holds for the processes &,(1),7 € [0,7,]. Continuing this selection pro-
cess one can select, by induction, a subsequence €, for every r = 1,2... such that
(v’) holds for the processes és(t), t € [0,T,]. Let now g, be the corresponding diag-

onal subsequence. Obviously, P(A,) = 1, where A, = {o : égk’k(t, w),t € [0,T,] i>

éo(t, w),t € [0,T,] as k — oo}. Therefore, P(A) = 1, where A = N,5;A,. But, it
follows from the definition of J-convergence on the semi-infinite interval [0, co) that

§,,(t, ), € [0,00) = Ey(t, w), 1 € [0, 00) as k — o0 for all € A.

It should be noted that the statements (y’) and (y’’) are, actually, statements about
J-convergence of the corresponding a.s. cadlag processes in probability.

At the time when Skorokhod (1956) has formulated the results presented above, the
metric d;r, which makes the space Dﬁ;)ﬂ a Polish space, has not been known. This
metric was constructed by Billingsley (1968). In the light of this result and Prokhorov’s
theorems about weak convergence in metric spaces, it became possible to replace the
J-convergence in probability in the relations (y’) and (y”’) given in Theorem 1.6.15 by
the a.s. J-convergence.

A direct application of Skorokhod representation Theorem 1.3.6 to a.s. cadlag pro-
cesses &, = {E.(7),t € [0, T]}, considered as random variables taking values in the Polish
space Dﬁ;)ﬂ with the J-metric d, 7 (introduced in Subsection 1.4.3), yields the following
result.

Theorem 1.6.17. Let conditions Ay, J5, and (‘)gT) (A, and J3) be satisfied. Then it
is possible to construct a probability space (Q, ¥, P) and a.s. cadlag processes %e(t),
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t € [0,T], defined on this probability space for every ¢ > 0 such that. (o) %E(t), t €

(0,71 & E,(1),1 € [0,T] for everye > 0, ) Plo : E,(1,w),7 € [0,T] - Eyt, 0),1 €
[0,T] as e — 0} = 1.

Let us also formulate an analogue of Theorem 1.6.17 for the case where the processes
are defined on the interval [0, c0). It is also a direct corollary of Skorokhod representation
Theorem 1.3.6 applied to the cadlag processes &, = {E.(¢), ¢ > 0}, considered as a random
variable taking values in the Polish space DEK;) with the J-metric d, (introduced in
Subsection 1.4.11).

Theorem 1.6.18. Let conditions Ay and J, be satisfied. Then it is possible to construct
a probability space (Q, &, P) and a.s. cadlag processes E.(t), t > 0 defined on this

probability space for every € > 0 such that: (') gg(t), t>02 E.(t),t > O for every
>0, (0")Plw: gs(t, ), >0 N éo(t, w),t>0ase— 0} =1.

One should note that the combination of conditions (a’) and (y’) can serve in proofs
of functional limit theorems just as well as the stronger combination of conditions (a”)
and (9).

Let us, for example, show how Theorem 1.6.15 can be used to prove weak conver-
gence of a.s. J-continuous functionals defined on J-convergent cadlag processes.

Let f be an arbitrary functional from the class $;7[Fo]. This means that P(A’) = 1,
where A’ is the set of elementary events w for which the realization { éo(t, w),t€[0,T]}
belongs to the set of J-continuity €, 7[f] of the functional f.

Letalsog, > 0,n = 0,1,..., be an arbitrary sequence such that e, — 0 asn — oo.
According to (y’), one can select from this sequence a subsequence ¢, = ¢, — 0 as

k — oo such that P(A”) = 1, where A” = {0 : &, (r,0).1 € [0,T] —5 &t 0).1 €
[0,~T] as k — oo}~. Obviously, P(A’ N A”) = 1 and, for every w € A’ N A”, the sequence
f(’égz(-, )) = f(§y(-, w)) as k — co. This implies, due to Lemma 1.3.4, that the random

variables f(ég(-)) L f(éo(-)) as ¢ — 0. As was pointed out in Lemma 1.3.1, the
convergence in probability implies the weak convergence of random variables. That is
why f(E.()) = f(Ey()) as € — 0. It remains to note that, due to (a’), the random

variable f(ég(-)) 4 f(E.()) for every € > 0.

At the same time, the combination of Theorems 1.6.14 and 1.6.15 have some ad-
vantage in comparison with Theorem 1.6.17. In the first case, the construction of the
corresponding processes defined on one probability space involves only the condition of
weak convergence of finite-dimensional distributions. This makes it possible to extend
the method of one probability space given in Theorems 1.6.14 and 1.6.15 to vector pro-
cesses for which the corresponding J-compactness conditions hold for their components
but do not hold for the vector processes. Similar remark can be made about Theorems
1.6.14, 1.6.16 and Theorem 1.6.18. We use this extension in Chapter 3 in theorems on
J-convergence of compositions of cadlag processes.
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1.6.20. References. The book by Billingsley (1968, 1999) contains general results
on weak convergence of random variables and the corresponding historical remarks.

The basic Theorems 1.3.4 and 1.3.5 concerning weak convergence in metric spaces
belong to Prokhorov (1956), along with Theorem 1.6.4 that gives conditions for con-
vergence of continuous stochastic processes in the topology U. It is formulated in the
extended form given by Skorokhod (1956), that is, when the limiting process is continu-
ous but the pre-limiting processes can be cadlag processes.

The topology J in space D of cadlag functions was invented by Skorokhod (1955a,
1955b). Theorems 1.4.3 and 1.6.2 that give conditions for J-convergence, respectively,
of cadlag functions and cadlag stochastic processes, belong to Skorokhod (1956) as well
as the representation Theorem 1.3.6 that plays a central role in Skorokhod’s method of a
single probability space. The metric d); was constructed in a slightly different form by
Kolmogorov (1956). The metric d;7, which makes the space Do} a Polish space, was
constructed by Billingsley (1968) who is also credited for Theorem 1.4.2. The extension
of J-topology to the semi-infinite interval [0, co) via embedded sequences of close finite
intervals was introduced by Stone (1963). The extension of the metric d;7 to the case of
the semi-open interval [0, c0) and Theorem 1.4.8 are due to Lindvall (1973).

It is appropriate to note that Prokhorov’s approach, which is based on general theo-
rem about weak convergence in metric spaces, and Skorokhod’s approach based on his
method of a single probability space, yield the same conditions and the same results
about J-convergence of cadlag processes.

The advantage of Prokhorov’s approach is its universality, in particular, the possibil-
ity to interpret functional limit theorems for continuous and cadlag processes as weak
limit theorems in the Polish spaces C and D, respectively.

The advantage of Skorokhod’s approach lies in the possibility to use it in studies of
convergence for other types of topologies that, in some cases, are not induced by a met-
ric in the same way as it is for the J-topology. Skorokhod (1956) has invented several
such topologies, in particular, the topology M that is useful in studies of extremal func-
tionals. Theorem 1.6.5, which gives conditions for M-convergence of cadlag stochastic
processes, is cited from Skorokhod (1956).

In studies of functional limit theorems for randomly stopped cadlag processes, it
is useful to modify formulations of the functional limit theorem in the case of a finite
interval [0, T'] to such a form that the condition for stochastic continuity of the cadlag
processes in the right endpoint 7 would not be involved. Conditions for J-convergence
of cadlag processes, which slightly differ from the standard ones, are given in Theorem
1.6.3.

Another extension that is important for limit theorems for randomly stopped cadlag
processes is functional limit theorems for cadlag processes defined on the semi-infinite
interval [0, co). Theorems 1.6.6, 1.6.10, and 1.6.12 give conditions for J-, U-, and M-
convergence of cadlag stochastic processes defined on the interval [0, co). The relevant
references are Stone (1963), Whitt (1970), Borovkov (1972b), Grigelionis (1973), Lind-
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vall (1973), Mackevicius (1974), and Pomarede (1976).

Conditions for a.s. J-continuity of random functionals and mappings defined on
trajectories of cadlag processes were studied by many authors. Some of these results,
related to the most important functionals, are formulated in Lemmas 1.5.1 — 1.5.16.
These results are attributed to the works of Skorokhod (1956, 1961), Billingsley (1968),
Borovkov (1972a, 1976), Borovkov and Pecherskij (1975), Whitt (1973, 1980, 2002),
Silvestrov (1974), Serfozo (1976), Resnick (1987), Liptser and Shiryaev (1986), and
Jacod and Shiryaev (1987).

I refer to the books by Skorokhod (1961, 1964), Parthasarathy (1967), Billings-
ley (1968, 1999), Gikhman and Skorokhod (1965, 1971), Pollard (1984), Ethier and
Kurtz (1986), Liptser and Shiryaev (1986), Jacod and Shiryaev (1987), Davidson (1994),
Borovkov, Mogul’skij and Sakhanenko (1995), and Whitt (2002) which contain a more
detailed presentation of the theory.
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Chapter 1. Weak convergence of stochastic processes



Chapter 2

Weak convergence of randomly stopped stochastic
processes

In this chapter, general conditions for weak convergence of randomly stopped stochastic
processes and compositions of stochastic processes are considered.

The main results concerning weak convergence of randomly stopped stochastic pro-
cesses are given in Theorems 2.2.1, 2.2.2, and 2.4.1.

Theorem 2.2.2 gives three conditions that, together, imply weak convergence of ran-
domly stopped cadlag processes. These conditions are: (a) the condition of joint weak
convergence of random stopping moments and external stochastic processes; (b) the
condition of J-compactness of external stochastic processes, and (c) the condition of
continuity, which means that the limiting external stochastic process is continuous at the
limiting stopping moment with probability 1.

This combination makes a good balance between conditions imposed on the pre-
limiting and limiting external processes, on the one hand, and the stopping moments,
on the other hand. Pre-limiting joint distributions of stopping moments and external
processes usually have a complicated structure. However, these distributions are in-
volved only in the simplest and most natural way via a condition of their joint weak
convergence. The second J-compactness condition involves only the external processes
themselves and not the stopping moments. This condition is a standard one. It was thor-
oughly studied for various classes of cadlag stochastic processes. The third continuity
condition involves joint distributions of the limiting stopping moment and the limiting
external process. These limiting joint distributions are usually simpler than the corre-
sponding pre-limiting joint distributions. This permits to check the continuity condition
in various practically important cases. Due to a balance between conditions imposed on
the pre-limiting and limiting processes and stopping moments, Theorem 2.2.2 becomes
an effective tool for use in limit theorems for randomly stopped stochastic processes.

The continuity condition (¢) mentioned above does not cover the cases where the
limiting stopping moment is a point of continuity for the corresponding limiting external
process with probability less than 1. This case is covered by Theorem 2.4.1. In this
theorem, condition (c) is replaced with the weaker condition (d) that ensures the right
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positioning of the pre-limiting stopping moments on the right-hand side of the moments
where the pre-limiting external processes experience large jumps. This condition does
involve the pre-limiting joint distributions of stopping moments and external processes
not only via their joint distributions but also via the joint distributions of stopping mo-
ments and moments of large jumps for external processes. Also, the latter distributions
are not so complicated and the corresponding conditions can effectively be verified in
some important cases.

In Theorems 2.2.1, 2.2.2, and 2.4.1, a model for randomly stopped scalar (one-
dimensional) cadlag processes is considered. In Theorems 2.3.1, 2.3.4, and 2.4.3, simi-
lar results are given for randomly stopped vector cadlag processes. In this model, each
component of the external vector process is stopped in its own stopping moment. Al-
though such a generalisation is important by itself, it also plays an essential role in
theorems on weak convergence of compositions of stochastic processes. This model
deals with a composition of an external cadlag process and an internal non-decreasing
cadlag stopping process. The main results concerning weak convergence of composi-
tions of stochastic processes are given, respectively, in Theorems 2.6.1, 2.6.3, 2.6.4, and
2.6.5 for scalar compositions, and in Theorems 2.7.1, 2.7.6, 2.7.8, and 2.7.10 for vector
compositions of cadlag processes.

Section 2.1 gives examples that clarify the formulation of the problem and condi-
tions for weak convergence of randomly stopped random processes and compositions
of stochastic processes. In Sections 2.2 and 2.3, conditions for weak convergence are
given for randomly stopped scalar and vector cadlag processes, respectively. In Section
2.4, conditions for weak convergence of randomly stopped scalar and vector cadlag pro-
cesses are given in the case where the continuity conditions imposed on external cadlag
processes and stopping moments are weakened. In Section 2.5, some results concerned
iterated weak limits for randomly stopped cadlag processes are discussed. Sections 2.6
and 2.7 give conditions for weak convergence, respectively, of scalar and vector com-
positions of cadlag processes. In Section 2.8, the so-called translation theorems are
formulated. These theorems give conditions for weak convergence of randomly stopped
processes with random normalisation. In Section 2.9, conditions for weak convergence
are given for randomly stopped stochastic processes in a model with locally compact
external processes. Reference remarks are given at the end of this section.

2.1 Introductory remarks

In this section, we discuss some examples that clarify conditions for weak convergence
of randomly stopped stochastic processes and compositions of cadlag processes.

2.1.1. A condition of joint weak convergence. Let us use a natural number » as a
parameter, instead of €, to index the corresponding external cadlag stochastic processes
and stopping moments. Actually, we can always assume thate = n~! forn > lande = 0
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En() = A1,00)(2) Eo(t) = Yf1.00)(2)
17 ? > 17T ? >
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(a) v, and E,(1),t > 0. (b) vg and Ey(7),1 > 0.

Figure 2.1: C: first-type continuity condition.

forn = 0. Let, foreveryn =0, 1,.. ., E,(?), t > 0 be a real-valued cadlag process and v, a
non-negative random variable. We call §,(¢), t > 0 an external process and v,, a stopping
moment.

We are interested in conditions that should be imposed on the random variables v,
and the processes &E,(f), t > 0 as to imply the following relation of weak convergence:

E,(Vn) = Eo(vg) as n — oo, (2.1.1)

The condition that can be expected to provide relation (2.1.1) is the following con-
dition of joint weak convergence of random stopping moments and external cadlag pro-
cesses:

Ayt Vi, Ei(0), 1 >0 = (v, Eop(2), 1> 0asn — co.

The following simple example shows that this hypothesis is not true and condition
A, is not sufficient to imply (2.1.1) without some additional assumptions.

Let v, be a random variable that takes values 1 — n~! and 1 + n~! with probability
2 and &,(1) = Y1,0(1), £ > 0, for n > 1. In this case, condition A, obviously holds.
The limiting stopping moment v, = 1 with probability 1 and the limiting process Ey(t) =
X1.e0)(f), t = 0. However, &,(v,) is a random variable that takes values 0 and 1 with
probability %, while Ey(vg) = 1 with probability 1. Therefore, (2.1.1) does not hold.

Figure 2.1 illustrates this example.
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In this example, the limiting stopping moment is a discontinuity point for the corre-
sponding limiting external process. The oscillation of stopping moments in a neighbour-
hood of the this discontinuity point causes a violation of (2.1.1).

2.1.2. A first-type continuity condition. The example considered above leads to
the following hypothesis. In order to provide (2.1.1), it is enough to add to A,, the
condition that the limiting process E((), ¢t > 0, is continuous at a random point vy with
probability 1,

Cy: P{lim, Eo(vo + 1) = Eo(vo)} = 1.

The following more sophisticated example shows that this hypothesis is also not
true. Conditions A4 and €, together are not sufficient to provide (2.1.1) without some
additional assumptions.

Let §, k = 0,1,... be a sequence of non-negative i.i.d. random variables with a
continuous distribution function F(x) and T, = maXo<<, & be the maximum of the first
n + 1 random variables of this sequence.

Let us introduce the random variables w, = min(r : § = C,). By the definition,
T, = &,,. The last representation can be rewritten in the following form: T,/n = &,(v,),
where &, (1) = E;y/n, t > 0 and v, = u,/n.

It is easy to see that the random variable u, takes values O, . .., n with probability n%
and, hence,

Vv, = Vg as n — 0o, (2.1.2)

where v is a random variable uniformly distributed in [0, 1].
Since the random variables €,k = 0, 1, ... are i.i.d. random variables,

E,(1) — Oasn — oo, 120, (2.1.3)
From Slutsky Theorem 1.2.3 and relations (2.1.2)—(2.1.3), it follows that
(Va, Ea(0), 1 2 0 = (v, 0),2 > 0 as n — co. (2.1.4)

So, condition A, holds. Condition €, also holds, since the limiting process E(?)
=0, t > 0 1s continuous.

In this case, Ey(vo) = 0. However, the random variables T,/n = E,(v,) may not
converge weakly to 0 as n — oo. For example, let F(x) = %1.0)(x)(1 — 1/x). Then
P{C./n < x} = F(xn)" — exp(—x~') as n — oo, for x > 0. This means that the random
variables C,/n = T as n — oo, where C is a non-negative random variable which has the
distribution function P{C < x} = yj0..0)(x) exp(—x7").

An explanation of the example above is that the processes E,(), > 0 weakly con-
verge to the zero-process Ey(f) = 0, ¢ > 0, but these processes do not converge neither
in the topology J nor in the weaker topology M. They can possess too large oscilla-
tions in small intervals. In the example above, this effect causes that the max-processes
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Er(t) = sup,., E,(s), t > 0 do not converge weakly to the corresponding zero max-process
E; (1) = sup,_, Eo(s) = 0,7 > 0. At the same time, the stopping moments v, and the exter-
nal processes &,(#), t > 0 are connected so that E,(v,) = E!(v,).

2.1.3. A condition of J-compactness. The above example shows that, in order to
provide (2.1.1), one should add, to the condition of join weak convergence .A,, and the
continuity condition €,, an additional compactness condition on the external processes
E.(7), t > 0. For example, this can be the following J-compactness condition:

Js: lim,_o lim, o P{A;(E,(),c, T) > 8} = 0, §,T > 0.

As is proved in Theorem 2.2.2, the combination of three conditions listed above,
i.e., the condition of joint weak convergence A,,, the continuity condition €;, and the
condition of J-compactness J, do imply the desirable asymptotic relation (2.1.1).

What is important is that this combination of three conditions is balanced, which was
discussed in the preamble to the chapter. This makes the combination of conditions A4,
C,, and J, an effective instrument for use in weak limit theorems for randomly stopped
stochastic processes.

2.1.4. A condition of joint weak convergence of random stopping moments and
external max-processes. Let us introduce the maximum functionals

E (7, 1) = sup E,(s), E,(',1")= inf E(s), 0<1 <1’ < 0.
V<s<t” ' <s<t”

The pair of conditions A, and J, can be weakened and replaced with the condition
of joint weak convergence of the stopping moments v, and the maximum functionals
EX(', "), that is, with the following condition:

Ays: (Vs (', 17) = (vo, E5(t', 7)) asn — 00, 0 < ¢/ < 1" < o0,

It is proved in Theorem 2.2.1 that conditions A5 and C; do imply the desirable
asymptotical relation (2.1.1).

In principle, condition A5 is weaker than a combination of conditions A,, and Jj.
This becomes obvious considering a model with monotone processes E,(t), ¢t > 0. In this
case, condition A5 is reduced to the condition of joint weak convergence of random
variables v, and E,(¢) for every ¢ > 0. This condition is weaker than A,,. The condition
of J-compactness J can be omitted in this case.

2.1.5. Necessity of conditions. Let us go back to the basic conditions of joint weak
convergence A,,, continuity €,, and J-compactness J,. One can talk about a certain ne-
cessity of these conditions in the sense that, taken together, these conditions are sufficient
to provide (2.1.1) but any combination of two of them is not.

In the first example considered in Subsection 2.2.2, the conditions of joint weak
convergence A4 and J-compactness J, hold, but the continuity condition €, does not.
For this reason, asymptotic relation (2.1.1) does not hold either.
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In the second example considered in Subsection 2.2.2, the conditions of joint weak
convergence A,, and continuity €; hold, but the condition of J-compactness J, does
not. This means that the asymptotic relation(2.1.1) also does not hold.

Let us now give an example in which the conditions of continuity €, and J-compact-
ness d, hold. Moreover, in this example, the random stopping moments v, as well as the
stochastic processes &,(t), t > 0, weakly converge. However, the condition of joint weak
convergence A,, does not hold and so neither does relation(2.1.1).

Let a random variable v take values 0 and 1 with probability % Then v, = v, for
n=0,2,...,andv, =1—-v,forn=1,3,.... Letalso §,(r) = VX[%’OO)(Z‘), t>0,forn=0,
1, .... In this case, the conditions of continuity €, and J-compactness J4 obviously
hold. Moreover, the random variables v, weakly converge to vo = v as n — oo and the
processes &,(1), t > 0, weakly converge to E(t), t > 0, as n — oo. However, the condition
of joint weak convergence A,, does not hold. Indeed, in this case, (v,,E,(?)),t > 0,
coincides with (l,x[%’m)(t)),t >0ifv=1and0,0),t>0,ifv=0,forn=0,2,...
While (v,,, E,(?)),t > 0, coincides with (0, Aitooy (D), 2 0, if v = 1 and (1,0),7 > 0, if
v =0, forn =1,3,.... In this case, the random variables E,(v,) = v forn = 0,2, ... and
E.,(v,) = 0, forn = 1,3,.... This implies that the asymptotic relation (2.1.1) does not
hold.

It should be noted that the combination of conditions of joint weak convergence
A4, continuity €,, and J-compactness J, is sufficient, rather than necessary, to imply
the asymptotic relation (2.1.1). In the following example all three conditions do not hold
but (2.1.1) still does.

Let a random variable v take values 0 and 1 with probability % Then v, = v, for
n=20,2,...andv, = 1-v,forn =1,3,.... Letalso §,(t) = v()i_n-1.1y(t) + X[%,n(f)),
t >0, forn = 1,2,... and Ey(r) = VX[%’I)(Z‘), t > 0. In this case, the condition of
joint weak convergence A, does not hold. However, the random variables v, weakly
converge to vo = v as n — oo and the processes &,(7), t > 0, weakly converge to Ey(?),
t > 0 asn — oo. The condition of continuity €, does not hold, because v takes the value
1 with probability % while 1 is a discontinuity point for the limiting process Ey(?), t > 0.
The condition of J-compactness J, also does not hold, since for every n = 1,2,.. ., the
process (), t > 0 has with probability % two jumps with values 1 and 2 at points 1 —n~!
and 1, respectively. At the same time, it is obvious that §,(v,) = 0 for alln = 0, 1,....

Therefore, the asymptotic relation (2.1.1) holds.

2.1.6. A weakened version of the continuity condition C,. Let us return to the first
example considered in Subsection 2.1.1. In this example, the random variables E,(v,,)
do not weakly converge to the random variable Ey(vy) as n — oo. This is because the
stopping moments v,, can take values to the “wrong” left-hand side of the corresponding
point where the process E,(f) has the unit jump. This occurs with a probability that is
asymptotically separated from zero as n — oo.

Let us modify this example by considering the same process &,(f) = ¥j1.00)(1), t > 0,
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and a modified random variable v,, that takes the values 1 — n~' and 1 + n~' with the
probabilities % and 1 — %, respectively.

In this case, condition .A,, obviously holds. The same is true for condition J,. How-
ever, the continuity condition €, does not hold. As in the first example, the limiting
stopping moment vy, = 1 with probability 1, and the limiting process Eo(f) = %[1.00)(?),
t > 0 has the unit jump at the point 1. This shows that Ey(vo) = 1 with probability 1.
However, E,(v,) is a random variable that takes values 0 and 1 with probabilities % and
1- %, respectively. Therefore, the asymptotic relation (2.1.1) does hold.

This example shows that it is possible to somewhat weaken the continuity condition
C,. This can be achieved by replacing €, with a condition that would guarantee asymp-
totically (for all n large enough) the right positioning of the stopping moment v, with
respect to discontinuity points of the process E,(¢), t > 0.

Let us denote by ocii), k =1,2,..., the successive moments of jumps of the process
E,(1),t > 0, which have the absolute values of jumps greater than or equal to 6 > 0. By
the definition, Otﬁ:z) = oo if there exist less than k such points. The following condition
can be used instead of the continuity condition C;:

D,: lim. En_m P{v, € [ocfjc) -, ocﬁi))} =0fordo>0andk > 1.

As is proved in Theorem 2.4.1, a combination of the conditions A4, dg, and D,
imply the desirable asymptotical relation (2.1.1).

It can be shown that, if conditions A, and J¢ are verified, condition €, implies
condition D,. This means that it is possible to consider D, as a weakened version of
condition €,. It can occur that the opposite implication does not take place. In the
example considered above, the conditions A4, d¢, and D, hold but condition €, does
not.

By using condition D, instead of €,, one can deal with some cases where the lim-
iting stopping moment is a discontinuity point of the limiting external process. Some
cases where the limiting stopping moment can be a point of discontinuity or continuity
of the limiting external process with both positive probabilities can also be treated.

For instance, let us modify the example considered above once more. Now, let the
process E,(f) = ¥[1..)(f), t > 0 be the same but the random variable v, take the values
1 -n'1+n"", and 2 with the probabilities 2—1,1, %, and % — ﬁ, respectively. Conditions
A4, d, and D, hold. Therefore, relation (2.1.1) also holds. In this case, the random
variable E,(v,) takes the values 0 and 1 with the probabilities 21—}1 and 1 — 2%1, respectively.
At the same time, the limiting random variable E,(v) takes the value 1 with probability
1. However, the limiting stopping moment v, takes the values 1 and 2, with probability
%. The point 1 is a point of discontinuity of the process E¢(f) = ¥j1..0)(¢), t = 0, while 2 is
a point of continuity of this process. Condition €; does not hold in this case. Figure 2.2
illustrates this example.

Of course, condition D, is not as simple as condition €;. It involves pre-limiting
external processes and stopping moments, in contrast with condition €,. However, it still
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Figure 2.2: D: weakened first-type continuity condition.

involves the stopping moments v,, and the external processes &,(f), f > 0, in an acceptable
combination of joint distributions of the stopping moment v,, and the moments of large
jumps afi) of the external process E,(f),r > 0. The latter functionals were thoroughly
studied for various classes of cadlag stochastic processes. This shows that the weakened
continuity condition D, can effectively be used in some practically important cases not

covered by the continuity condition C;.

2.1.7. Conditions of weak convergence for compositions of cadlag processes. Let,
foreveryn =0, 1, ..., E,(r), t > 0 be a real-valued cadlag process and v,(t), > 0 be a
non-negative monotone non-decreasing cadlag process. We call §,(¢), t > 0 an external
process and v,(t),t > 0 an internal stopping process. Consider a composition of these
processes E,(v,(1)), t > 0. We are interested in conditions that would provide the weak
convergence of the compositions &,(v,(?)), ¢ > 0 on some subset S C [0, 00),

E,(v,(1),1 €S = Eg(vo(1)),t €S asn — oo, (2.1.5)

The simplest analogue of condition A,, is the following condition of joint weak
convergence of internal stopping processes and external cadlag processes:

Aig: (Vu(0),E0(1)), 1 = 0 = (vo(1),Eo(1)),t > 0as n — oo.

The condition of J-compactness, J¢, does not need to be changed.
For a continuity condition, one can take the following analogue of condition C;:

C3: P{lim Eo(vo(1) + 5) = Eo(vo())} = 1 for 1 € S.
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Conditions A4, J¢, and (~2§ imply weak convergence of the processes &,(v,(f)) on
the set S C [0, c0). The set S is called a set of weak convergence.

Condition (~3§ looks rather restrictive. But, actually, it is satisfied in many important
cases. For instance, it is satisfied if the process Eo(¢) = &)(¢) + & (1), t > 0 is a sum of
two cadlag processes such that the first one is a continuous process, possibly dependent
on the process vy(t), t > 0, while the second one is a stochastically continuous cadlag
process independent of the stopping process vy(?), t > 0. In this case, (‘32 holds with the
set S = [0, 00).

The problem has an additional new aspect if one does not prescribe a set of weak
convergence but would like to only guarantee the weak convergence of compositions
E,(v,(1)) on some subset S dense in the interval [0, co). This is an important problem in
studies of functional limit theorems.

Let us note that, in the case where the process Ey(7), t > 0 admits an additive decom-
position described above, the set S is [0, 00).

There is another important case in which the existence of a desirable subset S is
guaranteed without any decomposition assumptions. This is true if the process vy(?),
t > 0, is an a.s. strictly monotone process. In this case, there exists at most a countable
set of points # > O such that the random moment vy(?) is a point of discontinuity of the
process Eo(2), t > 0 with a positive probability.

We show in Lemma 2.6.2 that this is also true in a situation more general than the
case of a strictly monotone limiting stopping process vo(z). Let R[Ey(-)] be a random set
of all discontinuity points of the process E(?), t > 0. Then condition €§ holds with some
subset S dense in the interval [0, oo) if the following continuity type condition holds:

E: P{vo(?) = vo(t") € R[Ey()]} =0for0 < ¢ <t < oo.

2.1.8. Weakened continuity conditions and weak convergence for compositions
of cadlag processes. The compositions &,(v,(¢)) can, however, weakly converge on
some subset S dense in the interval [0, co) in situation when the continuity condition €,
does not hold. As is proved in Theorem 2.6.5, it is so, if the conditions A4, d, hold
together with the following continuity type condition, which is weaker than condition
&

F: limgee o lime o P{alY — ¢ < vo(t),ve(?") < 0®} = 0for0 < 7 < ¢ < 00,8 > 0
and k > 1.

Let us consider the following example shown in Figures 2.3, 2.4, and 2.5. Let §,(¢) =
Y1.00)(t), t = 0, for n > 1. Let also, for n > 1, the process v,(#),t > 0 have three possible
realisations that occur with the probabilities p,, g, and r,,, where p,, + g, + r, = 1. These
realisations are % fort>0;1—n"'fort>0;1+n"fort>0;

We assume that probabilities p,, g, and r,, converge as n — oo to the limiting values
Do, qo and ry, respectively. In this case, condition A,, obviously holds. The limiting
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Figure 2.3: € and F: second-type and weakened second-type continuity conditions.
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Figure 2.4: € and F: second-type and weakened second-type continuity conditions.
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Figure 2.5: € and F: second-type and weakened second-type continuity conditions.

process Eo(?) = %1.00)(f), t = 0. The limiting stopping process v((), ¢ > 0 has only two
possible realisations that occur with the probabilities py and g + r¢, respectively. These
realisations are % for + > 0, and 1 for # > 0. The condition of J-compactness 4 also
holds.

For n > 1, the composition &,(v,(t)),t > 0 has two possible realisations that occur
with the probabilities p, + g, and r,, respectively. These realisations are O for # > 0, and
1 for t > 0. At the same time, the composition Ey(v((t)), # > 0 has the same two possible
realisations that occur with the probabilities p, and g + ry, respectively.

Condition &, holds if and only if (a) po = 1. In this case, the limiting composition
Eo(vo(1)), t > 0 has only one realisation O for # > 0. The compositions &,(v,(f)) weakly
converge to Ey(vo(¢)) on the set S = [0, 00).

Condition JF, holds if and only if (b) go = 0. If also, py < 1, then condition F; hold
but €, does not. If go = 0, the limiting composition Ey(v((?)),# > 0 has two possible
realisations O for # > 0, and 1 for # > 0. They occur with the probabilities p, and ry,
respectively. Again, the £,(v,(7)) weakly converge to E(vo(¢)) on the set § = [0, 00).

Neither condition €, nor &F, hold, if (¢) go > 0. In this case p, + ¢, 7~ po and
rn > qo + ro as n — oo. Therefore, the compositions &,(v,(¢)) do not weakly converge
to Eg(vo(2)) for every ¢ € [0, o).

These statements are consistent with the remarks above.

Non-trivial examples of applications of weak convergence results for compositions
of cadlag processes, based on continuity type condition F,, are given in Chapter 4.
These results are applied there to so-called generalised exceeding processes that describe
various renewal type models.
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2.2 Randomly stopped scalar cadlag processes

In this section, we formulate conditions for weak convergence of randomly stopped one-
dimensional cadlag stochastic processes. In this case, the corresponding conditions have
the most clear form.

2.2.1. Main results. Let, for every € > 0, E.(¢7), t > 0 be a real-valued cadlag process,
and v, be a non-negative random variable. We call (), t > 0 an external process and v,
a stopping moment.

We are interested in conditions that should be imposed on the random variables v,
and the processes E(7), ¢ > 0 in order to provide the following relation

Ee(Vve) = Eo(vo) as € — 0. (2.2.1)
The following condition can be expected to provide relation (2.2.1):

A7t (Ve, Ee(2), 1 € U = (vo, Ep(2)),t € U as € — 0, where U is a subset of [0, co) that is
dense in this interval and contains the point O.

Examples constructed in Section 2.1 show that this condition is not sufficient to imply
relation (2.2.1).
Let us introduce the following weak convergence condition:

A,g: There exists a set S dense in [0, o), containing 0, and such that P{v, = ¢} = 0 for
te€ S \{0},and, forall?,t" €S,
(Ve, sup Eq(1)) = (vo, sup Eop(r)) ase — 0,

te[t’ 1) te[t’ 1)

(ve, inf E.(7)) = (vy, inf Ep(r))ase — 0.
te[t’ 1) telt’ 1)

Let us also introduce the following continuity condition:

C;: The process Ey(f), t+ > 0 is continuous at the point vy with probability 1, i.e.,

P{lim, o Eo(vo + 1) = Eg(vo)) = 1.

The main result of this section is the following theorem from Silvestrov (1971b,
1972a).

Theorem 2.2.1. Let conditions A,g and C3 hold. Then
%b(vt) = %O(VO) as e — 0.

Theorem 2.2.1 does not require a separate proof. This theorem is a particular case of
Theorem 2.3.1 that gives a similar result for a more general model of randomly stopped
vector processes.

2.2.2. The condition A,g and J-convergence of the processes (v, &:(¢)), t > 0.
Condition A4 can be replaced with a more simple condition of joint weak convergence
A, if, to assume additionally to A,,, the following J-compactness condition is assumed:
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37 lime_o lime_o P{A;(E:(),c.T) > 8} =0, 8,T > 0.

Note that conditions A,, and g, are necessary and sufficient for J-convergence of
the vector processes (v, E:(7)), t > 0.

Let S be the set of points of stochastic continuity of the process Ey(¢), t > 0. This set
is the interval [0, co) except, perhaps, for some finite or countable set. Since the process
Eo(?) is continuous from the right, the point O also belongs to . Let also Y be a set
that includes all continuity points of the distribution function of the random variable v
and the point 0. Then Y is the set of all points ¢ > 0 such that P{vy = ¢} > 0. This
set contains at most a countable number of points. Therefore, the set S = S \ Y, is
dense in [0, c0) and contains the point 0. Moreover, this set is [0, c0), except for at most
a countable set.

Lemma 2.2.1. Let conditions Ay, and J, hold. Then condition Ayg holds with the set
S =80\7Yo.

Lemma 2.2.1 does not need to be proved separately, too. It is a particular case of
Lemma 2.3.1 that gives a similar result for vector cadlag processes.

The following theorem from Silvestrov (1971b, 1972a) is a direct corollary of Theo-
rem 2.2.1 and Lemma 2.2.1.

Theorem 2.2.2. Let conditions A, J;, and C; hold. Then
%b(vt) = %O(VO) as e — 0.

2.2.3. The case of non-random cadlag functions. As an example, let us consider
the case where the external processes and the stopping moments are non-random. Thus,
let us consider the case where a non-random cadlag function x.(z), t > 0 is stopped at a
non-random point y.. In this case, condition A5 is reduced to the following conditions:
(@) x.(1) = xp(t) as e — 0 fort € U, where U is some set of points everywhere dense in
[0, 00) and containing O0; and (b) y. — yo as ¢ — 0. Condition J, reduces, in this case,
to the condition of J-compactness, (c) lim._, lim,_,o A 7(x:(), ¢, T) = 0,0, T > 0. Note
that (a) and (c) are just necessary and sufficient conditions for the following relation of

J-convergence: (d) x.(1),t > 0 i> xo(t),t > 0 as € — 0. Finally, condition €5 takes
the following form: (e) y, is a continuity point of the function x((z), t > 0. Theorem
2.2.2 states in this case that, under conditions (a), (b), (¢), and (e), the following relation
holds: (f) x.(y:) = x0(yo) as € — O.

An importance and utility of this statement for cadlag functions was pointed out,
for example, in Jacod and Shiryaev (1987). The authors did not recognise that it is a
particular case of Theorem 2.2.2 from Silvestrov (1971b, 1972a).

2.2.4. Condition A, and M-convergence of the processes (v, (7)), t > 0. Con-
ditions A, and g, can be replaced with weaker conditions of M-convergence of vector
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processes (Ve, E:(7)), t > 0, namely, with condition A, and the following condition of
M-compactness:

M: lime_olime_o P{Ay(E(),c,T) > 8} =0, 8,T > 0.

Lemma 2.2.2. Let conditions Ay; and Mg hold. Then condition Ayg holds with the set
S =80\7Yo

Lemma 2.2.2 also does not require a separate proof, since it is a particular case of
Lemma 2.3.3 that gives a similar result for vector cadlag processes.

The following theorem, which was also given in Silvestrov (1971b, 1972a), is a direct
corollary of Theorem 2.2.1 and Lemma 2.2.2.

Theorem 2.2.3. Let conditions A5, M, and C3 hold. Then
Es(vs) = EO(VO) ase — 0.

2.2.5. Monotone external processes. Condition .A,g is weaker than A,; and J,. It
is also weaker than A, and M.

To clarify this, let us consider a model with monotone processes E.(7), t > 0. In
this case, condition A,g is equivalent to the relation (v, E(f)) = (vo, Eo(?)) as € — 0
for t € S, i.e., to the weak convergence of distributions that are one-dimensional with
respect to 7.

In regard to condition .A 5, this condition demands weak convergence of distributions
that are finite dimensional in time. Also in this case, J5 is an additional J-compactness
condition. Now, condition Mg is implied by A, since the processes E.(¢),t > 0 are
monotone.

2.2.6. Decomposition condition Q,. Let us introduce a condition that is very useful
in applications,

Q: Eo(1) = E)(1) +E( (1), t > 0, where (a) E((1), t > 01is a continuous process, (b) E; (1),
t > 0 is a stochastically continuous cadlag process, (c) the process §;(1), ¢ > 0 and
the random variable v, are independent.

Lemma 2.2.3. Let condition Q, hold. Then the continuity condition C5 holds, i.e., the
process Ey(t), t > 0 is continuous at the point vy with probability 1.

Proof of Lemma 2.2.3. The first component E((?) is a continuous process. So, it is suffi-
cient to show that

N (hy Vo) — 0 as b — 0, (2.2.2)

where
Mo (h, x) = sup [Ey (t + x) — EJ (x)], x > 0.

lfl<h
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By the definition, the quantities n((/, x) are monotonically non-decreasing in A for
every x > 0, and, consequently, such are the quantities ;' (%, vo). This and Remark 1.3.2
imply that, in order to prove (2.2.2), it is sufficient to prove the following relation:

N (hy Vo) — O as h — 0. (2.2.3)

As is known, every point of stochastic continuity of a cadlag process is also a point
of continuity of this process with probability 1. Therefore,

N (hyx) — 0ash — 0, x> 0. (2.2.4)

Now, using (2.2.4), independence of E;(#), t > 0 and v, and the Lebesgue theorem,
we get

P{ng (h,vo) > 8} = f Ping (h, x) > 8}P{vp e dx} - Oash — 0. (2.2.5)
0

This completes the proof. O

The requirement that the process &{(¢) in condition Q, is stochastically continuous
can be replaced with a weaker condition that P{v, € S} = 1, where S| is the set of
points of stochastic continuity of the process & (¢), t > 0. Indeed, in this case relation
(2.2.4) holds for all points x € S/, i.e., almost everywhere with respect to the distribution
of the random variable vy. One can still use the Lebesgue theorem and prove that the
limit in (2.2.5) equals zero.

The assumption of continuity of the process E{(¢) in condition Q, can also be weak-
ened. It can be replaced with a weaker assumption that P{v, € U} = 1, where U is
some set of points such that the process E((7) is continuous simultaneously at all points
t € U], with probability 1. Indeed, let A = {w : vo(w) € S} and B = {w : vo(w) € U}
be the corresponding sets of elementary events. Both events A and B have probability 1.
Obviously, vo(w) is a point of continuity for the realisation E{(¢, ») for every elementary
eventw € AN Band P(AN B) = 1.

For example, let v, have a discrete distribution concentrated in points of a countable
set Uy = {u}. Then the process E((f) is continuous simultaneously at all points ¢ € U
with probability 1 if this process is continuous with probability 1 at each point of the
set U). To prove this, it is enough to assume that the process E{(#) is stochastically
continuous at each point ¢ € Uj). This is so, since this process is a cadlag process.

Also, the additive decomposition in Q, can be generalised to a more general form,
Eo(H) = f(1,E(D), EJ (1), t > 0, where E((¢) and E(¢) are processes with the same proper-
ties as in Q,, and f(¢, x, y) is a continuous function.

Some simple sufficient continuity conditions can also be formulated in the general
case where no decomposition assumptions are made. Since the process Ey(z), t > 0, is



82 Chapter 2. Weak convergence of randomly stopped processes

a cadlag process, it has, with probability 1, a finite number of discontinuity points at
which the absolute values of jumps belongs to the interval [%, anl) in any finite interval
[0, T]. This is the case for every n = 1, 2, .... Let us recursively define t;, = inf(s >
Teetn® [Bo(s) — Eo(s — 0) € [+, -15)), k = 1,2, ..., and 1o, = 0. By the definition, Ty, are
successive moments of such jumps for k < u, + 1 and 1, = oo for k > u, + 1, where
W, = max(k > 0: 14, < o0) is the total number of jumps in the interval [0, co) which have
the absolute values in the interval [%, ﬁ). The random variables w, can take the values
0,1, ..., 0. Now, let us define the random set of all points of jumps,

REO)] ={tm: 1 <k<p,+1L,n=1,2,...}. (2.2.6)
Condition €5 can be rewritten in an equivalent form,
Cy: Plvo € RIS(O) =0,
or as
Cy: Pvo =T} =0fork,n=1,2,....

If condition Q, holds, then the random variable T4, can be a discontinuity point for the
process Ey(?) if and only if it is a discontinuity point for the second component £ (7). This
is so, because the first component E((7) is a continuous process. Therefore, vy and T,
are independent, and condition C; is equivalent to the requirement that the distribution
functions of v, and 1, have no common discontinuity points for every k,n > 1.

Condition C; also holds if, for every k, n = 1,2, ..., the random variables v, and Ty,
are independent and their distribution functions have no common discontinuity points.
In this case, the process E(¢) and the random variable v, can be dependent. In particular,
Vo can depend on the process &{(¢),# > 0, and also on values of the process &; (), > 0 at
moments of its jumps.

Moreover, condition (‘3; holds also if the random variables v, and Ty, are dependent
but the distributions of the random variables T, — Vo are continuous at zero.

2.3 Randomly stopped vector cadlag processes

In this section, the results formulated in Section 2.2 are generalised to the case of vector
processes. This is a necessary step to weak convergence theorems for compositions of
stochastic processes.

2.3.1. Main results. Let, for every € > 0, §.(t) = (E1(¢),...,Em(?)), t > 0, be a

cadlag random process taking values in R,,, and v, = (v, ..., Vg,) be a random vector
with non-negative components. We call E.(¢), r > 0 an external process and v, a vector
stopping moment. Consider the random vectors €, = (Eg1(Ve1), - -+ » Eem(Vem)).

Let us introduce conditions that are vector analogues of conditions A,¢ and C;,
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A,y Foreveryi=1,...,m,there exists a set S; dense in [0, 00), containing 0, and such
that P{vy; =t} =0 fort € S;\ {0}, and forall t/, #" € S;,i=1,...,m,

(Vsi’ Sup Esi(t),i = 1’---’m)

telt] 1)
= (voi, sup Epi(t),i=1,...,m)ase — 0,

Y
relr,1")

(v inf E(0)i = 1,...om)

Y
relr].1]

= (vo;, inf Ey(®),i=1,...,m)ase — 0.
telt]t’)

C,: The process Ey(?), t > 0, is continuous at the point vy; with probability 1 for every
i=1,...,m,ie., P{lim,_q&Ep(vo +1) = Epi(vo)} = 1fori=1,..., m.

The following theorem from Silvestrov (1971b, 1972a) is a vector analogue of The-
orem 2.2.1.

Theorem 2.3.1. Let conditions A,y and C4 hold. Then
(EE!(VEl)’i = 17 e ’m) : (EO[(VOZ)?Z. = 1, . ’m) as 8 % O'

Proof of Theorem 2.3.1. Foreachi=1,...,mand n > 1, choose partitions of the inter-
val [0, co) such that, forevery i = 1,...,m, (@) 0 = 20 < Zitn < *** < Zinn < Zintln =
o fori=1,...,m, (b) hj(n) = maxXock<p-1 |Zik+10 — Zikwl = 0asn - cofori=1,...,m,
and (c¢) z;,, = o0 asn — oo.

Fori=1,...,mand n > 1, define the random variables

n

Hm= ) sup (Ve € (it Zakern)) (2.3.1)

=0 '€lziknZiks1,n)

and

E.(n) = Z inf  E (DX (Vei € [Zikns Zikr1.0))- (2.3.2)

pay €2 knZik+1,0)

Let also
Nei(h, x) = sup [Ei(x + 1) = Ei(x)|, x=>0,i=1,...,m. (2.3.3)
lfi<h

It is clear that condition €, is equivalent to the relation

Vo) —> Oash — 0,i=1,....m. (2.3.4)
M
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On the other hand, by the definition of the random variables £,(n) in (2.3.1) and
(2.3.2), we have, foralli =1,...,mand n > 1, that

(E0i(m) = Egi(m)X(Voi < Zinn) < 2n0i(hi(n), Vo). (2.3.5)

Thus, if condition €, and, consequently, (2.3.4) hold, then fori = 1,...,m,

P{E(J)r,(n) - ES,(") > 0}

< P{vo; = zina} + P{Moi(hi(n), vo;) > 6/2} —» 0asn — 0, (2.3.6)
thatis, foralli=1,...,m,
E5(n) — Eg(n) — Oas n — oo, 2.3.7)
Itisclear that, foralli=1,...,m,n>1,and € > 0,
E.i(n) < Ei(vei) < ES(n). (2.3.8)
It follows from (2.3.7) and (2.3.8) that
E5m.i=1,....m) = Eolvo)i = 1,....m)asn — o, (23.9)
and
€ i=1,...,m) = Evo),i = 1,...,m)as n > oo, (2.3.10)

The sequence of partitions described in (a) — (¢) can always be chosen in such a way
that z;4, € S; forallk =0,...n,n>1,andi =1,...,m.

Let also U be the subset of all points u = (uy,...,u,) such that P{Ey(vy) = u;}
= P{E}.(n) = u;} = P{E;(n) = u;} = Oforalln > 1and i = 1,...,m. The set U is dense
in R,,.

Relations (2.3.9) and (2.3.10) imply that, for all points u € U,

P{E, () <ui=1,...,m} — P{€y(vo) Supi=1,...,m}asn — oo, 2.3.11)
and
P{E,(n) <ui=1,...,m} = P{Eu(vo) <uji=1,...,m}asn — oo. (2.3.12)
By the definition of £2.(n), we have

P{EL(n) <u;, i=1,...,m}

SRV 2.3.13
= Z Z P{ Sup ESZ(I) S ui? V?,i € [Zi,k,-,m Zi,ki+l,n),i = 1’ AL m}’ ( )

=1 k=0 !€lziknZiki+10)
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and
P{E.(n) <u,i=1,...,m}

Sk . , 2.3.14
= Z Z P{ inf )Esi(f) S Ui, Ve € [Zi,k,-,mzi,ki+l,n),l =1,...,m}. ( )

i=1 k=0 le[zi,ki,llszi,ki+],’l
Also, by condition A,¢ and (2.3.13)-(2.3.14), for all points u € U,

@P{g;(n) <upi=1,...,m}—PE (M) <uni=1,...,m)|

o m (2.3.15)
<1im ;(P{vgi > Zina) + P00 2 Zina) =2 ) PO 2 Zina,

i=1
and
Em{g;(m Sunpi=1,....,m}—PEy(n) <uni=1,...,m)|
(2.3.16)

e—>0 &=

<Tim > (P{Vei = Zina) + PiVoi = Zina)) = 2 ) PiVoi = Zina).
i=1 i=1

Now, using relations (2.3.8), (2.3.11), (2.3.12), (2.3.15), and (2.3.16) we get, for
every point u € U, the following estimates:

lim P{Eqi(vei) < wini = 1,....m}

< lim imP{E;(n) < w,i=1,...,m}
n—oo ¢—-0 (2317)

< im(P(Eg(n) S wi=1,..,m}+2>"" P{vo; = 2inal)
= P{Eo(vo) S wi = 1,...,m),
and

h_mp{gu(\’u) < ui’i = 1»‘ . -sm}

e—0
> lim imP{E..(n) < w;,i=1,...,m}
e (2.3.18)

> Im(PEG(D) < wyi = 1,om) =2 7 PV i)
= P{Ey(vo) Supi=1,...,m}.
Obviously, relations (2.3.17) and (2.3.18) imply that for every u € U,
lim P{Ei(vei) < w0 = 1,....m} = P{Ei(Voy) S uini = 1,....m}. (2.3.19)

Relation (2.3.19) proves the theorem (recall that distribution functions of random
vectors weakly converge if they converge on a dense subset in R,,). O
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2.3.2. Joint weak convergence of randomly stopped processes and stopping mo-
ments. The statement of Theorem 2.3.1 can be strengthened in the following way.

Theorem 2.3.2. Let conditions A,y and C4 hold. Then
(Veis Eei(Vei), i = 1,...,m) = (Voi, Eoi(Voi), i = 1,...,m) as € — 0.

Proof of Theorem 2.3.2. If conditions A,y and €, are fulfilled for the random vectors

(Vei,i = 1,...,m) and the processes (E.(?),i = 1,...,m), t > 0, then these condi-
tions are also fulfilled for the random vectors (v, Ve, i = 1,...,m) and the processes
EL®,5i(),i=1,...,m),t>0,where E_.(1) =t,t >0, fori=1,...,m. O

2.3.3. Condition A,, and J-convergence of vector cadlag processes (v, &(%)),
t > 0. The following condition ia a vector analogue of condition A;:

Ayt (Ve, E(1), 1 € U = (vg,&y(1)),t € U as € — 0, where U is a subset of [0, o) that is
dense in this interval and contains the point O.

The following condition of J-compactness of external processes was introduced in
Subsection 1.6.11:

dg: lim o limeo P{AS(E,(),c,T) > 8} =0, 8,T > 0.

Let S be the set of points of stochastic continuity of the process §,(¢), t > 0. This
set is the interval [0, o), except for at most a countable set. Note also that 0 € §. Let
also Y; be the set that contains all points y that are points of continuity of the distribution
functions of the random variables v(; and the point 0. By the definition, Y, is the set of
points ¢ > 0 for which P{vy; = #} > 0. Each such set contains at most a countable number
of points. Therefore, each set S; = S \ Y, is dense in [0, o0) and contains the point 0.
Moreover, this set coincides with [0, co) except for, possibly, some finite or countable
set.

Lemma 2.3.1. Let conditions A,y and 34 hold. Then condition A,y holds with the sets
Sl' :So\Yi,i: 1,...,m.

Proof of Lemma 2.3.1. Obviously, %E(t) = (v, (1)), t > 0, is a cadlag process with the
phase space R,,,. The first m components of this process do not depend on time.
Condition .A,, yields the weak convergence of these processes on the set U from this
condition. Also, the processes %s(t), t > 0, and E.(¢), t > 0, have the same moduli of
J-compactness, i.e., AJ(%E(-), ¢, T) = Ay(E.(),c,T) forevery ¢, T > 0. So, J, can serve
as a J-compactness condition for the vector processes %g(z‘), t>0.
Thus, A,, and J, provide J-convergence of the processes gg(t), t>0,1i.e.,

E(0,120-LE @, 1>0ase— 0. (2.3.20)
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Let Fy(A) denote the measure generated by the process éo(t), t > 0 on the Borel

(2m)
o-algebra B, .
(2m)

Let x(7) = (x1(2), ... x2,(2)),t > 0 be a cadlag function from the space D[O’m). Let us
consider the functionals f;(x(-)) = x;(0) and mzt,’t,, (X(+)) = Sup,epy ) Xim+i(1), My x()) =
infyepr ) Xpei(®) for 0 <t <t < oc0,i=1,...,m.

According to Lemmas 1.5.1 and 1.5.9, the functionals f;(x(-)) belong to the class
D0[Fo] as well as the functionals m;fﬂ’ﬂ,(x(-)) forall0 <t <t < oo, t,t € §,,i =

I,...,m. By the definition of these functionals, f,-(gg(-)) = v, While m;t;’t;,(ég(-)) =
SUPyeqsr 1) Eei(?) and mi_’tl{,tl{/ &) = infte[t;,t;’) Eei(t).
Now, by Theorem 1.6.7, forall 0 < ¢/ <t <oo,t/,t’ € S;,i=1,...,m,

1

(Vei, sup E(0),i=1,...,m)= (v, sup Ep(),i=1,...,m)ase— 0, (2.3.21)

telt]1) telt] 1)
and

(Vg, inf )Es,»(t), i=1,...,m) = (vg, inf )Eol»(t),i =1,....m)ase > 0. (2.3.22)
/ t//

s
relr].1] telr.r]

Relations (2.3.21) and (2.3.22) imply that condition A9 holds with the sets §; =
So\Y,i=1,...,m. O

Now we can formulate the following theorem from Silvestrov (1971b, 1972a), which
is a vector analogue of Theorem 2.2.2.

Theorem 2.3.3. Let conditions Ay, d4, and C, hold. Then
Eei(Ver), i =1,...,m) = (Eoi(vo;), i = 1,...,m)as & —> 0.

Condition J, in Theorem 2.3.3 can be weakened in the following way. Let us intro-
duce the condition:

Jg: lim_lime_o P{A;(E,(),¢,T) > 8} =0, 8, T >0, i=1,...,m.

It should be noted that condition Jg is weaker than J,. An example of vector cadlag
functions that satisfy condition Jg but do not satisfy condition J, is given in Section 3.1.

Lemma 2.3.2. Let conditions A,y and Jg hold. Then condition A,y holds with the sets
Sl' :So\Yi,i: 1,...,m.

Proof of Lemma 2.3.2. The proof is analogous to the proof of Lemma 2.3.1. The differ-
ence is that one must use Theorem 1.6.8 instead of Theorem 1.6.7.

Let us consider the processes ég,-(t) = (Vei, Sei(2)), t = 0, fori = 1,...,m. Let Fo;(A)
be the measure generated by the process éol-(t), t > 0 on the Borel o-algebra of subsets
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of B? . Conditions A,, and Je imply that these processes satisfy the conditions of
[0,00) 20 g 1mply P y
Theorem 1.6.8.

Let x() = (x1(#), x2(2)),t > 0 be a cadlag function from the space D%?w). Let us
consider the functionals f(x(-)) = x;(0) and m;’t,,(x(-)) = SUPepy o X2(1), My, (X(1) =
infep o x2(t) for 0 < ¢ < ¢ < o0.

Also, according Lemmas 1.5.1 and 1.5.9, for every i = 1,...,m, the functionals
f(x(+)) and m;—;’ﬂ,(x(~)), forall 0 <7/ <t < oo, £}, € S;, belong to the class 9 ;.[Foil-

Now, by Theorem 1.6.8, we getforall 0 </ <t <oo,t/,t €S;,i=1,...,m,

(Vei, sup Eg(0),i=1,...,m) = (vy;, sup Ep(t),i=1,...,m)yase —» 0. (2.3.23)

telt]1) relt] 1)

In the same way, for all 0 < ¢/ < ¢/, ¢/, 1’ € §;,i = 1,...,m, we get the following
relation:

(Vei, Inf Eg(0),i=1,...,m) = (vy;, inf Eu(t),i=1,...,m)ase —>0. (2.3.24)
telt],t]) teltt’)

Relations (2.3.23) and (2.3.24) obviously imply that condition A,y holds with the

sets S; =So\Y,i=1,...,m. O

We can improve Theorem 2.3.3 by replacing the condition J, with the weaker con-
dition Jg.

Theorem 2.3.4. Let conditions Ay, Js, and C4 hold. Then
(ESI(VSl)’i = 1’ AR ’m) : (EO[(’VOZ)’I. = 1, R ’m) as 8 - O'

Remark 2.3.1. If the limiting process §,(¢),t > 0, is a.s. continuous, condition G, au-
tomatically holds. In this case, the modulus of J-compactness in the conditions J, and
dg can be replaced with the corresponding modulus of U-compactness. After this, the
conditions d, and Jg become equivalent.

2.3.3. The case of non-random functions. Let us consider the case where a non-
random cadlag vector function X.(t) = (x¢;(¢),i = 1,...,m),t > 0 is stopped at a non-
random vector point y, = (ye,i = 1,...,m). Consider the vector z, = (x;(Vei), i =
1,...,m). In this case, condition .A,, reduces to the following conditions: (a) x.(t) —
Xo(?) as € — 0 for ¢t € U, where U is some set of points everywhere dense in [0, co) and
containing 0; and (b) y. — yo as € — 0. Condition Jg is a condition of J-compactness of
the functions x;(¢),t > 0, which now becomes (c¢) lim._, ﬂg_@ Aj(xe(+),c, T) = 0, for
every 0, T > 0Oandi = 1,...,m. Note that (a) and (c) are just necessary and sufficient
conditions of J-convergence of the functions x.;(t),t > 0, for every i = 1,...,m. They

J .
can be re-casted as (d) x.;(#),t > 0 — x¢;(¢),t > 0ase —» 0,i = 1,...,m. Note that
J-convergence of the vector functions x.(#),# > 0 is not required. Finally, condition C,
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takes the following form: (e) yo; is a continuity point of the function x(,(¢), t > 0 for

every i = 1,...,m. In this case, Theorem 2.3.4 states that z;. — z, as ¢ — 0 if conditions
(a), (b), (c), and (e) are satisfied.

2.3.4. Condition A,, and M-convergence of processes (v, &:(¢)), ¢ > 0. Similar to
the one-dimensional case, conditions A,, and Jg can be replaced with the corresponding
conditions that are based on the weaker topology M.

Let as recall the condition of M-compactness introduced in Subsection 1.6.16,

M;: lim,_olim,_o P{Ay(Eu(), e, T) > 8} =0, 8, T >0, i=1,...,m.

Lemma 2.3.3. Let conditions A,y and Ms hold. Then condition A,y holds with the sets
Si=So\Y,i=1,...,m

Proof of Lemma 2.3.3. The condition of joint weak convergence, A,,, and the condition
of M-compactness, M, imply M-convergence of the scalar processes E(t), ¢ > 0, for
every i = 1, ..., m. Moreover, for every u;,w; € Ry,i = 1,...m, conditions A,, and
M imply M-convergence of the scalar processes u;ve; + w;Ei(t), t > 0 for every i = 1,
..., m. By using Theorem 1.6.13, one gets the following relations for all 0 < 7 < ¢’ <
oo, tl, 1 €S;i=1,...,m:

(uivsi +w; sup EEi(t),l = 1’ RN m)
telt) 1)
) (2.3.25)
= (u;vo; + w; sup Ep(t),i=1,...,m)ase — 0,
teftt’)

and

(uivei +w; inf Eg(0),i=1,...,m)
relt 1)

= (u;vo; + w; i[nf)§0i(t),i: 1,...,m)as e — 0.
S

(2.3.26)

Since the choice of u;, w; € Ry,i = 1,...,mis arbitrary, these relations imply that for
any 0 <t/ <1/, 6,1/ €S, i=1,...,m,

(Vei, sup Egi(0),i=1,...,m) = (v, sup Eu(t),i=1,...,m)ase — 0, (2.3.27)

te[t], ) teft 1)
and

(ve, inf Eg(0),i=1,...,m) = (vo, i[nf )Eo,-(t),i =1,...,m)as e — 0. (2.3.28)
telt. !

telt],t)

i

Relations (2.3.27) and (2.3.28), obviously, imply that condition A, holds with the
sets S, =So\Y,,i=1,...,m. O



90 Chapter 2. Weak convergence of randomly stopped processes

The following theorem is a corollary of Theorem 2.3.1 and Lemma 2.3.3.

Theorem 2.3.5. Let conditions Ay, Ms, and C4 hold. Then
(%gi(vgi),i = 15 e 9m) = (EOi(VOi)’i = 1» . e sm) as e — O

2.3.5. The continuity condition C,. Condition €, actually, is an assumption that
condition €5 holds for the process E(f), ¢+ > 0 and the random variable v, for every

i=1,...,m. All remarks made in Section 2.2 can be repeated without any change.
In particular, condition €, holds if condition Q, holds for the process E(?), t > 0,
and the random variable vy; for every i = 1,...,m.

2.3.6. Time interval (—oo, o). All the results formulated above can be generalised
to the model where the cadlag processes &.(f) = (E1(¢),...,Eum(?)), t > 0 are defined
on the time interval (—oo, o), and the random vectors v, = (Vgq,...,Ve,) take values in
space R,,. In this case, the sets §; in condition A4 and the set U in condition A,, must
be everywhere dense in (—oo, o), while the relations of J-compactness in the conditions
d4 and Jg must hold for any finite interval [7’, T”] where —oco < T’ < T" < co.

2.3.7. Positive limiting stopping moments. In the case where the limiting stopping
moments vo; > 0,7 = 1,...,m, with probability 1, one can slightly weaken the conditions
Ay, A,y and the conditions J,, Jg. In this case, the sets §; in condition A,y and U in
the condition A,, must be dense in (0, o), and the relations of J-compactness in the
conditions J, or Jg must hold for any finite interval [T, T"”] with 0 < 7" < T"" < co.

This generalisation can be achieved by using the following standard method. Let
us consider the basic case where condition Ay holds. One can always choose some

sequences 0 < s,; —» 0 as n — oo such that, foreveryi =1,...,mandn = 0,1,.. ., the
point s,; belongs to the set S,;. Then one can consider the processes Eg.'i(t) = Ei(y(t =

Sui)s EX (1) = Eq(t)(t < su), t = 0. Obviously, E.(r) = EY (¢) + E” (1), and, therefore,
(@) Eei(Ve) = E (ver) + B (V).

From A,y and positivity of the random variables vy;,i = 1,...,m, one gets the fol-
lowing estimate: (b) lim,,,c lime_o P{IEY (V)| > 8} < i, limeyo P{vei < 50} =
lim, e P{vo; < s,} = 0. It is readily seen that (c) conditions A,y and €, hold for the

processes &.(f) = (Egg(t),i =1,...,m),t = 0, and the random vectors v, = (Vg,i =
1,...,m) for every n = 0,1,.... Hence, (d) (Egﬁr(vo[),i =1,....,m) = (Egﬁr(vo[),i =
1,...,m)as e — 0. The random variables vy;,i = 1, ..., m are positive. This implies that
(e) Y (vor),i = 1,...,m) = (Epi(Voi),i = 1,...,m)as n — co. Finally, by Lemma 1.2.5
and relations (a) — (e),

Eei(ve),i=1,...,m) = (Epi(vp),i=1,...,m)as e — 0. (2.3.29)

2.3.8. Random vectors (§.(v,; — 0),i = 1,..., m). Under the same conditions A,
and €, the following relation holds:

Eei(vei —0),i=1,....,m) = (Epi(voi —0),i=1,...,m)as e — 0. (2.3.30)
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This relation can be proved following the proof of Theorem 2.3.1 by carrying it over
to the random vectors (& (ve; — 0),i = 1,...,m). What needs to be slightly changed is
only the definition of the random variables % (n). The corresponding suprema and infima
should be taken over the intervals [2; -1, Zix+1.0), instead of the intervals [z; ., Zik+1.1)
(here z;—1, = zio., = 0). In this case, the same upper and lower approximations can be
used for the random variables E(vy; £ 0),i.e.,foralli=1,...,m,n>1,and € > 0,

E;(I’l) < Eei(vei + 0) < E:z(n) (2331)

Moreover, the proof of Theorem 2.3.1 can also be carried over in the same way to the
random vectors (Eg;(Ve;), Eei(Vei — 0),i = 1,...,m). This yields that, under the conditions
A,y and €, the following relation holds:

(Esi(vsi)’ Esi(vsi - O)a I = 1’ R} m)

= (E0i(Voi), Eoi(vor — 0),i=1,...,m) as € — 0. (2.3.32)

The idea of extending the intervals [Z; s, Zix+1,,) 1n the definition of the random vari-
ables E(n) can be modified. The intervals (21, Zik+1,n) and [Zjg-1,2, Zik+1,2] CAN SETVE
equally well and replace the intervals [z; 41 1, Zix+1.,) 10 the estimate 2.3.31.

This remark leads to modified versions of condition A4 in which the corresponding
suprema and infima should be taken over the intervals (z/, ") or [, ], instead of the
intervals [#/,#). It is useful to note that the conditions A,, and g, (or Jg) imply any
modification of the condition A4 described above.

In the case where the modification of condition A4 is based on the open intervals
(#/,t”), an interesting method of time reversion can be employed.

Let us take some 7' > 0O such that (a) it is a point of stochastic continuity of the
process &y(1), 1 > 0; (b) P{vo; =T} =0,i = 1,...,m. Let us also assume for the moment
that (¢)0<v,; <T,i=1,...,mforalle > 0.

Consider the process &,(t—0) = (E.;(t—0),i = 1,...,m),t > 0 (here E,(0—-0) = E,(0)).
This process is continuous from the left, whereas the original process &.(7),t > 0, is
continuous from the right. The process with reversed time can be defined by Eg)(t) =
E(T—1-0),0<t<T,and E"(r) = E,(0) for t > T. Obviously, E(r),r > 0 is a cadlag
process. Let also vg) =T —vg,i=1,...,m).

By the definition of the processes ’ég)(t), t > 0 and the random vectors vff),

ET —ve),i=1,...,m) = Ea(vy = 0),i = 1,...,m). (2.3.33)

Obviously, sup,c ) x(t) = sup,, ) x(t — 0) and inf,e oy x(£) = infiep o) x(t — 0)
for any real-valued cadlag function x(¢),# > 0. Thus, the modification of condition Ay
based on open intervals holds for the processes E(ET)(I), t > 0 and the random vectors vg).
Also, condition €, holds for the processes ’é(()T)(t), t > 0 and the random vectors v(()T) if it

holds for the initial external processes and stopping moments.
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Therefore, Theorem 2.3.1 can be applied, and this yields relation (2.3.30).

The general case with unbounded stopping moments can be reduced to the case
where condition (c) holds. Let 0 < T, —» o0 as n — oo be a sequence of points for
which conditions (a) and (b) hold. Condition (c) obviously holds for the truncated ran-
dom variables v,; AT, i=1,...,m.

The following obvious estimate holds for alli = 1,...,m, n > 1 and o > 0: (d)
P{lE:i(Vei £ 0) — Ei((ve; A T,) = 0)| > o} < P{vy, > T,}. It follows from this estimate
and condition A4 that (e) lim,_,« lim,_0 P{lE€ei(Vei £ 0) — Ei((ve; A T) = 0)] > o} = 0.
Also, (f) Epi((voi AT,) £0),i=1,...,m) = (Epi(vei £0),i =1,...,m)asn — 0. The
modified version of condition A, and condition €, imply, by the remarks made above,
(@) EGi((vg AT £0),i=1,....m) = Eu((voi AT,) £0),i =1,...,m)as e — 0 for
every n > 1.

Lemma 1.2.5 and relations (d) — (g) imply that

(Eei(vei £0),i=1,...,m) = (Epi(vo; £0),i=1,...,m)ase — 0. (2.3.34)

2.3.9. A Polish phase space. The results given in Section 2.3 can also be generalised
to a model with cadlag processes E;(¢), t > 0 that take values in a Polish space X. We
will show how the consideration can be reduced to real-valued processes.

The vector process §,(f), t > 0, has the phase space X,, = X X---x X. A metric in the
space X,, can be defined by d,,(x,y) = (X1, d*(x;,y,))"/* for points X = (x1,...,%,),y =
V15 -+ +»Ym) € X, where d(x, y) is the corresponding metric in the space X.

The conditions A,, and €, can be kept without any changes. In the conditions J,
and Jg, the Euclidean distance |x — y| must be replaced with the corresponding metrics
dn(x,y) and d(x,y) in the formulas for the moduli of J-compactness, A,(E.(-), ¢, T) and
Aj(Ee(+), ¢, T). The following theorem is a new result.

Theorem 2.3.6. Let conditions Ay, d4 and C4 hold. Then
Eei(Vei)si=1,...,m) = (Eo(vo), i = 1,...,m)ase — 0.

Proof of Theorem 2.3.6. Let us consider the processes %E(I) = (Ve, §,(1)), t > 0. These
are cadlag processes taking values in the space R,, X X,,,.

Conditions A,, and J, imply J-convergence of the processes %E(I), t > 0 to the pro-
cess go(t), t>0ase— 0.

Denote by F(A) the measure generated by the process EO(I), t > 0 on the Borel o-
algebra of the space D of cadlag functions x(¢) = (x(?), . .. x2,,(?)), t > 0 taking values in
the space R,, X X,,,.

Let us f;(x) be arbitrary continuous bounded functions defined on X, u;, w; € R,
and points 7/ < t', t/,t, € Sg fori = 1,...,m. Here S is the set of points of stochastic
continuity of the process EO(I), t > 0. The functionals };", u;x;(0)+w; SUP;eqy ) Ji(Xm4i(2))
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and >7%, u;x;(0)+w; inf ey ) fi(X4i(2)) are a.s. J-continuous with respect to measure F.
Thus,

m

Z UVei + wi sup  fi(Eei(?))

Y
rel?.1)

! . (2.3.35)
= Z uivoi + w; sup fi(Eoi(?)) ase — 0,

Y
i=1 relr.n’)

and

D tivsi wi nf - fi(E (1)
- relt] !
! i (2.3.36)
= Z uvg +wi inf  £(Eoi(?)) as € — 0.
i=1

telt]1)

Since u;, w; € Ry, i = 1,...,m, are chosen arbitrarily, (2.3.35) and (2.3.36) imply
that

(Vsi’ Sup ﬁ(%u(ﬂ),l = 1’ ey m)

[£.1")

el , (2.3.37)
= (VOi’ Sup ﬁ(EOi(I))al = 1’ e ’m) as € — O,
telt] 1)
and
(Vsi, lnf ﬁ(%sz(t))al = 17 ey m)

teft,t)

(2.3.38)

Y

= (Voi, i[nf )f,-(%o,-(t)),i =1,...,m)ase — 0.
te [.,li

Since t! < t!” are arbitrary points from S, the relations (2.3.37) and (2.3.38) mean
that condition .A,4 holds for the processes (f;(E.(?)),i = 1,...,m), t > 0, and the random
vectors (v, i = 1,...,m) with the sets S; = So\ Y;, i = 1, ..., m. Here Y; are sets of
points ¢ > 0 for which P{vy; =#} >0,i=1,..., m.

It is obvious that the processes (f;(Eo;(?)),i = 1,...,m), t > 0 and the random vec-
tors (vo;, i = 1,...,m) satisfy the continuity condition €, if this condition holds for the
processes (Ep;(t),i = 1,...,m), t > 0 and the random vectors (vo;, i = 1,...,m).

Thus, Theorem 2.3.1 is applicable to the processes (fi(E(?)),i = 1,...,m),t > 0 and
the random vectors (v, i = 1,...,m), which gives the relation

(fiEei(ve)), i = 1,...,m) = (fi(Eoi(vp)),i =1,...,m)as e — 0. (2.3.39)

Since the continuous bounded functions fi(x), i = 1,...,m, are arbitrary, (2.3.39)
implies the relation

Eei(ve),i=1,...,m) = (Epi(vo),i=1,...,m)as e — 0. (2.3.40)

The proof is completed. O
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Remark 2.3.2. 1t is possible to weaken condition J, and replace it with condition Jj.

2.3.10. A more general space of trajectories. As follows from the proof of Theo-
rem 2.3.1, the assumption that §.(7), # > 0 is a cadlag processes is not essential. It would
be sufficient to only require that the quantities Eg;(v,;), and SUP,ery 1) Eei(1), infrery 1) Eei(D),
t,t’ €8;,i=1,...,mbe random variables. The formulations of condition A ;4 as well
as Theorem 2.3.1 can be preserved without any changes.

2.4 Weakened continuity conditions

The first-type continuity condition that the limiting stopping moment is a point of conti-
nuity of the corresponding limiting external process with probability 1 is essential in the
limit theorems given in Sections 2.2 and 2.3. This condition covers a significant part of
applications. Nevertheless, it is desirable to weaken this condition in order to include in
the consideration the models in which the limiting stopping moment can be a point of
continuity of the limiting external process with a probability less than 1. In this section,
we show that in such cases one can use weaker continuity type conditions that prevent
the positioning of stopping moments at the “wrong” left-hand side of points of large
jumps of the external processes. The results in this section, in particular Theorems 2.4.1
and 2.4.2, are new.

2.4.1. A weakened continuity condition. Let, for every € > 0, E.(¢), t > 0 be a
real-valued cadlag process, and v, be a non-negative random variable.

Take 6, T > 0 and define, for a real-valued cadlag function x(¢), t > 0, the functionals
al(x(-)) = 0 and then, recursively, a0 (x(-)) = inf(s > o™ (x(): [AGx() = ) AT
fork=1,2,....

Let us al(z)o consider the random variables ocg)T = oc,((?(%s(-)), k =1,2,.... By the

definition, o, are successive moments of jumps of the process E¢(?), ¢ > 0, at which the
absolute values of the jumps are greater than or equal to 6 and which are truncated in
time by 7. Since E.(¢), t > 0 is a cadlag process, P{(xS()T =T} —> lask — oo.

In what follows, it is assumed that conditions A, and J, hold. These conditions are
necessary and sufficient for J-convergence of the vector processes (v, E:(1)), t > 0,

(Ver Eelt)), 1= 0 =5 (v, Eg(), £ > O s & — 0. (2.4.1)

Let us denote by Z the set of all 8 > 0 such that P{|A;(E(:))| # o, s = 0} = 1. By the
definition, Z; is a set of & > 0 for which the process E(¢), ¢t > 0 has no jumps with the
absolute value equal to d with probability 1. Since the cadlag process E((7) has at most a
countable number of jumps, the set Z; is (0, co) except for at most a countable set.

Let also S be a set of points of stochastic continuity of the process Ey(¢), t > 0. This
set coincides with [0, co) except for at most a countable set, and 0 € S .
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Let For be the measure generated by the process (vo, Eo(?)), ¢ € [0, T] on the Borel

(@)
o-algebra B’/

Take d € Zyand 0 < T € S. As follows from Lemma 1.6.8, the functionals (ll(fT)(-)
belong to the class $,[For] for all kK > 1. The random variable v, can be considered as
the value fy(-) of the first component of the vector process (v, (7)), ¢ > 0 at moment 0.
This functional and the difference a,f’r)(-) — fo(+) also belong to the class $H,[Fo.r].

So, for every 0 € Zy,0 < T € Sy, and k > 1 and every u, which is a continuity point
of the corresponding limiting distribution function,

P{OLS)T -V, <u} - P{(xg’()T —vop <u}ase— 0. (2.4.2)

However, it is not certain that # = 0 is a continuity point of the limiting distribution
function in (2.4.2) and, therefore, there is no guarantee that (2.4.2) holds for u = 0.

Let Y, denote the set of all continuity points of the distribution function of the random
variable vy. This set coincides with [0, co) except for at most a countable set. Thus, the
set Sy N Yy is also [0, oo) except for at most a countable set.

Let us now assume that the following condition holds:

D,: There exist a sequence 0; € Zy,0; — 0 as [ — oo and a sequence 0 < T, €
SoNYy, T, — oo as r — oo such that, forevery Lk, r > 1, lim__ P{a(bl) —ve <0}

. ekT,
> Plag) —vo < O}

0

Take some 0 < ¢, — 0 which are points of continuity of the distribution function of

the random variable ocf)?j) —vo. Then, for every Lk, r > 1,

0 < lim lim P{a) — v, € (0, ¢, 1}

n—oo E—)O
— lim lim(P{a®) —v. < —Pla® —v. <0
= lim lim(P{a) -V, < ¢,} = P{a%) — v, < 0})
" o0 (2.4.3)
= lim P{a®) — vy < ¢,} — lim P{a®) — v, <0}
T oo OkT) 0= Cn 60 ekT, e =

= Plagy) —vo <0} - @ P{al) —ve < 0).

It follows from relation (2.4.3) that the sign of inequality in D, can be replaced
with the sign of equality. So, under conditions A, and J,, one can use the following
equivalent form of condition D,:

’

D,: There exist a sequence of 0; € Zy, 8, — 0 as [ — oo and a sequence of 0 < T, €
SoNYy, T, — oo asr — oo such that, forevery Lk, r > 1, lim,_, P{a(bl) - v, <0}

ekT,
= P{ag,) —vo < O}
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Theorem 2.4.1. Let conditions A, J;, and D, hold. Then
Ee(ve) = Ep(vp) as e — 0. (24.4)

Proof of Theorem 2.4.1. Let us take some & € Z; and decompose the process E.(¢), > 0
into a sum of two components,

EN) = D ACGOMIAEO)] = 8), EX(0) = &) - EX@), 1> 0.

s<t

By the definition, Efl(t) is the sum of all jumps of the process E.(¢) in the interval
[0, 7] such that their absolute values are greater than or equal to 8. The random variable
ES’Z(I) is obtained by excluding all such jumps from E.(¢).

A cadlag process has, with probability 1, at most a finite number of jumps in any
finite interval. All these jumps have absolute values greater than or equal to 8. The
process Efl(t) is a cadlag process with step trajectories. The process E@(r) is a cadlag
process that has no jumps with absolute values greater than or equal to & with probability
1.

Conditions A, and J, imply that, for every 0 € Z,, the vector processes

B (1) = (Ve Ee(0). EQL(0,ED(0), 12 0
5 E(1) = (v, Eo(0. EXL (0. ED (1), 1 = O as e — 0.

A simple way to see this is to apply Lemma 1.6.13 to the processes (v, (), > 0.
The idea of the proof of Theorem 2.4.1 is to construct and use appropriate upper and
lower approximations for the random variables Effi(vg) and Eg”i(vg), and then for their

sum Ee(vs) = (()63_(V8) + Egéz(vs)

Denote by F,; the measure generated by the process Ega)(t), t € [0, T], on the Borel
o-algebra %Eg?n. Note that the process E(()a)(t), t > 0 has the same set of points of stochas-
tic continuity, S, as the process Ey(7),¢ > 0. We will be interested in certain a.s. J-
continuous functionals from the space $,[F o.r]- Below, it is assumed that (a) & € Z; and
0<TeSs,y.

Let x(¢) = (x1(?), x2(2), x3(), x4(¢)) be a function from the space DS’)T].

The first class includes the functional f(x(-)) = x;(0). Obviously, this functional
belongs to the class $ JIF o.r]. The corresponding random variable, which is the value of
this functional on the process Eg’)(t), t€[0,T],is V.

We will also be interested in the functional %(t; < f(x(+)) < t2) = x(t; < x1(0) < 1),
0 <1, < t, < T. This functional belongs to the class $,[F o.r] for any 1, t, that are points
of continuity of the distribution function of the random variable vy. The corresponding
random variables that we are interested in are x(¢; < v, < 1,).

The second class includes the functionals T , (x(-)) = sup, ., X4(¢) and T, (x(-)) =
inf; <<, x4(1), 0 < t; < t, < T. These functionals belong to the class H,[For] if 1,5, €

(2.4.5)
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So. This follows from Lemmas 1.5.9 and 1.6.6. The corresponding random variables
that are of interest are C(ji[tl ] =CF §(5>( ).

I3l 12
The third class includes the moments of large jumps, a(a)(x( ) = (1(6)(X2( N, k =
0,1,.... Recall that a(b)(xz( -)) = 0. These functionals were already discussed above.

They belong to the class 9 J[FO,T] forall k = 0,1,.... This follows from Lemmas 1.5.6

and 1.6.8. The corresponding random variables that are of interest are oc(,i)T.

The fourth class includes the functionals K(é)(x( ) = a(é)(xz( ) —x1(0),k=0,1,....
These functionals were also discussed above. They belong to the class $ fira o.r] for all
k = 0,1,.... This follows from Lemmas 1.5.1, 1.5.6, and 1.6.8. The corresponding

5)
random variables that we are interested in are oc( ) — V.

We will also consider the functionals X(K(b)(x( ) <c¢) = X(a(b)()@( ) — x1(0) < 0,
c € Ry, k=0,1,.... These functionals belong to the class 551[F0,T] forallk =0,1,...

if ¢ is a continuity point of the distribution functions of the random variables a(()?()T - Vo,

k=0,1,.... The corresponding random variables are X(oci‘z)r - v, <0).

The fifth class includes the functionals £/° (x(-)) = x3(7), 7 € [0, T'). These functionals
belong to the class $,[Fo 7] if t € S, as it follows from Lemmas 1.5.3 and 1.6.9. The
random variables that we are interested in now are E(é) (1.

Finally, the last sixth class includes the functionals p(é)(x( ) = x3(afT)(x2(-))), k =
0,1,.... They belong to the class @,[FO,T] for all k = 0,1,..., which follows from

Lemmas 1.5.6 and 1.5.8. The random variables that we are interested in are p(é)

kT
9 (0® ©
skT N

Now we are in a position to use condition iD;. Assume, therefore, that d = §; € Z,
and T =T, € § are taken from the sequences that enter this condition.

By applying Theorem 1.6.7, we can write, for every k = 0, 1, .. . ., the following rela-
tion that holds for any #; < t,,t1,t, € So, u+ € Ry, ¢ > 0, w € Ry, such that the points
t, b, U, c, w are continuity points of the distribution functions of the corresponding lim-
iting random variables,

o)
P{tl < Ve < tZa Ci,i[tl’tZ] < Uy,

(51) (€]
tkT ek+1T,

= P{t; <vo < b, 5011, 1] <

dn) ©n)
OkT, 0k+1T,

(CoD)
—ve<c,a —v8>cptk’TSw}

(2.4.6)

Qg — Vo < €, 0 —v0>cpol)<w}ase—>0

Take now a sequence of points 0 < ¢, —» 0 asn — oo that are points of continu-

ity of the distribution functions of the random variables aOkT —vp foral k =0,1,...
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Obviously,
P{t; <vo < b, G2 [t 1] <
o, =0 % e, — 0> ) < ) o
— Pty < Vo < 1, 550111, 12] < s, (47
ag?(’}r - vy <0, a(()?(’im — vy >0, p(()?j}r <w}asn — oo.
At the same time,
P{ty < Ve < 1,01, ] < us,
Uy, = Ve < Cun Ol 7, = Ve > Cu Py < W)
—P{t; < v, <1, E(10, 1) < u, (2.4.8)
) ~ve < 0.2, ~v, > 0.p3) < wi
< P{ociilT)r —C, <V < ocgi%} + P{(xﬁfm —cp <V < (xﬁfm}.

Using condition ®,2 and then the identity N,,» 1{(182% —vp € (0, ¢,]} = @, one gets for

allk=0,1,...that

&) &) (CN)

5
ekr, ~ Cn S Ve < Oy} + Plogp —cn S ve < aghr, )

lim lim(P{ot o

n—oo £¢—0

(2.4.9)
= lim(P{agi’}r —cp <vo <o} + P{a® en<vo<ad =0

KT, Qoks17, ~ 0k+17,

Relations (2.4.6), (2.4.7), (2.4.8), and (2.4.9) imply, in an obvious way, the following
relation that holds forevery k = 0, 1,...and all #; < t5, 11,1, € S, ux € R, c >0, w € R
such that the points 7y, t,, u., ¢, w are continuity points of the distribution functions of the
corresponding limiting random variables,

o
P{t; < v, < 1, C0[11, 2] < us,
(01

OLS(IT)r - v, <0, Ogppry, — Ve > 0, pﬁ% <wj}
= Plt; < Ve < 1, M1 1] < s,
o v < a2 < -
— P{t; <vo < 6, 5011, 1] < (24-10)
Aoy, = Vo < 0.0 = Vo > 0, pgly < w)
= P{t; <vo < 0, 501, 0] < ue,
Océil%r <y < ag?ﬁm, péi’%r <w}ase — 0.
For each n > 1, choose partitions 0 = zp, < z1,, < -+ < Zyn, = T, of the in-

terval [0, T,] satisfying the following assumptions: (b) z;, is a point of continuity of
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the distribution function of the random variable vy for all i = 1,...,n,n > 1; (¢)
h(l’l) = MaXp<i<n-1 |Zi+1,n - Zi,nl — 0asn — oo.
Let us define, for n > 1, the random variables

n—1

9 9
o = ) E i 2o a1 < Ve < 1) (24.11)
i=0

By the definition of these random variables, for every e > Oandn =1,2,.. .,

e <EM(vox(ve < T)) < TV, (24.12)
Let us also consider the random variable E(é’ )(v,). The process E( D(f)is a step process

that takes the value p(é’ ) E(a’) (6’ ) r,) in the interval [a(i’T) , ii’j” )foreveryk =0,1,.
()

Since the random variables Oy 7
:

following representation:

F’ .
— T, as k — oo for every € > 0, we can write the

EXvey(ve < T)) = Z ) 3@ < v, <a® ). (2.4.13)

Let us also introduce the random variables

(51) dn) (C)) 40
Eene = Z Peur, X Oy, < Ve < Oylyp)s N2 1.

The joint distribution of the random variables CS& and E(bl) (ve) has the following
form:

C(bl) Us, ﬁé(bz)

ens S eNt S W

:

N
()

Z P Zln < Ve < Zi+l,n, Cb-i- [Zi,na Zi+l,n] < U,

k=0

i= =l

) (®) ()
OL o S Ve < aekl+lT , pskIT < w} (2.4.14)
n—1
+ ) Plzin < Ve < Zivtm C Zims Zivtn] < e, 00 0<
Zin = Ve Zi+lns be,+ [Zz,n, Zl+1,}’l] S Uy, a{:N+lT }X( W)

+ P{ve = T, }x(0 < ur Aw).

In the way absolutely similar to those used to prove relation (2.4.10) it can be proved
that for all #; < 1,11, € So, u. € R; such that points #;, t,, u, are continuity points for
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the distribution functions of the corresponding limiting random variables,

(61)

P{tl < Ve < 1y, t_:( l)[tl,t2] < Uy, O eN+1T,

< Ve}

= P{tl <V < 1, C(11, 1] < u)

5 5 5
_Zpt1<\'8<t2’t~‘gi)tl’ S Us, ile)<V5<a£kl+)lTr}

(2.4.15)
— Pl < v < l‘z,Co,i[ﬁ,tz] < U}

=

® () (®1)
- Z P{t; < vy <1, C’O,i—)[tl’ hl <u., OLOle <vy < aOkl-HT,}

5 5
=P{t <vg <ty E)’;)[tl,t 1 < u,, E),(,Lm <vglase — 0.

It follows from relations (2.4.10), (2.4.14), and (2.4.15) that for all . and w, which

are continuity points of the limiting distribution function

P, <ue, EO), <wh > PEYY, <u. B <whase — 0. (2.4.16)

It is obvious that for any ¢ > 0,

t) (d0) ()
PUEY (von(ve < 7)) €)1 > 0} < Plaly),,, < ve < T, (2.4.17)
Since ag?(’}r LilN T, as k — oo, relation (2.4.17) yields
(50 B ) = (€5 LB (vo)x(vo < T,)) as N — oo (2.4.18)

Also, taking condition D) into consideration we get

lim im P{ES (vou(ve < T,) €01 > o)

(2.4.19)

< lim TimPlagy, ;< ve < T} = lim Plogy, < vo < T} =

It follows from relations (2.4.16), (2.4.18), and (2.4.19) that for any continuity points
of the limiting distribution function, u. and w,
PICOY, < e, EX (vey(ve < T,) < w)

— P{ (&) u+,§0 (VO)X(VO <T,)<w}ase — 0.

0,n,+ —

(2.4.20)

Relation (2.4.20) implies that for any points of continuity of the limiting distribution
function, u.,

P{CESiL + 3(6”(%))((% <T) < u)
(51)

0,n,+

N (2.4.21)
+ 80y (Vo)x(Vo < T,) S us}ase — 0.
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Obviously,
EC(vn(ve < T,) + EX(Vo)x(ve < T)) = Ec(voy(ve < T7). (2.4.22)

Now, using an inequality that follows from relations (2.4.12), (2.4.22) and holds for
everye >0andn=1,2,..., we get

CO L EP (v (Ve < T)) < Ee(vox(ve < Tp) < T80, + EX(voy(ve < T)).  (2.4.23)

Denote by U the set of continuity points of the distribution functions of the random

variables E(vo)y(vo < T}), max(Ey(vo), Eo(Vo))x(Vo < T,), min(Eg(vo), Eo(Vo))x(vo < T)),
and C(é’) E(a’)(vo)x(vo < T,),n > 1. The set U, differs from R, by at most a countable

0,n,+

set. Take an arbltrary point u € U,.
Using relation (2.4.21) and inequality (2.4.23) we get

li_m P{EE(VS)X(VE < Tr) < I/t}

e—0
> lim P{C&), + EX (voy(ve < T,) < u} (2.4.24)
e—0
P(T, + EX(Vou(vo < T,) < u).

Let x(#),t > 0, be a real-valued cadlag function. Let us consider the functionals
m:—h,wh(x(')) = SUP,_j<;<r4p X(5) and m[__h’[_'.]/l(x(')) = inf,_j<s<in X(s) for £, > 0. Here,
we take x(s) = x(0) for s < 0. Obviously, m;r_h’ﬁh(x(-)) — max(x(t), x(t — 0)) and
m_, ,,(x() — min(x(z), x(t — 0)) as 0 < h — 0 for any # > 0.

Taking in consideration this remark we get

M e &0 (Vo < T))

PI o) @) (2.4.25)
— max(§; (vo), §y " (Vo = 0))x(vo < T)) as 0 < h — 0.
Note that, by the definition of random variables Cifr’l f+,
e < 80y Eor OO0 < T, (2.4.26)

Since the process Egé’_) (#),t > 0 has no jumps with absolute values greater than or
equal to 9§y,

max (&5 (vo), E5” (vo — 0))x(vo < T,) < &; + £ (vo)x(vo < T). (2.4.27)

Taking in consideration relation (2.4.25) and inequalities (2.4.26) and (2.4.27) we
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can continue relation (2.4.24) and get

lim P, + &7 (vo)x(vo < T)) < u}

> 1im P{mE, s (Eo () + ESV(vo)x(vo < T) < u)

n—oo

= P{(max(}"(vo), £, (vo — 0)) + E; " (vo)x(vo < T,) < u}
> PO, + (E)" (Vo) + £ (vo))x(vo < T,) < u}
P{&; + Eo(vo)x(vo < T}) < u}.

(2.4.28)

Finally, for every u € U, using (2.4.24) and (2.4.28) we get that
Lim P{E,(ve)y(ve < T,) < u}

e=0 (2.4.29)
> 11m P{0; + Eo(vo)x(vo < T)) < u} = P{E(vo)x(vo < T}) < u}.

In a similar way, it can be proved that for every u € U,

Tim P{E(ve)x(ve < T,) < u}

. (2.4.30)
< lllglo P{=0; + Eo(vo)x(Vo < T}) < u} = P{E(vo)x(vo < T}) < u}.
Relations (2.4.29) and (2.4.30) imply that for every u € U,,
llm P{E:(ve)x(ve < T)) < u} = P{Eo(vo)x(vo < T,) < u}. (2.4.31)
Since the set U, is dense in Ry, relation (2.4.31) gives
Ee(Ve)y(ve < T,) = Eo(vo)x(vo < T,) as € — 0. (2.4.32)
Obviously,
P& (Ve) — Ee(ve)x(ve < T))l > 0} < P{v. > T,}. (2.4.33)
This yields
Eo(Vo)x(vo < T,) = Eo(Vo) as r — oo, (2.4.34)
and also
lim llm P{IE:(Ve) — Ee(Ve)x(Ve < T))| > o}
e (2.4.35)
< lim 11rr01 P{v. > T,} = lim P{vo>T,} =0.

