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Preface1

Limit theorems for stochastic processes are an important part of probability theory and
mathematical statistics.

One model that has attracted the attention of many researchers in this area is that
of limit theorems for randomly stopped stochastic processes and for compositions of
stochastic processes.

This model can appear in a natural way: for example, when studying limit theorems
for additive or extremal functionals of stochastic processes; in models connected with a
random change of time, change point problems and problems related to optimal stopping
of stochastic processes; and in different renewal models, particularly those which appear
in applications for risk processes, queuing systems, etc.

The model also appears in statistical applications connected with studies of samples
with a random sample size. Such sample models play an important role in sequential
analysis. They also appear in sample survey models, or in statistical models where
sample variables are associated with stochastic flows. The latter models are typical for
insurance, queueing and reliability applications, as well as many others.

A large number of works in the area is devoted to studies of limit theorems for ran-
domly stopped stochastic processes and compositions of stochastic processes under as-
sumptions, which imply independence or asymptotical independence of external pro-
cesses and internal stopping moments. In general limit theorems, the assumption of
asymptotical independence is replaced by the condition of joint weak convergence of
external processes and internal stopping moments. These theorems are oriented to be
applied to models with dependent external processes and internal stopping moments.

The first book on this subject was published by the author in 1974. Since that time
many new results and applications have been developed by the author and other re-
searchers. At the moment there is no book that would provide a ’state of the art’ reflec-
tion of general limit theorems for randomly stopped stochastic processes. These realities
have stimulated me to begin work on a new book on this subject that should fill the gap
in the existing literature.

The aim of this book is to present general limit theorems about weak convergence of
randomly stopped stochastic processes and compositions of stochastic processes as well

1This is an extended book version of the work: Silvestrov, D. S. Limit Theorems for Randomly Stopped
Stochastic Processes. Research Reports 2002 - 1-4. Department of Mathematics and Physics, Mälardalen
University.
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vi Preface

as functional limit theorems about convergence of compositions of càdlàg stochastic
processes in topologies U and J.

This book contains four chapters. Chapter 1 is a survey of basic results related to
weak convergence of random variables and stochastic processes, including basic facts
concerning the convergence of càdlàg processes in topologies J and U. In Chapter 2,
general conditions of weak convergence of randomly stopped stochastic processes and
compositions of càdlàg processes are presented. In Chapter 3, functional limit theorems
about convergence of compositions of càdlàg processes in topologies J and U are given.
Chapter 4 presents a summary of applications to random sums, extremes with random
sample size, generalised exceeding processes, sum-processes with renewal stopping, ac-
cumulation processes, max-processes with renewal stopping, and shock processes.

Many results included in the book are published for the first time. In particular, these
include limit theorems for randomly stopped processes and compositions of stochastic
processes based on new weaken continuity conditions as well as their applications to
generalised exceeding processes. Other new results are indicated in the reference re-
marks at the end of each chapter.

The bibliography, which contains more than 750 references, is also supplemented
with short bibliographic remarks.

The presentation of material in the chapters is organised in a way that I hope will
be appreciated by readers. Each chapter has a preamble in which the main results are
outlined and the chapter content (by sections) is presented. The first section of each
chapter contains introductory remarks. Here models, basic conditions and results are
introduced in an informal way. In addition, examples and counter-examples, illustrated
by figures if possible, are given along with comments. Each section is broken up into
titled subsections. Subsections containing formulations and proofs of main theorems are
given first. These are followed by subsections that present various modifications to the
main theorems and their conditions. The reference remarks, at the end of each chapter,
highlight the origins of main results as well as indicate new results.

I would like also to comment on the notation system used in the book. Throughout
the text I make use of several basic classes of conditions. Conditions that belong to a spe-
cific class are denoted by the same letter. For example, the letter A is used for all weak
convergence conditions, the letter B for continuity conditions, and so forth. Conditions
belonging to a specific class have subscripts numbering conditions in the class. A list of
all conditions is given in a special index. Local conditions used in theorems, lemmas,
definitions or remarks are indicated by small Greek letters in brackets as (α), (β), etc.
Local conditions in the text can be indicated as (a), (b), etc. This indication always acts
within the limits of a subsection where these conditions are introduced. Subsections,
theorems, lemmas, definitions and remarks have a triple numeration. For example, The-
orem 1.2.3 means Theorem 3 of Section 1.2. Formulas also have a triple numeration.
For example, label (1.2.3) refers to formula 3 in Section 1.2.

I hope that the publication of this new book and the comprehensive bibliography
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of works related to limit theorems for randomly stopped stochastic processes will be a
useful contribution to the continuing intensive studies in this area. In addition to research
and reference purposes, the book can be used in special courses on the subject and as
a complementary reading in general courses on stochastic processes. In this respect,
the book may be useful for specialists as well as doctoral and advanced undergraduate
students.

I would like to thank Dr Evelina Silvestrova for her continuous encouragement and
support of various aspects of my work on this book.

I am also indebted to Professor Victor Korolev, who placed additional references
at my disposal, Dr Yury Chapovsky for thorough language editing of the text, and Dr
Anatoliy Malyarenko, who helped me to improve the formatting of the book and to
design the graphics.

I would also like to thank all the colleagues at the Department of Mathematics and
Physics for creating