Relation (2.4.4) follows from Lemma 1.2.5 and relations (2.4.32), (2.4.34), and
(2.4.35). The proof is completed. O
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2.4.2. Alternative forms of continuity condition D,. Condition D, can be rep-
resented in equivalent forms that, in some cases, are more convenient than those given
above. Recall that we assume that the conditions A,; and g, hold and, therefore, the
relation of J-convergence (2.4.1) holds.

The following condition, with a modified form of the corresponding asymptotic re-
lation, is equivalent to D, and D,:

fD'z’ There exist a sequence 0; € Z;, 0, — 0 as [ — oo and a sequence 0<T,eSon
Yy, T, — oo as r — oo such that, for every Lk, r > 1, limg.._0 hmHO P{oc(b’) —c<

8
Ve < aile)r} =0.

In condition ZD;, the asymptotic relation is given in the form of an asymptotic esti-

mate. This is more convenient than the form of asymptotic equality used in condition

’

D,.

Let us also introduce non-truncated versions for the moments of large jumps of the
processes E(f), t > 0. Take 0 > 0 and define, for the real-valued cadlag function
x(t),t > 0, the functionals o’ (x(-)) = 0 and then, recursively, a\”(x(})) = inf(s >

A (X)) 1A 2 8) fork = 1,2,

It follows from the definitions of truncated and non-truncated versions of these func-
tionals that a0 (x(})) = o (x(+)) if ol”(x(-)) < T, while a0(x()) = T if a@(x(.)) >T.

Let us also consider the random variables oc(a) = a(é)(Es( ), k = ... By the

(®)

definition, o,  are successive moments of jumps of the process E.(?), t > 0 that have

absolute Values of jumps greater than or equal to §. Note that the random variable (x(a)
takes values in the interval [0, oo], i.e., it can be an improper random variable.

Also, the following condition is equivalent to D,, D, and D,

D, : There exist a sequence 8; € Zy;,0;, — 0 as [ — oo and a sequence 0 < T, — oo

as r — oo such that, for every Lk, r > 1, limg.._ lim, ¢ P{oc(si’) —c < v <

aiil), (51) <T,)=0.
The asymptotic inequality in condition sz differs from the one in sz It involves
the non-truncated versions of the moments of large jumps. Also, it is not required that
T.€eSoNY,.
The following lemma summarises all statements about equivalence of different forms
of condition D, given above.

Lemma 2.4.1. Let conditions Ay, and J, hold. Then conditions D,, D,, D, and D,
are equivalent.

Proof of Lemma 2.4.1. Equivalence of conditions D, and D, was proved in (2.4.3).
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Let us return to relation (2.4.3), but calculate the upper limit, instead of the lower
limit. Take some O < ¢, — 0, which is a point of continuity of the distribution functions

of the random variables a(()?cl}, —vo for I,k,r > 1 . Then, for every Lk, r > 1,

T ) s}
0< 31_)12 £1_r>r()1 P{O‘iklr), —Cp SV < aik’T)r}
= lim lim(P{a}). —ve < ¢,} = P{a}) —ve < 0})

n—oo e—0

= gl_)rg P{a(()?cl}, - vy < ¢} — lim P{GSIT), — v, <0} (2.4.36)
e—0
= P{agil;r — vy < O} - h_m P{aiil;r — v, < O}

e—0

It follows from relation (2.4.36) that conditions D, and fD'z’ are equivalent. Indeed,
if D, holds, then so does fD'2 and, therefore, the last expression in (2.4.36) is equal to
zero. Therefore, :Dz holds. If Dz holds, then, again, the last expression in (2.4.36) is
equal to zero and, therefore, condition D, holds.

Due to the connection between the truncated and non-truncated moments of large
jumps, we have

&) (d0)
P{aekT, kT, }

=P{a® - ¢, < v, <o, 0 < T)) (2.4.37)

+P{T, —c, <v. <T,, och) >T,).

—c, Sv. <

Since T.,eSoNYy,

lim lim P{T, — ¢, < v, < T,, 0 > T,)
et \ (2.4.38)
= lim P{T, — ¢, < vy < T,, 0y’ > T,} = 0.

n—o0

So, the asymptotic relation in condition 9; can be replaced with the following equiv-
alent relation:

{(:21) —-C S VE < a(él) a(al) < Tr} = 0 (2.439)

lim lim P{a S

0<c—0 e—0

Thus, an equivalent form of condition @; would be to assume that there exist a

sequence O; € Zy,d, > 0as/ — ocoand asequence 0 < T, € SoyN Yy, T, > c0asr — oo
such that relation (2.4.39) holds for every [, k,r > 1.

However, the probability P{a(i’) —c< Ve < a(;’), OLS’) < T,} is a nondecreasing func-

tion in 7. This implies, in an obvious way, that relation (2.4.39) holds simultaneously

for all the sequences 0 < 7, — oo as r — oo. m|

The following condition is, obviously, sufficient for condition 92 to hold:
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fD;”: There exists a sequence 0; € Zy,d, — 0 as [ — oo such that for every L,k > 1,
limg..0 limg_g P{oci —c<v, < a(bl) 1= 0.

The following lemma supplements Lemma 2.4.1.

Lemma 2.4.2. Let conditions A,; and g, hold. Then condition ‘.D2 implies conditions
D,, fD;, fD2 and fDlz”, and it is equivalent to these conditions if (&) lim,_,, lim,_,o P{T, <
(51)
< oo} =0.

Proof of Lemma 2.4.2. 1t is obvious that for any 7, > 0 and [,k > 1, the following
relation implies (2.4.39):

lim limP{a®” — ¢ < v, < a®} = 0. (2.4.40)

0<c—0 -0

Therefore, condition D, implies condition D, .

Note that{ (2’) c <v < a(gi’)} - {OLS’) < oo}. Assume that condition (o) holds.

Conditions D " and () imply that, for any sequence 0 < T, — oo as r — oo,

lim lim P{o® — ¢ < v, < 2"}
0<c—0 -0
< lim TimPla’ —c < ve <ag.af’ <T)) (2.4.41)
+ 11rr8 P{T, < oc(bl) oo} = 11rr3 P{T, < oc(bl) < oo} = Qasr — oo.
g £

Relation (2.4.41) implies that the conditions sz and D, are equivalent if condition
(o) holds. O

2

The following lemma states that, in some sense, conditions D, and D - D, are
invariant with respect to the choice of the sequences 0; and 7,.

Lemma 2.4.3. Let conditions Ay and 3, hold. Then (&) condition D, as well as D,
and DIZ’ can hold only for all sequences d; € Zy,8, —» O asl — ocoand 0 < T, €
SoNYy, T, —» oo asr — oo simultaneously; () condition Dz can hold only for all
sequences 0; € Zy,d, = 0asl — coand T, — oo as r — oo simultaneously; (y)
condition sz can hold only for all sequences 0, € Zy,d, — 0 as | — oo simultaneously.

Proof of Lemma 2.4.3. Let us prove statement (o). The proofs of the statements (f§) and
(y) are similar.

Let us go back to the proof of Lemma 2.4.1. It was actually proved that any sequence
0; € Zy,8, — 0as [ — oo and any sequence 0 < T, € So N Yy, T, — oo as r — oo, which
is used in one of the conditions D,, 9'2, or fD;, can also be used in the other two
conditions.
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Moreover, it was shown that an equivalent form of condition fD; is to assume that
there exist (a) a sequence §;, € Zj,0;, — 0 as/ — oo and (b) a sequence 0 < T, €
SoNYy, T, = oo asr — oo such that (c) relation (2.4.39) holds for every L, k,r > 1.

Thus, it 1s sufficient to prove (@) for condition ZDZ To do this, it is enough to show
that the asymptotic relation used in condition fD'z’ possesses the following property: (d)
if the relation holds for given §, € Zyand 0 < T, € Sy N Y, for all k > 1, then it also
holds for all 6] € Zy,0; > §;and0 < T, € SoNY,, T} < T, forall k > 1.

: 8 :
Let us first consider two random sequences aik’T) k> 1and o k > 1. Obvi-

ekT,’
() .
ously, the sequence of moments, a7 ,k > 1, is a subsequence of the random sequence
) - ®p _ @ -
Oy » k>1,i.e., Oy, = Ogyor,- Here, p; are the random indices that take the values

1,2, ... and define the corresponding subsequence. Let us show that

lim lim P{pg > n} = 0. (2.4.42)

n—oo g—0

Obviously, (e) ueg < k + Per,, where B¢ 7, is the number of jumps of the process
E:(t),t > 0 in the interval [0, 7,] such that absolute values of these jumps lie in the
interval [0;, 07). By the definition, B¢r, is the difference between the numbers of jumps
of the process E(¢), ¢ > 0 in the interval [0, T,] such that absolute values of these jumps
are greater than of equal to 8 and 0,, respectively. By Lemma 1.6.10, (f) the random
variables .7, = Por, as € — 0, and, by Lemma 1.4.1, (g) Bor, is a finite random variable.
Obviously, (2.4.42) follows from (e) — (g).

The following estimate holds for every k > 1:

o) o)
P{angr —Cc <V, < ocngr}

< > Pl —c<v, < ug = j) + Plug > n)
; o o (2.4.43)

n
5 o
< Z P{a(stT)r —c<vV < Otile),} + P{uer > n}.
j=1

The proof of statement (d) for 7 = T, follows from (2.4.42) and (2.4.43). The transi-
tion to the case 7, < T, is obvious, since the probability P{oc(i’ \_c < Ve < 0((82’ ), OLS’) <T,}
is a nondecreasing function in 7',. O

2.4.3. Weakened continuity conditions for randomly stopped vector processes.
The result formulated in Theorem 2.4.1 can be generalised to vector processes. Let, for
every € > 0, E.(f) = (&1 (?),...,Eem(?)), t > 0, be a m-dimensional cadlag process with
real-valued components, and v, = (v, ..., Ve,) be a random vector with non-negative
components. Consider the random vectors €, = (Eg1(Ve1), - - - » Eem(Vem)).
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Let S be the set of points of stochastic continuity of the vector process §,(z),t > 0,
and Y, the set of ¢ > O that are points of continuity of the distribution functions of the
random variables vy; foralli =1,...,m.

d 8 8 5 .

Let also aii,ZT = ocik)r(%gi(-)) apd ocil.,z = ocik)(?gg,-(-)) be, respectively, the truncated and

non-truncated moments of large jumps of the processes E.;(¢),t > 0, fori = 1,...,m.

The following condition is a “vector” analogue of condition D,:

D;: There exist a sequence O, € Zy,0; — 0 as/ — oo and a sequence 0 < T, €

SoNYy,T, = ooasr — oo such that for every L,k,r > 1l andi = 1,...,m,
. S S
lim, _, Ploggy, = Ver < 0} 2 Plag, = vo; < 0).

This condition can be formulated in equivalent forms that are “vector” analogues of

1"

the conditions D, — D :

fD;: There exist a sequence o, € Zy,d, — 0 as [ — oo and a sequence 0 < T, €

So N Yy, T, — o0 asr — oo such that, for every n,k,r > 1 andi = 1,...,m,
lim,_ P{o). — Vei < 0} = P{o, — vo < O},

D;: There exist a sequence o, € Z),8, — 0 as [ — oo and a sequence 0 < T, €

SoNYy, T, = oo asr — oo such that, for every L,k,r > 1 andi = 1,...,m,
limoce—o lime_o Plafy), — ¢ < va < o)} = 0.

D, : There exist a sequence O; € Zj,d, — 0 as [ — oo and a sequence 0 < 7T, — oo as

r — oo such that, forevery ,k,r > 1andi = 1,...,m, limy<._0 ﬂs_@ P{ai?,i)—c <
(61) o)
Vei < Oy s ocil.,i <T,}=0.

The following condition is a “vector” analogue of the condition D) :

9,3,,,: There exist a sequence of §; € Z),8; — 0 as [ — oo such that, for every [,k > 1

andi=1,...,m, 1i1’1’10<c_,0 ﬂg_)() P{(XSI? —Cc <V < OLSI?} =0.
Let us now formulate a vector analogue of Theorem 2.4.1.

Theorem 2.4.2. Let conditions A,y d4, and Dy hold. Then

G = EGer(Ver)s - - s Eem(Vem)) = G = (Eo1(Ve1) - - - » Eom(Vom)) as € — 0. (2.4.44)

Condition J, can be replaced with condition Jg in Theorem 2.4.2.

Theorem 2.4.3. Let conditions Ay, dg, and Dy hold. Then

Ce = Eear(Ve)s - -+, BemVem)) = o = Bo1(Ver)s - - ., Eom(Vom)) as € > 0. (2.4.45)
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I,....2m,cy,i = 1,....mk = 1,...,n) € Ryppn and points t,,...,¢, € U, where U
is the set which appears in condition A,,. Let us consider the stochastic process

Proof of Theorems 2.4.2 and 2.4.3. Let us take arbitrary n > 1, vector ¢ = (cj,j =

m

m n
Ee12(t) = 1&a () + Z CyjVej + Z ciGei(ty), t > 0.
=1 =1

i=1
Obviously, condition A,, implies the following relation
(Ver, Ee12(0), 1 € U = (Vor, Eo1.2(2)), 1 € U as € — 0. (2.4.46)

Thus condition A, holds for the random variables v,; and the processes & :(f), > 0
with the same set of weak convergence U as in condition A,,.

Condition Jg implies that condition J, holds for the processes & :(¢), r > 0. Indeed,
the modulus of J-compactness A;(E.1 (), ¢, T) = |c1|Aj(Ee1(+), ¢, T).

Finally, condition iD3 implies that condition fD2 holds for the random variables v,
and the processes &1 (), > 0. Indeed, the processes & (), > 0 and &, +(r) have the
same moments and values of jumps. Thus, by applying Theorem 2.4.1 to the random
variables v,; and the processes &, z(7), 1 > 0, we get

m m n
C1&e1(Ver) + Z Cm+jVej + Z Z Cirei(tr)
=1

=l (2.4.47)

m m n
= ¢1Ep1(vor) + Z Cm+jVoj t+ Z Z cikoi(ty) as e — 0.
=

i=1 k=1

Let us consider the processes

i=1 k=1

Ee2e(t) = C2Eea(t) + €1Ee1 (Ver) + Z Cmt jVej T Z Z CirEei(t), 1 = 0.
=

Relation (2.4.47) implies, due to Lemma 1.2.1 and arbitrariness in the choice of
n>1,¢€Ropepm,and t1,...,t, € U,

(Ve2, Een2(1), t € U = (Voo, Egoe(t)), t € U as € — 0. (2.4.48)

Thus condition A, holds for the random variables v, and the processes &, (), > 0
with the same set of weak convergence U as in condition A,,.

Condition Jg implies that condition J, holds for the processes E., (1), r > 0. Indeed,
the modulus of J-compactness A;(E.2.:(-), ¢, T) = |ca|Ay(Ee2(4), ¢, T).

Finally, condition ®3 implies that Dz holds for the random variables v,, and the
processes E.,:(7),t > 0. Indeed, the processes Eq(7),t > 0 and E,,:(¢) have the same
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moments and values of jumps. Thus, we get applying Theorem 2.4.1 to the random
variables V., and the processes E. :(7),t > 0,

CZE&Z(VtZ) + Cl%bl(vel) + Z Cm+jVej + Z Z zkgu(tk)

i=1 k=1

(2.4.49)
= 280 (Vo2) + ¢1E01(Vor) + Z CmtjVoj + Z Z cieEoi(ty) as € — 0.
i=1 k=1
By proceeding in the same way, we get, after m steps, the following relation
Z CIEE:I(VE:I) + Z Cim+jVej + Z Z zkgu(tk)
- e (2.4.50)

= Z cioi(voi) + Z Cm+jVoj + Z Z cioi(ty) as € — 0.

i=1 k=1

Relation (2.4.50) implies, due to Lemma 1.2.1 and arbitrariness in the choice of
¢ € Ro,mn» the statement of the theorem. O

2.4.4. Random vectors (§;(vy; — 0),i = 1,...,m). In this case, the conditions
of weak convergence should be slightly modified, since the processes (E.(t — 0),i =
1,...,m),t >0 (here %u(O 0) = E.(0)) are a.s. continuous from the left.

The inequalities a( ) ; < 0 in the conditions D5 and D; should be replaced with
(61) (61) —c <V < (xg.’,i) in D3
(61)

the 1nequa11t1es Our — vu > O Analogously, the inequalities a.;

and 2D3 should be replaced with the inequalities a(bl) +C 2>V > 0

The conditions A,,, d, or Jg, and the modlﬁed version of condltlon D, (or one of
the conditions Dj — D; ) imply that

Eei(vei —0),i=1,...,m) = (Epi(v; —0),i=1,...,m)as e — 0. (2.4.51)

This can be proved by repeating the proofs above with obvious changes in the defi-
nitions of the corresponding functionals.

Also, the method of time reversion can be used. As in Subsection 2.3.8, the con-
sideration can be reduced to the case where the stopping moments are bounded, i.e.,
@wv, €10,T],i = 1,...m; (b) T is a point of stochastic continuity of the processes
Eoi(t),t = 0, fori =1,...,m; and (¢) T is a point of continuity of the distribution func-
tions of the random varlables voi, I =1,...,m.

Let us define the processes E( 1) = E (T —t—-0)forr e [0,T] and E(T)(t) E.(0)
fort>T. ObV10usly, ‘e;g)(t),t > 0, is a cadlag process. Let us also consider the random
vectors v (T) (v D= I,....m) = (T —vg,i =1,...,m). By the definition of these

el
processes and the random vectors,

EPVDYi=1,...,m) = Ei(va = 0),i = 1,...,m). (2.4.52)
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If the conditions A,, and J, (or J;) hold for the processes &,(), # > 0 and the random
vectors V., then this condition also holds for the processes Eg)(t), t > 0 and the random
vectors vg).

Indeed, the functional f,"(x(-)) = x(¢t — 0) is an a.s. J-continuous functional with
respect to the measure generated by the process §(¢),t > 0 for every point ¢ where this
process is stochastically continuous. So, the processes v, E(ST)(t)) weakly converge on
the set that contains all points # € [0, T'], such that 7' —¢ are points of stochastic continuity
of the process &,(f), and all points r > T.

For condition g, (or Jg), this implication follows from the equalities A;(E,(+), ¢, T) =
AJED (), e, T)and Ay(Ea(), ¢, T) = AjED (), ¢,T), i = 1,...,m, which hold with prob-
ability 1 under assumption (b).

Finally, if the modified version of condition D5 (or one of the conditions Dj — D
described above holds for the processes &,(f), 7 > 0 and the random vectors v,, then the
corresponding condition D5 (or one of the conditions D3 — Dj ) holds for the processes
Eg)(t), ¢ > 0 and the random vectors v{".

Summarising the remarks made above one obtains relation (2.4.51).

Moreover, if conditions A,,, d4 (or Jg) hold, togethﬁr with the modified versions

of the condition D, (or one of the conditions D — D; ), then one also obtains the
following more general relation:

ei(Vei)s Gei(Vei —0), i = 1,...,m
(Eei(Ver), Eei ) . ) (2.4.53)
= (Boi(voi), Eoi(Voi — 0),i = 1,...,m)as e = 0.
2.4.5. Examples. Let us return to the basic scalar case (m = 1). The following
lemma shows that, under the assumption that conditions A5, J, hold, condition D, can
be considered as a weakened form of the continuity condition C;.

Lemma 2.4.4. Let conditions A, and J, hold. Then condition C; implies condition D,.

Proof of Lemma 2.4.4. Condition C; means that v, can coincide with any discontinuity
point of the process E(#), r > 0 only with probability 0. This actually means that P{agz’} -
vo =0} =0 forany §, € Z,, T, € Yy and k > 1. So, the point 0 is a continuity point of

the distribution function of the random variable aé?{’} — vy for every 0, € Zy, T, € Y, and

k > 1. Thus, condition D, holds. Recall that conditions D, and D, are equivalent. O

However, condition D, can hold in cases where v, is not a point of continuity of the
process E(t), t > 0, but rather a point of jump of this process.

For example, condition D, is satisfied if v, = OLSI)T is itself a moment of large jump
of the process E(t), t > 0.

Indeed, in this case, the event {ocg’) —c< O‘(si)r < a(;’), a(gi’) < T} C{A)E(),c,T,) >
O, ANO}ifn < k,T < T,. So, if condition D, does not hold, then the condition of

J-compactness J,, does not hold.
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Let us reformulate this fact in a more general form. Assuming that the following
condition holds:

Oj: limggp lime_g P{|Ay, (E:())] < 0} = 0.

This condition means that the stopping moments v, are, asymptotically, moments of
large jumps of the processes E(7),¢ > 0.

Lemma 2.4.5. Let conditions Ay, and J, hold. Then condition O implies condition
D,.

Proof of Lemma 2.4.5. Let us consider the events A¢ .4, = {oc(f’) c<v < a(i’), a(i’) <

T,}. Assume for the moment that condition D, does not hold. This means that there
exist 0 < §; € Zg and T, > 0 such that (a) limg.._ ﬂs—m P(A¢.cxr) = awr > 0. Consider
also the events B, ; = |AVE(§5( ))| > o}. Condition (‘_)5 implies that this 0 > 0 can be
chosen so that (b) hmg_)o P(Bw) < ayy. Obviously, (€) A cxr N Beg € {AE:(),c, T)) >
0; A o}. Using (a) — (c) one gets

lim 11m P{A;E:(),c,T,) > 8; A G}

0<c—0 ¢
> lim HmP{A; o, 0 Beo} 2 lim Hm(P(Accur) + P(Beo) = 1) (2.4.54)
> lim 11m P(Ag.cur) — 11m P(B.o) > 0.
0<c—0 >0 —0

This shows that the condition of J-compactness J, does not hold, which contradicts
the conditions of the lemma. O

It can be shown in the same way that, under the conditions .A ;, and J,, condition O
also implies that the modified version of condition D,, which was described in Subsec-
tion 2.4.4, holds.

Taking this remark into consideration one can write relation (2.4.53) under conditions
Ay, 35, and Og. This relation obviously implies that

Ay (Ee() = Ay (&o(-) as e — 0. (2.4.55)

For non-random cadlag functions, relation (2.4.55) was mentioned by Kolmogorov
(1956). It was extended to the case of cadlag processes by Anisimov (1975) with the use
of Skorokhod’s representation theorem for cadlag processes.

Condition O and relation (2.4.55) imply, in an obvious way, that the random variable
Ay, (Eo(+)) > 0 with probability 1, i.e., v, is a discontinuity point of the process E(#),# > 0
with probability 1.

Condition Oy is restrictive in the sense that it requires that the pre-limiting stopping
moment v, itself be a discontinuity point of the pre-limiting external process E.(t),7 > 0
with a probability that tends to 1 as € — 0.

Let us weaken condition O and assume that the following condition holds:
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@6: Ve = Vv, + v/, where (a) (‘_)5 holds for the processes E.(¢),7 > 0 and the random

. . . P
variables v;; (b) v, are non-negative random variables; (c) v, — 0O as ¢ — 0.

Lemma 2.4.6. Let conditions A, and 3, hold. Then condition O implies condition
D,.

Proof of Lemma 2.4.6. by Lemma 2.4.5, condition D, holds for the processes E(t), t >
0, and the random variables v.. This means that there exist a sequence 0; € Zj, d; — 0 as
[ — oo and a sequence 0 < T, — oo as r — oo such that, for every Lk, r > 1,

)
k

lim lim P{o
0<c—0 -0 &

—e<v.<ad® a® <1} =0. (2.4.56)

It is sufficient to show that relation (2.4.56) will hold for the same sequences 0; €
Zy,0; > 0as!/ —> coand 0 < T, — oo as r — oo and for every_l, k,r > 1 if the moments
v, are replaced with the moments v, = v, + v.'. Indeed, using O (b) we get

) ©n )
Plo,” —c<ve<o,”,a” <T,}
(01) ’ 1" ©n )
o —CSve+v <o’ a0y’ <T,) (2.4.57)

7 (61) / (61) (61)
<P{vy >c}+Plo,” —2c<v, <a;”, a0, <T,}.

<PV >c}+P{v] <c,a

Estimate (2.4.57) and the conditions O (a) and (c) imply, in an obvious way, that
(2.4.56) holds for the stopping moments V.. O

Note that conditions A5, J;, and O also imply that the limiting stopping moment
Vo is a discontinuity point of the limiting external process Ey(¢),t > 0, with probability
1. However, condition O, does not require that v, be a discontinuity point of the pre-
limiting process E.(¢), t > 0 with a positive probability. Conversely, v, can be a point of
continuity of the process E.(¢), r > 0 with probability 1 for all € > 0.

It is possible that condition O holds for the processes E(f),7 > 0 and the stopping
moments V., but condition O5 does not.

For example, let us assume that conditions A,;, J,, and (‘_)6 hold and, additionally,
the following condition holds: (d) EHO P{v/ # 0} = a > 0. In this case, condition (‘_)5
does not hold.

Indeed, let us assume, for the moment, that condition (‘_)5 holds. Conditions A,
O, (a), and Oy imply that it is possible to choose 7 > 0 and ¢ > 0 such that (e)
lim, o P{A; (E:(-)) < 20}+1lim, o P{A,,(E.(-) < 20}+lim,_o P{v, > T/2} < a, where a is
the same as in condition (d). Obviously, (f) {v{ # 0,v; < ¢, Ay (E(-)) = 20, A, (Ee(+)) >
20,v. < T/2} € {A;(E("),c,T) = o} for 0 < ¢ < T/2. Using (d) — (f) and condition O
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(c) we get
Ohm0 lim P{A;(E.(-),c,T) > o}
2 fim, TP 0
+ PV < ¢, Ay(E() = 20, A, (Ec() = 20,v, < T/2} — 1) (2.4.58)
> 11m P{v/ # 0} - lim hr% PV > ¢} - @ P{Ay(E.()) < 20}
<(,—) fotd fotd

- hn(‘)l P{A,,(E:(")) < 20} - hn(} P{v. > T/2} > 0.

Thus, the condition of J-compactness J, does not hold. This contradicts the assump-
tion that condition Oy holds.

Condition D, can also hold in situations where neither the continuity condition C;
nor the condition of asymptotic discontinuity O or O, holds.

Let us first consider the case where the stopping moment v, can be represented in
the following form for every € > 0: v, = v, . Here (a) vg,,n = 0, 1, ... are non-negative
random variables and (b) p. is a random variable that takes the values 0, 1, ..., (c) the
random variables vg,,n = 0,1,... and p, are defined on the same probability space
(possibly different for different €).

Lemma 2.4.7. Let (o) condition D, hold for the processes. Ec(1),t > 0 and the stop-
ping moments v, for everyn = 0,1,..., and (B) limy_ lime_,o P{u. > N} = 0. Then
condition ‘D, holds for the processes E:(t),t > 0 and the stopping moments V..

Proof of Lemma 2.4.7. We use the following estimate that holds for any 6, € Z; and
T,>0:

(&) (€N (61)
Pla,” —c<ve<a,”,a,” <T.}

o) 0, 0,
< Pl > n} + Z Plag’ —c < v <ol al” < Trpe = j)

= (2.4.59)

< P{ue > n} + Z P{oci‘zl) —c <V < ociil), ocS(l) <T,}
=0
Due to Lemma 2.4.3, it is possible to choose sequences §; € Z),d, —» 0 as ] — oo
and 0 < T, — oo as r — oo such that condition D, holds, with these sequences, for the
processes E(t),t > 0 and the stopping moments v, for every n = 0, 1,.... Then, using
the conditions (&), (f) and estimate (2.4.59) we get

(0] —c<v, < Ot(él) (1(61) <T}

lim lim Pla,, o s g

0<c—0 e—0

0<c—0 >0

N
< EP{ME > N} + Z lim TimP{o® — ¢ < vy, <a®,a® < T} (2.4.60)

S@P{ME>N}—>OaSN—>OO.
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This completes the proof. O

Let us now give an example in which neither the continuity condition C; nor the
discontinuity condition O5 or O4 holds but the condition D, does.

Let (g) the random variable . take only two values O and 1, 1.e., the stopping moment
v can be represented in the form

Ve = VSOX(MS = O) + VElX(M‘S = 1)

Let us also assume that (h) (W, Ve, E¢(7)), 1 € U = (o, Voi, Eo(?)),t € U as € — 0 for
i = 0,1, where U is a subset of [0, o), dense in this interval and containing the point 0;
(i) 0 < po < 1, where p. = P{u. = 0}; (j) condition C; holds for the processes E(),# > 0
and the stopping moments v; (k) condition (_‘)5 or (‘_)6 holds for the processes E.(¢),¢ > 0
and the stopping moments v,;, (1) condition J, holds for the processes E(), 7 > 0.

It is clear that condition A, holds, in this case, for the processes E.(f), ¢ > 0 and the
stopping moments Vv, as well as the stopping moments v, and v,;.

Lemmas 2.4.4, 2.4.5, and 2.4.6 imply that, in this case, the conditions of Lemma
2.4.7 hold and, therefore, condition D, holds for the processes E.(¢),# > 0, and the
stopping moments V..

However, neither condition €, nor condition O4 or O holds for the processes E(t),
t > 0 and the stopping moments v,. Indeed, in this case, the limiting stopping moment
Vo is either a point of continuity of the process Ey(¢),# > 0 or a point of discontinuity of
this process with probabilities py and 1 — py, respectively. By (i), both probabilities are
positive.

The example given above is, in some sense, artificially constructed. However, there
is an important class of models, the so-called generalised exceeding processes, where the
weakened continuity conditions of the type D can be effectively used. Limit theorems
for these processes are systematically studied in Chapter 4.

2.5 Iterated weak limits

In this section, we discuss some conditions of weak convergence for randomly stopped
cadlag processes, which are based on the so-called iterated weak limits.

2.5.1. Iterated weak limits. Let, for every € > 0, E.(t) = (&1 (?),...,Em(?)), t =0
be a cadlag process with real-valued components and v, = (Vei,..., V) be random
vectors with non-negative components. Let us also introduce the random vectors C, =
(%81(\/81)’ cee Etm(vbm))

The following question arises. Is it possible to avoid continuity conditions of the
types € or D when proving weak convergence of the random vectors €, ? In particular, is
it possible to prove this if conditions .A,, and J, hold but neither the continuity condition
€, nor the condition D5 does? The examples in the Section 2.1, give a negative answer
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to this question. However, some weaker statements concerning iterated weak limits of
the random vectors (E. (v +¢),i = 1,...,m)as ¢ — 0 and then 0 < ¢ — 0, can be
proved without using any continuity type conditions.

Let € = (Cy,...,Cy) and T, = (Cerer- .5 Ceic), for ¢ > 0 and € > 0, be random
variables that take values in R,,,.

Definition 2.5.1. The iterated weak convergence of the random variables g, to the ran-
dom variable § as € — 0 and then 0 < ¢ — 0 (W-limg<. limg_o &, = €), means that
(o) limgeeo lime o P{Ceic < w0 =1,...,m} = limgecolim__  P{Ceic < uyi=1,...,m}
= P{T, < u;,i = 1,...,m} for every continuity point u = (uy,...,u,) for the limiting
distribution function.

Note that in the case where the random vectors C,. = C,, ¢ > 0 do not depend on the
parameter c, the convergence defined above is reduced to the usual weak convergence of
the random vectors , to the random vectors  as € — 0.

Let us prove two lemmas that will generalise Lemmas 1.2.5 and 1.2.6.

Suppose that, for every ¢ > 0, the random vector . can be represented in the form

of a sum of two random vectors .. = (C/.,i=1,...,m)and ¢, = (C/,i=1,...,m),

Cee = Gie + Cioe (2.5.1)

Lemma 2.5.1. Lez (o) w-limg.,_ lime_ &, = &, and (B) limg._o lim_o P{|S/| > o} =
0, 0> 0. Then W-lim0<c_,() lime_,() Cec = C

Proof of Lemma 2.5.1. Letu = (uy,...,u,) be an arbitrary continuity point of the dis-
tribution function of the random vector . One can always choose sequences of num-
bers 0 < 0, - 0Oasn — oo, i = 1,...,m, such that, for every n > 1, the point

(41 — Otps - - - » Uy, — Opy) 1S @ continuity point of the distribution function of the random
vector C. Now, let us use the following estimate:

P{Co <uji=1,...,m)
> P{C, + G Swi=1,...,m}
> P{C; + 0 S ui IS5 < 0y i = 1,...,m}

> P(L, <= 0pi=1,.omb= )

(2.5.2)

P{ICal > 0in}.

1<i<m

Passing to the limit in (2.5.2) as, first, ¢ — 0 and then 0 < ¢ — 0, and taking into
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account the conditions (a) and () of Lemma 2.5.1, we get

lim limP{C,; <wu;,i=1,...,m}
0<c—0 e—0
> lim lim limP{C), <u; —o0y,i=1,...,m}
n—oo 0<c—0 0
= > lim lim Tim P{gl > o; (2.5.3)
1<i<m n— o0 0<c—0 -0 {|C81| m}
> lim P{Co,' < u; —O'l'n,i = 1,...,m}
n— o0

= P{COiSui’i: 1»'~-sm}'

Similarly to (2.5.3), it can be shown that, for an arbitrary continuity point u =
(uy, . ..,uy,) of the distribution function of the random vector G,

lim IimP{C; <wuni=1,...,m}<P{lo <uni=1,...,m}. (2.5.4)

0<c—0 -0

Relations (2.5.3) and (2.5.4) prove the assertion of the lemma. O

The second lemma concerns the case where the random vectors T, possess upper
and lower approximations C:C = (C%.,i=1,...,m) that are random vectors such that the
following inequalities hold for every ¢ > 0:

G <Cae<Ch.i=1,...,m. (2.5.5)

Lemma 2.5.2. Let (@) §.. = &5 ase — 0 foreveryc >0, and (B) &5, = Cas0 < c — 0.
Then w-lim0<c_,0 lim£_>0 ;Ec = ;

Proof of Lemma 2.5.2. Obviously, there is no loss of generality in assuming that the
parameter ¢ runs only over a countable number of values 0 < ¢, — 0 asn — oo. Let
u = (uy,...u,) be an arbitrary continuity point of distribution functions of the random
vectors ¢ and Ca_", n > 1. The set U of such points is dense in R,,.

Taking (2.5.5) into account we get

lim lim P{Csic,, < ui’i = 1»‘ . -sm}
=0 60
> 1im lim P(CS,, < wii=1,...,m) (2.5.6)
=90 50
= lim P{Cgic,l < ui’i = 1,--'9m} = P{COI' < ui’i = 1»'~-sm}'

Similarly to (2.5.6), it can be shown that

lim Tim P{Ceie, < wipi=1,...,m} <P{Cy Supi=1,...,m}. (2.5.7)

n—oo g—0 -

Relations (2.5.6) and (2.5.7) prove the assertion of the lemma. O
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2.5.2. Iterated weak limits for randomly stopped cadlag processes. Let us now
assume that condition A9 holds. As was pointed out in Lemma 2.3.1, conditions A,
and g, are sufficient for condition A4 to hold.

Let us introduce the random vectors C,. = (Cgie, i = 1,...,m), where Ty = Eei(ve +
o,i=1,....mandT=(C,,i=1,...,m), T =Ey(vp),i=1,...,m.

The following theorem is a vector variant of the corresponding statement from Mishu-
ra and Silvestrov (1978).

Theorem 2.5.1. Let condition A,y hold. Then
w—limg<c0 lim,_9 = gec = §0-

Proof of Theorem 2.5.1. Let S; be the sets in the condition A,,. For every ¢ > 0, one
can always construct a sequence of partitions 0 = z;0, < Zi1e < ... < Zige < ... 0f
the interval [0, co) satisfying the following assumptions: (a) z;,. € S; foralln > 1 and
i=1,....,m M) c/2 < Zipsiec—Zine <calln>landi=1,...,m.

Let us define random vectors C:C =(C;,.,i=1,...,m), where

:ic = Z sup gsi(t)X(vsi € [Zi,n,ca Zi,n+l,c))

n=0 l‘€[Zi,n+ 1 ,CaZi,n+3,(‘)

and

(9

t—’;c = Z lnf gsi(t)X(vsi € [Zi,n,c’ Zi,n+l,c))-

1€[Zin1,04%in43,c

Obviously, if Ve; € [Zines Zint1.), then, necessarily, Ve +¢ € [Zinr1.00 Zints.e)- Therefore,
for any ¢ > O and € > 0,

;ic < Eei(vsi + C) < C:ic’ i= 1, ce.,m. (258)
The random vector E;.. has the distribution function given the following formula:

P! <u,i=1,...,m}

eic —

259
= Z P{ SUP Esi(t) < Ui, Vi € [Zi,n,-,c’ Zi,n,-+l,c), l = 17 ) m} ( )

1 ety =0 IE[Zi,n,-+l,c’Zi,n,-+3,c)
The series in the right-hand side of (2.5.9) converges asymptotically and uniformly
in € — 0, namely,
lim lim Z P{ sup E.(t) < u;,

N—oo e—0 . .
max(ny ..., im)=N lE[Z:,n,-+l,c,Zz,n,-+3,c)

Vei € [Zi,n,-,c, Zi,n,-+l,c)a i = 1, ey m}

}Jllm 111’13 Z P{Vsi € [Zi,n,-,c’ Zi,n,-+l,c)} (2510)
e max(my,...,1,)=N

IA

m

m
lim lim P{Vgi > ZiNC} = lim E P{VOi > ZiNC} =0.
N—oo g0 £ 3 n N—oo £ 1 o

= 1=
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At the same time, for every N > 1 by A,,,

lim P{ sup Eei(t) < iy Vei € [Ziner Tinsie)si=1,...,m}
te[Zi,n+l,(‘aZi,n+3,(‘)

(2.5.11)
= Z P{ sup Eoi(t) < u;, voi € [Zi,n,c’zi,n+l,c),i =1,...m}.

M ootty=0  1€[Zin+1c:Zine3)
Relations (2.5.10) and (2.5.11) imply, in an obvious way, that for any ¢ > 0,
¢ = ase — 0. (2.5.12)
Also, by the continuity of the cadlag process §,(¢), ¢ > 0, from the right,
G = Cas0<c—0. (2.5.13)

So, the conditions (&) and () of Lemma 2.5.2 hold for the random vectors ?;:C and C.
Similarly, these conditions can be verified for the random vectors . and €.

By applying Lemma 2.5.2 to the random vectors G, &, and C, we get the assertion
of the theorem. O

2.5.3. A condition of asymptotic stochastic continuity at a random stopping
point. For simplicity, we restrict the consideration to the scalar case, m = 1. Let us
introduce a condition that can be interpreted as a condition of asymptotic stochastic
continuity of the processes E.(¢), r > 0 at the random points v,:

07: lirnO<c—>0 m5—)0 P{lgs(vs + C) - EE(V8)| > 0} = 07 0> 0.

It was conjectured by Anisimov (1974b) that, assuming that A,, and g, hold, con-
dition O, becomes necessary and sufficient for the random variables E.(v,) to weakly
converge to Ey(vy) as € — 0.

Condition O, is sufficient, as was shown in Mishura and Silvestrov (1978), even if
condition .A,g holds (this condition is weaker than A, and J,). So, the conditions A g
and O, imply that E.(v,) = Ep(vp) as € — 0.

This can be simply proved by applying Lemma 2.5.1 to the random variables C,. =
Ce = Ee(ve), T, = Ee(ve + ©) and T = E.(Vve) — Ec(Vve + ¢). The condition (e) in Lemma
2.5.1 holds due to Theorem 2.5.1, while the condition () in this lemma coincides with
O,.

Condition O, is not, however, necessary, as the following simple example shows.
Let, for every € > 0, the process E.(7), ¢ > 0, have two possible realisations (¢ > 1),7 > 0,
and 1 —y(t > 1), > 0, that can occur with probability 1/2. Let alsov, = 1 —¢ fore > 0.
Obviously, conditions A, and g, hold. In this case, for every € > 0, the random variable
E:(v,) takes the values O or 1 with probability 1/2. Therefore, the random variables E.(v,)
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weakly converge to Ey(vo) as € — 0. At the same time, |E.(v, + ¢) — E(ve)| = 1 ife < ¢
for every ¢ > 0. Hence, O, does not hold.

A corrected version of the corresponding necessary and sufficient conditions was
given in Mishura and Silvestrov (1978). Denote A, ., = {E:(Vv. + ¢) < u}. Evidently,

P{Es(vs + C) < M} - P{Es(vs) < u} = P{As,c,u \As,O,u} - P{As,o,u \As,c,u}- (2514)

Let us introduce the following condition that can also be interpreted as a condition of
asymptotic weak stochastic continuity of the processes E.(f), ¢ > 0 at the random points
Ve

Og: limp<.—0 EE_,O IP{Acc.\Ac0u}—P{Ac 04 \Accu}l = O for every u that is a continuity
point of the distribution function of the random variable Ey(vy).

Let A,g hold. Then condition Oy is necessary and sufficient for the relation &,(v,) =
Ey(vo) as € — 0 to hold. The proof follows in an obvious way from Theorem 2.5.1 and
relation (2.5.14).

It should be noted, however, that the actual value of assertions that are based on
conditions O, and Og must not be overestimated.

In fact, the reason for studying the weak convergence of compositions E.(ve) is to
simplify conditions that involve jointly the pre-limiting external processes E.(7),t > 0
and the stopping moments v.. A reasonable variant is to use only the joint finite-
dimensional distributions of the stopping moments v, and the external processes E.(7), t >
0, i.e., condition A,;.

Theorem 2.2.2 gives a well balanced version of conditions that provide weak conver-
gence of random variables E.(v,) to Ey(vy) as € — 0. One should supplement A, with
the continuity condition €5 and the condition of J-compactness g that only involves the
external processes E.(7),t > 0. The former continuity condition does involve jointly the
limiting stopping moment v, and the limiting external process Ey(?), ¢ > 0. But, this pair,
usually, has a much more simple structure than the corresponding pre-limiting stopping
moments and the external processes. Condition C; can be effectively verified in many
cases and covers a significant part of applications.

Theorem 2.4.1 is another example. Here, the continuity condition €5 is weakened
and replaced with condition D,. A drawback is that one should now use, in addition to
condition A,,, condition D, that is based on joint distributions of the stopping moments
v. and moments of large jumps of the external processes E.(),r > 0. These distribu-
tions are also not very complicated. Condition D, can be effectively verified in some
important cases not covered by condition C;.

Unfortunately, neither condition O, nor Oy satisfies these requirements. The prob-
lem here is caused by a direct use of joint distributions of the random variables E.(v + ¢)
and &.(v,). These joint distributions are involved in a form that makes the conditions O,
and Oy too close to the tautology that the relation of weak convergence E.(v.) = Ey(vo)
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follows from itself. Moreover, conditions O, and Oy involve repeated limits, which
makes the asymptotic relations appearing in these conditions in a form even more com-
plicated than the assertion of weak convergence, E.(v.) = &y(vo). This indicates that
these conditions can, at most, yield a very preliminary framework for potential proofs in
weak limit theorems for compositions E(Vve).

The same remarks can partially be applied to the conditions O5 and O. These condi-
tions also do not separate external processes and internal stopping moments and directly
involve the joint distribution of the random variables &.(v,) and E.(v, — 0).

2.6 Scalar compositions of cadlag processes

In this section, we formulate conditions of weak convergence for compositions of real-
valued cadlag processes. A special attention is paid to conditions that provide weak
convergence of compositions on a set dense in the time interval [0, c0). Such weak
convergence is one of necessary conditions for J-convergence of compositions of cadlag
stochastic processes.

2.6.1. Weak convergence of compositions on a preassigned set. Let, for every
€ > 0, E.(r), t > 0 be a real-valued cadlag process and v,(¢), t > 0 be a non-negative and
non-decreasing cadlag process. We call E.(¢), r > 0 an external process and v(t),t > 0 a
internal stopping process. We are interested in their composition C.(f) = E.(ve(1)), t > 0.
This process is also a cadlag process.

Let U, V, W C [0, 00). The following condition of joint weak convergence makes a
basis for further consideration:

.A;'l: (ve(5), Ec(1), (5,1) € VX U = (vo(s),Ep(2)), (s,1) € VX U as € — 0, where U is a
subset of [0, co) that is dense in this interval and contains the point 0.

It is useful to note that, under condition g, the set U in A}, can be extended to the
set U U U, where Uy, is the set of points of stochastic continuity of the processes E(%),
t > 0. Note that U U U, is [0, o) except for at most a countable set, and 0 € U U U,
The following continuity condition also plays a principal role in what follows:

CY: P{vo(t) € R[E)()]} =0 forre W.
The following theorem can be found in Silvestrov (1971b, 1972a, 1972e).
Theorem 2.6.1. Let conditions AY,, 3,, and Y hold. Then, for the set S =V NW,

Ce(?) = Ec(ve(0), 1 €S = Co(t) = Eg(vo(?),t € S ase — 0.

Proof of Theorem 2.6.1. This theorem is a corollary of Theorem 2.3.3. Indeed, condi-
tions A¥1 and G;V imply that, for any n» > 1 and points t; € §,i = 1,...,n, condi-

tions A,y and €, hold for the n-dimensional vector processes with identical components
EP(1) = (Ee(r), ..., Ee(1)), t > 0 and the random vectors (Ve(t1), ..., Ve(fy))-
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It is obvious that A ,(gg”‘)(-), ¢, T) = \nA;E(),c,T). Hence, condition J, implies
that condition g, holds for the processes E(E")(t), t>0.
By applying Theorem 2.3.3, we get that forall;, € S,i=1,...,n,

(gsi(vsi(ti))a i = 15 ey l’l) = (EOi(VOi(ti))’i = 15 ceey n) ase — 0. (261)
Relation (2.6.1) is equivalent to the statement of Theorem 2.6.1. O

2.6.2. Weak convergence on a set dense in [0, c0o). Theorem 2.6.1 implies weak
convergence of compositions on a prescribed set S = V. N W. Now, we would like
to investigate conditions that would guarantee for the set S to be dense in the interval
[0, c0).

Let V| be the set of points of stochastic continuity of the process vy(t), ¢ > 0, and
V(= Vo \ {0}. Due to monotonicity of the processes v.(?), if the set V from .AZI is dense
in [0, o0), then V can be extended to the sets V' U V(. The set V U V{ coincides with [0, co)

except for at most a countable set, namely, the set V N VE). Note that 0 € V U V| does not
necessarily holds, although0 e VU Vjif0 € V.
Let also introduce the following continuity condition:

eM: P{vo(w) € R[Ey()]} = 0.

Actually, G;w) coincides with condition C;’V if the set W = {w} contains only the point
w.
Denote by W, the set of all points ¢ > 0 satisfying condition ng) . By the definition,
W C W,. As follows from Lemma 2.6.1, which we will formulate below, if condition
e? holds for some set W dense in [0, o), then the set W is [0, o0) except for at most
a countable set, namely the set WO. Note that 0 € W, does not necessarily holds, but
0eWyif0 e W.
So, if both sets V and W are dense in [0, 00), then the set S = (VU V) N Wy is [0, o0)

except for at most a countable set, namely (V N VE)) U W,.
The following theorem is a variant of Theorem 2.6.1.

Theorem 2.6.2. Let conditions Ay, and CY hold for some sets V, W dense in [0, o) and
let also condition ; hold. Then, for the set So = (V U V]) N W,

Ce(t) = Ec(ve(D), 1 € S = Co(t) = Eg(vo(?)), 2 € Sy as e — 0.

Remark 2.6.1. The set of weak convergence, S (, in Theorem 2.6.2 can differ from [0, co)
by at most a countable set. However, there is no certainty that this set contains some
preassigned point w € [0, co) (in particular 0). In order for a point w to be in the set of
convergence one should, for example, additionally assume that condition ng) holds and
also require that w € V U V.
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Now, we give a simple sufficient condition which implies that condition (‘3;)V holds
with some set W dense in [0, 00).
First, let us consider the case where the following analogue of condition Q, holds:

Q,: Eo(1) = g\ + EJ(n), t = 0, where (a) Ej(r), > 0 is a continuous process;

(b) Ej(),t = 0 is a stochastically continuous cadlag process; (c) the processes
o (1), > 0 and v(?), t > 0 are independent.

The following lemma directly follows from Lemma 2.2.3.

Lemma 2.6.1. Suppose that condition Q, holds. Then condition (‘3;}V holds with the set
W = [0, o).

In condition Q,, the assumption that the cadlag process E[(¢), t > 0 is stochastically
continuous can be weakened and replaced with the assumption that, for any point #; of
stochastic discontinuity of this process (the number of such points is always at most
countable), P{v,(t) = #,} = 0 for all > 0. Of course, if this condition holds for all points
t from some set W dense in [0, o), then the condition (‘ng also holds for this set.

Let us now formulate a necessary and sufficient condition that implies that condition
CY holds for some set dense in [0, co). This condition was introduced in Silvestrov and
Teugels (1998) and Silvestrov (2000b):

E1r Plvo®) = vo(t”) € R[Ey()]} =0for 0 < ¢/ < 1’ < co.

Conditions of type € will be referred to as the second-type continuity conditions,
as to to distinguish them from conditions of type € that are called first-type continuity
conditions.

Let t,, k > 1, be successive moments of jumps of the process Ey(f),t > 0 with the
absolute values of jumps belonging to the interval [%, ﬁ). Heren=1,2,....

We need the following lemma from Silvestrov and Teugels (1998) and Silvestrov
(2000b).

Lemma 2.6.2. The condition &, is necessary for G;)V to hold for some set W dense in
[0, 00). It is sufficient for G;)V to hold for some set W that coincides with [0, oo) except for
at most a countable set.

Proof of Lemma 2.6.2. Suppose £, does not hold, i.e., the probability corresponding
to this condition is positive for some # < . Then the set W in condition @}’ can not
contain any point ¢ from the interval [#, ”’]. Indeed, {vo(t") = vo(t”") € R[Eo(-)]} C {vo(?) €
R[Eo(-)]} for any ¢ < t < t” and, therefore, 0 < P{vo(¢') = vo(") € R[Eo(-)]} < P{vo(t) €
R[Eo(-)]}. So, W can not be dense in [0, c0). This implies the necessity statement.

To prove sufficiency, let us suppose that €, holds but the set W of points ¢ for which
P{vo(?) € R[Ep(-)]} > 0 is infinite and not countable. Then, at least for some k, n, and m,
the set Z,,,, of points ¢ with P(By,) > 1/m has to be infinite. Here By, = {vo(t) = T}
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Since &, holds, P{By, N\ By} = 0for t', t" € Zyy, t' # t”. Let us take [ > m and choose
points #; < ... < t; from the set Z,,,. Then P(Ui<,</B1n) = Yi<r<i P(Brin) > é > 1.

This is impossible. Therefore, the set W must be empty, finite, or countable. |

Remark 2.6.2. The statement of Lemma 2.6.2 is valid if condition &€, is weakened by
assuming that the relation P{v(t") = vo(t”") € R[E¢(-)]} = 0 holds only for 0 < ¢’ < ¢’ <
00,

Indeed, take some sequence 0 < t, — 0 as n — co. Lemma 2.6.2 can be applied to
the processes E(f), > 0 and v((t + t,),t > 0. In this way, it can be proved that for every
n > 1 there exists a set W, dense in interval [¢,, c0) such that condition (‘3?’“ holds. In this
case, condition Cgv holds for the set W = U,.»; W, that is dense in [0, 00).

We can reformulate now Theorem 2.6.2 in the following equivalent form, more suit-
able for applications.

Theorem 2.6.3. Let condition A;’l hold for some set V dense in [0, o), and also condi-
tions d, and &, hold. Then, for the set Sy = (V U V) N W,,

Ce(®) = Ec(ve(D)), 1 € S = To(t) = Eg(vo(1)),t € Sgas € — 0.

Remark 2.6.3. The set of weak convergence, S, in Theorem 2.6.2 differs from [0, co)
by at most a countable set. However, it is possible that this set does not contain a given
point w € [0, c0) (in particular, the point 0). In order to include a point w in the set S o, it
is sufficient to assume that condition Ggw) holds and w € VU V(.

2.6.3. The continuity condition £,. As follows from the definition of the set
R[E(()], condition €, can be reformulated in the following equivalent form:

8/1: P{vo(*') = vo(t") = Ty} =0 fork,n=1,2,...,0 <t <1’ < oo.

Denote by D;l the space of functions of the form y~!(¢) = inf(s > 0: y(s) > 1), > 0,
where y(7), t > 0 belongs to the space D, of non-negative and non-decreasing cadlag
functions. It is easy to show that D' is the space of functions that take values in the
interval [0, oo], non-decreasing, and continuous from the left. Let R[y~!(-)] denote the
set of points of discontinuity for the function y~'(¢), t > 0. The set R[y~'(-)] is an empty,
finite, or countable subset of the interval [0, o).

A very important property of the set R[y~!(-)] is that (a) a point € R[y~'(-)] if and
only if the point y~'(¢) = 7/ is the left endpoint of the interval [z/,z/'] of positive length
such that y(s) < t for s < z7, y(s) = t for s € [z;,z;"), and y(s) > ¢ for s > z;. The right
endpoint z;' = inf(s > 0: y(s) > 1), so the case z; = oo is also admitted.

Let us now introduce the inverse exceeding level process v 1) = inf(s > 0: vo(s) >
1), t > 0. By the definition, the process v, '(#), t > 0 has realisations that belong to
the space D' with probability 1. The corresponding set R[v;'(-)] is an empty, finite, or
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countable subset of random points of the interval [0, o). These points can be enumerated
in the same way as it was done for the points of the set R[E((-)] in condition 8;.
The following condition was introduced in Silvestrov (1974):

&€, P{t € R[Ey()] for 7 € R[v,' ()]} = 0.

In virtue of property (a), condition €, can also be reformulated in the following
equivalent form given in Silvestrov (1974):

8'2: P{vo(#') = vo(t"") € R[Ep(-)] for some 0 < ¢’ <1’ < o0} = 0.
The following lemma is from Silvestrov (2000b).
Lemma 2.6.3. The conditions €, and &, are equivalent.

Proof of Lemma 2.6.3. Let A[t’,t”] denote the event {vo(¢') = vo(t”") € R[Ey()]}, ¥’ < 1.
Let Z be some countable set dense in [0, co) and containing 0. Also, denote by A =
{(vo(') = vo(t”) € R[Ep(-)] forsome 0 < ¢ < t" < oo}. It is obvious that the event A
occurs if and only if there exist points t' < t”, ', t” € Z such that the event A[¢', "]
occurs, thatis, A = Uy yezpr Alt, 1],

Due to (a), condition &, is equivalent to the equality P(A) = 0. Obviously, A[t’, "] C
Aforallt’ <t”. Therefore, P(A[t',t’]) = O forall ¥’ < ¢” if P(A) = 0. Hence, &, implies
&,

Condition €, means that P(A[#',#”]) = O for all ¥ < ¢”. In this case, P(A) <
Y ezr< PA[L,17]) = 0. Therefore, €; implies &,. O

It should be noted that, despite the equivalence of conditions €, and &€,, condition
&, is essentially simpler than condition &, or its equivalent version 8'2. As a matter
of fact, €, and 8'2 deal with the whole internal stopping process vy(?),# > 0, under
the probability sign in these conditions. At the same time, £, involves only values of
the internal stopping process V() at points ¢ < ¢/ under the probability sign in this
condition. The latter form of probabilities is much simpler than any of the first ones.

Obviously, condition Q, is sufficient for condition &€, to hold.

Instead of Q,, one can assume that, for each k, n = 1,2, ..., the random variable 1y,
and the process vo(t), t > 0 are independent, and the distribution functions of t;, and
vo(¢) do not have common points of discontinuity for each k,n > 1 and ¢ > 0. In this
case, £, also holds with the set W = [0, o). Note that the process vy(?), t > 0 can depend
on values of jumps of the processes E(t), t > 0, as well as on the continuous component
of this process.

But &, can also hold in situations where no assumptions on independence are made.
For example, the following condition obviously implies &:

J,: vo(1), t = 0 is an a.s. strictly increasing process.
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In some applications, e.g., random sums and extrema with random sample size, inter-
nal stopping processes can have the following structure: v(t) = tve, t > 0, where v, are
nonnegative random variables. The corresponding limiting random variable v, is usu-
ally assumed to be positive with probability 1. In this case, the corresponding limiting
process Vvo(t) = tvo, t > 0 satisfies condition J,.

2.6.4. Conditions of weak convergence of compositions of cadlag processes,
based on M-topology. The proofs of Theorem 2.6.1, Theorems 2.6.2 and 2.6.3 were
based on applying Theorem 2.3.3 to vector processes with n identical components,
Eg')(t) = (E(1),...,E(1)), t > 0 and the random vectors (v¢(t;),...,V:(t,)), where t; €
S,i =1,...,n. By the reasons explained in Subsection 2.3.4, the condition of J-
compactness J, can be replaced in Theorem 2.3.3 with the condition of M-compactness
M. The corresponding statement is given in Theorem 2.3.5. Since the process Eg”)(t),
t > 0 has the identical components, condition M5 reduces to the condition of M-
compactness M for the scalar processes E.(7), t > 0.

So, the condition of J-compactness J, can be replaced in Theorems 2.6.1, 2.6.2, and
2.6.3 with the condition of M-compactness M.

2.6.5. Weakened continuity conditions. Let us also formulate conditions of weak
convergence, which are based on results of Section 2.4. The following Theorems 2.6.4,
2.6.5, and Lemma 2.6.4 are new.

We use below the notations introduced in Section 2.4, in particular, denote by 0((82) the
successive moments of jumps of the process E.(¢), t > 0, with absolute values of jumps
greater than or equal to d.

Let us introduce the following condition:

fDXV: There exist a sequence 0; € Z;,0; — 0 as [/ — oo and a sequence 0 < 7, — oo
as r — oo such that, for every L k,r > 1, limg..lim,_ P{ocii’) —c < ve(t) <

o 6
aik’), aik’) <T,}=0forteW.

This condition replaces condition C}'.

Theorem 2.6.4. Let conditions A3y, 3,, and D} hold. Then, for the set S =V N'W,
Ce(1) = Ee(ve(1), 1 € S = To(1) = Eg(vo(1)),1 € S as e — 0.

Proof of Theorem 2.6.4. This theorem is a corollary of Theorem 2.4.2. Indeed, condi-
tions A;’l and DXV imply that, for any n > 1 and points t; € S, i = 1,...,n, conditions
A,y and st hold for the n-dimensional vector processes with the identical components
E(E")(t) = (E.(0),...,E(1)), t > 0, and the random vectors (v¢(t}), ..., Ve(t,)).

It is obvious that A,(Ei")(-), ¢, T) = \nA;E(-),c,T). So, condition J, implies that
condition J, holds for the processes ’éi")(t), t>0.

By applying Theorem 2.4.2, we get that forall;, € S,i=1,...,n,

Ee(ve(t)),i=1,...,n) = Eo(vo®)),i=1,...,n)as e — 0. (2.6.2)



126 Chapter 2. Weak convergence of randomly stopped processes

Relation (2.6.2) is equivalent to the statement of Theorem 2.6.4. O

Lemma 2.4.4 yields that, if condition A}, and J, hold, then condition @} implies
that condition Dj holds. Here S = V N W.

Also note that condition €)' in Theorem 2.6.1 and condition D}’ in Theorem 2.6.4
can be reduced to weaker conditions. Namely, the set W can be replaced with the set
S = V N W in these conditions. This does not change the statements of the theorems.

This shows that Theorem 2.6.4 can be regarded as an extension of Theorem 2.6.1.

Let us now introduce the following condition:

F,: There exist sequences of 0; € Zy,0; —» 0as/ — coand 0 < T, — oo as r — oo such
. FE. 5 &)
that, for every Lk, r > 1, limg.._, limg_ P{aikl) —c S v (1), v (") < aik’), aik’) <
T.}=0forall0<?t <1’ < 0.

The following lemma is an analogue of Lemma 2.6.2.

Lemma 2.6.4. The condition F, is necessary for fDXV to hold for some set W dense in
[0, c0), and sufficient for DY to hold for some set W which is [0, o) except for at most a
countable set.

oL oL ,ai‘?{’) < T,}. Suppose F,
does not hold, that is, the iterated limit of probabilities in this condition is positive for
some [,k,r > 1 and ' < ¢”. Then the set W in condition D}’ can not contain any point ¢
of the interval [, #”]. Indeed, Becxirr N Beckiryr S Beeniry for any ¢ < t < ¢ and, therefore,
0 < limo<.—0 lime—o P(Becriry N Beckirer) < liMgee—o lime_o P(Beeirry). Thus, W can not be
dense in [0, c0), which implies the statement of necessity.

To prove sufficiency, let us suppose that F, holds but the set W of points ¢ for
which limg,_ lim,_ P(Beckir) > 0 for some k,I,r > 1 is infinite and not count-

Proof of LemmaZ2.6.4. Denote By, = {a(él) —c<v() < a®

able. Then, at least for some k,[,r and m > 1, the set Zy,, of points ¢ for which
limg<.—0 lime—o P(Beerirs) > % has to be infinite. Since condition F, holds, we have

(@) limo.o lime_o P(Betaryr N Becrar) = 0 for £/, 17 € Zygm, ' # t”. Let us take
n > m and choose points #; < ... < 1, in the set Zy,,. Relations (a) imply the fol-
lowing relation: (b) lim<. o lime 0 P(U1<,<; Bectirs,) = limo<e 0 lime0(X 1 <<4 P(Beckirs,)
— 2i<r<rr<n PBeckira, N Beckira,)) = liMoce o lime o 21 <p<n P(Bectir,) = 7 > 1. This is

impossible. Therefore, the set W must be empty, finite, or countable. m]

Remark 2.6.4. The statement of Lemma 2.6.4 is valid if condition F, is weakened by
assuming that the asymptotic relation in this condition holds only for 0 <t < " < oo.

Indeed, take some sequence 0 < t, — 0 as n — co. Lemma 2.6.2 can be applied to
the process E(7), 1 > 0 and v¢(t + t,,), ¢ > 0, and this will prove that for every n > 1 there
exists a set W, dense in the interval [#,, o) such that condition QXV“ holds. In this case,
condition DXV holds for set W = U, W, that is dense in [0, o).
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The following lemma shows a connection between conditions F, and &,.

Lemma 2.6.5. Let condition Ay, hold for some V that is dense in [0, ). Let also
condition J, hold. Then condition €, implies condition F,.

Proof of Lemma 2.6.5. Condition £, implies that condition G(Sw) holds for some set W
which is [0, co) except for at most a countable set. Due to monotonicity of the processes
v(t), the set V in condition A}, can be extended to the set VU V| that, again, differs from
[0, c0) in except at most a countable set. Condition G(SW) holds for every point w € §,
where § = (V U Vj) N W. This implies, due to Lemma 2.4.4, that condition Df‘w) holds
for every point w € S. It remains to note that the set S is [0, o) except for at most a
countable set and then to apply Lemma 2.6.4. O

Now, introduce a condition that is actually condition ZDXV for the case where set W
contains only one point w,

fo‘w): There exist a sequence of §;, € Z;, 0, = 0 as [ — oo and a sequence 0 < T, — oo

O _ ¢ < ve(w) <

as r — oo such that, for every [,k,r > 1, limg<.0 lim,_q P{o,,

() _
a, o, <T}=0.

Let W denote the set of all points w > 0O that satisfy condition fo‘w). According to
Lemma 2.6.4, if condition DXV holds for some set W dense in [0, o), then the set W is
[0, o) except for at most a countable set.

We can now formulate an analogue of Theorem 2.6.3 with condition &£, replaced
with condition F,.

Theorem 2.6.5. Let condition A3, hold for some set V dense in [0, ), and let also
conditions J, and F, be fulfilled. Then, for the set Sy = (V U V)N W,

Ce(t) = Ec(ve(D), 1 € S = Co(t) = Eg(vo(?)), 2 € Spas e — 0.

Note that the set of weak convergence S in Theorem 2.6.5 is [0, o) except for at
most a countable set.

Remark 2.6.5. Condition F, does not necessarily imply that a given point w belongs
to the set S. In order for a point w to be in the set S, it is sufficient to assume that
condition Df‘w) holds and w € V U V.

2.6.6. The time interval [0, 7T']. The results concerning weak convergence of com-
positions of cadlag processes obtained so far deal with processes defined on the semi-
infinite interval [0, c0). These results can also be obtained in the case where internal
stopping cadlag processes are defined on a finite interval [0, T'].

So, let E.(¢), t > 0 be a real-valued cadlag process and v.(t), t € [0, T] a non-negative
and non-decreasing cadlag process. We will consider their composition () = E.(v¢(?)),
te[0,T].
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Note, first of all, that we can always continue the internal stopping process to the
interval [0, co) by the following formula:

V() = {vg(t), if0<t<T, 263)

vo(T), ift>T.

The case of weak convergence on a preassigned set is simple. Note that the sets V and
W in conditions A}, and (‘fgv are arbitrary subsets of the interval [0, o). Here, these sets
should be chosen so that V, W C [0, T']. In this case, itis obviousthat S = VNW C [0, T'].

Taking into consideration the remarks made above we can conclude that conditions
A;’l, CW, and g, as well as Theorem 2.6.1, do not require any changes, except for an
additional assumption that V, W C [0, T']. With these minor changes, Theorem 2.6.1 is
valid for the composition of the cadlag processes E.(7), r > 0 and v,(¢), t € [0, T].

The situation with conditions of weak convergence on a set dense in [0, 7'] is more
complicated.

A direct application of the results of Subsections 2.6.1 —2.6.5 to the processes E.(1),
t > 0 and v,(r), t > 0 defined by formula (2.6.3) has a certain side effect. The assumption
that the set of weak convergence V is dense in the interval [0, c0) would automatically
imply that T € V. However, it could be convenient to avoid an automatic use of this
assumption. In such a case, we should repeat the analysis of the conditions and reformu-
late the results for a finite interval in the same way as it was done for the semi-infinite
interval [0, o).

Let V, be the set of points of stochastic continuity of the process vo(t), t € [0, T].
Instead of the set Vj = V; \ {0}, consider the set V| = V; \ {0, T}. In the first case, the
endpoint O of the interval [0, co) is excluded, whereas in the second case, both endpoints
of the interval [0, 1], 0 and T, are excluded.

Since the processes Vv¢(f) is monotone, if the set V in A;’l is dense in [0, T'], V can be
extended to the set V' U V. The set V U V(" is [0, T'] except for at most a countable set,
namely the set V N V;’. Note that it might happen that 0, 7 € VU V. But0,T € VU V]
if0, T e V.

In this case, we also introduce W as a set of all points ¢ € [0, T] such that P{vy(¢) €
R[Eo()]} = 0. As follows from the remarks above, if condition G;V holds for some set
W dense in [0, T'], then the set W, is [0, T] except for at most a countable set, namely
the set W,. Note there is no guarantee that 0, 7 € W,. But 0, 7 € Wy if 0, T € W, i.e.,
conditions (‘320) and GgT) hold.

So, if both sets V and W are dense in [0, 00), then the set S = (VU V)N Wy is [0, T']
except for at most a countable set, namely (V N V{)’) U W.

Taking into consideration the remarks above it is easy to see that Theorem 2.6.2 does
not need any changes save for the assumption that the sets V, W are dense in [0, T']
(instead of [0, o)), with the corresponding changes in the definition of the set S above.
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The set of convergence S in the new variant of Theorem 2.6.2 is [0, T'] except for at
most a countable set. However, there is no guarantee that this set contains a preassigned
point w € [0, T']. For a point w to be in the set of convergence, one should make, in the
conditions of Theorem 2.6.2, an additional assumption that w € S, that is to require that
we VUV andw € W. In particular, 0, T € §(if 0,7 € V, W.

Condition &, requires an obvious change. It should be replaced with the following
truncated version of this condition:

€3: Plvo(t') = vo(t”) € RIEy()]} = 0for 0 < ¢/ < " < T.

Analogously to Lemma 2.6.2, it can be shown that condition &5 is necessary for 3
to hold for some set W, which is everywhere dense in [0, 7], and sufficient for C;V to
hold for some set W, which is [0, T'] except for, perhaps, some finite or countable set.

Taking in consideration the remarks made above we see that Theorem 2.6.3 remains
the same except for the assumption that the set V is dense in [0, T'], the change in the def-
inition of the set S described above, and the replacement of condition €, with condition
&;.

2.6.7. The time interval (0, c0). In the same way as above, the results given in
Subsections 2.2.1 — 2.6.5 can be carried over to the case of the semi-infinite interval
(0, 00). Here we will choose the sets V, W C (0,c0). We can directly use the set V)
of points of stochastic continuity of the process v.(?), t € (0, o) in the definition of the
sets of convergence S and Sy. In condition &€,, the assumption 0 < ¢’ < ¢ < oo should
be replaced with the assumption 0 < ' < ¢’ < oco. Finally, if in addition, vy(t) > 0
with probability 1 for every ¢ > 0, then the condition of J-compactness J, can also
be weakened. The corresponding J-compactness relation in this condition should be
required to hold for every finite interval [7’,T"], where 0 < T’ < T” < co.

With these changes, Theorems 2.6.1, 2.6.2, and 2.6.3 hold for the composition of
cadlag processes E.(1), t > 0 and v,(¢), t > 0.

2.6.8. Random variables E.(v.(f — 0)). Sometimes it is useful to include, in the
statement of weak convergence of the compositions E.(v¢(?)), t € Sy, the random vari-
ables E.(vi(t — 0)), t € S, where S, is a subset of [0, 00). Here it is assumed that
ve(0 — 0) = v(0). R

For this to hold, one should include the random variable v.(¢—0), ¢ € V in the relation
of weak convergence in condition A},. Here V is a dense subset of [0, co).

One should also add, in condition ey, the assumption that (‘Zgw) holds for the limiting
process Ey(1), t > 0 and the random variable vo(w — 0) for w € W. Here, W is a dense
subset of [0, o). The set W, should be introduced as a set of all w > 0 satisfying C;w) for
the process E(?), t > 0 and the random variable vo(w — 0). The set of weak convergence
isSo=Vuv)nw,.

Another way would be to add, in condition ZDXV, the assumption that condition Df‘w)
holds for the processes E.(¢), ¢ > 0 and the random variables v.(w — 0) for w € W. Here
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W is a dense subset of [0, o). The set W(’) should be introduced as a set of all w > 0 for
which Df‘w) holds for the processes Ec(t), t > p and the random variables v.(w — 0). The
set of weak convergence is S = (V U V) N W(.

If condition &, is used, then the same condition must be used and the random vari-
ables vo(f) must be replaced with vo(t — 0). If condition F, is used, then the same
condition should also be required, with the random variables v.(¢) being replaced with
ve(t = 0).

With the changes in the conditions, which were described above, the joint weak
convergence of random variables E.(v¢(?)),7 € Sy and E.(v.(t — 0)),t € S can be proved.

2.6.9. Non-monotone internal stopping processes. The requirement that v.(¢), t >
0 be a non-decreasing process is not essential in conditions e;’“ and DXV and, therefore,
in Theorems 2.6.1, 2.6.2, and 2.6.4. These theorems also hold if the only assumptions
made are that the random variables v.(#) are non-negative for all # > 0. Of course, this
does not guarantee, in this case, that the composition E.(v,(?)), r > 0 is a cadlag process.

The requirement that v.(¢), t > 0 is a non-decreasing process is essential in conditions
&, and F,. Therefore, Theorems 2.6.3 and 2.6.5 do require the monotonicity assumption
on the internal stopping processes.

2.7 Vector compositions of cadlag processes

In this section, we formulate conditions for weak convergence of vector compositions of
cadlag processes. The results are similar to those obtained for one-dimensional compo-
sitions.

2.7.1. Weak convergence of vector compositions on a preassigned set. Let, for
eache > 0, E.(t) = (E.(r),i = 1,...,m), t > 0 be an m-dimensional cadlag process with
real-valued components and v.(t) = (vg(¢),i = 1,...,m), t > 0 be an m-dimensional
cadlag processes with non-negative and non-decreasing components. We call (1), r > 0
an external process and v¢(t), t > 0 a internal stopping process. We are interested in
the vector composition C.(t) = (Eu(ve()),i = 1,...,m), t > 0, which is also an m-
dimensional cadlag processes with real-valued components.

LetV, U, W C [0, o). The following conditions are vector versions of the conditions
A, and CY:

Ay (ve(8), E(D), (5,1) € VX U = (vo(s), Eg(1), (5,1) € V x U as ¢ — 0, where U is a
subset of [0, co) that is dense in this interval and contains the point 0.

and

CY: P{vo(r) € RIEu()]} =0forte W,i=1,...,m.
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It is useful to note that, under A}, and J, or J, the set U, in condition .A},, can be
enlarged to the set U U U,. Here U is the set of points of stochastic continuity of the
process &,(7), t > 0. Note that U U U is [0, o) except for at most a countable set.

The following theorem from Silvestrov (19721b, 1972b, 1972e) is a vector analogue
of Theorem 2.6.1.

Theorem 2.7.1. Let conditions Ay, 3, and CY hold. Then, for the set S =V NW,
Cs(t),t €S = CO(I),I eSase— 0.

Proof of Theorem 2.7.1. As in the one-dimensional case, Theorem 2.7.1 is a corollary of
Theorem 2.3.3. Indeed, conditions .AZZ and GXV imply that, for any m, n > 1, and points
tij€S,i=1,...,m,j=1,...,n, conditions A,, and g, hold for the mn-dimensional
vector processes E(Sm”)(t) = (E(1),i=1,...,m,j=1,...,n),t >0 with the components
Eeij(t) = E(1), t > 0, and the random vectors (Ve (#;;),i = 1,...,m, j=1,...,n).

It is obvious that A;(E"" (), ¢, T) = VnA,(E.(), ¢, T). So, condition J,, assumed for
the processes E,(f), t > 0, implies that condition J, holds also for the processes ’éim")(t),
t>0.

By applying Theorem 2.3.3, we get that, forallt;; € S,i=1,...,m, j=1,...,n,

(Esi(vsi(tij)),i = 1,...,m,j: 1,...,1’1)

. . 2.7.1)
= Eo(voiti)),i=1...,m,j=1,...,n)ase — 0.

Relation (2.7.1) is equivalent to the statement of Theorem 2.7.1. O

Theorem 2.7.1 can be improved. The condition of J-compactness J, can be replaced
with the weaker condition Jg.

Theorem 2.7.2. Let conditions A3, J, and @y’ hold. Then, for the set S = VN W,
Cs(t),t €S = CO(I),I eSase— 0.

Proof of Theorem 2.7.2. The proof repeats the proof of Theorem 2.7.1 with the only
one change. The reference to Theorem 2.3.3 should be replaced with the reference to
Theorem 2.3.4. |

2.7.2. Weak convergence of vector compositions on a set dense in [0, o). The cor-
responding results are analogous to those given for the one-dimensional case in Section
2.6.

Let us denote by V|, the set of points of stochastic continuity of the process v(z),
t >0, and V| = V, \ {0}. Recall that v,;(7), r > 0 is a non-decreasing cadlag process for
every i = 1,...,mand € > 0. Thus, if the set V in A}, is dense in [0, c0), then V can
be extended to the set V' U V. Note that V U V| is [0, co) except for at most a countable

set, namely the set V N VE). Note, there is no guarantee that 0 € V U V. But this is so if
OeV.
Let us introduce the continuity condition:
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CM: P{vyi(w) € RIEw()]} = 0 fori=1,...,m.

Actually, ng) coincides with condition G} for the set W = {w} that contains only
one point w.

For every i = 1,...,m, denote by W, the set of all points ¢ > 0 such that P{v,(?) €
R[Epi()]} = 0. Let also Wy = N, Wy;. As follows from Lemma 2.6.2, if condition ezv
holds for some set W dense in [0, o), then the set W, is empty, finite, or countable for
every i = 1,...,m. So, Wy is [0, o) except for at most a countable set, namely the set
W,. Note there is no guarantee that 0 € W,. But this is so if 0 € W, i.e., condition C?)
holds.

If both sets V and W are dense in [0, 00), then the set S = (V U V() N Wy is [0, o0)

except for at most a countable set, namely (V N VE)) U W,.
The following theorem is a vector analogue of Theorem 2.6.3.

Theorem 2.7.3. Let conditions A3, 34, and CY hold for some sets V, W dense in [0, co).
Then for the set Sy = (V U Vj) N W,,

(), teSy=Cy),t€Spase — 0.

Remark 2.7.1. The set of weak convergence S ( in Theorem 2.6.2 is [0, co) except for at
most a countable set. However, there is no guarantee that this set contains a preassigned
point w € [0, c0), in particular the point 0. In order to include a point w in the set
of convergence, one should assume that condition (‘fgw) holds and also to require that
we VUV

Let us also formulate a variant of Theorem 2.7.3, in which the J-compactness condi-
tion J, is replaced with the weaker condition Jg.

Theorem 2.7.4. Let conditions -A;/z: dg, and CXV hold for some sets V, W dense in [0, o).
Then, for the set So = (V U V) N Wy,

C(0),teSy=Cy(t),teSgase — 0.
The following condition is a vector analogue of the condition Q,:

Q,: E)() = E() + E (1), t > 0, where (a) Ey(r), > 0 is a continuous process;

(b) E;(2),r > 0 is a stochastically continuous cadlag process; (c) the processes
&y (1), > 0 and vo(?), t > 0 are independent.

The following lemma is a vector analogue of Lemma 2.6.1. This follows from
Lemma 2.2.3.

Lemma 2.7.1. Suppose that condition Qy holds. Then condition C} holds with the set
W = [0, ).
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It is useful to note that condition Q5 can be replaced, in Lemma 2.7.1 by the following
weaker condition:

Q,: &) = Ey(1) + E (1), t > 0, where (a) Ej(r),t > 0 is a continuous process; (b)
& (1), > 0is a stochastically continuous cadlag process; (c) foreveryi = 1,...,m,
the processes E((¢), t > 0 and v(t), t > 0 are independent.

A vector analogue of the condition &, is the following condition:
E4: P{voi(?') = voi(t”) € R[Epi()]} =0for0 <t <t < oo, i=1,...,m.
Lemma 2.7.2. The condition & is necessary for sz to hold for some set W, which is
dense in [0, 00), and sufficient for sz to hold for some set W, which is [0, o0) except for

at most a countable set.

Proof of Lemma 2.7.2. Lemma 2.7.2 directly follows from Lemma 2.6.2, since condi-
tion €, implies that condition £, holds for the processes E;(¢), # > 0 and vy,(?), t > 0, for
every i = 1,...,m. Thus the set W, is empty, finite, or countable for every i = 1,...,m.
That is why W = N2, Wy, is [0, o0) except for at most a countable set. O

The following theorem is a vector analogue of Theorem 2.6.3.

Theorem 2.7.5. Let condition A3, hold for some set V dense in [0, ), and also condi-
tions J, and €, hold. Then, for the set Sy = (V U V) N W,

C(),teSo=Cy(r),teSpase — 0.
Condition J, in the Theorems 2.7.5 can be replaced with the weaker condition Jg.

Theorem 2.7.6. Let condition A3, hold for some set V dense in [0, o), and also condi-
tions Jg and €, hold. Then, for the set Sy = (V U V) N W,

C(),teSy=Cy),t€Spase — 0.

Note that the set of weak convergence S ( in Theorems 2.7.5 and 2.7.6 is [0, co0) except
for at most a countable set.

The condition Q5 as well as Q, is sufficient for € to hold with the set W = [0, c0).

But condition €, can also hold if no assumptions about independence are made. For
example, the following condition obviously implies € ,:

J,: vpi(t), t = 0is an a.s. strictly increasing process for every i = 1,...,m.
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2.7.3. Conditions for weak convergence of compositions of cadlag processes,
based on M-topology. The proofs of Theorems 2.7.1, 2.7.3, and 2.7.5 are based on
applying Theorem 2.3.3. Similarly, the proofs of Theorems 2.7.2, 2.7.4, and 2.7.6 are
based on application of Theorem 2.3.4.

For the reasons explained in Subsection 2.3.4, the condition of J-compactness Jg
can be replaced, in Theorems 2.3.3 and 2.3.4, with the condition of M-compactness M.
The corresponding statement is given in Theorem 2.3.5. As in the proof of Theorem
2.7.1, one should apply Theorem 2.3.5 to the process E(Em”)(t), t > 0 with the components
Eeij(t) = E,(t),t > 0for j=1,...,nand i = 1,...,m. In this case, condition M for the
processes E”" (1), t > 0 reduces to the same condition M for the processes &,(7), £ > 0.

2.7.4. Weakened continuity conditions. Let us also formulate conditions of weak
convergence, based on the results of Section 2.4. Theorems 2.7.7 and 2.7.9 given below
are new results.

We use the notations introduced in that section, in particular, let ozS,Z be the successive
moments of jumps of the process E(#), t > 0, at which the absolute values of the jumps
are greater than or equal to 9.

Let us introduce a condition that replaces condition G},

®§V: There exist a sequence 0; € Zy,0; — 0 as / — oo and a sequence 0 < 7, — oo as

r — oo such that forevery ,k,r > 1andi = 1,...,m, limy<.o ﬂs—m P{oci?,? —c <
ve(t) < OLS]?, OLSI? <T,}=0forreW.

Theorem 2.7.7. Let conditions AY,, 3, and DY hold. Then for the set S = VN W,
C.(),teS = Cyt),teS ase — 0.

Proof of Theorem 2.7.7. Theorem 2.7.7 is a simple corollary of Theorem 2.4.2. Indeed,

let us choose arbitrary m, n > 1, and points ¢;; € §,i=1,...,m, j = 1,...,n. Conditions
A}, and DY imply that conditions A,, and D; hold for the mn-dimensional vector
processes ‘éim")(t) = (Euj(0,i = 1,...,m,j = 1,...,n), t > 0 with the components

&eij(t) = E:i(1), t > 0, and the random vectors (Vei(#;;),i = 1,...,m, j=1,...,n).

It is obvious that A;(E""(-), ¢, T) = vVnA,E,(-),c, T). Thus, condition J,, assumed
for the processes &,(7), t > 0, implies that condition J, holds also for the processes
E"(), 1> 0.

By applying Theorem 2.4.2, we get that, forallt;; € S,i=1,...,m, j=1,...,n,

Cei(vei(tip)),i=1,....m, j=1,...,n)
= Eo(voi(t;p),i=1...,m,j=1,...,n)ase = 0.

Relation (2.7.2) is equivalent to the statement of Theorem 2.7.7. O
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Let us also formulate a variant of Theorem 2.7.7, in which the condition of J-
compactness J, is replaced with the weaker J-compactness condition Jg.

Theorem 2.7.8. Let conditions Ay, Jg, and DY hold. Then, for the set S =V NW,
C(),teS =Cy),t€S ase — 0.

Proof of Theorem 2.7.8. The proof repeats the proof of Theorem 2.7.7 with only one
change. The reference to Theorem 2.4.2 should be changed to the reference to Theorem
2.4.3. m]

Introduce now a continuity condition that replaces condition &,

F;: There exist a sequence §; € Z;, 8, — 0 as [ — co and a sequence 0 < 7, — oo as
r — oo such that, forevery [,k,r > landi = 1,...,m, limg.._lim,_ P{ai?li)_c <

Vei(t'), vei (1) < a® o® <« Tr=0for0<? <’ < oo.

eik * “eik

The following lemma is a direct corollary of Lemma 2.6.4.

Lemma 2.7.3. The condition F; is necessary for @;’V to hold for some set W, dense in
[0, 00), and sufficient for ngV to hold for some set W which is [0, 00) except for at most a
countable set.

The following condition coincides with condition D} for the case where set W con-
tains only one point w:

ngw): There exist a sequence 0; € Zj,0; — 0 as [ — oo and a sequence 0 < 7, — oo as

r — oo such that, forevery ,k,r > 1andi = 1,...,m, limy<._ ﬂs—m P{ai?,i)—c <
&) (6
ve(w) < al al < T} = 0.

from Lemma 2.7.3, if condition D;V holds for some set W, dense in [0, o0), then the set
W, is [0, o) except for at most a countable set, namely the set W,. Note that there is no
guarantee that 0 € W. But this is so if 0 € W, i.e., condition (‘320) holds.

If both sets V and W are dense in [0, 00), then the set S = (V U V() N Wy is [0, o0)
except for at most a countable set, namely Vn VE)) U W,.

We now give an analogue of Theorem 2.7.5, where condition €, is replaced with
condition Fj.

Let W denote the set of all points w > 0 that satisfy condition D(Sw). As follows

Theorem 2.7.9. Let condition .A;/Z hold for some sets V that are dense in [0, ), and let
also conditions g, and F5 hold. Then, for the set So = (V U V) N W/,

(), teSy=Cy),t€Spase — 0.
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Condition F; does not guarantee that a point w belongs to the set S. In order for a
particular point w to be in the set S, it is sufficient to assume that condition ZD(SW) holds
andw e VUV

Let us also formulate an analogue of Theorem 2.7.9, where the condition of J-
compactness J, is replaced with the weaker J-compactness condition Jg.

Theorem 2.7.10. Let condition .A;/Z hold for some set V dense in [0, o), and also con-
ditions Jg and F; hold. Then, for the set So = (V U Vi) N W,

C.(0),teSy=Cy(t),teSgase — 0.

Note that the set of weak convergence S, in Theorems 2.7.9 and 2.7.10 is [0, o)
except for at most a countable set.

2.7.5. The time interval [0, T']. Subsection 2.6.6 contains remarks concerning weak
convergence of compositions of scalar cadlag processes defined on a finite interval.
These remarks are still true in the case of vector compositions of cadlag processes.

In this case, we are interested in the vector composition C.(f) = (Eui(vei(2)),i =
I,...,m), t € [0,T]. Here §.(t) = (Eu(?),i = 1,...,m), t > 0 is a vector cadlag pro-
cess with real-valued components and v.(t) = (v¢(?),i = 1,...,m),t € [0,T] is a vector
cadlag process with non-negative and non-decreasing components.

As in the case of scalar processes, one can always continue internal stopping process
to the interval [0, co) by the following formula:

(), 1f0<tr<T,
vy = 1Y@ 2.7.3)
vo(T), ift>T.

The sets V and W are arbitrary subsets of the interval [0, o) in conditions A}, and
(‘fzv. Here, these sets should be chosen such that V, W C [0, T']. In this case, it is obvious
that S = VN WCI[0,T].

Taking into consideration the remarks made above we can conclude that the con-
ditions AY,, @Y, and J,, Jg. as well as Theorems 2.7.1 and 2.7.2, do not require any
changes, except for an additional assumption that V, W C [0, T]. With these minor
changes, Theorems 2.7.1 and 2.7.2 are valid for the vector composition of the cadlag
processes E.(7), t > 0, and v.(¢), t € [0, T].

A direct application of Theorems 2.7.3 and 2.7.4 to the processes (), t > 0 and
ve(t), t > 0, defined by formula (2.7.3), has some side effect. The assumption that the set
of weak convergence V is dense in the interval [0, co) would automatically imply that the
point T € V. However, it can be convenient to avoid an automatic use of this assumption.

Let V|, be the set of points of stochastic continuity of the process v((t), t € [0, T].
Instead of the set V| = V; \ {0}, we consider the set V" = V \ {0, T'}. In the first case,
the endpoint O of the interval [0, co) is excluded, whereas in the second case, the two
endpoints 0 and 7 of the interval [0, T'] are excluded.
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Due to monotonicity of the processes v;(t), if the set V in A;’z is dense in [0, T'], then
V can be extended to the sets V U V. This set is [0, T'] except for at most a countable

set, namely the set vn V;’. Note there is no guarantee that 0,7 € V U V/. But this is so
if0, T eV.

Let, for every i = 1,...,m, the set Wy, be a set of all points w € [0, T] such that
P{voi(w) € R[Ep(")]} = 0. Let also Wy = NI Wy,. If condition (‘fzv holds for some set
W dense in [0, T'], then the set WO,- is empty, finite, or countable for every i = 1,...,m.
In the sequel, the set W, is [0, T'] except for at most a countable set, namely the set W,.
Note there is no guarantee that 0 € W,. But0 € Wy if 0 € W.

So, if both sets V and W are dense in [0, c0), then the set Sy = (VU V) N W, is [0, o0)

except for at most a countable set, namely (V N VE)) U W.

Taking into consideration the remarks made above one can conclude that Theorems
2.7.3 and 2.7.4 do not require any changes, except for the assumption that the sets V, W
are some sets dense in [0, T'] (instead of [0, o)) and for the change in the definition of
the set S described above.

In the new variant of Theorems 2.7.3 and 2.7.4, the set of convergence S is [0, T']
except for at most a countable set. However, there is no guarantee that this set contains
some preassigned point w € [0, T']. In order for a point w to belong to the set of conver-
gence, one also needs to add the assumption w € S to the conditions of Theorem 2.6.2,
that is to require that w € V.U V', W. In particular, both endpoints 0, T € S if 0, T € V,
W.

Condition &€, requires an obvious change. It should be replaced with the following
truncated version of this condition:

Es Pvoit) = voit”) € R[Ep()]} = 0for0<# <" <T,i=1,...,m.

Similar to Lemma 2.7.2, it can be shown that condition €5 is necessary for G}’ to
hold for some set W that is everywhere dense in [0, T'], and sufficient for CXV to hold for
some set W that coincides with [0, T'] except for at most a countable set.

Using the remarks above we can conclude that Theorems 2.7.5 and 2.7.6 still remain
true if to assume that the set V is dense in [0, 7], to make the changes in the definition
of the set S described above, and to replace condition €, with condition &.

Condition F; also requires an obvious change. It should be replaced with the follow-
ing truncated version of this condition:

F,: There exist a sequence §; € Z;, 8, — 0 as [ — co and a sequence 0 < 7, — oo as

r — oo such that, forevery L k,r > landi = 1,...,m, limg.._0 ﬂg_@ P{(xg’,i)—c <
Vel(t), Vei(t") < a0, o) < T} =0for0 <t <" < T.

In the same way as in Lemma 2.7.3, it can be shown that condition F, is necessary
for ngV to hold for some set W that is everywhere dense in [0, 7], and sufficient for ng
to hold for some set W which is [0, T'] except for at most some finite or countable set.
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As follows from the above, the only changes are to be made for Theorems 2.7.9 and
2.7.10 to hold is to require that the set V is a set dense in [0, 7], to make a change in the
definition of the set S described above, and to replace condition F; with condition JF,.

2.7.6. The time interval (0, o). The results of the section can also be restated in
the case of the semi-infinite interval (0, c0). In this case, it is necessary to choose V,
W C (0,00). One can use directly the set V; of points of stochastic continuity of the
process v.(t), t € (0,00) in the definition of the sets S and S, of weak convergence.
Also, the assumption that 0 < t’ < t” < oo should be replaced with the assumption
0 <t <t” < ooin conditions €, and F;. Finally, if vy;(f) > 0 with probability 1 for
every t > O and i = 1,...,m, then the conditions of J-compactness J, and Jg can be
weakened. The corresponding J-compactness relations in these conditions need to be
assumed to hold for every finite interval [T’,T"], where 0 < T’ < T" < co.

With these changes, Theorems 2.7.1 —2.7.10 hold for the vector composition &, (¢), f €
(0, 00) of the cadlag processes E,(¢), t > 0 and v(¢), t € (0, o).

2.7.7. The random vectors C.(f — 0). Sometimes it is useful to include, in the
statement of weak convergence of the compositions C,(7), t € Sy, the random vectors
C.(t—0)forze S, where S C [0, o). Here, we assume that v,(0 — 0) = v,(0).

To provide this inclusion, one should include the random variables v .(f — 0), 1 € V in
the relation of weak convergence in condition A},. Here V is a dense subset of [0, co).

Also, one should add, in condition @Y, the assumption that the limiting process Eo;(1),
t > 0 is continuous at the limiting random point vo;(t —0) with probability 1 for t € W and
i=1,...,m. Here W is a dense subset of [0, o). Also, the set W, should be introduced
as a set of all # > 0 such that vy;(f — 0) is a point of continuity of the process Eo(t) t>0
with probability 1. In this case, the set of weak convergence is S, = (V U Vi n Wo.

If condition Ds is used, then the corresponding asymptotic relation in this condition
should be additionally required for the processes Eg;(f),¢ > 0 and the random variables
vei(t — 0) for every ¢ € Wandi=1,...,m. Here W is a dense subset of [0, o). In this
case, the set W(’) should be introduced as a set of all w > 0 for which condition D3 holds
for the processes E(¢), ¢ > 0 and the random variables v.(w — 0). In this case, the set of
weak convergence is So=(Vu Vi n W(’).

If the above conditions are extended, it is possible to prove the joint weak con-
vergence of random variables (E.;(ve(7)),i = 1,...,m),t € Sy and (E.;(v(t — 0)),i =
1,...,m),t€ SA().

2.7.8. A Polish phase space. The results in this section can be generalised to a
model where the external stochastic processes E.i(1), t > 0 take values in a Polish space
X. The formulation of conditions .A},, @Y, and DY can be kept without a change. In
the conditions J, and dg, the Euclidian distance |x — y| must be replaced, in the formula
for the moduli of J-compactness A, (E,(-),c,T), i = 1,...,m, with the corresponding
metric d(x, y). Details of a procedure that allows to reduce the consideration to the case
of real-valued processes can be found in Subsection 2.3.9.
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2.8 Translation theorems

In this section we obtain the so-called “translation theorems” for randomly stopped
cadlag processes and compositions of cadlag processes. These theorems play an es-
sential role in applications.

2.8.1. Translation theorems for randomly stopped stochastic processes. We con-
sider the same model of randomly stopped vector cadlag processes as in Section 2.3, but
assume that the following representation holds for the cadlag process &.(¢) = (E.i(?),i =

1,...,m), t > 0 and the random vector v, = (vg,i = 1,...,m) for every € > 0:
; Nei (11
vei = N £ = l(—) 1>0,i=1,...,m, 2.8.1)
Ngi n.; hi(ng)
where: (a) a; = const > 0,i=1,...,m; (b) ny, i = 1,...,m, are non-random positive
functions such that n;; — o0 as e — 0; (¢) hi(x), x > 0,i = 1,...,m are slowly varying
functions.

In this section, we assume that the parameter ¢ — 0 taking only positive values, as
to avoid considering the expression in the right-hand side of (2.8.1) for € = 0.

It should be noted that representation (2.8.1) admits the values a; = 0,i =1,...,m,
and functions h;(x) = 1,i=1,...,m.

Also, some remark should be made about slowly varying functions h;(x). By the
definition, such a function (d) should be Borel-measurable, and slow variation means
that (e) h;(zy)/hi(y) — 1 as y — oo for every x > 0.

It follows from the definition that a slowly varying function is not equal to zero for
all x large enough. Since the quantities ngl."h,-(ng,-) are used as normalisation functions
and n;; — oo as ¢ — 0, one can always assume that 4;(x) # O for all x > 0 and every
i=1,...,m.

As is known (see, for example, Bingham, Goldie, and Teugels (1989)), for any slowly

varying function and, therefore, for the functions 4;(x), i = 1,...,m,and every 0 < 7’ <
ZN < OO,
hi(zy)
sup | —1]—>0asy — oo. (2.8.2)
7/ <z<7” hl(y)
We are interested in the random vectors
’ si( Lsi) .
Cgi = T]—L 'X(M’Ei ;t 0), 1= 1’--"m'

Mghi(usi)

Here, the product in the right-hand side should be interpreted as zero if u; = 0 and,
therefore, y(ue; # 0) = 0. The indicator % (ue; # 0) is used to avoid considering improper
random variables.

Let us also introduce the corresponding limiting random variables,

Coi = Vo Eoi(Vo), i=1,...,m.



140 Chapter 2. Weak convergence of randomly stopped processes

We assume also that the following condition holds:
J5: vo; > 0 with probability 1 fori=1,...,m

Due to this condition, wa i =1,...,mare proper random variables.
The following theorem can be found in Silvestrov (1972a, 1972e).

Theorem 2.8.1. Let conditions Ay, C4, and I5 hold. Then
Ci=1,....m)=(C,i=1,...,m)ase — 0.
Proof of Theorem 2.8.1. By applying Theorem 2.3.2 we get the following relation:
(Veir Eei(Vei), i = 1,...,m) = (Voi, E0i(Voi), i = 1,...,m)as € — 0. (2.8.3)

Note also that conditions A,y and J; imply that the random variables

Y(ttei # 0) = x(ves # 0) —> Lase — 0, (2.8.4)

Let us introduce the functions f(x;,y;) = X wix; “yi - x(x # 0), i = 1,...,m
where u; € Ry, i = 1,...,m. Due to condition J5, every such a function is continuous
almost everywhere with respect to the distribution of the random vector (vo;, Eo;i(Vo;), i =
1,...,m). Thus, we get using Theorem 1.3.2 that

m

—Q S u( Lu)
Z UV ei(Vei) - % (Vei # 0) = Z u; g hL( 3 (e # 0)
- mr M (2.8.5)

m
= Z uival.“"EOi(vo,-) ase — 0.
i=1
Since u; € Ry, i = 1,...,m can be chosen arbitrarily, (2.8.5) is equivalent to the
following relation:

( T]u(uu)
Mgiihi(nei)

Now let us show that

e £ 0),i=1,...,m) = (v "Eoi(Vor), i = 1,...,m)ase = 0. (2.8.6)

hi(usi)
hi(ng;)
Choose an arbitrary 6 > 0. Since vo; > 0, i = 1,...,m with probability 1, one

can choose points 0 < 7/ < 7”7 < oo, which are points of continuity of the distribution
functions of the random variables vy, i = 1, ..., m, such that

P lase—0,i=1,....m. (2.8.7)

Pivoi ¢ 2,271} <8/2, i=1,...,m. (2.8.8)
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By (2.8.2), for an arbitrary o > 0 there exists ¢y > 0 such that, if ¢ < g, then for

every x € [Z/,7"],
hi(xne;)

-1l <o. 2.8.9

() ‘ =0 (289)

We can always assume that €, in (2.8.9) is chosen in such a way that, for € < g,
P ¢ 12,271 = Plvo € 12,21 < 8/2. (2.8.10)

€l

By using relations (2.8.8)—(2.8.10), we get, for € < g,

plilita) _ 5 o f P 15 et ¢ gy
0

hi(ng;) hi(ng;) Ny
Z” hl €l el el
gf PO 1 b e g+ PiM g [2) 2.8.11)
z hi(ne;) Ngi N
e

< Plvy ¢ [Z, 7'} +IP{— € [Z/,Z"]} = P{vo; € [Z, Z"]}I < 0.

€l

Since 0 and o are arbitrary, relation (2.8.7) follows from (2.8.11). In virtue of Lemma
1.2.1 and relations (2.8.6)—(2.8.7),

Mei(Hei)

=1,...,m)
Wi hi(Mei)”
hl(l’l‘si) -1 T|5i(lftsi) . (2 8 12)
:(( ) T ' (Ei;to),l:17---’m) o
) g
= (v "€oi(Voi),i=1,...,m)ase = 0.
This completes the proof. O

Remark 2.8.1. Note that condition A4 can be replaced with a combination of conditions
Ay, dg, which implies condition A .

Remark 2.8.2. Note that, due to condition J; and the remarks in Subsection 2.3.8, one
can slightly weaken conditions A4 or .A,, and Jg. In condition Ay, the sets §; can be
assumed to be dense in (0, co) and the assumption 0 € §; can be omitted. Analogously,
in condition A,,, the set U can be assumed to be dense in (0, o) and the assumption
0 € U can be omitted. Also, in condition Jg, the relation of J-compactness should be
assumed only for for the intervals [T’,7"] where 0 < T" < T” < 0.

2.8.2. Translation theorems for semi-vector compositions of cadlag processes.
The result of Theorem 2.8.1 can be generalised to the case of stochastic processes.

Let us first consider the case of semi-vector compositions. Consider the same model
for randomly stopped vector cadlag processes as in Section 2.7 but assume that the vec-
tor stopping processes have identical components, i.e., v (1) = (V¢(?),...,V:(?)),t > 0.
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Moreover, we assume that the external cadlag process §.(f) = (& (¢),...,Em()), 1 = 0
and the stopping process V(?),# > 0 can be represented in the following form for every
e>0:

vt = v = ey = M) g i m, (2.8.13)
N ngh(ng)

where: (a) a = const > 0; (b) n. is a non-random positive function such that n, — oo as
e — 0; (¢) h(x), x > 0is a slowly varying function.
It should be noted that representation (2.8.13) is still valid if a = 0 and h(x) = 1.
Condition .A}, takes, in this case, the following form:

Ayt (Ve, E(1), 1 € U = (v, (1)), € U as € — 0, where U is a subset of [0, o) that is
dense in this interval and contains the point O.

We also assume that the following condition holds:
J4: vo > 0 with probability 1.
Consider the stochastic processes

’ _ T]{:l(t“'b)
Sl = L)

Also introduce the corresponding limiting processes

e 20), £20,i=1,...,m.

Coi() = vy “Epi(tvg), t 20, i=1,...,m.

Denote by W, the set of t > 0 such that P{ty,;/vo = t} = O for all k,n = 1,2,...,
where t;,;, Kk = 1,2 ... are successive moments of jumps of the process Eo;(¢), ¢ > 0 such
that absolute values of the jumps belong to the interval [%, nlj). Let also W = N7, Wy.
Obviously, the sets Wy;, i = 1,...,m, and W are [0, co) except for at most countable sets.
Also, 0 e W.

Theorem 2.8.2. Let conditions A, d4 and I, hold. Then
C.() = (), i=1,...,m),t € W= Cy(r) = (C;(1),i=1,...,m),t € Was e — 0.
Proof of Theorem 2.8.2. Let us introduce the processes

_ nsi(tns)

() = — (e 20), £>0,i=1,...,m. 2.8.14)
() LSh(n) (W (

Obviously,
Ci()=E,(ve), t>0,i=1,...,m. (2.8.15)

The processes E,(1), t > 0 can be represented as

EL(D) = (h(we)/h(ne)) ™ v Eei(D) - x(ue £ 0), 120, i=1,...,m. (2.8.16)
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Let us choose an arbitrary n > 1 and points sy,...,s, > 0, and #1,...,1, € U. As
was shown in the proof of Theorem 2.8.1, (d) A(u.)/h(n.) L 1 as € — 0 and also (e)

x(e # 0) = x(ve # 0) L 1 as € — 0. Using representation (2.8.16), the relations (d)
and (e), condition A,;, and the Slutsky Theorem 1.2.3, we get

(sive, i), j=1,....ni=1,...,m)

, i i (2.8.17)
= (svo, Epi(tj), j=1,...,ni=1,...,m)ase — 0,

where
Eni() = v Eou(D), t 20, i=1,...,m.

Since the points points sy,...,s, > 0and t,...,t, € U are arbitrary, relation (2.8.17)
can be rewritten in the following form:

(sve, E;(D),i=1,...,m),(s,1) € [0,00) X U

2.8.18
= (svo, E(1),i=1,...,m),(s,1) € [0,00) x U as e — 0. ( )

Relation (2.8.18) means that condition A},, with the set V = [0, o), holds for the
processes Ve(f) = (Ve, ..., 1V,), 1 > 0 and E.(1) = (E,,(2),...,EL, (1), 1 > 0.

Let us show now that condition J, holds for the processes &.(¢), r > 0.

We use the following simple equality, which is valid for an arbitrary cadlag function
x(?), t > 0 that takes values in R, and a positive constant b,

A;(bX(), ¢, T) = bA;(x(-), ¢, T), ¢, T > 0. (2.8.19)

Let us denote
Be = Vo (h(e) /h(ne)) ™ - x(pe # 0).
Using this inequality (2.8.19) and formula (2.8.16) we get

P{AJ(EL()’ c, T) > 6}
= P{B. - Ay(E,(), 0, T) > O) (2.8.20)
< P{Be > b} + P{A;(E.(), ¢, T) > 8/b}.

Since h(u.)/h(n;) =, 1 ase — 0 and y(u. # 0) iR 1 as ¢ — 0, condition A,;
implies that
Be = Po =Vvy,*ase > 0. (2.8.21)

For an arbitrary o > 0, by (2.8.21) and condition J,, we can choose b such that
ﬁs_,o P{B: > b} < 0/2. By fixing b and then using condition J,, we can find ¢ > 0 such
that lim,_ P{A,(E.(-),c,T) > 8/b} < 0/2. If we pass to limit in (2.8.20), making first
¢ — 0 and then ¢ — 0, we find

1}1%@ P{AJE(),c,T) > 8} < o. (2.8.22)
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Since o is arbitrary, 2.8.22 proves that condition J, holds for the processes E.(7),
t>0.

Finally, one can note that condition (‘3;V holds for the processes vo(?), ¢ > 0 and &(2),
t > 0 with the set W described above. This is so, since the processes &,(?), r > 0 and
E(1), t > 0 have the same set of discontinuity points, i.e., R[Ey(-)] = R[Ey(-)].

To complete the proof of the theorem, it remains to apply Theorem 2.7.1 to the
processes E.(¢), t > 0 and v.(7), t > 0. m|

Remark 2.8.3. Note that the point 0 belongs to the set of weak convergence W. If the
set of weak convergence in condition A,; does not contain 0 and the relation of J-
compactness in condition J, holds only for intervals [7’,T"], where 0 < T’ < T" < oo,
one should exclude the point 0 from the set W.

2.8.3. Translation theorems for vector compositions of cadlag processes. Let us
consider the general case of vector compositions where the stopping processes Vv;(t), t >
0 can be different for i = 1,...,m. We assume that the external cadlag process §.(¢) =
(Ee1 (D), .. ., Eem(D)), t = 0 and the stopping process ve(t) = (Vg1 (£), ..., Veu(t)), t > 0 can be
represented in the following form for every E > 0:

€l €l t €l

valt) = v = 22 gy = ) s, (2.8.23)
Ng; n.; hi(ng;)

where: (a) a; = const > 0,i = 1,...,m; (b) ny,i = 1,...,m are non-random positive

functions such that n;; — oo as ¢ — 0; (¢) h;(x), x > 0,i = 1,...,m are slowly varying

functions.
Condition A,; should be replaced with the following vector analogue:

Ayy: (ve, (1), 1 € U = (vg,&y(1)),t € U as € — 0, where U is a subset of [0, o) that is
dense in this interval and contains the point 0.

We also assume that condition J5 holds.
Now, consider the processes

nsi(w"si)

) = =
W Pi(Uei)

(e £0), t>0,i=1,...,m.

Let us introduce also the corresponding limiting processes
0i(t) = V(;,'aiEOi(tVOi)’ t>0,i=1,...,m.

Denote by W/, the set of # > 0 such that P{t;,;/vo; = t} = O for all k,n = 1,2,..,
where t;,;, kK = 1,2, ... are successive moments of jumps of the process E;(¢), t > 0 that
have absolute values of the jumps in the interval [%, n+l)' These moments were defined
in Section 2.2.1. Let also W = N W(,. Obviously, the sets W(., i = 1,...m, and W’
coincide with [0, co) except for, perhaps, some finite or countable sets.
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Theorem 2.8.3. Let conditions A,,, Js, and I3 hold. Then
) = Q0 i=1,...,mte W = 5(0) = (@, i=1,...,m),t € W ase — 0.

Proof of Theorem 2.8.3. The first step in the proof repeats, mainly, the proof of Theorem
2.8.2. Let us introduce the processes

17 T]El(tnﬁl) .
i) =—— Wi #0), 220,i=1,...,m. (2.8.24)
e P (Uei) K
Obviously,
() =EL(tvy), t >0, i=1,...,m. (2.8.25)

Using a method, similar to the one used in the proof of Theorem 2.8.2 in relations
(2.8.16), (2.8.17), and (2.8.18), we get
(sVei, ELD), i =1,...,m),(s,1) € [0,00) X U

e 2.8.26
= (svoi, Eoi(1), i = 1,...,m),(s,1) € [0,00) x U as &€ — 0, ( )

where
(1) = vy Eo(0), 120, i=1,...,m.

So, condition .A;’z holds for the processes v.(t) = (tvg,i = 1,...,m), t > 0 and
E (1) =(E,(0),i=1,...,m),t >0 with the set V = [0, o0).

The next step is slightly different. Since the stopping processes are different for
different i, the equality (2.8.19) can not be used for proving J-compactness of the vector
compositions &, (1) = (E/(tve),i = 1,...,m), t > 0. However, this equality can still be
used to prove J-compactness of the scalar processes C(t) = E/(tvg;), t > 0, for every
i = 1,...,m. So, using a reasoning similar to that in the proof of Theorem2.8.2 in
relations(2.8.19) — (2.8.22), we can get

11%@ P{AJE),e,T>8)=0,8,T>0,i=1,...,m. (2.8.27)

Therefore, condition Jg holds for the processes &, (7), t > 0.

Finally, one can note that condition C;V' holds for the processes &; (1), t > 0 and vo(?),
t > 0 with the set W’ described above. This is true, since the processes E(¢), t > 0 and
Eoi(1), t > 0 have the same set of discontinuity points, that is, R[Ej:(-)] = R[E(-)] for
everyi=1,...,m.

For completing the proof of theorem, it remains to apply Theorem 2.7.2 to the pro-
cesses &, (1), 1 > 0 and v,(2), > 0. m|

Remark 2.8.4. Note that point O belongs to the set of weak convergence W’. If the set of
weak convergence in condition .A,, does not contain 0 and the relation of J-compactness
in condition Jg holds only for intervals [7”,T"], where 0 < 7" < T” < oo, one should
exclude the point O from the set W’.
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2.8.4. Translation theorems for randomly stopped stochastic sequences. Let us
consider an example that explains the appearance of power type normalising functions
in the translation theorems given above. The results presented in this subsection, mainly,
are due to Durrett and Resnik (1977). We present them with slight variations, in the
context of the general translation theorems given above in Subsections 2.8.1 - 2.8.3.

LetE,,n =0,1,... be a sequence of real-valued random variables and w,,n = 1,...
be a sequence of non-negative integer random variables. Let also a,, > 0 and b, be two
sequences of real numbers.

We assume that the random variables §,,n = 0,1,... and u,,n = 1,... are defined
on the same probability space. Let us now define, forn > 1,
n n] — bn
v, = 2 g () = S =bn s o,
n a

n

Here we prefer to index the random variables and the processes by n. However, one
can always define the random variables v, = v, and the processes E.(f) = E,(¢),t > 0, for
g € [+, —), where n > 1, and use the index & > 0 that runs over all positive real values.

Let us assume the following condition of weak convergence:

Ayt Vi, En(0),t € U = (v, E(1),t € U as n — oo, where E(?),t > 0 is a cadlag
process and U is a subset of (0, co) dense in this interval.

We also assume the following variant of the J-compactness condition:
Jo: lim,_o lim, e P{AS(Ex(), e, T, T") > 8} =0, 6> 0,0 < T’ < T < co.

Note that conditions .A,5 and J, are necessary and sufficient for the J-convergence

(Vs (1)), £ > 0 =55 (v, Eo(1)), £ > 0 as 7 — oo, (2.8.28)

We also assume the positivity condition J,, i.e., that vo > 0 with probability 1.

Denote by W the set of t > 0 such that P{t;,,/vo = t} = 0 for all k,n,r = 1,2,...,
where T, Kk = 1,2... are successive moments of jumps of the process Ey(f), t > r7!,
such that absolute values of the jumps belong to the interval [+, -1). It is clear that the
set W is the interval (0, co) except for at most a countable set.

By applying Theorem 2.6.1 to the composition of the processes &E,(t),7 > 0 and

v, (1) = tv,, t > 0, and taking into account Remark 2.8.3, we get the following relation:

Eiu — Dn
a

E.(tv,) = ,teW = Ey(tvg),t € Wasn — oo, (2.8.29)

n

Let us now assume the following condition:

J5: Eo(?) has a non-degenerate distribution for each 7 > 0.
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It follows from a convergence types theorem (See, Lamperti (1962b), Weissman

(1975), and Durrett and Resnik (1977)) that, if the processes E,(t), > 0 i> Eo(),t >0
as n — oo and condition J4 holds, then the normalisation constants a, and the centrali-
sation constants b, must satisfy the following relations:

A[m]

— ap(s)as n — oo, >0, (2.8.30)

n

and
b[tn] - bn
——— = By(s) asn — oo, t > 0. (2.8.31)

Moreover, there exist only three possibilities (a) a,(s) = sP, By(s) = b - (sP = 1),
p > 0;(b) ap(s) = 1, bo(s) = b-Ins, p = 0; and (¢) a,(s) = sP, by(s) =b-(1-5°),p <0,
where b = const.

Also, as was shown in Durrett and Resnik (1977), in this case, E(¢),t > 0, is a
stochastically continuous cadlag process.

Relation (2.8.30) implies that the function ayy; is a regularly varying function, that is,
it can be represented in the form ajg = sPh(s), where h(s) is a slowly varying function.
Using this fact and (2.8.2) one can easily show that the convergence in (2.8.30) and
(2.8.31) is uniform in every finite interval separated from zero, that is, for any 0 < s’ <
s’ < o0,

A[sn)

sup | —ay(s)) = 0asn — oo, (2.8.32)
s'<s<s” Ay
and
b[sn] - bn
sup | —Bp(s)l = 0asn — oo, (2.8.33)

As soon as the form of normalisation constants a, = n°h(n) is obtained, the general
translation Theorem 2.8.2 and Remark 2.8.3 can be applied. This yields the following
asymptotic relation:

E[mn] - bn -p
——— (W, #0), 1€ W= v, Ey(tvp),t € Wasn — oo. (2.8.34)

Wn

It also follows from relation (2.8.33) that the non-random functions

b[m] - bn

ba(t) = 1> 0 -5 By().1> 0asn — oo, (2.8.35)

n

Due to Lemma 1.6.11, it follows from the relations (2.8.28) and (2.8.35) that

(Vas En(), bu()), > 0 N (Vo, Eo(1), Bp(1)),t > 0 as n — oo. (2.8.36)
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Now, by applying the translation Theorem 2.8.2 and Remark 2.8.3 once more, one
can get the following relation:

- bn b [ bn
(E[mn] b oy # 0.1 € W
ay, ay, (2.8.37)

= (v, Eo(1vo), Pp(tv0)), 1 € W as n — oo.
As a corollary of (2.8.37), one gets, in an obvious way, the following relations:

-b
Sin) ~ bi) (i £ Ot € W
y, (2.8.38)

= (Vo Eo(tvo) — Pp(tvo)), 1 € Was n — oo,
as well as

w1 —b
€t — by, o £ O).1 € W
aun (2.839)

= (v, Eo(tvo) — Pp(Vo)), 1 € W as n — co.

Note also that not only weak convergence but also the convergence of the correspond-
ing processes in the topology J can be proved by using theorems on J-convergence of
compositions of cadlag processes. We formulate such statements in Subsection 3.4.9.

2.9 Randomly stopped locally compact cadlag processes

In this section, we obtain conditions for weak convergence of randomly stopped cadlag
processes and compositions of cadlag processes for a model with asymptotically locally
compact external processes. A standard combination of general conditions that provides
weak convergence of randomly stopped cadlag processes includes the condition of joint
weak convergence of random stopping moments and external processes, A,,, the condi-
tion of J-compactness of external processes, J,, and the continuity condition C;. These
conditions can be effectively checked and are sufficient for a wide range of applications.
Nevertheless, in the case under consideration, the conditions of J-compactness, J,, and
continuity, €3, can be weakened. They can be replaced with a condition of local condi-
tional compactness of external processes at every point of a set §. Here S is a set, where
the distribution of the limiting stopping moment is concentrated.

2.9.1. A condition of local compactness for scalar randomly stopped processes.
Let, for every € > 0, E.(¢), t > 0 be a real-valued cadlag process and v, a non-negative
random variable.

Let Y, be the set that contains all continuity points of the distribution function of
the random variable v, and the point 0. Then Y, is the set of all points > 0 such that
P{vo = t} > 0. This set contains at most a countable number of points.

We assume the following variant of condition A,;:
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Aag: (Ve, Ee(1), 1 € U = (vo,Eo(1)), 1 € U as € — 0, where U is a subset of [0, c0) such
that the set U \ Y is dense in [0, o), and 0 € U.

Note that, if the set of weak convergence U is [0, o) except for at most a countable
set, then the set U \ Y is also [0, o) except for at most a countable set. So, condition
A, holds with the set U.

Let us define, for a function x(z), t > 0 from the space DE(I)?OO), a functional that is the

oscillation of the function x(¢) on the interval [u, w), 0 < u < w < oo,

Aup(x()) = sup  |x(1') = x(@")I.

t " €lu,w)

Let S be the set of points # > 0 such that P{vy € [u,w)} > O forall u < t < w (the
set of points of growth of the distribution function of v). It is not difficult to show that
S 1s a Borel-measurable subset of [0, c0) and P{vy € S} = 1.

We use the following condition that replaces the condition of J-compactness J:

L,: There exists aE)rel—measurable subset S C S such that (a) P{vg € S} = 1, (b)
limuSt<w,w—u—>0 lirns—>0 P{Au,w(ae()) > 6/V8 € [u, W)} = O, d>0forres.

The main result of this section is the following theorem from Silvestrov (1979a).

Theorem 2.9.1. Let conditions A, and £, hold. Then
%b(vt) = %O(VO) as e — 0.

Proof of Theorem 2.9.1. Let 0 = zp,, < 1, < ... be, forevery n = 0,1, ..., a partition
of the interval [0, o) and let also these partitions satisfy the following conditions: (a)
Zn € U\ Y, forall k,n = 0,1,...5 (b) zx, — c0ask — oo forn = 0,1,..., (¢)
maX;>o(Zk+1.0 — Zkn) — 0 as n — 0. Such partitions exist, since the set U \ Y, is dense in
[0, c0) and contains 0.

Let us now define, for n = 0, 1, .. ., the stochastic processes

EV(1) = Eulzrrrn) Tor t € [zen zxe1 ), k=0,1,.... (2.9.1)
We are going to use the approximation representation
Ee(ve) = EV(Ve) + (Be(ve) — B (V) (292)
and show that, foreveryn =0, 1,.. .,
EM(ve) = EV(vp) as e — 0, (2.9.3)

and
lim @ P{IE:(ve) — E™(ve) > 8) = 0, 8> 0. (2.9.4)
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Theorem 2.9.1 follows from relations (2.9.1)—(2.9.4) and Lemma 1.2.5.
By the definition of the processes Eg”)(t), t>0,

PIEP(Ve) <} = > P(&iiin) < Ve € (2 1) (2.9.5)
k=0

For an arbitrary & > 0 and every n = 0, 1,..., one can always select a number m,
such that P{vy > z,, .} < 8. Let X be the set of discontinuity points of the distribution
functions of the random variables Ey(z;,), k, n = 0, 1, . ... The set X is at most countable.
Using (2.9.5), condition A, and the choice of points z;,, we have, foralln = 0,1, ...
and u € X,

PLE () < ul P{Ey" (vo) < ull

mel (2.9.6)
+ ; m [P(Ec(zkr10) < 4 Ve € (2 Zet)

— P{&o(2kr1.0) < U, Vo € [Zins Zhs1.0)}] < 20.

Since 9 is arbitrary, relation (2.9.6) implies that, for everyn =0, 1,...and u € Z,

lim P{E™(v,) < u} = PEP (o) < u). (2.9.7)

Recall that weak convergence of distribution functions follows from their conver-
gence on a countable everywhere dense set in IR;. Hence, relation (2.9.3) follows from
(2.9.7).

Let us show that conditions A, and £, imply relation (2.9.4). For the random
variable E.(v,) — E™(v,), we have the following estimate:

[Ee(ve) = PVl < ) xVe € [z Zee1))As e, Ee)): (2.9.8)

k=0

Denote by I, the set of indices k such that P{vy € [zx, Zx+1.,)} > 0, and by I, the set
of all other natural k.

Let, as above, for arbitrary & > 0, a number m be chosen such that P{vy > z,,,,} < 0.
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Using estimate (2.9.8), condition A, and the choice of points z;,, we have
lim P{E.(ve) — E{" (ve)| > }
< @; P{Ve € [2km et Ay, (Be() > )

< D mPA, 00, &O) > 8/ € [ 2t DIPHYVe € (2 Zrt))

k<m,kel,

_ _ (2.9.9)
+ ) TmPUv, € e g} + TPV, 2 5,)
k<m,kel,
< D mMPAL,0, EO) > 8/ve € (2 2t )PV € [ 2t ) + 8
k<m,kel, o
< f [2(OP{vy € dt} + 0,
0
where
Fu0) = D"t € Lz 2k € 1)
k=0 (2.9.10)

X im P{Ay, 1, (Ge()) > O/Ve € [tk Zirn )

By the definition, (d) 0 < f,(f) < 1 for ¢ € [0, o), and, by condition £, (e) f,(r) = 0
asn o> ooforres.
Using the Lebesgue theorem we obtain, by (d) — (e), and (2.9.9),

lim H(}Pugg(ve) —EM(vy)| > 8} < lim f FA(DP{vy € dt} +& = d. (2.9.11)
Nn—00 g—> n—oo 0
Since 9§ is arbitrary, the last relation proves (2.9.4). O

2.9.2. Asymptotically independent stopping moments and external processes.
We will now study the case where the following condition holds for cadlag processes
E:(1),t > 0 and stopping moments V,:

Q: v, = 0, + Pe, where (a) for every € > 0, the random variable o, and the process

E:(1), t > 0 are independent; (b) the random variables [3, L Oase — 0.

It follows from Lemma 1.2.4 that, under Qs, condition A, is equivalent to the fol-
lowing two conditions:

Ayt ve @ vopase — 0.
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and

HApg: Ee(1),t € U = Eo(1),1 € U as € — 0, where U is a subset of [0, o) such that the set
U\ Yyisdensein [0,00),and 0 € U.

In this case, the limiting process Ey(#), ¢ > 0 and the stopping moment v in A, are
independent.

Also, under condition Q4, condition £, can be simplified and replaced with the fol-
lowing condition:

L,: There exists ai)rel—measurable set S C S such that, (a) P{vp € S} = 1; (b)
limuSt<w,w—u—>0 limg_,o P{Au,w(zs()) >0}=0,0>0forzeSs.

Theorem 2.9.2. Let conditions Qs, A,,, A,g, and L, hold. Then

%b(vt) = %O(VO) as € — 0»
where the random variable vy and the process Ey(t), t > 0 are independent.

Proof of Theorem 2.9.2. In order to prove the theorem, it would be sufficient to show
that, under Q4 and .A,,, condition £, implies condition £,.

It is obvious that the outer limit (as u <t < w,w —u — 0) is equal to 0 in L, if (a)
this limit is equal to O under an additional assumption that the points u, w € U \ Y. So,
it is enough to show that, with this additional assumption, forz € S,

lim  1imP{A,,(E.() > 8/v, € [u, w))

ut<w,w—u—0 £¢—-0

< lim  1limP{A, . (E()) > d).

ut<w,w—u—0 £¢—-0

(2.9.12)

Since ¢ is a point of growth of the distribution function of vy, and u, w € U \ Yo, by
condition L, there exists &y > 0 such that P{v, € [u,w)} > 0 for all ¢ < g;. For ¢ < g
and y > 0, the following estimate holds:

P{A(Ee(+) > 0/ve € [u, w)}
- P{ALW(Ee() > 8,0 € [u—y,w+ )} + P{Ie] > v}
- P{v, € [u, w)} (2.9.13)
< P{Aw(E:() > 8}P{a € [u—v,w+y)} + P{IB:| > Y}_
B P{ve € [u, w)}

For any ¢ > 0, one can always select Y = y(u, w) > O such that the points u# — y and
w + v are points of continuity of the distribution function of v, and

Pivo € [u —v,w+v)} < P{vy € [u,w)}(1 + 0). (2.9.14)
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Using (2.9._14) and passing to the limit in (2.9.13), as € — oo and then as u < t <
w, uyw€e U\ Yy, w—u — 0, we have forr € §,

lim  1im P{A, (&) > 8/v. € [u, w)}

ut<w,w—u—0 £¢—-0

< dim TmPIA, () > o) e Y D)

ut<w,w—u—0 ¢—-0 P{VO e [u, W)}
< lim limP{A,,(E() > 8)(1 + o).

ut<w,w—u—0 £¢—-0

(2.9.15)

Since o > 0 is arbitrary, the last relation yields (2.9.12). The theorem is proved. O

2.9.3. A condition of local compactness for vector randomly stopped processes.
Let, for every € > 0, §.(¢) = (Eu(),i = 1,...,m),t > 0 be a cadlag process with
real-valued components and v, = (v, i = 1,...,m) a random vector with non-negative
components.

Let Yy; be the set that contains all continuity points of the distribution function of
the random variable v(; and the point 0. Then Y, is the set of all points ¢ > 0 such
that P{vy; = #} > 0. This set contains at most a countable number of points for every
i=1,...m.

We assume the following variant of condition A ,g:

Apg: (Ve, (1)), 1 € U = (v0,8(1)), 1 € U as € — 0, where U is a subset of [0, c0) such
that the set U \ Y, is dense in [0, o) foreveryi=1,...m,and 0 € U.

Let S; be a set of points ¢ > 0 such that P{vy; € [u,w)} > O for all u < ¢t < w (the set
of points of growth of the distribution function of v;). It is not difficult to show that S
is a Borel-measurable subset of [0, o0) and P{vy; € S¢;} =1,i=1,...m.

We use the following local compactness condition:

L5: There exist Borel-measurable sets §; € S¢; such that (a) P{vp; € S;} = 1,i =
1,...,m, (b) imyceyuo limeo P{A,,(Eei(-)) > 0/ € [u,w)} = 0,6 > O for
tESi,i: 1,...,m.

Theorem 2.9.3. Let conditions A,y and L5 hold. Then
(EEI(VEl)’i = 1’ AR ’m) : (EO[(’VOZ)’I. = 1, R ’m) as 8 - O'

Proof of Theorem 2.9.3. The proof of this theorem is similar to the proof of Theorem

29.1. Let0 =z, < Zigp < ..., foreveryi=1,...,mandn = 0,1,..., be a partition
of the interval [0, o) and also let these partitions satisfy the following conditions: (a)
Zikn € Ui\ Yo foralli = 1,...,mand k, n = 0,1,..., (b) zix, — o as k — oo for
i=1,....mandn=0,1,..., (c) MaX0(Ziks1n = Zikn) = 0 @S — Ofori=1,...,m.

Such partitions exist, since the set U \ Y is dense in [0, co) for every i = 1,...,m.
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Now we define, fori=1,...,mandn =0, 1,. .., the processes

EN(1) = EiZins1n) TOT 1 € [Zigons Ziksrn)s k=0, 1,.... (2.9.16)

As in the scalar case, it is enough to show that for every n = 0, 1,. . .,

EPVe)i=1,....,m) = EV(vi=1,...,m)ase — 0, (2.9.17)
and L
lim lim P{[E,i(ve;) - EVve) > 8)=0,8>0,i=1,...,m. (2.9.18)
The following formula is an analogue of (2.9.5):
PE (ve) <upi=1,...m} = Z Z P{Eei(Ziks1,n) < Uis Vei € [Zigns Zigks1n))-  (2.9.19)
i=1 k=0

Using this formula one can prove relation (2.9.17) absolutely the same way as it was
done in the proof of relation (2.9.3) in Theorem 2.9.1.

Relation (2.9.18) coincides with (2.9.4) for every i = 1,..., m. Therefore, it does not
require a separate proof. O

2.9.4. Weak convergence of compositions of cadlag processes based on a local

compactness condition. Let, for every ¢ > 0, E.(t) = (Eu(1),i = 1,...,m),t > 0O be a
cadlag process with real-valued components and v () = (vg(#),i = 1,...,m),t > 0a
cadlag process with non-negative and non-decreasing components.

Let, forevery i = 1,...,mand s > 0, Y, be a set that contains all continuity points

of the distribution function of the random variable v(,(s) and the point 0. Then 71',3 is the
set of all points # > 0 such that P{vy,(s) = t} > 0. This set contains at most a countable
number of points for every i = 1,...m and s > 0.

Below, U, V C [0, 00). Let us assume the following condition:

Ay (ve(5), E(0), (5,8) € VXU = (vo(s), Eo(1)), (5,1) € VX U as e —> 0, where U is a
subset of [0, co0) such that the sets U \ Y; ; are dense in [0, o) forevery i = 1,...,m
and se V,and 0 € U.

Let S s be a set of points # > 0 such that P{vy,(s) € [u,w)} > 0 forall u <t < w (the
set of points of growth of the distribution function of v(;(s)). It is not difficult to show that
S 0is 1s a Borel-measurable subset of [0, c0) and P{vy;(s) € Spi(s)} = 1,i=1,...m,s > 0.

We use the following local compactness condition:

L,: There exist Borel-measurable sets S;; € S, such that (a) P{vy;(s) € S} = 1 for

i= 1a co.,my s € V7 (b) limu§t<w,w—u—>0 1im8—>0 P{Auw(%u()) > 6/V8i(s) € [M, W)} =
0,0>0forteS;;,i=1,...,mseV.
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Theorem 2.9.4. Let conditions Ay, and £, hold. Then
Eei(vei(0)),i=1,....m),t € V = (Epi(voi(1),i=1,...,m),t € Vase — 0.

Proof of Theorem 2.9.4. The proof follows from Theorem 2.9.3 that should be applied,
for every sequence of points #y, . ..,7, € V,n > 1, to the processes (§.;;(1),i = 1,...,m, j =
l,...,n), t > 0, where E;(t) = &), t > 0,fori =1,....,m, j = 1,...,n, and
(Vei(tj), i = 1,...,m, j = 1,...,n). Obviously, conditions A;’o and L, imply that A,
and L5 hold for these processes. i

2.9.5. Asymptotically independent internal stopping processes and external pro-
cesses. The following condition is an analogue of condition Qg:

Qq: Ve(t) = a(t) + B.(2), t > 0, where (a) the processes o.(¢), t > 0 and (1), t > 0

are independent for every € > 0, (b) the random variables . (7) LR 0ase— 0O for
every t > 0.

It follows from Lemma 1.2.4, under condition Q, that condition A3, is equivalent
to the following two conditions:

Aspr ve(®),t €V =v(t),te Vase = 0,
and

Az E.(),t € U = Ey(t),t € U as ¢ — 0, where U is a subset of [0, o) such that the
set U \ Y; is dense in [0, o) foreveryi=1,...,m,and 0 € U.

In this case, the limiting external process &,(f), + > 0 and the limiting stopping
process vo(t), € V in AjJ, are independent.
The following condition is an analogue of condition L ,:

Ls: There exist Borel-measurable subsets S;; € S, such that (a) P{vy,(s) € §;5} =1
fori=1,...,m, s €V, (b) lim,cyy—uo limeo P{A,,,(E(-)) > &} = 0,0 > 0 for
teS;i=1,....,mseV.

Theorem 2.9.5. Let conditions Qg, Ay, Az, and L5 hold. Then
Ecve(®),i=1,...,m),t €V = (Eo(vo(1),i=1,...,m),te Vase — 0,
where the processes §y(t), t > 0 and v((t), t € V are independent.

Proof of Theorem 2.9.5. It follows from Lemma 1.2.5 that, under conditionsQg, Aj;,
and Aj;,, the condition A;/O holds, and the limiting processes §,(?), ¢ > 0 and vo(7), 1 € V
are independent. Also, conditions Qg, A5, and L imply condition £,, which can be
proved using the same reasoning as in the proof of Theorem 2.9.2. O
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2.9.6. References. Conditions of weak convergence of randomly stopped cadlag
processes presented in Theorems 2.2.1, 2.2.2, 2.3.1, and 2.3.3 as well as Lemmas 2.2.3
and 2.3.1 can be found in Silvestrov (1971b, 1972a). These theorems cover the case
where one of the first-type continuity conditions, €, introduced in Silvestrov (1971b),
holds. This condition requires that the limiting stopping moment be a continuity point
of the limiting external process with probability 1. A simpler case where the limiting
external process is continuous was considered earlier by Billingsley (1968). Theorem
2.3.4 with a weakened J-compactness condition as well as Theorem 2.3.6 that extends
the results to the case of external processes with a Polish phase space are new.

Theorems 2.4.1 and 2.4.2 are also new results announced in Silvestrov (2002b).
These theorems give conditions for weak convergence of randomly stopped cadlag pro-
cesses in the case where continuity conditions of type € are replaced with new weakened
continuity conditions of type D.

Conditions of weak convergence for compositions of cadlag processes presented in
Theorems 2.6.1,2.6.2,2.7.1, 2.7.4 and Lemmas 2.6.1, 2.7.1 are from Silvestrov (1972a,
1972b, 1972e). The case where both the limiting external process and the limiting inter-
nal stopping process are continuous was considered earlier by Billigsley (1968).

Theorems 2.6.3, 2.7.3, and 2.7.5 are from Silvestrov (1974), where the continuity
condition of the second-type €, was introduced. A new more convenient equivalent
form of this condition, €,, and Lemmas 2.6.2 and 2.6.3 are from Silvestrov and Teugels
(1998a) and Silvestrov (2000b). The theorems mentioned above are given in a new and
more convenient form, where condition &, is replaced with condition €;. The versions
of these theorems with the improved J-compactness condition, given in Theorems 2.7.2,
2.7.4, and 2.7.6, are new results. The more detailed analysis of the structure of the set of
weak convergence, as compared to that in Silvestrov (1974), is partly due to Silvestrov
and Teugels (1998a) and Silvestrov (2000b).

Theorems 2.6.4 — 2.6.5 and 2.7.7 — 2.7.10, which are based on a new weakened
continuity conditions of types D and F, and Lemma 2.6.4 are new results.

Translation theorems 2.8.1, 2.8.2, and 2.8.3 are from Silvestrov (1972a, 1972b,
1972¢). Conditions for weak convergence of randomly stopped locally compact pro-
cesses, given in Theorems 2.9.1 —2.9.5, are from Silvestrov (1979a).



Chapter 3

J-convergence of compositions of stochastic processes

In this chapter, general conditions for J-convergence of compositions of cadlag stochas-
tic processes are presented.

The main results concerning J-convergence of compositions of cadlag stochastic pro-
cesses are Theorems 3.4.2, 3.6.1, and 3.6.2.

In Theorem 3.4.2, conditions for J-convergence of compositions of cadlag processes
are given in the case where the corresponding limiting internal stopping process is con-
tinuous. This theorem covers a significant part of applications. In Theorems 3.6.1
and 3.6.2, general conditions for J-compactness and J-convergence of compositions of
cadlag processes are given for the case where both the limiting external process and the
limiting internal stopping process can be discontinuous.

The latter theorem gives the most general conditions that, together, provide J-conver-
gence of compositions of cadlag processes. These are (a) the condition of joint weak
convergence of external stochastic processes and internal stopping processes; (b) the
conditions of J-compactness of external and internal stopping processes; and the follow-
ing two continuity conditions on the limiting processes: (c) the left and the right limiting
values of the internal stopping process at points where the process has jumps are, with
probability 1, points of continuity for the corresponding external process; and (d) there
does not exist with probability 1 a time interval such that the internal stopping process
takes a constant value in this interval and this value is a point of discontinuity for the
corresponding external process.

These conditions have a good balance between conditions imposed on the pre-limiting
processes and the corresponding limiting processes.

Pre-limiting joint distributions of external processes and internal stopping processes
usually have a complicated structure. However, these joint distributions are involved
only in the simplest and most natural way via the condition of their joint weak conver-
gence. The conditions of J-compactness of pre-limiting external and internal processes
involve only their distributions separately. These conditions were thoroughly studied
for various classes of stochastic cadlag processes. The continuity conditions described
above involve joint distributions of the limiting external process and the limiting internal
stopping process. These limiting distributions are usually simpler than the correspond-
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ing pre-limiting joint distributions. This permits to check these continuity conditions in
various practically important cases. Because of a good balance, the conditions described
above make an effective tool in establishing functional limit theorems for compositions
of cadlag stochastic processes.

In the theorems mentioned above, a model for compositions of scalar (one-dimen-
sional) cadlag processes was considered. In Theorems 3.8.1 and 3.8.2, analogous results
are given for vector compositions of cadlag processes. In this model, the composition
of each component of the external vector process with its own internal stopping pro-
cess is taken. There, some additional continuity conditions should be imposed on the
corresponding limiting external and internal processes. That is, it should be assumed
that (e) the components of the limiting vector external process do not have, with prob-
ability 1, simultaneous jumps at the corresponding limiting stopping points defined by
components of the limiting internal stopping processes.

In Section 3.1, examples that clarify the formulation of the problem and conditions
for J-convergence of compositions of cadlag stochastic processes are given. In Sec-
tion 3.2, conditions for U-compactness and U-convergence are given for compositions
of asymptotically continuous cadlag processes. In Sections 3.3 and 3.4, conditions for
J-convergence are given for the cases where, respectively, the external limiting pro-
cess or the internal limiting process is continuous. In Sections 3.5 and 3.6, conditions
for J-compactness and J-convergence are given for general scalar compositions of non-
random cadlag functions and scalar compositions of cadlag stochastic processes, re-
spectively. This is the case where both the limiting external and internal functions or
processes can be discontinuous. In Sections 3.7 and 3.8, similar results are given for
vector compositions of non-random cadlag functions and vector compositions of cadlag
processes, respectively. This section also contains reference remarks.

3.1 Introductory remarks

In this section we discuss some examples that clarify conditions for J-convergence of
compositions of cadlag stochastic processes presented in Chapter 3.

3.1.1. Conditions for joint weak convergence and J-compactness. Let us use
a natural parameter n, instead of €, to index the corresponding external processes and
internal stopping processes. Actually, we can always assume that ¢ = n~! forn > 1 and
e=0forn =0. LetE,(r), t > 0 and v,(¢), t > 0 be forevery n = 0, 1,..., respectively,
a real-valued cadlag process and a non-negative and non-decreasing cadlag process. We
are interested in their composition &, (v,(t)),r > 0, which is also a real-valued cadlag
process.

We are interested in conditions that should be imposed on the processes E,,(¢), t > 0
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Figure 3.1: G: third-type continuity condition.
and v,(¢), t > 0, as to have the following J-convergence relation:
£,(v, (D), 1 = 0 =5 Eg(vo(£)), 1 = 0 as n — oo. G.1.1)

Natural candidates that are expected to provide the relation (3.1.1) to hold are the
following three conditions.

The first one is the condition for joint weak convergence of the external cadlag pro-
cesses and the internal stopping processes,

Aie: (Vu(0),E,(0), 1 >0 = (vo(1),Eo(1)),t > 0 asn — oo.
The second one is the condition of J-compactness for the external processes,
Js: lim_olim, o P{A;(E(-),c, T) > 8} = 0, §,T > 0.
The third one is the condition of J-compactness for the internal stopping processes,
J1o: lime_o lim, e P{A;(v,(),c, T) > 8} = 0, §,T > 0.

Conditions A, and J4 provide J-convergence for the processes E,(f), t > 0. Condi-
tions A, and J,, provide J-convergence for the processes v, (), t > 0. But these three
conditions together, A4, dg, and J;,, do not imply that the vector processes (v, (1), E,(1)),
t > 0 or the compositions E,(v,(1)), t > 0 J-converge.

Let us consider the following example illustrated in Figures 3.1 and 3.2. We define
&) =xp,3®, 120, forn > 1,and v, (1) =t + ntift<landr+1ift>1,forn>1.

In this case condition A4 obviously holds. The corresponding limiting process
Eo(t) = X[l,;)(t), t > 0, and the limiting stopping process vo(¢) = tif t < 1 and ¢ + 1
if t > 1. Conditions d and g,, also hold.
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Figure 3.2: G: third-type continuity condition.

In this case, the composition &,(v,(1)) = y1-n-1.1)(f), t > 0, while Ey(vy(2)) = 0,7 > 0.

The process &,(v,(7)), t > 0 has two jumps with the values 1 and —1 in the close
points 1 — n~! and 1, respectively. So, A;(E,(v,(),c,T) = 1if n™! < ¢ and, therefore,
lim, 0 lim,,_,c A 7(E,(vu(),c, T) = 1. This shows that the condition of J-compactness
does not hold for the processes &,(v,(?)), t > 0.

Therefore, the processes E,(v,(7)), t > 0 do not J-converge, since the left limiting
value of the limiting stopping process vo(#),¢ > 0, at point 1, which is a point of dis-
continuity for the limiting stopping process, is vo(1 — 0) = 1. This value is a point
of discontinuity for the external limiting processes Ey(7), t > 0. The example can be
easily modified such that the right limiting value of the limiting stopping process at a
discontinuity point would cause the same effect.

3.1.2. Third-type continuity conditions. The example considered above leads to
the following hypothesis. In order to provide (3.1.1), it is enough to add, to the conditions
Ay, dg and J4, the following condition:

Sy: P{vo(t £ 0) ¢ R[Eo())] for 7 € R[vo(1)]} = 1.

Here R[Ey(-)] and R[vy(-)] are sets of discontinuity points, respectively, for the pro-
cess E(t), t > 0 and the process vy(1), t > 0.

This hypothesis is not true. Conditions A,q, ds, dq49, and G, do not provide J-
convergence of the processes &,(v,(7)), t > 0. However, we prove in Theorem 3.6.1
that conditions A, d¢, 49, and G, do provide J-compactness of the processes &, (v,(t)),
t > 0, that is, the following relation holds:

lim lim P{A(E,(v,(-)),c, T) > 8} =0, 6,7 > 0. (3.1.2)
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Figure 3.5: €: second-type continuity condition.

Let us consider the following example shown in Figures 3.3, 3.4, and 3.5. Let §,,(¢) =
t+ Y.eo(?), t > 0, for n > 1. Let also, for n > 1, the process v,(t),t > 0 have two
possible realisations that occur with probability % These realisations are (1 + n~ ')t for
t<l;lxn'forl <t<2;1xn'+t-2fort>2.

In this case, condition A4 obviously holds. The limiting process Eo(f) = ¥[1.00)(?), =
0. At the same time, the limiting stopping process vy(?),¢ > 0 has only one realisation,
whichistfors < 1;1for 1 <t <2;¢—1fort>2. The conditions of J-compactness
and d,, also hold. Condition G, holds as well, since the limiting stopping process v((?),
t > 0 is continuous.

In this case, the composition &E,(v,(t)),t > 0 also has two possible realisations that
occur with probability 1. The first realisation is (1 + n”")t for 0 < 7 < (1 + n™)™;
l+Q+nYHtford+n ) ' <t<1;24n ' forl <t<2;n'+¢tfort> 2. The second
oneis(1—-nNtforO0<t<1;1-n'forl <t<2;-n'—1+tfor2<t<2+n';
—n~' + tfort > 2+ n~!. The composition Ey(vy(?)), ¢ > 0 has only one realisation, ¢ for
O0<tr<1;2forl <t<2;tfort>2.

The relation of J-compactness (3.1.2) holds for these processes, which is consistent
with the remarks made above.

At the same time, the processes E,(v,(t)), t > 0 do not J-converge to the correspond-
ing limiting process Ey(vo(?)), ¢t > 0. Indeed, for every ¢ € [1,2), the random variable
E,(va(1)) takes two values, 2 + n~' and 1 — n™', with probability 1. We also have that
Eo(vo(r)) = 2 with probability 1. So, for every ¢ € [1,2), the random variables &,(v,(t))
do not weakly converge to the random variable Ey(v(?)).

In this example, the condition of weak convergence does not hold for the processes
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Figure 3.6: Compositions, which J-converge.

E,(v,(1)), t > 0 in the interval [1, 2), because the limiting process v((f) takes the constant
value 1 in the interval [1, 2) and this value 1 is a point of discontinuity for the external
limiting process Eo(t), t > 0.

3.1.3. Second-type continuity conditions. The example considered above leads to
the following hypothesis. In order to provide (3.1.1), it is enough to add, to A4, de, and
d10- condition G, and the following condition already introduced in Section 2.1:

& Pivo(t') = vo(t”) € R[Ex()]} =0for0 < ¢ <t < o0.

Theorem 2.2.1 states that conditions A4, d¢, and €, imply that there exists some set
S dense in [0, o) such that

E.(Vu(0), 1 €S = Ep(vo(t)),t € S asn — oo. (3.1.3)

In order for the set of weak convergence S to contain a point 0, one can additionally
assume the following condition:

CY: P{vo(0) € R[E()]} = 0.

We prove in Theorem 3.6.2 that the conditions Ay, d¢. d;4, together with the conti-
nuity conditions G,, £, and Cg)), imply the desirable asymptotical relation (3.1.1), i.e.,
that the compositions &,(v,(1)), t > 0 J-converge to E(vo(t)), t > 0 as n — co.

In both examples given above, the vector processes (v,(t), E,(?)),t = 0 J-converge.
However, as was mentioned in Subsections 1.5.11 and 1.6.15, the compositions &, (v,(t)),
t > 0 can J-converge even if the vector processes (v,(?), E,(1)), t = 0 do not J-converge.

Let us modify the first example considered in Subsection 3.1.1. Figure 3.6 illustrates
this modified example. We use the same external processes E,(f) = y;. %)(t), t > 0, for
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n > 1, but define new internal stopping processes v,(f) = 5(1 —n~")"'tif t < 1 —n~' and
t+1+ntift>1-n',forn>1.

In this case, the corresponding limiting process Ey(f) = X[1,%)(t), t > 0, and the
limiting stopping process vy(f) = %t ift<landt+1ift> 1. Hence, E,(v,(r)) =0, > 0,
for n > 1 as well as for n = 0. Therefore, the compositions &,(v,(¢)),t > 0 J-converge.
This is consistent with Theorem 3.6.2, since all conditions of this theorem listed above,
hold. However, the vector processes (v,(t),&,(f)),t > 0 do not J-converge, since the
process (v,(1), E,(1)) has two large jumps with the absolute values % and 1 in the close
points 1 —n~! and 1, respectively.

As the example above shows, Theorem 3.6.2 extends the setting of J-continuous
mapping theorem with respect to the composition mapping. Additional comments are
given in Subsections 3.5.3 and 3.6.3.

3.1.4. Weakened second-type continuity conditions. Let go back to the example
considered in Subsection 2.1.8 and shown in Figures 2.3, 2.4, and 2.5. In this example,
conditions A, d¢, d19, and the continuity conditions G, hold.

In the case (a) po = 1, conditions &,, and Cg)) hold. Therefore, according Theorem
3.6.2 mentioned above, the compositions &,(v,(?)), t > 0 J-converge to Ey(vo(?)), t > 0
as n — oo.

In the case (b) g0 = 0, pp < 1, conditions &€, and 6;0) do not hold. Howeyver, in this
case, the following condition, which is weaker than €, holds:

F 0 limgee o lime o P{alY — ¢ < vo(), v (") < 0} = 0for0 < 7 < ¢ < 00,8 > 0
and k > 1.

Here 0(533, k =1,2,...are the successive moments of jumps of the process E,(t),t > 0,
which have the absolute values of jumps greater than or equal to 6 > 0. By the definition,
(xfl‘s,’() = oo if there exist less than k such points.

Also, the following condition, which is weaker than Cg)), holds:
DY 1im,_ lim, e P(v,(0) € [0 — ¢, a®)} = 0 for 8 > 0 and k > 1.

We prove in Theorem 3.4.3 that the conditions A4, dg, d1¢. together with the conti-
nuity conditions G,, F;, and D?), also imply the desirable asymptotical relation (3.1.1),
i.e., that the compositions &,(v,(1)), t > 0 J-converge to Ey(v((t)), t > 0 as n — oo.

3.1.5. Vector compositions of cadlag processes and fourth-type continuity con-
ditions. In a model, one considers vector cadlag process §,(t) = (€,(1),i = 1,...,m),
t > 0 with real-valued components, vector cadlag process v,(f) = (v,;(t),i = 1,...,m),
t > 0 with non-negative and non-decreasing components, and their vector composition
C,(0) = Eu(vu(@®),i = 1,...,m), t > 0, which is also a vector cadlag process with
real-valued components.

Let us assume that the following condition of joint weak convergence holds:
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Figure 3.7: 3: fourth-type continuity condition.

Az (v,(0),8,(0), 1 > 0 = (vo(1), (1)), t > 0as n — oo.

We are interested in additional conditions to be imposed on the processes (v,(1), &.(1)),
t > 0 as to provide the following relation of J-convergence:

;n(t) = (%ni(vni(t))7i = 1’ ey m)’t > 0

J (3.1.4)
— Go(1) = (Eoi(voi(1)),i=1,...,m),t >0ase — 0.

Let us also assume that conditions J¢, d4¢. G, €4, and 8(50) hold for the processes
E.u(®),t =0and v, (r),t >0, foreveryi=1,...m.
These assumptions imply that, forevery i = 1,...,m,

E(Vui(D), 1 = 0 - Eqi(voi(1)).1 > O as n — oo, (3.1.5)

The following two examples show that condition A3, together with all conditions
de> J10- G1» €, and C;o) , does not, however, provide J-convergence of the vector com-
positions §,(¢), t > 0.

Figures 3.7, 3.8, and 3.9 illustrate the first example. Let &,,(t) = ¢, > 0 and §,,(¢) =
%t, t >0, forn = 1,2,.... Letalso v,;(t) = t+ Xj-p1.e)(®), t = 0, while v,,(?) =
%t + Ypooy)(®), t = 0, forn = 1,2,.... In this case, condition A3 obviously holds. The
corresponding limiting processes are Ey;(f) = f,t > 0 and Ep,(r) = %t, t > 0, while
Vor(t) = 1+ X1.e0(0), 1 = 0 and voa(1) = 37 + ¥Y[1.00)(®), ¢ = 0. Also, conditions Jg and
d10- as well as conditions G,, &€, and Gg)) hold for i = 1, 2. However, &,;(v,1(¢)) =
t+ Y-t ooy)(®),t > 0 and Ep(v,n(?) = j—lt + %x[l,m)(t). Therefore, the vector process
G, (1) = (v (1)), E2(vaa(2))), t = 0 has two jumps with the absolute values 1 and % in
close points 1 —n~! and 1, respectively.
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Figure 3.8: 3: fourth-type continuity condition.

This shows that the condition of J-compactness does not hold for the vector processes
C, (1), t > 0 and, therefore, they do not J-converge.

Figures 3.10, 3.11, and 3.12 illustrate the second example. Let §,(7) = %t+ %x[z,m)(t),
t>0and Ep(t) =t + Yj1_p-100y(®), t 2 0, forn =1,2.... Let also v, (t) = 2t,¢ > 0 and
Vip(t) = t,t > 0, forn = 1,2,.... Again, condition A;; holds and the corresponding
limiting processes are Ey((f) = 11 + %.00)(®), 1 > 0 and E(r) = 1 + Yj1e0(0), £ > 0,
while vo;(f) = 2t,t > 0 and vy () = ¢, t > 0. Also, conditions J¢ and J,,, and also
conditions G,, &, and Gg)) hold for i = 1, 2. However, &,;(v,1(¢)) = %t + %X[z,m)(ZI) =
%t + %x[l,m)(t), t > 0and E, (Vi (1)) = 1 + Yj1-n-1.00)(1), 2 = 0. The vector process G, (t) =
En (v (), En(via (1)), t = 0 has two jumps with the absolute values 1 and % in the close
points 1 —n~! and 1, respectively.

So, the condition of J-compactness does not hold for the processes g, (f), t > 0 and,
therefore, they do not J-converge.

In the first example, the vector process §,(¢), ¢ > 0 has two large jumps in the close
points 1 —n~!' and 1. These jumps appear, because the first and the second components
of the internal vector stopping process v, (1) = (v,1(?), v,2(?)), t > 0 has jumps in the close
points 1 —n~! and 1, respectively.

In the second example, the vector process C,(7), > 0 also has two large jumps
in the close points 1 — n~! and 1. These jumps occur, since the first and the second
components of the external vector process §,(t) = (E,1(¢), E:2(¢)), t > 0 has jumps in the
points v,,;(1) =2 and v,p(1 —n") =1 -n7".

These examples lead to the following hypothesis. In order to provide J-convergence
of the vector compositions €, (7), t > 0, it is sufficient to supplement the conditions listed
above with the following fourth-type continuity condition:
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Figure 3.9: 3: fourth-type continuity condition.
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Hy: P{SI, %t € RIE(Vo(D]) < 1 for £ > 0} = 1.

This hypothesis is true, as shown in Theorem 3.8.5. However, condition 3, is too
restrictive. It usually prohibits the processes Ep;(-) to have synchronous jumps (for dif-
ferent i) at the points v(;(¢) for every ¢ > 0, and the processes v;(-) to have simultaneous
jumps (for different i) at a point ¢ for every t > 0. The latter requirement is restric-
tive. In many applications, the limiting internal vector stopping process has the form
vo(t) = (gvo(t),i = 1,...,m), t > 0, where ¢;, i = 1,...,m are positive constants and
vo(?), t > 0 is a scalar non-negative and non-decreasing cadlag process. In this case, the
processes g;Vvo(t) have simultaneous jumps (for every i) at any jump point of the process
vo(?).

In Theorem 3.8.2 we use a weaker modification of this condition. We show that
under the natural additional assumption that

v,(1),1 > 0 =55 vy(1), £ = 0 as n — oo, (3.1.6)

condition JH, can be replaced with the following weaker continuity condition:
H;: PR, x(voi(?) € R[E()]) < 1 forr >0} =1.

Condition 3H; only prohibits the processes Eg,(-) to have synchronous jumps (for
different i) at the points vy;(f) for every ¢ > 0.

Let us return to the first example considered in this subsection. Condition I, does
not hold in this case, but condition Iy does. The processes C,(¢), r > 0 do not J-
converge, because condition (3.1.6) is not fulfilled. However, let us slightly modify the
example and assume that v,,;(f) = 7 + X[j_p-1.00)(¥), t = 0 and v,,»(¢¥) = %t + X[1=n-100) (D),
t > 0. In this case again, 3, does not hold, but condition JH; does. Also, condition
(3.1.6) holds true. The processes G,(7), t > 0 J-converge to the process §(¢), t > 0 as
n— oo.

In conclusion, we would like to note that continuity conditions G,, €, (for every
i =1,...,m)and 3; are satisfied in many important cases. The corresponding examples
are given in Subsection 3.8.3.

3.2 Compositions with asymptotically continuous components

In this section, we formulate conditions for U-convergence of compositions of asymp-
totically continuous processes. In the case of convergence to continuous processes, there
is no essential distinction between scalar and vector compositions, hence we do not con-
sider the scalar case separately.

3.2.1. U-convergence of vector compositions of asymptotically continuous cadlag
processes. Let, for every € > 0, §,(¢) = (E;(¢),i = 1,...,m), t > 0 be a vector cadlag
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process with real-valued components, and v (¢) = (vgi(t),i = 1,...,m), t > 0 be a vector
cadlag process with non-negative and non-decreasing components. We will consider the
vector composition (1) = (E(ve(1)),i = 1,...,m), t > 0 that is also a cadlag process
with real-valued components.

The following condition is a basis for subsequent considerations:

Az (ve(5),E.(2)), (5,1) € VX U = (vo(5), E(1)), (s,1) € VX U as € — 0, where U and
V are some subsets of [0, co) that are dense in this interval and contain the point 0.

We also assume that the following conditions of U-compactness hold for the external
processes and the internal stopping processes:

Uy limo limeg P{AY(E. (), e, T) > 8} =0, §,T > 0,
and
Us: limo lime_g P{Ay(Ve(-),c, T) > 8} = 0, 8,7 > 0.

Conditions A5, and U, imply U-convergence of the processes &(t), t > 0.
Since U, includes also the case € = 0, this condition also implies that:

B,: §)(1), t > 0is an a.s. continuous process.

Conditions A5, and U5 imply U-convergence of the processes v.(t), t > 0.
Condition Uy implies also the following condition:

B;: vo(1), t > 0 is an a.s. continuous process.

Since both limiting processes &, (¢), t > 0 and vy(¢), ¢t > 0 are a.s. continuous, their
composition §(¢), ¢ > 0 is also an a.s. continuous process.

It follows from the remarks above and Theorem 1.6.11 that the sets U and V in A5,
can be enlarged to the interval [0, co) under conditions U, and U, respectively.

It is also useful to note that conditions U, and U are equivalent, respectively, to the
following conditions:

Uy limeo lime_g P{Ay(Eei(), ¢, T) > 8} =0, 8,7 >0,i=1,...,m,
and
Ug: lime_g lime_o P{Ay(vei(-), e, T) > 8} =0, 8,T >0,i=1,...,m.
Let us introduce the following condition:

Asst ve(s),s € V= vy(s),s € Vas e — 0, where V is a subset of [0, o) that is dense in
this interval and contains the point 0.
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The following lemma allows to simplify conditions for U-convergence of composi-
tions of cadlag processes.

Lemma 3.2.1. Let condition A5 hold. Then conditions By and Us are equivalent.

Proof of Lemma 3.2.1. It should only be proved that conditions A5 and B imply Us.
Let us choose an arbitrary positive 7 € V. It is always possible to construct a sequence
of partitions 0 = #p,, < t;, < ... <t,, = T,n > 1, of the interval [0, T'] such that: (a)
tn €V, k=0,...,n,n>1;(b) h, = maxocge—1x+10 — tkn) = 0as n — oo.

Since the processes vg;(t),t € [0,T],i = 1,...,m are monotone,

AU(VEI'(')’ hn’ T)

<2max  sup  [Vei(t) = Veilti-1,0)|
I<ksn le[lk—l,nstk,n]

(3.2.1)
<2 }E]i);(vsi(tk,n) = Vei(fi-1.1))
= agizn_)-
It readily follows from condition A;s that foralli =1,...,mand n > 1,
a(n) = agi(n)ase — 0. (3.2.2)

The process vy;(t), t € [0, T] is continuous with probability 1 in the interval [0, T']
and, therefore, it is also uniformly continuous with probability 1 in this interval for every
i=1,...,m. This implies that for every i = 1,...m,

Qo) —> 0 as n — oo. (3.2.3)

For an arbitrary & > 0, one can always choose &" € (0, d) such that the point &' /m
is a continuity point for the distribution function of the random variable o;(n) for every
i=1,...,mandn > 1. By using (3.2.1), (3.2.2), and (3.2.3), we get

@ P{Ay(Ve(), By, T) > 8}

< Z im P{Ay(Ve(). b, T) > 8/m) (32.4)

< T%P{as,»(n) >8 /my = Plog(n) > & /m}— 0asn — oo.
= i=1

The proof is completed. O

The following lemma is a direct corollary of Lemma 3.2.1.
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Lemma 3.2.2. Let conditions A5 and B; hold. Then

Vo). 1> 0 -5 vo().1 > O as & — 0.

The following theorem is the main result of this section. In the case of scalar compo-
sitions of cadlag processes it belongs to Billingsley (1968). An extension of this result
to the case of vector compositions of cadlag processes, presented below, was given in
Silvestrov (1974).

Theorem 3.2.1. Let conditions Ay, Uy, and By hold. Then

()12 0 5 To(r), 1= O as e — 0.

Proof of Theorem 3.2.1. Condition A, implies that condition A}, holds with the set V
as in A;,. Condition U, obviously implies that condition J, holds. Since §,(7), t > 0 is
an a.s. continuous process, condition (‘3?’ holds with the set W = [0, c0). Therefore, it
follows from Theorem 2.7.1 that, for the set V,

C(),te V=Cyt),reVase— 0. (3.2.5)

By A,,, the set V is everywhere dense in [0, o) and contains 0.
To prove the theorem, we must also supplement the relation of weak convergence
(3.2.5) with the following relation of U-compactness:

1irr01@ P{Ay(C.(),c,T) > 8} =0, T,8> 0. (3.2.6)

Now, we are going to use the following estimate which is valid for composition of
any real-valued cadlag function x(¢), ¢+ > 0 and any non-negative cadlag function y(?),
t>0:

Ay(x(y(), ¢, DAy (y(), ¢, T) < ¢, sup y(1) < T') < Ay(x(-), ', T"). (3.2.7)

0<t<T
Using (3.2.7) and taking into account the monotonicity of the processes v;(¢), t > 0,
i=1,...,m, we get

P{AU(CE()’ G, T) > 6}

< P{AyEei(vei()), ¢, T) > 0/m}

M=

1

(P{AUEai(Vei()) ¢, T) > 8/m, Ay(vei(-), ¢, T) < ¢/, vei(T) < T}

IA
gt

i (3.2.8)
+ P{Ay(vei(-), ¢, T) > '} + P{vea(T) > T'})

m

< ) (P{Ay(Ee(), ', T") > 8/m}

+ P_{AU(VE,(-), e.T) > ¢} + Pive(T) > T')).
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For an arbitrary o > 0, by condition A5, we can choose 7" € V and then 7", which
is a point of continuity for the distribution functions of the random variables vo;(T"), i =
1,...,msuch that lim,_ P{ve,(T) > T’} < lim,_ P{v.,(T") > T’} < 6/2m. Then, fixing
T’ and using condition U, we can find ¢’ > 0 such that lim,_,o P{Ay(E(-), ¢, T") > 8} <
o/2m. If we pass to limit in (3.2.8), first making ¢ — 0 and then ¢ — 0, and use Lemma
3.2.1, we get

11%@ P{AL(C.(),c,T) > &}

< ;(E P{AyEu(), ¢, T") > &/m)

— — (3.2.9)
+ lirrol P{Ay(Vei(-), e, T) > '} + lin(} P{ve,(T) > T’ /2})
<o+ ; im P{Ay(vii(), . T) > ¢} = o.
This proves (3.2.6), since o is arbitrary. O

3.2.2. Conditions of U-compactness. It is useful to note that relation (3.2.6), i.e., U-
compactness of the processes (), > 0 can be obtained without the use of the condition
of weak convergence A,,.

Let introduce the following condition:

KP: limy e lime o P{ve(0) > 1 =0,i = 1,...,m.

Lemma 3.2.3. Let conditions Uy, Us, and 9(;0) hold. Then
limlim P{Ay(§,(). ¢, T) > 8} = 0, 6> 0.

Proof of Lemma 3.2.3. Let x(t), t > 0 be a real-valued cadlag function. The following
estimate is valid forevery 0 < ¢ < T < oo:

lx(T)| < |x(0)] + ([T/c] + DAy(x(-), ¢, T). (3.2.10)

Using (3.2.10) for ¢ = 1/T" and conditions U5 and ngO) we get, foreveryi=1,...,m
and T > 0,
lim @P{vgi(n > T}

< lim lim P{v.;(0) > T"/2} (3.2.11)

T’ —o00 e—0

+ lim Tim P{Ay (ve(), 1/T',T) 2 T/ /2(TT'] + D) =0,

since T’ /2(|[TT']+1) > 1/2T > 0as T’ — oo.
The proof of the lemma follows directly from relations (3.2.8) and (3.2.11). O



174 Chapter 3. J-convergence of compositions of stochastic processes

3.2.3. The set of weak convergence. It follows from Theorem 1.6.11 that, under
conditions of Theorem 3.2.1,

C.(6),t> 0= Cy(t),t > 0as e — 0. (3.2.12)

3.2.4. Non-monotone internal stopping processes. Theorem 3.2.1 can be gener-
alised to a model where the monotonicity of non-negative cadlag processes v;(t), t > 0
is not assumed. In this case there is no guarantee that the composition C.(¢), t > O is a
cadlag processes.

Conditions A;, and U, still provide, due to Theorem 2.7.1, weak convergence of the
compositions C,(¢) on the set V.

LetO =1, <t,<---<t,=T,n>1beasequence of partitions of the interval
[0, T] such that: (a) #4, € V,k=0,...,n,n > 1;(b) h, = Ogj}il(z‘kﬂ,n — tn) — O as

n — oo. The following estimate holds forall 0 < ¢ < T < oo:

[ SUp Vei(t) = Max Vet < Au(Vei()s s 7). (3.2.13)

t<T

Relation (3.2.13) and conditions A, and U5 imply, due to Lemma 1.2.5, the follow-
ing relation forevery i = 1,...,m:

sup V(1) = sup vy(¢) as € — 0. (3.2.14)

t<T t<T

Relation (3.2.14) and conditions U, and U permit to repeat the proof of the U-
compactness relation (3.2.6) given above for relations (3.2.8) and (3.2.9). The only dif-
ference is that the random variables v.;(T') should be replaced with the random variables
SUp,<7 Vei(?).

Note that the modulus Ay can be defined by the same formula not only for a cadlag
process for any real-valued function. Also, estimate 3.2.7 is valid for any real-valued
functions.

So, under conditions A,, U,, and WUs, the processes () weakly converge on the
set V and satisfy the relation of J-compactness (3.3.2).

As was mentioned above, the pre-limiting composition . (¢), ¢ > 0 may be not an a.s.
cadlag process for € > 0. However, the limiting process §(¢), ¢ > 0 is an a.s. continuous
process.

The question about the corresponding class of a.s. U-continuous functionals should
belong to needs in this case, a special investigation. We refer here to the works by
Borovkov (1976) and Borovkov, Mogul’skij, and Sakhanenko (1995).

3.2.5. The time interval [0,7]. In this case, we consider the vector composi-
tion C,(1) = (Ei(vei(®),i = 1,...,m), t € [0,T] of a vector cadlag process &.(f) =
(Eei(D),i = 1,...,m), t > 0, with real-valued components, and a vector cadlag process
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ve(t) = (vei(t),i = 1,...,m), t € [0, T], with non-negative and non-decreasing compo-
nents.

We can always continue the internal stopping process to the interval [0, o) by the
following formula:

V(t) = {VE(I) ifo<r<T, G215)

vo(T) ift>T.

Now we can apply Theorem 3.2.1. Condition A5, should be replaced with a condi-
tion in which the set V is dense in [0, 7] and contains the points O and 7. The condition
of U-compactness U, does not require any changes. In the condition of U-compactness
U, the corresponding asymptotic relation should be required to hold only for the interval
[0, T']. Finally, by applying Theorem 3.2.1, we get

C.(0),1 € [0,T] — Ty(1), 1 € [0, T] as & — 0. (3.2.16)

Also, in Lemma 3.2.3, conditions U, and fK(SO) remain the same, while Uy should
be used in the modified form described above in order to prove U-compactness of the
processes C.(2), t € [0, T1.

3.2.6. The time interval (0, o). The results of the previous section can easily be
translated to the case of the semi-infinite interval (0, o) under the condition that the
limiting internal stopping random variable v;(¢) is positive with probability 1 for every
t>0andi =1,...,m. In this case, the point O can be excluded from the sets U and V
in condition A5,. Also, in conditions U, and WUs, the relations of U-compactness should
be required to hold for any finite interval [T’,T"], where 0 < 7" < T" < oo.

By applying Theorem 2.7.1 and taking into account the remarks made in Subsection
2.7.6, one can prove weak convergence of the vector compositions

Gt €V =C(n),teVase — 0. (3.2.17)

As easily seen, the U-compactness condition can be obtained by a slight modification
of estimates (3.2.7) and (3.2.8).

The first one holds for any non-negative real-valued function x(¢), t > 0, and any
non-decreasing function y(¢),t > 0and 0 < 7" < T” < 00,0 < T} < T, < 00,

AU(X()/(')), c, T/’ T’/)X(AU()/(), c, T” TH) < C’, y(T’) > Tl,y(TH) < TZ)

, (3.2.18)
< Ay(x(), ', Ty, T)).
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The second one takes the form

P{AU(Ct()’ c, T/, TH) > 6}

< > PAGE(va(), ¢, T/, T") > 8/m)

i=1
m

< (P{AY(Eei(Vei(:), ¢, T", T") > 8/m,vei(T") > T},
=1

’ (3.2.19)
Veil(T") < To, Ay(Vei(-), ¢, T', T") < '} + P{vei(T") < T'}

+ PWa(T") > T} + P{AG(Va(), ¢, T/, T) > ')
< ) (PUAGE(), ¢/, T1, T2) > d/m) < Plv(T') < T}
i=1

+ Pvei(T") > To} + P{Ay(vei(), ¢, T', T") > ¢'}).

By repeating the subsequent steps in the proof of Theorem 3.2.1, one can get a rela-
tion of U-compactness for0 < 7’ < T"” < oo,

limlim P{Ay(§,(), . T".T") > 8} = 0, 8 > 0. (3.2.20)
The relations (3.2.17) and (3.2.20) imply that
L.(1), 1 € (0, 00) —5 Ty(1), 1 € (0, 00) as & — 0. (3.2.21)

3.2.7. A Polish phase space. The results presented in this section can be generalised
to a model with external stochastic processes, &.(7), > 0, the components of which,
E.i(1), t > 0, take values in a Polish space X.

The formulation of condition A4, remains the same. In the condition U, the Eu-
clidean distance |x — y| must be replaced with the corresponding metric d(x,y) in the
formula for the modula of U-compactness, Ay (E(+), ¢, T).

Conditions A5, and u;, modified as described above, still imply weak convergence
of the compositions C,(¢) on the set V, as follows from Theorem 2.3.6.

All estimates for the modula of U-compactness Ay (Cei(+),c, T), given in (3.2.8)-
(3.2.9), can be repeated and the U-compactness relation (3.2.6) can be written.

Finally, under conditions As,, U, and Us, we get

(0,120 -5 o), > Oas € — 0. (3.2.22)

3.3 Asymptotically continuous external processes

In this section, we formulate conditions for J-convergence of compositions of cadlag
processes and asymptotically continuous external processes.
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3.3.1. J-convergence of semi-vector compositions with an asymptotically contin-
uous external component. Let, for every € > 0, §.(1) = (E,(r),i = 1,...,m),t > 0be a
vector cadlag process with real-valued components, and v,(f), > 0 a non-negative non-
decreasing cadlag process. Consider the semi-vector composition T, (t) = (E(ve(1)),i =
1,...,m),t >0, which is also a vector cadlag process with real-valued components.

We assume that the following analogue of the condition of joint weak convergence
A, holds:

Aser (Ve(5), (1), (5,1) € VXU = (vo(s), Ey(2)), (s,1) € VX U as € — 0, where U and
V are some subsets of [0, co) that are dense in this interval and contain the point 0.

We also assume that the condition of U-compactness U, holds for the external pro-
cesses E,(7), t > 0. It is also useful to note that condition U, is equivalent to condition
u,.

Conditions A, and U, imply U-convergence of the processes &,(f), > 0 and a.s.
continuity of the limiting process §(#), t > 0.

For the internal component v,(#), t > 0, we assume that the following condition of
J-compactness holds:

J11: limeo limg_o P{A;(ve(-), ¢, T) > 8} =0, §,T > 0.

Conditions A, and d,; imply J-convergence of the processes v,(t), t > 0. However,
continuity of the corresponding cadlag limiting processes vo(?), t > 0 is not required.

The following theorem presents a result given in Whitt (1973, 1980) and Silvestrov
(1974).

Theorem 3.3.1. Let conditions Ag, Wy, and J44 hold. Then

C(0), 1> 0 -5 Co(r), 1> 0as e — 0.

Theorem 3.3.1 does not require a separate proof. This theorem is a particular case of
Theorem 3.3.2 that gives a similar result for a more general model of vector compositions
of cadlag processes.

3.3.2. J-convergence of vector compositions with an asymptotically continuous
external component. Let, for every € > 0, §.(¢) = (E(1),i = 1,...,m), t > 0 be a vector
cadlag process with real-valued components, and v () = (vg(#),i = 1,...,m),t > 0a
vector cadlag process with non-negative and non-decreasing components. Consider the
vector composition G (t) = (E(vei(2)),i = 1,...,m), t > 0, which is also a vector cadlag
process with real-valued components.

In this subsection, we consider a model where the external processes &,(7), t > 0 are
asymptotically continuous.

We assume that the condition of joint weak convergence A, holds, together with the
condition of U-compactness U, for the processes E,(7), t > 0.
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Conditions A4, and U, imply U-convergence of the processes &,(7), t > 0, and a.s.
continuity of the limiting process &,(?), t > 0.

We assume that the internal component v.(7), ¢+ > O satisfies the following vector
analogue of condition J;:

312 lime_olime_o P{A;(ve(), ¢, T) > 8} = 0, 8,T > 0.

Conditions A;, and J;, imply J-convergence of the processes v.(z), t > 0. However,
the continuity of the limiting cadlag processes v((?), t > 0 is not required.

The following new theorem generalises the result of Theorem 3.3.1 to the model of
vector compositions of cadlag processes.

Theorem 3.3.2. Let conditions A,, W,, and J,, hold. Then

(), 1> 0 -5 Co(r), 1> 0as e — 0.

Proof of Theorem 3.3.2. Condition A, implies that condition A}, holds with the set V
used in A;4. Condition U, obviously implies that condition J 4 holds. Since §,(?), t > O is
a continuous process, condition sz holds with the set W = [0, co0). Therefore, it follows
from Theorem 2.7.1 that, for the set V,

C(n),teV=TCyr),teVase— 0. (3.3.1)

By A,,, the set V is everywhere dense in [0, o) and contains the point 0.
To prove the theorem, we must also supplement the relation of weak convergence
(3.3.1) with the relation of J-compactness,

1ingﬁg P{A,(C.(),c,T) > 8} =0, 8,T > 0. (3.3.2)

Let x(f) = (x;(t),i = 1,...,m), t > 0 be a vector cadlag function with real-valued
components and y(¢) = (y;(¢),i = 1,...,m), t > 0 be a vector cadlag function with
non-negative and non-decreasing components. Let also z(t) = (x;(y;(?)),i = 1,...,m),
t > 0 be their vector composition, which is also a vector cadlag function with real-valued
components.

Itis clear thatif ¥/ < ¢ < ¢ and min(|y(?)—y(¢')|, [y(t)—y(")|) < ¢/, then |y;(1)—y;(')| <
c,i=1,...morly(t)—y:(t") <c,i=1,...,m. Hence,

min(|z(t) — z(1"), |2(1) - z(")))
X o(min(ly() = y@L Iy =y < ¢, max yi(r”) < T")

< min()” (i) = %G D B0 = xii "))
i=1 i=1
X y(min(ly(r) =y ly(®) - y(")D) < ¢, max y,(t”) < ")

< > Ap((), ¢, T
i=1
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and, therefore,

As@().e. THAYO). e, T) € ¢ max y(T) < T) < " Ay T (33.3)

i=1

Using (3.3.3) and taking into account monotonicity of the processes v¢(?),t > 0,
i=1,...,m, we have

P{AJ(Cs()’ G, T) > 6}
<P AuEa(), e, T) > )
i=1

+ P{A,(ve(-), e, T) > ¢’} + P{max v(T) > T’}
. et (3.3.4)
< D PAG(E(), ¢, T') > d/m)

i=1

+PIAS (), 0, T) > )+ ) Pva(T) > T').

i=1

For an arbitrary o > 0, by condition A5, we can choose 7" € V and then 7”, which
is a point of continuity for the distribution functions of the random variables vy,(T"), i =
1,...,m, such that EHO P{v,(T) > T’} < Eg_,o P{v(T"”) > T’} < 6/2m. Then, by
using condition U,, we can find ¢’ > 0 such that ﬁs_,o P{Ay(Eu(-), ', T") > 8} < 6/2m.
If we pass to the limit in (3.3.4), first for ¢ — 0 and then for ¢ — 0, and use condition
d1,, We get

1}1%@ P{A,(§.(),c,T) > 8} <o+ 1}1%@ P{A;(Ve(-),c,T) > '} = o. (3.3.5)
This proves (3.3.2), since o is arbitrary. O

3.3.3. Conditions of J-compactness. It is useful to note that J-compactness of the
processes C.(7), t > 0, can be proved without the use of the condition of weak conver-
gence Aj,.

Let us introduce the following condition:

KD im0 limeo P{vea(T) > 1 = 0,i = 1,...,m.

It follows directly from (3.3.4) that the relation of J-compactness (3.3.2) holds for a
given T > 0 if (a) condition U, holds, (b) the relation of J-compactness in condition J,,
holds for this 7', and (¢) condition fK;T) holds.

3.3.4. J-convergence of monotone cadlag processes. In this subsection, we study
conditions for J-compactness and J-convergence of monotone cadlag processes.
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Let, for every € > 0, v(?), t € [0, T] be a non-negative and non-decreasing cadlag
process.

Let x(7), t € [0, T] be a non-decreasing cadlag function. For every k > 1, we define
the functional

K (x() = kY = inf(s € (7, T2 x(s) = x(<7) + 0, if x(T) = x(2)) + 9,
K](f_)l + T, if x(T) < X(K(é) )+ 9,

where &0)(x() = k" = 0.

Let us also deﬁne for every r > 1, the following functional, which is the minimal
distance between successive moments of minimal d-increments for the function x(z),
te€[0,T1],

) (x() = min (<7 (x()) = K, (¥())).

Let us introduce the following condition:

Nyt (@) limpe limesg P{Ive(T) = v (0) > T} = 0;
(b) lim,_ lim,_, P{n(Ta”r)(vs(-)) <c} =0, r > 1 for some sequence 0 < O, — 0 as

[ — oo.

The following theorem is given in Silvestrov (1974), where one can also find some
applications to monotone Markov type processes.

Theorem 3.3.3. Let condition N, hold. Then
1}1%@ P{A;(ve(-),c,T) >0} =0, 0> 0.
Proof of Theorem 3.3.3. Let us also define the following functional

) (x()) = min(ep (x() = K7y ().

Let us show that, for any non-decreasing cadlag function x(¢), r € [0, T] and ¢, d > O,
if
Aj(x(-),¢/2,T) = 29, (3.3.6)
then
P (x() < c. (3.3.7)

Suppose that (3.3.6) holds. Then there exist three points ¢, ¢, € [0,T], t —c/2 <
U <t<t”"<t+c/2suchthat x(t) — x(t') > 6 and x(t"") — x(¢) > d.

There always exists k = 0,1,... such that (a) 7 € [K,(f), ](jr)l) Let us assume that

(b) K,(;S) < t’. Then (¢) x(t) — X(K,(;S)) > x(t) — x(t) = 8. Obviously, (¢) implies that (d)
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,(jr)l < t. But, (d) contradicts (a). So, assumption (b) does not hold, and, therefore, (e)
<k <. Then (f) x(t”) — x(x°) > x(#") — x(t) > §. Thus, (g) k), < ¢’. Obviously,
(e) and (g) imply that (h) K,(i)l - K(b) <t'-t <c.

Let us define

WP (x()) = max(k: x(T) > x(x,_, (x())) + h).

It follows from the definition of p”’(x()) and ki, (x(-)) that

x(T) — x(0)

W (x()) < 5

On the other hand, by the definition of the functionals nT)(x( -)) and n(a)(x(-)), we
have
T () = 7 (x(-)) = 0 if 7 (x(-)) < .

Hence, we get the following estimate:

P{Im) (ve()) — 15 (ve(-))] > O}

) (3.3.8)
< P (ve()) > 1} < P{ve(T) = v,(0) > r).
By using (3.3.8) and condition N, we get
lim Tim P{RY) (ve()) — 705 (ve(-))] > O}
e (3.3.9)
< lim hm P{ve(T) — v¢(0) > or} = 0.
By using (3.3.9) and condition N, we get, for §;, / > 1 from this condition,
lim 11m P{™ (v() < ¢}
< limlim P{rry (ve() = I3 (ve() = 77 (ve( )] < )
< lim hm(P{n(é’)(vs(-)) <c) (3.3.10)
+ P{|n“’”(vb(->) — T (ve()] > O})
= lun P{my  (ve(+)) = T (ve())] > 0} > 0 as r — oo,
and, consequently,
11m11m P (ve(-)) < ¢} =0, [ > 1. (3.3.11)

It clearly follows from (3.3.11) that, for arbitrary a, o > 0, there exists ¢ > 0 and
20; < o such that L \
lim P{™ (ve() < ¢} < o (3.3.12)



182 Chapter 3. J-convergence of compositions of stochastic processes

By using (3.3.6) and (3.3.7), we get
lim P{A;(ve(-),¢/2,T) > o}

< @ P{A;(ve(-), ¢/2,T) > 28} (3.3.13)

< ErolP{n(Té’)(vg(-)) <c}<a,

and so, due to arbitrary choice of a
1‘1%@ P{A;(ve(-),¢/2,T) > o} = 0. (3.3.14)

The proof is completed. O
Let us assume the following condition:

Asr: ve(s), s € V = vo(s), s € Vase — 0, where V is a subset of [0, co) that is dense in
this interval and contains the point 0.

Taking into account Theorem 3.3.3 we can formulate the following condition for
J-convergence of monotone cadlag processes.

Theorem 3.3.4. Let conditions Ay, and N hold. Then
Ve(£), 12 0 =5 vo(0), £ = O.as & — 0,

3.3.5. The set of weak convergence. Let V, be the set of points of stochastic conti-
nuity of the limiting stopping process vy(¢), t > 0, and Z, be the set of points of stochastic
continuity of the limiting stopping process (), t > 0. Since the limiting external pro-
cess §y(r), t > 0 is a.s. continuous, V, C Zj. Under conditions A, and J,,, the set
of weak convergence V, in condition A;,4, can be enlarged, by Lemma 1.6.5, to the set
V U Vy. In sequel, the set of weak convergence V will be replaced with the set V U V)
from the proof of Theorem 3.3.1. This set coincides with [0, o) except for at most a
countable set. Also, 0 € V U V. The processes C.(1), t > 0 J-converge and, therefore, by
Lemma 1.6.5, the set V U V|, can be extended to the set V U VU Z, = V U Z,. Finally,
under the conditions of Theorem 3.3.2, we get that

L), teVUZy = Cy(),t€ VU Zyase — 0. (3.3.15)

3.3.6. Non-monotone internal stopping processes. The result of Theorems 3.3.1
and 3.3.2 can be generalised to include the case where the monotonicity of the non-
negative cadlag processes Vv¢(f), t > 0 is not assumed. In this case, it can be that the
compositions .(¢), ¢t > 0 are not cadlag processes.
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Conditions A, and U, provide, due to Theorem 2.7.1, weak convergence of the
compositions E,(¢) on the set V.

LetO =1, <t,<...<t,,=T,n>1be asequence of partitions of the interval
[0,T] such that: (a) t;, € V,k=0,...n,n > 1; (b) h, = ngn)il(tkﬂ,n —tin) — 0 as

n — oco. Then
| SUp Vi (1) = Max Vei(te)| < As(Vei(), s 1. (3.3.16)
1<T sksn
Relation (3.3.16) and conditions A, and d,, imply, due to Lemma 1.2.5, the follow-
ing relation forevery i = 1,...,m:

sup V() = sup v;(t) as € — 0. (3.3.17)

ti<T t<T

Relation (3.3.17) and conditions U, and d,, permit to follow the proof of the relation
of J-compactness (3.3.2) given in the proof of Theorem 3.3.2. One should only replace
the random variables v;(7T") with the random variables sup,_; v¢(¢) in relations (3.3.3)
and (3.3.4). Note that estimate (3.3.3) does not require monotonicity of the functions
yi(t) and, in sequel, estimate (3.3.4) will not require monotonicity of the processes V().

Moreover, it is useful to note that the moduli Ay and A; can be defined by the same
formulas not only for cadlag functions, but for any real-valued function. Also the esti-
mate 3.2.7 is valid for any real-valued functions.

So, under conditions As,, U,, and J,,, the processes & (r) weakly converge on the
set V and satisfy the relation of J-compactness (3.3.2).

As was mentioned above, it is not certain that the pre-limiting composition C,(7), t >
0, is an a.s. cadlag process for ¢ > 0. However, the limiting process y(¢),# > 0 is an a.s.
cadlag process, since the external limiting process (), # > 0 is a.s. continuous.

We refer to works by Borovkov (1976) and Borovkov, Mogul’skij, and Sakhanenko
(1995) where one can find a discussion concerning J-convergence of stochastic processes
in such a case.

3.3.7. The time interval [0,7T]. In this case, we consider the vector composi-
tion §. (1) = (Eu(ve(0),i = 1,...,m), t € [0,T] of a vector cadlag process &, (f) =

(Eei(D),i = 1,...,m), t > 0 with real-valued components, and a vector cadlag process
ve(t) = (vei(1),i = 1,...,m), t € [0, T] with non-negative and non-decreasing compo-
nents.

The internal stopping process can be continued to the interval [0, co) by the following
formula:

(3.3.18)

ve(t) 1f0<t<T,
Vs(t) = .
vo(T) ift>T.

We can apply Theorem 3.3.2 to the processes C,(7), t > 0 with the internal stopping
processes v.(t), t > 0 defined in (3.3.18). Conditions of this theorem should be modified
taking into account (3.3.18).
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The condition of weak convergence Aj, should be replaced with a condition in
which V is a set dense in [0, 7] and contains the points 0 and 7. The condition of
U-compactness U, remains the same. In the condition of J-compactness d,,, the cor-
responding asymptotic relation should be required to hold only for the interval [0, T'].

With these changes, conditions A, U,, and J,, imply that L,(¢), 7 € [0, o) i> Co(0),t €
[0,0)as e — 0.

Note that J-convergence of the processes C.(f) on the interval [0, co) does automat-
ically imply J-convergence of these processes on the interval [0, 7] if the point T is
a point of stochastic continuity for the limiting process Gy(), ¢ > 0. In this case, no
additional conditions are required.

However, it can happen that T is not a point of stochastic continuity for the limiting
process &y(7), t > 0. Since the process §(t), ¢t > 0 is a.s. continuous, this can occur if T
is not a point of stochastic continuity for the limiting stopping process v((t), ¢t > 0. Note
that this process may be not an a.s. continuous process.

In this case, as follows from Theorem 1.6.3, the random variables £.(7" — 0) must be
added in the relation of weak convergence for the processes C,(f) on the set V. In order
to provide this convergence, it is necessary add, in the relation of weak convergence in
condition A,,, the random variables v.(T — 0). These modified versions of conditions
A, and U, imply that (3,(7), 5 (T — 0)),t € V = (§y(1), 5o(T — 0)), t € Vase — 0.

Finally, the modified versions of conditions A4, U,, and J;, imply that

C.(0), 1€ [0,T] -5 Cy(), 1 € [0, T] as & — 0. (3.3.19)

3.3.8. The time interval (0, co). The results of the section can also be restated for
the case of the semi-infinite interval (0, co) under the condition that the limiting stopping
random variable v,(¢) is positive with probability 1 for everyt > Oandi = 1,...m. In
this case, the point 0 can be excluded from the sets U and V in condition A,. Also, the
relations of U- and J-compactness, respectively, in conditions of U, and J,, should be
required to hold for any finite interval [T, 7], where 0 < T/ < T" < oo.

By applying Theorem 2.7.1 and taking into account the remarks in Subsection 2.7.6,
one can prove weak convergence of the vector compositions

(D), teV=C(r),teVase— 0. (3.3.20)

The condition of J-compactness can be obtained by using the modified estimates
(3.2.7) and (3.2.8).

The first one is valid for any m-dimensional cadlag function x(¢) = (x;(¢),i = 1, ..., m),
t > 0, any m-dimensional cadlag function y(¢) = (y;(¢),i = 1,...,m), t > 0, with non-
negative components, and their vector composition z(¢) = (x;(y;(¢)),i = 1,...,m),t > 0
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and 0 <7 <T”" <00,0<T; <T, < 00,

A-](Z(.)’ c’ T” T’/)X(AJ(y(.), c’ T/, T”) S C”
: , " S ) (3.3.21)
min y;(T") > Ty, max yi(T") < T) < § Ay(xi(+),c", Ty, T»).
<i<m P

1<i<m

Using (3.3.21) we have

P{AJ(Ca()’ c, T” T’/) > 6}

< PUY . Ap(Ea(). €. T1.T2) > 8) + PIA(v().. T, T") > ¢
=1
+ P{min v;(T") < T} + P{{nax vei(T") > T}

1<i<m

. (3.3.22)
< D PG, ¢, T1, To) > d/m) + PA(v(), ¢, T/, T") > ¢/}
i=1

m

# D PT) < T} + D Pv(T") > Ta).
i=1

i=1

By repeating the steps that follow in the proof of Theorem 3.3.2, one can get the
relation of J-compactness for 0 < 7" < T” < oo,

limlim P{A;(§.(). ¢, 7', T") > 8} = 0, 6> 0. (3.3.23)
The relations (3.3.20) and (3.3.23) imply that
L.(1), 1 € (0, 00) -5 Ty(1), 1 € (0,00) as & — 0. (3.3.24)

3.3.8. A Polish phase space. Results presented in this section can be generalised to
a model with external stochastic processes &,(¢), t > 0, which components E(¢), t > 0,
take values in a Polish space X.

The formulation of condition A, will be the same. In the conditions u;, the Euclid-
ian distance |x—y| must be replaced with the corresponding metric d(x, y) in the formulas
that define the corresponding moduli of U-compactness. Condition J,, does not require
any changes.

3.4 Asymptotically continuous internal stopping processes

In this section, we formulate conditions for J-convergence of compositions of cadlag
processes with asymptotically continuous internal stopping processes. This model cov-
ers a significant part of applications.
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3.4.1. J-convergence of semi-vector compositions with asymptotically continu-
ous internal stopping component. Let, for every € > 0, §.(t) = (E,(1),i = 1,...,m),
t > 0 be an m-dimensional cadlag process with real-valued components and v¢(¢), t > 0
be a non-negative non-decreasing cadlag process. We will consider the semi-vector com-
position T,(t) = (E;(ve(®)),i = 1,...,m), t > 0, which is also an m-dimensional cadlag
process with real-valued components.

We impose the following condition of J-compactness on the external processes &,(1),
t > 0. This condition was actually introduced in Subsection 1.6.11,

Jy: limo limeo P{AS(E.(),c,T) > 8} =0, 8,T > 0.

Conditions A ;4 and J,, imply J-convergence of the processes &, (7), ¢ > 0, but they do
not require a.s. continuity of the corresponding limiting cadlag processes §(#), t > 0.

As follows from the remark above and Lemma 1.6.5, the set U in A, can be en-
larged, under condition g, to the set U U U,. Here U, is a set of points of stochastic
continuity for the process §(¢), t > 0.

We assume that the internal stopping processes v¢(?), ¢ > 0, satisfy a condition that is
a scalar analogue of the condition B,

B,: vo(r), t > 01is an a.s. continuous process.

Lemma 3.2.1 implies that, under A,q, condition B, is equivalent to the following
condition of U-compactness, a scalar analogue of condition Us:

Uy lime_ o lime_o P{Ay(Ve(-), ¢, T) > 8} = 0,8,T > 0.

We also use the following form of the first-type continuity condition €}, in which
the set W is not specified,

C,: There exists a set W such that (a) P{vo(r) € R[E,(-)]} = Oforz € W, (b) Wis a
subset of [0, co) that is dense in this interval and contains the point 0.

The following theorem can be found in Silvestrov (1972b, 1972e, 1973a).

Theorem 3.4.1. Let conditions Asq d4 By, and €, hold. Then

C(0), 1> 0 -5 Co(r), 1> 0as e — 0.

Proof of Theorem 3.4.1. We first apply Theorem 2.7.1 to the vector composition g (7) =
(Ee1(Ve(®)), - . ., Eem(ve(D))), t = 0 of the external processes &.(f) = (E1(),. .., Eem(?)),
t > 0 and the internal stopping processes ve(t) = (Ve(?),...,V(?)), > 0, with m identical
components. It follows from Lemma 3.2.1 that conditions A ;4 and B, imply condition
U,. It also follows from Theorem 1.6.11 that, under condition Uy, the set V in Asg
can be taken to be the interval [0, c0). Therefore, condition A;’Z holds with the set V =
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[0, 00). Condition €, means that condition eﬁV holds with some set W dense in [0, 00)
and containing 0. Therefore, it follows from Theorem 2.7.1 that, for this set W,

C(0),t e W= Cy(t),t e Wase — 0. (3.4.1)

To prove the theorem we must also supplement the relation of weak convergence
(3.4.1) with the relation of J-compactness

11%@ P{A(C.(),c,T)>8) =0, 8,T > 0. (3.4.2)

Let x(¢), t > 0 be a cadlag function taking values in R,, and y(¢), t > O be a non-
negative and non-decreasing cadlag function.
It is clear that, if ¢ <t < ¢, then

min(Ix(y(1)) = x(y(")|, [x(y(1)) = x(y(")])
X y(max(|y(®) — y(@)l, ly(t) =y <, y#") < T')
< A;x(), T

and, therefore,
Aj(x((), ¢, T (Av ()¢, T) < ', )(T) < T') < Ay(x(), ¢, T). (3.4.3)
Using (3.4.3) we have

P{Aj(ga(vs()), c, T) > 6}
< P{AJ(gt(Vb())’c’ T) > 6’ AU(VE(')’C’ T) < CI’VE(T) < T’}
+ P{Ay(ve(+),c,T) > '} + P{v(T) > T'} (3.4.4)
< P{Aj(ga()’ C,’ T,) > 6}
+ P{Ay(v(-),c,T) > '} + P{v(T) > T'}.

For an arbitrary o > 0, by condition A, we can choose 7" € V and then 7”, which
is a point of continuity for the distribution function of the random variable v((7""), such
that ﬂs—m P{v.(T) > T’} < EHO P{v.(T"”) > T’} < o/2. Then, fixing 7’ and using
condition J,, we can find ¢’ > 0 such that lim._,o P{A;(E.(-),¢’,T") > &} < o/2. If we
pass to the limit in (3.4.4), first making € — 0 and then ¢ — 0, and use condition U5, we
find

limlim P{A;(§,(ve()). ¢, T > 8} < 0 + im im P{Ay(ve(-). e, T) > '} = 0. (34.5)

This proves (3.4.2), since o is arbitrary. m]

Condition Q5 takes in this case the following form:
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Q,: Ey(1) = E,(t) + Ej (1), t > 0, where (a) Ey(?) is a continuous process, (b) &; (¢) is a
stochastically continuous cadlag process, (c) the processes &, (r),¢ > 0 and vo(?),
t > 0 are independent.

It follows from Lemma 2.7.1 that condition Q, implies that condition €, holds with
the set W = [0, c0).
Condition &, takes the following form:

Eg: Pivo(t) = vo(t”) € R[E()]} =0for0 < ¢ <1’ < oo,

Let us also introduce a condition that, actually, coincides with sz in the case where
the set W = {w} contains only one point w and the process v((t) = (vo(?),...,Vvo(?)),t >0
has identical components,

C™: P{vo(w) € R[Ey ()]} = 0.

As follows from Lemma 2.7.2, conditions € and C;o) are necessary and sufficient
for condition €, to hold.

The following theorem is the main result of this section. It is, actually, equivalent to
Theorem 3.4.1 and does not require a separate proof.

Theorem 3.4.2. Let conditions Asq, d4 By, E and (‘Ig)) hold. Then

(0,120 -5 To(r), 12 0as e — 0.

Despite that the Theorems 3.4.1 and 3.4.2 are equivalent, the latter one has an advan-
tage, since conditions €, and Cg)) have a more explicit form than condition €, used in
Theorem 3.4.1.

Condition & is satisfied if the following condition introduced in Subsection 2.6.3
holds:

Jy: vo(t), t > 0 is an a.s. strictly increasing process.

In applications to renewal type models, the limiting internal stopping process is often
an exceeding time process. It has the following form: vy(¢) = sup(s : Ko(s) < 1), > 0,
where x(s), s > 0 is a cadlag process such that (a) kj(s) = sup,, Ko(u), s > 0 is an a.s.

strictly increasing process, (b) ¥ (s) L, coas s — oo,

Condition (b) implies that vy(#) < co with probability 1 for every ¢ > 0, whereas the
condition (a) implies that vy(¢), > 0 is an a.s. continuous process.

In this case, condition J; usually prohibits the process Ky(s), s = O to have positive
jumps. This restricts applications of condition J,.

Condition €4 can hold in situations where the process Ko(s), s > 0 may possess

positive jumps. For example, condition €4 holds if the process Ey(s),s > 0 can be
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decomposed into the sum Ey(s) = E\(s) + E;(s),s > 0, where the first component is
an a.s. continuous process possibly dependent on the process x((s), s > 0, whereas

the second component is a stochastically continuous cadlag process independent of the
process Ko(s), s > 0.

3.4.2. Conditions of J-compactness. It is useful to note that J-compactness of the
processes C.(¢), t > 0, can be proved without the use of the weak convergence condition
Ay

Let us introduce the following condition:

KD im0 lime P{ve(0) > 1} = 0.

Lemma 3.4.1. Let conditions J,, Us, and 9(20) hold. Then

11%@ P{A;(§,(),c, T) > 8} =0, §,T > 0.

Proof of Lemma 3.4.1. Using estimate (3.2.10) for ¢ = 1/T and conditions U5 and fo‘o)
we get for every 7' > 0 that
lim lim P{v(T) > T’} < lim lim P{v,(0) > T"/2}
T’ >0 -0 L T’ —00 e—-0 (346)
+ Tl}im ljrrg P{Ay(ve(-), 1/T", T) > T"J2([TT'] + 1)} = 0.

Now, the proof of the lemma follows directly from estimate (3.4.4) and relation
(3.4.6). m]

3.4.3. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.4.2, in which the continuity conditions €, and Cg)) are weakened. Intro-
duce the following conditions:

F,: There exist sequences 0, € Zy,d, — 0as/ - coand 0 < T, — coasr — oo

such that, for every LLk,r > 1l andi = 1,...,m, limg.. EE_,O P{a(;,i) —c <
Ve(t), V(1) < o, 0 < T,} = 0 forall 0 < ' < ¢ < oo

and

fD;W): There exist sequences 0; € Zy,d, » 0as/ — oo and 0 < T, — oo as r — oo such
(61)

that, for every ,k,r > 1 andi = 1,...,m, limy.. 0 lim,_, Plo,, —c < vew) <
) ) _
Olejp > Oy’ < T} =0.

Theorem 3.4.3. Let conditions Asq, 3, By, Fy and DY hold. Then

(0,120 -5 To(r), 12 0as e — 0.
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Proof of Theorem 3.4.3. Conditions Asq, d4, F4, and D;o) imply that conditions of The-
orem 2.7.9 hold for the external processes &,(f), # > 0 and the internal stopping processes
Ve(t) = (Ve(1), ..., Vve(1)), t > 0, with m identical components. In particular, condition A 4
implies that condition A3, holds for the set V in As. Condition J, is required in both
Theorems 3.4.3 and 2.7.9. Also, condition F, implies that condition F; holds. By apply-
ing Theorem 2.7.9, we prove that the processes §,(¢) weakly converge to §y(7) as e — 0
on the set S defined in this theorem. This set is dense in [0, c0). Due to condition fD;O),
the point O can also be included in the set S.

Conditions Ay, d4, and B, imply that the conditions of Lemma 3.4.1 hold. In
particular, condition A, implies condition fo‘O). Also, by Lemma 3.2.1, conditions Az
and B, imply condition Us. By applying Lemma 3.4.1, we prove J-compactness of the
processes G.(7), ¢ > 0, on any finite interval.

To complete the proof, it remains to use Theorem 1.6.6 that gives conditions for
J-convergence of cadlag processes defined on interval [0, o). O

3.4.4. The set of weak convergence. Denote by W, the set of points w that satisfy
condition C;w). Obviously, W C W,. Let also Z, be the set of points of stochastic conti-
nuity for the limiting stopping process §y(?), t > 0. The set W can obviously be replaced
with the set W, in the proof of Theorem 3.4.1. So, we can prove weak convergence of
the processes C,(7), t > 0 on set W,. This set is dense in [0, c0) and contains the point 0.
The processes ,(7), ¢ > 0 J-converge and therefore, by Lemma 1.6.5, the set W, can be
extended to the set W, U Z,. Finally, we get that, under conditions of Theorem 3.4.1, the
following relation holds:

Cs(t)’ te WoUZy = ;O([), teWoUZyase— 0. 3.4.7)

3.4.5. Non-monotone internal stopping processes. If the external processes are not
asymptotically continuous, then monotonicity of the internal stopping processes plays an
essential role. As a matter of fact, the key estimate (3.4.3) does require that the order
¢ <t < t” be preserved for the values y(¢') < y(¢) < y(#’). We discuss this problem in
Subsection 3.6.8.

3.4.6. The time interval [0, T]. In this case, we consider the semi-vector com-
position (1) = (Eui(ve(1)),i = 1,...,m), t € [0,T] of a vector cadlag process &.(f) =
(Eei(H),i = 1,...,m), t > 0, with real-valued components, and a non-negative and non-
decreasing cadlag process v¢(¢), t € [0, T].

We can always continue the internal stopping process to the interval [0, co) by the
following formula:

() = {ve(t) ifo<t<T, 348

v(T) ift>T.

No we can apply Theorems 3.4.1 or 3.4.2 to the processes C,(¢), ¢ > 0 with internal
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stopping processes V¢(?), t > 0, defined in (3.4.8). Conditions of this theorems should be
modified taking into account (3.4.8).

The condition of weak convergence A;¢ should be replaced with a condition in
which the set V is dense in [0, T'] and contains the points 0 and 7. The condition of
J-compactness J, does not require any changes. The condition of continuity B, should
be restricted to the interval [0, T'].

Also, it should be assumed that the set W in condition €, is a dense set in [0, 7] and
contains the points O and 7'. If condition € is used, instead of €, it should be assumed
that the points ¢, ¢’ in this condition are taken such that 0 < ¢ < ¢’ < T. Also, condition
C;o) and, additionally, condition (?;T) must be assumed to hold.

If condition F is used, instead of €, then it should be assumed that the points ¢, t”
in this condition are taken such that 0 < ¢’ < ¢’ < T. Also, it should be assumed that
condition D;O) and, additionally, condition iD;T) hold.

With these changes, conditions A, d4, By, and one of the following combinations
of conditions (a) C,, (b) &, G’g)), G’;T), or (¢) F,, fD(7°), ®§T) imply that the processes
C.(0),t € [0, c0) J-converge to the process §y(?),t € [0, c0) as € — 0.

Again, J-convergence of the processes C,.(¢) on the interval [0, co) automatically im-
plies that these processes J-convergence on the interval [0, 7] if the point 7" is a point of
stochastic continuity for the limiting process §(7), ¢t € [0, T']. In this case, no additional
conditions are needed. This pertains to cases (a) and (b). Indeed, conditions B, and Gg)
imply that T is a point of stochastic continuity for the process (7). In the case (¢), it is
possible that T is a point of stochastic discontinuity for the process §,(f). So, condition
fD;T_) i.e., condition iD(7T) where the random variables v(T) are replaced with v.(T - 0),
should additionally be assumed. This allows to include the random variables €.(7 —0) in
the corresponding relation of weak convergence and, in the sequel, to get J-convergence
of the processes C.(1),¢ € [0, T].

3.4.7. The time interval (0, co). The results of this section can also be recast in the
case of the semi-infinite interval (0, co). The condition that the limiting internal stopping
random variable v((f) > 0 with probability 1 for every ¢ > 0 should be imposed. In this
case, the point O can be excluded from the sets U and V in condition A3 Also, the
relations of J and U-compactness, respectively, in conditions of J, and U, should be
requested to hold for any finite interval [7”,7"], where 0 < 7" < T” < co. Finally, the
set W in condition C, should be dense in the open interval (0, o). Also, in conditions
&, the corresponding relation should be required to hold only for 0 < #' <t < oo and
condition Gg)) should be omitted. Analogously, if condition F is employed, then the
corresponding asymptotic relation in this condition should be requested to hold only for
0 <t <t” < oo and condition 9(70) should be omitted.

By applying Theorem 2.7.1 and taking into account remarks in Subsection 2.7.6, one
can prove weak convergence of the vector compositions

(D), teV=C(r),teVase— 0. (3.4.9)
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The J-compactness condition can be obtained with a slight modification of estimates
(3.4.3) and (3.4.4).

The first one is valid for any m-dimensional cadlag function x(¢), t > 0, non-negative
and non-decreasing cadlag function y(¢),t > 0,and 0 < T/ < T"” < 00,0 < T} < T, < 00,

AJ(X(y())7 c, T,’ TN)X(AU(y(), c, T,’ TN) < C,7 y(T,) 2 Tl ’y(TN) < T2)

/ (3.4.10)
< AJ(X(')’ c, Tl’ T2)
Using (3.4.10) we have
P{AJ(ge(Vb()), c, T/, TH) > 6}
< P{Aj(ga(VE())’ c, T,’ T”) > 6’
AU(VE('), c, T/, TH) < C’, VE(T’) 2 Tl, VE(TH) < TZ} (3411)

+ P{Ay(ve(), ¢, T) > ¢} + P{ve(T") < T} + P{ve(T") > T}
< P{AJE), ¢, T1, T2) > 8} + P{Ay(ve (), ¢, T, T") > ¢’}
+ P{ve(T") < T} + P{ve(T”) > T}

By repeating the subsequent steps in the proof of Theorem 3.4.2, one can get relation
of J-compactness for 0 < 77/ < T < oo,

limlim P{A;(§.(). ¢, 7', T") > 8} = 0, 6> 0. (3.4.12)
Relations (3.4.9) and (3.4.12) imply that
L.(1), 1 € (0, 00) -5 Ty(1), 1 € (0, 00) as & — 0. (3.4.13)

3.4.8. A Polish phase space. Results in this section can be generalised to a model
with the external processes &.(¢), t > 0, that have values of the components E.;(7), t > 0
in a Polish space X.

The formulation of condition A4, can be kept without changes. In the condition d,,
the Euclidean distance |x — y| must be replaced with the corresponding metric d(x,y) in
the formulas for the moduli A;(E.(+),c,T),i=1,...,m.

All other conditions B, &, and Gg)) of Theorems 3.4.1 and 3.4.2 remain the same.
With these changes in the conditions, the proofs of these theorems can be repeated. In
particular, the estimates for the modulus of J-compactness A;(C,;(+), ¢, T), given in the
proofs of Theorem 3.4.1 and 3.4.2, still hold. Finally, we get that, under conditions of
Theorems 3.4.1 or Theorem 3.4.2,

L), 120 -5 Gy(), 1> 0as e — 0. (3.4.14)
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3.4.9. J-convergence in translation theorems. As an example of application of
Theorem 3.4.2, let us consider the model introduced in Section 2.8. We, therefore, as-
sume that the following representation holds:

Ms T]u(tna)
(f) =tV = 1—, sill) = » 12U,
Ve(t) = tv . Eei(1) nh(ny)

i=1,...,m,

where (a) o = const > 0; (b) n. is a non-random positive function such that n, — oo as
e — 0; (¢) h(x), x > 0 is a slowly varying function.
We will consider the processes C_(f) = (C.(0,i=1,...,m),t>0, where

¢ (r) = elite)

eill) = =5 (e #0), t>0,i=1,...,m.
ugh(ue) HH

As was shown in Section 2.8, the processes (), t > 0 can be represented in the
form of a semi-vector composition C.(f) = E.(v¢(1)), t > 0. Here, the external process
EL(1) = BeE.(1), t > 0, where B, = v, *(h(ue)/h(n.))™" -x(ue # 0), and the internal stopping
process is v(t) = tve, t > 0.

It was shown in the proof of Theorem 2.8.2 that, under conditions A3, d4, and I, of
this theorem,

(ve(5), EL(D)), (5,1) € [0,00) X U = (vo(2), Ey(2)), 1 € [0,00) x U ase > 0,  (3.4.15)

where &(1) = v;*Ey(1), 1 > 0.

This means that condition A, holds for the processes v.(?), t > 0, and E;(t), t>0,
with the set V = [0, 00). Also, it was shown in the proof of Theorem 2.8.2 that condition
J, holds for the processes E.(1), t > 0. Conditions B, &, G’g)) obviously hold, since the
limiting internal stopping process is Vvo(f) = vy, t > 0. Therefore, Theorem 3.4.2 can be
applied to the compositions () = E.(rv,), t > 0. This yields the following statement.

Theorem 3.4.4. Let conditions A, d4, and 34 of Theorem 2.8.2 hold. Then
L, 120 -5 T, 1> 0ase — 0.

3.4.10. J-convergence for randomly stopped stochastic sequences. Let us also
consider the model of randomly stopped stochastic sequences, introduced in Subsection
2.8.4. In this case, the conditions A,s, J4, and J5, introduced in Subsection 2.8.4, and
the condition J, introduced in Subsection 2.8.2, imply relation (2.8.36). This relation
imply, in its turn, that conditions A, and J, hold for the processes v,(t) = tv,,t > 0
and E,(f) = (§,(t), b,(t)),t > 0. Also, conditions B, &, € obviously hold, since the
limiting internal stopping process vo(f) = tvy, t > 0 is continuous. Therefore, Theorem
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3.4.2 can be applied to the compositions &,(¢v,),t > 0. The following relations, which
improve relations (2.8.37), (2.8.38), and (2.8.39), can be written:

-b, b -b,
(g[tun] , [1u,] ) ) X(Hn + 0), >0

aun aun (34 16)

L (VPE0(tv0), By(tvo)), £ > O as n — oo,
and

-b
Eind = Piga) i £ 001> 0

a, (3.4.17)

Ly (ViPEy(tve) — Bp(tvo)). 1 > O as n — oo,
as well as

-b
%[f“n] (1] ‘X(Mn + 0), t>0

aun (3418)

L (v;PEo(tv0) = By(Vo)). 1 > O as n — oo,

3.5 Semi-vector compositions of cadlag functions

In this section, we formulate general conditions for J-compactness and J-convergence
of semi-vector compositions of non-random cadlag functions for the general case where
both the external and the internal limiting functions can be discontinuous. These con-
ditions are used in an essential way in the next Section 3.6, where the corresponding
results are obtained for semi-vector compositions of cadlag stochastic processes.

3.5.1. Conditions for J-compactness of semi-vector compositions of non-random
cadlag functions. Let x(7), # > 0 be a function from the space Dﬁﬁo). We denote by
R[x(-)] the set of points of discontinuity for the function x(¢), t > 0. The set R[x(-)] is
empty, finite, or countable. The structure of this set can be described in the following
way. Define recursively the functionals t;,(x(-)) = inf(s > T;,_1,(X(+)): [X(s) — x(s — 0)| €
[%, ﬁ)), k =1,2,..., where 19,(x(-)) = 0. The functionals t;,(x(-)), k > 1 take values
in the interval (0, co]. If 14,(X(-)) < oo, then it is a point of the k-th jump of the function
x(1), t > 0, with absolute value of the jump belonging to the interval [%, nlj). Denote by
W, (X(+)) = max(k: T4,(X(-)) < co) the total number of such points of jumps. Obviously,

RIX()] = {tin(xX(), 1 <k <p,(x(-))+1,n=1,2,...}.

The definitions above can also be applied to functions from the space DE(I))DO) . of

non-negative and non-decreasing cadlag functions. Let y(7), t > 0 be a function from
this space. Let R[y(-)] denote the set of points of discontinuity for the function y(7),



3.5. Semi-vector compositions of cadlag functions 195

t > 0. The set R[y(-)] is empty, finite, or countable. Its structure can be described in the
following way. Define recursively the functionals K, (y(:)) = inf(s > K_1,(y(:)): y(s) —
y(s—0) € [%, anl))’ k=1,2,..., where Ky,(y(:)) = 0. The functionals x,(y(:)), k > 1 take
values in the interval (0, oo]. If 1, (¥(-)) < oo, then it is a point of the k-th jump of the
function y(z), ¢ > 0, with value of the jump belonging to the interval [+, ). Denote by
w,(¥(+)) = max(k: K, (y(-)) < oo) the total number of such points of jumps. Obviously,

RO = (), 1 <k <p,(y() + Ln=1,2,...}.

Let x,(t) = (X1 (1), ..., xum(2)),t > 0, n = 0,1,..., be a sequence of functions from

Dﬁﬁo), and let y,(¢),t > 0,n =0, 1, ... be a sequence of functions from DE(I)?OO) e

We assume that the following conditions of J-convergence for the functions x,,(¢) are
verified:

Asgt X,(1) = X(f) as n — oo, t € X, where X is a subset of [0, o) that is dense in this
interval and contains the point O;

and
J13: lime_ o lim, o, Ay(X,(),c,T) =0, T > 0.
We also impose the following conditions of J-convergence on the functions y,(?):

Ayt yu(t) = yo(t) asn — oo, t € Y, where Y is a subset of [0, o) that is dense in this
interval and contains the point O;

and
J1a: lim_o lim, 0o Ay (y,(-), ¢, T) =0, T > 0.

Note that the limiting functions x((#),# > 0 and yy(#),# > 0 are not assumed to be
continuous.

Conditions A g and J,; imply J-convergence of the functions x,(¢), t > 0, and con-
ditions A,y and J,, imply J-convergence of the functions y,(7), t > 0. However, these
conditions together do not imply either J-convergence or J-compactness of the vector
functions (y,(?), X,(¢)), t > 0 and their compositions x(y,(?)), t > 0. The corresponding
examples are given in Section 3.1.

The following condition plays a key role in the subsequent consideration:

G,: Yot £ 0) & R[Xo(-)] for 7 € R[yo(")].
The following result is from Silvestrov (1974).

Lemma 3.5.1. Let conditions Asg, 13, Ase, d14o and G, hold. Then

lim lim Ay (%, (ya(-)), ¢, T) =0, T > 0.
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Proof of Lemma 3.5.1. Conditions A,g and J,5 imply that x,,(-),# > 0 R Xo(#),t >0
as € — 0. This shows that the set X in condition A ;g can be enlarged to the set X U X,
where X, = [0, 00) \ R[x(+)] is the set of continuity points for the function x((z), t > 0.
Analogously, conditions A,y and J,, imply that y,(-),# > 0 R yo(#),t > 0ase — 0.
Thus, the set Y in the condition Ay can be extended to the set Y U Y, where Y, =
[0, 00) \ R[yo(:)] is the set of continuity points for the function yy(¢), t > 0. Both sets
Xy and Y, are dense in [0, co), moreover, they coincide with [0, co) except for at most
countable sets.

It is sufficient to show that the compactness relation in Lemma 3.5.1 holds for any
T €Y. In this case, by A,y and d,,, the functions y,(z),7 € [0, T] R yo(t),t € [0, T] as
n — oo. This implies existence of a sequence of continuous one-to-one mappings A,(z),
n > 1 of the interval [0, T'] into itself such that

lim sup (Iy,(6) = Yo ()] + [Mn(2) — 1) = 0. (3.5.1)

=9 1e[0,T]

Since y,(T) — yo(T) as n — oo, there exists 7’ such that max, y,(T) < T’. Ob-
viously, 7’ can be taken from the set Xy. In this case, by G,, the functions x,(¢),t €

[0,T"] i> Xo(?),t € [0, T’] as n — oo. This implies existence of a sequence of continu-
ous one-to-one mappings A, (¢), n > 1 of the interval [0, 7’] into itself such that

lim sup ([x,() = Xo(h, ()] + [M,(1) — 1)) = 0. (3.5.2)

=09 1e[0,77]

By using estimate (1.4.8), given in Lemma 1.4.9, we get

A X (yn()), ¢, T)

< Aj(Xo(h, (), €, T) + ,:’[IS,I}] 1%, (7 (1)) = Xo (A, (v (1)))] (35.3)

< AjXo(h,(a())s ¢, T) + sup [x,(1) = Xo(h (D).

t€[0,T7]

It follows from estimate (3.5.3) and (3.5.2) that, to prove the lemma, it will be suffi-
cient to show that

lim Tim A, (Xo(k, (). € T)

e | (3.5.4)
= lim lim Ay X0, n(h ™ (), ¢, T) = 0.

Relation (3.5.4) will be proved if we apply Lemma 3.4.1 to the composition of cadlag
functions Xo(k;(yn(kn_l(t)))), t € [0,T] and A,(2), t € [0, T]. In order to show that Lemma
3.4.1 can be used, we must show that conditions Us, %20)’ and J, are satisfied in this
case.
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Conditions Uy and fo‘O) obviously hold for the functions A,(¢), t € [0, T]. Condition
d,4 takes in this case the following form:

g%]ngoAJ<xO<x;<yn<xn‘l<->>>),c, T)

_ (3.5.5)
= lim Tim A, (xo(0() + Bu()), . T) = 0,
where
Ba(®) = hy ™ (1)) = o (D).
By (3.5.1) and (3.5.2), we have
Ba = sup Bl < sup N, (uCh” (1)) = yu (' (@)
1€[0,T] t€[0,T]
+ sup [y, (0) = yo(DI < sup [ (1) — 1| (3.5.6)
1€[0.T] 1€[0,7]
+ sup |yn(t) - yOO\'n(t))| — 0asn — oo.
t€[0,T]
Take an arbitrary o > 0 and choose & (see Lemma 1.4.1) such that
A;(xo(+),h, T") < 0. (3.5.7)

Denote by u;, = uzh), k = 1,...r, the points of the interval (0, T') at which absolute
values of the jumps of the function y,(#) are not less than //2 (there is a finite number of
such points).

Since, by condition G,, the function X((#) is continuous at the points yo(u; + 0),
k=1,...r, thereis ' > 0 such that

max sup IXo(yo(ux £ 0) + 5") — Xo(yo(ux = 0) + s”)| < ©. (3.5.8)
<k<rp Is'|Is” |<h
By Lemma 1.4.2, there exists ¢ > 0 such that, if the points #’, " belong to one of
the intervals [ug, u1), [u1, u2), ..., [ty-1,uy,), [y, u,,+1] (here ug = 0, w1 = T) and
|t — 1] < c, then
o) = yo(t")] < h/2. (3.5.9)

Here we can assume that ¢ is chosen such that

max sup |yo(ux —0) = yo(ux — )| < h'/2, (3.5.10)
I<k<ri 0<t<2e
and
max sup [yo(ur) — yo(ux + )l < 1'/2, (3.5.11)

I<ksry g<t<2c

and, moreover,
sup [yo(T) — yo(T — 1)l < h/4, (3.5.12)

0<<2c¢
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and
sup [yo(0) — yo(D| < h/4. (3.5.13)

0<t<L2¢
Let ng be such that, for n > ny,

Bn = sup |Bu()] < min(h/4,h'/4). (3.5.14)

t€[0,T]

To prove the lemma it is sufficient to show that, if n > ny, for any three points ¢, t”,
" e[0,Tl,t—c<t <t<t’ <t+c,wehave

R,[7,1,1"] = min(Xo(s,(2)) — Xo(s,(t")], [Xo(5,(1)) = Xo(5,(t"))| < O, (3.5.15)

where
$a(t) = yo(t) + Bult) = M, u(h~' (1))

The following three cases are possible.
(@)t = 0ort” = T. Consider the case where ¢ = 0 (the case "/ = T is treated
similarly). By using (3.5.12) and (3.5.14), we get

150(0) = $(D)] < 2B, + sup [yo(0) — yo(s)] < h,

0<s<c
and
5,(8) = s, < 2B, +2 sup [yo(0) = yo(s)| < h,

0<s<2c¢

whence, by (3.5.7), we obtain
Rt 1,1"] < Aj(Xo(1), h, T') < ©.

D)t <uy <t<t'ort <t<u <t'forsomek=1,...,r, Inthe first case (the
second one is similar), we get from (3.5.10), (3.5.11), (3.5.13), and (3.5.12) that

|52(£) — Yo(ui)l < sup |yo(ug + 5) — yo(up)l + B < I/,

0<s<c
and

s, (") = yo(u)l < sup |yo(ug + 5) — yo(up)l + B, < I,

0<s<2c
whence, by (3.5.8),
R,[t,1,1"] < [Xo($a(8)) — Xo(s,(t"))] < ©.

© 1, t,t" € (uy, ugy) for some k =0, ..., r,. Then, by (3.5.9) and (3.5.14), we get

|5, (") = 80 (D] < Iyo () = yo(OI + 2B, < h,
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and
5,(t"") = $2 (O] < |yo(t”) = yo(O| + 2B, < h,

whence, from (3.5.7) again,
R,[1,1,1"] < Aj(%0(-),h, T) < ©.
This completes the proof. O

3.5.2. J-convergence of semi-vector compositions of non-random cadlag func-
tions. Note first of all that, as follows from the examples given in Section 3.1, condi-
tions Asg, dy3. Asg, 14 and G, do not guarantee J-convergence of the compositions
X,(v,(1)), t > 0. These conditions do provide J-compactness of these functions but they
do not guarantee pointwise convergence of these functions on some set dense in [0, co)
and containing the point 0. Some additional conditions should be added.

Let us introduce the following conditions:

Cy: There exists a set W such that (a) yo(¢) ¢ R[xo(:)] for t € W, (b) W is a subset of
[0, oo) that is dense in this interval and contains the point 0;

&,: There do not exist points 0 < ' < t”” < oo such that yy(t') = yo(t”") € R[Xo(-)];

and

G%): Yo(w) € R[xo(+)].

Conditions €, €,, and (‘3%) coincide, respectively, with conditions €, €, and (‘féw)

in the case of non-random functions x((#), > 0 and y((t), ¢ > 0, which replace in this
case, respectively, the stochastic processes &(#), t > 0 and v((z), t > 0.

As follows from Lemma 2.7.2, conditions €, and (‘3(1%) are necessary and sufficient
for existence of a set W such that condition €4 holds with this set.

Let W, denote the set of all points for which condition C“,';Vg) holds. Obviously,
W C W, for any set W that can appear in condition €y. Hence, under condition C,
or conditions €, and 8(1%), the set Wy is the interval [0, co) except for at most a countable
set, and 0 € W,,.

Denote by Y the set of points of continuity for the function y((¢), t > 0. This set and
therefore, the set Y U Y is [0, co) except for at most a countable set. Also 0 € Y U ¥,

Denote Z; = (Y U Yy) N W,. If condition €, or conditions €, and C;‘:,) hold, then the
set Zy is [0, co) except for at most a countable set. Also, 0 € Z.

Lemma 3.5.2. Let conditions Asg, d;3, Az, €4, and (‘3(1%) hold. Then

X, (Vn(1)) = Xo(yo(1)) as n — oo, 1 € Z,.
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Proof of Lemma 3.5.2. The proof can be obtained by applying Theorem 2.7.5 to the vec-
tor compositions z,(t) = (X,1(Yu(?)), - . ., Xum(Va(2))), t > 0 of the vector cadlag functions
X,(1) = (X (@), ..., Xu(t)), t > 0, with real-valued components, and the vector cadlag
functions y, () = (y,(?), ... y.(?)), t > 0, with identical components that are non-negative
and nondecreasing functions. Here n~! can play the role of the parameter &.

Conditions A4 and Aj,, obviously imply that condition LA}, holds with the set
V =Y. Condition J,; implies that the condition of J-compactness, J,, holds. Finally,
conditions €, and Cg%) imply that the continuity condition €, holds. In this case, the set
of weak convergence that enters Theorem 2.7.5, S, coincides with set Z,. m]

Now, general conditions for J-convergence of compositions of the cadlag functions
X,(t), t > 0 and y,(¢), t > 0 can be obtained by combining the conditions of Lemmas
3.5.1 and 3.5.2 and by applying Theorem 1.4.9 to these functions. These conditions
were given in Silvestrov (1974).

Lemma 3.5.3. Let conditions Asg, 13, Asg, 14 G2, €5, and (‘35%) hold. Then
X, (D)), 12 0 =5 Xo(yo(1)), 7 2 0 as n — oo.

3.5.3. J-continuity properties of the composition mapping. Lemma 3.5.3 gives
the most general conditions for J-convergence of compositions of cadlag functions for
the case where both limiting functions can be discontinuous. These conditions require
J-convergence of components y,(#),t > 0 and x,(7),t > 0, but they do not require J-
convergence of vector cadlag functions (y,(?), x,(¢)),t > 0. The corresponding example
is given in Subsection 3.1.3. In this sense, Lemma 3.5.3 extends, with respect to the
composition mapping, setting of the definition of a J-continuous mapping.

However, there are particular cases, where the composition mapping is J-continuous.

The first case is where (a) both limiting functions y((t), # > 0 and x((t), ¢ > 0 are con-
tinuous. This case was considered by Billingsley (1968). Here, conditions of Lemma
3.5.3 are reduced to the conditions of Theorem 3.2.1 applied to semi-vector composi-
tions of non-random cadlag functions. Conditions G,, €., and 62‘2 automatically hold.
Condition d, is reduced to condition U,. Condition J,, also holds, due to Lemma 3.2.1.

The second case is where (b) the limiting external function x((¢),# > 0 is contin-
uous. This case was considered by Whitt (1973, 1980) and Silvestrov (1974). Here,
conditions of Lemma 3.5.3 are reduced to the conditions of Theorem 3.3.2 applied to
semi-vector compositions of non-random cadlag functions. Again, conditions G,, &,
and 8(1%) automatically hold, and condition {5 reduces to condition U,.

The third case is where (c) the limiting internal stopping function y (), t > 0 is con-
tinuous. This case was considered by Silvestrov (1972b, 1972e, 1973a, 1974). Here,
conditions of Lemma 3.5.3 are reduced to the conditions of Theorem 3.4.2 applied to
semi-vector compositions of non-random cadlag functions. Condition G, automatically
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holds. Condition d,, also holds, due to Lemma 3.2.1. Conditions €, and (‘3(1%) remain.
As show the example given in Subsection 3.1.2, if condition €, does not hold, then
compositions may not converge pointwise on some interval. In the sequel, they do not
J-converge. Condition €, holds, for example, if the limiting internal stopping function
yo(t),t > 0 is not only continuous but also strictly monotone. This case was indepen-
dently considered by Whitt (1973, 1980).

3.5.4. The finite interval [0, T']. The result of Lemmas 3.5.1 and 3.5.3 can be easily
reduced to the case of a finite interval [0, T'].

Conditions Azg and ;3 do not need any change, but condition A5, and J,4 have to
be reduced to the following form:

Ayt yu(®) = yo(t) asn — oo, t € Y, where Y is a subset of [0, 7] that is dense in this
interval and contains the points 0 and T’

and
315: 1imc—>0 En—mo AJ(Yn(')» c, T) =0.

Let R7[y(-)] = R[y(-)] N [0, T'] denote the set of points of discontinuity for the cadlag
function y(#), + > 0 in the interval [0,7]. Condition G, must be transformed to the

following form:

S3t yo(t £ 0) ¢ R[Xo(-)] for 7 € Ry[yo(-)].
Let us first formulate a statement that is an analogue of Lemma 3.5.1.

Lemma 3.5.4. Let conditions Asg, 13, Ayy d1s and G5 hold. Then
lim lim A (x,(7,(-)). ¢, T) = 0.

Proof of Lemma 3.5.4. The case of a finite interval [0, 7] can be reduced to the case of
the semi-infinite interval [0, co) by applying Lemma 3.5.1 to the functions x,(#), t > 0
and y,(#) = y,(t ANT), t > 0. Conditions A;g and g, are not changed. It is obvious
that conditions Ay, d;5, and G; imply that conditions Ay, J44, and G, hold for the
functions x,(7), t > 0 and y,(¢), ¢t > 0. By applying Lemma 3.5.1, we get a relation of
J-compactness for the functions x,(y,(¢)), t > 0, for all intervals [0, 7’]. For 7" > T, this
relation coincides with the relation given in Lemma 3.5.4. O

An analogous reduction to the case of a finite interval can be made in Lemma 3.5.2.
In this case, we should add to A, the assumption of convergence of the values
ya(T — 0), that is, to replace A, by the following condition:

Ay: (@) yu(t) = yo(t) asn — oo for t € Y, where Y is a subset of [0, T'] that is dense
in this interval and contains the points 0 and T
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(b) y.(T —0) = yo(T —0) as n — oo.
Also conditions €y and €, should be modified in the following way:

C,;: There exists a set W such that (a) yo(t) ¢ R[xo(-)] for t € W, (b) W is a subset of
[0, T'] that is dense in this interval and contains the points 0 and T

and
Eg: There do not exist points 0 < #' < ¢ < T such that yo(¢') = yo(t”") € R[Xo(-)].
Let us modify condition (‘3(1‘(';) in the following way:
€ yo(w  0) ¢ RXo(")].

Note that 6’%” coincides with C%).

Denote by Wy(T') = Wy N [0, T'] the set of all points w € [0, T'] that satisfy condition
ew.

It follows from Lemma 2.7.2 that conditions &g, (‘35%), and (‘Zg) are necessary and
sufficient for condition €y, to hold. Actually, it follows from Lemma 2.7.2 that, under
condition €;; or conditions &g, (‘3(1%), and C(lTo), the set W, which appears in €, is the
interval [0, T'] except for at most a countable set. Since W C W (T), the set W,(T) is also
the interval [0, T'] except for at most a countable set.

Let Yo(T) = Yo N [0, T]. This set and the set Y U Y, (T) are [0, T'] except for at most
countable sets. Finally, denote Z, = (Y U Yo(T")) N Wy(T). If condition €,, or conditions
&, CY and C(ITO) hold, then the set Z, coincides with [0, 7] except for at most a countable

10°
set. Also, 0, T € Z,.

Lemma 3.5.5. Let conditions Asg, 313 Ay Eg C

®. and ) hold. Then

Xn(Yn(2)) = Xo(yo(1)) as n — oo, 1 € Z.
If, additionally, condition Gg_) holds, then also X,(y,(T —0)) — Xo(yo(T —0)) as n — oo.

Proof of Lemma 3.5.5. To prove the first statement, i.e., to prove that x,,(y,(?)) converges
to Xo(yo(#)) in points t € Z, it is enough to apply Lemma 3.5.2 to the functions x,(?),
t >0,and y,(t AT), t > 0. Condition .A,; implies A,,. Conditions €4 and (‘fg) imply
condition &,.

It should be noted that the proof of Lemma 3.5.2 given above is based on applying
Theorem 2.7.5. This theorem, in its turn, is based on Theorem 2.3.3.

To prove the second statement of the lemma, i.e., that x,(y,(T — 0)) converges to
X0(yo(T —0)) as n — oo, we can apply Theorem 2.3.3 directly to the non-random func-
tions x,,(7), t > 0 and the vector stopping points X,,(7 —0) = (yo(T —0), ... yo(T —0)) with
identical m components. Conditions A;g and A, (b) imply condition .A,,. Condition
J,; implies condition J,. Condition €], implies condition €,. o
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Lemma 3.5.6. Let conditions Asg, 13, Aur, d1s» 93, Es (‘3(1%), and (‘Z(ITO) hold. Then

X, (D), € [0, T] =55 x0(yo(8)), € [0, T] as n — oo

Proof of Lemma 3.5.6. The proof can be obtained by combining the conditions of Lem-
mas 3.5.4 and 3.5.5, and applying Theorem 1.4.4 to the functions x,,(y,(?)), t € [0,T].
What remains to be explained is why condition Gg_) is omitted in Lemma 3.5.6. As a
matter of fact, conditions G5 and C;To) imply this condition. Indeed, if yo(7T" — 0) = yo(T),
then condition (‘3?0_) coincides with G;To). If yo(T — 0) # yo(T), then condition G5 implies

(T-)
Cl - O

Remark 3.5.1. If the point T is a point of continuity for the limiting function X (y((?)),
condition A, can be replaced in Lemma 3.5.6 by condition A, i.e., condition A, (b)
V(T = 0) = yo(T — 0) as n — oo can be omitted.

3.6 Semi-vector compositions of cadlag processes

In this section, we formulate conditions for J-convergence of general semi-vector com-
positions of cadlag processes. We consider a model where both limiting external and
internal stopping processes can be discontinuous.

3.6.1. J-compactness of semi-vector compositions of cadlag processes. Let, for
every € > 0, E.(t) = (E.(),i = 1,...,m), t > 0 be an m-dimensional cadlag process with
real-valued components, and v,(f), t > 0 be a non-negative and non-decreasing cadlag
process. Consider their semi-vector composition T,(t) = &.(v(t)), t > 0, which, in this
case, is also an m-dimensional cadlag process.

A basis for further considerations is the condition of joint weak convergence A,
and the conditions of J-compactness J, and J;.

Conditions A, and g, imply J-convergence of the processes E,(r), t > 0, while
conditions A, and J,, imply J-convergence of the processes v,(¢), t > 0. However, the
examples given in Section 3.1 show that, together, conditions A, d4, and J,; do not
imply either J-convergence or J-compactness for the vector processes (v¢(?), E.(?)), t > 0
and their compositions C,(¢), ¢ > 0.

We first give general conditions that would yield J-compactness of compositions.
These conditions can be combined with various conditions that imply weak convergence
of compositions, in order to get conditions for J-convergence. For this reason, we for-
mulate J-compactness conditions separately.

Let us formulate a condition that is, actually, a stochastic analogue of condition§,,

G4t Pivo(r £0) & R[Ey(-)] for t € R[vo(1)]} = 1.

The first main result is the following theorem from Silvestrov (1974).
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Theorem 3.6.1. Let conditions Asg, d4 J41, and G4 hold. Then
1in3ﬁg P{AS(C.(), e, T) > 8} =0, 8,T > 0.

Proof of Theorem 3.6.1. We are going to reduce the proof to the case of non-random
cadlag functions using Skorokhod’s representation Theorem 1.6.16 and then Lemma
3.5.1.

Unfortunately, Theorem 1.6.16 can not be directly applied either to the vector pro-
cesses (Ve(1), &, (1)), t > 0, or to their compositions §,(7), ¢+ > 0. Indeed, as it was re-
marked above, conditions A, dy4, d11, and G4 do not necessarily imply J-convergence
of these processes. So, this approach must be carried out in a more delicate modified
way. The result can be achieved by applying first Theorem 1.6.14 to the vector pro-
cesses (Ve(1), E.(1)), t > 0, and then Theorem 1.6.16 to the processes &.(¢), t > 0 and v(?),
t>0.

Note, first of all, that conditions A, dy4, and J4; allow to enlarge the sets of weak
convergence, U and V, in condition A to the sets U’ = U U Uy and V' = V U V.. Here
U, and V), are sets of stochastic continuity of the processes §,(z), t > 0 and vy(?), t > 0,
respectively. Both sets U’ and V' equal [0, co) except for at most countable sets. Also,
both sets, U” and V’, contain the point 0. This implies that the set S’ = U’ N V' is also
[0, 00) except for at most a countable set, and 0 € S’. Also, the following relation holds:

(Ve(1), E.(1), 1 € S" = (vo(1),Ey(1)),t € S" as e — 0. (3.6.1)

Choose a countable set S C S’ such that S is dense in [0, c0) and contains the point 0.
Relation (3.6.1) permits to apply Theorem 1.6.14 and construct some probability space
(Q, &, P) and an a.s. cadlag processes (V,(1), %g(t)), t > 0, defined on this space for every
€ > 0 and such that

Fe(), E(0), 12 0 = (ve(0), £, (1)), 1 2 0, (3.6.2)

and, for an arbitrary sequence 0 < ¢, — 0asn — oo,
(¥, (0, &, (1) = ([W(1),Eo(D) asn — oo, 1€ 5. (3.6.3)

Let €, be an arbitrary sequence such 0 < ¢, — 0asn — oo.

Relations (3.6.1), (3.6.2), (3.6.3) and condition J, allow to apply Theorem 1.6.16 to
the processes &.(¢), t > 0, and %E(t), t>0.

Therefore, there exists a subsequence ¢, = g, — 0 as k — oo of the sequence g,
such that P(A) = 1, where A € ¥ is the set of elementary events m such that

B, (. 0).1 20 5 &yt 0), 1> 0as k — oo, (3.6.4)

Due to relations (3.6.1), (3.6.2), (3.6.3) and condition J,, we can apply Theorem
1.6.16 to the processes v¢(t), t > 0 and V¢(¢), t > 0.
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Therefore, there exists a subsequence ¢ = &_— 0 as r — oo of the sequence €
such that P(B) = 1, where B € § is the set of elementary events m such that

Vo (£, ), 1> 0 =5 V(t, ), 1> 0 as r — oo. (3.6.5)

Using relation (3.6.2) we see that condition G, also implies that P(C) = 1, where
C € § is the set of elementary events w for which

o(t + 0, w) & R[Ey(-, w)] for t € R[¥o(-, w)]. (3.6.6)

Obviously, P(A N BN C) = 1 and, for ® € AN BN C, conditions Asg, dy3, Asg, 14
and G, in Lemma 3.5.1 hold for sequences of the cadlag functions ggg(t, ), t > 0 and
Ver(t,w), t > 0. By applying Lemma 3.5.1 to their compositions, Gy (1) = &, (Ve (1)),
t >0, we get that, forome ANBNC,

1in3ﬁ A€ (w),e,T) =0, T > 0. (3.6.7)
Relation (3.6.7) implies that

hm lim P A,@ #(),¢,T)206}=0,0,T >0. (3.6.8)

In the case of the usual limits, this implication is obvious, since a.s. convergence

of random variables implies their convergence in probability. In the case of iterated
limits, the same implication takes place. The relation (3.6.7) means that the random

variables A, = lim,_,. A J(ig;,(-), ¢, T) 5 0asc — 0. Therefore, these random vari-
ables also converge in probability, and so (a) lim._,o P{A, > 8} = O for all & > 0. Set
A., = max;s, A J(?;Eg,(-), ¢, T). The sequence of random variables A.,, r = 1,2, ... is non-

increasing in r and A, =% A, as r — co. Hence, lim, P{A., > &} = P{A, > d&}.
But P{A., > 0} > max;, P A,(@ (*),c,T) > 08} and, therefore, (b) P{A, > &} >

lim, .o maxys, P{A(E, 2(),¢,T) 2 6} = lim,_,. P{AS(&, »(:),c,T) > 8}. Obviously, (a)
and (b) imply (3.6.8).

Since the subsequence €/’ was selected from an arbitrarily chosen sequence 0 < ¢, —
oo, relation (3.6.8) implies that

11%@ P{A;(C.(), e, T)>8} =0, §,T > 0. (3.6.9)

Again, this implication is obvious in the case of the usual limits. In the case of iter-
ated limits, the same implication takes place. Assume that (3.6.9) does not hold. This
means that there exist 8, 7,y > 0 such that (¢) lim,_, 11m8_>0 P{A j(§ ().¢,T) > o} > v.
Choose an arbitrary sequence 0 < ¢, — 0 as n — oco. Note that P{A J(C (),c,T) > 8} is
a non-decreasing function in ¢ > 0. Hence, (c) implies that (d) there exists a sequence
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0 <&, = 0asn — oo such that P{A;(§, (-),c,, T) > 8} > v/2. By (3.6.4) - (3.6.8),
(e) there exists a subsequence ¢, = €’ — 0 asr — oo such that (3.6.8) holds. Ob-
viously, (e) implies that (f) there exists ¢ = ¢&(y) such that lim,_,., P{A J(ﬁgu(-), ¢, T) >
0} < v/8. As a consequence, (f) implies that (g) there exists ¥ = ?(yr) such that
max,; P{Aj(isy(-),é, T) > 8} < y/4. Butc, — 0asn — oo and, therefore, (h) there
exists r > 7 such that ¢,, < ¢. Obviously, (h) implies that (i) y/4 > P{A j(isy(-), ¢, T)>
0} > P{A J(isnr(-), ¢n,» T) > 0}. But (i) contradicts (d). Therefore, relation (3.6.9) does
hold.

The relation (3.6.9) implies the relation stated in the theorem, since, due to (3.6.2),

A, T) S AE() e ). O

3.6.2. J-convergence of semi-vector compositions of cadlag processes. In order
to obtain general conditions for J-convergence, one can combine the conditions of J-
compactness formulated above in Theorem 3.6.1 and the conditions of weak convergence
for compositions of cadlag processes formulated in Theorem 2.7.5.

The second main result in this section is the following theorem from Silvestrov
(1974).

Theorem 3.6.2. Let conditions A, 4 J11, 94 E¢ and (‘Ig)) hold. Then

(0,120 -5 Ty(r), 12 0ase — 0.

Proof of Theorem 3.6.2. Conditions Asq, d4, dy;, and G, are conditions of Theorem
3.6.1. This theorem implies J-compactness of the processes .(¢), ¢ > 0 on any finite
interval.

Conditions Az, d4, €4, and Gg)) imply that conditions of Theorem 2.7.5 hold for the
external processes &,(¢), t > 0 and the internal stopping processes v¢(t) = (V¢(?), ..., Ve(1)),
t > 0, with m identical components. In particular, condition A ;¢ implies that condition
A, holds for the set V in A,,. Condition J, is required in both Theorems 3.6.2 and
2.7.5. Also, condition €4 implies, in this case, that condition €, holds. By applying
Theorem 2.7.5, we prove that the processes C,(¢) weakly converge to Cy(¢) as € — 0 on
the set S ¢ defined in this theorem. This set is dense in [0, c0). Due to condition G’g’) , the
point O can also be included in the set S.

To complete the proof, it remains to refer to Theorem 1.6.6 which gives conditions
for J-convergence of cadlag processes defined on the interval [0, co). O

3.6.3. Skorokhod’s method of a single probability space. The proof of Theorem
3.6.2 can also be accomplished with the use of the modified method of a single proba-
bility space. One only needs to continue the proof of Theorem 3.6.1.

Due to relation (3.6.2), condition €, implies that P(D) = 1, where D € § is a set
of elementary events w for which there do not exist points 0 < t* < ¢/ < T such that
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Vo(t', ) = vo(t”’, m) € R[Ey(-,w)]. Also, due to relation (3.6.2), condition 8(1%) implies
that P(E) = 1, where E € § is a set of elementary events w for which v((0, w) ¢
R[E)(-, w)].

Obviously, P(ANBNCNDNE) = 1 and, for ® € ANBNCNDNE, conditions Asg, J13,
Asg, d14» G2, €5, and Gg%) of Lemma 3.5.3 hold for the sequences of cadlag functions
ésy(l‘, ), t > 0, and V.~ (¢, w), t > 0. By applying Lemma 3.5.3 to their compositions
ig;, (1) = ésg (Ver (1), t > 0, we get, foro € AN BN CnN DN E, the following relation:

s J = . .
Cer(t, ), 1 > 0 — Go(t,m),1 > 0 as r — oco. In terms of the metrics d;, the last relation
means that d j(Csy(-, ), &y(+, )) — 0. Since the initial sequence €, was arbitrary, this

= = P
relation means that the random variables d;(C.(-), 5y(1)) — 0 as € — 0. As it was
pointed out in Lemma 1.3.1, convergence in probability implies weak convergence. So,
we get that the processes G, = {C.(¢),¢ > 0}, considered as random variables that take

: : . : = d :
values in the space DEZ’;) with the metric d;, weakly converge. Since §, = C,, this
completes the proof.

Let us compare the method described above and the “combined” method used in the
proof of Theorem 3.6.2 given in Subsection 3.6.2. That method combines a modified
version of the method of a single probability space, used to prove J-compactness of the
corresponding cadlag processes, with the general conditions of weak convergence given
Theorem 2.7.5 and based on the continuity condition €.

We think that the separation of the proof of J-compactness and the proof of weak
convergence of compositions of cadlag processes on a set dense in [0, c0) is a signif-
icant advantage of the combined method. One can combine conditions that imply J-
compactness with various conditions that yield weak convergence, in particular, with
conditions based on continuity conditions weaker than the second-type continuity con-
dition E. For example, the conditions of J-compactness, formulated above in Theorem
3.6.1, can be combined with the conditions for weak convergence formulated in Theo-
rem 2.7.9 that are more general than conditions given in Theorem 2.7.5 (see Theorem
3.6.4 in Subsection 3.6.6). In this case the ’pure” method of a single probability space,
described above, can not be applied. Other examples are given in Chapter 4 of this book
and in Silvestrov (1974).

The proof of Theorem 3.6.2, based on the modified method of a single probability
space, was given in Silvestrov (1974). Some advantage of this approach is connected
with a possibility to carry it over to some other topologies of convergence. For example,
Anisimov (1977, 1988) gave a sketch of such an application to the topologies M, J,
and some others. In the case of the J-topology, the results replicated Theorem 3.6.2
but in a weaker form. In particular, the continuity condition €, has been used in an
”awkward” form, 8'2 (see Subsection 2.6.3), together with an additional condition of
stochastic boundedness of internal stopping processes.

Theorems 3.6.2 and 3.6.4 give the most general conditions for J-convergence of
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compositions of cadlag processes for the case (d) where both limiting processes can
be discontinuous. These conditions require “separate” J-convergence of components
Ve(?),t > 0 and E,(¢),7 > 0, but they do not require J-convergence of vector cadlag pro-
cesses (Ve(1), E.(7)), t > 0. The corresponding example is given in Subsection 3.1.3. In
this sense, Theorems 3.6.2 and 3.6.4 extend, with respect to the composition mapping,
setting of the continuous mapping theorem.

However, there are particular cases, where the continuous mapping theorem can be
applied. These are the cases where at least one component of the limiting composi-
tion is a.s. continuous. Here, the conditions of joint weak convergence, A, and J-
compactness, J, and J,,, do imply J-convergence of the vector processes (v¢(?), E, (1)), >
0. This makes it possible to reduce the consideration to the case of non-random cadlag
functions using the continuous mapping theorem. It should be noted that the use of this
theorem should be anticipated by the proof of J-continuity of the composition mapping
in every particular case.

We prefer, however, to use, in these cases, the most simple “direct” method com-
bining results on weak convergence of compositions with the direct check of the cor-
responding J-compactness conditions. The main advantage of this method is the same
as for the combined method described above. It is connected with the separation of
conditions of weak convergence and conditions of J-compactness. Another advantage
of this method is that it provides an additional information about the structure of the
corresponding sets of weak convergence.

Let us compare results that can be obtained with the use of Theorem 3.6.2 in the
situations where at least one component of of the limiting composition is a.s. continuous.

There are two simplest cases where all methods give similar results.

The first case is where (a) both limiting processes vo(z),r > 0 and §,(¢),r > 0 are
a.s. continuous. This case was treated by Billingsley (1968) with the use of the contin-
uous mapping theorem. Theorem 3.2.1, proved in Section 3.2 with the use of the direct
method, yields a similar result for vector compositions of cadlag processes. The con-
ditions of Theorem 3.6.2 are reduced, in this case, to the conditions of Theorem 3.2.1
applied to semi-vector compositions of cadlag processes. Conditions G4, €, and Gg))
automatically hold. Condition J, are reduced to condition U,. Condition d,; also holds,
due to Lemma 3.2.1.

The second case is where (b) the limiting external process (), # > 0 is a.s. contin-
uous. This case was considered by Whitt (1973, 1980) with the use of the continuous
mapping theorem and by Silvestrov (1974) with the use of the direct method. Theo-
rem 3.3.2 proved, in Section 3.3, with the use of direct method gives a similar result for
vector compositions of cadlag processes. In this case, the conditions of Theorem 3.6.2
are reduced to the conditions of Theorem 3.3.2 applied to semi-vector compositions of
cadlag processes. Conditions G, &, and (‘fg)) automatically hold, and condition J, is
reduced to condition U,.

A situation is more interesting in the case where (c¢) the limiting internal stopping
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processes vy(t),t > 0 is a.s. continuous. This case was considered by Silvestrov (1972b,
1972e, 1973a, 1974) with the use of the direct method. Here, conditions of Theorem
3.3.2 are reduced to the conditions of Theorem 3.4.2. Condition G, automatically holds.
Condition J,; also holds, due to Lemma 3.2.1. Conditions €4 and C;o) remain. As the
example given in Subsection 3.1.2 shows, if condition €, does not hold, then composi-
tions may not weakly converge on some interval. In the sequel, they do not J-converge.
Condition &, holds, for example, if the limiting internal stopping process v((#), ¢ > 0 is
not only continuous but also strictly monotone. This case was independently considered
by Whitt (1973, 1980) with the use of the continuous mapping theorem.

However, the direct method used in Section 3.4 and the combined method used in
Subsection 3.6.2., also yield more general results that are not covered by the continuous
mapping theorem. These are Theorems 3.4.3 and 3.6.4 based on the weakened second-
type continuity condition F.

3.6.4. The set of weak convergence. Let V|, be the set of points of stochastic con-
tinuity of the limiting stopping process vo(#), t > 0, and Vj = V, \ {0}. This set is the
interval [0, c0), except for at most a countable set.

Let also W, be the set of all points for which condition (‘Zgw) holds. Conditions &

and C;o) imply that set W is the interval [0, o), except for at most a countable set, and
also that 0 € W,,.

According to Theorem 2.7.5, the set of weak convergence, used in the proof of The-
orem 3.6.2,18 §¢ = (V U V) N W,. This set also is the interval [0, c0), except for at most
a countable set. Also, 0 € Sy.

However, the set S can be enlarged in the following way. Let Z; be the set of points
of stochastic continuity for the limiting composition g,(¢), ¢ > 0. The processes C,(?),
t > 0 J-converge and, therefore, by Lemma 1.6.5, the set S can be enlarged to the set
So U Zy. Finally, we get that, under the conditions of Theorem 3.6.2,

CE(Z‘),IES()UZ():>;0(t),t€SOUZ() ase — 0. (3.6.10)

3.6.5. The continuity conditions £ and G,. Let us consider moments of jumps of
the process (1), 1 > 0, namely Ty, = inf(s > Ty, [Eo(s) — Eo(s — 0)| € [£, =), k,n =
1,2,..., where 1o, = 0. By the definition, 14, are successive moments of jumps with
absolute values in the interval [%, anl) for k < w, + 1 and 14, = oo for k > u, + 1, where
W, = max(k > 0: 14, < o0) is the total number of such jumps in the interval [0, co).

Similar notations can be introduced for moments of jumps of the process v(), t > 0,
namely, K, = inf(s > K1, [Vo(s) — vo(s — 0)| € [%, n%l)), k,n=1,2,..., where kg, = 0.
By the definition, ¥y, are successive moments of such jumps with absolute values in the
the interval [%, nll) for k < A, + 1 and xy, = oo for k > A, + 1, where A, = max(k > O:
Kin < 00) 1s the total number of such jumps in the interval [0, c0).

Condition €4 can be reformulated in the following equivalent form (see, also Sub-

section 2.6.3):
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8;: P{vo(#) =vo(t") =14} =0for0 <t <t" <ooandr,[=1,2,...
Condition G, is equivalent to the following:
Gyt Pivo(ie £0) = 1,0} = O for k,m,r,1=1,2,....

Note that the random variables v((ky, + 0) can take values in the interval [0, co],
since the random variables ¥y, can take the value +co. In this case, by the definition,
Vo(+00 + 0) = lim,_,, vo(2).

Let us recall that condition Q. This condition means that the process §(#), r > 0 can
be decomposed in a sum of two processes & (1) = & (r) + &, (1), t > 0, where &,(¢), 1 > 0
is a continuous process, and &;(¢), t > 0 is a stochastically continuous cadlag process
independent of the process vy(¢), t > 0.

As follows from Lemma 2.7.1, condition Q, implies that condition €4 holds. Since
Lemma 2.7.1 was given without a proof in Subsection 2.7.2, let us give it here.

Lemma 3.6.1. Let condition Q, hold. Then condition € also holds.

Proof of Lemma 3.6.1. If condition Q, holds, then every random variable t,; is a moment
of jump of the process §(¢) if and only if it is a corresponding moment of jump of the
second component &, (r). This is so, since the first component &,(¢) is a continuous
process. Therefore, the process vy(¢), t > 0 and the random variable t,; are independent.
Since the process & (¢), 7 > 0 is stochastically continuous, the random variables t,; have
continuous distribution functions. This implies that condition € ; holds. Note that, in this
case, form of the distribution of random vector (vy(#'), vo(#"')) does not play any role. O

Let us also formulate a similar statement concerning condition G,.
Lemma 3.6.2. Let condition Q, hold. Then condition G, also holds.

Proof of Lemma 3.6.2. As was shown in the proof of Lemma 3.6.1, every random vari-
able t,; is a moment of jump of the second component & (7). Therefore, the process vo(?),
t > 0, and the random variable t,; are independent. Consequently, the random variables
Vo(Ki, = 0) and t,; are independent. It was also shown in the proof of Lemma 3.6.1 that
the random variables t,; have continuous distribution functions. Hence, condition G,
holds. In this case, form of the distribution functions of random variables vy(xy, + 0) do
not play any role. O

If the process &;(f), ¢ > 0 is not stochastically continuous, then the distribution
functions of the random variables t,; can possess discontinuity points.

In this case, in order to prove that condition € holds, it is enough to require that the
distribution functions of the random variables v(#) and t,; have not common points of
discontinuity forany r > Oand r,/ = 1,2, . ...
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Analogously, to make the condition G, hold, it will suffice to require that the distri-
bution functions of the random variables v (i, + 0) and t,; have not common points of
discontinuity for any k,n,r,/=1,2,....

Also, condition Q, implies condition (‘Zgw) for any w > 0. This follows from Lemma
2.2.3.

Using the remarks made above and Lemmas 3.6.1 and 3.6.2, we can formulate the
following theorem from Silvestrov (1974), which is a direct corollary of Theorem 3.6.2.
This theorem is used in a significant number of applications.

Theorem 3.6.3. Let conditions Asg, 4 d11, Qq hold. Then
Cult) 12 0 -5 Ty(0),1 2 Oas e — 0.

3.6.6. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.6.2, in which the continuity conditions €4 and C;o) are weakened and

replaced with conditions F, and D;o) :

Theorem 3.6.4. Let conditions A, dg 11, G40 Fyo and fD(70) hold. Then

C(0), 1> 0 -5 Co(r), 1> 0ase — 0.

Proof of Theorem 3.6.4. Conditions Asq, d4, dq;, and G, are conditions of Theorem
3.6.1. Using this theorem we prove J-compactness of the processes C.(7), + > 0, on
any finite interval.

Conditions A, d4, Fy, and D(70) imply that the conditions of Theorem 2.7.9 hold
for the external processes &,(¢), t > 0, and the internal stopping processes V() = (v(?),
..., Ve(1), t > 0, with m identical components. In particular, condition A ;¢ implies that
condition A3, holds for set V in A,. Condition J, is required for both Theorems 3.6.4
and 2.7.9. Also, condition F, implies condition F;. Applying Theorem 2.7.9 we prove
that the processes C.(f) weakly converge to Cy(7) as € — 0 on the set S defined in this
theorem. This set is dense in [0, c0). Due to condition fD;O), the point O can also be
included in set S .

To complete the proof we use Theorem 1.6.6 that gives conditions for J-convergence
of cadlag processes defined on interval [0, co). O

Remark 3.6.1. Note that, in the case where the limiting stopping process vo(?),t > 0 is
a.s. continuous, conditions J,, and G, automatically hold. In this case, Theorem 3.6.4
becomes Theorem 3.4.3.

3.6.7. The time interval [0, T]. In this case, we consider the semi-vector com-
position §,(r) = (Eei(ve(?)),i = 1,...,m), t € [0,T] of a vector cadlag process &,(f) =
(Eei(D),i =1,...,m), t > 0, with real-valued components, and a scalar non-negative and
non-decreasing cadlag process v.(t), t € [0, T].



212 Chapter 3. J-convergence of compositions of stochastic processes

We can always continue the internal stopping process to the interval [0, o) by the
following formula:

Ve(t) = {VE(I) osr<T. (3.6.11)

ve(T) ift>T.
Formula (3.6.11) implies that

_|B(ve(r) ifO<t<T,
E(ve(D) = {gg wUTY) ift>T. (3.6.12)

The processes v¢(¢) and &,(v,(7)) take, respectively, the values v.(T) and &,(v(T)) for
t > T. This fact should be taken into account when modifying the conditions.
Condition A, takes, in this case, the following form:

Ay (Ve(5), Ee(1)), (5,1) € VX U = (vo(5), E(2)), (s,1) € VX U as ¢ — 0, where (a) U
is a subset of [0, co) that is dense in this interval and contains the point 0, (b) V is
a subset of [0, 7] that is dense in this interval and contains the points O and 7'.

Condition J, does not require any changes, whereas condition J; takes the following
form:

316 lime_o lime_o P{A;(ve(-), ¢, T) > 8} = 0, & > 0.

Denote by Rr[vo(-)] the random set of points of discontinuity of the process vy(?), f €
[0,T1].
Condition G, takes the following form:

Ss: Pivo(r £0) & R[Ey(-)] for 7 € Rr[vo()]} = 1.
The following theorem is an analogue of Theorem 3.6.1.

Theorem 3.6.5. Let conditions Ay,, d4 J16 and Gs hold. Then
limlim P{A;(§.(). ¢, T) > 8} = 0, &> 0.

Proof of Theorem 3.6.5. 1t is sufficient to apply Theorem 3.6.1 to the semi-vector com-
position of the processes &.(¢), t > 0 and v,(), t > 0, where the latter process is defined
in (3.6.11). Condition A, implies condition A, condition J,, implies J;, and, finally,
condition G5 implies G,. ]

We also use the following modification of condition A, in which the random vari-
ables v (T — 0) are additionally included in the relation of weak convergence:
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Az (Ve(8), ve(T = 0),E8.(1), (s,1) € VXU = (vo(s), (1)), (s5,1) € VX Uase — 0,
where (a) U is a subset of [0, co) that is dense in this interval and contains the point
0, (b) V is a subset of [0, T'] that is dense in this interval and contains the points 0
and 7.

Condition & takes, in this case, the following form:
Ey: Pivo(t') =vo(t") e RIE,()]} =0forO <t <t <T.

Condition G;w) does not require any changes. However, we also use the following
modification of this condition:

€™ Plvg(w = 0) € RIE()]} = 0.
The following theorem is an analogue of Theorem 3.6.2.

Theorem 3.6.6. Let conditions Ays, d4 J16. G5 Eo, C“,'g)), and G;T) hold. Then

L.t € [0, T] =5 &o(n). 1 € [0, T] as & — 0.

Proof of Theorem 3.6.6. The proof can be obtained by applying Theorem 3.6.2 to the
semi-vector composition of the processes &.(¢), t > 0 and v(¢), t > 0, where the latter
process is defined in (3.6.11). Condition A ,; implies A4, condition g, implies J;, and
condition G implies G,. Also, conditions €, and (‘féT) imply &€,. Conditions J, and Cg))
are required in both Theorems 3.6.6 and 3.6.2. By applying Theorem 3.6.2 we prove that
the processes L, (1), > 0 R Co(@®),t=0ase— 0.

However, J-convergence of the processes C.(¢) on the interval [0, o0) does not au-
tomatically imply J-convergence of these processes on the interval [0, T]. In order for
the processes C,(¢) to be J-convergent on the interval [0, T'], the random variables C.(T")
must be included in the relation of weak convergence for these processes on the set
So(T) =S¢ N[0, T]. Note that this set is dense in [0, '] and contains the point 0. More-
over, as follows from Theorem 1.6.3, if the point T is not a point of stochastic continuity
of the limiting process §,(#), then the random variables (7 — 0) must also be included
in the corresponding relation of weak convergence.

The random variables C.(7") can be included due to condition G;T). Also, conditions
G5 and C;T) imply that G;T') holds. Indeed, let A7 denote the set of elementary events in
condition G4 that has, according this condition, probability 1. Then we have

P{vo(T - 0) € R[E,()]}
= P{vo(T = 0) € R[Ey(-)], vo(T — 0) = vo(T)}
+ P{vo(T - 0) € R[Ey()], vo(T — 0) # vo(T)}
= P{vo(T) € RIE()], vo(T = 0) = vo(T)}
+ P{vo(T — 0) € R[Ey()]. T € R[vo(-)]}
< P{vo(T) € R[E)()]} + P(A7) = 0.

(3.6.13)
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Since condition (‘féT') holds, the random variable C.(7 — 0) can also be included in
the relation of weak convergence of the processes (7).

Reference to Theorem 1.6.3, which gives conditions for J-convergence of cadlag
processes defined on the interval [0, T'], completes the proof. m]

Condition A,; can be simplified if the point 7" is a point of continuity of the limiting
function §,(vo(?)), i.e., the following condition holds:

O: P{EN(vo(T = 0) = &y(vo(T))} = 1.

In this case, A,; can be replaced, in Theorem 3.6.6, with condition A,;,.

Let us also give a description of the corresponding set of weak convergence. It
follows from (3.6.10) that, in the case under consideration, the set of weak convergence
s §¢ U Zy, where Sy = (VU V) N W,.

Here V is the set of weak convergence that appears in condition A;, V' = Vo \{0, T'},
Vo is a set of points of stochastic continuity for the process Cy(?), ¢ € [0, T]. Also, Wy is
a set of all points in the interval [0, T'] that satisfy condition C(W), and, finally, Z, is a set
of all points of stochastic continuity for the limiting composition Cy(¢),z € [0,T]. The
set S U Z is the interval [0, 7] except for at most a countable set. Also, the points 0 an
T belong to this set.

3.6.8. Non-monotone internal processes. In the case where the external processes
are not asymptotically continuous, the assumption of monotonicity of the internal stop-
ping processes plays an essential role.

Our conjecture is that the results formulated in Theorems 3.6.1 and 3.6.2 can be
generalised to a model in which the internal stopping processes are piecewise monotone.
This means that there exist random moments 0 = G, < G¢; < ..., and a set of elementary
events, A, with P(A;) = 1 such that for every o € A, (a) Gu(w) — o0 as k — oo,
(b) the trajectory v¢(t,w),t > 0 is a monotone function in every non-empty subinterval
[gsk(w), Sek+1 ((D))

Two conditions should be included in the conditions of Theorems 3.6.1 and 3.6.2.
The first one is the condition (c) of joint weak convergence of the processes (v.(?), &.(1)),
t > 0 and the random sequence G, k = 0, 1, .. .. The second one is the condition (d) that
the limiting external process &(7),# > 0 is continuous with probability 1 at the random
point vo(Sox £ 0) for every k =0, 1,.. ..

Under these additional conditions, it will be possible to extend the proofs of The-
orems 3.6.1 and 3.6.2, which are based on their reduction to the case of compositions
of non-random cadlag functions, to the case of piecewise monotone internal stopping
processes. More precisely, it will be possible to prove the corresponding relation of J-
compactness and weak convergence of the compositions on some set dense in [0, co) and
containing the point 0.
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In this case, the pre-limiting processes C.(f) = E.(v.(?)),# > 0, may not be cadlag
processes. However, the corresponding limiting process Cy(t) = &y(vo(?)),¢ = 0 that
verifies condition (d) is an a.s. process without discontinuities of the second kind.

We again refer to works by Borovkov (1976) and Borovkov, Mogul’skij, and Sakha-
nenko (1995), where one can find results concerning J-convergence of stochastic pro-
cesses in such a case.

3.6.9. A Polish phase space. The results in this section can be generalised to a
model with external stochastic processes &,(7), > 0 that take values in a Polish space X.

The formulation of condition A, or A,; does not change. In the condition g, the
Euclidean distance |x — y| must be replaced with the corresponding metric d(x,y) in the
formula for the modulus A;(E.(-), ¢, T).

All other conditions of Theorems 3.6.1 — 3.6.6 remain without changes. With these
modifications in the conditions, the proofs of these theorems can be repeated.

3.7 Vector compositions of cadlag functions

In this section, we will study conditions for J-compactness and J-convergence of general
vector compositions of non-random cadlag functions. This conditions will be essentially
used in the next Section 3.8, where the corresponding results are obtained for vector
compositions of cadlag stochastic processes.

3.7.1. J-compactness of vector compositions of non-random cadlag functions.
Let x,(1) = (x,;(t),i = 1,...,m), t > 0,n = 0,1,... be a sequence of vector cadlag
functions with real-valued components, y, () = (y,;(¢),i = 1,...,m),t >0,n=0,1,...,a
sequence of vector cadlag functions with non-negative and non-decreasing components.
Let also z,,(t) = (x,;(y,i(?)),i = 1,...,m), t > 0 be vector compositions of the functions
X,(?) and y,(¢). The functions z,(t), t > 0,n = 0, 1, ... are also vector cadlag functions
with real-valued components.

We impose the following conditions on the functions x,,(7):

Ayys x,(1) = xpi(t) asn — oo, t € X;, 1 = 1,...,m, where X; are subsets of [0, co) that
are dense in this interval and contain the point O;

and
Ji7: lime_o lim, e Ay (x,i(), ¢, T) =0, T>0,i=1,...,m.
We also assume that the functions y,(¢) satisfy the following conditions:

Ayst yui(t) = yo(t)asn — oo, t € Y;, i = 1,...,m, where Y; are subsets of [0, co) that
are dense in this interval and contain the point 0;

and
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Jig: lime_o lim, e Ay(y,(-),c, T) =0, T > 0.

Note that both limiting functions xy(?),¢ > 0 and y(¢), ¢ > 0 are not assumed to be
continuous.

Conditions A, and J,, imply that the functions x,,(#), ¢t > 0 J-converge to xy;(?),
t>0asn — oo foreveryi = 1,...,m. Conditions A, and J,¢ provide J-convergence
of the functions y,(?), t > 0. However, these conditions together do not provide either
J-convergence or J-compactness for the vector functions x,,(7), t > 0 and (y,(?), X,.(?)),
t > 0, or the compositions z,(¢), t > 0. The corresponding examples are given in Section
3.1.

The following continuity conditions play a key role in further consideration:

St yoi(t £0) € Rlxoi()], i = 1,...,mfort € UL Rlyoi()];

and

H,: Z Y(0i(?) € R[x0;(-)]) < 1 fort > 0.

i=1
Lemma 3.7.1. Let conditions Ay, 317, Ays, d1g G and H, hold. Then

m}@om(zn(-), ¢,T)=0,T >0.

Proof of Lemma 3.7.1. As in the case of one-dimensional functions, the proof consists
of two parts. The first part reduces the proof to simpler functions and is similar to
that given in the proof of Lemma 3.5.1. The second part gives a uniform estimate of the
corresponding local modulus R,[#, ¢, t”]. It is much more difficult than the corresponding
part of the proof of Lemma3.5.1. This is due to a much more complicated relation
between points of discontinuity of the internal functions y,(¢) and the external functions
X,(?) in the vector case.

Conditions A, and J,; imply that the functions x,(-),z > 0 R xoi(),t = 0 as

e = O foreveryi =1,...,m. Hence, the sets X; in condition A, can be enlarged to the
set X; U Xo;. Here Xy; = [0, 00) \ R[x¢;(+)] is the set of continuity points for the function
X0i(t),t > 0. Forevery i = 1,...,m, the set X, is dense in [0, c0), moreover, it coincides

with [0, co) except for at most a countable set. Thus the set X = N (X; U Xp,) is also
[0, o), except for at most a countable set.

Analogously, conditions A, and J,g imply that the functions y,(-),z > 0 R

yoi(t),t > 0 ase — Oforeveryi = 1,...,m. So, for every i = 1,...,m, the set Y;
in the condition A5 can be enlarged to the set ¥; U Yy;. Here Yy; = [0, 00) \ R[yo;(-)] is a
set of continuity points for the function y;(¢), t > 0. For every i = 1,...,m, the set Y,

is dense in [0, c0), moreover, it is the interval [0, co0), except for at most a countable set.
Hence, the set Y = N7, (¥; U Y{y) is also [0, co) except for at most a countable set.
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It is sufficient to show that the compactness relation in Lemma 3.7.1 holds for any
TeY.

Conditions A5 and J,g also imply that the vector functions y,(f) — yo(f) asn — oo
fort € Y. Since T is a point of continuity for the function y(#), this convergence,
together with the conditions A5 and J;g, implies that the vector functions y,(?),t €

[0,T] i> yo(t),t € [0,T] as n — oo. This means that there exists a sequence A,(?),
n > 1 of continuous one-to-one mappings of the interval [0, 7] into itself such that

lim sup (ly,(t) — yo(ru(O)| + [ha(r) — 1) = 0. (3.7.1)

=09 410,71

Let Ty, kK > 1, be a sequence of points of the set X such that 7y — oo as k — oo.
For every i = 1,...,m, the function x;(¢) is continuous in the points Ty, k > 1. So, by
conditions A, and J,,, the functions x,;(¢),t € [0, T}] R xoi(0),t € [0,T ] asn — oo
foreveryi=1,...,mand k > 1.

Since the sequence y,;(T), n > 1 is bounded for every i = 1,...,m, there exists

T’ = Ty such that y,(T) < T' foreveryn > 1,i=1,...,m.
Let A,;(), n > 1 be sequences of continuous one-to-one mappings of the interval
[0,T7], fori=1,...,m, such that

lim sup (|x,i(#) — x0;(Api ()| + [Ni(®) —2)) =0, i = 1,...,m. (3.7.2)

=% 1e[0,77]
By using estimate (1.4.8) given in Lemma 1.4.9, we get

Aj(z,(1),c,T) <

m

A 2(D,c, T ni\Vni - i}\'”i ni
< As(w, (D). c >+;l:£2]|x i) = X0i i i (E))] 373

< A Wa(0), ¢, T) + ) sup. [%(1) = 30 (i)

= relo.r

where
Wu(1) = (xoi(Mi Vi), 1= 1,...,m), 1 € [0,T].

In virtue of (3.7.2) and estimate (3.7.3), we see that it is sufficient to show that

lim lim A;(w,(8),¢,T) = 0. (3.7.4)

c—0 n—oo

Let us introduce the functions

V() = (0, @O, i = 1, ,m), 1 € [0, T,
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and assume, for a moment, that we could show that

lim lim A;(v,(7),¢,T) = 0. (3.7.5)

c—0 n—oo

Then, by applying Lemma 3.4.1 to the non-random functions v,(¢), ¢ € [0, T], and
M(2), t € [0, T], we would obtain (3.7.4).
Denote

R[, 1,171 = min() " [xoi(s,i(t)) = XorCsni(D], D Foi(nit)) = Xoi(si(D)),
i=1 i=1

where
$ni(1) = Mniui, @O, 1 € [0, T], i = 1,....m.
To prove (3.7.5), it is sufficient to show that

lim lim sup R, 1,1"] = 0. (3.7.6)

€0 100 Oy(1—c)<p <t<t” <(t++c)AT

Denote B,;(f) = 5,i(t) — yoi(?),t € [0, T],i=1,...,m, and

ﬁn = max sup |ﬁni(t)|-

1<i<m 1€[0,T]

By using (3.7.1) and (3.7.2), we have

Bn < max sup Ni(yuih, (1)) = yuihy, (1))

1<i<m 1€[0,T]

+ max sup |y,i(h," (1) = yoi(?)|
1<i<m 1€[0,T]

(3.7.7)
< max sup |A,;(¢) -
1<i<m 1€[0,T7]

+ max sup [y,(t) — yoi(A,(£))] = 0 as n — oo.
1<i<m 1€[0,T]

First of all we are going to estimate R, [?’, ¢, "] locally in a neighbourhood of a point
uel0,T].

We will say that the points ¢, ¢, ¢ € [0, T'] satisfy condition A, ift —c <t <t <
t” <t + c and at least one of these points belongs to the interval [u — ¢, u + c].

Take an arbitrary o > 0. First we show that for every fixed point u € [0, T'] there exist
¢ = ¢, and a number n, such that, if the points ¢, #, ¢’ satisfy condition A, ., and n > n,,
then

R,[,t,1"] < o. (3.7.8)

Three cases are possible.
(i). The point u is a point in which the function y(?) is discontinuous.
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In this case, by condition G, the function x;(s) is continuous in the points y;(« +0),
for every i = 1,...,m. Hence, there exists 0 > 0 such that, for all points s’, s €
[yoi(u £ 0) — 0, ypi(u = 0) + 8], we have |xg;(s") — xpi(s”)| < o/m, foreveryi =1,...,m.
There always exists ¢ = ¢, such that

max sup yoi(e — 0) — yoi(u — $)| < 8/2 (3.7.9)
SISm ()< s<3¢
and

max sup [yo;(u) — yoi(u + s)| < 8/2. (3.7.10)

l<i<m g<g<3c¢

If the points ¢, t, t'” satisfy condition A, ,thenu —2c <t <t <u<t"<u+cor
u—c<t <u<t<t’'<u+2c.
Consider the first case (the second is absolutely similar). It follows from (3.7.9) and
(3.7.10) that
max |yo;(?) = yoi(u — 0)f < 8/2 (3.7.11)

and
max yoi(t") = yoi(u — 0)] < 8/2. (3.7.12)

Choose now n, such that 3, < 8/2 for n > n, (this can be done due to (3.7.7)). Then,
by using (3.7.11) and (3.7.12), we get for n > n,, that

50 (1) — Yoi(u — O) < By + yoi(®) = yoi(u —0)[ <0, i=1,...,m, (3.7.13)
and
|5,i(t") = yoi(u = 0)| < B, + yoi(t) = yoi(u = 0) <O, i=1,...,m. (3.7.14)

By the choice of d and relations (3.7.13) and (3.7.14),
RIC, 1171 <Y Ixoisil0) = Zoi(su(t)] < 0. (3.7.15)
i=1

(ii). The function y,(s) is continuous in the point u but there is i such that the function
Xoi(s) 1s discontinuous in the point yo;(u).
It is clear that there exists & > 0 such that

sup \ 1x0i (oi(1) = 5") = Xoi(yoi(u) — )| < o/m, (3.7.16)
0<s’,s"<
and
sup  |xoi(yoi(u) + ") — xpi(oi(u) + )| < o/m. (3.7.17)

0<s’,5""<d
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Let now ¢, be chosen such that, if ¢ € [u — 3¢, u + 3¢, ], then |y;(t) — yo;(w)| < 6/2. If
n, are chosen so that , < §/2 for n > n,, then

|52i(t") = yoi(W)| V 15,i(2) = yoi(W| V [5,i("”) = yoi(w)| < & (3.7.18)

if the points ', ¢, t” satisfy condition A, .

For the points s,;(t"), s,(t), and s,;(#'), we have either s,;(t') < s,(t) < yoi(u) or
voi(u) < 5,i(t) < s,:(¢"). By the definition, the functions s,;(¢) are non-decreasing, and so
in the first case, because of (3.7.16), (3.7.17), and (3.7.18), |x;(8,,:())— x0:(5,.:())| < o/m.
In the second case, by (3.7.16), (3.7.17), and (3.7.18), |x0;(5,,:(2)) — X0i(5,:(*"))] < 6/m. In
any case,

min(|xo;(s,i(1)) = X0:($ui ("), [X0i(0i()) = X0i (8 (1)) < 6/m. (3.7.19)

Because of condition JH,, the function xo;(s) is continuous in the point yy;(u) for
every j # i. Hence, there exists &’ > 0 such that

“}f?‘ sup  |xo;(yoj(u) + 8") — x0;(yo,; () + s”)| < o/m. (3.7.20)
o) )s 1<

We can assume that ¢, is chosen in such a way that

max yo,(#) = yoj(w)] < &/2 (3.7.21)

if t € [u — 3¢y, u + 3¢,], and also that the choice of n, yields that 3, < &'/2 for n > n,.
Then,

rrj!gX(lsnj(t) = Yol V 1 (t") = yo; @I V 15,;(t") = yo;)l) < & (3.7.22)

for n > n, if the points ¢, ¢, ¢” satisfy condition A, ., (see also (3.7.13) and (3.7.14).
It follows from (3.7.20) and (3.7.22) that

rrj!gX(Iij(snj(t)) = X0;(Snj(INN V [X0;(8,(0)) = X0 (5, (")) < 0/m. (3.7.23)
Finally, we get using (3.7.19) and (3.7.23) that
R, 1,1"] =

= min( ) [x0j(5nj(5) = Xo(sa; N D o;(0(1)) = X052 D))

J=1 j=1
< min(|xo;($,i(1)) = X0i( 52 ()N [X0i($i(1)) = X0i( 5, ("))

+(m—-1) Hjl,g?( max(|xo;(s,(#)) — Xo,(s,;(t))l,

(3.7.24)

|x0,(5(1)) = x0,(5,;(t"))]) < O.
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(iii). The function y,(s) is continuous in the point u and the function xy;(s) is contin-
uous in the point yo;(u) for every j=1,...,m.
In this case, there exists & > 0 such that

max sup |xo;(yo;j() + 5") — x0;(yo;(u) + s”)| < o/m, (3.7.25)

ISjSm |S'|,|S”|Sé
and there is ¢, such that

max sup [yo;j(u) — yo,;(u + s)| < 8/2. (3.7.26)

1<j<m |s|<3cu

If we choose n,, in such a way that 3, < 8/2 for n > ny, then
gljgﬁ(lsnj(f') = Y0;@)| V [5,j(8) = Yo, (W V [5,;(t") = yo(w)]) < 6 (3.7.27)

for points ', t, " satisfying condition A, ., for n > n,.
Finally, we get using and, by (3.7.25) and (3.7.27),

Rt t,t"] <m max max(|:xo;(sn i) = x0j(s,;(D),
<jsm (3.7.28)
|X0,(8a; (")) = Xo0;(5,;())]) < O.

Now we split the interval [0, T] into several domains depending on the location of
points of discontinuity for the functions x(#) and y(¢), and show that the corresponding
estimates for R,[t’, ¢, t”’] are uniform in these domains.

Condition A, » implies condition A, .~ if ¢’ < ¢”. So, for any ¢’ < ¢” and any finite
collection of points v, € [0,T], k = 1,...,r, there exist ¢ and a number n, (depending
on the points v;) such that, if points #', ¢, " satisfy one of conditions A, .,k =1,...,r,
and n > ngy, then R,[t,t,¢’] < O.

Let ¢; € (0,7/2) and a number n; be chosen such that, if points ¢’, 7, t”” satisfy one of
conditions Ay, or Az, and n > ny, then R,[t',t,#'] < ©.

Let z); < z2i < -+ < z,; be points, for every i = 1,...,m, in which the function
Xoi(?) is discontinuous with absolute values of the jumps greater than or equal to o/m.
By Lemma 1.4.2, we can always choose h such that, if [t —t”| < hy and t" and ¢ belong
to one of the intervals Io; = (20, 211)s -+ - » Tk—1i = 21, Zhi)> Tii = [2kiis Zie1,i] (here
20i = 0, Zg41,; = T), then

max |xo;(t') — xo;(t")| < o/m. (3.7.29)
1<i<m

Let J; = {ri;,...,r;,;} be a set of indices r for which there exists s € [c¢;, T — ¢;] such
that yo;(s) = z,; (by condition G, the functions yo;(), j = 1,...,m are continuous in each
such point). By the definition, /; < k;,i = 1,...,m. For r € J;, define

v, =inf(s € [c1, T — c11: Yoi(s) = z44), v; = sup(s € [c1, T — c1]1: Yoi(s) = zx:).



222 Chapter 3. J-convergence of compositions of stochastic processes

By the foregoing remark, there exist ¢, < ¢; and a number n, > n; such that, if
points t’, ¢, ¢’ satisfy one of conditions ‘AVf,-’Cz’ reJd,i=1,...,m and n > n,, then
R,[?,1,t"] < o.

Denote

U=[c;,T-c]\ U U(V’_" — €y, V) + C).
i=1 rel;
By the definition, the set U = U, [a;, b/] is the union of a finite number of closed
intervals.
By the construction of the set U and conditions G, and H,, yo(t = 0) # z,; for all
r=1,...,k,i=1,...,m,and every t € U. Since the functions y,;(¢) belong to the space

DE(I))OO) .» this implies that there exists y > 0 such that

min min inf [yy;(f £ 0) — 2,4 > ¥. (3.7.30)
i=1,....,m 1<r<k; teU

Now we show that every closed interval [a,b] € U on which the function y;(s)
does not have jumps exceeding in magnitude y/2 has the following property (recall that
the functions yg;(s),i = 1,...,m are non-decreasing). If y(zy) € I, for some point
to € [a, b], then: (a) yo;(t) € I,; for all ¢ € [a, b]; (b) yoi(b) < Zp4+1i — 5( (ifr=0,...,k—-1);
(©) yoi(@) > zyi + 3.t € [a,b] (if r = 1,...,k;). This is true forevery i = 1,...,m.

Indeed, if yo;(ty) € I,;, then z,.1; — z,; = <y. This follows from (3.7.30). Denote
T = inf(s 2 100 yoi(s) > Zei — v/2) and T = sup(s < o0 yoi(s — 0) <z + V/2).
Clearly, it is sufficient to show that t* ¢ [a,b] if r = 0,...,k; — 1, and T~ ¢ [a,b] if
r=1,...,k;. Let us consider, for example, the first case (the second is similar). Suppose
that t* € [a, b]. Because y(;(fy) < z-+1; — Y by (3.7.30), T° > 5. So yo;(t" — 0) > ypi(to),
since the function yy;(s) is monotone. On the other hand, yo;(t* — 0) < z,41; — Y/2. So
voi(t* —0) € I,; and, hence, yy;(t" —0) < z,41; —y by (3.7.30). But then the function y;(s)
has, in the point t*, a jump of magnitude greater than or equal to y/2, which contradicts
the assumption.

Now choose h < min(y/2, hy/2), and let u; = u,(ch), k=1,..., ko, be points in which
at least one of the functions yg;(s) has a jump with magnitude greater than or equal to &
(note that, in other points of the interval [0, T'], all the functions yy;(s), i = 1,...,m, do
not have jumps with magnitude greater than or equal to 4).

Choose now c¢3 < ¢, and a number n3 > n, such that, if points ¢’ ¢, ¢’ satisfy one of
conditions A, .,, k = 1,...,ko, and n > n3, then R,[#',1,1"] < ©.

Denote

ko
V=U\ U(uk —C3, Uy + C3).
k=1
It is easy to see that three points ', ¢, #" € [0, T] suchthatt —c < ¢ <t <t' <t+c
can lie in the interval [0, 7] in one of the following ways: (i) at least one of the points
v, t, t” belongs to [0,c,] or [T — ¢y, T]; (ii) at least one of the points #’, ¢, t” belongs
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to [vZ — ¢,V + ¢;] for some r, i; (iii) at least one of the points ', 7, t belongs to
[ty — 3, ux + c3] for some k; (iv) all three points ¢, ¢, ¢ belong to the set V; (v) all three
points ¢, ¢, t” belong to the interval [v__, v] for some 7, i.

It was shown before that in cases (i) — (iii), due to the choice of ¢; > ¢, > ¢3 and
ny<ny <ns, R, t,t"] < oif ¢ < c3 and n > ns3. So, consider now cases (iv) and (v).

By the definition, the set V = A [a;, D}] is the union of a finite number of closed
intervals. We can assume that a] < b} <a), < b, < .. .a;{) < b;E)'

On every interval [aj, bj], the functions yy(s), i = 1,...,m, do not have jumps with
the values greater than or equal to v/2 and, hence, forevery [ = 1,...,[jandi=1,...,m
there is an interval /,,,; such that: (d) yo;(¢) € I, t € [a], b]]; (€) yoi(b)) < Z 41 + V/2
G 7 = 0, ks = 1) () yoi(a) = 20— ¥/2 (i 1y = 1, ko).

Choose ny > nj3 such that 3, < min(y/4, hy/4) for n > ny. Then it is clear that, for all
n > ny,

spi(t) €1, t€ay, byl i=1,...,m. (3.7.31)

Since the functions yg;(s), i = 1,...,m, do not have jumps in the interval [a}, b]] with
the values greater than or equal to /,/2, by the construction of the set V and Lemma
1.4.2, there exists ¢4 < c3 such that for 7/, " € [a}, bj] and |[t' — 1| < cy,

Jmax. Vi) — Yot < ho/2. (3.7.32)
By the choice of ny and (3.7.32), it follows that if ', ¢ € [a}, bj], ' — t”'| < c4 then,

for n > ny,
'Irllax |8, (1) = 5,:(t")| < hy. (3.7.33)

i=1,...,

It follows from (3.7.31), (3.7.33), and (3.7.29) that if |’ — t”/| < ¢4 then, for n > ny,

max 1x0i (8, (1)) — X0i(5,: (") < o/m. (3.7.34)

Relation (3.7.34) implies, in its turn, that if ¢/, ¢, t” € [a},bjland t —c4 < ' <t <
t” <t + ¢4 then, forn > ny,

R,[t',1,¢"] < m max max(|xo;(s,:(2")) — X0i($ni(2))],
I<ism (3.7.35)
X0 ($ni(t") = X0i(5,:(D)]) < O.

Clearly, ¢4 and then the number n, can be chosen such that relations (3.7.31) —
(3.7.35) hold for all / = 1,. .., [j;. We can also assume that c4 is chosen to satisfy

d= min (d,,, - b)) >3cs. (3.7.36)

0<i<lf—1

Relation (3.7.36) implies that, if ', 7, " € Vandt —c4 <t <t <1’ < t+ ¢y, then all
three points 7', ¢, #” belong to one of the intervals [a}, b;].
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So, finally, we get that, if ¢/, #, " € Vandt —c4, <t <t <t” < t+ cy, then
R,[?,t,t"] < oforall n > ny.

To finish the proof of the lemma, it only remains to consider the last case (v) and
show that there exist ¢s < ¢4 and a number ns > ny such that, if the points ¢, ¢, t”
belong to the interval [v ”,v Jforsomerandi,andt—c5 <t <t <t’ <t+cs, then
R,[t,t,t"] < oforn > ns.

In this case, yoi(t) = z,; and t € [v,v"]. Indeed, by the definition, y() = z,; for
t € (v, v}). But, condition G4 implies that the function y,(¢) is continuous in the points
vi. Let & > 0 be such that

sup  |xoi(zri — 8') — x0i(zyi — 8”) < o/m (3.7.37)
0<s’,8""<d
and
sup | xoi(z,i + 8") = X0i(zri + 87| < o/m. (3.7.38)
0<s’,5”<d

Choose now ns > ny so that $, < /2 for n > ns. Then, forall ¢ € [v_, V'],
|$i(1) = 2l <O (3.7.39)

Because s,;(t") < 5,:(t) < z;0rz,; < 5,:(¢) < 5,i(t""), it follows from (3.7.37), (3.7.38),
and (3.7.39) that

min(|xo;(s5,i(t")) = Xoi($ni(D)], [X0i(85i(1)) = Xoi(5::(E")]) < 0/m. (3.7.40)

Condition G4 implies that the functions y(;(s), j # i are continuous on the interval
[v.;,v}:]. Indeed, assume that s € [v,, v.] and it is a point of discontinuity for the function
yoj(s) for some j # i. Then, accordmg 96, voi(s) € R[xo;(+)] that contradicts the equality
in(s) = Zri-

Also, condition JH, implies that the function xy;(s), is continuous on the interval
[o;(v;;), yo;(vi)], for every j # i. Indeed, according J,, the function x,;(f) must be
continuous in the point yo;(s) for every s € [v, v\l and j # i, since xo;(s) = z,; € R[x;(+)]
for s € [v_,v"]. But the functions y,;(s), j # i are monotone and continuous on the
interval [v_,v"]. Thus, yo;(s) takes all values in the interval [yo;(v..), y0;(v;;)] when s
runs through all values in the interval [v,, v].

Continuity of the functions x¢;(s), j # i on the interval [yo;(v},), yo;(v;;)] implies that
there is 4’ > 0 such that, for [s" — 5| < ', 5", 5" € [yo;j(v,;) — I, yo;(v};)) + I'], and j # i,

|x0;(8") = x0,(s")| < o/m. (3.7.41)
Since the functions yy;(s), j # i are continuous on the interval [v_, v'], it follows that
there is ¢s < ¢4 such that, for |t — | < ¢s, ¢, t" € [v,v]], and j # i,

vo,;(t") = yo,(t")I < K /2. (3.7.42)
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The number ns can be chosen in such a way that 3, < h’/4 for n > ns. Then,
obviously, s,j(f) € [yo;(v,,) =, y0;(v:) + h'] fort € [v_,v], j # i, and for [t — 1| < cs,
t',t" €lv,,vi],and j # i,

|50 (#') = 8, < I (3.7.43)

If follows from relation (3.7.42) and (3.7.43) that, for all points [t' — | < ¢s, V',
t” € v, v}l and n > ns,

ri’

ma o, (/1) = 30, (1" DI < o/ m. (3.7.44)

Finally we see, by relations (3.7.40) and (3.7.44), that

R,[t,t,1"] <
< min(|xo;(8,i (1)) = Xoi (S5t DI, [%0i (5 (")) = Xoi($,:(1)])

+(m-1) 11}12_)( max(|xo;(s,;(t)) — Xo,;(sn,;(D), (3.7.45)

10 (5n;(t")) = X0;(8,j())]) < O

for n > ns if the points ¢/, #, " € [v_,vi],and t —c5s <t <t < 1" <t+cs.
It only remains to note that c5 and the number n5 can be chosen for all r and i simul-
taneously.

The proof of the lemma is completed. O

3.7.2. J-convergence of vector compositions of non-random cadlag functions.
First of all note that, as follows from the examples considered in Section 3.1, con-
ditions Ay, d17, Ayss J1s» G, and H, of Lemma 3.7.1 do not necessarily imply J-
convergence of the vector compositions z,(?), ¢t > 0. However, these conditions do imply
J-compactness of these functions, although they do not guarantee pointwise convergence
of the functions z,(¢) on a set dense in [0, o) and containing the point 0. Some additional
conditions should be imposed.

Let us introduce the following conditions:

C,,: There exists a set W such that (a) yo;(f) € R[xp:(:)], i =1,...,m,fort € W; (b) W

is a subset of [0, o) that is dense in this interval and contains the point 0;

&,0: There do not exist points 0 < ' < t” < coand i = 1,...,m such that yy(t") =
Yoi(t”) € R[xoi()];

and

8(1‘;): Yoiw) € R[xp;(1)],i=1,...,m.
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Conditions &, and (‘3(1V3V) coincide, respectively, with conditions €, and (‘fgw) in the
case of non-random functions xy(?), ¢ > 0, and any y((¢), t > 0. These non-random
functions replace in this case, respectively, the stochastic processes §(7), t > 0 and v((?),
t>0.

As follows from Lemma 2.7.2, condition €, and (‘35(;) are necessary and sufficient
for existence of a set W dense in [0, o), containing 0, and such that condition €,, holds
with this set W.

Let W, denote the set of all point w > 0 for which condition 8(1‘;’) holds. Obviously,
W € W, for any set W that can appear in condition C,,. So, under condition C,, or
conditions &, and (‘3(1(;), the set W, is the interval [0, c0), except for at most a countable
set, and 0 € W,,.

Denote Yy = N, (Y; U Yy;), where Yy, is the set of continuity points of the function
yoi(1), t > 0. Let also Zy = Yy N W,. This set is also [0, co), except for at most a countable
set. Also, 0 € Z,.

Lemma 3.7.2. Let conditions Ay, d17, Ays, €49 and G%) hold. Then
Z,(1) = zo(t) as n — oo, t € Z.

Proof of Lemma 3.7.2. The proof can be obtained by applying Theorem 2.7.6 to the vec-
tor compositions z,(¢) = (X,1 V1 (1)), - - - » XumVum(2))), t = 0 of the vector cadlag functions
X,(?), t > 0 and y,(),t > 0. Here n~! can be regarded as the parameter «.

Note that, for every i = 1,...,m, the set Y; in condition A can be enlarged to the
set Y; U Yy, since monotonicity of the functions y,;(¢),i = 1,...,m.

Conditions A, and A imply that the weak convergence condition .A}, holds with
the set V = Y. The condition J,, implies that the condition of J-compactness Jg holds.
Finally, condition £, and 6(103) imply that the continuity condition €, holds. In this case,
the set of weak convergence S in Theorem 2.7.6 coincides with the set Z,. O

General conditions of J-convergence for compositions of cadlag functions can be
obtained by combining the conditions of Lemmas 3.7.1 and 3.7.2.

Lemma 3.7.3. Let conditions Ay, d17, Ays, J1g, G Hy €19 and (‘35(;) hold. Then
z,(t),t >0 i> zo(1),t > 0asn — co.

3.7.3. J-convergence of vector non-random cadlag functions. Let us consider
the case where the internal functions y,;(¢) = ¢t,t > 0, fori = 1,...,m. In this case,
conditions Ays, J13, G¢. €19, and G%) obviously hold.

Condition I, now takes the following form:

Hy: 22, 1 € Rlxpi()]) < 1fort >0,
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or, equivalently,
Hs: RIxoi(-)] N RIxo;(-)] = @ for i # j.

In this case, the functions x,(¢), > 0 and z,(¢), t > 0 coincide. By applying Lemma
3.7.3 one can obtain the following simple conditions for J-convergence of the vector
cadlag functions x,,(¢), t > 0. This result is due to Whitt (1973, 1980).

Lemma 3.7.4. Let conditions Ay, d,7, and Hs hold. Then

J
X, (1),t >0 — x¢(#),t > 0asn — oo.

Note that condition J,, requires J-compactness of the components x,,(¢), t > 0 sep-
arately for every i = 1,...,m. It may happen that, under conditions A, and J,,, the
vector functions X,(?), ¢ > 0 are not J-compact and do not J-converge. Condition H; is
a condition additional to conditions A, and J,, in order to provide J-compactness and
J-convergence of the vector functions x,(¢), t > 0.

Let us now go back to the case of general compositions z,(¢), t > 0. Condition H;
takes the following form:

He: X0 x(t € Rlxoi(yoi(-)]) < 1 forall £ > 0;
or, equivalently,

Hy: RLx0:(voi(-))] N R[x0,(yo;(-))] = @ fori # j.

Lemma 3.7.4 allows to formulate the following conditions of J-convergence for vec-
tor compositions of non-random cadlag functions. These conditions make an alternative
to those given above in Lemma 3.7.1.

Let us replace condition J,, with the weaker condition:

Jio: lim_o lim Aj(y,i(), ¢, T) =0, T >0, i=1,...,m.

Lemma 3.7.5. Let conditions Ay, d17, Ays, J190 G He, €19 and C(l(;) hold. Then

J
z,(1),t >0 — zy(t),t > 0asn — oo.

Proof of Lemma 3.7.5. Conditions Ay, dy7, Ays. 19, G¢» €19 and G%) imply that the
functions x,(¢), t > 0 and y,;(¢), ¢ > O satisfy conditions Asg, Jy3, Asg, d14> G2, €5, and
(‘35%) of Lemma3.5.3 foreveryi = 1,...,m. By applying Lemma 3.5.3 to these functions,

we prove that x,;(y,:(t)),t > 0 R X0i(yoi(1)),t > 0asn — oo foreveryi = 1,...,m.
Also, condition H¢ coincides with condition I for the functions z,;(f) = x,(yui(?)),
t>0,i=1,...,m. Now, by applying Lemma 3.7.4 to the functions z,;(t) = X,i(y,i(£)),
t>0,i=1,...,m, we prove Lemma 3.7.5. m]
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Let us explain the difference between conditions of J-convergence given in Lemmas
3.7.3 and 3.7.5.

Conditions H and H, used in these lemmas are not equivalent.

Condition H, only excludes the situation where (a) two or more functions x,(-) have
synchronous jumps in points y;(¢) for some ¢ > 0.

Condition H prohibits the case (a) and, usually, also the case where (b) two or more
functions yg;(-) have simultaneous jumps in a point ¢ for some ¢ > 0.

At the same time, condition d,4 is stronger than condition J,,.

However, conditions {4 and J,¢ are equivalent if (¢) two or more functions yo;(-)
have not simultaneous jumps, i.e., condition H holds for these functions.

3.7.4. The finite interval [0, T']. The statements of Lemmas 3.7.1 — 3.7.3 can easily
be reduced to the case of a finite interval [0, T'] in the same way as it was done for
semi-vector compositions of non-random cadlag functions in Section 3.5.

Conditions A4 and J;; do not require any changes. But conditions A5 and J,5 have
to be taken in the following form:

Ayt yni) = yoit) asn — oo, t € Y, i = 1,...,m, where Y; are subsets of [0, 7] that
are dense in this interval and contain the points O and T’;

and
Joe: lime_o lim, e Ay (y,(-),c, T) =0, T > 0.

Denote by Rr[y(-)] = R[y(-)] N [0, T] the set of points of discontinuity for a cadlag
function y(#), ¢ > 0, in the interval [0, T']. Conditions G4 and J{, must be taken in the
following form:

St yoi(t £0) ¢ Rlxi()], i = 1,...,mfort € U Rrlyo(-)];
and
Hp: 2L x0oi®) € Rlxoi()D) < 1 forz € [0, T].
Let us first formulate an analogue of Lemma 3.7.1.

Lemma 3.7.6. Let conditions Ay, d17, Aye d20o G5, and I, hold. Then
lim lim A;(z,(-),c,T) = 0.

c—0 n—oo
Proof of Lemma 3.7.6. The consideration can be reduced to the case of the semi-infinite
interval [0, o) by applying Lemma 3.7.1 to the functions x,,(¢), t > O and y,(t) = y,,(tAT),
t > 0. It is obvious that conditions Ay, dy7, Aug. d29> G7, and I, imply that these
functions satisfy conditions Ay, d17, Ays, d1s. G, and H,. By applying Lemma 3.7.1,
we get the relation of J-compactness for the functions z,(¢), t > 0 on the intervals [0, 7]
for 7" > 0. For T" > T, this relation coincides with the relation of J-compactness given
in Lemma 3.7.6. O
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An analogous reduction to the case of a finite interval can be carried out for Lemmas
3.7.2 and 3.7.3.

In this case, we should add to A, the assumption that the left limits y,(7T — 0)
converge,

Agri (@) yui(t) = yoi(t)asn — ocofort € Y, i = 1,...,m, where Y; are subsets of
[0, T'] that are dense in this interval and contain the points 0 and 7;

(0) yuil(T =0) = yoi(T =0)asn — oo, i =1,...,m.
Conditions €, and &, should also be modified in the following way:

C,4: There exists a set W such that (a) yo;(t) € R[xo:(:)], i =1,...,m,fort € W, (b) W
is a subset of [0, T'] that is dense in this interval and contains the points 0 and T’;

and

&,;: There do not exist points 0 < ¢’ < t” < T and i = 1,...,m such that yy(t') =
Yoi(t") € Rr[xoi(+)].

As follows from Lemma 2.7.2, conditions &€, (‘35(;), and Gg) are necessary and suf-
ficient for existence of a set W dense in [0, T'], containing 0, 7 and such that condition
C,4 holds with this set W.

Let Wy(T) denote the set of all points w € [0, T'] that satisfy condition Cg). Obvi-
ously, W € Wy (T) for any set W that can appear in condition €,,. So, if condition €, or
conditions &, C%), and (‘Zg) hold, then the set Wy(T') coincides with the interval [0, T'],
except for at most a countable set. Also, 0,7 € W,,.

Denote Yo(T) = NI, (Y; U Yo(T)), where Yo (T) is the set of continuity points of
function yg;(¢), t € [0, T']. Let also Zy(T) = Yo(T) N Wy(T). This set is [0, T'], except for

at most a countable set. Also, 0,7 € Zy(T).

Lemma 3.7.7. Let conditions Ay, 317, Ay7, €11 C%), and (‘Zg) hold. Then

z,(t) > zo(t) asn — oo, t € Zy(T).
If; additionally, condition Gg') holds, then also z,,(T — 0) — zo(T — 0) as n — oo.

Proof of Lemma 3.7.7. To obtain pointwise convergence of the compositions z,(t) to the
functions z((¢) at points from the set Zy(7), it will suffice to apply Lemma 3.7.2 to the
functions X,(1), £ > 0 and y,(t) = y,(t A T), t > 0. Conditions Ay, J17, Ay, €1y, C,
and Cg) imply that these functions satisfy conditions A4, dy7, A4ss €10 8(103), and Gg).
The proof of Lemma 3.7.2 is based Theorem 2.7.6. This theorem, in its turn, is based
on Theorem 2.3.4. To prove that z,(T — 0) converges to zo(T — 0) as n — oo, one can
apply Theorem 2.3.4 to the non-random functions Xx,(¢), ¢ > 0 and the vector stopping
moments y,(7 —0). In this case, the conditions of this theorem are reduced to conditions

Ayg, Agy (b), 317, and €7 O
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Lemma 3.7.8. Let conditions Ay, 17, Ayz, 290 G720 H5, €41, C“,'(l%), and 6'(1? hold. Then

2,(0).1 € [0,T] =5 25(t), 1 € [0, T] as n — oo.

Proof of Lemma 3.7.8. The proof can be obtained by combining the conditions of Lem-
mas 3.7.6 and 3.7.7 and applying Theorem 1.4.4 to the functions z,(?), ¢ € [0, T].

It only remains to show why condition Gg_) is omitted in Lemma 3.7.8. As a matter
of fact, conditions G, and Cg) imply this condition. Indeed, if yo(7 — 0) = yo(7T), then
condition Gg') coincides with Gg). If yo(T — 0) # yo(T), then condition G, implies
el .

Remark 3.7.1. If the point T is a point of continuity of the limiting function zy(¢), then
condition A,; in Lemma 3.7.8 can be replaced with condition A 4.

3.8 Vector compositions of cadlag processes

In this section, we study conditions for J-convergence of general vector compositions
of cadlag processes. This model is more complicated than the model for semi-vector
compositions of cadlag processes considered in Section 3.6.

3.8.1. J-compactness of vector compositions of cadlag processes. Let, for every

e>0,8.() = (Eu(r),i=1,...,m), t > 0 be an m-dimensional cadlag process with real-
valued components and v,(t) = (vg(f),i = 1,...,m), t > 0 be an m-dimensional cadlag
process with non-negative and non-decreasing components. Consider the vector com-
positions T,(t) = (Ei(vg(1),i = 1,...,m), t > 0. This process is also an m-dimensional

cadlag process with real-valued components.

The subsequent considerations will be based on the condition of joint weak conver-
gence A,,, and the conditions of J-compactness Jg and J,. Let us recall here condition
dg that was introduced in Subsection 2.3.2,

Jg: lime_olime_o P{A;(Eei(-),c, T) > 8} =0, 8,T >0, i=1,...,m.

Conditions A5, and Jg imply J-convergence of the processes E.(7), t > 0, for every
i =1,...,m. At the same time, conditions A5, and J,, imply J-convergence of the pro-
cesses V.(f), t > 0. However, the examples given in Section 3.1 show that all conditions
together, A4, dg, and J,, do not imply that either J-convergence of the vector processes
(ve(1), E.(2)), t > 0, or their vector compositions C.(¢), t > 0.

We first give general conditions that would provide J-compactness of the compo-
sitions C.(¢), t > 0. These conditions can be combined with various other conditions,
which imply weak convergence of these processes, in order to get conditions for their
J-convergence. This suggests that it makes sense to formulate the J-compactness condi-
tions separately.
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Let us formulate a continuity condition that is a vector variant of condition G, and a
stochastic analogue of condition Gy,

Gy: Pivoi(t +0) ¢ R[En()],i = 1,...,mfort € U" Rlvo:()]} = 1.

Let us also formulate a continuity condition that is a stochastic analogue of condition
H,,

Hg: P{XEE x(voi(?) € R[E()]) < 1fort >0} =1.
The first main result is the following theorem from Silvestrov (1974).

Theorem 3.8.1. Let conditions Ay, ds, 315, G, and Hg hold. Then
1in3ﬁg P{AS(C.(), e, T) > 8} =0, 8,T > 0.

Proof of Theorem 3.8.1. The proof is similar to that of Theorem 3.6.1. We are going to
reduce the proof to the case of non-random functions using Skorokhod’s method of a
single probability space, which is based on his representation Theorem 1.6.16, and then
use Lemma 3.7.1. Unfortunately, Theorem 1.6.16 can not be directly applied either to
the vector processes (v¢(7), E.(¢)), t = 0, or to their compositions C.(¢), ¢ > 0. As was
mentioned above, conditions A, Js, d12, G, and Hg do not guarantee J-convergence
of these processes. So, this method must be realised in a more sophisticated way. This
can be done by first applying Theorem 1.6.14 to the vector processes (v¢(?), E.(¢)), t > 0,
and then Theorem 1.6.16, separately, to the processes E;(¢), t > 0, foreveryi =1,...,m,
and to the processes v,(t), t > 0.

Note, first of all, that conditions A3, and Jg, and J,, and Theorem 1.6.8 permit to
extend the sets of weak convergence, U and V, in condition A5, to the sets U’ = U U U,
and V' = VUV, Here Uy = N Uy, where Uy; is the set of points of stochastic
continuity for the process E(7), t > 0, fori = 1,...,m, and Vj is the set of stochastic
continuity for the process v((t), t > 0.

Both sets, U’ and V’, coincide with [0, o), except for at most countable sets. Also,
both sets U” and V' contain the point 0. Hence, the set S’ = U’ N V’ is also the interval
[0, o0), except for at most a countable set, and 0 € §”.

Condition A,, implies the following relation:

(Ve(1), E(1)), t € S” = (vo(2), Ey(1)),t € S" as e — 0. (3.8.1)

Let us choose a countable subset S C S’ that is dense in [0, co) and contains the point
0. Using relation (3.8.1) we can apply Theorem 1.6.14 and construct some probability
space (Q, &, P) and a.s. cadlag processes (V.(?), %g(t)), t > 0, defined on this space for
every € > 0 and such that

Fe0). &), 12 0 = V(0. E(0),1 > 0, (3.8.2)
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and, for an arbitrary sequence 0 < ¢, — 0asn — oo,
(¥, (1, &, (1) = (1), Ey(1) asn — oo, 1€ S, (3.83)

Let gy, be an arbitrary sequence such that 0 < ¢g;, —» 0asn — oo.

Relations (3.8.1), (3.8.2), (3.8.3), and condition Jg permit to apply Theorem 1.6.16
to the processes E;(1), t > 0 and és,»(t), t>0,foreveryi=1,...,m.

Therefore, there is a subsequence €;,, — 0 as n — oo of the sequence g, such that
P(A) = 1, where A, € ¥ is the set of elementary events w such that

(. 0),12 0 -5 Eg(r.w). 1> 0as n — oo, (3.8.4)

Then there is a subsequence €, — 0 as n — oo of the subsequence €, such that
P(A,) = 1, where A, € ¥ is the set of elementary events w such that

%82'”2(@ w),t>0 i> éoz(t, w),t>0asn — oo. (3.8.5)

By continuing this procedure, one can select, for every i = 1,...,m, a subsequence
€, — 0asn — oo from the subsequence ¢;_;, such that P(4;) = 1, where A; € & is the
set of elementary events w such that

ELi(t0),120-5 Eyr ) 1>0asn > oo, (3.8.6)

Let A = N, A;. Obviously, P(A) = 1. Since g,,, is a subsequence of all preceding
subsequences, we have for every elementary event w € A that

E (w1205 Eytw).t>0asn—> o0, i=1,...,m. (3.8.7)

Relations (3.8.1), (3.8.2), (3.8.3), and condition J,, also permit to apply Theorem
1.6.16 to the processes v.(t), t > 0 and V,(t), t > 0.

Therefore, one can choose a subsequence €/, — 0 as n — oo from the subsequence
€n.n such that P(B) = 1, where B € § is the set of elementary events » such that

Ve, (1, ), 1> 0 —55 Vo(t, ), 1> 0 as n — oo, (3.8.8)

Due to relation (3.8.2), condition Gg implies that P(C) = 1, where C € § is the set of
elementary events m satisfying

Voit £0,w) & R[Epi(-, w)],i = 1,...,mfort € U R[Voi(-, 0)]. (3.8.9)

Also, due to relation (3.8.2), condition Hg implies that P(D) = 1, where D € § is
the set of elementary events w for which

Y(Voi(t, ) € R[Egi(-,w)]) < 1 for > 0. (3.8.10)

m
i=1
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Obviously, PANBNCND)=1and, forome ANB NnCND, conditions A4, d17,
Ays, dig. G- and H, hold for the sequences of functions Egz(t, ), t > 0 and V¢ (1, w),

t > 0. By applying Lemma 3.7.1 to their vector compositions is;,(f) = (ész,»(vs;l,-(t)),i =
I,...,m),t >0, we getforme AN BNCND that

lim lim A, (&, (-, ®),¢,T) =0, T > 0. (3.8.11)

c—0 n—oo

Relation (3.8.11) implies the following relation:
lim lim P{A; (&, (), ¢, T) =8} =0, 8,7 > 0, (3.8.12)
which, due to arbitrariness in the choice of the sequence ¢, — 0, implies in its turn that

nn&ﬁ& P{A(E.(),e,T) > 8} =0, 8,T > 0. (3.8.13)

The proof that relation (3.8.11) implies relations (3.8.12) and (3.8.13) is absolutely
analogous to the proof that relation (3.6.7) implies relations (3.6.8) and (3.6.9), which
was given in Theorem 3.6.1.

Relation (3.8.13) implies the relation stated in the theorem since, due to (3.8.2),

AE() e T) £ MG () e T). O

3.8.2. J-convergence of vector compositions of cadlag processes. To obtain gen-
eral conditions for J-convergence of vector compositions of cadlag processes, it is suffi-
cient to combine the conditions of J-compactness formulated in Theorem 3.8.1 with the
conditions of weak convergence for compositions obtained in Chapter 2, in particular,
those formulated in Theorem 2.7.6.

Let also recall the conditions that were introduced in Subsection 2.7.2:

E4 P{voi(?") = voi(t”) € R[Epi()]} =0for0 <?' <1’ <o0,i=1,...,m;
and
CM: P{vyi(w) € RIEw()]} = 0fori=1,...,m.

The second main result of the section is the following theorem from Silvestrov
(1974).

Theorem 3.8.2. Let conditions Ay, dg, 45 G Hg, €4, and C?) hold. Then

(0,120 -5 To(r), 12 0as e — 0.
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Proof of Theorem 3.8.2. Conditions Ay, Js. d12, Gs. and FHg are conditions of Theorem
3.8.1. By applying this theorem, we prove J-compactness of the processes C,(7), t > 0,
on any finite interval.

Conditions Ay, dg, €4, and G?) imply that the conditions of Theorem 2.7.6 hold for
the external processes &.(7), + > 0 and the internal stopping processes v.(¢), ¢t > 0. In
particular, condition A,, implies that condition A}, holds with the set V in condition
A,,. This set is dense in [0, o) and contains the point 0. Conditions Jg and &, are
required in both Theorems 3.8.2 and 2.7.6. The corresponding set of weak convergence,
S0, 1s dense in [0, o). Condition 6?) permits to include the point 0 in Sy. By applying
Theorem 2.7.6, we prove weak convergence of the processes C,(¢) to §y(r) as € — 0 on
the set Sy.

To complete the proof one should apply Theorem 1.6.6, which gives conditions for
J-convergence of cadlag processes.

The proof of Theorem 3.8.2 can also be accomplished with the use of the method of
a single probability space. One only needs to continue the proof of Theorem 3.8.1.

Due to relation (3.8.2), condition €, implies that P(E) = 1, where E € § is a set of
elementary events o for which there do not exist points 0 < ¢ <" <Tandi=1,...,m
such that vy;(t’, w) = voi(t”’, w) € R[Ep(-, w)]. Also, due to relation (3.8.2), condition
(‘3?) implies that P(F) = 1, where F € ¥ is a set of elementary events w for which
voi(0, W) & R[Ep;i(-, )] fori=1,...,m

Obviously PANBNCNDNENF) = 1 and, foro € ANBNCNDNENF, conditions
Ay, J175 Ays, 318, Ge Hy, €49, and G(&) of Lemma 3.7.3 hold for the sequences of
cadlag functions E (t, ), £ > 0, and Vv, (t ), t > 0. By applying Lemma 3.7.3 to

their compositions ?; () = (Eb" Vei(D),i = 1,...,m), t > 0, we get, form € AN

BN CnNnDnNENF, the following relation: Cs;,(t’ w),t >0 i> io(t, w),t > 0 as

r — oo, In terms of the metrics d;, the last relation means that d J(i%(-, ), io(-, w)) — 0.
Since the initial sequence €, was arbitrary, this relation means that the random variables

d J(C (), §0( ) L 0 as e — 0. As it was pointed out in Lemma 1.3.1, convergence in
probability implies weak convergence. So, we get that the processes C = {?; (1),t > 0},

considered as random Varlables that take values in the space D[O «y With the metric d,,

weakly converge. Since ZE C C.. this completes the proof. O

In conclusion, let us compare the conditions of Theorems 3.8.2 and 3.6.2 in the
semi-vector case, where the internal stopping process v¢(f) = (ve(?), ..., Ve(?)), t > 0 has
identical components.

In this case, condition A, is reduced to condition A4, condition Jy, to J4, condi-
tion €, to &, condition Gg to G, and condition Gg’) to Cﬁ'g}).

The condition of J-compactness of external processes, Jg, used in Theorem 3.8.2 is
weaker than condition J, used in Theorem 3.6.2. However, this is compensated by the
use of the additional condition Hg in Theorem 3.8.2.
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In the scalar case, where m = 1, the conditions of Theorems 3.8.2 and 3.6.2 coincide.
In this case, conditions Jg and J, coincide while condition g holds automatically.

3.8.3. The continuity conditions €,, Gg, and J{g. Let us formulate these conditions
in a more convenient form and give some simple sufficient conditions.

Determine the moments of jumps of the process E,(¢), t > 0, namely Tty,; = inf(s >
Titni : 18gi(8) — Epi(s — 0)] € [n = l)) k =1,2,..., where 1y,; = 0. By the definition,
Tini are successive moments of jumps with absolute values in the interval [%, nfll) for
k < W, + 1 and t4,; = o for k > u,; + 1. Here w,; = max(k > 0: 1, < o0) is the total
number of such jumps in the interval [0, c0).

Similar notations can be introduced for moments of jumps of the process v, (1), t > 0,
namely, K,; = inf(s > K_1,: 1 [Voi(s) — voi(s — 0)] € [n — l)) k=1,2,..., where xy, = 0.
By the deﬁnmon Kini are successive moments of jumps with absolute values in the
interval [+ —) fork <\, +1and xy,; = co fork > A,; + 1. Here A,;; = max(k > 0: x,,; <
o) is the total number of such jumps in the interval [0, c0).

The condition €, can be rewritten in an equivalent form,

8;: P{voi(t) = voi(#") =t} =0for0 < ¢ <t”" < oo, r,l=1,2,... andi=1,...,m.

Note, first of all, that the following condition, introduced in Subsection 2.7.2, is
obviously sufficient for condition €, to hold:

J,: voi(t), t > 0 is an a.s. strictly increasing process for every i = 1,...,m.

The following condition, introduced in the same Subsection 2.7.2, is also sufficient
for condition €, to hold:

Q,: &) = Ey(1) + EJ (1), t > 0, where (a) E(¢),7 > 0 is a continuous process, (b)
o (1), > 0is a stochastically continuous cadlag process, (¢) foreveryi = 1,...,m,
the processes E((¢), t > 0 and v(t), t > 0 are independent.

Lemma 3.8.1. Let condition Q4 hold. Then condition € holds.

Proof of Lemma 3.8.1. If condition Q, holds, then the random variable t,; is a point of
jump of the process &y (¢) if and only if it is the corresponding point of jump of the
second component &;(¢) in the decomposition. This is so, because the first component
&,() is continuous. Therefore (a) the process v(;(7), r > 0 and the random variable t,; are
independent. The process &,(7), ¢t > 0 is stochastically continuous. So, (b) the random
variables T,; have continuous distribution functions. Obviously, (a) and (b) imply that
condition €, holds. ]

Suppose that condition Q, holds without the assumption that the processes & (7),
i =1,...,mare stochastically continuous. Then the distribution functions of the random
variables t,; can possess discontinuity points. To make condition €, hold, it is enough to
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require in this case that (c¢) the random variables v;(¢) and t,; be independent for every
t>0,rl=1,2,..,andi = 1,...,m, and that (d) their distribution functions have not
common points of discontinuity. Note that, in this case, the processes §,(f),# > 0 and
vo(?), t > 0 can be dependent.
Note also that condition Q, implies that condition €(6w) holds for any w > 0.
Condition Gg can be rewritten in an equivalent form,

Gg: P(voi(Ken; = 0) = 1,4} = 0 fork,m,r, = 1,2,... and i, j=1,...,m.

Note that the random variables v, (k,j£0) can take values in the interval [0, oo], since
the random variables Ky, ; can take the value +oo. In this case by definition, vg;(+c0+0) =
lim,_,, Voi(2).

The following condition, which is slightly stronger than Q,, is sufficient for Gg to
hold:

Qq: Ey(1) = Ey(r) + &y (1), t > 0, where (a) Ej(r),t > 0 is a continuous process, (b)
6'(t), t > 0 is a stochastically continuous cadlag process, (c) foreveryi = 1,...,m,
the processes E{(7),t > 0 and the vector process vo(?), t > 0 are independent.

Lemma 3.8.2. Let condition Qg hold. Then condition Gg holds.

Proof of Lemma 3.8.2. If condition Qg holds, then the random variable t,; is a moment
of jump of the process & (?) if and only if it is the corresponding point of jump of the
second component in the decomposition, & (r). Therefore, the process vo(7), t > 0 and
the random variable t,; are independent. In sequel, (e) the random variables vo;(¥,; + 0)
and t,;; are independent. The process &,(¢), ¢ > 0 is stochastically continuous. Thus, (f)
the random variables t,; have continuous distribution functions. Obviously, (e) and (f)
imply that condition G4 holds. O

Suppose that Qg holds without the assumption that the processes E.(¢), i = 1,...,m
are stochastically continuous. Then the distributions of the random variables t,; can
possess discontinuity points. To make condition Gg hold, it is enough to require in this
case that the distribution functions of the random variables v;(k;,; £ 0) and T,;; have not
common points of discontinuity for every k,n,r,l =1,2,...andi,j=1,...,m.

The analysis of condition Hg is more complicated. Define, for every a > 0, the
random functionals y;(a) = inf(¢ > 0: vy;(t) = a). By the definition, y;(a) is the left
endpoint of the interval where the process v(;(f) takes the value a. Note that it can
happen that this interval consists only of the point y;(a) itself. Also, y;(a) = oo if such
an interval does not exist. It is clear that there exist a point # > 0 and i # j such that
voi(?) € R[Epi(-)] and vy;(t) € R[E(;(-)] if and only if there exist some k, n, r, [ > 1 and
i # j such that vy;(vi(t,4)) = Thnj-

So, condition Hg can be rewritten in the following equivalent form:
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Hg: Pvo(vi(t)) = Tinj} = O for k,m, 1= 1,2,... and i # j.

The following condition, which is stronger than Q, and Q, is sufficient for 35 to
hold:

Qy: Ey(r) = Ey(r) + &5 (1), t > 0, where (a) E(¢),7 > 0 is a continuous process, (b)
o (1,1 > 0is a stochastically continuous cadlag process, (c) the processes £/(7),
t>0,fori=1,...,mand vy(f), t > 0 are mutually independent.

Lemma 3.8.3. Let condition Qg hold. Then condition Hg holds.

Proof of Lemma 3.8.3. If condition Qg holds, then the random variable t,;; is a point of
jump of the process &;(¢) if and only if it is the corresponding point of jump of the
second component in the decomposition, &g:(f). Therefore, by condition Q4 (c), the
process vo(t), ¢t > 0 and the random variables t,;, i = 1,. .., m are mutually independent.
In sequel, (g) the random variables v, ;(y;(t.;)) and 14,; are independent for every i # j.
The process §y,(7), t > 0 is stochastically continuous. So, (h) the random variables Ty, ;
have continuous distribution functions. Obviously, (g) and (h) imply that condition J—C;
holds. O

Suppose that condition Q4 holds without imposing the assumption on the processes
0/(1), t > 0 to be stochastically continuous. Then the distributions of the random vari-
ables T,; can possess discontinuity points. To provide condition f}C;;, it is enough to
require in this case that the distribution functions of the random variables v ;(yi(T,;))
and 1,; have not common points of discontinuity for every k,n,r,l =1,2,... andi # j.

Note that conditions Q,, Qg, and Q, admit dependence of the processes & (f), t > 0
and vo(7), t > 0. Due to this dependence, the processes &(¢), t > 0 and vo(¢), ¢ > 0 can
be dependent.

The following theorem from Silvestrov (1974) is applicable in many cases. It is a
direct corollary of Theorem 3.8.2 and Lemmas 3.8.1 — 3.8.3.

Theorem 3.8.3. Let conditions Ay, ds, d15 and Qg hold. Then
L0120 -5 Gy(t), 12 0ase — 0.

3.8.4. J-convergence of vector cadlag processes. Let us assume that the processes
Vei(1) =1,¢ >0, forall i = 1,...,m. In this case, the processes C,(¢) = E.(r), t > 0.
Condition A, takes, in this case, the following form:

Ayg: E.(1),1€ U = §y(r),t € U as e — 0, where U is a subset of [0, o) that is dense in
this interval and contains the point 0.
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The condition of J-compactness Jg, which requires J-compactness of the processes
(1), t > 0, separately for every i = 1,...,m, does not change.
Condition Hy takes the following form:

Hy: 20, x( € R[Ey()]) < 1forr>0}=1.
It can also be formulated in the following equivalent forms:
Hy: P(RIEw()] N RIE;()] = @) = 1 fori # j;
or
Ho: P{ti = 15} = 0fork,n,r,[=1,2,... and i # j.

The condition of J-compactness J;, obviously holds, as well as conditions Gy, &,,
and Gg)).

Theorems 3.8.2 yields, in this case, the following simple sufficient conditions for
J-convergence of vector cadlag processes. This result belongs to Whitt (1973, 1980).

Theorem 3.8.4. Let conditions Ag, s, and Hy hold. Then

E(1),1>0 -5 Ey(r),1 > 0as e — 0.

Note that condition Jg requires J-compactness for the components E;(#), t > 0 sepa-
rately for every i = 1, ..., m. It can happen that, under conditions A ,4 and Jg, the vector
processes &,(f), t > 0 are not J-compact and do not J-converge. Condition I, is an
additional condition that should be added to conditions A,g and Jg in order to provide
J-compactness and also J-convergence of the vector processes &.(), t > 0.

Let us now go back to the case of general vector compositions C,(¢), ¢ > 0. Condition
H, takes the following form:

Hyp: PLS %t € RIE(Vai(D]) < 1 for £ 2 0} = 1;
or the equivalent form:
9—(;0: P{R[Eo:(voi(-))] N R[Ep;(vo;j(-))] = @} = 1 fori # j.

Let us introduce the following condition for J-compactness of the internal stopping
processes, which is weaker than condition J,:

Iyt lime_o lim, e P{A;(vei(), e, T) > 8} =0, 8,7 >0, i=1,...,m.

Theorem 3.8.4 permits to formulate conditions for J-convergence of vector composi-
tions of cadlag processes, which would be alternative to the conditions given in Theorem
3.8.2.
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Theorem 3.8.5. Let conditions Asy, dg, 321, G, Hyo €4 and (‘320) hold. Then

()12 0 -5 Co(r), 1> 0ase — 0.

Proof of Theorem 3.8.5. Conditions Ay, d13. d21> Gs. €4, and (‘3?) imply that conditions
of Theorem 3.6.2 hold for the scalar processes E.;(¢), t > 0 and v,;(¢), t > 0, for every i =
1,...,m. By applying Theorem 3.6.2 to these processes, we prove that E.;(ve;(7)), > 0

N Eoi(voi(?)),t = 0 as € — 0, for every i = 1, ..., m. Finally, condition 3{,, permits to
apply Theorem 3.8.4 to the vector processes C,(¢) = (E(vei(1), i =1,...,m), t > 0, and
to prove Theorem 3.8.5. |

Let us explain the difference between conditions of J-convergence in Theorems 3.8.2
and 3.8.5. Conditions H;, and H used in these theorems are not equivalent.

Condition JHg prohibits only the case where (a) two or more processes Eo,(-) have
synchronous jumps at random points vy;(¢) for some ¢ > 0. This means that the probabil-
ity of the event described in (a) equals 0.

Condition 3, does not allow for the case (a) and usually also for the case where (b)
two or more processes Vy;(-) have simultaneous jumps at a point ¢ for some ¢ > 0. This
means that both probabilities of the events described in (a) and (b) equal 0.

At the same time, condition d,, is stronger than condition J,,.

However, conditions J;, and J,, are equivalent if (c¢) two or more processes V;(-)
have not simultaneous jumps with probability 1, i.e., condition JH, holds for processes
the vo(?), t > 0.

Let consider two examples that illustrate the difference between Theorems 3.8.5 and
3.8.2.

In the model of semi-vector composition of cadlag processes, the internal stopping
process Ve(t) = (Ve(?),...,ve(t)),t > 0 has identical components. If the correspond-
ing limiting process vo(t), t > 0 is discontinuous, then condition 3, does not hold for
the processes vy(?), t > 0. In this case, condition 3, may not hold for the processes
Co(®),t > 0. Theorem 3.8.5 does not work. At the same time, conditions J,, and Hg may
hold and Theorem 3.8.2 can be used.

In many applications, the components of the internal stopping processes v (), > 0
are asymptotically proportional. This means that the limiting process vo(?), t > 0 has
the following structure: vo(t) = (g;vo(t),i = 1,...,m), t > 0, where ¢;, i = 1,...,m are
positive constants. If the corresponding limiting process vo(¢), t > 0 is discontinuous,
then condition 3, does not hold for the processes vy(#), t > 0. In this case, condition
H,, may not hold for the processes &y(7), 7 > 0. In such situations, Theorem 3.8.5 does
not work. At the same time, conditions J;, and 3¢ may hold. Theorem 3.8.2 can be
applicable.

3.8.5. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.8.2 in which the continuity conditions €, and 820) are weakened.
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Theorem 3.8.6. Let conditions Ay, dg, 12, G Hg, Fs, and ng)) hold. Then

C(6), 1> 0 -5 Co(r), 1> 0as e — 0.

Proof of Theorem 3.8.6. Conditions Ay, dg, d12, Gg. and Hg are conditions of Theorem
3.8.1. By applying this theorem, we prove J-compactness of the processes C,(7), t > 0,
for any finite interval.

Conditions Ay, Jg, F3, and CDg’) imply that the conditions of Theorem 2.7.10 hold
for the external processes &,(¢), ¢ > 0, and the internal stopping processes v¢(f), t > 0.
In particular, condition A4, implies that condition A}, holds with the set V that enters
condition A,,. This set is dense in [0, o) and contains the point 0. Condition Fj is
required in both Theorems 3.8.6 and 2.7.10. The corresponding set of weak convergence,
S0, is dense in [0, o). Condition Dg)) permits to include the point O in §¢. By applying
Theorem 2.7.10, we prove that the processes C,(r) weakly converge to Cy(¢) as € — 0 on
the set Sg.

To complete the proof, it remains to apply Theorem 1.6.6 that gives conditions for
J-convergence of cadlag processes. O

3.8.6. The time interval [0,7]. In this case, we consider the vector composi-
tion C,(1) = (Ei(vei(®),i = 1,...,m), t € [0,T] of a vector cadlag process &.(f) =

(Eei(n),i = 1,...,m), t > 0, with real-valued components and a vector cadlag process
ve(t) = (vei(t),i = 1,...,m), t € [0, T], with non-negative and non-decreasing compo-
nents.

We can always continue internal stopping process to the interval [0, co) by the fol-
lowing formula:

V(t) = {vg(t), ifo<r<T, G514

vo(T), ift>T.

Formula (3.8.14) implies that, forevery i = 1,...,m,

Ea(Veilt)) = {EE"(VE"(I))’ ro<r<T. (3.8.15)

Esi(vsi(T))a ift>T.

It follows from formulas (3.8.14) and (3.8.15) that the processes v¢(¢) and C,(¢) take
the values, respectively, v.(T) and C,(T) for ¢t > T.

Formulas (3.8.14) and (3.8.15) allow to derive conditions for J-compactness and J-
convergence of compositions of cadlag processes defined on finite intervals from the
corresponding results for the case of the semi-infinite interval [0, o).

Condition A, takes, in this case, the following form:

Ayg: (Ve(5),8.(2)), (5,1) € VX U = (vo(s), Ey(?)), (s,1) € VX U as ¢ — 0, where (a) U
is a subset of [0, co) that is dense in this interval and contains the point 0, (b) V is
a subset of [0, T'] that is dense in this interval and contains the points O and 7'.



3.8. Vector compositions of cadlag processes 241

The condition for J-compactness of external processes dg does not require any changes.
Condition for J-compactness of internal stopping processes J;,, however, should be
modified to the following form:

357 lime_o limeo P{A;(Ve(-), ¢, T) > 8} = 0, &> 0.

Denote by Rr[vo(:)] the random set of discontinuity points for the process vy(?), t €
[0,T1].
Continuity conditions €, Gg, and H take the following form:

€yt Pvoi(t) = voit”) € R[E;()]} =0 for 0< ¢ <" <T,i=1,....,m;

Sg: Pivoi(t £0) ¢ R[Eni()].i = 1,...,mfor 7 € UL Rr[vo,()]} = 1;
and
Hip: PLIE, 7o) € RIEG()]) < 1 for 1 € [0,TT) = 1.
The following theorem is an analogue of Theorem 3.8.1.

Theorem 3.8.7. Let conditions Ay, dg, d3. G9, and Hy; hold. Then
nn&ﬁ& P{A(C.(), e, T)> 8} =0, &> 0.

Proof of Theorem 3.8.7. It is enough to apply Theorem 3.8.1 to the vector composition
of the processes E.(¢), t > 0 and v.(¢), t > 0, where the latter process is defined in
(3.8.14). Condition A,y implies A,,, condition d,, implies J;,, condition G, implies
Gg, and condition H,; implies Hg. Condition Jg is the same in Theorems 3.8.1 and
3.8.7. The relation of J-compactness given in Theorem 3.8.1 yields, for 7’ > T, the
relation of J-compactness given in Theorem 3.8.7. O

We also use the following modification of condition A 4 where the random variables
v.(T — 0) are additionally included in the relation of weak convergence:

Agy: (Ve(5), ve(T — 0),E,(1)), (5,1) € VX U = (vo(5), vo(T — 0),E((1)), (s,1) € VX U as
€ — 0, where (a) U is a subset of [0, c0) that is dense in this interval and contains
the point O, (b) V is a subset of [0, T'] that is dense in this interval and contains the
points 0 and 7T'.

The following theorem is an analogue of Theorem 3.8.2.

Theorem 3.8.8. Let conditions Asy, dg, 325, G, Hyq, €12 (‘3?) , and (‘ZéT) hold. Then

C.(0),1 € [0,T] -5 Cy(), 1 € [0, T] as € — O.
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Proof of Theorem 3.8.8. Let us apply Theorems 3.8.2 to the vector composition C,(7),
t > 0 of the processes &,(7), ¢ > 0 and v.(¢), t > 0, where the latter process is defined in
(3.8.14). Condition A4, implies A4, condition J,, implies J,,, condition G, implies Gy,
and condition 3, implies Hg. Conditions Jg, 820), and GgT) are the same in Theorems
3.8.2 and 3.8.8. Also, conditions £, and GgT) imply €,. Now, by applying Theorem
3.8.2, we prove J-convergence of the processes C,(¢) on the interval [0, co).

However, this does not automatically yields J-convergence of these processes on
the interval [0, T']. In order to have J-convergence on the interval [0, 7], the random
variables C,(7) must be included in the relation of weak convergence of these processes.
Moreover, if the point 7" is not a point of stochastic continuity for the limiting process
Co(), then the random variables C.(T — 0) should also be included in the relation of
weak convergence on the set So(7) = So N [0, T]. The random variables C.(T') can be
included due to condition CgT). Also, conditions G, and CgT) imply that GET') holds.
To prove this, one can apply (3.6.13) in the case of scalar processes and show that (a)
P{vo:(T — 0) € R[Ey;(-)]} = O for every i = 1,...,m. These relations are equivalent to
condition G(6T_). This condition allows to include the random variables C.(T — 0) in the
relation of weak convergence of the processes C,(?).

The proof is completed by referring to Theorem 1.6.3 that gives conditions for J-
convergence of cadlag processes defined on a finite interval. O

Let us introduce the following condition:

OF): P{Go(T = 0) = Gy(T)} = 1.

Remark 3.8.1. Condition Ag, can be replaced in Theorem 3.8.8 with conditionAg if
the point 7T is a point of stochastic continuity for the limiting process Gy(¢), which is
equivalent to condition O(ITO).

3.8.7. A Polish phase space. Results in this section can be generalised to a model
with external stochastic processes E;(), t > 0 that take values in a Polish space X.

The formulation of condition A, remains without changes. In the conditions Jg,
the Euclidean distance |x — y| must be replaced with the corresponding metric d(x,y)
in the formula for the moduli A;(E(-),¢,T), i = 1,...,m. With these changes in the
conditions, the formulations and the proofs of Theorems 3.8.1 — 3.8.8 can be repeated.

3.8.8. References. Conditions for U-convergence of scalar compositions of cadlag
processes were obtained by Billingsley (1968). Theorem 3.2.1 and Lemmas 3.2.1 —3.2.3
present vector versions of these results in the form given in Silvestrov (1974).

Conditions for J-convergence of semi-vector compositions with a continuous limit-
ing external process, formulated in Theorem 3.3.1, are from Silvestrov (1974). Similar
results were obtained by Whitt (1973, 1980). Theorem 3.3.2 and Lemma 3.2.3 present a
new improved version of Theorem 3.3.1 for vector compositions of cadlag processes.
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Conditions for J-compactness and J-convergence of monotone processes given in
Theorems 3.3.3 and 3.3.4 are from Silvestrov (1974).

Conditions for J-convergence of compositions of cadlag processes with a continuous
limiting internal stopping process, formulated in Theorems 3.4.1 and 3.4.4, are from
Silvestrov (1972b, 1972e). These theorems cover an essential part of applications.

Theorem 3.4.2, which is an equivalent version of Theorem 3.4.1, and Lemma 3.4.1
are from Silvestrov (1974), where condition €, was introduced and used, instead of €.
The latter condition, equivalent to €, but more convenient for application, was given in
Silvestrov and Teugels (1998a) and Silvestrov (2000b). Theorem 3.4.2 is given in a new
form where condition &€, is replaced with condition €;. A weaker form of Theorems
3.4.1 and 3.4.2 was also given by Whitt (1973, 1980) under an additional condition that
the limiting internal process is not only continuous but also strictly monotone. Theorem
3.4.3, with the weakened continuity condition &F, used instead of €,, is a new.

Conditions for J-compactness and J-convergence of compositions of cadlag pro-
cesses for a general model, where both limiting external and internal stopping processes
can be discontinuous, were obtained in Silvestrov (1974). These results are formulated
in Theorems 3.6.1 and 3.6.5, which give conditions for J-compactness of semi-vector
compositions of cadlag processes, and Theorem 3.6.2, 3.6.3, and 3.6.6, which give con-
ditions for J-convergence of semi-vector compositions of cadlag processes. A key role is
played, in these theorems, by continuity conditions of type G, also introduced in Silve-
strov (1974). Theorem 3.6.4, with the weakened continuity condition F;, is a new result
announced in Silvestrov (2002b).

A vector form of these results is also given in Silvestrov (1974). Theorems 3.8.1
and 3.8.7 give conditions for J-compactness of vector compositions of cadlag processes,
whereas Theorems 3.8.2 and 3.8.8 give conditions for J-convergence of vector compo-
sitions of cadlag processes. In these theorems, an important role is played by condition
I introduced in Silvestrov (1974). It should be noted that, in the case of vector com-
positions, the corresponding theorems are given in a new improved form with a weaker
version of J-compactness condition for external processes, Jg, used instead of condi-
tion J, employed in Silvestrov (1974). It should also be mentioned that analogues of
the theorems mentioned above for compositions of non-random cadlag functions, given
in Sections 3.5 and 3.7, are also from Silvestrov (1974). Theorem 3.8.4, which gives
a simple sufficient condition for J-convergence of vector cadlag processes, belongs to
Whitt (1973, 1980). Theorem 3.8.6, where the weakened continuity condition F is
used instead of &€,, is new. This theorem is from Silvestrov (2002a).
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Chapter 4

Summary of applications

This chapter gives a summary of applications of general limit theorems on randomly
stopped stochastic processes and compositions of stochastic processes. The goal is
to show how the general limit theorems given in Chapters 2 and 3 can be applied to
some classical models of cadlag processes with random stopping. These models include
sum-processes (random sums), randomly stopped max-processes (extremes with random
sample size), generalised exceeding processes, and various renewal models, namely,
sum-processes and max-processes with renewal stopping and the so-called shock mod-
els. We also consider some related models, for example, accumulation processes.

First, we present results in the most general form with no special independence as-
sumptions imposed on the random variables that are used to construct the correspond-
ing processes. Then we proceed to the most important case where the corresponding
processes are constructed from sequences of independent identically distributed (i.i.d.)
random variables. We will not extend here the examples to processes defined on Markov
chains, semi-Markov processes, etc. This would overload the book. Bibliographical
remarks reflect our interest in these applications.

The most well known results for classical models of random sums and extremes with
random sample size relate to two classes of models based on i.i.d. random variables.
The first one concerns the model where random stopping indices and the corresponding
external processes are independent. The second one deals with a model in which the ran-
dom indices depend on the external processes but, being properly normalised, converge
in probability. This provides asymptotic independence of the corresponding external
processes and normalised random stopping indices.

We consider a general model where the corresponding external sum- or max-processes
and stopping indices can be dependent in an arbitrary way. We show that weak conver-
gence as well as J-convergence of the corresponding randomly stopped sum- or max-
processes can be obtained under only two conditions. The first one is the condition of
joint weak convergence of the normalised random stopping indices and external sum- or
max-processes with non-random stopping indices, and the second one is the condition
of J-compactness of the external processes. No extra assumptions on their independence
or even on their asymptotic independence is required. In some sense, these results are

245
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surprising. They give a unified approach to various concrete models including those
mentioned above. Theorems 4.2.1, 4.2.2 and 4.7.1, 4.7.2 contain results for general ran-
dom sums and extremes with random sample size, whereas Theorems 4.2.3, 4.2.4 and
4.7.3,4.7.4 cover the case of random sums and extremes with random sample size in the
models constructed from sequences of i.i.d. random variables.

For renewal models, we first concentrate on the model of generalised exceeding pro-
cesses. Such a process is constructed by random stopping of a cadlag process at the mo-
ments when another non-decreasing cadlag process exceeds the levels ¢ > 0. This class
of processes includes many various renewal models. In particular, sum-processes and
max-processes with renewal stopping, as well as shock processes, are examples of the
generalised exceeding processes. We show that weak convergence as well J-convergence
of the generalised exceeding processes can be obtained under the only condition of J-
convergence of two-dimensional cadlag processes used to construct the generalised ex-
ceeding processes. The main results concerning weak convergence are given in Theo-
rems 4.3.1 — 4.3.3 and 4.3.6. The main results concerning the J-convergence are given
in Theorems 4.3.4, 4.3.5 and 4.3.7. The case of step generalised exceeding processes
requires a special consideration. This is done in Theorems 4.4.1 and 4.4.2.

Application of these results to renewal models constructed from sequences of i.i.d.
random variables yields very natural and general conditions of weak and J-convergence
of renewal type processes in general triangular array mode. These results cover many re-
sults in the area, in particular those related to the classical case when external processes
converge to a Wiener process and internal stopping processes converge to non-random
functions. Our main results concerning the classical model of sum-processes with re-
newal stopping is Theorem 4.5.5 that covers the case where the limiting external process
is a Wiener process, and Theorems 4.5.6 and 4.5.7 that treat the general case where the
limiting external process can be an arbitrary cadlag homogeneous process with inde-
pendent increments. In both cases, the corresponding limiting stopping process is an
exceeding process constructed from a non-negative cadlag homogeneous process with
independent increments.

As was mentioned above, we will also consider some models related to renewal type
processes, namely accumulation processes. Here, the main results for general accumula-
tion processes are given in Theorem 4.6.1 and 4.6.2. The case of accumulation processes
with embedded regeneration cycles is covered in Theorems 4.6.3 and 4.6.4.

We also consider two types of models constructed from two dimensional cadlag pro-
cesses which has a sum-process as its first component and a max-process as the second
one.

The first class is represented by max-processes with renewal stopping. Here our main
results concerning weak and J-convergence for these processes are given in Theorems
4.9.1 and 4.9.2. Theorems 4.9.3 and 4.9.4 cover the case of max-processes with renewal
stopping based on sequences of i.i.d. random variables.

The second class is represented by so-called shock processes. Here the main re-
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sult is Theorem 4.10.1, which gives conditions of weak and J-convergence for general
shock processes. Theorems 4.10.2 — 4.10.4 cover the case of shock processes based on
sequences of i.i.d. random variables.

In this context, we would like also to mention Theorems 4.8.1 and 4.8.2, which
gives general conditions of weak convergence and J-convergence for mixed sum-max
processes based on sequences of i.i.d. random variables.

It seems us, results presented in Chapter 4 illustrate in a spectacular way a power
of general limit theorems for randomly stopped processes and compositions of cadlag
processes presented in Chapters 2 and 3.

In Section 4.1, we introduce the models of cadlag processes with random stopping
mentioned above. Section 4.2 contains results concerned randomly stopped sum-proces-
ses (random sums). Limit theorems for generalised exceeding processes are given in
Sections 4.3 and 4.4. Section 4.5 contains results concerned sum-processes with renewal
stopping. Limit theorems for accumulation processes are given in Section 4.6. Limit
theorems for extremes with random sample size are given in Section 4.7. In Section 4.8,
limit theorems for mixed sum-max processes are given. In Section 4.9 limit theorems for
max-processes with renewal stopping are given. The last Section 4.10 contains results
on limit theorems for shock processes. The reference remarks are also given in the end
of this section.

4.1 Introductory remarks

In this section, we describe some basic classes of stochastic processes used in applica-
tions of general limit theorems for compositions of cadlag stochastic processes.

Let us make the following remark. In Chapter 4, we systematically study the so-
called triangular array model in which the stochastic processes, say C.(¢),7 > 0, depend
on some small series parameter € > 0. In the introductory section, however, we restrict
consideration to a simpler model where the dependence of the processes on the parameter
€ is introduced in terms of non-random scale normalisation coefficients u., ¢, > 0, and
the processes have the following structure: C.(f) = T(tt.)/u.,t > 0. This will permit to
concentrate on the structure of the model of the corresponding processes.

We would also like to mention a general convention concerning notations used in
Chapter 4. Henceforth, except for Sections 4.3 and 4.4, the parameter € takes only pos-
itive values and, therefore, the symbol ¢ — 0 means that 0 < ¢ — 0. As a matter of
fact, in Sections 4.3 and 4.4, we consider general cadlag processes that have the same
structure in the pre-limiting case (¢ > 0) as well as in the limiting case (¢ = 0). In other
sections, we consider various models constructed from sequences of random variables,
for example, sum-processes, renewal processes, etc. At the same time, the correspond-
ing limiting processes, usually, are constructed from some homogeneous processes with
independent increments. Their structure differs from the structure of the corresponding
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Figure 4.1: A randomly stopped sum-process.

pre-limiting processes.

4.1.1. Randomly stopped sum-processes (random sums). Let E;,k = 1,2,...be a
sequence of real-valued random variables. The classical object of studies in probability
theory is sums of random variables E(n) = §; +...§,,n =0, 1,..., where §(0) = 0. The
case, where E;,k = 1,2,... are i.i.d. random variables, is the most important and well

investigated.
In order to study the whole trajectory of the sum-sequence E(n),n = 0,1,2,..., it is
convenient to connect with these sums the stochastic sum-process E(t) = 1[;11 &, t=0.

Studies of the asymptotic behaviour are usually concerned with a model in which
the number of summands tends to infinity and the sums are normalised in a proper way.
These elements can be introduced in the following way. Let n., u. be positive functions
of a “small* parameter € > 0 such that n.,u, — o0 as ¢ — 0 (here t, = n.). We will
consider the asymptotic behaviour of the stochastic sum-processes

[ne]
&)= ) Een 120, (4.1.1)
k=1
where the random variables &, = E;/u,, k > 1.

Note that the normalised random variables &, = &;/u.,k > 1 represent a particular
case of the so-called triangular array model in which the random variables &, depend
on a small parameter e.

A natural generalisation is a model in which the non-random indices n., which de-
termine the number of summands, are replaced with non-negative random variables (L.
In this model, the random variables ., € > 0 should be defined on the same probability
space as the random variables &;, k > 1.
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Sum-processes with random stopping index (random sums) appear, for example, in
various sample models with random sample size. In order to have a consistent model,
it is natural to normalise the random variables u. by n. and consider the normalised
random stopping indices v, = u./n., The object of interest is the randomly stopped

sum-processes
[71e]

Ce(t) = D Bes = Eeltve), 12 0. (4.12)
k=1

Relation (4.1.2) shows that the randomly stopped sum-process C.(¢),# > 0 can be
represented in the form of a composition of the external sum-process E.(¢), r > 0 and the
internal stopping process V() = tv,,t > 0.

Figure 4.1 shows the behaviour of the trajectories of a sum-process with non-random
and random stopping.

4.1.2. Randomly stopped max-processes (extremes with random sample size).
Let p,k = 1,2,... be a sequence of real-valued random variables. Another clas-
sical object of studies in probability theory is maxima of random variables p(n) =
max(pi,...,pn),n =0,1,..., where p(0) = 0. Again, the case, where p;,k = 1,2,... are
i.i.d. random variables, is the most important and well investigated.

In order to study the whole trajectory of the max-sequence p(n),n = 0,1,2,..., it 1is
convenient to consider the max-processes p(t) = max << Px, ¢ > 0.

Studies of the asymptotics are usually concerned with a model in which the sample
size tends to infinity and the maxima are normalised in a proper way. These elements
can be introduced in the following way. Let n., u. be positive functions of a “small”
parameter € > 0 such that n,,u, — o0 as ¢ — 0. Consider the asymptotics of the
stochastic max-processes

Pe(f) = max pPeg, t >0, 4.1.3)

1<k<[n.]
where the random variables p.; = px/ue, k > 1.

A natural generalisation is a model in which the non-random indices n. are replaced
with non-negative random variables p.. The random variables ., € > 0 should be defined
on the same probability space as the random variables p, k > 1.

Max-processes with random stopping indices (extremes with random sample size)
appear in sample models with random sample size. In order to have a consistent model,
it is natural to normalise the random variables u. by n. and consider the normalised
random stopping indices v. = W./n.. In this case, the object of interest is the randomly
stopped max-processes

Ce(t) = lgnléa[‘;(ug] Pek = Pe(tVe), 12 0. (4.1.4)

Relation (4.1.4) shows that the randomly stopped max-process C.(¢),z > 0 can be
represented in the form of a composition of the external max-process p¢(?),# > 0, and
the internal stopping process V(t) = tve,t > 0.
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(a) A max-process. (b) A random stopping.

Figure 4.2: A randomly stopped max-process.

Figure 4.2 shows the behaviour of trajectories of max-processes with non-random
and random stopping.

4.1.3. Renewal type processes. This is one of the models of stochastic processes
widely used in applications, e.g., queuing theory, reliability theory, etc. Let K,k =
1,2,...be asequence of non-negative random variables. Let also x(n) = K1 +...K,,n =
0,1,..., where k(0) = 0. The random variables k(n) are usually interpreted as “renewal”

moments. A standard additional assumption is that the random variables «(n) L 00
as n — oo. The case, where K,k = 1,2,... are i.i.d. random variables, is the most
important and well investigated. As above, the corresponding sum-processes can be
constructed as x(¢) = ,E’i Kk, £20.

Let n., t. be positive functions of a “small” parameter € > 0 such that n,, ., — oo as
e — 0. The corresponding normalised version of the process k(z),# > 0 can be defined
by

[me]
Kef) = ) Kepo 120, (4.1.5)
k=1
where the random variables K. = K /t., k > 1.
The renewal process can be defined by u(¢) = min(n : k(n) > t) = inf(s : K(s) > ) =
sup(s : x(s) < t),t > 0. The corresponding normalised version of the renewal process
with rescaled time can be defined by

Ve(t) = Wtte)/ne = sup(s : K (s) < 1), t = 0. (4.1.6)
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Figure 4.3: A renewal process.
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Figure 4.4: A sum-process with renewal stopping.
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Figure 4.3 shows the behaviour of trajectories of a non-negative sum-process and the
corresponding renewal process.

There is a slightly modified version of the renewal process, which is defined by
W) = w) — 1 = max(n : x(n) < t). The process () = u(¢) — 1 counts the number of
renewal moments in the interval [0, 7]. The corresponding normalised version of the re-
newal process with rescaled time can be defined by v (¢) = w'(tt,)/n. = ve(t)—1/n,, t > 0.

4.1.4. Sum-processes with renewal stopping. We are now in a position to introduce
a model for randomly stopped processes, which generalises the model of renewal pro-
cesses. This model is also widely used in queuing theory, insurance mathematics, etc.
Let (kx, &),k = 1,2, ... be asequence of random vectors with, respectively, the first com-
ponent non-negative and the second one real-valued. As above, k(n) = K| +...K,, &(n) =
E1+...E, n=0,1,..., where k(0) = §0) = 0. The case, where (k;, &),k =1,2,...are
i.i.d. random vectors, is the most important and well investigated. Let us introduce sum-
process with renewal stopping by T(t) = Z][(”:(i)] & = E(u(®)),t > 0, where E(7) = ][fil Ex
and w(?) = sup(s : x(s) <1),t> 0.

The corresponding normalised version of sum-process with renewal stopping and
rescaled time can be defined by

Ce(1) = E(W(tte))/ue = Ee(ve(D)), 1 20, (4.1.7)

where E.(1) = E(tn,)/u. and v,(t) = w(ite)/ne.
A slightly modified version of sum-process with renewal stopping and rescaled time
can be defined by

Ce(®) = Be(v (1) = Ee(ve(®) — 1/me), 1 2 0. (4.1.8)

Figure 4.4 shows the difference in the behaviour of trajectories of the processes
Ce(?),t > 0and T.(2), 1 > 0.

4.1.5. Accumulation processes. This model deals with a cadlag stochastic process

C(1),t = 0 and a sequence of random renewal moments 0 = 1) < T; < T, < ... such

that T, P, w0 asn — co. Both the process and the sequence are defined on the same
probability space. Let us also define random variables K; = T, — T4_1, & = 0(Tx) — T(T—1)
and G; = Sup,(,, ) |C(*) — C(vi—1)|, for k > 1. The basic case is where (&, &, k), k > 1
is a sequence of i.i.d. random vectors.

The random variables k; are usually interpreted as times between successive “re-
newals”, T as successive renewal moments, C; as accumulations between the successive
renewals, and g, as oscillations of the accumulation process T(t),t > 0 between succes-
sive renewal moments.

The key role in studying limit theorems for accumulation processes is played by
the following representation of the accumulation process C(7),# > 0 in the form of a
renewal type random sum: (a) ¢(r) = T(0) + Zz(ﬁ_l E +g(2),t > 0, where (b) g(t) =

Lo - 50) - X497 g, 1 > 0, and (¢) W(r) = min(n : v, > 1), > 0. This representation
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Figure 4.5: An accumulation process.
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Figure 4.6: A max-process with renewal stopping.



254 Chapter 4. Summary of applications

|
ps(t) | 5?1;1 L Ve(?)
————p
| e 4! r—J
— oLl 307 - |
p£,2
e | Pes 2n;' —>
ps,l
I R n;'! >
| | | | | ! | | !
> | | | | | | |
n' 2n7' 3n7' 4n;! 5n]! Pe.l Pe2  Ped
(a) A max-process. (b) A max-renewal process.

Figure 4.7: A max-renewal process.

also implies the following estimate for the residual accumulation process g(t),t > 0: (d)
IS(H)] < max;<x<u Sk, 2 0.
The corresponding normalised version of representation (a) takes the form

Ce(t) = T(tte) /ue = Ee(ve(t) — 1/ne) + G(tte) /e, t > 0, 4.1.9)

where &.(t) = &E(tn.)/u, = Z][:ZE)] Ei/ute, S = E(0) and v, (1) = W(tte) /ne.
Figure 4.5 illustrates the behaviour of trajectories of an accumulation process and the
corresponding embedded sum-process with renewal stopping.

4.1.6. Max-processes with renewal stopping. Let (k;,px),k = 1,2,... be a se-
quence of random vectors with, respectively, non-negative and real-valued first and sec-
ond components. As above, k(n) = K| + ...K,, p(n) = max(py,...,p.),n = 0,1,...,
where k(0) = p(0) = 0. Again, the case, where (k,pr),k = 1,2,... are i.i.d. ran-
dom vectors, is the most important and well investigated. The max-processes with
renewal stopping can be defined by T(f) = maxig<ue px = p(W®),t > 0, where
p(?) = max;<x<[y Pr. t > 0 and w(#) = sup(s : x(s) < 1), > 0.

The corresponding normalised version of this process with rescaled time is defined
by

Ce(0) = p(u(tte)) [ue = pe(ve(D), =0, (4.1.10)
where p¢(f) = pe(tn)/u, and v¢(t) = w(tt.)/ne.

Figure 4.6 shows a typical trajectory for a max-process with renewal stopping.

4.1.7. Shock processes. Shock processes are constructed in a way opposite, in some
sense, to the one employed for max-processes with renewal stopping. In this model, a
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(a) A sum-process. (b) A shock process.

Figure 4.8: A shock process.

sum-process is randomly stopped at moments when the max-process exceeds the lev-
els t > 0. In this model, one should first define the so-called max-renewal process.
Let (§, pi), k = 1,2,... be a sequence of random vectors with the first component be-
ing non-negative and the second one real-valued. As above, E(n) = &, +...&,,p(n) =
max(py,...,p.),n = 0,1,..., where E(0) = p(0) = 0. The most important and well
investigated is again the case where (§;, pr),k = 1,2,... are i.i.d. random vectors. To
avoid the situation where the random variables are improper, one should assume that the

random variables p(n) LA as n — oo. A max-renewal process can be defined by
w#) = min(n : p(n) > t) = sup(s : p(s) < 1),t > 0. Then, the corresponding shock
process can be defined as C(¢) = E(u(?)), t > 0, where E(t) = ,[le .

The corresponding normalised version of a max-renewal process with rescaled time
can be defined by

Ve(#) = W(tte)/ne = sup(s : pe(s) < 1), t >0, “4.1.11)

where p.(t) = p(tn,)/t. (note that the normalisation function 7, is used instead of u., since
the latter function is used as a normalisation function for the external process E.(f) =
/[Zi] $ék/ us)-
Then the corresponding normalised version of the shock process with rescaled time
can be defined by

Cs(t) = E(M(tts))/us = EE(VE(I)), t>0. (4112)

Figures 4.7 and 4.8 illustrate the behaviour of the trajectories of a max-renewal pro-
cess and a shock process.
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(a) A non-decreasing basic process. (b) An exceeding time process.

Figure 4.9: An exceeding time process.
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(a) An external process. (b) A generalised exceeding process.

Figure 4.10: A generalised exceeding process.
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4.1.8. Generalised exceeding processes. Such processes are constructed with the
use of random stopping of a cadlag process &(f),# > 0 at the moments when another
non-decreasing cadlag process k(s), s > 0 exceeds the level # > 0. So, we first introduce
the exceeding time process W(t) = sup(s : x(s) < #),t > 0, and then the generalised
exceeding process as the composition {(7) = E(w(?)), 7 > 0.

The corresponding normalised versions of the processes &(¢),# > 0 and k(7),t > 0
can be defined by

E.(1) = E(tng) [ ug, Ke(t) = K(tng)/te, t > 0. (4.1.13)

Then the normalised versions of the exceeding time process and the generalised ex-
ceeding time process can be defined by

Ve(t) = W(tte)/ne = sup(s : Ke(s) < 1), £ >0, 4.1.14)

and
Cs(t) = C(tts)/us = Es(vs(t)), t>0. (4115)

This class of processes includes many renewal type models. In particular, sum-
processes and max-processes with renewal stopping, as well as shock processes, are
examples of the generalised exceeding processes.

Figures 4.9 and 4.10 show the behaviour of trajectories of an exceeding time process
and a generalised exceeding process, respectively. To show the relation between the
corresponding trajectories, we took an example of concrete realisations shown in these
figures.

4.2 Randomly stopped sum-processes

In this section, we will study limit theorems for the classical model of randomly stopped
SUmM-processes.

4.2.1. Sum-processes with random stopping indices. Let, for every ¢ > 0, &,
n=1,2,...be asequence of real-valued random variables and u. a non-negative random
variable. Further, we need a non-random function n, > 0 of parameter € such that
n, — oo as e — 0.

Consider a sum-process with non-random stopping index,

()= ) Eu 120,

k<tng

We will be interested in an analogue of this process the stopping index of which is
also random. So, define the cadlag process

Cs(t) = Z Es,k’ t>0.

k<tu
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Denote by v, = u./n. the normalised random stopping index. Then the process
Ce(?) = Ee(tve), t > 0 can be represented in the form of a composition of two processes
Ee(1), t > 0 and v(t) = tv, t > 0.

Consider the following weak convergence condition:

At (e, Ee(0), 1 € U = (vg, (1)), € U as ¢ — 0, where (a) vy ia a non-negative
random variable; (b) y(¢), r > 0 is a cadlag process; (c) U is a subset of [0, co) that
is dense in this interval and contains the point 0.

Let us also assume that the following condition of J-compactness holds for the sum-
processes E.(1),t > 0:

53 lim o lime o P{A/(Ec(), ¢, T) > 8} = 0, 8,T > 0.

Denote by W, the set of ¢ > 0 such that P{t;,/vo =t} = Oforall k,n = 1,2,...,
where t;,, k = 1,2,... are successive moments of jumps of the process Ey(z), t > 0,
with absolute values of the jumps lying in the interval [%, anl) (see Subsection 2.2.6 for
details). Recall that the random variables T, take values in the interval (0, co] and the
random variable v, takes values in the interval [0, o0). So, the random variable T,/vo
takes values in the interval (0, co], that is, it is positive and, possibly, improper.

The set W, coincides with [0, co) except for at most a countable set. Also, 0 € Wj,.
Indeed, the set W, = [0, 00) \ W, coincides with the set of all atoms of the distribution
functions of the random variables t;,/vg, k, n = 1,2, .... This set is at most countable
and 0 ¢ W,. Therefore, the set W, equals [0, co) except for the countable set W,. Also,
0eWw,.

Note that W, is a set of points of stochastic continuity for the process Ey(tvy), t > 0.

The following theorem is a direct corollary of the results in Silvestrov (1971b, 1972a,
1972b).

Theorem 4.2.1. Let conditions A, and J,; hold. Then
Ce(t) = Ee(tve), 1 € Wy = Co(1) = Eo(tvo), 1 € Wy as € — 0.

Theorem 4.2.2. Let conditions As; and J,3 hold. Then

Ce(),t>0 N Co(),t>0ase — 0.

Proof of Theorems 4.2.1 and 4.2.2. These theorems are direct corollaries of Theorems
2.6.1 and 3.4.1 applied to the processes E.(7), > 0 and v(¢) = tv,,t > 0. Condition
Aj, obviously implies in this case that condition LA}, holds with the set V = [0, ).
Condition {,; coincides with condition J,. By the definition, the set W is a set of all
points w > 0 that satisfy condition G(Sw). Therefore, by applying Theorem 2.6.1, we
obtain weak convergence of the compositions C.(¢) = E.(¢v,) on the set W,
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Condition As; obviously implies in this case that condition A5 holds. Also, condi-
tion J,; coincides with condition J,. Condition €, holds, since W, equals [0, co) except
for at most a countable set, and also 0 € W,. Finally, condition B, holds, since the
limiting stopping process vo(f) = vy, t > 0 is continuous. Therefore, applying Theorem
3.4.1 proves that the compositions C¢(7),t > 0 J-converge to the process Co(7),7 > 0 as
e — 0. |

Remark 4.2.1. Theorems 4.2.1 and 4.2.2 are also direct corollaries of the translation
Theorems 2.8.2 and 3.4.4. This can be seen by applying these theorems to the compo-
sitions Ce(f) = E.(¢ve), t > 0 in the case where the constant oo = 0 and i(x) = 1 is taken
as the slowly varying function. However, one should involve in this case the additional
condition J that requires a.s. positivity of the random variable vy.

Note that Theorems 4.2.1 and 4.2.2 do not require any independence conditions to
be imposed on the random variables &, ,,n = 1,2, ... and the stopping indices V..

It should also be noted that there is an advantage to formulate Theorems 4.2.1 and
4.2.2 separately. As a matter of fact, Theorem 4.2.1 gives additional information about
the set of weak convergence of the processes C.(7), ¢ > 0.

4.2.2. Sum-processes based on i.i.d. random variables. Let us now consider the
classical case where the following condition holds:

Ty Eenon = 1,2,...1s (for every € > 0) a sequence of real-valued i.i.d. random
variables .

In this case, the process E(¢), t > 0 is a sum-process of i.i.d. random variables.

Let us recall conditions for weak convergence of such processes known as the cen-
tral criterion for convergence in the form given, for example, in Loeve (1955). These
conditions involve the tail probabilities, the truncated means, and the truncated variances
of the random variables &, ;:

8;: (a) n.P{E 1 > v} —» my(v) as ¢ — 0 for all v > O that are points of continuity of
the limiting function m,(v);

(b) n.P{E; < v} — m(v) as ¢ — O for all v < 0 that are points of continuity of
the limiting function m,(v).

8,0 n:EE1%(|E:.1l < v) — a(v) as € — 0 for some v > 0 for which the points +v are
points of continuity of the limiting function m,(v).

83 n. Varg. %€l < v) - b* as ¢ — 0 and then v — 0. This expression refers to

two iterated limits of the form limg-,_o lim,_o and limg-,_ lim_ .
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The limits above satisfy a number of conditions: (a) the function 7,(v) is non-
negative, non-increasing, and right-continuous for v > 0 and mt,(c0) = 0; (b) the function
7, (v) is non-negative, non-decreasing, and right-continuous for v < 0 and m,(—o0) = 0;
(¢) for these functions, define a measure I1,(A) on B,, the Borel o-algebra of subsets of
(—00,0) U (0, 00), by the relations I1,((vy, v2]) = ma(vy) — ma(vp) for 0 < vy < vy < 00
and [1,((vi, v2]) = m(vy) — my(vy) for —co < vy < vy < 0; (d) this measure possesses the
following property: Jgkl %Hz(ds) < oo, where f is the integral over the corresponding
interval with the point O excluded from the interval of integration; (e) under 8,, condition
8, can hold only simultaneously for all points v > 0 such that +v are points of continuity
of m,(v) and, for any such points satisfying 0 < v; < v, < oo, the following equality
holds: a(vi) = a(vy) = [ 75Th(ds) - [ . 5Th(ds); (f) the function a(v) is
real-valued and b? is a non-negative constant.

The central criterion for convergence states (in a form that extends the correspond-
ing one-dimensional result) that conditions 8, - 85 are necessary and sufficient for the
following condition of weak convergence to hold:

Asy: E(),t > 0 = Eo(1),t > 0as e — 0, where Ey(), > 0 is a cadlag homogeneous
process with independent increments.

The limiting process Ey(7),¢ > 0 in As, has the characteristic function given, for
every ¢ > 0, by the following Lévy—Khintchine representation formula:

E exp{izEo(1)} = da(t,2)

o N izs @2.1)
= exp{t(iaz — Ebzzz + Jil(ez -1- o, S2)H2(ds))}
with the constant
) s H<d>+f ' IL(ds) 4.2.2)
a=daly)— S ) L.
Is|<v 1 + S2 2 Is|>v 1 + S2 2

that does not depend on the choice of the point v in §,.
Moreover, as was shown by Skorokhod (1957, 1964), conditions 8§, - 8; without any
additional assumptions imply that

£.(1).12 0 -5 Ey(1),t = 0as e — 0. (4.2.3)

In conclusion, let us also recall that the cadlag homogeneous process with indepen-
dent increments Ey(t), t > 0 can be decomposed into a sum of two independent processes,

Eo(r) = Ey(1) + E; (1), t =20, 4.2.4)
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where E)(t), t > 0, is a Wiener process, that is, a continuous homogeneous process with
independent increments and the characteristic function given, for every ¢ > 0, by the
formula

Emm@w»:%m@:mmmm—%wﬁ, 4.2.5)

and &[ (1), t > 01is a cadlag homogeneous process with independent increments of Poisson
type and the characteristic function given, for every ¢ > 0, by the formula

i

E explizE) (1) = ¢5(1.2) = exp(t f (€ = 1 = 2 TL(ds)). (4.2.6)
R, 1+

In conclusion, note a is usually referred as a drift, b as a diffusion (coefficient) and
I1,(A) as a jump measure for the process Ey(1), t > 0.

4.2.3. Randomly stopped sum-process based on i.i.d. random variables. We
now generalise the limit theorems given in condition As, and relation (4.2.3) to sum-
processes with random stopping indices. Of course, we have to put some condition on
the asymptotic behaviour of the random stopping indices. Such a minimal condition
would be

Aszt Ve = 1e/n, = vy as € — 0, where vy is a non-negative random variable.

Conditions As, and As; are sufficient to imply weak convergence of sum-processes
with random stopping indices in the case where the sum-process E.(¢), t > 0, and the ran-
dom stopping index v, are independent. However, it is clear that, if they are dependent,
conditions A5, and .A 53 should be replaced with a stronger condition expressed in terms
of the joint distribution of v, and E.(¢), t > 0. The following condition plays a key role
in subsequent consideration:

Ayt (Ve, Ee(0), 1 = 0 = (vo,E0(r)),t > 0 as € — 0, where (a) vy is a non-negative
random variable, and (b) §y(¢), r > 0 is a cadlag homogeneous process with inde-
pendent increments.

Due to relation (4.2.3), condition A, implies that condition J,; holds. So, applying
Theorems 4.2.1 and 4.2.2 we can formulate the following two theorems.

Theorem 4.2.3. Let conditions T, and As, hold. Then
Ce(1) = Ee(tve), 1 € Wo = To(t) = Eo(tvo), 1 € Wy as e — 0.

Theorem 4.2.4. Let conditions T, and As, hold. Then

C(0).120 -5 to().t>0ase — 0.
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We remark once more that external sum-processes and random stopping indices in
Theorems 4.2.3 and 4.2.4 can have an arbitrary form of dependence. The only condi-
tion required is that of joint weak convergence of these processes. No independence
or asymptotic independence conditions for random stopping indices and external sum-
processes are needed.

4.2.4. The structure of the set W,. Let us recursively define 14, = inf(s > T;_y,:
€5 (s) — &G (s = 0)] € [+, —= l)) k=1,2,... where 1y, = 0. The random variables T, are
successive moments of jumps of the process E(¢),7 > 0 that have the absolute values
in the interval [l L) By the definition, t;, = oo if such a jump does not exist. Since
the process Eo(t) t > 0 is continuous, the processes Ey(t), t > 0 and E;(r), t > 0 have
the same points of jumps. So, the set of points of discontinuity R[Eo(-)] = R[E[ (")

{Tin: k,n=1,2,...}.

By the deﬁnition, the set W, is a set of all ¢+ > 0 such that P{rvy = 1;,} = 0 for all
k,n = 1,2,.... So, we can define the set W, as a set of all + > 0 satisfying P{rvy €
R[EJ ()]} = 0, that is, as a set of all w > 0 satisfying condition G(w)

It is useful to generalise the indexing scheme for points of jumps of the process E[ (¥),
t>0.LetA,,n=1,2,...be asequence of sets such that (a) A, C { x: |x| > a, }, where
0<a,— 0asn — oo (b)A NA, = ®1fn #n"”;(¢) Uy A, = Ry \ {0}. Define now,
recursively, Ty, = inf(s > T_1,: [(s) — -0)eA), k =1,2,..., where Ty, = 0. By
the definition, T, = oo if such a jump does not exist.

Obviously, the random points T, index the same random set R[E(-)] of discontinuity
points of the process E[ (), t > 0, i.e., the random set R[Ey(-)] = R[EJ()] = { T : k,n =
1,2,...} for any sequence A,, n = 1,2,... that satisfies conditions (a)—(c). By the
deﬁnition, Tin> kK = 1,2, ... are successive moments of jumps of the process E{(¢), t > 0,
with values of the jumps in the set A,. If a, = n™', n = 1,2,..., and the sets A, =
{x:|x] € [n — 1 },n=1,2,..., then the random variables %, = T, k,n > 1.

The set W, coincides With the set of all # > 0 such that P{rvy = %;,} = O for all k,
n = 1,2,.... Therefore, the set W, = [0, 00) \ W, coincides with the set of all atoms of
the distribution functions of the random variables %, /vy, k,n = 1,2,.... This set is at
most countable. The set W, equals [0, co) except for the set Wo. Also, 0 € W,,.

Denote A, = II,(A,). Since E(), t > 0 is a cadlag homogeneous process with
independent increments, there are only two alternatives for every n > 1: (d) if A, = 0,
then T;, = co with probability 1 for all k > 1; (e) if A, > 0, then T;,, < co with probability
1 for all k > 1. In the latter case, the random variables T;,, kK > 1 are successive moments
of jumps of the Poisson process w,(f) = max(k > 0: T, < 1), ¢t > 0 that counts jumps of
the process &{ (¢) in the interval [0, #] with values in the set A,,. The Poisson process ,(t),
t > 0 has an intensity parameter A,,. Thus, the random variable %, has Erlang distribution
with the parameters k and A,,.

If the process Ej(z), t > 0 and the random variable v, are independent, then the

set Wy is empty and, therefore, the set W, = [0, c0). This follows from the fact that
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the random variables T, have continuous distributions and are independent of v,. Note
that the process E((¢), t > 0 and the random variable v, can have an arbitrary form of
dependence.

However, the assumption of independence of the process E((¢), t > 0 and the random
variable v, can be replaced with a weaker assumption that the random variables T, and
vo are independent for every k, n = 1,2, .. .. In this case, the process E( (¢), t > 0, and the
random variable v, can be dependent. For example, the random variable v, can depend
on values of jumps of the process Eg(t), t > 0 at the points T, k, n = 1,2,.... Also, as
was mentioned above, the process & (), > 0 and the random variable v, can also be
dependent. Still, the set W, = [0, o).

It is also clear that the distribution functions of the random variables %;,/vy can be
continuous even in the case where the random variables 7, and v, are dependent.

First of all note that the sets of random variables {%;,,k = 1,2, } are mutually inde-
pendent for n = 1,2,.... This is so because the corresponding Poisson processes W,(?),
t > 0 are mutually independent for n = 1,2, ... due to the fact that the sets A,y NA,» = @
forn’ # n”.

Let us consider an example where vy = T,,,. It follows from the remark above
that the random variable T, /%,,, has a continuous distribution function if n # ng for
every k = 1,2,.... Consider the case where n = ng but k # k. If k > ko, then the
random variable Ky, = Tkn — Tiyn, 18 independent of the random variable T ,,. It has
Erlang distribution with the parameters k —k( and A,,. So, the random variable T, /T, =
1 + Kikon/Thon, has a continuous distribution function. If k < ko, then the random variable
Kkkon = Tiony — Tkn 18 independent of the random variable % ,,. It has Erlang distribution
with the parameters ko—k and A,,. Again the random variable Ty, /Txn, = 1 —Kokn/Tion, has
a continuous distribution function. It remains to consider the case where (n, k) = (ng, ko).
In this case, the random variable %, /%,,, = 1. This random variable has the only one unit
atom at the point ¢ = 1. Taking into consideration the remarks above one can conclude
that, in the case where vy = Ty, the set Wy = [0, 00) \ {1} = [0, 1) U (1, 00).

It should be noted that in this particular example the condition in‘w) holds for the
corresponding external processes E.(), t > 0 and the stopping processes Vv (f) = Ve, t >
0, for every w > 0. Thus, applying Theorem 2.6.4 would yield a better result, namely, it
would prove weak convergence of the compositions E.(#v.) on the whole interval [0, co).

Let us modify the above example and consider the case vy = T, + fo, Where
is a positive constant. In this case, using the same reasoning one can show that the
random variable Ty, /(Tk,,, + f0) has a continuous distribution function if (n, k) # (ng, ko).
However, even in the case where (n, k) = (ny, ko), the random variable Ty, /(Tx,,, + to) has
a continuous distribution function. Taking this into consideration one can conclude that,
in the case where vy = T, + fo, the set Wy = [0, 00).

One can easily generalise this example to the case where the random variable vy =
fRion)- Here f(x) is a non-random measurable function defined on [0, c0) and positive
almost everywhere with respect to the Lebesgue measure on [0, co).



264 Chapter 4. Summary of applications

If (n, k) # (no, ko), independence of the random variables Ty, — Ty,n, and f(Tx,,,) Im-
plies that the random variable %,/ f (k) has a continuous distribution function. Let
us now consider the case where (n,k) = (ng, ko). Denote B, = {t > 0: t/f(t) = s},
s 2 0. ObViOHSly’ P{ikono/f(fkono) = S} = P{fkono € Bs} = J(;oo XBS(t)Pko,an(f) dr, where
Drony(2) 1s the probability density of Erlang distribution with the parameters &y and A, .
Since py,a,, (1) > 0 for ¢ > 0, this probability equals 0 if and only if the Lebesgue mea-
sure m(B;) = 0. Hence, the random variable T,/ f (Tk,n,) has a continuous distribution
function if and only if m(B;) = 0 for all s > 0. So, in the case vy = f(T,y,), the set
Wy = [0, o) if and only if m(By) = 0 for all s > 0. Otherwise, the set W, which is at
most countable, is a set of s > 0 such that m(B;) > 0.

A similar analysis can be carried out in the case where v, is a function of several

random variables T;,,.

4.2.5. Random stopping indices converging in probability. Let us now consider a
model where the random stopping indices v, converge in probability.

It is natural to assume in this case that the random variables &, ,, n = 1,2,... and
u. are defined on the same probability space for all € > 0. We also assume that the
independence condition imposed on the random variables &, , is satisfied in the following
stronger form:

J,: The sets of random variables {&; ,, € > 0} are mutually independent for n > 1.

It is obvious that conditions J; and J’, hold for the scale-location model. In this case,
the random variables &, have the form &, = (§,—a.)/b., where §,,n = 1,2, ... arei.i.d.
random variables and a, and b, are some non-random centralisation and normalisation
constants. It also holds for a more general model with random the variables &, , = h.(E,),
n=1,2,... where h.-) are non-random measurable real-valued functions.

The condition of weak convergence As, is replaced with two conditions. The first
one is the condition As, of weak convergence of sum-processes with non-random stop-
ping indices. The second one is the following condition of convergence of normalised
stopping indices in probability, which is stronger than As;:

P . . .
P ve = ne/ne — Vo as € — 0, where v is a non-negative random variable.

The simplest classical case, first studied by Anscombe (1952), is where v is a con-
stant with probability 1.

The following lemma shows that the model with normalised stopping indices con-
verging in probability is a particular case of the model where the condition of joint weak
convergence of external sum-processes and stopping indices As, is involved. The fol-
lowing lemma is a generalisation of the well known result of Rényi (1958, 1960) to the
triangular array mode.

Lemma 4.2.1. Let conditions T, T, As, (or 81 - 83), and P, hold. Then condition As,
holds, moreover, () the limiting process Ey(t), t > 0 and the limiting random variable
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vo are independent; (B) Eo(2), t > 0 is a cadlag homogeneous process with independent
increments which has the same finite-dimensional distribution as the corresponding pro-
cess in condition Asy; (Y) vo is a random variable which has the same distribution as
the the corresponding random variable in condition P,.

Proof of Lemma 4.2.1. Take an arbitrary subsequence 0 < €, — 0 as n — oo and choose
some(0 <t <...<t, <ocoand s <...<s, < oo that are points of continuity for the

distribution functions of the random variables Ey(t), . . ., Ey(Z,), respectively. Define
Ay =18t = ), Ex<sjpi=1....7h
kSl‘an"
and

A:{EO(tj)Ssj’j: 1,...,1"}.

First, we are going to prove that the sequence of events {A,} is a mixing sequence in
the sense of Rényi (1958), that is, for any [ > 1,

lim P(A, N 4;) = P(A)P(A)). 4.2.7)

Let us introduce the random variables

= D B Ei= D, G i=loor

k<t,n, tyng; <k<tjne,

Also denote
A =PE <spj=1,....7}

By the definition, the events A,,; and A; are independent for n large enough, more
precisely, if t,n,, < tin,,.

.. . P
From conditions A, and T, it follows that &, , — 0 as n — oo and, consequently,

£ 5 0asn— oo. (4.2.8)

From conditions As,, T, J,, relation (4.2.8), and the remark about independence of
the events A,,; and A,, it follows that

lim P(An N Al) = lim P(Anrl N A[)

. . (4.2.9)
= lim P(A,,)P(4;) = lim P(A4,)P(A)) = P(A)P(A)).

Relation (4.2.9) means that the sequence A, is mixing in the sense of Rényi (1958)
and so, for an arbitrary random event B,

P(A, N B) — P(A)P(B) as n — . (4.2.10)
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Consider the event as B, = {vy < z}. Let also B, ,, = {v,, < z}. Condition P, implies
that probability of the symmetric difference of these events tends to zero for any z if it is
a point of continuity for the distribution function of the random variable vy, i.e.,

P(B,AB,,) » 0asn — oo. (4.2.11)
Using asymptotic relations (4.2.10) and (4.2.11) we finally get
lim P(A, N B;,) = lim P(A, N B;) = P(A)P(B,). (4.2.12)

Since the points 0 < #; < ... <t, <ooand s; <...< s, < oo, and the subsequence
€, — 0 were chosen arbitrarily, relation (4.2.12) yields the statement of Lemma 4.2.1.
O

The following theorem gives a triangular array version of the results known in dif-
ferent variants for the case of the scale-location model. Because of Lemma 4.2.1, these
theorems directly follow from Theorems 4.2.3 and 4.2.4. Note that we use the fact that
the set Wy = [0, oo) if the limiting external process and limiting stopping index are inde-
pendent.

Theorem 4.2.5. Let conditions T, T,, As, (or 8; - 83), and P hold. Then condition
A, holds with the process E(?), t > 0 and the random variable v, which are independent,
and

Ce(?) = Ee(tve), 1 > 0 = To(t) = Ep(tvg),t > 0as e — 0.

Theorem 4.2.6. Let conditions T, T, As, (or 8; - 83), and P, hold. Then

C(0).12 0 = Co(1).1 > Oas e — 0.

Remark 4.2.2. In the particular case, where the limiting stopping index v is a constant,
Theorem 4.2.1 can be associated with well known Anscombe theorem. This theorem
(see Anscombe (1952)) gives conditions for weak convergence of randomly indexed
stochastic sequences in the model with stopping indices asymptotically degenerating in
a constant. Applied to randomly stopped sum-processes based on i.i.d. random variables
(in the scale-location model), Anscombe theorem gives the result equivalent to Theorem
4.2.1, in the case where vy = const with probability 1.

4.2.6. Translation theorems for sum-processes with random stopping indices.
Let us consider the case where the random variables &., = (&, — a.)/n¢h(ne), n =
1,2,..., where (a) a = const > 0, and (b) h(x) is a slowly varying function.

Consider the processes

E; — A
0= 0 e 20

k<tu,

Applying Theorems 2.8.2 and 3.4.4 to these processes yields the following transla-
tion theorems.
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Theorem 4.2.7. Let conditions T, and Asy hold. Then
Cé(t), teW,= ca(l‘) = Vaago(t\/o),t e Woase — 0.

Theorem 4.2.8. Let conditions T, and As, hold. Then

L0).t2> 0 -5 T2 0ase — 0.

Consider the scale-location model where € = n~!,n, = n, and €, = (&, —an)/n*h(n).
Here €, k = 1,2, ... are i.i.d. random variables, a, are some non-random centralisation
constants, /(x) is a slowly varying function.

It is well known (see, for example, Feller (1966)) that in this case a € [1/2, c0) and
the limiting process with independent increments Ey(¢), ¢ > 0 is a stable with parameter
a. With a minor exclusion (non-symetrical case with a = 1), it has the characteristic
function of the form E exp{is§y(r)} = exp{—lsl“_]c(s)t}, t > 0, where c(s) = c (s >
0) + c_y(s < 0). In this case, if the random variable v, and the process Ey(¢), t > 0 are

independent, then the process v,*Eo(tvo),t > 0 4 Eo(1),t > 0.

4.2.7. Asymptotics of the sample mean for a sample with random sample size.
One of typical examples related to this model concerns the asymptotic distribution of
the sample mean for a sample with random sample size. Let §;, E,, ... be a sequence of
i.i.d. random variables with EE, = m,Varg, = o®> < oco. Let also w,,n = 1,2,... be
non-negative integer random variables defined on the same probability space.

In this case, it is convenient to index the corresponding processes with the index n,
that is, to use € = % as the small parameter. Without loss of generality, one can also use
n. = n as the normalisation constant.

Let us introduce normalised stopping indices and sum-processes with non-random
indices in the following form:

: &~
w=tgm=)

k m
,1>0.
k<tn 0\/71

Condition A, takes the following form:

Ass: (v, En(0), 1 = 0 = (vo,Ep(2)), 1 = 0, as n — oo, where (a) v, is a positive random
variable, and (b) Ey(7) = w(r),t > 0 is a standard Wiener process.

Let us consider the processes

AOEDY %QM—TJZ 0.

k<tu,

We can apply Theorems 4.2.7 and 4.2.8. Since E((7),# > 0 is a continuous process,
the set of weak convergence W, = [0, 00). Also, since the corresponding limiting process
Eo(tvp), t > 0 is continuous, J-convergence and U-convergence are equivalent.
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Theorem 4.2.9. Let Var&, = o> < oo and condition Asg hold. Then

0,12 0= Tyn) = vy Eg(rvo), £ > 0 as n — co.

Theorem 4.2.10. Let Var &, = o> < oo and condition Ass hold. Then

0,120 -5 T, 1= 0asn — oo

If the random variable v, and the process E(t), ¢ > 0 are independent, then the pro-
cess v;%Eo(vot), t>02 Ey(1),t> 0.

Theorems 4.2.9 and 4.2.10 can be used to asymptotic confidence intervals and tests
for the unknown mean m in the model with a random sample size in the case where the
variance o? is known. However, these theorems can easily be modified to cover the case
of unknown variance.

Let us define a sample mean and a sample variance as follows:

_ +...+E, 1 « _
A Rt S o
k=1

n T n-1

Consider the stochastic process

& —m
L) = 120.
kZmn Sun \/m

Theorem 4.2.11. Let Var&; = o < oo and condition Ass hold. Then

G0,t20= L0 =v, %EO(WO), t>0asn— oo,

Theorem 4.2.12. Let Var&, = o> < oo and condition Asg hold. Then

L.t 20— T, 1> 0asn — oo,

Proof of Theorems 4.2.11 and 4.2.12. 1t is well known that X, 2l masn — oo and
, PI

§2 —s 0% as n — oo. Due to Lemma 1.3.5, these two relations imply that

X, —o masn — oo, (4.2.13)

and
P

S, — o asn — oo (4.2.14)

Obviously,
g0 =(S,,/07'C®, t>0. (4.2.15)
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This representation and relation (4.2.14) show that Theorem 4.2.11 is a direct corol-
lary of Theorem 4.2.9 and Slutsky Theorem 1.2.3.

Use the following simple inequality: Ay(bx(-),c,T) < bAy(x(:),c, T), which holds
for an arbitrary cadlag function x(z), ¢ > 0 and » > 0. This inequality and representation
(4.2.15) yield, for 6, b > 0, that

P{Au(C,(),c,T) > 8} < P{o/S,, = b} + P{Ay(C,(-),c, T) > 6/b}. (4.2.16)

Take an arbitrary o > 0. By (4.2.14), we can choose b such that li_m,,_m P{o/S,, >
b} < o. If we pass to the limit in (4.2.16), first as n — oo and then as ¢ — 0, we find
using Theorem 4.2.10 that lim,_, 1imy,_ o P{Ay(C)(-),c, T > 8} < o. Since o is arbitrary,
this proves J-compactness of the processes C//(7), ¢ > 0. O

4.3 Generalised exceeding processes

In this section, we consider limit theorems for the so-called generalised exceeding pro-
cesses. Such a process is constructed from a two-dimensional cadlag process by stopping
the first component of this process at the moment when the second component exceeds
the level ¢+ > O for the first time. In this model, 7 is being interpreted as time. The class
of generalised exceeding processes includes many models of renewal type processes, in
particular, sum-processes with renewal stopping, max-processes with renewal stopping,
and shock processes.

4.3.1. Weak convergence of generalised exceeding processes. Let, for every € > 0,
. (1) = (Ke(1), (1)), t > 0 be a two-dimensional cadlag process with real-valued compo-
nents. We also assume that the first component k.(¢), # > 0 is a non-decreasing process.
Note that it is not required for this process to be non-negative.

Let us now introduce an exceeding time process by

Ve(t) = sup(s > 0: x(s) < 1) =inf(s > 0 : Ke(s) > 1), >0

This formula requires some comments. First of all, let us remark that we will prefer
to use the second expression in the defining formula in the right-hand side. As a matter
of fact, the second formula automatically yields the correct value v.(¢) = 0 if .(0) > .
At the same time, the use of the first expression does require the additional convention
that sup(s : Ke(s) <) = 0if k. (0) > ¢.

Also note that one can assume that the parameter s in both formulas runs over the
domain s > 0, instead of s > 0. This modification does not change values of process
Ve(?),t > 0. At the same time, such a modification permits to introduce exceeding time
processes using the same formula also in the case where the initial process K.(s), s > 0
is defined on the open interval (0, o), instead of the semi-open interval [0, o).
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Now, introduce a process, which we call a generalised exceeding process, by the
following formula:

Ce(t) = gs(ve(t)), t>0.

Let us assume that the following weak convergence condition holds:

Ase: (Ke(5), Ee(1)), (5,1) € VXU = (Ko(5), Eo(1)), (5,¢) € VX U as € = 0, where (a) V is
a subset of (0, 00), dense in this interval, and (b) U is a subset of [0, o), dense in
this interval and containing the point 0.

To avoid the need of considering the case where the random variables v.(7) can be
improper, let us also impose the following condition:

- P
Ks: K. (t) — oo ast — oo for every € > 0.

Since we are interested in limit theorems for the generalised exceeding processes
Ce(?) = Ec(ve()),t = 0 as € — 0, it will be sufficient to require that K.(¢) P oast o oo
in condition &K for all & small enough. We require this relation to hold for all € > 0 just
in order to simplify the formulations.

Condition Ky implies that the random variable v(¢) is finite with probability 1 for
every t > 0.

Denote by V the set of points # > 0 that are points of stochastic continuity for the
process vy(7),t > 0. Note that V; coincides with (0, c0), except for at most a countable
set of points.

Lemma 4.3.1. Let conditions Asg and K hold. Then
(VE(S)7 Et(t))a (S’ t) € VO xU = (VO(S)7 EO(I))7 (S, t) € VO xUase— 0.

Proof of Lemma 4.3.1. For every € > 0, by the definition of the process v¢(¢),t > 0, the
following relation holds for any s,z > O:

{Ke(s) <t} C{ve(t) > 5} C {Ke(s5) < 1} (4.3.1)

Using (4.3.1) we get that for any #,,...,¢, > 0, uy,...,u, € R;,0 <5, <... <5,
O<w <...<w,,n>1,

Ple(wi) < i, Ee(t)) S wji=1,...n}
< P{ve(si) > wi, &) <ui=1,...n} (4.3.2)
< Plxew;) < 53, &) <ui=1,...n}.
Denote by C, the set of u € R such that P{Ey(r) = u} = 0. Choose a countable set of

points X = {x, x,, ...} such that (a) it is a subset of V and dense in the interval (0, c0).
Since any distribution function has not more than a countable set of discontinuity points,
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we can choose a countable set of points ¥ = {y1,y,,...} C (0, 0) in such a way that (b)
it is dense in (0, c0), and (¢) P{xo(x;) = y;} = O for all i, j > 1. Using condition A5, we
have, for arbitrary n > 1 and points ¢,...,t, € U,u; € C,,w; € X5, € Y, i=1,...n,
that

lin& P{e(w;) < 51, Ee(t) S ui=1,...n}

= P{Ko(W,') < si’EO(ti) < l/l,',i = 1, .. I’l}

433
= hlrol P{KS(Wi) < Sis Es(tl) < M,‘,i = 1, .o f’l} ( )

= P{xow;) < 51, &) < wjyi=1,...n},
and then using (4.3.2) we find

P{ve(si)) > w;, Ee(t) <ui=1,...n}
— P{vo(si) > w;, Eo(t) < wji=1,...n} (4.3.4)
= P{xo(w)) < 5:,E(t;) <uji=1,...n}ase — 0.

Since weak convergence of distribution functions of random vectors follows from
their convergence on some countable set dense in the corresponding phase space and
the random variables v((s;) are non-negative, we get from (4.3.4), for ¢, € U, s; € Y,
i=1,...n,that

(Ve($1), Ee(t), i = 1,...,n) = (Vo(5,),Eo(t;),i=1,...,n)as e = 0. (4.3.5)

(4.3.5) implies that

Because n > 1l andt; € U, s; € Y, i = 1,...,n, were chosen arbitrarily, relation

(Ve($), (1), (5,0) € Y X U = (vo(5), Eo(1)), (5,1) € Y X U as & — 0. (4.3.6)

Since v,(f),t > 0 are non-decreasing processes and the set Y is dense in (0, c0),
relation (4.3.6) can be extended, by an obvious argument, to the relation given in Lemma
4.3.1. O

Remark 4.3.1. It is useful to mention that formula (4.3.4) also express the finite-dimen-
sional distributions of the process (v((s), Eo(?)), ¢ > 0 in terms of the corresponding finite-
dimensional distributions of the process ((s), (1)), > 0.

Note that the point 0 can not be automatically included in the set Y constructed in
the proof. In what follows, weak convergence can only be proved for the set V|, of all
positive points of stochastic continuity for the limiting exceeding process v((?),t > 0.

Taking into account this remark, we first give conditions for weak convergence of
generalised exceeding processes on a set dense in the interval (0, co).
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The question about whether it is possible to include the point O in the set of weak
convergence does require a special investigation that will be postponed until later sub-
sections.

We also assume that the following condition of J-compactness introduced in Subsec-
tion 2.2.2 holds:

37 lim o lime o P{AS(E:(), ¢, T) > 8} = 0, ,T > 0.
Let us first consider the case where the following decomposition condition holds:

Q91 Eo(r) = EH(+E( (1), t > 0, where (a) the process E( (), > 0is a continuous process,
(b) Ej(),t > 0 is a stochastically continuous cadlag process, (c) the processes
o (0,1 > 0and Ko(7), 7 > 0 are independent.

Theorem 4.3.1. Let conditions Agg, Ks, 35, and Q. hold. Then
Ce(®), 1€ Vo = Co(t), 1€ Vogase — 0.

Proof of Theorem 4.3.1. Lemma 4.3.1 implies that condition A3, holds for the processes
E.(1),t > 0 and v(¢),t > 0 with the set V = V.

It is obvious that, in this case, the processes Ej(¢), 7 > 0 and vo(),# > 0 are indepen-
dent. This means that condition Q, holds for the processes E(7),# > 0 and v((), > 0.
Due to Lemma 2.6.1, this implies that the continuity condition e;’“ holds for these pro-
cesses with the set W = [0, c0). Now, applying Theorem 2.6.1 or Theorem 2.6.2 finishes
the proof of Theorem 4.3.1. O

Let us consider the case where the following continuity condition is satisfied:
E 30 Plvo(?") = vo(t") € R[Eo()]} =0for 0 < ¢ <t < oo.

Obviously, condition €, coincides with condition €, applied to the process Ey(7), t >
0 and the exceeding time process v((?),t > 0. Here, we used Remark 2.6.2.

Let W, be the set of ¢ > 0 that satisfy condition (‘Zgw), that is, P{vy(?) € R[Ey(")]} = O.
Due to Lemma 2.6.2, condition €3 implies that the set W, is the interval (0, co) except
for at most a countable set.

Condition €5 holds, if the process vy(f), ¢ > 0 is an a.s. strictly monotone process.

For example, this is so if Ky(#),# > 0 is an a.s. non-decreasing continuous cadlag
process and, in the sequel, vo(t), ¢ > 0, will be an a.s. strictly monotone cadlag process. A
particular case is where K((?), t > 0 is a non-decreasing continuous non-random function
and, therefore, v((?),t > 0 is a strictly monotone cadlag non-random function.

Also, condition Q,, implies that condition &€;3 holds. As was mentioned above,
Wy = (0, o) in this case.

Obviously, the set Vo, N W is (0, co) except for at most a countable set of points.
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Theorem 4.3.2. Let conditions Ks, Asg, 3,, and €3 hold. Then
C(),teVonNnWy = Co(t),te Von Wyase — 0.

Proof of Theorem 4.3.2. A direct application of Theorem 2.6.3 to the processes E.(%),
t > 0 and v¢(¢), t > 0 proves the theorem. O

Finally, let us consider the case where the following continuity condition, which is
weaker than €3, holds:

F5: There exist a sequences of §;, € Z),0, - 0as/ - oo and 0 < T, — oo as
r — oo such that, for every L,k,r > 1, we have limy<.—0 limp<e—o P{a(i’) -c <

Ve(t), ve(t”) < 0,0 < T} = 0 forall 0 < #' < 1 < co.

Here, (xﬁ’) are successive moments of jumps of the sum-process E.(7),t > 0 with
absolute values of the jumps greater than or equal to 0 (see Subsection 2.4.1 for details).

It is clear that condition &5 coincides with condition &, applied to the processes
E:(1),t > 0 and the exceeding time processes v¢(t),t > 0. Here, we make use of Remark
2.6.4.

Let W/ be the set of # > 0 such that condition Df‘w) holds for the processes E(7), > 0
and v,(t),t > 0. As follows from Lemma 2.6.4, condition F5 implies that set W equals
(0, 00) except for at most a countable set.

The set Vo N W also coincides with the interval (0, oo) except for at most a countable
set.

Theorem 4.3.3. Let conditions Ks, Asg, J5, and F5 hold. Then
(), teVon W)= Cot),te VonWiase — 0.

Proof of Theorem 4.3.3. A direct application of Theorem 2.6.5 to the processes E.(%),
t > 0 and v¢(?),t > 0 proves the theorem. O

4.3.2. Convergence of generalised exceeding processes at the point 0. Let us now
discuss the possibility of including the point O in the set of weak convergence.

First of all, it should be possible to add this point to the set V; in the statement of
weak convergence given in Lemma 4.3.1.

Recall that Vj is the set of points ¢ > 0 that are points of stochastic continuity for the
process vo(t),t > 0. Also, V is the set that enters condition A .

The most important for applications is the case where the following conditions holds:

Je: 10(0) > 0 with probability 1.

and



274 Chapter 4. Summary of applications

J5: xo(2),t > 01is a.s. strictly monotonic at the point 0.

Conditions J4 and 3, imply that (a) vo(0) = O with probability 1.

Let us assume that conditions A, and K5 hold. Choose a sequence of points s, € V
such that 0 < s, — 0 as n — oco. Obviously, (b) 0 < v.(0) < v¢(s,). Under the conditions
of Lemma 4.3.1, (¢) ve(s,) = Vvo(s,) as € — 0 for n > 1. Also, conditions J4 and J,

imply that (d) vo(s,) LN vo(0) = 0 as n — oo. By Lemma 1.2.6, (b) - (d) imply that (e)
Ve(0) = vo(0) = 0 as € — 0. Due to Slutsky Theorem 1.2.3, it follows from (d) that the
set of weak convergence in Lemma 4.3.1 can be extended to the set Vi, U {0}.

The cadlag process E(7),# > 0 is continuous at the point vo(0) = 0 with probability
1, i.e., condition (‘fg)) holds. So, by Remark 2.6.3, the point O can also be included in
the set of weak convergence V| in Theorem 4.3.1 and in the set of weak convergence
Vo N Wy in Theorem 4.3.2.

As it was pointed out in Subsection 2.4.5, condition (‘320) implies condition foto). So,
by Remark 2.6.5, the point 0 can be added to the set of weak convergence V, N W in
Theorem 4.3.3.

More complicated is the case where the random variable v((0) can take positive val-
ues. Let us introduce the condition

Jg: Plxo(x;)) =0} =0, x; € V.

Now, assume that conditions A, and Jg hold. Then the point O can be included in
the set Y that enters relations (4.3.3) - (4.3.6) in the proof of Lemma 4.3.1.

So, the set of weak convergence V) in the statement of weak convergence in Lemma
4.3.1 can be extended to the set V, U {0}.

Note also that, as it was shown in Silvestrov (1974), if the processes k.(¢),t > 0 i>
Ko(?),t > 0 as € — 0, then condition Jg can be replaced by a similar but weaker condition.
This condition requires that P{k(x]) = xo(x}) = 0} = 0, x/,x" € V,x] # x/.

In some cases, the following condition of asymptotic local continuity of the processes
ve(t), t > 0 can be used:

Oy limge,o limg_o P{ve(s) — v¢(0) > 8} = 0, & > 0.

Let us show that conditions Asg, Ks, and O, imply the following relation of weak
convergence:

(Ve($), Ee(1), (5,0) € (Vo U{Oh) x U

4.3.7)
= (vo(s), Ep(1)), (s,1) € (Vo U{0}) x U as € — 0.

Chose a sequence of points s, € V, such that 0 < s, — 0 as n — oo, and also take
an arbitrary k > land 0 < #; < ... < #;,11,..., 4 € Vy. Consider the random vectors
{/E,n,k = (Vs(sn)a Vs(tl), ey Vs(tk)) and Vs,O,k = (Vt(o)’ Vs(tl), ey Vs(tk))- BY Lemma 431,
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(f) Venx = Vonx as € = 0. Also, by condition Oy, (g) lim, e ﬂs_,o P{Venx = Veor >
0} = 0, & > 0. Relation (g), taken for € = 0, implies that (h) Vo, x = Voox as n — oo.
Relations (f) - (h) and Lemma 1.2.5 imply that (i) V¢ ox = Voox as € — 0. It follows from
(i) that the set of weak convergence in Lemma 4.3.1 can be extended to the set V, U {0}.

It should be noted that, if A, and K hold, relation (4.3.7) implies that condition
O, holds.

Indeed, relation (4.3.7) implies that, for any sequence s, € V; such that0 < s, — 0
asn — 00, (j) ve(s,) —ve(0) = vo(s,) —vo(0) as € — 0. Since vo(¢), 7 > O is an a.s. cadlag

process, (K) vo(s,) L vo(0) as n — oo. Relations (j) and (k) imply condition Oy, in an
obvious way.

These remarks show that, under A, and K, conditions I and J,, as well as condi-
tion Jg, are sufficient for condition O, to hold.

At the same time, condition Oy; should not be overestimated. It is just a convenient
way of imposing on the processes v,(?), t > 0 a condition that would allow to include the
point O in the relation of weak convergence given in Lemma 4.3.1.

Nevertheless, condition O,, can be applied in some cases where the exceeding time
processes have a simple structure. For example, this is so in the case of step exceeding
time processes considered in Section 4.4.

It should be pointed out that even if the point O can be included in the set of weak
convergence V,, in Lemma4.3.1, it is not certain that the process E((¢), ¢ > 0 is continuous
at the point vy(0) with probability 1.

The process E(?), > 0 is continuous at the random point v,(0) with probability 1 if
condition Q,, holds. In this case, by Remark 2.6.3, the point 0 can be added to the set of
weak convergence, Vj, in Theorem 4.3.1.

In the general case, one should require condition 8(50) to hold (for the stopping mo-
ment v((0) and the process Ey(¢),¢ > 0) in order to include the point O in the set W,,.
In this case, by Remark 2.6.3, the point 0 can be added to the set of weak convergence
Vo N Wy in Theorem 4.3.2.

Analogously, one should require that condition Df‘m holds (for the stopping moments
v¢(0) and the processes E.(t),t > 0) in order for the point 0 to be in the set W/. In this
case, by Remark 2.6.5, the point 0 can be added to the set of weak convergence Vi, N W
in Theorem 4.3.3.

In some cases, the following condition of asymptotic local continuity of the processes
Ce(1),t > 0 can be used:

Opy: Timoeyo Tim, o P{IG(s) = T(0)] > 8) = 0, & > 0,

In the same way as it was done above for exceeding time processes, it can be shown
that, by adding condition Oy, to conditions of Theorem 4.3.2 or 4.3.3, one can include
the point O in the corresponding set of weak convergence, VoNW, or VoNW;, respectively.

Moreover, if the weak convergence of the generalised exceeding processes takes
place on the extended set (V, N Wy) U {0} or (Vo N W) U {0}, then condition O, holds.
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Thus, if 9_(,5, Asq, and J, hold, then condition (‘fg)), as well as ZDE‘O), is a sufficient
condition for O,, to hold.

Condition Oy,, as well as condition Oy;, should not be overestimated. It is just a
convenient way to impose on the processes C.(),t > 0 a condition that would permit to
include the point 0 in the relation of weak convergence given in Theorems 4.3.2 or 4.3.3.

Nevertheless, condition O, can be applied in some cases where the exceeding time
processes have a simple structure. For example, this is the case for step generalised
exceeding processes considered in Section 4.4.

4.3.3. J-convergence of generalised exceeding processes. There are two basic
cases for which we give conditions for J-convergence of generalised exceeding pro-
cesses. The first one is where the limiting process x((t), ¢ > 0 is an a.s. strictly monotone
cadlag process. The second one is where the limiting process K(#), t > 0 is a step cadlag
process. The latter case is considered in the next section.

For first case, the following condition holds:

Jg: Ko(#),t > 01is an a.s. strictly monotone process.

Condition J, implies that (a) vo(f),# > 0 is an a.s. continuous process. It is also
obvious that condition J4 implies condition J.

Theorem 4.3.4. Let conditions Ks, Asq, J7, I Jo, and €3 hold. Then

Ce(),t>0 N Co(t),t>0ase — 0.

Proof of Theorem 4.3.4. A direct application of Theorem 3.4.2 to the processes E.(?),
t > 0 and v¢(¢), t > 0 proves the theorem. O

Let Y, denote the set of points of stochastic continuity for the limiting process Cy(f) =
Eo(vo(1)), 1 2 0.
Remark 4.3.2. Obviously, (Vo N Wy) U {0} C Y. Due to Theorem 4.3.4, the set of weak
convergence, (Vo N Wy) U {0}, which is guaranteed by Theorem 4.3.2, can be extended to
the set Y.

The key condition &€, has some limitation. It does not cover the case when the
limiting process Ky(?), t > 0 has positive jumps simultaneous with jumps of the process
Eo(?),t > 0. Indeed, if T is such a point and P{xo(t — 0) < ' <t < xo(1), A(Ep(+)) # 0}
> 0, then P{vo(#') = vo(¢#") = 7} > 0. Therefore, condition €,; does not hold.

The following theorem covers the case in which the limiting process Ko(?),z > 0
may possess positive jumps simultaneous with the corresponding jumps of the process

Eo(1),1 > 0.
Theorem 4.3.5. Let conditions Ks, Asq, 37, g, o, and F5 hold. Then

C().120 -5 to().t>0ase — 0.
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Proof of Theorem 4.3.5. The proof follows by directly applying Theorem 3.4.3 to the
processes E(7),t > 0 and v.(¢),1 > 0. O

Remark 4.3.3. Condition J4 can be replaced by condition Jg or by condition O, in The-
orems 4.3.4 and 4.3.5. However, in both cases, one should also require that at least one
of the conditions Q,,, Cﬁ'g’) (for the stopping moment v,(0) and the process Ey(t), t > 0) or
fo‘O) (for the stopping moments v,(0) and the processes E.(¢), r > 0) holds. Alternatively,
one can replace condition J4 by condition Oy,.

Remark 4.3.4. Due to Theorem 4.3.5, the set of weak convergence (VoNW()U{0}, which
is guaranteed by Theorem 4.3.3, can be extended to the set (Vo N W() U Y.

4.3.4. Generalised exceeding processes based on J-convergent processes. In this
subsection we improve Theorem 4.3.5. This theorem is used for the processes x.(f),# > 0
and E.(¢),7 > 0 that have simultaneous jumps. It is not convenient in this theorem that
condition F; involves the exceeding time processes Vv¢(¢),# > 0 instead of the processes
Ke(2),2> 0.

Let us now strengthen the condition of J-compactness J, and replace it by the fol-
lowing condition of J-compactness for the bivariate processes . (¢), t > O:

Joat lime_o lime_o P{A;(0te(), ¢, T/, T") > 8} =0, § > 0,0 < T’ < T” < co.

We also supplement it by the following condition of local continuity for the external
processes E.(?), t > 0 at the point O:

013: lirnO<c—>0 m5—)0 P{Sup05[gc |§5(I) - %s(o)l > 6} = O, o> 0.

Note that conditions d,, and O,; imply that the condition of J-compactness J, holds
for the processes E.(f),1 > 0.
Let us now prove the following useful lemma.

Lemma 4.3.2. Conditions Ks, 3,4, and O, imply condition Fs to hold.

Proof of Lemma 4.3.2. Assume that condition F4 does not hold. This means that there
exist0 <t <t <o00,8;,€Zy, T, >0, and k > 1 such that

Jim Tim Plag” — ¢ < ve(@), ve(t”) < oy’ o’ < T, > 0. (4.3.8)
Condition O3 implies that, for every 9, € Z;,
lim lim P{a®” < ¢} < lim Tim 2P{sup [E.() — E.(0))| = &;/2} = 0. (4.3.9)

0<c—0 -0 0<c—0 e—0 0<r<c
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Relations (4.3.8) and (4.3.9) imply that there exist small enough 0 < T < T, such
that

O) — e <Vt velt”) < 0,0 < T}

lim lim P{T <a,, ok 3

0<c—0 e—0

> lim hm(P{ (6’) —c < v (1), ve(t") < a® a® < T (4.3.10)

0<c—0 =0 ek > ek
— lim limP{o®” < T + ¢} > 0.

0<c—0 e—0

Let us choose some 0 < 6 < 252 A §, and show that

Aciarr =T < 0 = ¢ < ve(t), ve(t") < 0§, 0l < T) 4.3.11)
c {AJ(("&( )a 26‘, Tr) > 0}' a

Indeed, since x.(¢),¢ > 0 is a cadlag process, we have K (v.(r)) > f and K.(v,(?) —
0) < tif ve(r) > 0. It follows from the definition that v.(#) = sup(s : Ke(s) < f) =
inf(s : x.(s) > 7). Let the random event Ay, occur. If (a) K.(ve(t')) < ”’ then
Ke(ay” = 0) = Ke(ve(t') = 0) 2 Ke(Ve(t")) = Ke(Ve(t) 2 555 > 0. If (b) Ke(ve(! )2 i
then Kt(a(&) 0) — Ke(Ve(t) = 0) > Ke(Ve(')) — Ke(Ve(t) — 0) > =1 > 0. Also, [E(a®) -
E(a® ~0)| > §, > 0. In any case, |e( —0) — 0t (0 — 0)|/\|(15(0L(6’) 0)— ag(a<§'>)| > 0.
But0 < 7T < (xi‘zl) —c < V() < ai‘zl) < T,. Hence, Aj(0.(-),c,T,T,) > o. This means
that relation (4.3.11) holds.

Using (4.3.11) we get

lim 11m P{A(0.(),2¢,T,) > o)

0<c—0 e—0
(4.3.12)
’ ’” @) @)
> OIXEOH% P{al — ¢ < ve(t), ve(t") < 0, 08" < T} > 0.
Relation (4.3.12) contradicts condition d,4. Therefore, condition 5 holds. m]

Remark 4.3.5. It follows from monotonicity of the sequence of random variables ocg’), k =

1,2,..., and relation (4.3.9), given in the proof of Lemma 4.3.2, that condition O,; can
be replaced by the following weaker condition:

. - S
O, limge,o lim,o P{al < ¢} = 0, & € Z,.

Conditions Asq and d,, are necessary and sufficient for the following J-convergence
relation to hold: ;
o.(1),t>0— oy(r),t>0ase— 0. (4.3.13)

Together with condition O3, these conditions also imply that

Ee(t), £ > 0 15 Eg(t), 1> O as e — 0, (4.3.14)
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Also note that the relation of J-convergence (4.3.14) implies that condition O3
holds.

Lemma 4.3.2 allows to improve Theorems 4.3.3 and 4.3.5 and state them in the
following form.

Theorem 4.3.6. Let conditions Ks, Asg, 354, and O3 hold. Then
Ce(),teVon W)= Cot),te VonWiase — 0.

Theorem 4.3.7. Let conditions Ks, Asg, J240 O13, I, and I hold. Then

Ce(),t>0 N Co(®),t>0ase — 0.

Remark 4.3.6. According to Remark 4.3.3, condition J, can be replaced by condition Jg
or by condition O,; in Theorem 4.3.7. However, in both cases one should also require
that at least one of the conditions Q,,, 8;0) (for the stopping moment v((0) and the
process Ey(1),t > 0) or CDE‘O) (for the stopping moments v¢(0) and the processes E.(), t >
0) holds. Alternatively, one can replace condition J, by condition O,,.

Remark 4.3.71. According to Remark 4.3.4, the set of weak convergence (Vo N W) U {0},
which is guaranteed by Theorem 4.3.6, can be extended to the set (Vo N Wy) U ¥,

4.3.5. Generalised exceeding processes based on non-negative exceeding time
processes. In this subsection, we show that in the case of J-convergent processes a..(?),
t > 0, the consideration can be reduced to the case of non-decreasing and non-negative
exceeding time processes K.(¢), 7 > 0.

Let us define the process «; () = max(0, k.(#)), > 0 and the corresponding exceed-
ing time process v} *(t) = sup(s : x;7(s) < 1), > 0.

By the definition, k! *(#), 7 > 0 is a non-negative and non-decreasing cadlag process.
But v.(f) = sup(s : Ke(s) < 1) = vi*(¢),t > 0. So, we can consider the generalised
exceeding process Ce(t) = Ec(v(1)) = E.(v ™(?)), t > 0 as a process based on the bivariate
process @ *(¢) = (k7*(¢),E:(?)), t > 0 with the second component k. (¢),# > 0 being a
non-negative and non-decreasing cadlag process.

Let us replace condition Asq by the following condition:

Ay (677(5), Ee(1), (5,1) € VXU = (k57(5), Eo(1), (5,1) € VXU as € — 0, where (a) V
is a subset of (0, 00), dense in this interval; (b) U is a subset of [0, o), dense in this
interval and containing the point 0.

If condition Asq holds for the processes a.(¢), ¢ > 0, then condition As; holds for the
processes @ *(7),t > 0, that is, condition Ag, is weaker than condition Ag. This fact
follows from continuity of the function f(x) = max(0, x) and Theorem 1.3.2.

Let us now introduce the following J-compactness condition:
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J,s: im0 limeo P{A,(a*(),c, T, T") > 8} =0, 8> 0,0 < T" < T” < oo.

It is obvious that 0 < k! *(#") — k(1) < k(1) —x(¢') forany 0 < ¢’ < " < co. Thus
we see that the following estimate is valid for any ¢, > 0and 0 < 7’ < T"” < co:

P{Aj (. (), c, T, T") > 8} < P{Aj(ae(-),c, T', T") > 8}. (4.3.15)

It follows from (4.3.15) that condition J,, always implies condition d,s, that is, con-
dition J,5 is weaker than condition J,,.

Note also that condition &K holds for the processes k:*(¢),¢ > 0, if and only if this
condition holds for the processes x.(¢),t > 0.

Condition J¢ automatically holds for the processes k" (1), t > 0.

A direct analogue of J, is the following condition:

Jy0: x37(2),t 2 0is an a.s. strictly increasing cadlag process.

Condition J,, implies that random variable v,(0) = 0 with probability 1.
Taking in account the remarks above we can improve Theorems 4.3.6 and 4.3.7 to
the following form.

Theorem 4.3.8. Let conditions Ks, Asy, 3,5, and O3 hold. Then
C(),teVon W(/) = (o), te Vo N W(/) as e — 0.

Theorem 4.3.9. Let conditions Ks, Asy, 355, Oy3, and 3,y hold. Then

C(0).120 -5 to().t>0ase — 0.

As was pointed out above, condition J,, implies that vo(0) = 0 with probability 1.
This excludes from the consideration the case where v((0) can take positive values. This
may happen if the random variable k,(0) can take negative values.

Let us assume that the process Ky(#),# > 0 is a.s. strictly monotone but we allow the
random variable 1((0) to take negative values.

In this case, ;" (¢) = 0 for t < vo(0) = sup(s : k(s) < 0), while this process strictly
increases for ¢ > v((0) with probability 1.

According this remark, we modify condition J,, and replace it by the following
weaker condition:

J11: %57 (@) = 0 for t < vo(0), where vo(0) = inf(s : k" (s) > 0) and the cadlag process
Ky (1) strictly increases for ¢ > vo(0) with probability 1.

By condition Jy,, the process v{* () = vo(#),t > 0is again an a.s. continuous process.
Therefore, Theorem 3.4.2 can be applied.
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In this case, one should additionally provide for the possibility to include the point O
in the set of weak convergence for the generalised exceeding processes (), > 0.

One can require that condition Jg holds for the process k;*(f),t > 0, or that condi-
tion O, holds. Additionally, at least one of the conditions Q,,, C;o) (for the stopping
moment vy(0) and the process Ey(¢),r > 0 ) or CDE‘O) (for the stopping moments v,(0) and
the processes E.(¢), > 0) holds. Then the point O can be included in the set of weak
convergence. Alternatively, one can assume that condition O, holds.

4.3.6. Weak and J-convergence on the interval (0, ). Theorems 4.3.1, 4.3.2,
4.3.3, and 4.3.6 give conditions for weak convergence of generalised exceeding pro-
cesses on sets that are dense in (0, 00). Also, conditions of Theorems 4.3.4, 4.3.5,
and 4.3.7 imply J-compactness of the processes C.(¢) on any finite interval [7’, T"] for
0 < T" < T” < oo. This follows directly from Lemma 3.4.1, if applied to the processes
Ee(?),t > 0 and v¢(T’" + 1), > 0. So, omitting condition J in Theorems 4.3.4, 4.3.5 or
4.3.7 one obtains J-convergence of the processes C.(#) on the open interval (0, co).

Using Theorem 4.3.9 one can prove J-convergence of the processes C¢(f) on the open
interval (0, ), instead of [0, o0), if condition J,, in this theorem is replaced by condition
J,,- Conditions Q,,, G’g)), or Df‘o) can be omitted in this case.

4.3.7. Exceeding time processes defined on the interval (0, o). The results of
Lemmas 4.3.1 — 4.3.2 and Theorems 4.3.1 — 4.3.9 can be generalised to a model in
which the process x.(7),# > 0 is defined on the interval [0, o) but the value of this
process, K¢(0), at the point 0 may be a proper or an improper random variable (the value
—oo has positive probability).

The same can be true if the process k.(f), f > 0 is initially defined on the open interval
(0, 00). In this case, one can always use monotonicity of the processes K.(t),# > 0, and
define k:(0) = K.(0 + 0) = limy,0 K:(0). This limit exists with probability 1. Such a
definition needs to allow the random variable x.(0) to be improper.

Note that neither the definition of an exceeding time process given above nor condi-
tions Az and J,, involve the random variables k(0). Also, the formulations of condi-
tions Q,, €3, and F, as well as conditions K5 and J¢—J,,, remain the same.

Thus, Lemmas 4.3.1 — 4.3.2 and Theorems 4.3.1 — 4.3.9 also remain unchanged.

It should also be noted that one can always reduce the model to the case of non-
negative exceeding time processes. This can be achieved by the use of the truncation
transformation described in Subsection 4.3.6.

4.3.8. External processes that do not converge at the point 0. Results of Lemmas
4.3.1 —4.3.2 and Theorems 4.3.1 — 4.3.9 can also be generalised to the case when the
processes E.(t),t > 0 are defined on the interval [0, o) for € > 0 but do not weakly
converge at the point 0. In this case, the corresponding limiting process Ey(),r > 0
can be a cadlag process on the open interval (0, co) but the point O can be a point of
discontinuity for this process. Moreover, it can occur that this process a.s. has a right
limit at the point O that is an improper random variable, or it can even happen that this
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limit does not exist at all.

In such a case, one can assign the standard value, E,(0) = 0. This will not affect
the limiting composition Cy(¢) = Ey(vy(?)) if the corresponding limiting internal stopping
process Vvo(t),t > 0 is an a.s. strictly positive process for # > 0 or # > 0. In this case, one
can get weak convergence or J-convergence of the corresponding generalised exceeding
processes C(f) = E¢(v¢(¢) on the interval (0, o) or [0, o), respectively.

Also, we can admit the case when the limit x.(0) = k(0 + 0) = limy.,_,o K:(0), which
exists with probability 1, is a proper or an improper random variable.

Condition Asq should be modified to the following form:

Asg: (Ke(5), Ee(1), (5,1) € VXU = (x0(5), Eo(1)), (s5,1) € V X U as € — 0, where (a) V
and U are subsets of (0, o) dense in this interval.

Conditions Q,, and €3 can be preserved.

Condition F; should be modified in a more complicated way, because it is necessary
to change the definition of successive moments of jumps for the process Ey(f) in the
situation where this process needs to be considered on the open interval (0, co).

Let us take some s, > 0 and introduce the process

Ee(sy) ift<s,

(sn) _ _
EW() =E(tVsy,) = {Eg(t) s

and then the corresponding generalised exceeding process

L) = EXV(ve()), £ 2 0.

Let oc(gizl, k =1,2,...be successive moments of jumps of the cadlag process ES0),
t > 0, such that absolute values of the jumps are greater than or equal to d.

Let also U, be the set of points # > 0 that are points of stochastic continuity for the
process Eg(t), t > 0. This set coincides with (0, co) except for at most a countable set.

Let also Z, be the set of & > 0 for which the process E(¢), r > 0 has, with probability
1, no jumps with absolute values equal to 8. Since the cadlag process Ey(7), 7 > 0 has at
most a countable set of jump points, the set Z; is (0, c0) except for at most a countable
set.

Condition JF; should be modified in the following way:

F,: There exist sequences s, € Up,0 < s, = 0 as n — oo such that condition Fy holds
for the processes £ (¢), ¢ > 0, and v,(), 7 > O for every n > 1.

Let W be the set of # > 0 for which condition in‘w) holds for the processes E(;")(t), t>
0 and v¢(?),t > 0. Due to Lemma 2.6.4, condition F implies that, for every n > 1, the
set W[ is (0, co) except for at most a countable set. Hence, the set W' = N,»; W also is
(0, 00) except for at most a countable set.
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It is possible to show that if condition F holds for some sequence s, € Uy, 0 < s, —
0 as n — oo, it also holds for any other sequence s, € Uj,0 < s, — 0 as n — oo and the
set W' defined as above is the same for any such a sequence.

Recall that Vj is the set of points ¢ > 0 that are points of stochastic continuity for the
process vo(t), t > 0. This set equals (0, co) except for at most a countable set.

Finally, Vo N W is also the interval (0, co) except for at most a countable set.

Conditions J,4 and J,5 do not need any changes, since they involve the processes
0,(?) and a*(¢) only for ¢ € (0, 00).

Condition K5 also does not need to be modified.

Condition O3 should be omitted in the corresponding theorems.

There are two cases that need to be considered. The first one is where (a) vy(¢) > 0
with probability 1 for # > 0. In the second case, (b) vo(0) > 0 with probability 1.

If (a) is satisfied and (b) can not be guaranteed to hold, the point 0 needs to be
excluded from the set of weak convergence, and J-convergence is guaranteed only on
the interval (0, c0). If (b) is satisfied, one can include the point O in the set of weak
convergence, and prove J-convergence of the generalised exceeding processes on the
interval [0, o).

Let us impose the following condition:

J,3: K0(0) < 0 with probability 1.

Condition J,5 holds if and only if the random variables v((#) > 0 with probability 1
for every t > 0.
Let us formulate analogues of Theorems 4.3.6 and 4.3.7.

Theorem 4.3.10. Let conditions K, Asg, 44, and 3,3 hold. Then
C(r),teVon W(/)’ = (o), te Vo N W(/)’ as e — 0.

Theorem 4.3.11. Let conditions K, Asg, 34, Io, and 3,5 hold. Then

L), 1> 0 -5 To(1).t> 0 as e — 0.

Proof of Theorems 4.3.10 and 4.3.11. Conditions K, Asg, and J,, imply that F¢ holds
for every sequence s, € Uj,0 < s, — 0. Indeed, conditions Asg and J,, imply that
the processes a.(#) J-converge on the open interval (0, c0). This permits to extend the
set U in condition Asg by including all points of stochastic continuity for the process
Eo(f),t > 0. This shows that condition As holds for the processes E(;")(t), t > 0 and
Ke(t),t > 0, for every n > 1. It is also obvious that condition O, holds for the processes
EP (1), > 0, for every n > 1. Hence, condition F5 holds for the processes £ (), 1 > 0
and v¢(7),t > 0, forevery n > 1.
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By applying Theorem 4.3.6 to the processes ES(1), 1> 0 and ve(r), 1 > 0, and taking
into consideration that Wi' C W[, we get the following relation for every n > 1:

L), te Vo n W = T, t € Vo n W as e — 0. (4.3.16)
Let us introduce the processes
o) = (e(1), EP(1), 1 > 0.

We are going to prove that condition J,, holds for these processes, i.e. for every
n>1andd>0,0<7T' <T"” < o0,
lim 11m P{A, (0 (), e, T, T") > 8} = (4.3.17)

0<c—0 e—0

Relation (4.3.17) is obvious if (¢) s, > T”. Indeed, in this case,

Aj@S ), e, T, T") = Ay (), e, T/, T”). (4.3.18)

Relation (4.3.17) is also obvious if (d) s, < T’. Indeed, in this case,
MA@l (), ¢, T, T") = Ay(0(), ¢, T, T"). (4.3.19)

The only non-trivial case is (e) 7" < s, < T”. The following estimate holds for
any two-dimensional cadlag function z(f) = (x(¢), y(t)),t > 0, and the function z"(¢) =
(x(tV s5,),y(1)),t =0, forc < T'/2:

A, e, T, T
<A, e T, s0) + Agz(), ¢, 80, TY) (4.3.20)
+ sup |2(t") — z(t")I.
Sp—2c<t 1" <s,+2c

Recall again that conditions Asg and J,, provide J-convergence of the processes

a.(?) on the open interval (0, co). Recall also that s, is a point of stochastic continuity for

the process a(?),# > 0. Taking this into account and using condition J,, and estimate
(4.3.20) we get, forevery 0 > 0and 0 < T’ < T” < oo, that

lim lim P{A,; (0" (), ¢, T", T") > &)

0<c—0 &0

< 0l<1m0 11m(P{AJ(Kb() ¢, T',s,) > 8/3} + P{Aj(ae (), ¢, 5, T") > 8/3}  (4.3.21)

+P{  sup loe (') — (7)) > 8/3}) =
Sp—2¢<t' " <sp+2c
Now, by applying Theorem 4.3.7 to the truncated generalised exceeding processes
Cff")(z‘), t > 0, and taking into consideration the remarks in Subsection 4.3.6, we get
J-convergence of these processes on the interval (0, o) for every n > 1,

L), 1> 0 -5 L), 1> 0 as e — 0. (4.3.22)
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Take now any 7 > 0. The following estimate follows from the definition of the
truncated processes ES”)(I), t > 0, and condition J5:

lim lim P{sup [C.(1) = (0] > 0)
S (4.3.23)
< lim lim P{v(T) < s,} < 11m 11m P{x.(s,) > T/2} =

n—oo £¢—0

Relation (4.3.23) also holds in the case where € = 0 and implies, in this case, that
L), > 0= To(t),t > 0 as n — oo. (4.3.24)

Relations (4.3.16), (4.3.23), (4.3.24), and Lemma 1.2.5 imply relation of weak con-
vergence given in Theorem 4.3.10.

Using the estimate in Lemma 1.4.9 and (4.3.23) we get, forevery 0 < T/ < T”" < oo,
that

lim 11m P{AJ(C(-),c, T, T") > &}

0<c—0 e—0

< lim hm(P AEC), e, T, T) > §/2)
O<c=0e (4.3.25)
+ P{Ay(C() = T (), e, T/, T") > 8/2})

< hmP {sup |Ce (1) — C(S”)(t)l > 0/4} - 0asn — oo.
=T
Relation of weak convergence, given in Theorem 4.3.10, and estimate (4.3.25) prove
Theorem 4.3.11. O

Let us now consider the case when the following condition holds:
J14: vo(0) > 0 with probability 1.

Note that condition J,, implies that the process Co(f) = Eo(vo(r)), > 0 is an a.s.
cadlag process despite a possible discontinuity of the process E(), # > 0 at the point 0.

In this case, in order to include the point 0 in the set of weak convergence, Vo N W,
of the generalised exceeding processes (1), t > 0, for every n > 1, one should require
that condition Jg or Oy; holds. Additionally, one should require that at least one of
conditions Q,, or (‘3(50) (for the stopping moment vy(0) and the process Ey(7),¢ > 0) or
fo‘O) (for the stopping moments v.(0) and the processes EW(n),t > 0, for everyn > 1)
holds.

Note that condition Q,, or C;o) holds for the stopping moment vy(0) and the pro-
cess Ey(r),t > 0, if and only if it holds for the stopping moment v((0) and the process

E)S”)(t), t >0, forevery n > 1.

Alternatively, one can assume that conditions O, and O, hold.

For example, let us formulate versions of Theorems 4.3.10 and 4.3.11 in which con-
ditions Oy; and Oy, are assumed to hold.
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Theorem 4.3.12. Let conditions Ks, Asg, Jrgr I140 O1qr and Oy, hold. Then
Ce(D),t e VoNn W) N{0} = Co(r),t € (Vo N Wy)N{0}ase — 0.

Theorem 4.3.13. Let conditions Ks, Asg, Jrsr Jg» I14» Oyy, and O, hold. Then

C(0).120 -5 to().t>0ase — 0.

Proof of Theorem 4.3.12 and 4.3.13. Take again an arbitrary sequence s, € Up,0 <
s, — 0. Using condition O,, and the remarks made in Subsection 4.3.2 and repeat-
ing the reasoning used in the proof of Theorem 4.3.10 for getting relation (4.3.16) we
can prove that, for every n > 1,

L), 1 € (Vo N W) U0} = E7(0). 1€ (Vo N W) U {0} as & — 0. (4.3.26)

It was shown in the proof of Theorem 4.3.11 that forevery 6 > 0,0 < 7" < T” < o0
and every n > 1,
lim lim P{A, (0" (), ¢, T',T") > 8} = 0. (4.3.27)

0<c—0 -0

Also, it is obvious that condition O3 holds for the processes Ess'l)(t), t > 0, for every

n > 1. Relation (4.3.27) and condition O,; imply that, for every 6 > 0,0 < T < oo, and
everyn > 1,

lim 11m P{A, (0 (), e, T) > 8} = (4.3.28)

0<c—0 e—0

Relations (4.3.26) and (4.3.28) imply that for every n > 1,

£, 120 -5 L), 1> 0as e — 0. (4.3.29)

Taking into consideration condition O, and the remarks made in Subsection 4.3.2
we get, by using condition J,,, that

lim lim P{v.(0) < s,} < hrn P{vy(0) < s5,/2} = 0. (4.3.30)

n—oo g—0

The following estimate follows from the definition of the truncated processes ES0),
t > 0, and relation (4.3.30):

lim lim P{sup [C.(r) = ()] > 0} < lim im P{v,(0) < s,,} = 0. (4.3.31)

n—we=0 s
Relation (4.3.31) can also be applied in the case where € = 0 to give
L), 12 0 = Tot),t = 0 as n — oo. (4.3.32)

Relations (4.3.26), (4.3.31), (4.3.32), and Lemma 1.2.5 imply the relation of weak
convergence given in Theorem 4.3.12.
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Using estimate obtained in Lemma 1.4.9 and (4.3.31) we get, for every 6 > 0 and
0 < T < oo, that

lim 1lim P{A,(C.(-), ¢, T) > &)

0<c—0 e—0

< lim Lim(P{A(C87(), ¢, T) > /2
O<c0 e (4.3.33)
+ P{AY(Ce() =TV (), e, T) > 8/2})

< E& P{sup [Ce(r) — L5(n)] > 8/4) — 0 as n — co.

>0

The relation of weak convergence in Theorem 4.3.12 and estimate (4.3.33) prove
Theorem 4.3.13. |

4.3.9. Generalised exceeding processes based on non-monotone exceeding time
processes. Let, for every € > 0, a.(r) = (k:(¢), E:(2)), t > 0 be a two-dimensional cadlag
process with real-valued components. Here, neither monotonicity nor non-negativity of
the component x.(¢), t > 0 is required.

Let us introduce an exceeding time process v¢(t) = sup(s : Ke(s) < t),t > 0, and a
generalised exceeding process Tg(t) = Eo(ve(1)),1 > 0.

This model can be reduced to a model with the non-decreasing component K.(t), ¢ > 0
in the following way. Define the process x; (f) = sup,., K¢(s), t > 0 and the corresponding
exceeding time process v{(¢) = sup(s : K. (s) < 1), > 0. By the definition, x;(¢),# > 0
is a non-decreasing cadlag process. But v(f) = v} (), > 0. Thus, one can consider the
generalised exceeding process Ce(f) = E(Ve(t)) = E(vi (7)), > 0 as a process based on
the bivariate process o () = (k7 (), E:(?)), t > 0, whose second component x; (), > 0
is a nondecreasing cadlag process.

An analogue of condition K takes the following form:

P
XKe: K (t) — coast — oo for every € > 0.

In this case, it is reasonable to try to replace conditions A s, and J,, by similar con-
ditions formulated in terms of the initial processes o (¢) = (k.(¢), E:(¢)), t > 0.

Let us denote by V|, the set of points # > O that are points of stochastic continuity for
the process Ky(7),t > 0, and by U, the set of points ¢ > 0O that are points of stochastic
continuity for the process Ey(z),t > 0. The set V, equals (0, o) except for at most a
countable set and also the set U, coincides with [0, o) except for at most a countable
set. Also, 0 € U,,.

Lemma 4.3.3. If conditions Asg and J,, hold for the processes o.(t) = (Ke(2), (1)),
t > 0, then (o) condition Asq holds for the processes o (t) = (k! (1),E:(1)),t > 0, with
the sets V. = Vo and U = Uy; (B) condition J,4 holds for the processes o (t),t > 0.
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Proof of Lemma 4.3.3. Take an arbitrary point 0 < T < oo that is a point of stochastic
continuity for the process ay(?),t > 0. By applying Lemma 1.6.14 to the processes

J
a.(t+ T),t > 0 we prove that (a) the processes a.!(?),t € [T, 00) — o,/ (?),t € [T, o) as

€ — 0. Since the choice of 0 < T' < co was arbitrary, (a) implies that (b) o/ (¢),7 > 0 i>
a;(H),t>0ase— 0.

Note also that (¢) every point of stochastic continuity of the process Ky(?), t > 0 is
also a point of stochastic continuity for the process ¥ (¢),f > 0. Obviously, (b) and (c)
imply the statement (&) of Lemma 4.3.3. Also, (b) implies the statement () of Lemma
4.3.3. O

Since x0(0) = x(0), condition Jg, in which xy(0) > 0 with probability 1, does not
need any changes.
Condition J, takes in this case the following form:

Jis: k(0,1 > 0is an a.s. strictly increasing process.
The following theorem is a direct corollary of Lemma 4.3.3 and Theorem 4.3.7.

Theorem 4.3.14. Let conditions K, Asg J24 O13, I, and I,5 hold. Then

Ce(),t>0 N Co(t),t>0ase — 0.

Remark 4.3.8. Condition J can be replaced by condition Jg, which should be required
to hold for the process x;(f),t > 0, or by condition Q;;. In both cases, one should
also require that at least one of conditions Q,,, G’g)) (for the stopping moment v,(0)
and the process E(t),t > 0) or Df‘o) (for the stopping moments v.(0) and the processes
E:(1),t > 0) holds. In this case, the point 0 can be included in the set of weak convergence
Vo N W(. Alternatively, condition O, can be assumed to hold.

Let us illustrate the theorem by the following example. Let, for every € > 0, a.(7) =
((1), Ec(1)), t = 0 be a cadlag homogeneous process with independent increments. For
simplicity, let us assume that a..(0) = (0, 0) with probability 1.

Condition As4 can be formulated in an equivalent form in terms of characteristics in
Lévy—Khintchine representation for the characteristic function of the process a..(¢), t > 0.
The corresponding formulations can be found, for example, in Skorokhod (1964) or
Gikhman and Skorokhod (1971). As is known (see, for example, Skorokhod (1964)),
condition A (it is actually enough to require in this condition that the random variables
o (1) weakly converge) implies in this case, without any additional assumptions, that (d)

the processes a..(t),t > 0 i> ao(1),t > 0 as € — 0. Relation (d) implies that conditions
Asg, d24, and Oy, hold for the processes (1), 7 > 0.
Therefore, conditions K, Ay, and J,5 imply that the corresponding generalised

exceeding processes Cq(f),t > 0 R Co(t),t>0ase— 0.
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Note that, in this case, any assumptions about independence of the processes k() t >
0 and Ey(¢), t > 0 are not needed.

4.3.10. Generalised exceeding processes based on improper exceeding time pro-
cesses. This is the case where condition 9_(,5 does not hold. Denote K (c0) = lim,_,, K¢(?).
This limit exists with probability 1, since k.(¢),# > 0 is a non-decreasing process.
Condition K does not hold if and only if P{k.,(c0) < oo} > 0. In this case, the ex-
ceeding time process V¢(f) = sup(s : Ke(s) < f),t > 0 can be improper. Moreover,
P{ve(t) = +00} = P{x.(c0) < t}.

To avoid this situation, one can choose some T € (0, o) and consider the truncated
exceeding time processes Ve r(f) = min(v(¢),T),t > 0 and the truncated generalised
exceeding processes Ce7(f) = Ec(ver(?)),t > 0. The results formulated in Subsections
4.3.1 - 4.3.9 can be carried over to this case with some modifications.

We refer to Silvestrov (1974, 2000a), where one can find results concerning truncated
generalised exceeding processes.

4.3.11. An alternative approach to limit theorems for generalised exceeding pro-
cesses. A more general model for generalised exceeding processes was studied in Sil-
vestrov (1974, 2000a). This model is based on a study of homogeneous families of
functionals p,(x(:)),# > 0, defined on the space D{gﬁo) of m-dimensional cadlag func-
tions X(7), ¢ > 0 that are invariant with respect to monotone transformations of time. The
homogeneity property mentioned above means that w(x(-)) = w,(x(A(-))),t > 0, for
any continuous one-to-one mapping A(#) of the interval [0, co) into itself, and any cadlag
function x(¢), ¢ > 0. An exceeding time process based on a m-dimensional cadlag pro-
cesses E.(¢),t > 0 is defined as v (f) = inf(s : uy(&.(-)) > 1),t > 0, and a generalised
exceeding process is defined as C.(r) = g(&.(ve(¢))),t > 0, where g(x) is a continuous
function acting from R,, to R;. It is easily seen that the generalised exceeding processes
considered in Section 4.3 is a particular case of the model described above. The method
used in Silvestrov (1974, 2000a) is based on thorough studies of J-continuity properties
of the random functionals inf(s : u,(E.(-)) > 1) and g(&,(v.(?))).

For the model of generalised exceeding processes considered in Section 4.3, the
results obtained in Silvestrov (1974, 2000a) are similar to those given in Theorems 4.3.6
—4.3.7. Note that these theorems require stronger J-compactness conditions than, for
example, the preceding Theorems 4.3.1 —4.3.5.

4.4 Step generalised exceeding processes

In this section, we continue studies of limit theorems for generalised exceeding pro-
cesses. In Section 4.3, a model for generalised exceeding processes with asymptotically
continuous exceeding time stopping processes was considered. In the present section, a
model with step stopping exceeding time processes is considered.
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4.4.1. Conditions for weak and J-convergence based on imbedded sequences.
Consider an important class of generalised exceeding processes where the process K (?),
t > 0 is a step cadlag process for every € > 0. This means that there exists an a.s.
strictly increasing sequence of random variables 0 = 1,9 < T, < Ts» < ... such that
Ke(1) = Ke(Te,) fOr t € [Ten, Tens1),n = 0, 1,.... The random variables t,,,n = 1,2,...
are successive moments moments of jumps, whereas the random variables K.(te,),n =
1,2,... are values of the process x:(#), > 0 at the moments of jumps. We exclude
the case of fictitious jumps, that is, assume that K.(Te0) < Ke(Te;) < Ke(Ten) < ... with
probability 1.

We summarise the above assumptions as the following condition:

160 Tensn = 0,1,... and xe(te,),n = 0, 1,... are a.s. strictly increasing sequences of
random variables for every € > 0.

We also restrict the consideration to the most important case where the process
Ke(?), t > 0 a.s. has a finite number of jumps in any finite interval, that is,

P
XK, T — o0 asn — oo for every € > 0.

It is clear that in this case the exceeding time process Vv¢(¢) = sup(s : K¢(s) <), >0
can be represented in the following form:

0 if t < K:(Te0),
ve(t) = 1< Kelteo) (4.4.1)
Tere1 I Ke(Ter) < 7 < Ks(rsk-#l),k =0,1,....

The process v¢(t),t > 0 is also a cadlag step process.
The process v,(t),t > 0 a.s. has a finite number of jumps in any finite interval if the
following condition holds:

P
Ky Ke(Tey) — o0 as n — oo for every € > 0.

It is useful to note that, under &K, conditions Ky and Ky are equivalent. Indeed,
since the process K (f) is monotone, we have (a) K.(7) 2 K:(00), where K (c0) is a
random variable (possibly improper) that a.s. takes values in the interval (—oo, co]. Since
the sequence of random variables t., is monotone, condition 3_(?7 is equivalent to the
relation (b) T, 2 coasn — oo, Obviously, (a) and (b) imply that (¢) K(T.,) 2 Ke(00)
as n — oo. Condition Ks, as well as condition Ky, holds if and only if K,(c0) = co with
probability 1. So, these conditions are equivalent.

Condition K implies that the random variable v,(f) < co with probability 1 for every
t>0.
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Let us now consider the generalised exceeding process Ce(t) = E¢(v(1)), t > 0. Since
ve(t), 1 > 0 is a step cadlag process, (1) = E.(ve(£)),t > 0 is also a step cadlag process.
Obviously,

. {35@) if 7 < Kel(teo), 442)

gs(TEkH) if Ko (Tet) < 1 < Te(Tes1), k= 0,1,....
Let us consider the case where the limiting exceeding time process vo(?), t > 0 is
a step process. We give conditions for weak convergence and J-convergence of gener-

alised exceeding processes formulated in terms of the“embedded” sequence of random
vectors (Ke(Ten), &(Ten)), 1 = 0, 1, .. .. Let us assume the following condition:

Asg: (Ke(Ten), E(Ten))sn = 0,1, ... = (Ko(Ton), E(Ton)),n = 0,1,... ase = 0.

Denote by Z, the set of all # > 0 that are points of continuity of distribution functions
of the random variables x(ty,),n = 0,1,.... This set is [0, o) except for at most a
countable set.

Lemma 4.4.1. Let conditions 3,5, K,, Ky, and Asq holds. Then
Ce(t), 1 € Zy = Co(1), 1 € Zy as e — 0.

Proof of Lemma 4.4.1. Let us choose arbitrary n> 1, t; € Zy, and x; such that P{Ey(#;) =
X} =0 fork =1,...n. By conditions J,4 and K,

P{le(t) < xik=1,...n}

Sht 4.4.3
= Z Z P{EE(Tsrk) < Xks Ke(rsrk—l) < I < Ke(rsrk)’k = 1’ oo ’n}, ( )
k=1 r,=0
where Kg(Te_;) = —o0. )
By conditions Az and XKy, for any ¢ > 0,
Al/lm 11m P{k.(ten) <t} < 11m P{xo(ton) < 2t} = 0. “4.4.4)
Condition Ay and relation (4.4.4) imply that
1irr()1 P{Ce(tr) < xp,k=1,...n}
= }Jllm hngz Z P{Et(rark) < Xk» K{:(T{:rk l) < tk < Kt(rark) k }
e k=1 r,=0
n N
= lim ; ZO P{E(T0n,) < Xk Ko(Tor-1) < t < Ko(Ton )k = 1,....n} (4.4.5)

Z Z P{Eo(Ttor,) < Xk, Ko(Tor—1) < tx < Ko(Tor ), k=1,...,n}

k=1 r=0
= P{Co(ty) < xt, k=1,...n}.
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Since the choice of #; € Z; and x; such that P{Ty(#;) = xx} =0fork=1,...n,n> 1
was arbitrary, relation (4.4.5) is equivalent to the weak convergence relation given in
Lemma 4.4.1. O

Conditions of J-compactness can also be formulated in terms of the “embedded”
sequence of random variables K.(t,),n = 0, 1,.... It is sufficient to assume validity of
the following condition, which is weaker than A s:

Agp: Ke(Ten),n=0,1,... = Ko(to0),n =0,1,... ase = 0.

Lemma 4.4.2. Let conditions 9,5, K, Ky, and Ay hold. Then
1}1%@ P{AS(C(-), e, T) > 8} =0, 8,T > 0.

Proof of Lemma 4.4.2. Consider the random functionals M (7T) = max(n : Ke(te,) < T)
and 0¢(n) = min <<, (Ke(Tet) — Ke(Te—1))-

It is readily seen that 0.(n¢(7")) is greater than or equal to the minimal length of the
intervals between the moments of jumps of the process C.(¢) in the interval [0, T]. So,
we have the following implication for the random events:

{As(Ce(), e, T) > 0} € {0.(me(T)) < c}. (4.4.6)
Relation (4.4.6) implies that

P{A;(Ce(), e, T) 2 8} < P{6:(e(T)) < c}
< P{0:(n) < ¢} + P(n(T) > n} (4.4.7)
= P{8:(n) < ¢} + P{xe(ten) < T}

Since f(xi,...,X,) = minj<,(xx — X¢—1) is a continuous function for every n > 1,
condition Ag, implies that

0:(n) = Op(n)ase -0, n > 1. (4.4.8)

Note also that, by condition J,4, the random variable 8y(n) > 0 with probability 1,
for every n > 1. Using this fact and conditions J4, K;, Kg, and Ag, we get

lim 11m P{A;(Cc(-),c,T) > 6}

0<c—0 ¢

< lim hm P{6:(m:(T)) < ¢}

0<c—>0

< lim Tim(P(0(n) < ¢} + Plx(er) < T)) (4.4.9)
<Cc— b—)

< 0hm0 P{0o(n) < 2c¢} + P{xo(To,) < 2T}

= P{xo(tg,) < 2T} - 0 as n — oo.

This completes the proof. O
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If condition J,4 holds, then condition Ag, can be replaced by the following weaker
condition:

N,: () 1imy e lime_o P{Ke(Ten) < T} = 0 for T’ < oo;

(b) 1irnO<c—>0 m8—)0 P{Ks(rsn) - Ks(rsn—l) < C} =0forn>1.

Lemma 4.4.3. Let conditions 3, 3_(37, 3_(38, and N, hold. Then
lin&E% P{AJ(Ce(),c, T) > 8} =0, 8,T > 0.

Proof of Lemma 4.4.3. The first part of the proof repeats the proof of Lemma 4.4.2 up
to the estimate (4.4.7). This estimate can be continued in the following way:

P{A,(Ce(), ¢, T) 2 8} < P{0:(n(T)) < ¢}

< P{B:(n) < ¢} + Plxe(ten) < T}
(4.4.10)

< D Plku(Ta) = Ke(To1) < € + PlKe(Ter) < T).

k=1

Take an arbitrary 0 > 0. Using condition N, (a) we can choose n so large that
lim,_,o P{x.(t:,) < T} < 0. Then we get, using condition N, (b), that

lim hmP {A;(Ce(+),c, T) > &}

0<c—0¢

<mmmZme KelTur) < 0 + PlKe(Ter) < T))

0<c—0 &0

(4.4.11)

< Z lim 11m P{k.(Ter) — Ke(Tehy) < c} + 0 =o0.

0<c—0 >0

Since the choice of 0 > 0 is arbitrary, relation (4.4.11) implies the relation of J-
compactness stated in the lemma. O

The question about possibility to include the point O in the set of weak convergence
Z, requires a special consideration. Let us formulate the following condition:

R,: limgeo limeo P{0 < Ke(Tey) <t} =0forn=0,1,.. ..

Lemma 4.4.4. Let conditions 9,5, K,, Kg, N, (a), and R, hold. Then

lim 11m P{ve(t) — ve(0) > 8} =0, 6 > 0.

0<t—0 ¢
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Proof of Lemma 4.4.4. By using conditions N, (a) and R,, we get

lim hm P{ve(r) — v¢(0) > 8} < hm hm P{ve(?) # v.(0)}

0<t—0 e—
n

< 2, Jim ll_r}(‘)l P{0 < Ke(te) < 7} + lim lln(‘)l P{Ke(Tens1) < 1} (4.4.12)

< li_n(}P{Kg(rgn+1) <0} > 0asn — oo.

The relation given in Lemma 4.4.4 follows from estimate (4.4.12). |

Lemma 4.4.5. Let conditions 9,5, K,, Ky, N, (a), and R, hold. Then
lim lim P{|Z.(r) - C.(0)] > 8} = 0, & > 0.
Proof of Lemma 4.4.5. Using relation (4.4.12) we get

hmhmm@m Q@M>&<hmhmﬂw@¢w®»: (4.4.13)

0<t—

o
As was mentioned above, if condition J,4 holds, then condition Ag, implies condi-
tion N,,.

The following theorem is a corollary of Lemmas 4.4.1 — 4.4.5.

Theorem 4.4.1. Let conditions 9,4, K5, Ky, Aso, and R, hold. Then

L(0), 12 0 -5 Co(r),t > O as e — 0.
The most important for applications is the case where the following condition holds:
J,7: x:(0) > 0 with probability 1 for every € > 0.

Obviously, if condition J,, holds, then the following condition is sufficient for con-
dition R, to hold:

Ry: limoro limeo(P{0 < K(0) < 1} + P{ie(Ter) < 1)) = 0

Remark 4.4.1. Under conditions J,4 and J,,, condition A, implies condition R, to hold
if (a) P{x.(0) = 0} — P{xo(0) = 0} as € — 0. Note that (a) and condition J,, hold if (b)
P{x.(0) = 0} = 1 for every € > 0.

Remark 4.4.2. 1f (b) holds, then condition N, (b) implies that condition R, holds.
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4.4.2. General conditions for weak and J-convergence of step generalised ex-
ceeding processes. It should be noted that the results on weak convergence of gener-
alised exceeding processes, given in Theorems 4.3.1 — 4.3.3, 4.3.6, 4.3.8, 4.3.10, and
4.3.12, as well as in Lemmas 4.3.1 — 4.3.3, can also be applied to step generalised ex-
ceeding processes.

As a matter of fact, the only assumption that the processes k.(#),t > 0 are non-
decreasing is involved. No other assumptions about the character of trajectories of these
processes were used in these theorems.

Considering the J-convergence, one should be more careful. Theorems 4.3.4, 4.3.5,
4.3.7,4.3.9,4.3.11, and 4.3.13 can be applied in the case where the corresponding lim-
iting exceeding time process vy(?), ¢ > 0 is an a.s. continuous process. Instead of using
these theorems, one can combine the conditions of Theorems 4.3.1 —4.3.3, 4.3.6, 4.3.8,
4.3.10, and 4.3.12 with the conditions of Lemmas 4.4.3 — 4.4.5 in order to get conditions
for J-convergence of the step generalised exceeding processes.

For example, the following theorem combines the conditions of Theorem 4.3.7 and
the ones pointed out in Remark 4.3.6 with the conditions of Lemmas 4.4.3 — 4.4.5. Note
that condition R, replaces conditions Oy; and Oy,. This is possible due to Lemmas 4.4.4
and 4.4.5.

Theorem 4.4.2. Let conditions 9,5, Ky, Ky, Ase, dagr O30 N, and R, hold. Then

L(0).12> 0 -5 Co(r), 1> Oase — 0.
Remark 4.4.3. Omitting condition R, in Theorem 4.4.2 we get conditions for J-conver-
gence of the processes C.(f) on the interval (0, co).

The case considered in Subsection 4.3.8 requires a special consideration. In this
case, the conditions of Theorems 4.3.11 or 4.3.13 can be combined with the conditions
of Lemmas 4.4.3 —4.4.5.

Theorem 4.4.3. Let conditions 5, K5, Kg, Asg, J240 I3, and N, hold. Then

L), t>0 =5 to(1).t>0ase — 0.

Theorem 4.4.4. Let conditions 5, K, Kg, Asg, J2g0 I140 Ny, and R, hold. Then

Ce(),t>0 N Co(t),t>0ase — 0.

There is an essential difference between Theorem 4.4.1 and Theorems 4.4.2 —4.4.4,
Theorem 4.4.1 is based on conditions for weak convergence of the embedded random
sequence (Ke(Te,), &(Ten)),n = 0,1,.... At the same time, Theorems 4.4.2 — 4.4.4 are
based on the condition for J-convergence of the bivariate processes (K.(t), E:(¢)),t > 0.
Both variants have their own advantages in applications.
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4.4.3. The case of step exceeding time processes defined on (0, co0). Let us also
consider a model where, for every € > 0, x(¢),# > 0 is a step cadlag process defined on
the interval (0, co). This means that for every s > 0 there exists an a.s. strictly increasing

sequence of random variables s = rif)) < risl) < 1 < ... such that k.(r) = x.(t%)) for

€2
t e[t TS;)H)’ n=0,1,.... Therandom variables 1), n = 1,2. .. are moments of jumps

and the random variables Kg(rg,)),n = 1,2,... are values of the process x.(¢),r > s at
the moments of jumps. We exclude the case of fictitious jumps, that is, we assume that
Ke('cif))) < Ke('cisl)) < Ke('cisz)) < ... with probability 1. Let us summarise the assumptions
made above in the following condition:

J.s: 'cgf), n=20,1,...and KS(T(EB)), n=0,1,...are a.s. strictly increasing sequences of
random variables for every s > 0 and every € > 0.

Note that we allow here for the random variable x.(0 + 0) = limg,_ K:(s) to be
improper, i.e., to take the value —co with a positive probability. Note that this limit exists
with probability 1, since E.(¢) is a non-decreasing process. As far as the first component
E:(1),t > 0, is concerned, we restrict the consideration to a basic case where this process
is a cadlag process defined on the interval [0, co).

Conditions K, and Kj take in this case the following forms:

- P

XKy: 9 5 coasn — oo, 5 > 0 for every € > 0,
and

- P

Xy Ke('cg)) — oo asn — oo, s > 0 for every € > 0.

Note that, under &K,, condition K,, is equivalent to condition Ks. The proof is
absolutely analogous to the one in Subsection 4.4.1 for conditions Jg and K.
Let us now take some s, > 0 and define the process

(sr) Ks(sr) ifr < Srs
K1) =KtV s,) = . (4.4.14)
K{:(t) lft Z Sra

and then the corresponding exceeding time process
O(ES’)(I) = sup(s : Kgs')(s) <1,t>0,
as well as the generalised exceeding process
L) = B ), 12 0.
By the definition,

. 0 if t < x(s,),
(sr) —
Ve(#) 2 V(1) = {vg(t) 1> (s, (4.4.15)
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Note that relation (4.4.15) does not imply that QS’)(O) = 0, since it can occur that the
event {t < x(s,)} = @.

Also by the definition of the exceeding time processes, (a) v.(t) < s, for r < x(s,).
Relations (4.4.15) and (a) imply that the following estimate holds:

0= sup vgs')(t) < sup V() < s, (4.4.16)

t<K(s;) t<x(s;)

Here the supremum over the empty set should be interpreted as 0.
Take a sequence 0 < s, — 0 as r — oo. The following lemma gives a useful estimate
for generalised exceeding processes at zero.

Lemma 4.4.6. Let conditions 3.5, Ko, Ky, and O3 hold. Then

lim lim P{sup |C.(r) — £ (1) > 8} = 0, & > 0.

roee=0 s

Proof of Lemma 4.4.6. Using relations (4.4.15) — (4.4.16) and condition O,; we get, for
0 > 0, that

lim Iim P{sup [¢.() — £ ()] > 8}

n—o0 £—0 0

= lim lim P{ sup [E.(v.(£)) — E.(v(0))] > )

n—00 g0 yoie(s,)

R (4.4.17)
< lim lim P{ sup [E.(t") — E.(t")| > O}
n—00 £ l’,l”SS,
< lim E& P{sup [E.(r) — E.(0)] > &/2} = 0.
N—00 € 1<s,
This estimate completes the proof. O

Let us assume the following condition:

Ag: (T, E@ONn = 0,1,... = (o0, ETS)),n = 0,1,... as e — 0, for
r>1.

For every r > 1, let Z,, be the set of all + > 0 which are points of discontinuity for
distribution functions of the random variables KO(‘C&’)), n=0,1,.... The set Z, equals
[0, o) except for at most a countable set. Let us also denote Zy = N,»1Zy,. This set is
also [0, co) except for at most a countable set.

Lemma 4.4.7. Let conditions 9.5, Ko, Ko, Ags, and O3 hold. Then

(D), t€Zy = Co(t),t € Zyase — 0.
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Proof of Lemma 4.4.7. Conditions 9,5, Ky, Ko, and A, imply that conditions of Lemma
4.4.1 hold for the processes E(¢),7 > 0 and K1), 1 > 0 for every r > 1. By applying
Lemma 4.4.1 to these processes and taking into consideration that the set Z, C Z, for
r > 1, we get the following relation for every r > 1:

Co(n), 1€ Zy = E7 (1), € Zyas e — 0. (4.4.18)

Lemma 4.4.6 also implies that
(0,12 0= Co(), 1> 0as r — oo (4.4.19)

Lemmas 1.2.5 and 4.4.6, together with relations (4.4.18) and (4.4.19), imply the
relation given in Lemma 4.4.7. O

We now formulate a lemma which is an analogue of Lemma 4.4.3. The following
condition replaces, in this case, condition N:

Nj;: There exists a sequence 0 < s, — 0 as r — oo such that

(@) 1im,_e limeo P{ic.(t8) < T} = 0for T < oo, r > 1;

(b) limg._ lim,_o P{x.(to) — 1. (t"”) < ¢} = 0 for n, r > 1.

en

Lemma 4.4.8. Let conditions Ky, Ky, N3, and O,; hold. Then
1ingﬁg P{AJ(C(-), e, T) > 8} =0, §,T > 0.

Proof of Lemma 4.4.8. Condition N implies that condition N, holds for the generalised
exceeding processes (1), ¢ > 0 for every r > 1. Thus Lemma 4.4.3 can be applied to
these processes. This yields the following relation for every r > 1:

lim 1im P{A,(E*"(-),¢, T) > 8} = 0, 8, T > 0. (4.4.20)

c—0 -0
Using the estimate obtained in Lemma 4.4.6 and relation (4.4.20) we get, for 0 <
T < oo, that
lim Tim P{A;(Ce(), ¢, T) > 8}
0<c—0 -0

< lim Iim(P{A,;E(), e, T) > 8/2}
0<c—0 -0 . (4421)
+ P{Ay(Ce() = §(), e, T) > 8/2})

< @ P{sup [Ce(r) — E57(1)] > §/4} — 0 as r — 0.

>0

This estimate completes the proof. O
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Let us also formulate a lemma which is an analogue of Lemma 4.4.4. The following
condition replaces, in this case, condition R;:

R;: There exists a sequence 0 < s, — 0 as r — oo such that limy, ﬂﬁo P{0 <
k(8 <t} =0forn=0,1,..,r> 1.

Theorem 4.4.5. Let conditions 9,5, Ko, Ko, Agp, N3, Ry, and O3 hold. Then

C(0).120 -5 to().t>0ase — 0.

Proof of Theorem 4.4.5. Condition R, implies that condition R, holds for the gener-
alised exceeding processes (@), 1 > 0, for every r > 1. So, we apply Lemma 4.4.5
to these processes. This yields, together with Lemma 4.4.7, the following relation for
every r > 1:

Eo(0), 1€ Zy U {0} = £ (1), € Zy U {0} as & — 0. (4.4.22)

Relation (4.4.22) and Lemma 4.4.8 imply the statement of Theorem 4.4.5. O

As was mentioned above, the most important for applications is the case where con-
dition J,4 holds.

Obviously, if condition J,4 holds, then the following condition is sufficient for con-
dition R, to hold:

R,: There exists a sequence 0 < 5, — 0 as r — co such that (a) limy,,o ﬂg_@(P{O <
Ke(s,) < 1} + P{ic.(t¥”) < 1)) = 0 for r > 1.

el

The results given in Section 4.3 can also be applied to step generalised exceeding
processes defined on the interval (0, o). The remarks made in Subsection 4.3.7 are also
valid in this case.

Let us only formulate an analogue of Theorem 4.4.2.
Theorem 4.4.6. Let conditions 4, Ky, Ky, Ase daar O30 N3, and Ry hold. Then
Ce(),12 0 -5 Lo(f), £ = Oas e — 0,

Remark 4.4.4. Omitting condition R in Theorem 4.4.6 one gets conditions for J-conver-
gence of the processes C.(7) on the interval (0, co).
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4.5 Sum-processes with renewal stopping

In this section, we get limit theorems for renewal processes and sum-processes with
renewal stopping. This model gives the most important examples of exceeding time
processes and generalised exceeding processes.

4.5.1. General sum-processes with renewal stopping. Let, for every ¢ > 0,
(Ken» Sen)s n = 1,2,... be a sequence of random vectors taking values in [0, o) X R;.
Further, let n, > 0 be a non-random function such that n, — oo as € — 0.

We first introduce a sum-process with non-random stopping index,

(1) = (%0, &) = () Keps ) B, 12 0.

k<tng k<tng

In this case, the following process is usually referred as a renewal (stopping) process:
Ve(t) = sup(s : K.(s) < 1), t >0,
The following process is called a sum-process with renewal stopping:

Cs(t) = gs(vs(t)), t>0.

All theorems formulated in Section 4.3 can be directly carried over to sum-processes
with renewal stopping.

Let us just repeat here the formulations of the theorems that will be directly applied
to sum-processes with renewal stopping constructed from i.i.d. random variables.

Condition A4 takes, in this case, the following form:

Agy: (1:(5), Ee(1)), (s,1) € VXU = (x0(s), Eo(?)), (5,) € VX U as ¢ — 0, where (a) V is
a subset of (0, o), dense in this interval, (b) U is a subset of [0, o) that is dense in
this interval and contains the point 0, (c) (k((?), Eo(?)), t > 0 is a cadlag process with
non-negative and non-decreasing first component and real-valued second compo-
nent.

It should be noted that (a) x.(#),# > 0 is a non-negative and non-decreasing process
for e > 0. So, it is only necessary to require in condition A, (c) that the limiting
process (Ko(s), Eg(1)), t > 0 be a cadlag process omitting the requirement for this process
to be non-negative and no-decreasing. Indeed, the relation of weak convergence given in
condition Ay, and (a) imply that the first component of the limiting process «y(?), > 0
should be an a.s. non-negative and non-decreasing cadlag process at least for € V. The
set V is dense in (0, c0) and xy(#),¢# > 0 is a cadlag process. So, Ky(#),# > 0 is an a.s.
non-negative and non-decreasing cadlag process. This process can always be replaced
by a stochastically equivalent cadlag modification in condition A,.
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Since the process K((?),# > 0 is non-negative, condition J, automatically holds, i.e.,
Ko(0) > 0 with probability 1.

However, it is useful to note that condition A, does not require weak convergence
of the processes K.(¢),¢ > 0 at the point 0. It can occur that the random variable 1,(0)
takes positive values, although the random variable x.(0) = O with probability 1 for every
€ > 0. It should also be noted that the assumption 0 < ¢ — 0 does not affect conditions
d,4 and O,;. The asymptotic relations that enter these conditions also hold for € = 0.
Indeed, by condition As,, (Ko(s), Eo(?)), # > 0 is a cadlag process.

Let us reformulate Theorem 4.3.7.

Theorem 4.5.1. Let conditions Agy, Ks, Jag O3, and Iy hold for the sum-processes
(1), t > 0. Then

Ce(0),t>0 N Co(®),t>0ase — 0.

Note that, in this case, vo(0) = 0 with probability 1. Also, by the definition, §,(0) = 0
with probability 1 for € > 0. Since 0 € U, condition A, also implies that £y(0) = 0 with
probability 1 and, consequently, Cy(0) = Ey(vo(0)) = O with probability 1.

Let us also consider the case when the limiting renewal process is a step cadlag
process.

In this case, the random variables t.,,n = 0, 1, ... should be defined in the same way
as in Subsection 4.4.1, that is, as successive moments of positive jumps of the process
K:(2),t > 0, for € > 0 as well as for e = 0.

Conditions 3,4, K,, Ky do not require any changes in the formulations. They should
be required to hold.

Condition A, takes, in this case, the following form:

"463: (KE(Tsn)’ E(Tsn))a n = 0» 1’ e = (KO(TOn)’ E(TOn))a n = O’ 1, ... aS € — 0’ where
(K0(Ton), E(ton)),n = 0, 1,... is a sequence of random vectors with non-negative
first and real-valued second component.

Since, (a) k(?), ¢ > 0 is a non-negative and non-decreasing process for € > 0, the re-
quirement of non-negativity of the corresponding random variables K((to,) in conditions
Ag; can be omitted. This automatically follows from the relation of weak convergence
given in condition Ag;. Also note that (a) implies that condition J; holds. Hence,
condition R, can be replaced by condition R,.

Let us reformulate Theorems 4.4.1 and 4.4.4.

Theorem 4.5.2. Let conditions 3,5, K,, K, Ags, and R, hold for the sum-processes
0. (1), t > 0. Then

C(0).120 -5 to().t>0ase — 0.
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Theorem 4.5.3. Let conditions 3,5, K5, Ky, Agp d2s O3, Ny, and R, hold for the
sum-processes O(t),t > 0. Then

C(0).120 -5 to().t>0ase — 0.

Let us also consider a general model in which x.,, n = 1,2, ... are real-valued ran-
dom variables. This case does not require any changes in the definitions of the renewal
processes and the sum-processes with renewal stopping. In this case, K (¢),t > 0, is
not a non-decreasing process. However, the process k; (f) = sup,, K.(s),t > 0, is non-
decreasing. At the same time, the corresponding renewal process v,(f) = sup(s : K¢(s) <
t) = sup(s : k7 (s) < 1), t > 0 can be considered as an exceeding time process constructed
from the process k; (¢), > 0.

Let us just reformulate Theorem 4.3.14. Note that x/(0) = 0 which allows to one
omit condition J.

Theorem 4.5.4. Let conditions As;, K¢, J55, O3, and I 5 hold for the sum-processes
(1), t > 0. Then

C(0).120 -5 to().t>0ase — 0.

Here we do not formulate separately conditions for weak convergence. Only note
that, under condition Q,,, the corresponding set of weak convergence in Theorem 4.5.1
—4.5.4 is the interval [0, co).

The renewal stopping processes are defined above as v¢(f) = sup(s : K(s) < f) =
inf(s : Ke(s) > 1) = ni min(n @ Y., Kex > 1), t = 0. In some applications, slightly
modified sum-processe§ with renewal stopping are used. In that case, the renewal stop-
ping moments are defined as v.(¢) = ni max(n @ Yy, Kex < 1) = Ve(t) = 1/ne, t > 0.
Respectively, a slightly modified version of the generalised exceeding process, C.(t) =
Ec(VL(1)) = Ec(Ve(t) — 1/me), t > 0, is considered.

The modification of sum-processes with renewal stopping affects neither the condi-
tions nor the formulations of the theorems given in Section 4.3. In particular, one can
replace the processes v(f), t > 0 by the processes v(f),t > 0 and, as a consequence, the
processes Ce(f),7 > 0 by the processes C.(f),# > 0 in all lemmas and theorems given in
this section.

The only slight changes are required in the case of step sum-processes with renewal
stopping, i.e., where condition A g is employed. As a matter of fact, in this case k:(T) =
0 and, therefore, the modified sum-process with renewal stopping T.(f) = E(Tex+1 — 1 /1)
if Ke(Ter) < 1 < Ke(Ters1), K =0, 1,.. .. So, the random variables &(t.,) should be replaced,
in this condition, by the random variables &(t, — 1 /n.) and the limiting random variables
E(1o,) by the random variables &(to, — 0) forn =0, 1,.. ..

4.5.2. Non-negative sum-processes based on i.i.d. random variables. Let us
consider the sum-processes Ke(f) = X<, Kex»# = 0. We assume that the following
condition holds:
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T3 Kernk = 1,2,...1s (for every € > 0) a sequence of non-negative i.i.d. random
variables.

Conditions 8; — 83, which provide marginal weak convergence of the sum-processes
E«(1),t > 0, were formulated in Subsection 4.2.2. Let us now formulate similar condi-
tions for the sum-processes K.(t), t > 0.

The process K(f),# > 0 is a sum-process of i.i.d. random variables. As easily

seen, this is a particular case of the sum-process E.(7),t > 0. However, due to its
non-negativity, the process x.(¢),# > 0 is simpler to deal with. Conditions for weak
convergence of such processes involve the tail probabilities and the truncated means for

the random variables k. ; but not their truncated variances,

8, n:P{xe; > u} - m;(u) as € — 0 for all u > 0, which are points of continuity of the
limiting function 7t; (u).

851 nExe (k1 < u) — c(u) as € = 0 for some u > 0, which is a point of continuity
of 7t (u).

Also here the limits satisfy a number of conditions: (a) st;(#) is a non-negative, non-
increasing, and right-continuous function for u > 0 and m;(c0) = 0; (b) the measure
IT,(A) on c-algebra BT, the Borel o-algebra of subsets of (0, o), defined by the relation
I ((uy, up]) = my(uy) — (1), 0 < uy < up, < oo, satisfies the condition fooo =ILi(ds) <
c0; (¢) under 8,, condition 85 can only hold simultaneously for all continuity points of
7t () and c(uy) = c(up) — f:z sI1;(ds) for any such points 0 < u; < u < oo; (d) c(u) is a
non-negative function.

Note that, due to non-negativity of the random variables x,;, conditions 8, and 85
imply condition 8 to hold with the constant 5> = 0.

Indeed, it follows from 85 in an obvious way that n.(Ex, 1 (ke 1 < u))> > 0ase — 0.
Also, ngEKf’lx(Kg,l < u) < ungEx, 1 x(Ke; <u) > 0ase — 0andthen0 < u — 0.

According to the central criterium of convergence, conditions 8, and 85 are neces-
sary and sufficient for the following condition of weak convergence to hold:

Ayt 1:(2),t > 0 = x0(t),t > 0as € = 0, where K(¢),# > 0 is a non-negative and
non-decreasing cadlag homogeneous process with independent increments.

The limiting process K(#), ¢ > 0 has the following characteristic function for ¢ > 0,
E explizro(n)} = ¢1(2, y)

_ . iys DIT, (d
exp{t(lcy+fo (e L (ds))} 4.5.1)

1ys
I ds)).

= exp{t(idy + f (e —1- ;
0
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where the constants

c=cu)— f sIli(ds) >0, d=c+ f al >111(ds) 4.5.2)
0 0 1+ S

do not depend of the choice of the point u in condition 8.
As was shown by Skorokhod (1957, 1964), conditions 8§, — 85 imply, without any
additional assumptions, that

Ko(D), 1> 0 =5 k(). 1 > 0 as & — 0. (4.5.3)

4.5.3. Renewal processes based on i.i.d. random variables. To exclude the trivial
case where the process ky(¢) = 0,7 > 0, we also assume the following condition:

Ji9: (@) ¢ > 0, or (b) m;(0+) = limg<,—0 T (W) € (0, o0].

It is easy to show that condition J,4 holds if and only if (a) x(?) L 00 as t — oo,
Conditions 8, — 85 and J,4 also imply that (b) P{x,; > 0} > O for all € small enough.

Without loss of generality, one can assume that (b) holds and, therefore, (¢) K.(?) L 00
as t — oo for every € > 0.

So, we can assume that condition K holds.

Let us consider the corresponding pre-limiting renewal stopping processes V¢(t) =
sup(s : Ke(s) < ), > 0. Note that we can interpret the random variables k. as inter-
renewal times. Hence, n.v.(f) — 1 can be interpreted as the number of renewals in the
interval [0, tn,].

The corresponding limiting process vo(t) = sup(s : Ko(s) < 7),¢ > 0 is an exceeding
time process for the process Ky(¢), ¢ > 0.

Denote by Vj the set of points ¢ > 0 that are points of stochastic continuity of the
process vy (t),t > 0.

The following statement is a direct corollary of Lemma 4.3.1.

Lemma 4.5.1. Let conditions T 5, Ag, (or 8, 85) and 3,4 hold. Then
Ve(t),t € Vo = vo(t),t € Vyase — 0.

The process vy(t),t > 0 is stochastically continuous and V,, = (0, o) if the following
condition, which is stronger than 3,4, holds:

J59: (@) ¢ > 0, or (b) m(0+) = oo, or (¢) m(0+) € (0,00) and 7 (u),u > Ois a
continuous function.

If condition_ 3J,, does not hold, then the set Vj is (0, c0) except for at most a countable
set. Namely, V| is the set of points of discontinuity for the distribution function of



4.5. Sum-processes with renewal stopping 305

Ko(1). It can be described in the following way: Vo={v=wvli+..vd,: 1,...1, =
0,1,....,n,.i +... + 1, > 1,n > 1}, where v, v, ... are points of discontinuity of the
function 7ty (), u > 0.

Condition J,4 contains two alternatives. The first one corresponds to the case when
the following condition holds:

J,: (@) ¢ > 0or(b) m(0+) = co.

In this case, xo(#),# > O is an a.s. strictly increasing cadlag process and, therefore,
the corresponding renewal process vo(f) = sup(s : Ko() < 7),¢ > 0 is a.s. continuous.
The second one corresponds to the case when the following condition holds:

J5: (a) c = 0and (b) m;(0+) € (0, o).

In this case, xy(t),t > 0 is a compound Poisson process. It is a step cadlag process
with positive jumps and, therefore, the corresponding renewal process v((t) = sup(s >
0: xo(?) <1),t > 0is also a step cadlag process with positive jumps.

Lemma 4.5.2. Let conditions T3, Ay (0or 84, 85) and 3, hold. Then

Vo)1= 0 5 vo(£). 1 > 0 as € — 0.

Proof of Lemma 4.5.2. In this case, v¢(0) = 0 for ¢ > 0, and also for € = 0. So, the point
0 can be included in the set V|, that appears in the relation of weak convergence given
in Lemma 4.5.1. Since the limiting process v(¢), ¢ > 0 is a.s. continuous, Lemma 3.2.1
implies the statement of Lemma 4.5.2. Note that condition J,; implies J,,. Hence, the
set of weak convergence V), described in Lemma 4.5.1, can be extended to [0, o). |

Let us introduce the following condition:

8¢ n:P{xe; >0} = m(0+) <cvase — 0.

Lemma 4.5.3. Let conditions T, Ay (0r 84, 85), 8¢ and J,, hold. Then

Vo) 1> 0 =55 vo(£). 1 > O as € — 0.

Proof of Lemma 4.5.3. The process K.(t), t > 0 is a step cadlag process for € > 0, as well
as for ¢ = 0. Obviously, k.(0) = 0 and this process has only positive jumps. Let o, k =
1,2,... be the successive inter-jump times for this process and Be,k = 1,2,..., the
corresponding successive jumps. Obviously, (d) the random variables o,k = 1,2,...
and Pg, k = 1,2, ... are mutually independent, (e) the random variables o,k = 1,2,. ..
have the same distribution, (f) the random variables g,k = 1,2,... have the same
distribution.
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Let us describe the process k()¢ > 0, for ¢ > 0. Denote P, = P{x.; > 0}. In this
case, (g) the random variable a,, takes the value //n, with probability (1 — P,)""!P, for
[ =1,2,...; (h) the random variable {3;; has the distribution function G.(u) = P{x, <
u/Ke > 0}, u>0.

The limiting process xo(#), > 0, is a compound Poisson process. In this case, (i)
the random variable a; has the exponential distribution with parameter 7t;(0+), (j) the
random variable Pg; has the distribution function Go(u) = 1 — 7ty (u)/m;(0+), u > 0.

Obviously, conditions 8, — 8¢ and J,, imply that (k) the random variables o, = 0g;
as € — 0 and (1) the random variables B,; = Po; as € — 0.

The process v¢(f),t > 0 is also a cadlag process with step trajectories and posi-
tive jumps for € > 0, as well as for ¢ = 0. The inter-jump times are, in this case,
Bers k = 1,2,..., and v¢(0) = a,;. Values of the successive jumps are the random vari-
ables o, k= 2,3, ...

Lemmas 4.4.1 and 4.4.2 can be applied to the processes v(¢),t > 0. Here, we should
assume that the external processes E.(f) = f, > 0 and, therefore, the process C.(f) =
Ve(1),t > 0.

In this case, the random variables T, = 2;_; O and Ke(Te,) = E(Ten) = 2p_g Pex fOr
n = 0,1,.... Relations (d) — (1) imply, in an obvious way, that conditions 9_C7, J16- 9_(,8,
and A hold. Also relations (d) — (I) imply that conditions N, and R, hold.

So, Lemma 4.5.3 follows from Theorems 4.4.1 or 4.5.2. Alternatively, Theorems
4.4.4 and 4.5.3 can be employed. Condition Ag, implies conditions A, and Ag,. Also,
relation (4.5.3) implies that conditions J,, and O,; hold. m]

Note that condition 8 plays an essential role in Lemma 4.5.3. The following two
examples show that without this condition J-convergence of the processes v.(¢),t > 0
can not be guaranteed.

Let the random variables k., take values O and 1, respectively, with probabilities
1 -p.=1-1/n.and p. = 1/n.. In this case, conditions 8, - 85 and J,, hold. Simple
calculations yield that the functions 7t;(u) = 1 = ¥[1,.0)(#) and c(u) = Y¥1,00) (). Therefore,
c=0, J'E1(0+) = 1 and Gy(u) = X[l’oo)(l/l).

In this case, for every € > 0, the random variable a,; has the geometrical distribution
with parameter p,, i.e., it takes the value //n, with probability (1 — p.)"!p, for I =
1,2,..., and the random variable B¢; = 1 with probability 1. The corresponding limiting
random variable a; has the exponential distribution with parameter 1, and 3o; = 1 with
probability 1.

In this case, Ky(¢),t > 0 is a standard Poisson process with parameter 1. The process
vo(t),t > 0 is also a cadlag process with step trajectories. The random variable v((0) =
01 and the inter-jump times for this process all equal to 1. At the same time, the values
of the successive jumps at moments 1,2, ... are, respectively, o, O3, . - ..

In this case, the set V, = {1,2,...} and V = (0, 00) \ Vo. Lemma 4.5.1 guarantees
that v(7),1t € Vo = vo(t),t € Vy as € — 0. In this case, the set of weak convergence V)
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can be extended to the interval [0, o). Indeed, the pre-limiting processes v.(#) have the
same fixed moments of jumps, 1,2, ..., for every ¢ > 0 as well as for ¢ = 0. The value
at 0, which is a,, and the values of the successive jumps, which are a.,, 0.3, . . ., weakly
converge to the corresponding limiting random variables.

Condition 84 also holds, since n.P{x.; > 0} = n.p. = 1. Therefore, Lemma 4.5.3

implies that the processes v,(t),t > 0 J, vo(t),t > 0ase — 0.

Now, let us slightly modify the model. Let the random variables k. take values &,
and 1, respectively, with probabilities 1 — p. = 1 — 1/n, and p. = 1/n.. Here, h, > 0
and h, = o(p,) as ¢ — 0. In this case again, conditions 8, - 85 and J,, hold. Simple
calculations yield that the functions 7;(#) = 1 — %[1.0)(#) and c(u) = 1. (u) are the
same as above. Consequently, ¢ = 0, t;(0+) = 1 and Go(u) = %1.00)(10).

Therefore, the limiting processes Ko(#),# > 0 and vy(f), ¢ > 0 are the same as in the
first example. Again, due to Lemma 4.5.1, v (¢),t € Vy = vo(t),t € Vj as € — 0, where
the sets V = (0, o) \ Vo and Vy = {1,2,.. ).

However, in this case, condition 8¢ does not hold, since P{x.; > 0} = 1 and, there-
fore, n.P{x.; >0} =n. > ccase — 0.

In this case, for every € > 0, the pre-limiting random variables a.; = 1/n, and the
random variable {3, take the values /. and 1, respectively, with probabilities 1 — p. and
pe. The corresponding limiting random variables are the same as in the first example,
i.e., 0o has the exponential distribution with parameter 1 and [3o; = 1 with probability 1.
The random variables a.; do not weakly converge to 0, as € — 0 and, hence, the random
variables v,(¢) do not weakly converge to vy(¢) as € — 0O for every point =0, 1,.. ..

Moreover, let d,; be the successive moments of jumps, with value 1, of the process
Ke(t),t > 0. These random variables are independent and have the same distribution.
Obviously, &, takes the value I/n, with probability (1 — p.)"'p, for = 1,2,.... Let
also Ty = X 1<ken(MeOer — Dhe,n = 0,1,.... The process V() can be described in the
following way. Its trajectories have the same step structure in each interval [T, Tene1 +1)
forn = 0,1,.... In each such interval, a trajectory first has positive jumps of the value
1/n, at the moments T, Te; + He, Tey + 2he, . . . Tene1 — N and then takes the value O, g
in the sub-interval [Tg,.1, Tens1 + 1). The length of each sub-interval with small jumps
of the value 1/n, is (n.0¢, — 1)he. Obviously, (n.0,, — 1)h, L 0 as ¢ — O since
he = o(p¢). However, the value of the increment of the process v(¢) in this sub-interval
is (n¢Q, — 1)/n,. Obviously, (n.0., — 1)/n. = @y, as € — 0, where the limiting random
variable has exponential distribution with parameter 1. It can be easily derived from this
that the processes v,(¢) are not J-compact on any finite interval. So, these processes do
not J-converge.

4.5.4. Two-dimensional sum-processes based on i.i.d. random variables. Let us
consider the case when the following condition holds:

Ty (Keks Een), k= 1,2, ... is (for every € > 0) a sequence of i.i.d. random vectors that
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take values in [0, o0) X R;.

First consider an important particular case when the limiting process Ey(z),7 > 0 is a
Wiener process.
So, assume that conditions 8, - 8 hold in the following specific form:

8,1 nP{[E:1| > u} - 0 as e — O forevery u > 0.

Sg: n:EE1%(|Ee.1| < u) — a as e — 0 for some u > 0.

8y: 1. VarEe 111l < u) — b as ¢ — 0 for some u > 0.

Note that, under condition 8,, the asymptotic relation in conditions 8¢ and 8, hold
simultaneously for all # > 0 and the constants a and b*> do not depend on the choice of
u>0.

According to the central criterium of convergence (in the form extending the corre-
sponding one-dimensional result), conditions 8, — 8, are necessary and sufficient for the
following condition for weak convergence to hold:

Ags: Ee(t),t >0 = E(r),t > 0as e = 0, where Ey(r) = at + bw(t),t > 0 and w(z),t > 0
is a standard Wiener process.

We are interested to improve the classical bivariate criterion of convergence which
gives necessary and sufficient conditions for the following condition to hold:

Age: (Ke(D),Ee()), 1 2 0 = (i0(2), Eo(2)), 1 > 0 as € — 0, where (i(2), E(?)), ¢ = 0
is a cadlag homogeneous process with independent increments, non-negative and
non-decreasing first component, and real-valued second component.

Let us first formulate the following useful lemma.

Lemma 4.54. Let conditions T4, Ay (or 8, 8s5) and Ags (or 8; — 8y) hold. Then
condition A holds, moreover, () the limiting processes xo(t),t > 0 and E(t),t > 0
are independent; (B) xo(t),t > 0 is a non-negative cadlag homogeneous process with
independent increments which has the same finite-dimensional distributions as the cor-
responding process in condition Agy; (Y) Eo(t),t > 0 is a Wiener process which has the
same finite-dimensional distributions as the corresponding process in condition Ags.

Proof of Lemma 4.5.4. Let us take some ¢ > 0. Conditions 8, - 85 imply that (a) the
random variables k.(f) = K(¢) as € — 0. Also conditions 8, - 8¢ imply that (b) the
random variables E.(f) = Ey(r) as € — 0. Relations (a) and (b) imply that the family
of distributions of the random vectors (k.(f), E.(¢)) as € — 0 is tight. The corresponding
compacts can be chosen as K, = [0,k,] X [-k//, k], where O < k,, k] — oo asn —

n’>"n
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co. Due to Theorem 1.3.4, the tightness of this family implies its relative compactness.
Hence, any sequence 0 < &, — 0 as n — oo contains a subsequence &, = g, — 0 as
k — oo such that (c) the random vectors (kg (?), Ee,;(t)) = (Ko(1), Ep(1)) as k — oo.

By the definition, (i (7), Eglfc(t)) is a sum of i.i.d. random vectors. Due to the cen-
tral criterium of convergence, (c) implies that (d) the distribution of the limiting random
vector (Kq(1), éo(t)) is infinitely divisible. Recall that the random variables «.(¢) are non-
negative. Conditions 8§, - 85 and 8, - 8§, imply that (e) the components of this vector,
%o(1)) and Ey(r), have distributions of Poisson and Gaussian types, respectively. There-
fore, (f) the random variables K,(#) and éo(t) are independent. This is so, because Poisson
type and Gaussian components of a vector with an infinitely divisible distribution should
be independent. Conditions 8, - 85 (g) show that the random variables Ky(¢) and 1 (7)
have the same distribution. Also, using 8, - 8, (h) we see that the random variables $éo(t)
and Ey(¢) have the same distribution.

It follows from (e) - (h) that the distribution of the limiting random vector (K(?), éo(t))
does not depend on the choice of the sequence ¢, and the subsequence ¢, = g,,. As was
shown above, the components of this vector are independent and have distributions of
Poisson and Gaussian types. So, the random vectors (k.(t), E.(r)) = (Ko(?), éo(t)) as
€ — 0. This completes the proof for one-dimensional distributions. The proof for multi-
dimensional distributions is absolutely analogous. O

4.5.5. Two-dimensional sum-processes based on i.i.d. random variables. The
general case. In the general case, the following condition for the off-boundary sets
should be added to conditions 8; — 85 and 8, — 85:

810 (@ nePlxes > u, &1 > v} = mo(u,v) ase — 0 forall u > 0,v > 0 that are
points of continuity of the limiting function m; »(u, v).

(b) n.P{xe; > u,E1 < v} — my(u,v)ase — 0 forallu > 0,v < 0 that are
points of continuity of the limiting function ;> (u, v).

The limits above satisfy a number of conditions: (a) 7t;,(u,v) is a function that is
non-negative, non-increasing, right-continuous in every argument for u > 0,v > 0,
and 7 5(00,Vv) = m2(u, 00) = 0; (b) 7 2(u,v) is a function that is non-negative, non-
decreasing in v < 0, and non-increasing in u > 0, right-continuous in every argument
foru > 0,v < 0, and m;5(c0,v) = mo(u,—0) = 05 (¢) ITj((uy,uz2] X (vi,v2]) =
72Uy, vi) — 1y 2(U, vi) — 72Uy, v2) + 7y 2(4a, v2) 1S @ non-negative function for 0 <
uy < up < 00,0 < vi £ v; < oo, which defines the measure I1;,(A) on the o-
algebra B x B (the Borel o-algebra of subsets of (0,00) X (0, 0)); (d) similarly,
ITy o ((uy, uo] X (vi,val) = Tio(u, wo) — 70y 0(uy, vo)— Ty 2 (U, Vi) + Ty 5(ug, vy) 1S @ non-
negative function for 0 < u; < u, < 00, —c0 < vy < v, < 0, which defines the measure
IT, »(A) on the o-algebra B X B7; (e) the measure I1; ,(A) < I1;(B) ATl (C) for any Borel
set A = BX C C ((—,0) U (0, 00)) X (0, 0); (f) the measure IT; 5(A) is extended to B,
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the o-algebra of subsets of ]R;r = ((—00, 00) X [0, 0)) \ {(0, 0)}, first by additionally defin-
ing its values on boundary sets I1; ,(B X [0, c0)) = II;(B) for Borel subsets B C (0, o),
and I1; 5((—o0, 00) X C) = II,(C) for Borel subsets C C (—o0,0) U (0, o), and second by
using the standard extension procedure of the measure theory; (g) the projection mea-
sure I1;(B) possesses properties (a) — (d) listed in connection with conditions 8§, — 85 (in
Subsection 4.5.2); (h) the projection measure I1,(C) possesses properties (a) — (f) listed
in connection with conditions 8, — 8; (in Subsection 4.2.2).

According to the central criterium of convergence, conditions 8; — 85 and 8, are
necessary and sufficient for condition A to hold.

If the random variables x, ; could take positive and negative values, then one should
add to the above conditions also conditions on convergence of the truncated variances
ne Var ke 1%(Ie1| < u) and a similar condition on convergence of the truncated covari-

ances nsE(Ks,kX(le,ll < l/l) - EKs,kX(|K5,1| < u))(%e,lX(lEs,” < l/l) - E%s,lX(lEs,ll < I/t)) How-
ever, due to non-negativity of the random variables ¥, both repeated limits equal to 0.
It was shown in Subsection 4.2.3 that (g) n, Var«1x(ke; < u) = 0 as ¢ — 0 and then
0 < u — 0. It follows from relation (g) and condition 8, that (n.E(i.xx(xe1 < u)
_EKs,kX(Ks,l < u))(Es,lX(lEs,” < u) - E%s,lX(lEs,ll < l/l)))2 < N Var KS,]X(KS,I < u) X
n.Var& 1 (&1l <u) » 0ase — 0.

The limiting process (ko(?), Eo(¢)),t > 0 has the characteristic function given, for
every t > 0, by the following formula:

¢12(2,y,2)

1
= exp{t(idy + iaz — 5b2z2+

E exp{i(yko(?) + zEo(1)}
4.5.4)

i(yu+zw) l(yl/t + ZW)
+ — 1 — ———=)I2(du X dw))}.
f]R (e I o(du X dw)))

As was shown by Skorokhod (1957, 1964), conditions 8, - 85 and 8,, imply, without
any additional assumptions, that

(:(2), Ee(1)), = 0 N (0(1), Eo(?)),t = 0as e — 0. (4.5.5)

4.5.6. Sum-processes with renewal stopping based on i.i.d. random variables.
In this subsection, we present the main applications to renewal models, which can be
obtained as corollaries of the general limit theorems given in Sections 4.3 and 4.4 and
Subsection 4.5.1.

Let us first consider the case when conditions T, Agy, HAgs. and J,; hold. In
this case, (a) both the external limiting processes Ey(¢),t > 0 and the limiting inter-
nal stopping process vo(f),t > 0 are a.s. continuous, as well as their composition
Co(t) = Ep(vo(1)),t = 0. Also, Lemmas 4.5.4 and 4.3.1 (see formula (4.3.4)) imply that
(b) the limiting external process E(t),# > 0 and the limiting internal stopping process

vo(?),t > 0 are independent.
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Theorem 4.5.5. Let conditions T, Agy (01 84 — 85), Ags (0or 85 — 8y) and J,, hold.
Then

C(0).120 —5 Co(1).t>0ase — 0

Proof of Theorem 4.5.5. Theorem follows from the relation of J-convergence (4.5.5),
Lemma 4.5.4, Theorem 4.5.1, and Lemma 1.6.15. O

Note that it follows from Theorem 1.6.11 that the corresponding set of weak conver-
gence in Theorem 4.5.5 is the interval [0, c0).

Let us now consider the general case, where condition A holds. We formulate
below general conditions for weak and J-convergence of sum-processes with renewal
stopping constructed from i.i.d. random variables. The following theorem covers the
most essential part of applications and many preceding results in the area.

Theorem 4.5.6. Let conditions T4, Ag (0r 8§ — 85 and 8,) and I, hold. Then

C(0).120 -5 to().t>0ase — 0.

Proof of Theorem 4.5.6. Let us apply Theorem 4.5.1. Condition A, and the relation of
J-convergence (4.5.5) imply that conditions Ag,, d,4, and O,; hold. Conditions 8, - S

and condition J,, imply that condition K holds (at least K, (t) L, coast— coforall e
small enough). Also, condition J,, implies that condition J4 holds. Therefore, Theorem
4.5.1 can be applied to yield the statement of Theorem 4.5.6. O

Let Y, be the set of points of stochastic continuity of the limiting process Co(f) =
Eo(vo(1)),t = 0. This set is [0, ) except for at most a countable set. Also 0 € Y,
because vo(0) = 0 with probability 1. It follows from Lemma 1.6.5 that the processes
Ce(1), t = 0 weakly converge on the set Y.

The question about the structure of the set Y, does require a special consideration. In
particular, it would be interesting to know whether condition J,, implies that Y, = [0, c0).

Let us also consider the case when condition J,, holds, i.e., the limiting renewal
stopping process Vo(?), t > 0 is a step cadlag process.

Theorem 4.5.7. Let conditions T4, Ags (01 8¢ - 8¢ and 8y) and I,, hold. Then

C(0).120 -5 to().t>0ase — 0.

Proof of Theorems 4.5.7. Let us apply Theorem 4.5.3. Condition A and the relation
of J-convergence (4.5.5) imply that conditions As,, d,4, and O3 hold. The structure of
the step processes K¢(f), ¢ > 0 is described in the proof of Lemma 4.5.3. It is readily seen
that relations (d) - (I) given in this proof imply that conditions 9_(,7, J_CS hold (at least for
all € small enough) and that conditions N, and R, hold. Therefore, Theorem 4.5.3 can
be applied, and this yields the statement of the Theorem 4.5.7. O
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Let Y, be the set of all points of stochastic continuity for the process Cy(7),7 > 0.
Recall that V; U {0}, which is the set points of stochastic continuity for the process
vo(t),t > 0. This set is [0, c0) except for at most a countable set which was described
in Subsection 4.5.3. Obviously, the process Co(f) = Ey(vo(r)),t > 0 is stochastically
continuous at points of the set V, U {0}, i.e., V, U {0} C Y,. It follows from Lemma 1.6.5
that the processes C¢(7), ¢ > 0 weakly converge on the set Y.

The question about the structure of the set Y, does also require a special consid-
eration. In particular, it would be interesting to know whether, under condition J,
Yo = Vo U {0} if the external limiting process E(¢),r > 0 does not degenerate, i.c.
P{E(1) # 0} > 0.

4.5.7. Markov property for renewal stopping processes based on i.i.d. random
variables. An alternative approach to limit theorems for this class of processes was
introduced in Silvestrov (1974) and also used in Silvestrov and Teugels (2001). As a
matter of fact, the stopping moment v,(¢) is a Markov moment for the two-dimensional
process with independent increments (K.(?), E:(¢)), t > 0. This makes it possible to apply,
to sum-processes with renewal stopping based on i.i.d. random variables, the general
limit theorems for cadlag processes with random Markov type stopping given in Silve-
strov (1974). The results obtained using this method are similar to those given above in
Theorems 4.5.5 —4.5.7.

4.6 Accumulation processes

In this section, we give general limit theorems for the so-called accumulation processes.
The results of this section are based on the results obtained in Silvestrov (1971c, 1972c,
1972d, 1972e).

4.6.1. General accumulation processes. Let, for every ¢ > 0, T.(¢), ¢ > 0, be a
m-dimensional cadlag process and let k.4, kK = 1,2,..., be a sequence of non-negative
random variables.

We will also consider the random variables

Tek = Ke1 + ...+ Keps ge,k = ;a(rbk) - Cg(r{i,k—l)5 k= 1a 2, ceey

and
gs,k = sup |Cs(t) - ;s(rs,k—l)L k = 1» 25 ey

1€[Tek—1,Te k)
where T,y = K0 = 0, &, = C.(0).

The random variables T, can be interpreted as “renewal moments” for the process
C.(1), t = 0. Then k. is the inter-renewal time between the renewal moments t.;_; and
Tex, and Gy is the maximal absolute value of the oscillation of the process C,(¢) in the
renewal interval [Te 1, Tey) fork =1,2,....
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It often occurs in applications that the times T, are indeed renewal moments for the
process (1), > 0, and the sequence (K¢, Eex,Sex), K = 1,2, ... 1s a sequence of i.i.d.
random vectors.

Let also ¢, u,, n. be non-random positive functions. We assume that n, — oo as
¢ — 0 but do not require this to hold for the functions ¢, and u,.

We shall study the accumulation processes T(tt.)/u.,t > 0. The normalisation func-
tions ¢, and u. are explicitly included in the model in order to simplify application of
results to the scale-location model. In this model, the accumulation process &(¢),7 > 0
and the random variables §;, k; and g, do not depend on the series parameter €. In
principle, one can always reduce the consideration to the case where ., u, = 1 by con-
sidering the accumulation process (1) = C,(¢f.)/u.,t > 0 instead of the accumulation
process C.(7),t > 0. In the sequel, this would lead to the embedded random variables
E;k = gg,k/us and K;k = Ks,k/ts-

Let us define the “embedded” sum-process

[tn,] [tn,]

(K0, 8(0)) = (Y Keater ) | Beptte), 12 0.
k=0 k=0

Introduce the following weak convergence condition:

At (:(0), (1)), t = 0 = (x0(1), Ey(2)),t = 0 as € — 0, where (io(7), Ey(¢)), t > O is a
cadlag process such that: (a) Ky(7),¢ > 0 is an a.s. strictly monotone process; (b)

Ko(?) L 0o as t — o0; (¢) §y(¢), 7 > 0 is an a.s. continuous process.
We also assume the following condition of U-compactness:
Ug: lime_ lime_o P{Ay(E.(-),c,T) > 8} =0, 8,T > 0.

Let us introduce a condition that makes the normalised outliers of accumulation pro-
cesses stochastically negligible,

Ky Z,EZ';S] P{Gex > Ou.} > 0ase — 0,6 >0for 7T > 0.

Define the renewal process vo(f) = sup(s : Ko(s) < ),z > 0. Due to condition A,
(b), vo(t) < oo with probability 1 for all # > 0. Due to condition Ag; (a), the process
vo(t),t > 0 is an a.s. continuous process.

Let us also introduce the process §y(f) = &,(vo(?)),r > 0. This composition is a.s.
continuous due to conditions A, (a) and (c).

Theorem 4.6.1. Let conditions Ag;, Wy, and Ky hold. Then

Ce(tt)/ue,t >0 LR Co(),t=0ase— 0.
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Proof of Theorem 4.6.1. Introduce the stochastic process
Ue(?) = min(n : Z Kex > 1), 1 > 0.
k=0

In principle, this process can be improper, since the random variable L(#) can take
the value +oco with a positive probability. This can happened if the random series k. =
et Kex converges with a positive probability. To avoid dealing with improper random
variables, we truncate the random variables u.(¢). So, let 0 < T, — oo as ¢ — 0. Choose
T, in such a way that n.T, take positive integer values. We consider the process

e(8) = ne() A n.Te, 120,
and also define the process

fety) _ pety)
N N

V(1) = AT, t>0.

By the definition of the process v,(¢), t > 0,

P{VE(Sk) > Xks gs(yk) < Zk’k = 1’ ey r}

L 4.6.1
:l_IX(Tg>Xk)'P{KE(Xk)SSk, ge(yk)gzk’kzl,""r}' ( )

k=1

Choose X = {x;,k = 1,2,...} to be some countable set of positive numbers, dense
in (0, 00). Since any distribution function has at most a countable set of discontinuity
points, there exists a set S = {s1, 52, ...}, dense in [0, c0), such that P{iy(x;) = s,} = 0
forall s, € S,r > 1 and x; € X, k > 1. Here we can assume that 0 € S because, by
condition Ag;, the random variables xy(x;), k > 1, are positive with probability 1.

Recall that /-dimensional distribution functions weakly converge if these functions
converge on a countable set dense in R;. Thus, it follows from condition A, and relation
(4.6.1) that, forall s, € S,y >20,k=1,...r,r > 1,

(Ve(s1), ) k= 1,...,7) = (Vo(sp), Eoi), k= 1,...,r) as € — 0. (4.6.2)
Since s, € S,yx >0,k =1,...r,r > 1, are arbitrary, this relation means that
(Ve(), E:(1)), (5, 1) € § X [0, 00) = (vo(5), Ey(2)), (s,1) € § X [0,00) as € — 0. (4.6.3)

The limiting process v (), ¢ > 0 is a.s. continuous. So, relation (4.6.3) and Lemma

3.2.2 imply that v(¢),t > 0 L vo(t),t > 0 as € — 0. Hence, the set S can be replaced
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by the interval [0, co) in relation (4.6.3). So, (4.6.3) can be rewritten in the following
extended form:

(Ve(1), (1)), 1 = 0 = (vo(1), Ey(7)),t = 0 as e — 0. (4.6.4)

Obviously, the pre-limiting stochastic process v¢(¢), t > 0 can be replaced, in relations
(4.6.4), by the process v¢(t) — 1/n.,t > 0.

Relation (4.6.4) and condition Uy permit to apply Theorem 3.2.1 to the composition
of the processes &,(¢),t > 0 and v.(t) — 1/n.,t > 0. This yields the following relation:

fie(tte)—1
B0 - 1/n) = Y Efuet>0 -5 Eo(n) i 2 0ase 0. (46.5)
k=0

Consider the residual accumulation process

Qe (17e)—1
1t
— C( 5)_ z : gs,k, Z‘ZO.
Ug

S:(9)

€ k=0

By the definition of the processes w.(f) and {i.(¢), if (ic(t) = u.(t) = k, then ¢t €
[Tex-1,Tex) and, hence, |G, ()| < Gex/ue. Thus, forany 7' > O, if u.(7t.) < n A n.T., then
SUPy<rcr IS (D] < MaX <icn o/t

Take an arbitrary u > 0. Obviously, [un.] < n.T, for € small enough. Taking into
account the estimates given above we have for such ¢ the following estimate:

P{sup [g.(1)] > d}

0<t<T

< P{ME(TTS) > [uns] A neTs} + P{l<rl?<2[11§1 ]ge,k > 6”5} (4 6 6)

[ung]
< PWve(T) > [uncd/ne) + ) Plsex > due).
k=1

By choosing, for any o > 0, a sufficiently large u (we can always choose u to be a
point of continuity of the random variable vy(7T')), we can make P{vy(T) > u} < o. Then,
by passing in (4.6.6) to limit as € — 0 and using condition K, and relation (4.6.4), we
obtain

[ung]

Tim P{ sup I, (1) > 8} < P{vo(T) > u} + E& Z P{Ges > due} < o. (4.6.7)
T

e 0<t<T

Since 9, 0 > 0 are arbitrary, relation (4.6.7) means that

sup 6,(1| — Oase — 0, T > 0. (4.6.8)

0<t<T
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Relation (4.6.8) implies, in an obvious way, that

6.(1),120 -5 gy(1), 12 0ase — 0, 4.6.9)

where gy(¢) = (0,...,0),t>0.
Relations (4.6.5) and (4.6.8) imply (see, for example, Lemma 1.6.16) that

C(tTe) e 1 > 0 — Eg(vo(£)), 1 = 0 as € — 0. (4.6.10)
The proof is completed. O

4.6.2. Centralised accumulation processes. Let us introduce the centralised ac-
cumulation processes G.(t) = §,(f) — ¢.t,t > 0, where ¢, = const € R,,. In order to
formulate conditions for U-convergence of these processes, let us consider the following
embedded sum-processes:

[tn,] [tn,]

(Ke(0), Eu(0) = (O Kenlter ) (Bex = Cekeg) /1), 12 0.
k=0 k=0

Let us introduce the following weak convergence condition:

Agg: (:(0),E.(1), 1 > 0 = (x0(0), Ey(2)), £ > 0 as € — 0, where (ko(2), Ey(r)), 1 > O is a
cadlag process such that: (a) Ky(7),¢ > 0 is an a.s. strictly monotone process; (b)

Ko(?) L oo as t — oo; (¢) E (), > 0 is an a.s. continuous process.
We also assume the following condition of U-compactness:
W,: lime_ lime_o P{Ay(E.(-),c,T) > 8} =0, 8,T > 0.

Now, introduce a condition that, together with J,,, implies that the normalised out-
liers for accumulation processes are stochastically negligible,

Kt S0 Plleelices > due} — 0ase — 0,8 > 0 for T > 0.
Introduce the process Gy (f) = &;(vo(2)), ¢ > 0. This process is a.s. continuous, due to
conditions Ag (a) and (c).

The following version of Theorem 4.6.1 is also useful in applications.

Theorem 4.6.2. Let conditions Agg, W4, Kyq, and Ky, hold. Then

Co(tte)/ue,t > 0 LR G, >0ase — 0.
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Proof of Theorem 4.6.2. The proof is based on the application of Theorem 4.6.1 to the
processes ?;;(t), t > 0, and the random variables k.4, k =0, 1,. . ..

In this case, the random variables &, should be replaced by the random variables
E;’k = &4 — CcX¢x and the random variables G, by the random variables

Sex = sup  [Gu(1) = Cu(Tes)l

1€ Te k-1,Te k)

< sup [E(0) = & (Tes—1)| + ICelKek = Sex + ICeliCek-
1€[Te k—1,Te k)

(4.6.11)

Respectively, the sum-process (k.(t), E,(7)),# > 0 should be replaced by the sum-
process (k(1), E.(1)), t > 0.

Condition Agg implies condition Ag,, condition U, implies Ug. Also, conditions
XK1 and Ky, imply that condition Jy; holds for the random variables g, k > 1. m|

4.6.3. Accumulation processes with embedded regeneration cycles. Let us con-
sider the basic case where the following condition holds:

Ts: (Kegs Eexr Sex) k = 1,2,.. . is (for every € > 0) a sequence of i.i.d. random vectors
taking values in [0, c0) X R,, X [0, o0).

Typical examples are supplied by various models in which the process €,.(7) = @,(1.(-)),
t > 0, where 1n(#),# > 0 is a regenerative process with regenerative moments Ty, k =
1,2,..., and @,(-),t > 0 is a family of additive type functionals defined on trajectories of
this process.

For example, let ne(¢),# > 0 be a cadlag regenerative process with a Polish phase
space X and regenerative moments 0 = 1.9 < T.; < ..., and Yy (x) be a measurable
function acting from X to R,,. Let also

Ca(t) = ﬁ \|IE(T]E(S))dS,t >0,

where we use the Lebesgue integration for every component of vector process Y(ne(s)).
In this case, the random variables are

Te k
Kek = Tek — Tek-15 gg,k = f WE(T]E(S))dS, k=1,2,...

e.k—1
and

Sek = Sup | y.(Me(s))dsl,k=1,2,....

te [Tﬁ,k— 1 :Ts,k) Te k-1

If J5 holds, then the formulations of Theorems 4.6.1 and 4.6.2 take an especially
simple form.
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Recall that the embedded sum-process &,(f) = ,[Zf)] E.x/ue,t > 0 includes the term
&0 = C.(0)/u,. Let us change the definition of these processes and define the embedded
sum-process

[ne]

Es(t) = Z Es’k/ug, t>0.
k=1

Usually, the random variables &, = C.(0)/u, are asymptotically negligible. So, it is
natural to use the following condition:

Ago: (@) C.(0)/u, L 0ase — 0;

(b) E.(1),t > 0 = E,(1),t > 0 as € — 0, where §,(r) = ar + w(z),t > O is a
m-dimensional Wiener process with drift a and covariance matrix X.

Condition A, implies (see, for example, Prokhorov (1956), Skorokhod (1957, 1964)),
without any additional assumptions, that

E.(1),120 -5 Ey(r),1 > 0as e — 0. (4.6.12)

This result is known as an invariance principle after the work of Donsker (1951),
who obtained it for continuous piecewise linear sum-processes under conditions of the
standard central limit theorem.

The embedded sum-process x.(f) = ,[Zf)] Kex/Ue, t > 0 includes the summand ko =
0. The corresponding weak convergence condition can be formulated in the following
form:

At Ke(2),1 > 0 = Ko(7),t > 0as € — 0, where xy(7),# > 0 is a non-negative and a.s.
strictly monotone cadlag homogeneous process with independent increments.

Finally, condition &y, takes in this case the following form:
X3 nP{ges > du.} - 0ase - 0,0 >0for7T > 0.

The corresponding limiting process §y(t) = E,(vo(2)),t > 0, where vo(f) = sup(s :
Ko(s) < 1),¢t > 0. In this case, (a) the processes §(¢), 7 > 0 and vy(¢),¢ > 0 are indepen-
dent. Obviously, (b) vo(?),t > 0, as well as §y(r) = &,(vo(?)),t > 0, are a.s. continuous

processes.

Theorem 4.6.3. Let conditions T 5, Agy, Ay, and K3 hold. Then

Ce(tt)/ue,t >0 LR Co(),t=0ase— 0.
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Proof of Theorem 4.6.3. The proof is based on the application of Theorem 4.6.1. The
first step in the proof is to show that conditions A and A,, imply condition Ag; to
hold with the independent limiting processes Ko(#),7 > 0 and §(¢),# > 0. This can be
done by reducing the proof to the case of scalar processes considered in Lemma 4.5.4.

Let us take an arbitrary sy € R; and a vector s = (sy,...5,) € R,. Introduce,
for every & > 0, the scalar cadlag processes EX(r) = (s, E (1) = Doi<kem, (8, Eep)rt 2>
0 and soKe(H) = 3j<k<m, SoKex-? = 0. Condition Agy implies that (¢) the processes
Y0, 1> 0= Eés)(t),t > 0 as ¢ — 0. Obviously, Eés)(t),t > 0 is a scalar a.s. continuous
homogeneous process with independent increments. Also, condition A, implies that (d)
SoKe(?),t > 0 = s59Ko(2),t > 0 as € — 0. So, we can apply Lemma 4.5.4 to the processes
soke(r),t > 0 and E¥(r),7 > 0. This yields the relation () (sok:(1),E¥(1)),7 > 0 =
(so%0(), ED(1)),1 > 0 as & — 0, where the processes sok. (1), > 0 and EX(1)), ¢ > 0 are
independent. Obviously (e) implies that (f) sok(r) +EX(£), 1 > 0 = soko(t) +EY(£),1 > 0
as ¢ — 0. Using (f) and taking into account arbitrariness of the choice of sy € R; and
s € R,,, we get, by applying Lemma 1.2.1, that (g) for every ¢ > 0, the random variables
(k:(1), E.(1)) = (xo(1), Ey(7)) as € — 0, where the random variables «y(f) and §,(¢) are
independent. Since (k.(7),E.(¢)),t > 0 is a process with independent increments, (g)
implies that (h) the processes (K.(1), E.(7)),1 > 0 = (Ko(1), (1)), > 0 as ¢ — 0, where
the processes ko(t), 7 > 0 and §(¢), r > 0 are independent.

So, condition A, holds. Condition Agy implies condition Uy, as it was pointed out
in (4.6.12). Also, condition K, coincides with condition K,;. So, Theorem 4.6.1 can be
applied to the accumulation processes C(#t.)/ue, t > 0, which completes the proof. O

4.6.4. Centralised accumulation processes with embedded regeneration cycles.
Let us consider the centralised accumulation processes §.(f) = C.(f) — ¢.t,t > 0, where
¢, = const € R,,. In order to formulate conditions for U-convergence of these processes,
let us introduce the following step embedded processes:

[tn,] [tng]
(e0, EL0) = O Kewter D (B — €cKe)/tp), 12 0.
k=1 k=1
We introduce the following weak convergence condition:
Ari (@) B0)/u, = 0ase - 0;

(b) E.(t),t > 0 = Ey(r),r > 0as ¢ — 0, where E,(r) = ar + w(r),t > Ois a
m-dimensional Wiener process with drift a and covariance matrix X.

Let us also introduce the following analogue of condition XK,,:

K4 nePlleelie > duy > 0ase - 0,0 >0for T > 0.
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The corresponding limiting process §y(f) = Ey(vo(r)),t > 0, where vo(r) = sup(s :
Ko(s) < 1),¢ > 0. In this case, (a) the processes & (), > 0 and vy(7), ¢ > 0 are indepen-
dent. Obviously, (b) v(7), ¢ > 0, as well as §;(¢), 7 > 0, are a.s. continuous processes.

Theorem 4.6.4. Let conditions T 5, Ay, A4y, K3, and K4 hold. Then

CL(tt0) e, 1 > 0 — Ty(0), 1 > 0 as & — O
Proof of Theorem 4.6.4. 1t is enough to refer to Theorems 4.6.2 and 4.6.3. O

4.6.5. Renewal and risk type accumulation processes. Consider the case when
the accumulation process C,(¢), r > 0 is a step cadlag process and K.y, k = 1,2,... are
successive inter-jump times for this process. For simplicity, we assume that ,(0) = 0.

In this case, ,(t) = C.(Tex—1) for 1 € [Teso1,Texr), kK = 0,1,..., where 1.9 = 0 and
Tek = Keg + ...+ Kepo k = 1,2, ... are the successive moments of jumps of the process
Ce(0), 12 0. Also, &, = G(Ter) — Ce(Te1) and Gy = SUP e[y 41, 7o) |8 (®) — Ce(Tes—1) = 0
fork=1,2,....

Since the random variables G.; = 0, the accumulation process can be represented
in the form §.(1) = X1 cqu -1 Eexrt = 0, Where pe(f) = min(n : 1, > 1) = max(n :
Ten < 1)+ 1,1 > 0. Actually, the process C,(¢), ¢ > 0 is a sum-process with renewal type
stopping. More precisely, it is a modification of the sum-process with renewal stopping
described in Subsection 4.5.1.

Since the random variables ., = O for all k = 1,2, ..., conditions X,; and K,, can
be omitted, respectively, in the formulations of Theorems 4.6.1 and 4.6.2. Note also that,
in this case, Theorem 4.6.3 (if m = 1) is a slight modification of Theorem 4.5.5.

Situation is different if the centralisation is involved. In this case, the processes
C.(7) — c.t,t > 0 are not sum-process with renewal stopping of the type considered in
Sections 4.3 and 4.5.

The process ¢t — (), t > 0 can be considered as a multidimensional risk process.
Here ¢, should be interpreted as the premium rate. The process p.(f) — 1,¢ > 0 counts
the number of claims in the interval [0, ¢], whereas the random variables ’é&k, k=1,2,...
should be interpreted as values of the claims.

4.6.6. Accumulation processes with improper renewal cycles. In applications to
non-recurrent Markov type processes, it can occur that the renewal moments t., are
improper random variables that take the value +oco with positive probabilities. A gener-
alisation of the results presented above to this case can be found in Silvestrov (1972c,
1972d, 1972e, 1974).

4.6.7. Accumulation processes with embedded regeneration cycles in a scale-
location mode. For simplicity, we assume that m = 1. Consider a scale-location model
in which the corresponding accumulation process C(7),7 > 0 and the random variables
Ki, k = 1,2,...do not depend on the series parameter € > 0.
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Obviously in this case, the random variables 1, = k; + ... + K, & = T(t) — T(ti-1)
and Gx = SUP,cr,_, o) |C(t) — T(ty_1)| for k > 1 also do not depend on € > 0, as well as the
random variables 1y = ko = 0 and &, = T(0).

Condition J’5 takes in this case the following form:

Te: (< Se),k = 1,2,... is a sequence of i.i.d. random variables taking values in
[0, 00) X R} X [0, 00).

Let us first consider the case when the limiting process in condition A, degenerates
to a non-random linear function. To simplify formulations, we restrict consideration to
the case where Ex; < .

Bellow, 0 < t, = oo as € — 0. Denote EE; = a, Ex; =d and ¢ = a/d.

Theorem 4.6.5. Let (o) E|E;| < oo, (B) Ex; < o0, (y) Eg < 00. Then
g(tt,) U

" d0>20—ct,t >0ase— 0.
€

Let us denote Varg; = b* and f? = b*/d. Let also w(t),t > 0 be a standard Wiener
process.

Theorem 4.6.6. Let (o) EE} < o0, EE; = 0, (B) Ex| < o0, (y) Eg? < c0. Then

Lt
Vi

Denote Var(g; — cx;) = g2 and h? = g*/d.

,tZOwa(t),ZZOass—)Q

Theorem 4.6.7. Let (o) EE? < oo, (B) Ex? < oo, (y) Eg? < o0. Then

C(ﬂe) — Cltg

Vi

Proof of Theorems 4.6.5, 4.6.6, and 4.6.7. Due to the weak law of large numbers, if Ex;
< 00, then

120 -5 hw(n).t>0ase — 0.

[11e]
k()= Y 1202 d1r>0. 4.6.13)
k=1 e
So, condition A, holds with the limiting process ky(f) = dt, t > 0, and the functions
n. = t.. In this case, the process vo(t) = d~'t,t > 0.
Also, by the same weak law of large number, if E|E;| < oo, then

[1te]
() = Z % t>0=att>0. (4.6.14)

k=1 "¢
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Hence, condition Ay holds with the limiting process E(¢) = at,t > 0 and the func-
tions 7, = Uy = 1.
Condition K, also holds, since the condition Eg; < co implies that

t.P{g; > &t} > 0ase —> 0, & > 0. (4.6.15)

To complete the proof, we apply Theorem 4.6.3. The corresponding limiting process
Eo(vo(®) = ad 't = ct,t > 0.

To prove Theorem 4.6.6, we need to replace (4.6.14) by a relation which is a variant
of the standard central limit theorem. Thus, if EE% < o0, EE; =0, then

[11e] E
B =) =
Therefore, condition A holds with the limiting process Ey(f) = bw(¢),t > 0 and the
functions n, = f,, ue = Vre.
Condition XK, also holds, since the condition Eg? < oo implies that

t.P{c; >80t} > 0ase - 0, > 0. (4.6.17)

,1>0= bw(t),t>0. (4.6.16)

To complete the proof, it remains to apply Theorem 4.6.3. The corresponding limit-
ing process Ey(vo(1)) = bw(d™'t) = fw(t),t > 0.

To prove Theorem 4.6.7, we can apply Theorem 4.6.4.

Due to the same central limit theorem, if EE? < oo and Ex? < oo, then E(§;—ck;) = 0

and
[1te]

Ek — cKy
E()= ) ———,t=>0= gw(),t>0. (4.6.18)
27

Therefore, condition A, holds with the limiting process Ey(f) = gw(t), t > 0 and the
functions n, = f,, u, = Vre.

Condition X, holds, as well as condition K,,, since the condition Ex? < oo implies
that

teP{lclx; > 8V} = 0ase — 0,8 > 0. (4.6.19)
To complete the proof, we apply Theorem 4.6.4. The corresponding limiting process
Eo(vo(D) = gw(d™'t) = hw(t),t > 0. ]

Remark 4.6.1. It should be noted that the results of Theorems 4.6.5, 4.6.6, and 4.6.7
are valid in the case when (a) the limiting process in condition A,, degenerates to a
non-random linear function and also (b) the limiting process in condition Ay or A,
is either a non-random linear function or a Wiener process. These conditions actually
can be provided by assumptions weaker than the corresponding moment conditions used
in the theorems mentioned above. Also note that the moment conditions imposed on

the random variable g; can be weakened. These conditions can be replaced by relations
(4.6.15), (4.6.17), or (4.6.19).
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Let us now consider the case when the limiting process in condition A, is a stable
process.

Let o € (0, 1) and denote by k®(¢), > 0 a non-negative cadlag homogeneous sta-
ble process with independent increments whose Laplace transform is E exp{—sk®(¢)} =
e s,t > 0. Let us also define the process v{¥(¢) = sup(s : ¥“(s) < 1),t > 0. As
is known, the stable process k“(¢),# > 0 is a.s. strictly increasing and, therefore, the
process v{¥(¢), t > 0 is a.s. continuous.

Denote n. = t¢'/T'(1-a)h(t,), where I'(A) = fooo x*le~*dx and h(x) is a slowly varying
function.

Theorem 4.6.8. Let () E|E;| < oo, (B) P{x; > x} ~ x“h(x) as x — oo, (y) Eg| < oo.
Then
g(tt.)

€

U
>0 — av' (1), >0ase — 0.

Denote Var&, = b? and introduce the process Co(f) = bw(v®(¢)),t > 0, where the
processes w(t), t > 0 and v\*(¢), t > 0 are independent.

Theorem 4.6.9. Let () EE? < o0, EE; = 0, (B) P{x; > x} ~ x“h(x) as x — oo,
(v) Eg? < 0. Then

C(te)

€

130 -5 Co(t) = bw(v®(1).t > 0 as e — 0.

Proof of Theorems 4.6.8 and 4.6.9. As is known (see, for example, Feller (1971)) con-
dition (B) implies that

[tn,]
Keo(f) = Z %,t >0 = K9, 1> 0. (4.6.20)
k=1 "¢

So, condition A, holds with the limiting process k®(z), > 0.

Condition A holds, as was pointed out in the proofs of Theorems 4.6.5, 4.6.6, and
4.6.7. If E|§;| < oo, then the corresponding limiting process Ey(f) = at,t > 0, and
the function u, = n.. If EE} < oo,EE; = 0, then the corresponding limiting process
Eo(?) = bw(t),t > 0, and the function u, = /1.

Condition X, also holds either with the function u. = n., if EG; < oo, or with the
function u, = /., if E¢? < oo.

To complete the proof, we apply Theorem 4.6.3. The corresponding limiting process
is either av®(z), t > 0 or bw(v\¥(¢)), t > 0, where the processes w(z), t > 0 and v\¥(¢), t >
0 are independent. O
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4.7 Extremes with random sample size

In this section we derive a number of limit theorems for extremal processes constructed
from samples with a random sample size. Extremal processes of such type naturally
appear in various applications related to models with sample variables associated to
stochastic flows.

4.7.1. Extremal processes with random sample size indices. Let, for every € > 0,
Pens = 1,2,...be asequence of real-valued random variables and . a positive random
variable. Further, we need a non-random function n, > 0 of parameter ¢ such that
ng > ocoase — 0.

If we are interested in extremal processes with non-random sample size indices, then
we will deal with

pt(t) = mex Peis T 2 0.

k<1Vtng

Our interest lies in the relevant analogues of these processes when the sample size
indices are random as well. So, define

t_:i:(t) = max ps,k, ! Z 0'
k<1Viue

Let us denote by v, = u./n. the normalised random sample size index. Then the
process Ce(f) = pe(ve(t)),t > 0 can be represented in the form of the composition of the
two processes pg(f),t > 0 and v,(f) = tv,,t > 0.

The pre-limiting extremal processes p¢(7) and T.(¢) are defined on the interval [0, co).
However, it is natural to study weak and J-convergence of these extremal processes on
the open interval (0, c0). The reason for this is the fact that, in some cases, extremal
processes pe(f) may weakly converge on the interval (0, co) to a monotone process po(?)
but they do not weakly converge at the point 0. Moreover, we also admit the case when
the random variable py(0) = limy,_,. Po(¢) can be improper (this limit exists with prob-
ability 1), that is, it takes the value —oo with a positive probability.

Let us introduce the following weak convergence condition:

Ay (Ve, pe(),t € U = (vo, po(t)),t € U as € — 0, where (a) po(7),t > 0 is a nonde-
creasing cadlag process, (b) v is a non-negative random variable, (c) U is a set of
points everywhere dense in (0, co) and containing 0.

Let us also assume that the following condition of J-compactness holds:
3r6: lime_o lime_o P{A/(pe(-), ¢, T, T") > 8} =0, 8> 0,0 < T" < T” < co.

Note that it is assumed that 0 < ¢ — 0. However, under A,,, condition J,, is
equivalent to J,,, since the limiting process po(?), ¢ > 0 is a cadlag process and, therefore,
the asymptotic relation in J,, automatically holds for € = 0.

Also, recall the condition
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J4: vo > 0 with probability 1.

There is a question of why the max-component is not defined in a simpler way by
P.(t) = MaXy<m, Pekrt = 0, where the maximum over the empty set should be understood
as zero. As a matter of fact, the max-process p¢(¢),t > 0, introduced according to the
initial definition, is a monotone process. But the max-process p;(f),t > 0 has some
side effect at zero. The process p,(f),t > 0O has step trajectories, is continuous from
the right, and can have jumps only at the points k/n.,k > 1. All jump with £k > 2 are
positive and so the resulting process is a.s. non-decreasing on the interval [1/n,, 00).
However, on the interval [0, 1/n,), the process takes the value zero and the first jump can
be negative if the random variable p.; takes a negative value. The obvious inequality (a)
() = pe(D)] < [pel(¢ < 1/n,) implies that (b) supe,<r I, (Ver) = pe(veD)| < Ipeali(TVe <
1/n). Since n, — oo as ¢ — 0 and vy > 0 with probability 1 by condition J,, we have (c)
SUPg</<7 |Pe(Vel) — Pe(Vel)] i> Oase — 0 for T > 0. So, the extremal processes C.(f) =
pe(Vet),t > 0 and C.(¢) = pL(vet),t > 0 converge weakly or J-converge simultaneously
and have the limiting process.

Let us denote by V, the set of ¢+ > O for which P{t,, /vo = t} = 0 for all k,n,r =
1,2,..., where Ty, k = 1,2,... are the successive moments of jumps of the process
po(t), t > r~!, with absolute values of the jumps lying in the interval [+, -L=). Obviously,
the set Vj is (0, co) except for at most a countable set. Note that V) is the set of point of
stochastic continuity of the process po(#vy),t > 0.

The following theorems are direct corollaries of the translation Theorems 2.8.2 and
3.4.4. These theorems must be applied to the compositions C.(f) = pe(tve), t > 0, in the
case where the constant a = 0 and the slowly varying functions 4(x) = 1. Remark 2.8.3,
which describes a modification of conditions of these theorems in the case of the interval
(0, c0), must also be taken in account.

Theorem 4.7.1. Let conditions A,, d,6 and 3, hold. Then
Ce(?) = pe(tve), t € Vg = To(t) = po(tvo),t € Vo as e — 0.

Theorem 4.7.2. Let conditions A,, J,4, and 3, hold. Then

C(0). 1> 0 =5 to().t> 0ase — 0.

Note that, in Theorems 4.7.1 and 4.7.2, we do not impose any independence condi-
tions on the random variables p. s, k = 1,2,.. ..

Note also that it makes sense to formulate Theorems 4.7.1 and 4.7.2 separately since
Theorem 4.7.1 gives additional information about the set of weak convergence of the
corresponding extremal processes.

4.7.2. Extremal processes based on i.i.d. random variables. Let us now consider
the case when the following condition holds:
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T5: pessk = 1,2,...1is (for every € > 0) a sequence of real-valued i.i.d. random
variables.

The following condition is standard in limit theorems for extremes:

81t neP{pe1 > w} — m3(w) as € — 0 for all w € R; which are points of continuity of
the limiting function ms(w).

The function m;(w) satisfies a number of conditions: (a) st3(w) is a non-increasing
function acting from (—co, o) into [0, o] and is continuous from the right (if 7t3(w) = oo,
continuity from the right is interpreted as m3(x) T oo as x | w); (b) m3(—o0) = oo and
m3(00) = 0.

As such, these conditions imply that the function e~ is a distribution function. If
we define v = sup(u : m3(w) = 00) > —oo, then e ™" takes positive values for w > v
and e = 0 for w < v.

As is known (see, for example, Logve (1955)), condition 8, holds if and only if the
random variables p.(1) = po(1) as € — 0, where py(1) is a random variable with the
distribution function =",

Note that the classical extreme value theory deals with the scale-location model.
Here, the random variables p,, are represented in the form p., = (p, — a.)/b., where
pn,n=1,2,...arei.i.d. random variables and a, b, are some non-random centralisation
and normalisation constants. In this case, the distribution function e~ belongs to
one of three families of the classical extremal distributions. See, for instance, books
by Galambos (1978), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987), and
Berman (1992).

This one-dimensional weak convergence result can be extended. Denote by D the
space of step functions on (0, co) continuous from the right and with a finite number
of only positive jumps in every finite sub-interval of (0, co0). It is known (see, for ex-
ample, Serfozo (1982), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987), and
Berman (1992)) that 8, is necessary and sufficient for the following condition of weak
convergence to hold:

Az pe(2), 2> 0 = po(t),t > 0as € — 0, where py(?), ¢ > 0 is a non-decreasing cadlag
process described below.

Denote G(u) = P{pe1 < u}. The process p:(t),t > 0 has the following finite-
dimensional distributions forO =ty <t; < ... <t,,—c0o <u; <...u, <oo,n>1ande
such that r;n, > 1:

P{pe(tl) < Uty ..., ps(tn) < un} = l_[ Gs(”k)[tkng]_[[k_ms}- (471)
k=1
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It follows in an obvious way from relation (4.7.1) that the limiting process po(?),t >
0, in condition A3, has the following finite-dimensional distributions for 0 = ¢, < #; <
o <t,—oo<u L ...u, <oo,n>1:
n
Plpo(t) < iy, polt) <y} = | [ emmn, 4.7.2)
k=1
The limiting process po(#), ¢ > 0, in condition A3, is a called an extremal process.
Adjoining to the notation v above, we let v/ = inf(w : ;m3(w) = 0) < co. Then the
distribution function e is concentrated on the interval [v,v'], po(f) —> v as 1 — 0,
and po(?) 2 v as t — oo.
Note that, in the case where v = V', the extremal process degenerates, namely p(7) =
v, t > 0, with probability 1.
The extremal process po(?), t > 01s a stochastically continuous homogeneous Markov
jump process whose trajectories belong to the space D with probability 1. This process
has the following one-dimensional distribution function for s > 0,

P{po(s) < v} =™, ve R, (4.7.3)
and the following transition probabilities for 0 < s < 7 < oo,
P{po(s + 1) < wlpo(s) = v} = x(v < we ™™, v, w € R;. (4.7.4)

Let us denote by Y the interval (v, v’) if ;t3(v) = oo, 3 (v’ —0) = 0; the interval [v, V)
if t3(v) < o0, m3(V' — 0) = 0; the interval (v, v’] if m3(v) = oo, 3(vV — 0) > 0; and the
interval [v, v’] if m3(v) < oo, 3(V' — 0) > 0.

As follows from the remarks above, (a) P{po(t) € Y,z > 0} = 1. This is consistent
with formulas (4.7.3) and (4.7.4). It follows from these formulas that the distribution
function of the random variable py(s) is concentrated on the interval Y for every s > 0
and the transition probability given in (4.7.4) is a distribution function in w concentrated
on the interval Y foreveryve T and 0 < s <t < oo.

A more refined representation of the extremal process is as follows. Let s > O.
Denote by s < r(ls) < 'cés) < ... successive moments of jumps of the process po(#) in
the interval [s, c0). Write nﬁ,s) = po('cﬁf)) for the heights at the moments of jumps and
K =1 - 'cff_)l for the inter-jump times. For convenience, we put 'cgs) = 'c(_sf = 5. Then
the bivariate random sequence (Kff), nﬁf)), n =0,1,...1s a homogeneous Markov chain
with the phase space [0, c0) X R; and the transition probabilities

Pk

n+1

= (1 =™y < w)(1 = m3(w)/73(v)).

It follows from (a) that (¢) P{(x\”,n") € [0,00) x Y,n = 0,1,...} = 1. This is
consistent with formulas (4.7.3) and (4.7.5). It follows from these formulas that, for ev-

ery s > 0, the two-dimensional distribution function of the random variable (KE)S), nés)) =

() _ _
<ty Swie” =1 =v) (4.7.5)
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(0, po(s)) is concentrated on the set [0, c0) X T and the transition probability given in
(4.7.5) is a two-dimensional distribution function in (¢, w) concentrated on the set [0, co0)X
T for every (¢, v) € [0, 00) X Y.

There are three cases when the expression in the right-hand side of (4.7.5) is not well
defined. The simplest way is to set this expression equal, for every ¢t > 0, to (d) O if
v>w,or(e) lif v <wand m3(v) = m3(w) = o0, or (f) 1 if v < w and m3(v) = m3(w) = 0.

With this convention, (g) the expression in the right-hand side of (4.7.5) is always
a two-dimensional distribution function in (¢, w). Note that any other admissible inter-
pretation (possessing property (g)) of this expression in uncertain situations would not
change the finite-dimensional distributions of the Markov chain (x%”, 'r]ﬁf)), n=0,1,...
This follows from (c).

We refer to Serfozo (1982) and Resnick (1987) for the proof that condition 8,
without any additional assumptions, implies that

L), 1> 0 -5 To(6), 1> 0 as & — 0. (4.7.6)

Note that relation of J-convergence (4.7.6) follows also from the more general rela-
tion of J-convergence given for mixed sum-max processes in Theorem 4.8.2.

4.7.3. Extremes with random sample size based on i.i.d. random variables.
We now generalise the asymptotic results given in condition A5 and relation (4.7.6) to
extremal processes with random sample size indices.

Of course, we have to assume some condition concerning the asymptotic behaviour
of the random stopping indices. Such a minimal condition is As;, which states that the
random variables v, = u./n. = vy as € — 0, where v, is an a.s. positive random variable.

Conditions .As; and A, are sufficient to provide weak convergence of max-processes
with random stopping indices in the case when the max-process p.(f), t > 0 and the
random stopping index v, are independent. However, it is clear that in the case of depen-
dence, conditions As; and A5 should be replaced by a stronger condition in terms of the
joint distribution of the random variable v, and the process p.(t),# > 0. The following
condition plays a key role in further considerations:

Aqyi (Ve, pe()), 1 > 0 = (vo, po(2)), £ > 0 as € — 0, where (a) v¢ is an a.s. non-negative
random variable, and (b) po(¢), ¢ > 0 is an extremal process described in (4.7.2) -
4.7.5).

We also assume that the positivity condition J, holds.
Denote by V), the set of points ¢ > 0 for which P{'c,(f”) =tvg} =0forallk,n=1,2,...,

where s, = n~!. The set V,, contains no more than a countable number of points, since
it coincides with the set of atoms for the distribution functions of the random variables
r,(f") /vo, k,n=1,2,.... Therefore, the set Vj is (0, c0) except for at most a countable set.

The set V|, coincides with (0, co) if the random variables r,(f") /vo, k,n=1,2,... have
continuous distributions. Since the random variables r,(f”) have continuous distribution
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functions, rf") /vo also have continuous distribution functions if the random variables
'c,(f”) and v, are independent, for every k,n = 1,2,.... Hence, the set Vy = (0,c0) if
the process po(t),# > 0 and the random variable v, are independent or, at any rate, the
random variables r,(f") and v are independent for every k,n = 1, 2,.... In the latter case,
the process po(?), t > 0 and the random variable v, can be dependent.

Condition A,, implies condition A,,. Also relation (4.7.6) implies that condition
d,¢ holds. So, by applying Theorems 4.7.1 and 4.7.2, one can formulate the following
two theorems. These theorems are given in Silvestrov and Teugels (1998a).

Theorem 4.7.3. Let conditions T 5, A4, and I, hold. Then
Ce(t) = pe(tve) 1 € Vo = Co(t) = po(tvo). 1 € Vo ase = 0.

Theorem 4.7.4. Let conditions J,, A,,, and 3, hold. Then

C(0).t>0 =5 to().t>0ase — 0.

We remark that, in Theorems 4.7.3 and 4.7.4, the external max-processes and the ran-
dom stopping indices can be dependent in an arbitrary way. Only the condition of joint
weak convergence is required. No independence or asymptotic independence conditions
for these external max-processes and random stopping indices are involved.

4.7.4. Extremes with random sample size indices converging in probability. Let
us now consider a model with random sample size indices converging in probability.

It is natural to assume in this case that the random variables p.,,n > 1 and . are de-
fined on the same probability space for all € > 0. We also assume that the independence
condition for the random variables p., holds in the following stronger form:

Jg: The sets of the random variables {p. ,, € > 0} are mutually independent for n > 1.

Obviously, conditions J; and Jg hold for the scale-location model. In this case, the
random variables p., are represented in the form p., = (p, — a.)/b., where p,,n > 1
are 1.1.d. random variables and a, and b, are some non-random centralisation and nor-
malisation constants. It also holds for a more general model with the random variables
Pen = he(pn),n > 1, where h(-) are non-random measurable real-valued functions.

Let us recall condition P, introduced in Subsection 4.2.5,

P . . .
Py Ve = ne/ne — vy as € — 0, where vy is a non-negative random variable.

The following lemma shows that the model with normalised stopping indices con-
verging in probability is a particular case of a model where the assumption of joint weak
convergence of external sum-processes and stopping indices is made.
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Lemma 4.7.1. Let conditions T 5, Tg, A4z (or 841) and P, hold. Then condition A,y
holds, moreover, () the limiting process po(t), t > 0 and the limiting random variable
Vo are independent; (B) po(t), t > 0 is a cadlag extremal process which has the same
finite-dimensional distribution as the corresponding process in condition A,3; (Y) Vo is
a random variable which has the same distribution as the the corresponding random
variable in condition P;.

Proof of Lemma 4.7.1. Take some subsequence €, — 0 as n — oo and choose some
O<ti<...<tp<ooandv < s; <...< s, <oo. Define

A, = {kmax Pe,k < spl=1,...m}, A= {pO(tl) <s,l=1,...m}.
<ting,

We are going first to prove that the sequence of events A,,n = 0, 1, ... is mixing in the
sense of Rényi (1958), that is, for any r > 1,

lim P(A, NA,) = P(A)P(A,). 4.7.7)

n—oo

Obviously, the event A, = A} N A, , where

nr?

- + _
A, ={max p,x <51}, A, ={ max pgx<s,l=1,...m}
k<tne, tmNe, <k<ting,

It follows from conditions A ,; and J’; that
lim P(A; ) = lim(P{p,,; < s;})l"r! = 1. (4.7.8)
Now, by taking into account that for n large enough, ¢,,n,, < t;n,,, and using J,, T,
A5, and (4.7.8), we get
lim P(A, NA,) = lim P(A} NA,_NA,)
= lim P(A},)P(A,, N A,) = lim P(A},)P(4,) 4.7.9)
= lim P(A,, N A, )P(A,) = lim P(4,)P(A,) = P(A)P(A,).
Since the sequence A,,n = 1,2...is mixing, P(A, N B) —» P(A)P(B) as n — oo for
an arbitrary random event B. We can choose this event to be B, = {vy < z}. Let also
B,, = {v,, < z}. Condition P implies that P(B,AB,,) — 0 as n — oo for any z which is

a point of continuity of the distribution function of vy. Using these asymptotic relations
we finally get

lim P(A, N B,,) = lim P(A, N B,) = P(A)P(B,). (4.7.10)
Since the choice of the subsequence ¢,, the points 0 < #; < ... < 1, < oo, and
v <8 <...<s§, < oo was arbitrary, relation (4.7.10) is equivalent to the statement

of the lemma. Note that, in the case where s; < v, the asymptotic independence of the
events A, and B_, is obvious since, in this case, P(4,) = 0 asn — oo. O
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The following theorems, due to Lemma 4.7.1, are direct corollaries of Theorems
4.7.3 and 4.7.4. Note that we use that the set V, = (0, c0) in the case of independent
limiting external process and limiting stopping index.

Theorem 4.7.5. Let conditions J,, Tg, A,; (or 84;), P, and I, hold. Then condition
A, holds with the process po(?), # > 0 and the random variable v, which are indepen-
dent, and

Ce(?) = pe(tve), t > 0 = To(r) = po(tvp),t > 0ase — 0.

Theorem 4.7.6. Let conditions T, Tg, A3 (0or 84;), Py, and I, hold. Then

L) = pe(tve), 1 > 0 =55 To(r) = poltve), > 0 as & — .

4.8 Mixed sum-max processes

In this section, we give general conditions for weak and J-convergence of mixed max-
sum processes. Such processes are constructed from a sequence of two-dimensional i.i.d.
random vectors. Note that no conditions are imposed on possible dependencies between
the components of these random vectors. The first component of this sequence is used
to construct a traditional real-valued sum-process of i.i.d. random variables. The second
one is used to construct an extremal max-process of i.i.d. random variables.

4.8.1. Weak convergence of mixed sum-max processes. Let, for every ¢ > 0,
(Eens Pen)» n = 1,2,... be a sequence of random vectors taking values in R; X R;. We
assume that the following condition holds:

To: (Eens Pen) bk =1,2,...1s (for every € > 0) a sequence of i.i.d. random vectors.

Let the non-random functions 0 < n, — oo as ¢ — 0. We introduce a mixed sum-max
process (Ee(t), pe(1)),t = 0, where

)= ) Eer 120,

k<tn,

and
Pe(f) = max pgy, t 2> 0.
k<1Vtng

Conditions that provide marginal weak convergence of the corresponding sum-proces-
ses and max-processes were formulated, respectively, in Subsections 4.2.2 and 4.7.2.
These are conditions 8§, - 8 and 8,,. Let us now formulate conditions, which should
be added to these conditions, in order to imply joint weak convergence of the mixed
max-sum processes.

Let us introduce the following natural condition:
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810 (@) neP{E1 > v,peq > W} = mo3(v,w) as € — 0 forall v > 0,w > v, which are
points of continuity of the limiting function 7, 3(v, w).

(b) n.P{E1 < v,pe1 > w} — my3(v,w)as e — Oforall v < 0,w > v, which are
points of continuity of the limiting function m;3(v, w).

The function m, 5(v, w) satisfies a number of conditions: (a) 7, 3(v, w) is non-negative,
non-increasing and right-continuous in every argument for v > 0,w > v and such that
Mp3(v,0) = mys(oo,w) = 0,v > 0,w > v; (b) my3(v,w) is also non-negative, non-
decreasing in v < 0, and non-increasing in w > v, as well as right-continuous in every
argument for v < 0,w > v and such that m;3(v, ) = my3(—c0,w) = 0,v < O, w > v;
(c) it defines, for every for w > v, a measure on the Borel o-algebra of subsets of
(0, 00)) such that Hg?((vl,vz]) = Mo3(vi,w) — Ma3(va,w) for 0 < vy < v, < o0; (d)
it also defines, for évery for w > v, a measure on the Borel o-algebra of subsets of
(=00, 0) such that Hgg((vl,vz]) = p3(v2, W) — Mp3(vi,w) for —0 < v; < v, < 05 (e)
the measure Hg? (A) can be extended, in an obvious way, to the o-algebra B, (the Borel
o-algebra of subsets of (—00,0) U (0, 00)), and it is a non-increasing and continuous from
the right function in w > v for every A € B;; (f) the following estimates are valid:
I (A) -TI5'2(A) < (713 (w) —t3(w2)) ATTy(A), in particular, TT)}(A) < t3(w) ATI(A),
forv < w; <w, < o and A € By; (g) the function m3;(w) possesses properties (a) —
(b) listed in connection with condition 8, (in Subsection 4.7.2); (h) the measure I1,(A)
possesses properties (a) — (f) listed in connection with conditions 8, — 85 (in Subsection
4.2.2).

Let denote Cy, the set of points w > v that are points of continuity of the function
J'l?g(W).

It is useful to note that the properties (a) and (b) can initially be required only for
w € Cy,. Obviously, (¢) and (d) follow from (a) and (b). The properties and the estimates
in (e) and (f) can be obtained, for w € C,, and intervals (v;, v2] C (—00,0) U (0, 00), by
the limiting transition in the corresponding estimates for the functions in the left-hand
side of the asymptotic relations in 8;, (a) and (b), and then be extended, in an obvious
way, to sets from the o-algebra B,.

Due to monotonicity of H%)(A) inw € Cy,, (i) there exist limwlecﬂ3 < —w H%)(A) =
HSE(A), for every A € By, and w > v, w ¢ C,, and also for w = v if v > —o0, 7T3(V) < 0.
The estimates in (f) can be verified by similar limiting transition for any A € 8B;, and
v < w <w <oo,w & Cgand also forv = w; < wp < 0 if v > —o0,m3(V) <
oo, It follows from these estimates that convergence in (i) is uniform with respect to
A € B,. This implies that H%)(A) is a measure, for every w > v,w ¢ C,, and for
w =vifv > —oo,m3(v) < co. These estimates also imply that H(ZV’V;(A), as a function
in w, is non-decreasing and right-continuous at any point w > v,w ¢ C,, and w = v if
v > —oo,m3(V) < oo, for every A € ®B,. Thus, HSV;(A) defined in this way satisfies all
properties described in (e) — (h). ’
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Forw > vand forw = vifv > —oo, 713(v) < oo, we define a measure on the o-algebra
B, by the following formula:

I15(A) = Iy(A) - IT,(A). (4.8.1)

This measure plays the role of the jump measure in the Lévy-Khintchine representa-
tion of infinitely divisible characteristic functions, for ¢ > 0,

3, 2) = expltyy5 (D)), z € Ry, (4.8.2)
where | .
w < (w izs 1ZS8 A
V33 = ia"z = ob' + Ji (€% = 1 = =1 ds). (4.8.3)
1
and
W) _ S W)
a’=da- JCIRI 1+ S2H2,3(ds)- (484)

We additionally define IT,"}(A) = 0 and $}"(1,2) = exp{t(iaz — 16z}, for w < v if
v > —o0, M3(V) < o0,
It follows from (e) and (f) that @™ is a right-continuous function, and, therefore, the

function c]>(2w3)(t, ) 1s right-continuous in w for every z € Ry, ¢ > 0.

Recall also that the constants a,a®™, b and the measures IT,(A), [1,)(A) in (4.8.1),
(4.8.3), and (4.8.4) are determined by conditions 8; — 8; and 8;; - 8.

Recall the space D, of step functions on (0, co) continuous from the right and with a
finite number of only positive jumps in every finite sub-interval of (0, co).

Let us introduce a cadlag homogeneous mixed Markov process (Eo(t), po(t)), t > 0,
whose trajectories belong to the space Dgé?m) X Dy with probability 1. and the transition
probabilities have the following hybrid characteristic-distribution form:

E {eFS020) oyt + 5) < w) [ Eals) =, puls) = w)

) ) 4 ) (4.8.5)
= X (W < We PR, 2).

It should be remarked that the second component, py(?),# > 0, of this process is
an extremal process while the first one, Ey(¢),7 > 0, is a cadlag homogeneous process
with independent increments and the characteristics determined by the second compo-
nent. Note, however, that the corresponding Gaussian sub-component of E(z),¢ > 0 is
independent of py(), ¢ > 0.

As follows from the remarks in Subsection 4.7.2, (e) P{(Ey(?), po(?) € R{XT,t > 0} =
1, where the interval Y was defined in this subsection. This is consistent with formula
(4.8.5).

The following theorem is a particular case of the corresponding result given in Sil-
vestrov and Teugels (2001).
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Theorem 4.8.1. Let the conditions Ty, 8; — 83, and 81, — 81, hold. Then

Ee(®), pe(®), 1 > 0 = (Ep(1), po(?)),t > 0ase — 0.

Proof of Theorem 4.8.1. By the definition of the processes E.(¢) and p.(¢), for any 0 =
o<t <...1, <0,Z1,...,Zm E R|, —c0o < w; <...<w, <oo,m>1 and € such that
tne > 1, we have

Eexpli )| 2&et} - | [ u(pett) < wo)
" = (4.8.6)
= l_l(E exp{izk’mgg’l} . X(ps,l < Wk))[tkne]_[tk—lns],
k=1

where zj,n =2k + ... 2wk =1,...,m.

It follows from (4.8.6) that the statement of weak convergence given in Theorem
4.8.1 will be proved if we show that the following relation holds for every z € R, and
every w, which is a continuity point of mws(w):

(E explizEe.} - 7(per < W)™ — e 1(1,2) as & — 0. (4.8.7)

This relation is obvious in the case where w < v, since, in this case, the expression
in the left-hand side of (4.8.7) tends to zero due to condition 8;; and the expression in
the right-hand side of (4.8.7) is also equal to zero, as implied by the same condition.

If v is a point of continuity of the function ;t3(w), then m;(v) = oco. In this case,
again the expression in the left-hand side of (4.8.7), taken for w = v, tends to zero due
to condition 8,; and the expression in the right-hand side of (4.8.7), taken for w = v, is
also equal to zero.

So, the only case that needs to be considered is when w > v. Obviously,

(E eXp{iZEE,l} : X(ptl < W))nE

; , \ (4.8.8)
= (P{pea < wh)™ (E{explizEe.1} | per < wh'™.
By condition 8, for any w > v,w € C,,, we have
(P{pe; < wh™ — =™ age — 0. (4.8.9)

It follows from (4.8.8) and (4.8.9) that (4.8.7) will be proved if we show that, for
every z € Ry end every w > v, w € Cy,,

(EfexplizEe} | pes < wh™ — ¢55(1,2) as e — 0. (4.8.10)

For every € > 0 and w > v, define sequences of i.i.d. random variables Egif,n =

1,2,...such that forv € Ry,

P{gg‘}l) < V} = P{Ebl < vlpa,l < W}. (481 1)
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Using these sequences we can define sum-processes

EV(f) = Z W, 1> 0. (4.8.12)

k<tng

For a given w > v, relation (4.8.10) is actually equivalent to
EM(),t2 0= E(1),t>0ase — 0. (4.8.13)

It has been pointed out in Subsection 4.2.2 that conditions 8, — 8; are necessary
and sufficient for relation (4.8.13) to hold. Of course, all of these conditions should
be checked for the random variables Eiw), instead of the random variables &E;;. These
conditions should also be checked for évery point w > v,w € C,,. Comparison of
formulas (4.2.1) and (4.8.2) shows that we need that the constants a, b and the measures
I1,(A) be replaced in these conditions by the constants ™, b and the measures f[(ZW;(A).
This will be done in separate steps. ’

(i) The asymptotic relations (a) and (b) in condition 8, have the same structure. Thus,
we give a proof of only one of them.

Note, first, that condition 8,, implies that for all w > v,

P{pe1 <w} — lase — 0. (4.8.14)

Using conditions 8, (a), 8;,, and relation (4.8.14) we have, for every w > v,w € Cp,,
and v > 0, which are points of continuity of the limiting function (considered as a
function of v for a given w), that

y P € s ME S
"sP{E(wl) > =n, {1 > v, per < W)

€, P{pe1 < w)
_ P{€e1 > v} — P{€c1 > v, pe1 > W} (4.8.15)
¢ P{pe1 < w)

— M) — m3(v,w) = ﬁgg((v, o)) as e — 0.

(ii) Consider the asymptotic relation given in condition 8,. Use conditions §; — 8,
and 8;; — 8,,. For every w > v,w € Cy,, and v; > 0, points of continuity of the limiting
function (regarded as a function of v, for a given w) and such that 0 < v; — 0 as k — oo,
we have

Es—>0|nsE§5,lX(l%s,l| < Vi, pe,l > W)l
< TimgoneElEe 1 [Y([Ee| < Vi Pet > W) (4.8.16)

< ﬂg_@vkngP{pm > w} = yz(w) = 0 as k — oo,
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We use (4.8.15) again, together with (4.8.16), to see that, for every appropriate w > v
and v > 0,

ll_l’)r(} nbEEth(|§tl| < v, ps,l > W)

= lim llmntEEHX(Vk < [Eeal £V, Pe1 > W)

k—oo €

(4.8.17)
= lim ST (ds) = f STLY (ds).
= Jvi<lsi<y " |s|<v '
By (4.8.17) and condition 8,, we get, for appropriate w > v and v > 0, that
nEE x(E 1 < v)

_ o BEe(Eel < v, per < w)
‘ P{pbl < W}

-n EEs,lX(lEe,ll < V) - E%s,lX(lEe,ll < v, pe,l > W) (4818)
¢ P{pe1 < w}

— a™ (W) = a@) - JC sH(W)(ds) ase — 0.

s|<v

Relation (4.8.18) enables us to calculate the corresponding constant a™ in (4.8.4)
that replaces a in (4.2.2). Indeed,

115(d +f
|s|<v 1+ 2 ( S) Is|>v 1+ s2

3

a™ = a(W)(v) _

” s w
= a(v) — o sTIS (ds) — o T Msds) - 115"} (ds)]

+ > — T1%(ds)] (4.8.19)

|s|>v 1 + SZ 23 o
JC ) S qw
=a- ST (ds)+f W(ds)
|s|<v |s|]<v 1+ S
— H(W) d — _ f H(W) d
f|;|>v1+s (ds) =a R11+s (ds).
(iii) Finally, we must check condition 8; for the random variables E(W). Note that
relation (4.8.18) implies, in an obvious way, that forw>vandv > 0,
lim,one(EE x(1E] < v))* = 0. (4.8.20)

Let again w > v,w € C,, and v > 0 a point of continuity of the limiting function
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regarded as a function of v for a given w. Then, using conditions 85 and 8§, — §;, we get

mb—ﬂnaE%le(lgbll < v, ps,l > W)

< me—w \/neEEi,IX(lge,ll < V) : Vnsp{pe,l > W}
< Tim, o V2EE X(Eer] < v) - Time g yicPlpes > )
< \WAlime o2 1l < v) - Va(m) — 0as 0 < v — 0.

Using (4.8.14), (4.8.20), (4.8.21), and conditions 8, and 85 we get, for appropriate
w > v and v > 0, that

(4.8.21)

lim Tim, g, Var &0 < v)

O<v—

= lim lim_ . EE")(EX] < v)

0<v—0 el

EE?]X('%&” < V) EE?]X('%&” <, Pe,1 > W)

= lim lim__, (1 . 4.8.22
0<IVIEOES—>0(" P{pe; < w} n P{pe1 < w) ) ( )

= lim lim,_ 7.8 (&l < v)

= lim lim_n. Varg (.l < v) = b%.

Note that the constant b does not depend on w > v. Combining the above we com-
plete the proof. O

Remark 4.8.1. Conditions 8, — 85, and 8, — 8, are not only sufficient but also necessary
for the relation of weak convergence given in Theorem 4.8.1 to hold.

Let us just give a sketch of the proof. As far as conditions 8§, — 8; are concerned,
the necessity statement is a part of the central criterion of convergence and the marginal
weak convergence of the sum-processes E(¢), 7 > 0, which follows from the relation of
weak convergence given in Theorem 4.8.1. Condition 8,; follows from marginal weak
convergence of the processes p.(?), > 0, which also follows from the relation of weak
convergence given in Theorem 4.8.1. This was mentioned in Subsection 4.7.2. Thus,
only condition 8,, requires a proof in the necessity statement. By using condition 8,
and relations (4.8.2) - (4.8.10), one can show that the relation of weak convergence given
in Theorem 4.8.1 implies relation (4.8.13) to hold. Then, by using 8§; — 8; and apply-
ing the necessity statement in the central criterion of convergence to the sum-processes

(1), 1> 0, for w > v one can prove that condition 8, holds.

4.8.2. Examples. The sum-process E.(¢),7 > 0 and the max-process p¢(),t > 0 are
asymptotically independent if and only if the function m,3(v,w) = O forw > v, v # 0
in condition 8,,. In this case, a" = a and the measure f[(;g)(A) = [I,(A) forall w > v.

Therefore, q>§g’(t, z) = $a(t, 2).
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Let us also consider the special case when the sum- and max- variables coincide, i.e.
Eek = Pes-k = 1,2, . ... In this case, conditions 8,, - 8,, are implied by condition §,.

Moreover, in this case, condition 8, (a) implies that ,(v) = m3(v) for v > 0. Also
v = 0 as follows from the condition 8,, which implies that n.P{E.; > v} - coase — 0
for any v < 0. Further, m,3(v,w) = m(v VvV w) for v,w > 0, while m,3(v,w) = 0 for
v<0,w>0.

Looking at the limiting processes, it is obvious that, in this case for € such that
net > 1, the random variable p.() = fi(E:(-)), where f(x(-)) = maX,eq As(x(-)) and
Ag(x(+)) = x(s) — x(s — 0). So, pe(r) is the maximal jump of the process E.(s) in the
interval (0, t]. This functional is a.s. J-continuous with respect to measure generated by
the limiting process Ey(s), s > 0 on Borel o-algebra of the space DE(I)?OO) for every t > 0.
Therefore, po(t) = fi(Eo(-)), 1 > 0.

4.8.3. J-convergence of mixed sum-max processes. We now turn to J-convergence
of mixed sum-max processes. We will be dealing with the process v,(f) = (E:(?), p:(?)),
t > 0, which has the phase space R; X R; and whose trajectories, by the definition,
belong to the space DE(l)’)oo) x Dy with probability 1. It is a Markov process. We denote the
transition probabilities of this process by P.((v, w),t,t + s, A).

The following theorem is a variant of the corresponding result given in Silvestrov
and Teugels (2001).

Theorem 4.8.2. Let the conditions Ty, 8; — 83, and 8, — 8, hold. Then

(D), 1> 0 =5 v ().t > O as e — 0.

Proof of Theorem 4.8.2. The weak convergence of the processes vy,.(#),¢ > 0 has been
proved in Theorem 4.8.1. So, Theorem 4.8.2 will follow if we can show that, for every
0>0and0<T < T’ < o0,

lim lim,_oP{A;(y,(), ¢, T, T") > 8} = 0. (4.8.23)

Note that the second component p.(t), ¢ > 0 is a non-decreasing process with proba-
bility 1. We use this property to reduce the phase space of the second component to the
interval [A, co). This is an essential part in the proof of (4.8.23).

We choose (a) 7 > —oo to be a point of continuity of the function ;t3(w) if v = —oo,
and (b) h =vifv > —oo.
Introduce the truncated random variables f)ih,z = pex Vh, k=1,2,..., and the corre-

sponding max-processes

pP () = ‘max o = p(t) Vb, 12 0. (4.8.24)
<1Ving >

The bivariate process '\A/(Eh)(t) = (&), ﬁg’)(t)), t > 0 has the phase space R X[A, o) and
its trajectories belong to the space DE(I)?OO) x D, with probability 1. It is a Markov processes
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which has, for (v, w) € R; X [h, o), the same transition probabilities, P.((v, w),t,t+ 5, A),
as the process v (1), t > 0.

Note that Theorem 4.8.1 can be applied to the max-sum processes y(h)(t) t>0. All
conditions of Theorem 4.8.1 are satisfied.

The only difference is that, in the case under consideration, the corresponding limit-
ing functions m,(v), mt3(w) and 7, 3(v, w) in conditions 8§; — 85 and 8;; — 8, should be
changed. We introduce new functions indexed with an upper index (k) as follows: (c)

(h)(v) = m(v) for v # 0; (d) n(h)(w) = m3(w) for w > h, and rc(h)(w) = oo forw < h;
(e) n(h)(v w) = mp3(v,w) forw > h,v # 0, and n(h)(v w) = m(v) forw < h,v # 0. The
correspondmg changes should also be introduced in the constants a and b.

Note that only in the case (a), the changes are actually made, whereas in the case (b),
the new functions coincide with the old ones.

According to Theorem 4.8.1, the following relation holds:

P, 1> 0= 90(1),t > 0as e — 0. (4.8.25)

This relation also follows directly from the statement of Theorem 4.8.1, since ac-
cording to (4.8.24), the random vector ?(Eh)(t) is a continuous function of the random
vector vy, (7) forevery t > 0and h € R;.

The limiting process y(h)(t) t > 0 is completely similar to the process described in
Theorem 4.8.1 with the following modification. Its characteristic n (v w) is defined

above in (d) - (e). Moreover, it is easily can be shown that the process 'Yo (t),t > 0, can
be constructed from the process y,(¢), t > 0 by simply truncating the second component
of this process, that is, 95" (1) = (Eo(1), pU (1)), t > 0, where p\ (1) = po(£) V h,t > 0.

Note that in the case (a), the truncation does takes place as opposed to the case (b),
where the process f)(()h)(t) = po(t),1 > 0.

Let us now use the following inequality that holds forany 6 > 0and0 < 7’ < T” < oo:

P{A(Y.(), e, T, T") > 28}

< PAGPC), e, T T') 2 8) + P sup [pP(2) = pe(1)] = 8} (4.8.26)
T<t<T’
Obviously,
P{ sup [p{(2) = pe(1)] 2 8} < Plpe(T) < h = ). (4.8.27)

T<t<T’

In the case (a), one can always choose §/2 < 9§, < 0 in such a way that the point
h — 9§, is also a point of continuity of the function m;(w). In the case (b), the point v — 9§
is automatically such a point. In both cases, for € such that n, 7 > 1, we have

P{pe(T) < h — 8} = (P{pes < h— 8T — ™07 35 ¢ — 0. (4.8.28)
In the case (a), forevery 0 < T < oo

lim lime_,oP{pe(T) < h — 8,} = lim e T — ), (4.8.29)

—)00
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Inequalities (4.8.27) and relations (4.8.28) and (4.8.29) imply that in the case (a), for
everyd >0and0 < T < T’ < oo,

lim lime_oP{ sup [p(r) — pe(2)| = &} = 0. (4.8.30)

h——c0 T<i<T’

In the case (b), the limiting expression in the left-hand side of (4.8.28) is equal to
zero. Thus, the additional limit transition given in (4.8.29) is not required. This shows
that inequality (4.8.27) and relation (4.8.28) imply that, in the case (b), for every & > 0
and0< T < T’ < o0,

lime_oP{ sup [p™(r) — pe(1)| = 8} = 0. (4.8.31)

T<t<T’

Relations (4.8.26), (4.8.30), and (4.8.31) imply that relation (4.8.23) will follow if
we show that, for every h chosen according (a) or (b), and 6 > 0,0 <7 < T’ < oo,

nn&EHOP{A,(?g’”(-), e, T,T) > 8} =0. (4.8.32)

Define
oe(h,c, T, T",8) =  sup sup P((v,w), t,t + 5,5 5((v, w))),

—oco<y<oco,w>h T <t<t+s<t+c<T’
where Ss((v, w)) = {(V, W) : (v =V']> + |w = w'[)/? > 8).

We showed in (4.8.25) that the processes ?gh)(t),t > (0 weakly converge. As is
known (see, for example, Skorokhod (1958) or Gikhman and Skorokhod (1971)), re-
lation (4.8.32) follows in this case from the following relation that should be proved for
everyd >0and0< 7T < T’ < co:

11113EH0 a.(h,c, T, T',8) = 0. (4.8.33)

We now use the fact that the process p.(t), r > 0 is non-decreasing and that E.(¢), ¢ > 0
is a cadlag process with independent increments. We get the following estimate:

og(h,c, T, T',20)
< sup P{E(r+9) - &) >4}

T<t<t+s<t+c<T’

+ sup sup Plpe(t + 5) — pe(t) > Olpe(t) = w}

w>h T<t<t+s<t+c<T’

< TSIS:BCST,([ng(t + 8)] = [netD(P{[E,1| > 8} (4.8.34)

+ |EE8JX(|§£,I| < §)| + Var Es,lX(Ee,ﬂ <))
+sup  sup (1= (P{pey < w + petrolind)

w>h T<t<t+s<t+c<T’

< cne(P{|E.1| > O} + |EE:1%(|Ee.1| < O)
+ Var&lX(lE&ll < 6)) +1-— (P{pal <h+ 6})ngc
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We are now in a position to use the truncation of the phase space described above,
and conditions 8, -8; and 8,,.

Choose h according (a) or (b), and then 6/2 < §, < 9 in such a way that the point
h + 9, is also a point of continuity of the function 7t3(w). In both cases, the quantity

m3(h + 9p) < oo, (4.8.35)
Conditions 8, -85 and 8,,, applied to (4.8.34), and (4.8.35) yield
lh%ﬁﬁﬁqoa4h¢;7§Tﬁ26)

< Tim ¢ - Timeone(P{[Be1| > 8} + |EEe x(Eel < O)|

e (4.8.36)
+ Var gs,lX(lgs,ll < 6)) + y_r,% hms—>0(1 - (P{ps,l < h + 611})%6)
:h%a—eﬂﬂﬁw):a
The proof is completed. O

Remark 4.8.2. Theorem 4.8.2 yields J-convergence of the mixed sum-max processes
v.(®), t > 0 on the open interval (0, c0). At the same time, conditions 8, — 8; imply that

J )
the first component of these processes E(¢),t > 0 — E(¢),¢t > 0 as ¢ — 0. This means
that these processes satisfy condition Oj3.

4.8.4. Transformed mixed sum-max processes. Let f(z, x) be a continuous function
defined on [0, c0) X R, and taking values in R;. The transformed stochastic process
f(t,v.(2)),t > 0 has trajectories that belong to the space DE(I)?OO) with probability 1.

Theorems 1.6.12 and 4.8.2 imply J-convergence of the transformed processes

FE v (D)1 > 0= £t yy(1).1> 0ase — 0. (4.8.37)

Below, several examples illustrate (4.8.37). We can apply this relation to a number
of processes that represent modifications of the original mixed sum-max processes.
As the first example, take

0e(1) = Eo(D),1 > 0 =5 po(t) = Eg(1), 1 > 0 as & — 0. (4.8.38)
Other examples would be

P o3, pold)

e 70 T a0 0 (4.8.39)

and
pe(0) EI10

, ————— t>0ase— 0. 4.8.40
at + [E:(1)| at + [E(®)| ( :
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Here a > 0 is a regularisation parameter that prevents the denominator in the last two
relations to take the value zero.

Relations (4.8.38)-(4.8.40) establish weak convergence of the functionals that de-
scribe deviations of max- and sum-processes.

Since the process y,(f),t > 0 and the transformed process f(t,v,(1)), t > 0 are
stochastically continuous, (4.8.37) implies that forany 0 < T} < T, < oo,

sup f(t,v. (1)) = sup f(t,v,()ase— 0. (4.8.41)
1€[Ty,T2] 1€[T1,T]
This relation, if applied to the modified processes (4.8.38) — (4.8.40), establishes
weak convergence of the functional that describes the maximal deviations given by the
corresponding processes.

4.8.5. Mixed sum-max processes with random stopping indices. Theorems 4.8.1
and 4.8.2 can be generalised to a model with random stopping indices.
Let us assume the following weak convergence condition:

Asst (Ve, ¥e(D), 1> 0 = (v, ¥,(®).t > 0 as € — 0, where (a) vy is an a.s. non-negative
random variable, and (b) y,(t) = (Eo(1), po(t), t > 0 is a cadlag homogeneous
Markov process described in (4.8.5).

As above, we also assume that condition J, holds.

The following theorem generalises Theorems 4.2.4 and 4.7.4. It is a direct corollary
of the translation Theorem 3.4.4 that must be applied to the compositions y,(¢ve), > 0,
in the case where the constant a = 0 and the slowly varying functions 4(x) = 1. Remark
2.8.3 that describes a modification of the conditions for the case of the interval (0, o0)
must also be used. Conditions A,5 and J,, together with Theorem 4.8.2, imply that
conditions of Theorem 3.4.4 hold.

Theorem 4.8.3. Let conditions Ty, A,s, and 3, hold. Then

Ce(®) = v (tve), 1> 0 N Co(?) = yo(tvo), t > 0 as e — 0.

Note that the external mixed sum-max processes and the random stopping indices
can be dependent in an arbitrary way in Theorem 4.8.3. The only condition of joint
weak convergence is required. No independence or asymptotic independence conditions
for external sum-max processes and random stopping indices are needed.

Let us impose the following condition:

T10: The sets of random vectors {(E; ,, pe.n), € > 0} are mutually independent for n > 1.

Also, the following lemma can be useful in the case when the normalised stopping
indices converge in probability. We give it without a proof, since its proof is analogous
to those of Lemmas 4.2.1 and 4.7.1.
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Lemma 4.8.1. Let conditions Ty, Ty, 81 — 83, 811 — 815, and P, hold. Then condition
A5 holds, moreover, () the limiting process y(t), t > 0 and the limiting random vari-
able v are independent; (B) v, (1), t > 0 is a cadlag homogeneous Markov process which
has the same finite-dimensional distribution as the corresponding process described in
(4.8.5); (y) vo is a random variable which has the same distribution as the the corre-
sponding random variable in condition P,.

The following theorem follows from Theorem 4.8.3 and Lemma 4.8.1.

Theorem 4.8.4. Let conditions Ty, Ty, 81 — 83, 811 — 845, Py, and 4 hold. Then
condition A5 holds with the process vy,(t), t > 0 and the random variable v, which are
independent, and

Ce(®) =v.(tve), 1 >0 R Co(?) = v(tvp),t > 0ase — 0.

In conclusion, we would like to refer to some works concerning studies of joint
asymptotic behaviour of maxima and sums of i.i.d. random variables. Conditions for
their quotients to tend to 1 were studied by Arov and Bobrov (1960), O’Brien (1980),
Maller and Resnick (1984), and Pruitt (1987). Related results can also be found in Dar-
ling (1952), Smirnov (1952), and Aebi, Embrechts and Mikosch (1992). Joint asymp-
totic distributions of maxima and sums of i.i.d. random variables were studied for the
scale-location model by Breiman (1965), Chow and Teugels (1979), Resnick (1986),
and Haas (1992). Related results can also be found in Lamperty (1964), Anderson and
Turkman (1991), Kesten and Maller (1994), Hsing Tailen (1995), Ho Hwai-Chung and
Hsing Tailen (1996), and the book edited by Hahn, Mason and Weiner (1991).

4.9 Max-processes with renewal stopping

In this section, we study weak and J-convergence limit theorems for the so-called max-
processes with renewal stopping. These processes give another example of the gener-
alised exceeding processes.

4.9.1. Max-processes with renewal stopping. Let, for every € > 0, (K¢, Pen)s
n=1,2,...be asequence of random variables taking values in [0, co) X R;. Further, let
ne > 0 be a non-random function of parameter € such that n, — co as € — 0.

We first introduce a mixed sum-max process with non-random stopping index,

B = (5:(0). o)) = () Kuxo max pe). 120,

k<tng

In this case, the following process is usually referred to as a renewal process:

Ve(t) = sup(s : Ke(s) < 1), > 0,



344 Chapter 4. Summary of applications

and
Ce(®) = pe(ve(2)), 1> 0

is called a max-process with renewal stopping.

The max-processes with renewal stopping T.(7),t > 0 is another example of the
generalised exceeding processes considered in Sections 4.3 and 4.4. In this case, the
process B.(t) = (k(t), pe(t),t > 0 replaces the process o (t) = (K(t), E:(?)), ¢ > 0 in the
definition of the generalised exceeding process.

Theorems formulated in Sections 4.3 —4.4 can be directly translated to max-processes
with renewal stopping. However, the extremal process p.(z),t > 0 may not weakly con-
verge at the point 0. So, it is necessary to apply those variants of these theorems, which
relate to the case when the external processes do not converge at the point 0. These
modifications are given in Subsections 4.3.8 and 4.4.2.

Condition Asg takes in this case the following form:

Aqe: (:(1), pe(),t € VXU = (x0(1), po(t)),t € VXU as ¢ = 0, where: (a) V and U
are subsets of (0, o), dense in this interval, (b) x((¢),# > 0 is a non-negative and
non-decreasing cadlag process, (c) po(?),t > 0 is a non-decreasing cadlag process.

Note that, by the definition, x.(¢), # > 0 is a non-negative and non-decreasing cadlag
process for all € > 0. The relation of weak convergence given in condition .A,¢ imply
in this case that the limiting cadlag process xo(#),¢ > 0 is a.s. non-negative and non-
decreasing. Note that the process k.(?) is actually defined on the interval [0, o). Since
the cadlag process Ky(#),t > 0 is a.s. non-negative and non-decreasing, there exists a

proper random variable k(0) such that x(7) 2 k(0) as 0 <t — 0. So, we can assume
that the process x((?) is also defined on the interval [0, co). Finally, this process can be
replaced, in condition A,¢, by some stochastically equivalent cadlag modification.

Since the limiting process Ky(#), # > 0 is a non-negative process, condition J¢ holds.

However, condition A, does not require weak convergence of the processes k.(?), t >
0 at the point 0. So, despite that k.(0) = O with probability 1 for every € > 0, it is not
guaranteed that the random variable xy(0) = O with probability 1. Since this assumption
usually holds max-processes with renewal stopping based on i.i.d. random variables, we
adopt the following condition:

J,3: K0(0) = 0 with probability].

Note that this condition implies that condition J,3 used in Subsection 4.3.8 holds.

Consider first the case when the limiting stopping renewal process vy(),7 > 0 is an
a.s. continuous process.

Condition K introduced in Subsection 4.3.1 remains with no change. This condition
permits to avoid considering the case when the random variables v,(f) can be improper.
So, we have that (a) the random variable v (¢) is finite with probability 1 for every ¢ > 0.
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Condition J, introduced in Subsection 4.3.1 also stays the same. Recall that this con-
dition requires for ky(?),7 > 0 to be an a.s. strictly increasing cadlag process. Condition
J, implies that (b) vo(#),# > 0 is an a.s. continuous process.

Condition J4 and J,; imply that (¢) vo(0) = O with probability 1 and also that (d)
vo(t) > 0 with probability 1 for every ¢ > 0.

Condition J,, takes in this case the following form:

Jyr: lim_o lime_o P{A,(B,(),c, T",T")> 8} =0, 8> 0,0 < T’ < T" < oo.

Note that it is assumed that 0 < ¢ — 0. However, under A, condition J,; is
equivalent to J,,, since the limiting process B,(#), r > 0 is a cadlag process and, therefore,
the asymptotic relation in J,, automatically holds for € = 0.

Let us restate here Theorem 4.3.11 applying this theorem to max-processes with
renewal stopping and taking into account the remarks made in Subsection 4.3.8.

Theorem 4.9.1. Let conditions Ks, Ay, d57, I, and J,; hold for the max-processes
B.(t),t > 0. Then

Ce(0),t>0 N Co(®),t>0ase— 0.

We now consider the case when the limiting renewal process vo(t),# > 0 is a step
cadlag process.

In this case, the random variables t.,,n = 0, 1,... should be defined in the same
way as in Subsection 4.4.1, i.e., as successive moments of positive jumps of the process
Ke(2),t >0, fore >0and e = 0.

Conditions 9,4, K5, K, and A, remain with no changes. These conditions should
be required to hold.

Since k.(t),t > 0 is a non-negative and non-decreasing process for € > 0 and € = 0,
condition J,, holds. By Remark 4.4.2, conditions J,5, J,;, and N, imply that R, holds.
Conditions J,4 and J,; also imply that v((0) > O with probability 1, that is, condition J4
holds.

Theorem 4.4.4, applied to the max-processes with renewal stopping, takes in this
case the following form.

Theorem 4.9.2. Let conditions 3,5, K5, Ky, Aqg, 3370 N, and 3,5 hold for the max-
processes B.(t),t > 0. Then

Ce(),t>0 N Co(t),t>0ase — 0.

4.9.2. Max-processes with renewal stopping based on i.i.d. random variables.
Let, for every € > 0, (Ken, Pen)s # = 1,2,... be a sequence of random vectors taking
values in [0, c0) X R;. We assume that the following condition holds:

T110 (Kens Pen), k= 1,2,...1s (for every € > 0) a sequence of i.i.d. random vectors.
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The conditions that imply weak convergence of mixed sum-max processes were
given in Section 4.8. These are conditions 8; — 8; and 8, — 8,,.

Since the random variables k. , are non-negative, these conditions can be transformed
in the following way. Conditions 8; — 85 can be replaced by conditions 8, — 85. Condi-
tion 8;; does not require any change. Condition 8, should be modified as follows:

83t neP{xes > u,pe1 > w} — m3(u,w)ase — 0forall u > 0,w > v, which are points
of continuity of the limiting function t; 5(u, w).

Here, properties of the limiting function are: (a) the function m; 3(u, w) is non-
negative, non-increasing, and right-continuous in every argument for # > 0, w > v such
that 7, 3(v, 00) = m;3(c0, w) = 0 for v > 0, w > v; (b) it defines, for every w > v, a mea-
sure on the o-algebra of subsets of B} such that H(W)((ul s up]) = s (uy, w) — 1y 3(up, W)
for 0 < u; < up, < o00; (c¢) H%)(A) is a non-increasing and continuous from the right
function in w > v for every A € B7; (d) the following estimates are valid: H(W‘)(A)
M"2(A) < (ma(wi) — ma(w2)) A TTi(A), in particular, TIV(A) < mi3(wy) A Ti(A), for
v <w <w <ooand A € Bj; (e) the function m3(w) possesses properties (a) — (b)
listed in connection with condition 8, (in Subsection 4.7.2); (f) the measure I1;(A) pos-
sesses properties (a) — (d) listed in connection with conditions 8, — 85 (in Subsection
4.5.2).

Forw > vand forw = vifv > —oo, 713(v) < oo, we define a measure on the o-algebra
B by the following formula:

I1"(A4) = ITi(A) - IT}")(A). (4.9.1)

This measure plays the role of the jump measure in the Lévy-Khintchine representa-
tion of infinitely divisible characteristic functions, for ¢ > 0,

0152, y) = explry ()}, y € Ry, (4.9.2)
where .
W(IV\;)(Y) — id(w)y + f (ein —-1= 1 (4.9.3)
0
and 00
d™ = d— (4.9.4)

1+s
0
We additionally define IT{"}(A) = 0 and q><w)(t y) = ¥ forw < vifv > —o0, 3(V) <

00,
It follows from (c) and (d) that 4 is a right-continuous function, and, therefore, the
function c]>(w)(t y) is right-continuous in w for every y € Ry, > 0.

Also recall that the constants d,d™ and the measures IT;(A), H(W)(A) in (4.9.1),
(4.9.3), and (4.9.4) are determined by conditions 8, — 85 and 8;;, 83.



4.9. Max-processes with renewal stopping 347

Let us also introduce a cadlag homogeneous mixed Markov process (xo(t), po(?)),
t > 0, such that its trajectories belong to the space DE&O) X Dy with probability 1 and the
transition probabilities have the following hybrid characteristic-distribution form:

E {0l (oo (1 + 5) < w) | Eo(s) = ', po(s) = W)
= 3 < w)e MM (1, y).

It is worth remarking that the second component, p((?), ¢ > 0, of this limiting process
is an extremal process, while the first one, Ky(¢),t > 0, is a cadlag non-negative homo-
geneous process with independent increments and the characteristics determined by the
second component.

As follows from the remarks in Subsection 4.7.2, P{(ky(?), po(?) € [0, 00)X Y, t > 0} =
1, where the interval Y was defined in this subsection. This is consistent with formula
(4.9.5).

As it follows from Theorem 4.8.1, conditions 8, — 85 and 8;;, 843 imply the follow-
ing condition:

(4.9.5)

A (Ke(), pe(®)),t > 0 = (K(2), po(1)),t > 0 as € — 0, where (o(?), po(?)), t > Ois a
cadlag homogeneous Markov process described in (4.9.5).

Also, by Theorem 4.8.2, the same conditions 8§, — 85 and 8,;, 8,3, without any
additional assumptions, also imply that

(e(1), pe(2)), £ >0 i> (o(1), po(2)),t > 0 as e — 0. (4.9.6)

Let us first consider the case when condition J,,, introduced in Subsection 4.5.4,
holds. This condition imply condition J,. Therefore, the process v((¢),# > 0 is an a.s.
continuous process.

It is obvious in this case that k,(0) = k,(0 + 0) = 0 with probability 1, i.e., condition
J,3 holds. So, vo(0) = 0 with probability 1 and vy(r) > O with probability 1 for every
t>0.

The next two theorems are from Silvestrov and Teugels (2001).

Theorem 4.9.3. Let conditions Ty, 84, 85, 814, 813, and 3,, hold. Then

L) = peve(0)). 1 > 0 =55 To(1) = po(vo(1)). 1 > 0 as & — 0.

Proof of Theorem 4.9.3. Condition A, implies that condition A, holds. Also, the re-
lation of J-convergence (4.9.6) implies that condition J,; holds. Conditions 8, — 85 and
J,, also imply that P{x,; > 0} > O for all € small enough. Without loss of generality,

one can assume that this holds for all € > 0 and, therefore, k() L oo ast — oo, i.e.,
condition &K holds. Also, condition J,, implies that condition J, holds. Finally, as was
pointed out above, condition J,5 also holds. Therefore, Theorem 4.9.1 can be used and
this gives the statement of Theorem 4.9.3. O
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Let Y, be the set of points of stochastic continuity of the limiting process Co(f) =
po(vo(?)),t > 0. This set is (0, c0) except for at most countable set. It follows from
Lemma 1.6.5 that the processes C.(7), 7 > 0 weakly converge on the set Y.

The structure of the set Y, needs a special study, as well as the question whether
condition J,, implies that ¥, = [0, o) or not.

Let us also consider the case when condition J,, holds, i.e., the limiting renewal
stopping process vy(t),t > 0 is a step cadlag process.

Theorem 4.9.4. Let conditions Ty, 84 — 8¢, 811, 813, and Iy, hold. Then

C(0).120 -5 to().t>0ase — 0.

Proof of Theorems 4.9.4. We use Theorem 4.9.2. Condition A, implies that condition
A, holds. Also, the relation of J-convergence (4.9.6) implies that condition J,; holds.
The step processes K¢(?), ¢ > 0 have the structure described in the proof of Lemma 4.5.3.
It is readily seen that relations (d) - (I) given in this proof imply that conditions J ,, K,
K hold (at least for all € small enough) and that also condition N, holds. Therefore,
Theorem 4.9.2 can be applied and this yields the statement of the Theorem 4.9.4. O

Let Y, be the set of all points of stochastic continuity of the process Ty(¢),7 > 0.
Recall that the set V|, which is the set of points of stochastic continuity of the process
vo(t),t > 0 coincides with (0, co) except for at most a countable set. Actually, this set
was described in Subsection 4.5.3. Obviously, the process Co(f) = Eo(vo(?)),t > 0 is
stochastically continuous at points of the set Vy, i.e., Vy C Y,. It follows from Lemma
1.6.5 that the processes (), > 0 weakly converge on the set Y.

The structure of the set Y, needs a special study. In particular, it would be interest-
ing to verify whether Yy = V, if condition J,, holds and the external limiting process
po(t), t > 0 does not degenerate to a constant.

4.9.3. Extremes for regenerative processes. One of natural applications of the
results concerning max-processes with renewal stopping relates to extremes for regen-
erative processes. Let, for every € > 0, n:(¢),# > 0 be a real-valued regenerative cadlag
process with regenerative moments 0 = 1,9 < 1. < .. ..

We are interested in limit theorems for the extremal processes

() = sup ne(s), t > 0.
s<tng
Let us introduce some functionals which play an essential role in further consider-
ation. First of all, x.; = Tex — Tex-1 1s the time between two successive regenerations,
Ke(?) = Tefm,] = 2uk<m, Kek 1S the moment of the last regeneration before the moment n,
and v(f) = sup(s : x(s) < t). By the definition, n.v,(#) — 1 is the number of regener-
ations in the interval [0, tn.]. Further, p.; = SUPy, | <s<res Ne(s) is the maximum of the
process 1.(f) in the corresponding regeneration period, and p.(f) = maxXy<y, Pex 1S the
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maximum of the process 1.(7) on the interval [0, k.(?)). Finally, G.() = sup, <<, Ne(S)
is the maximum of the process n¢(¢) on the interval [k.(?), tn.]. Here k = 0,1,... and
t>0.

Note that (K, pex), K > 1 is a sequence of i.i.d. random vectors, since M(7),# > 0 is
a regenerative process.

Applications of results about renewal type extremal processes to the processes Q.(?), t >
0 are based on the following representation:

Qe(f) = max( _max peg, Se(1)), 7> 0. (4.9.7)
t

k<ngve(t)—

From this representation, it follows that the extremal process Q:(#), > 0 can be
approximated from below and above by two max-processes with renewal type stopping,

CL(1) < 0e(1) < Le(2) for £ > 0, (4.9.8)
where
Ce(®) = (Max peo G = MAX P 1> 0. (4.9.9)

By the definition, C.(f) = pe(Ve(?)), t > 0 and T/(7) = pe(Ve(t) — 1/ne), t > 0.

The process Cq(¢),r > 0 is a max-process with renewal stopping. Such processes
were considered in Subsections 4.9.1. and 4.9.2. In the theorem formulated below, we
impose conditions on the distributions of the random vectors (K., pe1).- We identify
these random vectors with the ones defined in Subsection 4.9.2 and the corresponding
limiting process with those in Theorem 4.9.3.

The process C.(7) is, however, a slight modification of a renewal type extremal pro-
cess with the internal stopping process v.(¢) replaced by the process v¢(f) — 1/n,. Under
the conditions of Theorem 4.9.5 formulated below, both approximation processes, as we
shall see, converge weakly to the same limiting process and so do the extremal processes
(1), > 0.

Let Y, be the set of points of stochastic continuity of the process To(f) = po(vo(t),
t>0.

Theorem 4.9.5. Let conditions 8, 8s, 841, 813, and J,, hold. Then
0:(1),t € Yo = 0o(t) = po(vo(t)),t € Yyas e — 0. (4.9.10)
Proof of Theorem 4.9.5. Theorem 4.9.3 implies that
Ce(?) = pe(ve(2)), >0 R Co(®) = po(vo(1)),t > 0ase — 0. (4.9.11)

A similar relation can be obtained for the processes C.(f) = pe(ve(t) — 1/n:),t > 0.
Indeed, as was pointed out in the proof of Theorem 4.9.3, condition A, and J,; imply
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that condition A,4, which is a variant of condition Asg, and condition K5 hold. Also,
relation (4.9.11) implies that condition J,,, which a version of condition J,,, holds.

In this case, (a) v,(0) —> vo(0) = 0 as & — 0. Note also that (vo(s), po(1), # > 0 is a
stochastically continuous process in this case. So, it follows from (a) and Lemma 4.3.1
that

(VS(S)’ pE(t))’ (S, t) € [07 OO) X (0’ 00)

(4.9.12)
= (vo($), po(?)), (s, 1) € [0, 00) X (0, 00) as € — 0.

It is obvious that the process v.(?), t > 0 can be replaced by the process v.(t)—1/n., t >
0, in (4.9.12).

As was pointed out in the proofs of Theorems 4.3.10 and 4.3.11, conditions A sg, fJ_CS,
and J,, imply that condition F holds for the processes p(¢),# > 0, which replace, in
this case, the processes E.(),t > 0, and the processes v.(¢),¢ > 0. Obviously, condition
JF, holds also for the processes p.(f),# > 0 and the processes v,(f) — 1/n.,t > 0, with the
same set W[’

Relation of weak convergence (4.9.11) was obtained by applying Theorem 3.4.3 to
the compositions C.(f) = pe(ve(?)),t > 0. But it follows from the remarks made above
that Theorem 3.4.3 can also be applied to the compositions T.(7) = p.(ve()— 1/n.),t > 0.
So, the following relation holds:

C.(1) = pe(Ve(®) — 1/me), t > 0 J, Co(1) = po(vo(1)),t > 0ase — 0. (4.9.13)

Relations (4.9.11) and (4.9.13) imply weak convergence of the processes C.(#) and
C.(r) on the set Yy, i.e.,

Cg(t), teYy=> Co(l‘), teYyase — 0. (4.9.14)
and
C.(),teYy= Cot),te Ypase — 0. (4.9.15)

Inequality (4.9.8), relations (4.9.14) and (4.9.15), and Lemma 1.2.6 imply the asymp-
totic relation given in Theorem 4.9.5. m|

The question about the J-convergence of the processes Q¢(?),¢ > 0 is more compli-
cated. The procedure used to prove relations (4.9.14) and (4.9.15) also allows to prove
that

(Ce(), Tu(1), 1 € Yo = (Co(1), To(1), 1 € Yo as € — 0. (4.9.16)
From (4.9.16), it follows that, for 7 € Y,

0 < max(Q.(r) — C.(1), Ce(t) — 0:(1)) < Ce(r) — CL(0) LR Oase — 0. (4.9.17)
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However, (4.9.11), (4.9.13), and (4.9.17) do not necessarily guarantee J-convergence
of the processes (), > 0.

For example, consider a regenerative process with regeneration moments t.; =
kine,k=0,1,...and ne(¢) = & - (t — (k — 1)/n), for (k — 1)/n. <t < k/ne, k=1,2,....
Here, &,k > 1 is a sequence of i.i.d. random variables with the distribution function
G() = Yf1.00)()(1 = 1/u).

Conditions 8, — 85 and 8,;, 8,3 hold. The process xy(t) = vo(t) = t,¢ > 0, and
po(?), t > 0 is an extremal process with the function m3(u) = u™!.

In this case, the processes C.(f) = maX<[m,) E/ne- Let us take some & > 0. It
is not difficult to show that lim__, P{supy.,.; A/(C;(-)) > 6} > O for T > 0. For any
point 7. s where the process C.(f) has a jump greater than or equal to 9, there exist points
teo—1/ne <V <t <t <ty such that Q¢(¢) — 0:(#') > 8/2 and Q.(¢") — .(¢) > 6/2. This
implies that the processes Q.(#), # > 0 can not be compact in the topology J.

In connection with Theorem 4.9.5, we would like to mentioned that some related re-
sults concerning exceedances of ergodic regenerative processes with discrete time can be
found in papers of Serfozo (1980), Rootzén (1988), and Leadbetter and Rootzén (1988).
For the case of asymptotically independent external processes and internal stopping pro-
cesses, Theorem 4.9.5 was proved in Silvestrov and Teugels (1998a).

4.10 Shock processes

In this section we consider the class of so-called shock processes. This class of processes
is also an example of generalised exceeding processes considered in Sections 4.3 and 4.4.

4.10.1. General shock processes. Let, for every € > 0, (E¢,, pen), n = 1,2,...be a
sequence of random vectors taking values in R; X [0, c0). In what follows, we let n, > 0
be a non-random function such that n, — co as € — 0.

We introduce a mixed sum-max process,

Yed) = Ee(t), pe(t) = () Eeio MaX piy), 12 0.

k<tn,
Let us now introduce a max-renewal process,
Ve(t) = sup(s : pe(s) < 1), >0,
and a process which can be called a shock process,

Ce(t) = gs(ve(t)), t>0.

Shock processes give another example of generalised exceeding processes. However,
in this case the sum-process E.(¢), > 0 plays the role of an external process, while the
max-process pg(f),# > 0 is used to construct the internal stopping process v(¢),t > 0.
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Therefore, the basic process (K¢(?), E:(t)), t > 0 should be replaced in this case by the
process (p(?), E:(1)), t > 0. In order to keep notations consistent with those introduced
in Section 4.8, we exchange components of this process and use the notation ¥y (¢) =
(Ee(D), pe()), £ 2 0.

Let us note that the assumption that the random variables p.,,n = 1,2,... are non-
negative, is not important. Indeed, if these random variables are real-valued, they can
be replaced by the non-negative random variables p;, = max(pe,,0), n = 1,2,.... Ob-
viously, the process pJ(f) = maxXi<ivm, p;k = max(pe(?),0),t > 0. But the process
Ve(?) = sup(s : pe(s) < 1) = sup(s : pf(s) <1),t>0.

By the definition, the max-process p.(t), ¢ > 0 is a non-decreasing process. Moreover,

.. < 11~ . .. . G ()
it is a step cadlag process with only positive jumps. Let s > O and s = 1, < T} <

e,0
'cg < ... be a sequence of successive moments of positive jumps of this process on
the interval [s, c0). This sequence is a.s. strictly monotone. Then p.(s) = pg(rs())) <
pg(rg) < pg(rgfn) < ...is a sequence of values of this process at the successive moments
of positive jumps. This sequence is also a.s. strictly monotone. It follows from the
definition of these sequences that p.(¢) = ps('cisz_ D forte ['cif()_l , 'cif()), k> 1.

In Subsection 4.10.2, we consider the basic case when the shock processes are con-
structed from a sequences of i.i.d. random variables. Let us adjust the conditions to this
situation. In particular, we restrict the consideration to the case when the corresponding
limiting extremal process is an a.s. step cadlag process with only positive jumps.

The weak convergence condition A4 takes, in this case, the following form:

Aqg: (Ee(1), pe(1),t € UXV = (Eo(),po(2)),t € UXxV ase — 0, where (a) U is a
subset of [0, o) that is dense in this interval and contains the point 0, (b) V is a
subset of (0, ), dense in this interval, (c) Ey(f),¢ > 0 is an a.s. cadlag process,
(d) po(?),t > Ois an a.s. step cadlag process with only positive jumps and a finite
number of jumps in any finite sub-interval of the interval (0, co).

() (s)

The assumption (d) in this condition means that, for every s > 0, (a) s = 1, < T, <

6 < ...isanas. strictly monotone sequence of successive moments of positive jumps

0.2
of the process pg(?),t € [s,0), (b) po(s) = po(rg%) < po('c(()f)l) < po(rg?l) < ...1is an

a.s. strictly monotone sequence of values of this process at the successive moments of
()

positive jumps, (¢) po(?) = po(ro’k_l) fort e [réf_],résk)), k>1.

_ The process pe(?), 7 > 0 should replace the process K(7), 7 > 0 in conditions J g, K,
X,o- These conditions should be required to hold.
Condition J,, takes, in this case, the following form:

T

Jas: lim._olime_o P{A;(y,(), e, T, T")> 8} =0, 8> 0,0 < T’ < T" < co.

It follows from the definition of the sum-processes E.(¢), ¢ > 0 that the random vari-
able E.(0) = 0 with probability 1 for every € > 0. Due to condition A4, we also have
€0(0) = 0 with probability 1.
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Condition O,j; takes, in this case, the following form:
Oys: limo0 im0 P{supy.,. [E(t) > 8} = 0, 8 > 0.

Note that it is assumed that 0 < ¢ — 0. However, under A,q, condition J,g is
equivalent to J,, and condition O,5 is equivalent to O,;. Indeed, the limiting processes
Yo(®),t > 0 and Ey(?), ¢ > 0 are cadlag processes and, therefore, the asymptotic relations
in J,¢ and O,5 automatically hold for € = 0.

The process p.(?),t > 0 should replace the process x:(¢),# > 0 in conditions N3, R,
and R,. These conditions should be required to hold. Moreover, since p.(7),# > 0 is a
non-negative process for every € > 0, condition J,; holds in this case. Conditions J,,
and R, imply that condition R; holds.

Remarks made above let us reformulate Theorem 4.4.6 in the following form.

Theorem 4.10.1. Let conditions 9.5, Ko, Ko, Aqg, drg, O15 N3, and R hold. Then
()t 20 -5 Co().1 > Oas e — 0.

4.10.2. Shock processes based on i.i.d. random variables. Let, for every € > O,
(Eens Pen)s n = 1,2, ... be a sequence of random vectors taking values in R; X [0, o).

We assume that condition T is satisfied. This means that (§;,,, pe,), k = 1,2,...is a
sequence of i.i.d. random vectors.

We also assume that conditions 8; — 85 and 8,; — 8, hold. According to Theorem
4.8.1, these conditions imply the following relation of weak convergence:

V(D) = (Ee(0), pe(1)), 1 > 0 = v (1) = (Eo(D), po(1)), 1 > O as & — 0, (4.10.1)

where the process (E(), po(?)), t > 0 is described in Theorem 4.8.1.
Note that, in this case, the random variable E.(0) = 0 with probability 1 for every
e > 0. Also, since Ey(r),t > 0 is a homogeneous cadlag process with independent

increments, the random variables E () l 0as 0 <t — 0. Thus, we can always define
E0(0) = 0 and replace relation (4.10.1) by the following condition:

Agzg: (Ee(D), pe(5)), (1, 5) € [0, 00) X (0, 00) = (Eo(1), po(1)), (1, 5) € [0, 00) X (0, 0) as & —
0, where the process (§y(1), po(t)), t > 0 is described in Theorem 4.8.1.

As was shown in Theorem 4.8.2, conditions 8; — 85 and 8;; — 8, imply also that
Y. (D)1 > 0 =5 v (1.1 > Oase — 0. (4.10.2)

Relation (4.10.2) implies that the condition of J-compactness J,g holds.
Conditions 8, - 83 imply also that

E(1), 120 -5 E().1 > Oase — 0. (4.10.3)
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By Remark 4.8.2, relation (4.10.3) implies that condition Q5 holds.

Denote G¢(u) = P{p.,; < u}. This distribution function is concentrated on the interval
[0, ), i.e., G¢(u) = 0 for u < 0.

To avoid the case when v(¢), > 0 is an improper process, we assume that the
following condition holds:

J,40 1 = Ge(v) > 0forv >0 and every € > 0.

Under condition J,,, the random variable v,(f) < co with probability 1 for every ¢ > 0
and € > 0.

Let us define, for every € > 0, the random variables KS,)Z = rS,i — risr)l_l,n =0,1,....
Here t._; = s and, therefore, k.o = 0. For € > 0, the sequence of random variables
(KS,),, Pe(T (S))) n=0,1,...1s ahomogeneous Markov chain with the phase space [0, o) X

[0, 00), the initial dlstrlbution
Py < 1,pe(1y) < v} = %(0 < NG ()", (4.10.4)
and the transition probabilities

P, <1010, ) S wlkl) =1, pe(l) = v} $105)
= (1 = GeM" Dy (v < w)(1 = (1 = Gew)/(1 = G:(v))). o

The corresponding limiting sequence (K(S) po('c(s) ).,n = 0,1,...1s also a homoge-
neous Markov chain with the phase space [0, ©0) X [0, c0), the 1n1t1al distribution

P{xyy < 1, po(Thy) < v} = %(0 < e ™, (4.10.6)

Koo =
and the transition probabilities

0 =1, po(ty)) = v}

=(1—e ™My < W)(l — t3(w) /73 (v)).

Note that, because the random variables p. 4, kK > 1 are non-negative for every € > 0,
the functional v = sup(w : ;t3(w) = o0) > 0.

As follows from the remarks given in Subsection 4.7.2, (a) P{(Kéf:l, po('c(s) )) € [0, 00)Xx
Y,n=0,1,...} =1, where the interval T was defined in this subsection. This is consis-
tent with formulas (4.10.6) and (4.10.7). It follows from these formulas that, for every
s > 0, the two-dimensional distribution function of the random variable (K(()Sjl, po(r(” ) =
(0, po(s)) is concentrated on the set [0, c0) X T and the transition probability given in
(4.10.7) is a two-dimensional distribution function in (¢, w) concentrated on the set [0, c0)X
T for every (', v) € [0, 00) X Y.

So, we need to use formula (4.10.7) only if (b) (¢, v), (¢, w) € [0, c0) X T. In this case,
the expression in the right-hand side of (4.10.7) is well defined.

(s)
I:){KO,nH <1, pO(To n+1) < WlK

(4.10.7)
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The way to deal with this formula when the expression in the right-hand side of
(4.10.7) is not well-defined is described in Subsection 4.7.2.

To avoid the case when vy(¢),# > 0 is an improper process, we assume that the
following condition holds:

J,5: m3(w) > 0 forw > 0.

Under condition J,s, the random variable vo(f) < oo with probability 1 for every
t>0.

Note also that, under condition J,¢, the interval Y is either (v, 00), if m3(v) = oo, or
[v, 00), if m3(V) < oo0.

Conditions J,, and J,5 imply that conditions J 4, Ky, and K,, formulated in Sub-
section 4.4.3 hold.

In order to simplify the consideration, we assume that the following two conditions
hold:

8148 n:(1 — Ge(v)) > m3(v) as e — 0,
and
J,¢: m3(w) is a continuous function for w > v.
Note that is the case where m3(v) = oo, condition 8,, is implied by condition 8;.

Theorem 4.10.2. Let conditions Ty, 8 — 83, 84, 812, 14, and I, — Iy hold. Then

C().120 -5 to().t>0ase — 0.

Proof of Theorem 4.10.2. The only conditions N3 and R, need to be proved.

Take an arbitrary s > 0. Note that the limiting distribution function e is continu-
ous on the interval [v, 00), due to condition J,,. At the point v, this distribution function
is either continuous, if m3(v) = oo, or has the jump e, if ;3(v) < co. However,
conditions 8,;, 8,4, and J,¢ imply that

G.(P" — ™M a5e — 0, v> 0. (4.10.8)
It follows from relation (4.10.8) that
P{p.(t{)) € T} > Oas e — 0. (4.10.9)

Due to monotonicity of the random sequence pg(rf,f,),),n = 0,1,..., (¢c) a relation

similar to (4.10.9) also holds for the random variables pg(rfcf,i) foreveryn=0,1,....
Also, conditions 8;, 8,4, and J,4 imply that, for all v,w € Y,

XV <w)(l = (1 = Gew))/(1 = G¢(v)))

(4.10.10)
— x(v < w)(1 = m3(w)/m3(v))) as e — 0.
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Take an arbitrary w € Y. Relation (4.10.10) can be supplemented with the following
facts. Firstly, by condition 8,,, (d) we have that relation (4.10.10) also holds for u = v.
Secondly, by the definition, (e) the functions (v < w)(1 — (1 — G(w))/(1 — G¢(v))) and
x(v < w)(1 —m3(w)/m3(v))) are non-negative and no-increasing in v on the interval [v, c0).
Thirdly, by condition J,, (f) the function x(v < w)(1 — ;3(w)/m3(v))) is continuous on
the interval [v, c0).

Taking into account (d) — (f) and using relations (4.10.8), (4.10.9), and (4.10.10) we
can get, in an obvious way, that for any wy, w; € Y,

lim P{p.(t(3) < wo. pe(T)) < wi)

. G:(w)) — G¢(v)
= lim (v < w))————2d,G(v)l5"!
20 Jig © VT 6.0

: Gs(wl) - GE(V)
= lim v<w )—dvGE(v)[sns]
=0 JTn[0.wo] & V1= Ge)

. G(w1) - Go(v)
+ lim v < w2~ 28V g G ()l (4.10.11)
0 Jrooma C T 1= Gew)

= f x(v < wy )—n3(v) — () )dv exp_m(v)s
N[0, wo] m3(v)

= f v <w 1)—753 () = 73 (wy )dv exp ™"

[0.w0] m3(v)

= P{po(rﬁig) < wy, po(-cgf)l) < wl.

Note that, by (4.10.9) and (c), the expression in the left-hand side of (4.10.11) tends
to O if at least one of the points wy, w; does not belong to the interval Y. So, relation
(4.10.11) imply that (g) the random vectors (pg(rg), pg(rffi)) weakly converge as € — 0.

By continuing the asymptotic calculations givén in (4.10.8) — (4.10.11) in an obvious

iterative way, it can be shown that

0t = 0,1, = py(rl)

en

),n=0,1,...ase = 0. (4.10.12)

Due to (4.10.12), conditions N5 and R, follow from formulas (4.10.7) and (4.10.6),

and conditions J,5, J,. The first one is that (h) the sequence of random variables
(s)

Po(ty,).n = 0,1,...1s strictly increasing with probability 1. The second one is that
(i) P{0 < pO(TE)S,E)) <ty =e M5 —emOs 5 0as0<t— 0. o

It is useful to note that the finite-dimensional distributions of the stopping process
Vo(t) = sup(s : po(s) < 1),t > 0 have, in this case, the following form,
P{vo(ty) > si,k=1,...,n} = P{po(Sk) <t,k=1,...,n}

n 4.10.13
= 1_[ exp{—m3(t)(Sk — Sik=1)}» ( )
k=1
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forO=6p<t1<...<t,,0=850<851<...<s,,n>1.
In particular, the random variable v () has an exponential distribution with parameter
m53(1), for t > 0.

4.10.3. Examples. Let us consider the scale-location model in which the random
vectors (&, px), kK = 1 do not depend on the series parameter € > 0. We assume that the
following condition holds:

T GErpr),k = 1,2,... is a sequence of i.i.d. random variables taking values in
R; X [0, o).

Let us consider the case when the limiting process E(¢), # > 0, in condition A, is
a non-random linear function or a standard Wiener process, while p((z), ¢ > 0 is a stable
extremal process.

Let a € (0, 1) and denote by p(¢),t > 0, the extremal process described in Sub-
section 4.7.2 with the function mt3(w) = oo for w < 0 and w™*/I'(1 — a) for w > O.
Let also v (f) = sup(s : p“(s) < £),t > 0. Bellow, 0 < t, —» o0 as ¢ — 0 and
ne = t¢/T(1 — a)h(t,), where h(x) is a slowly varying function.

Let EE, = a, Var&; = b?, and w(t),t > 0 be a standard Wiener process independent
of the process v\® (1), t > 0.

Theorem 4.10.3. Let (o) E|E;| < oo, () P{p; > x} ~ x “h(x) as x — oo. Then
g(tt,)

ne

J
>0 av ), >0ase — 0.

Theorem 4.10.4. Let (o) EE? < o0, EE; = 0, (B) P{p; > x} ~ x “h(x) as x — oo. Then

C(tte)
e

Proof of Theorems 4.10.3 and 4.10.4. Let us first prove Theorem 4.10.3. In this case,
we use the normalisation functions ng,f, as defined above, and the random variables
ek = Ei/ne, k > 1 and pey = pi/te, k > 1.

Condition (f) implies that

120 -5 bw(vO). 1> 0as e — 0.

nP{p; > wt,} > w*/IT'(1 —a)ase - 0, w> 0. (4.10.14)

Since the random variable p; is non-negative, relation (4.10.14) implies that condi-
tion 8, holds for the random variables p.; = p;/t. with the function m;(w) described
above.

Obviously, condition (f) implies that condition J,, holds. Also, conditions J,5 and
J,6 hold. This follows from the explicit formula for m3(w) given above.

Condition 8,5 is implied by condition 8;, since in this case v = 0 and 73(0) = co.
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Also, the condition E|E;| < co implies that
nP{|€| > vn,} - 0ase -0, v> 0. (4.10.15)

Relation (4.10.15) implies that condition 8, holds for the random variables &;; =
&, /n. with the function m,(v) = 0 for v # 0. Note that, in this case, conditions 8, and 8,
hold with the limiting constants a and 0, respectively.

Relation (4.10.15) also implies that

nP{E| > vne,p; > wt} = 0ase — 0, v,w > 0. (4.10.16)

Hence, condition 8, also holds with the function 7, 3(v, w) = 0 for v # 0,w > 0.

By applying Theorem 4.8.1, we get now that condition A,y holds and the corre-
sponding limiting process is (£y(2), po(?)) = (at, p' (1)), > 0.

Now we can complete the proof of Theorem 4.10.3 by applying Theorem 4.10.2.

The proof of Theorem 4.10.4 is analogous. In this case, we use n, as defined above,
and the random variables E.x = E;/ \ne, k > 1 and pex = pi/te, k > 1.

The condition EE} < oo, EE; = 0 implies that

nP{€| >vyng —>0ase -0, v>0. (4.10.17)

Relation (4.10.17) implies that condition 8, holds for the random variables &;; =
&1/ /n. with the function m,(v) = 0 for v # 0. Note that, in this case, conditions 8, and
8; hold with the limiting constants 0 and b?, respectively.

Relation (4.10.17) also implies that

nP{E | > vne, p1 > wt,} = 0ase — 0, v,w > 0. (4.10.18)

Hence, condition 8, also holds with the function m, 3(v, w) = 0 for v # 0,w > 0.

By applying Theorem 4.8.1, we get now that condition A,y holds and the corre-
sponding limiting process is (¢(2), po(t)) = (bw(z), p'“(¢)),t > 0, where the processes
w(t),t > 0 and p'®(¢), t > 0 are independent.

Now we can complete the proof of Theorem 4.10.4 by applying Theorem 4.10.2. O

It should be noted that the corresponding limiting processes in Theorems 4.10.3 and
4.10.4 are stochastically continuous. So, the set of weak convergence in both cases is
the interval [0, c0).

4.10.4. References Theorem 4.2.1, which gives conditions of weak convergence
for general sum-processes with random stopping, and Theorem 4.2.3, which specifty
Theorem 4.2.1 for sum-processes with random stopping based on i.i.d. random variables,
are direct corollaries of the limit theorems from Silvestrov (1971b, 1972a, 1972e¢). As
far as conditions of J-convergence are concerned, the corresponding results, given in
Theorem 4.2.2 and 4.2.4, are direct corollaries of the corresponding limit theorems from
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Silvestrov (1972b, 1972¢). Conditions of J-convergence for general sum-processes with
random stopping, similar to those given in Theorem 4.2.2, can also be derived from the
results of Whitt (1973, 1980). In the case of scale-location model, the related results can
be also found in Durret and Resnik (1977).

Theorems 4.2.3 and 4.2.4 give the most general and natural condition of weak and
J-convergence of such sums in the case of arbitrary dependent external sum-processes
based on i.i.d. random variables and random stopping indices. These theorems cover
many results related to random sums, in particular, to a model with independent exter-
nal sum-processes and stopping indices as well as to a model with normalised random
indices converging in probability. References to the works related to these two models
are given in the bibliographical remarks. The latter case originates from classical works
of Anscombe (1952) and Rényi (1957, 1958, 1960). Theorems 4.2.5 and 4.2.6 give a
general triangular array version of the corresponding results. Lemma 4.2.1 is a gener-
alisation to the triangular array mode of the well known result of Rényi (1958, 1960).
Theorems 4.2.7 and 4.2.8 are from Silvestrov (1971b, 1972a, 1972b, 1972¢). These the-
orems imply Theorems 4.2.9, 4.2.10, 4.2.11, and 4.2.12 as direct corollaries. The latter
four theorems can also be considered as corollaries of the results of Billigsley (1968),
since in this case the limiting external process is continuous.

Theorems 4.3.1, 4.3.2, and 4.3.4, which give general conditions for weak and J-con-
vergence of generalised exceeding times, and Lemma 4.3.1 are from Silvestrov (1972e,
1974). Theorems 4.3.3, 4.3.5, 4.3.6, and 4.3.7, as well as Lemma 4.3.2, are new re-
sults. Note also that the result analogous to those given in Theorems 4.3.6 and 4.3.7 but
obtained by using another method (see, remarks in Subsection 4.3.11) can be found in
Silvestrov (1974, 2000a). Theorems 4.4.1 and 4.4.2 may be considered in the context
of the results on J-convergence of step cadlag processes given in different variants in
many works. Bibliographical remarks contain additional comments and references to
the works on limit theorems for generalised exceeding processes and other renewal type
processes.

Theorems 4.5.5 — 4.5.7, which give general conditions for weak and J-convergence
of sum-processes with renewal stopping based on i.i.d. random variables, are from Sil-
vestrov (1972e, 1974). Note that the proofs given here are new. The proofs given in
Silvestrov (1974) are based on the use of Markov property of stopping moments (see
remarks in Subsection 4.5.6). References to numerous works related to this model are
given in the bibliographical remarks.

Theorems 4.6.1 and 4.6.2, which give conditions for U-convergence of general accu-
mulation processes are from Silvestrov (1971c, 1972c, 1972d) as well as Theorems 4.6.3
and 4.6.4, which cover the case of accumulation processes with embedded regeneration
cycles. Theorems 4.6.5, 4.6.6, 4.6.7, 4.6.8, and 4.6.9, which specify Theorems 4.6.3
and 4.6.4 in the case of scale-location models, are direct corollaries of these theorems.
Results similar to Theorems 4.6.5, 4.6.6, 4.6.7 can also be found in Borovkov (1967a)
and Serfozo (1975).
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Theorems 4.7.1 and 4.7.2, which give conditions for weak and J-convergence of
general max-processes with random stopping are direct corollaries of the general limit
theorems from Silvestrov (1971b, 1972a, 1972b, 1972¢). Theorems 4.7.3 and 4.7.4 are
from Silvestrov and Teugels (1998a), as well as Theorems 4.7.5 and 4.7.6. The latter
two theorems give a general triangular array version of the results that have been given
in a variety of different forms by Berman (1962), Barndorff-Nielsen (1964), Mogyorddi
(1967), Sen (1972), and Galambos (1973, 1978, 1992).

Theorems 4.8.1 and 4.8.2, which give general conditions for weak and J-convergence
of mixed sum-max processes based on i.i.d. random variables are from Silvestrov and
Teugels (2001). Some preceding results can be found in Breiman (1965), Chow and
Teugels (1979), and Resnick (1986), Haas (1992), Silvestrov and Teugels (1998a). The-
orems 4.8.3 and 4.8.4 are new. Additional references are given in Subsection 4.8.5 and
the bibliographical remarks.

Theorems 4.9.1 and 4.9.2, which give conditions for weak and J-convergence of
general max-processes with renewal stopping are new results. Theorems 4.9.3 —4.9.4,
which specify the results of theorems listed above for max-processes with renewal stop-
ping based on i.i.d. random variables are from Silvestrov and Teugels (2001). The case
of asymptotically independent external processes and internal stopping processes was
considered in Silvestrov and Teugels (1998a).

Theorem 4.10.1, which gives conditions for weak and J-convergence of general
shock processes, is a new result. Theorems 4.10.2 and 4.10.4 that specify the result
of the theorems listed above for shock processes based on i.i.d. random variables are
also new results. Results analogous to those in Theorem 4.10.3 can be found in the
preceding works by Shanthrikumar and Sumita (1983), Gut and Hiisler (1999), and Gut
(2001). Additional references are given in the bibliographical remarks.



Bibliographical remarks

This book is devoted to a study of weak limit theorems for randomly stopped stochastic
processes and functional limit theorems for compositions of stochastic processes. Below,
we give short bibliographical remarks concerned the works related to the subject of the
book. Although we mainly study general limit theorems for arbitrary dependent external
processes and internal stopping moments or processes, the remarks also cover works
on limit theorems for random sums with independent summands and random indices,
renewal models, and other models with random stopping. At the same time, they do
not include works related to other types of asymptotic results beyond the framework of
weak convergence. In particular, we do not mention results on the rate of convergence,
moment convergence, large deviation asymptotics, etc. We also give references to works
dealing with various applications of randomly stopped processes if they contain results
related to limit theorems. The bibliography covers more than 750 works. It would
probably have double size without the restrictions mentioned above.

Chapter 1. In this chapter, we give a survey of results concerning functional limit
theorems for cadlag processes.

A general framework for the development of the theory have been created by the
classical works of Khintchine (1933), Lévy (1937, 1948), Gnedenko and Kolmogorov
(1949), Doob (1953), and Loeve (1955).

As far as functional limit theorems is concerned, the papers of Kolmogorov (1931,
1933), Erdos and Kac (1946a, 1946b), Doob (1949), Donsker (1951, 1952), Gikhman
(1953), Prokhorov (1953), and Kolmogorov and Prokhorov (1954) are considered to be
the precursors to the theory. In particular, Donsker (1951) gave the first functional limit
theorem called by him, an invariance principle. This theorem establishes weak con-
vergence of U-continuous functionals defined on sum-processes constructed from i.i.d.
random variables to the same functionals defined on the limiting Wiener process. Kol-
mogorov and Prokhorov (1954) connected the invariance principle with theorems about
weak convergence of measures in the functional metric space of continuous functions.

Prokhorov (1956) has completed the general theory of weak convergence of mea-
sures in metric spaces and gave general conditions for convergence of continuous stochas-
tic processes in the uniform U-topology. Prokhorov’s basic results concerning weak con-
vergence in metric spaces are formulated in Theorems 1.3.4 and 1.3.5. The basic result,
also due to Prokhorov, concerning convergence of continuous stochastic processes in
the U-topology is given in Theorem 1.6.4. It is formulated in the extended form given

361



362 Bibliographical remarks

by Skorokhod (1956) for the case where the limiting process is continuous but the pre-
limiting processes are allowed to be discontinuous cadlag processes.

Skorokhod (1955a, 1955b, 1956) has invented the main topology in the space D
of cadlag functions, the J-topology, and gave conditions for J-convergence of cadlag
processes. Skorokhod’s original conditions for J-convergence of cadlag functions are
given in Theorem 1.4.3 and the main result concerning J-convergence of cadlag pro-
cesses is formulated in Theorem 1.6.2. Skorokhod’s original approach was based on his
representation Theorem 1.3.6 and the method of a single probability space, presented
in Theorems 1.6.14 and 1.6.15. Kolmogorov (1956) has shown that the space D can
be equipped with an appropriate metric that makes the J-convergence equivalent to the
convergence in this metric. The metric d;, which makes D a Polish space, was con-
structed by Billingsley (1968). These results permitted to consider limit theorems for
cadlag processes in the framework of the general theory of weak convergence of mea-
sures in metric spaces. This approach was used in the books of Parthasarathy (1967) and
Billingsley (1968). One can find historical remarks concerning the early period of the
development of the theory in the recent paper of Billingsley and Wishura (2000).

In the paper of Skorokhod (1956), some other topologies, called J,, M;, and M-
topologies, were also defined. These topologies are not so widely used since, in most
cases, cadlag processes converge in the J-topology. Nevertheless, they are useful in
some special cases. For example, the M-topology is often applied to extremal processes.
The book of Whitt (2002) gives a detailed account of the corresponding results. Related
references also include Puhalskii and Whitt (1997) and O’Brien (2000).

The original theory of functional theorems was developed in the case when the
stochastic processes are defined on a finite interval. An extension of functional limit
theorems to stochastic processes that are defined on the interval [0, o) is needed in limit
theorems for randomly stopped stochastic processes. This is due to the possibility for the
random stopping moments to be stochastically unbounded random variables. This exten-
sion of the theory was given by Stone (1963) and Lindvall (1973). Relevant references
also include Whitt (1970), Borovkov (1972b), and Grigelionis (1973).

To complete the picture, we would also like to mention some other directions of
development of the general theory of functional limit theorems. For example, LeCam
(1957), Varadarajan (1958, 1961), and Dudley (1966) have generalised the main results
on weak convergence from metric spaces to spaces of a more general type. Borovkov
(1972a, 1976, 1984) has developed a version of the theory based on his methods of
individual functionals. Stroock and Varadhan (1969a, 1969b, 1979) have developed
martingale methods that cover large classes of martingale type stochastic processes. The
general theory originated from this method is given in Liptser and Shiryaev (1986), and
Jacod and Shiryaev (1987).

A complete theory can be found in the books of Skorokhod (1961, 1964), Gikhman
and Skorokhod (1965, 1971), Parthasarathy (1967), Billingsley (1968, 1999), Pollard
(1984), Ethier and Kurtz (1986), Liptser and Shiryaev (1986), Jacod and Shiryaev (1987),
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Davidson (1994), Borovkov, Mogul’skij and Sakhanenko (1995), and Whitt (2002).
These books also contain bibliographies of works in the area as well as recent survey
papers of Bloznelis and Paulauskas (2000), and Mishura (2000).

Chapter 2. The first works in the area were related to the classical model of random
sums, i.e., sums of random variables with a random index (the number of summands).
In this regard, we mention the works of Doeblin (1938), Wald (1945), Robbins (1948),
Kolmogorov and Prokhorov (1949), and Anscombe (1952). Three lines of results have
been developed in these studies.

The first direction in this area is related to the model of stochastic processes stopped
at random moments that are independent of the external process. Here, the main role
is played by various conditions that imply weak convergence of the external processes
and weak convergence of the properly normalised random stopping moments. The lim-
iting random variable is, naturally, the limiting external process stopped at the limiting
stopping moment that is independent of this process. Most of the results are related to
random sums, i.e., sums of random variables with a random number of summands. As
a rule, the conditions contain assumptions on independence or weak independence of
the summands. The methods used in these studies are chiefly based on characteristic
functions. The results resemble a generalisation of the classical results concerning sums
of independent random variables.

Conditions for weak convergence of random sums and randomly stopped sum-proces-
ses were studied in the works of Robbins (1948), Gnedenko (1964, 1967, 1972, 1983),
Nagaev (1968), Gnedenko and Fahim (1969), Mamatov and Nematov (1971), Szasz
(1971a, 1971b, 1972a, 1972b, 1972c, 1975), Szész and Frayer (1971), Rychlik and Szy-
nal (1972, 1973, 1975), Szynal (1972, 1976), Banis (1973), Pechinkin (1973), Rosin-
ski (1975, 1976a, 1976b), Kruglov (1976, 1989, 1991, 1995, 1996, 1998), Rychlik
(1976), Belov and Pechinkin (1979), Jozwiak (1980), Lin Zhengyan, Lu Chuanrong
and Lu Chuanlai (1980), Grishchenko (1982), von Chossy and Rappl (1983), Shan-
thrikumar and Sumita (1984), Kubacki (1985), Kubacki and Szynal (1985b), Nagaev
and Asadullin (1985), Azlarov, Aripov and Dzhamirzaev (1986), Finkelstein and Tucker
(1989), Korolev (1989, 1993, 1994, 1995b, 1997a, 1997b, 1997c¢), Jankovic¢ (1990),
Kruglov and Korolev (1990), Niki Naoto, Nakagawa Shigekazu and Inoue Hideyuki
(1990), Finkelstein, Tucker, and Veeh (1991, 1994), Klebanov and Melamed (1991),
Umarov (1992), Fotopoulos and Wang (1993), Korolev and Kruglov (1993, 1998), Kra-
jka and Rychlik (1993), Finkelstein, Kruglov, and Tucker (1994), Kossova (1994), Ab-
dullaev (1995), Zhang Bo (1995a, 1995b, 1998), Gnedenko and Korolev (1996), Kle-
banov and Rachev (1996), Vellaisamy and Chaudhuri (1996), Griffin (1997), Kalash-
nikov (1997), Su Chun and Wang Yue Bao (1997), Cacoullos, Papadatos, and Pap-
athanasiou (1998), Kozubowski and Panorska (1998), Liang Qiong and Zhang Chun
Yong (1998), Kruglov and Zhang Bo (2001a, 2001b), Rychlik and Walczynski (2001a),
and Bening and Korolev (2002).
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Another type of models is presented by extremes with random sample size indices
that are independent of the sample. Here, we refer to the works of Berman (1962,
1992), Thomas (1972), Galambos (1973, 1975, 1978, 1992, 1994), B. Gnedenko and
D. Gnedenko (1982), Baumann (1991), and Beirlant and Teugels (1992). Asymptotics
for maxima of random sums were studied by Rybko (1988), Kruglov and Rybko (1989),
Azlarov, Dzhamirzaev, and Mamurov (1991), Kruglov (1996), Kruglov and Zhang Bo
(1996), and Kowalski and Rychlik (1998). Asymptotic distributions for point type pro-
cesses with independent thinning have been studied by Rényi (1955), Belyaev (1963),
Kovalenko (1965), Gnedenko and Fraier (1969), Kennedy (1970), Iglehart (1974), and
Wang Xiaoming (1999).

For limit theorems on general sequences of random variables and randomly stopped
stochastic processes with independent random indexes, we would like to refer to the
works of Dobrushin (1955), Szasz (1971a), Thomas (1972), Kallenberg (1975), Grandell
(1976), Kubacki and Szynal (1985a), Korolev (1993, 1995a, 1992, 1994), Korolev and
Kossova (1995), Zhang Bo (1995b), Steinsaltz (1999) and Gajowiak and Rychlik (2000).

The books of Kruglov and Korolev (1990), Gnedenko and Korolev (1996), and Ben-
ing and Korolev (2002) contain an extended presentation of results related to this model,
and bibliographies of works in the area.

The second direction of studies is related to the model of stochastic processes stopped
at random moments that are asymptotically independent of the external processes. Vari-
ous conditions that imply marginal weak convergence of external processes and internal
stopping processes are used. The asymptotic independence of these processes, as a rule,
is provided firstly, by Rényi type mixing conditions on external processes and, secondly,
by conditions on convergence of the stopping moments in probability. Again, most of
the works are related to studies of the model of random sums. These studies originate
in the papers of Doeblin (1938), Robbins (1948), and Anscombe (1952), where all the
authors considered the case with normalised random stopping indices that converge in
probability to a constant. An extension to the general case with normalised random stop-
ping indices that converge in probability to a positive random variable was first obtained
by Rényi (1957, 1958, 1960, 1963), whose works gave rise to a series of papers related
to this model.

The model of random sums were studied in the papers of Révész, (1958, 1959), Mo-
gyorddi (1961, 1962, 1964, 1965, 1966, 1967b, 1971a), Billingsley (1962), Blum, Hun-
son and Rosenblatt (1963), Wittenberg (1964), Richter (1965a, 1965b, 1965¢), Teicher
(1965), Guiasu (1967a, 1967b, 1971), Sreehari (1968, 1970), Gleser (1969), Prakasa
(1969), Csorgo and Fischler (1970, 1973), Fernandez (1970, 1971), Kembleton (1970a),
M. Csorgo and S. Csorgo (1973), Jagers (1973), S. Csorgo (1974a), Fischer (1977),
Horvath (1984a), Prakasa and Sreehari (1984), Gut (1985), Baumann (1991), Haas
(1992), Fotopoulos and Wang (1993), Rybko (1994), Adler (1997), Kowalski and Rych-
lik (1998), and Gajowwiak and Rychlik (2000).

Limit theorems for extremes with a random sample size were studied in the pa-
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pers of Berman (1962), Barndorff-Nielsen (1964), Mogyorddi (1967a), Pickands (1971),
Sen (1972), Galambos (1973, 1978, 1992), Matsunawa and Ikeda (1976), Gut (1985),
Barakat (1987), Barakat and El-Shandidy (1990), Haas (1992), Zhang Guo Sheng (1993),
Silvestrov and Teugels (1998a, 1998b), and Zhang Jian (1998).

The case of general sequences and processes was studied in Doeblin (1938), Ans-
combe (1952), Guiasu (1963, 1965, 1967a, 1967b, 1971), Richter (1965a, 1965b), Gles-
er (1969), Durret and Resnik (1977), Aldous (1978a), Csoérgo and Rychlik (1980, 1981),
Hall and Heyde (1980), and Kubacki and Szynal (1986).

Asymptotics of various statistics with a random sample size were studied in the pa-
pers of Anscombe (1952), Robbins (1959), Chow and Robbins (1965), Starr (1966),
Zacks (1966, 1971), Mogyorddi (1967c), Nades (1967), Pyke (1968), Simons (1968),
Gleser (1969), Khan (1969), Sproule (1969), M. Csorgo and S. Csorgo (1970), Kemble-
ton (1970a), Koul (1970), M. Csorgo (1973), S. Csorgo (1974b), Nikitin (1974), Deo
(1975), Silvestrov, Mirzahmedov, and Tursunov (1976, 1983), Tursunov (1976), Ahmad
(1980), Csenki (1981), Csorgo and Révész (1981), Ghosh and Mukhopadhyay (1981),
Sen and Ghosh (1981), Horvath (1985), Hebda-Grabowska (1987), Ghosh, Mukhopad-
hyay, and Sen (1997), Aras, Jammalamadaka and Zhou (1989), Basu and Bhattacharya
(1990, 1992), Baumann (1991), Glynn (1992), Glynn and Whitt (1992), Haas (1992),
Csorgo and Horvéth (1993), Fotopoulos and Wang (1993), Dmitrienko and Govindara-
julu (2000), and Scheffler and Becker-Kern (2000).

The third direction of studies is related to the general limit theorems for randomly
stopped cadlag stochastic processes and compositions of stochastic processes. Usually,
one makes no assumptions about independence or asymptotic independence of external
processes and internal stopping moments or processes. Here, the basic condition is the
joint weak convergence of external processes and stopping moments. The limiting ran-
dom variable is, naturally, the limiting external process stopped at the limiting stopping
moment that can depend on the external process. In the process setting, the limiting pro-
cess is the composition of the limiting external process and the limiting non-decreasing
internal stopping process that can be dependent in an arbitrary way. The results pre-
sented in Chapters 2 and 3 are concerned with this third direction. For this reason, we
will be more specific about the results.

The first general result in which the condition of the joint weak convergence of ex-
ternal and internal stopping processes was involved in the case of non-constant limiting
stopping processes was given in Billigsley (1968). There, the author deals with the case
when both the external and the internal limiting processes are continuous. These results
were extended in Iglehart and Kennedy (1970), Silvestrov (1971c, 1972b, 1972¢), and
Whitt (1973, 1980).

General conditions for weak convergence of randomly stopped cadlag processes, in
the general situation when the limiting external process could be a discontinuous cadlag
process, were obtained in Silvestrov (1971b, 1972a). These conditions are formulated
in Theorems 2.3.1 and 2.3.3. The results formulated in these theorems constitute the
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main results of Chapter 2 as well as and new results from Silvestrov (2002a, 2002b)
formulated in Theorems 2.4.1 and 2.4.2.

Other theorems in Chapter 2 extend these results to the case of weak convergence of
scalar and vector compositions of cadlag processes and to the model with random nor-
malisation, etc. Most of these results are from Silvestrov (1971b, 1972a, 1972b, 1972e,
1973a, 1974). The main results here are contained in Theorem 2.6.1 from Silvestrov
(1972a, 1972¢) and Theorem 2.7.5 from Silvestrov (1974). The latter theorem gives
convenient conditions for weak convergence of cadlag processes on a set dense in the in-
terval [0, c0). Some results related to the case when the limiting stopping process is not
only continuous but also strictly monotonic can be derived from Whitt (1973, 1980). Ad-
ditional results can also be found in Anisimov (1977, 1988), Durret and Resnik (1977),
and Silvestrov (1979a). Theorems 2.6.4 and 2.6.5 and Lemma 2.6.4, which are based
on new weakened continuity conditions, are new results from Silvestrov (2002a, 2002b).
Some additional comments are also given in the last section of Chapter 2.

We would also like to mention the results on limit theorems for random sums with de-
pendent summands and random indices obtained in Kruglov (1996), Kowalski and Rych-
lik (1998), Gajowwiak and Rychlik (2000), Rychlik and Walczynski (2001b), Kruglov
and Zhang Bo (1996, 2001b), Jiang Tao, Su Chun, and Tang Qi He (2001), and Zhang
Bo (2002), where an alternative approach based on approximation of such sums by the
associated random sums with independent summands and random indices is used.

Chapter 3. When discussing conditions for J-convergence of compositions of cadlag
processes, four cases should be considered: (a) both the limiting external and inter-
nal stopping processes are continuous; (b) the limiting external process is continuous;
(c) the limiting internal stopping process is continuous; (d) both the limiting external
process and the internal stopping processes can be discontinuous.

The simplest case (a) was considered in Billigsley (1968). The main result of Bil-
ligsley is given in Theorem 3.2.1. This result was extended in various directions in
Iglehart and Kennedy (1970), and Silvestrov (1971b, 1972a, 1972e, 1974), Whitt (1973,
1980, 2002), and Serfozo (1973). Case (b) was considered in Whitt (1973, 1980) and
Silvestrov (1974). Theorem 3.3.2 is a new result.

Case (c), where the limiting stopping process is continuous, is important for many
applications. For example, this is often the case for the model with renewal type stopping
processes. Conditions for J-convergence of compositions of cadlag processes for this
case was given in Silvestrov (1972b, 1972e, 1973a). These results are formulated in
Theorem 3.4.1. The improved version given in Theorem 3.4.2 is from Silvestrov (1974).
Under the additional condition that the limiting stopping process is not only continuous
but also strictly monotone, case (¢) was also considered in Whitt (1973, 1980). Theorem
3.4.3, which generalises Theorem 3.4.2, is a new result from Silvestrov (2002a, 2002b).

The most general and difficult case is that in (d), where both the limiting external
and stopping processes can be discontinuous. General conditions for J-compactness and
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J-convergence of compositions of cadlag processes were obtained in Silvestrov (1974).
These results are formulated in Theorems 3.6.1, 3.6.2, 3.8.1, and 3.8.2, which make
the main results of Chapter 3. The first two theorems cover the case of scalar compo-
sitions of cadlag processes; the last two theorems cover the more complicated case of
vector compositions. We refer to the survey of Silvestrov (2000b) which contains ad-
ditional bibliographical remarks concerning the results related to general conditions for
J-convergence of compositions of cadlag processes. Theorems 3.6.4 and 3.8.6, which
generalises theorems mentioned above, are new results from Silvestrov (2002a, 2002b).

We would also like to mention some related works in the area. Conditions for con-
vergence of compositions of cadlag processes in Skorokhod’s topologies J,, My, and
M-topologies, which supplement the main topologies U and J, were studied in Whitt
(1973, 1980, 2002), Pomarede (1976), and Anisimov (1977, 1988). Conditions for J-
convergence of compositions of step processes were given in Kennedy (1972) and Whitt
(1973, 1980, 2002). The results in Iglehart and Whitt (1970), Silvestrov (1972e, 1974),
Whitt (1973, 1980), and Serfozo (1973) are related to the model with non-random lim-
iting stopping processes. This model leads to J-convergence theorems for compositions
with non-random centering as well as to the so-called inverse theorems in which conver-
gence of external processes is derived from J-convergence of the compositions. Also,
works on thinnings of random measures and point processes that can be considered as
a special class of compositions of monotone processes should also be referred to. They
include the papers of Mogyorddi (1971b, 1972a, 1972b), Szantai (1971a, 1971b), Rade
(1972a, 1972b), Zakusilo (1972a, 1972b), Jagers (1974), Jagers and Lindvall (1974),
Tomko (1974), Kallenberg (1975) and Serfozo (1976, 1984a, 1984b), Lindvall (1978),
Gasanenko (1980), Boker and Serfozo (1983). We would also like to mention the works
of Silvestrov (1972e, 1973b) and Mishura (1978), where some results of the theory were
extended to randomly stopped random fields and compositions of random fields. Inter-
nal stopping processes are usually monotone and, in some cases, are step or point type
processes. In this context, the functional limit theorems were studied for monotone pro-
cesses in Vervaat (1972), Whitt (1973, 1980, 2002), Silvestrov (1974), Walk (1975), Ser-
fozo (1976), Jacod, Memin, and Metevier (1983), and Jacod and Shiryaev (1987), and,
for point processes and random measures, in Kallenberg (1973, 1975), Jagers (1974),
Serfoso (1976), and Resnick (1986, 1987).

The above grouping of works into three directions is relative. Many works placed in
the first two groups, especially those dealing with functional limit theorems, can also be
classified as belonging to the third group. For example, some of these works are Billings-
ley (1962), Iglehart (1974), Aldous (1978a), M. Csorgo and S. Csorgo (1970), Sreehari
(1968), Mirzahmedov, Silvestrov and Tursunov (1976), Tursunov (1976), Rychlik and
Szynal (1975), Prakasa and Sreehari (1984), Csorgo and Horvath (1993), and Silvestrov
and Teugels (1998a, 1998b).

The book Silvestrov (1974) is devoted to general limit theorems for randomly stopped
stochastic processes and compositions of cadlag processes in topologies U and J. We
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also refer to the books Csorgo and Révész (1981), Anisimov (1988), Gut (1988), Csorgo
and Horvéth (1993), Rahimov (1995), Bening and Korolev (2002) and Whitt (2002),
which also contain results on limit theorems for randomly stopped random processes
and compositions of stochastic processes. We would also like to refer to Silvestrov
(2002a), which is a preliminary report version of the current book.

Chapter 4. Natural areas of applications and examples of general distributional and
functional limit theorems covered in Chapters 2 and 3 include various concrete models
of randomly stopped cadlag processes and compositions of cadlag processes in which
some specific structural assumptions about internal stopping processes are used when
proving the limit theorems.

The first class of such models is represented by sum-processes with random stop-
ping (random sums), max-processes with random stopping (extremes with random sam-
ple size), and related models that originate in the classical works of Anscombe (1952)
and Rényi (1957, 1958, 1960). An essential part of distributional and functional limit
theorems for random sums, extremes with random sample size relates to models with
independent external processes and stopping moments converging in probability. Works
related to limit theorems for these models have been cited above and we do not repeat
these references. Here we would like to note that many of these results can be obtained
by directly applying the general limit theorems given in Chapters 2 and 3. General
limit theorems for random sums and extremes with random sample size include many of
the preceding results in this area. These are, respectively, Theorems 4.2.2, 4.2.4, 4.7.2,
which are direct corollaries of the limit theorems from Silvestrov (1971b, 1972a, 1972¢),
and Theorem 4.7.4 from Silvestrov and Teugels (1998a).

The second such class includes randomly stopped processes and compositions of
stochastic processes of Markov or martingale type processes with Markov type stopping.
Weak convergence and functional limit theorems have been studied for these type of
processes in the works of Silvestrov (1972e, 1974, 1977), McLeich (1974, 1978), Anisi-
mov (1975, 1977, 1988), Gikhman and Skorokhod (1975), Rychlik and Szynal (1975),
Rootzén (1977, 1980), Aldous (1978b), Génssler, Strobel, and Stute (1978), Génssler
and Haiusler (1979), Rychlik (1979), Helland (1980, 1982), Beska, Klopotowski, and
Slominski (1982), Butzer and Schulz (1983, 1984a, 1984b), Kubacki and Szynal (1983,
1986), Prakasa and Sreechari (1984), Kubacki (1987), and Rahimov (1987, 1995). Con-
ditions for J-compactness of cadlag processes based on stopping times were given in
Aldous (1978b, 1989), Jacod, Memin and Metevier (1983), Sgrensen (1983), Nikunen
(1984), Joffe and Metevier (1986), and Jacod and Shiryaev (1987).

The third special and important class of models constitutes randomly stopped pro-
cesses and compositions of stochastic processes with exceeding and renewal type stop-
ping internal processes. One can find a more detailed bibliographical remarks on works
related to the composition of stochastic processes with renewal type stopping in Silve-
strov (2000a). Here, we give a shortened version of these remarks.
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Functional limit theorems for renewal type processes based on general cadlag pro-
cesses can be found in Skorokhod (1956), Iglehart and Kennedy (1970), Iglehart and
Whitt (1971), Whitt (1971a, 1972, 1973, 1980, 2002), Borovkov (1972a, 1972b, 1976),
Silvestrov (1972e, 1974, 2000a), Vervaat (1972), Iglehart (1973), Anisimov (1974b,
1975, 1977, 1988), Resnick (1974), Serfozo (1976), Goldie (1977), M. Csorgo, S.
Csorgo, Horvath and Revesz (1982), Csorgo, Horvéth, and Steinebach (1987), Char-
lot and Merad (1989), Doss and Gill (1992), Puhalskii (1994), and Puhalskii and Whitt
(1997). Chapter 4 contains some new results for general renewal type processes. In
particular, we would like to mention Theorems 4.3.4 —4.3.7 and Lemma 4.3.2.

There exists a huge number of works devoted to studies of weak convergence and J-
convergence of sum-processes with renewal stopping constructed from sums of random
variables (independent, weakly dependent, defined on Markov chains, etc.). There are
also numerous studies on limit theorems for exceeding, extremal, and renewal types
stopping processes. Here, we point out to some of them selecting works based on the
use of renewal structure of stopping processes and functional limit theorems. In this
context, we list works on limit theorems for sum-processes defined on Markov type
processes pertaining mainly to the case of sum-processes with semi-Markov stopping.

A good bibliography of works on limit theorems for renewal type processes for the
period up to the beginning of 70s can be found in Serfozo (1975). We mention here
the works of Feller (1949, 1966), Dynkin (1955), Smith (1955, 1958), Lamperty (1958,
1961, 1962a), Takacs (1959), Kesten (1962), Farrell (1964, 1966a, 1966b), Pyke and
Schanflie (1964), Prabhu (1965), Borovkov (1967a, 1967b), Heyde (1967), Siegmund
(1968), Iglehart (1969, 1974), Silvestrov (1969c, 1970b, 1970c, 1972e, 1974), Iglehart
and Kennedy (1970), Whitt (1971a, 1971b), Basu (1972), Bingham (1972), Gut (1973,
1974, 1975), Kaminskene (1973), and Serfozo (1975).

Further works are Chow and Hsiung (1976), Mohan (1976), Lindberger (1978),
Mishura (1978), Pakshirajan and Mohan (1978), Gut and Ahlberg (1981), Sen (1981),
Grishchenko (1982), Teicher (1982), Gut and Janson (1983), Khusanbayev (1983, 1984),
Horvéth (1984b, 1986), Lalley (1984), Niculescu (1984), Kasahara (1985), Angus (1986),
Csorgo, Horvath, and Steinebach (1986, 1987), Murphree and Smith (1986), Csorgo,
Deheuvels, and Horvath (1987), Levy and Taqqu (1987, 2000), Mason and van Zwet
(1987), Shedler (1987, 1993), Steinebach (1987, 1988, 1991), Gut (1988), Niculescu
(1988), Charlot and Merad (1989), Roginsky (1989, 1992, 1994), Deheuvels and Steine-
bach (1992), Li Deli and Wu Zhiquan (1992), Alex and Steinebach (1994), Horvath
(1984b, 1986), Konstantopoulos, Papadakis, and Walrand (1994), Niculescu and Omey
(1994), Sagitov (1994), Zhang Hanqin and Hsu Guang-Hui (1994), Steinebach and East-
wood (1996), Zhang Lixin (1996), Gut, Klesov, and Steinebach (1997), Klesov and
Steinbach (1997), Li Linxiong (1997), Mitov, Grishechkin and Yanev (1997), Zhang
Yucheng and Song Shibin (1997), Yamada Keigo (1999), Csenki (2000), Silvestrov
(2000a), Borovkov and Mogul’skij (2001), Frolov, Martikainen, and Steinebach (2001),
Mitov and Yanev (2001), and Silvestrov and Teugels (2001).
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In this context, the works on limit theorems for risk processes and their diffusion type
approximations should also be mentioned. We refer here to the works of Cramér (1955),
Sparre Andersen (1957), Feller (1966), Gerber (1979), Iglehart (1969), Bohman (1972),
Grandell (1972, 1977, 1991a, 1991b, 1998), Whitt (1972), Siegmund (1975), von Bahr
(1975), Harrison (1977), Gerber (1979), Asmussen (1984, 1987, 1989, 1996, 2000),
Beard, Pentikédinen, and Pesonen (1984), Garrido (1985), Glynn (1990), Schmidli (1992,
1997a, 1997b), Aebi, Embrechts, and Mikosch (1994), Bening and Korolev (1996a,
1996b, 1997, 1998a, 1988b, 2000a, 2000b, 2002), Embrechts, Kliipenberg and Mikosch
(1997), Korolev (1998, 2000), Asmussen and Hgjgaard (1999), Rolski, Schmidli,
Schmidt, and Teugels (1999), Bening, Korolev, and Liu Lixin (2000), Gyllenberg and
Silvestrov (2000b), Silvestrov (2000a, 2000d) and Bening, Korolev, and Kudryavtsev
(2001).

For works on limit theorems for sum type processes with renewal semi-Markov stop-
ping and related models, we would like first of all to indicate that a good bibliography
of works for the period up to the mid of 70s can be found in Teugels (1976). Here,
we only mention the works of Silvestrov (1969a, 1969¢c, 1970a, 1970b, 1970c, 1971a,
1973c, 1980b), Anisimov (1970a, 1970b, 1972, 1988, 1999, 2000a, 2000b), Bingham
(1971), Arjas (1972), Cheong and Teugels (1972), Lev (1972), Masol and Silvestrov
(1972), Prizva (1972), Masol (1973, 1974), Szasz (1974), Nummelin (1976), Cherenkov
(1977), Oprisan (1977), Popescu (1977), Arsenishvili and Ezhov (1978), Athreya, Mc-
Donald, and Ney (1978), Athreya and Ney (1978), Korolyuk and Turbin (1978, 1983),
Kaplan and Silvestrov (1979), Shurenkov and Eleiko (1979), Silvestrov and Tursunov
(1979), Eleiko (1980, 1990a, 1990b, 1998), Tomko (1981), Hordijk and Schassberger
(1982), V. S. Korolyuk and V. V. Korolyuk (1983, 1999), Kravets (1985), Malinovskij
(1985, 1986, 1988), Radian (1985), Korolyuk (1986, 1990), Korolyuk and Svishchuk
(1986, 1989a, 1989b, 1991, 1992, 2000), Grigorescu and Popescu (1987), V. S. Ko-
rolyuk, Svishchuk, and V. V. Korolyuk (1987), Anisimov and Aliev (1989), Didkovskit
and Silvestrov (1989), Sviridenko (1989), Hsu Guanghui and He Qiming (1990), V. V.
Korolyuk (1991), Wajda (1991), Stenflo (1996, 1998), Soltani and Khorshidian (1998),
Silvestrov and Stenflo (1998), Alsmeyer and Gut (1999), Ball (1999), Korolyuk and
Limnios (1999a, 1999b, 2000, 2001), Pyke (1999), Stefanov (1999), Thorisson (2000),
Lee and Shin (2001), and Limnios and Oprisan (2001).

The results in Borovkov (1967a, 1967b, 1969), Miller (1971), Silvestrov (1971c,
1972c, 1972d, 1972e, 1980a, 1980b, 1983a, 1990, 1991), Milyoshina (1975), Serfozo
(1975), Lindberger (1978), Steinebach (1978), Kaplan and Silvestrov (1979, 1980), and
Glynn and Whitt (1986, 1987, 1988, 1993, 2002) are related to limit theorems for accu-
mulation processes with random embedded cycles.

We would also like to mention the works of Serfozo (1980), Shanthrikumar and
Sumita (1983), Sumita and Shanthikumur (1985), Anderson (1987, 1988), Gut (1990,
2001), Silvestrov and Teugels (1998a, 2001), Gut and Hiisler (1999), and Mallor and
Omey (2001), which deal with extremal processes with random embedded cycles and
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max-renewal models such as max-processes with renewal stopping and shock processes.

Works on limit theorems for additive type functionals defined on discrete Markov
chains should also be mentioned. One of the main methods of studies here is based on
the use of regenerative embedded cycles between the return moments in special subsets
of states followed by the use of limit theorems for the corresponding embedded renewal
type processes. We refer here to works of Doeblin (1937, 1938), Feller (1949), Kol-
mogorov (1949), Romanovskij (1949), Dobrushin (1953, 1956a, 1956b), Doob (1953),
Sarimsakov (1954), Sirazhdinov (1955), Billingsley (1956), Darling and Kac (1957),
Kendall (1957), Nagaev (1957, 1962), Volkonskii (1957), Meshalkin (1958), Skorokhod
(1958, 1961), Orey (1959), Chung Kai Lai (1960), Ciucu and Theodorescu (1960),
Kesten (1962), Hanen (1963a, 1963b, 1963c, 1963d), Gikhman and Skorokhod (1965,
1975), Borovkov (1967a, 1967b, 1969), Friedman (1967), Maigret (1968), Gikhman
(1969, 1974), Iosifescu and Theodorescu (1969), Silvestrov (1969b, 1969¢, 1974, 1983b),
Statulyavichus (1969a, 1969b, 1969c¢), Kembleton (1970b), Skorokhod and Slobodenyuk
(1970), Fal’ (1971), Cogburn (1972, 1991), Anisimov (1973, 1974a), Grigorescu and
Popescu (1973), Silvestrov and Polescuk (1974), Formanov (1975, 1979), Gorostiza
(1975), Milyoshina (1975), Poles¢uk (1975, 1977), Grigorescu and Oprisan (1976),
Kasahara (1976/77), Silvestrov and Tursunov (1977), Wolfson (1977), Gordin and LifSic
(1978), Kaijser (1978, 1979, 1981a, 1981b), LifSic (1978), Sirazdinov and Formanov
(1979), de Dominicis (1980), Kaplan (1980), Kaplan and Silvestrov (1980), Kurtz (1981),
Kaplan, Motsa, and Silvestrov (1982, 1983), Motsa (1982a, 1982b, 1982c, 1990), Bing-
ham and Hawkes (1983), Nummelin (1984), Kipnis and Varadhan (1986), Barnsley
and Elton (1988), Barnsley, Elton and Hardin (1988), Levental (1988), Elton (1990),
losifescu and Grigorescu (1990), Silvestrov and Brusilovskii (1990), Tong (1990), Gu-
dinas (1991, 1995), Grigorescu (1992), Woodroofe (1992), Chan (1993a, 1993b), Meyn
and Tweedie (1993), Moskal’tsova and Shurenkov (1993a, 1993b, 1994, 1995), Velikii,
Motsa, and Silvestrov (1994), Loskot and Rudnicki (1995), Hsiau Shoou-Ren (1997),
Ruzhevich (1997), Benda (1998), Korolyuk and Limnios (1998), Stenflo (1998), Chen
(1999), Gallardo (1999), Maxwell and Woodroofe (2000), Wu Wei Biao and Woodroofe
(2000), Derriennic and Lin (2001), Hennion and Hervé (2001), Lee Oesook and Kim
Jihyun (2001), and Steichen (2001)

We also refer to works devoted to statistical studies of Markov chains and semi-
Markov processes based on limit theorems for sum of random variables defined on
Markov chains. These references are Billingsley (1961), Baum and Petrie (1966), Ler-
oux (1992), Bickel and Ritov (1996), MacDonald and Zucchini (1997), Francq and
Roussignol (1998), Krishnamurthy and Rydén, (1998), Jensen and Petersen (1999),
Ouhbi and Limnios (1999a, 1999b, 1999¢), Le Gland and Mevel (2000), Douc and Ma-
tias (2001), and Limnios and Oprisan (2001).

Works on limit theorems for regenerative, Markov and semi-Markov sum processes
with another type of random Markov type stopping moments, in particular those of
the first-hitting-time types include Simon and Ando (1961), Kingman (1963), Gne-



372 Bibliographical remarks

denko and Kovalenko (1964), Darroch and Seneta (1965, 1967), Keilson (1966, 1978),
Schweitzer (1968), Korolyuk (1969), Silvestrov (1969a, 1969b, 1969c, 1970b, 1970c,
1971a, 1972e, 1974, 1976, 1978, 1979b, 1980b, 1981, 1981b, 1995, 2000c), Korolyuk
and Turbin (1970, 1976, 1978, 1982), Anisimov (1971a, 1971b, 1975, 1988), Gusak and
Korolyuk (1971), Solov’ev (1971, 1983), Turbin (1971), Kovalenko (1973, 1975, 1977,
1980, 1988, 1994), Masol (1973, 1974), Latouch and Louchard (1978), Ivchenko, Kash-
tanov, and Kovalenko (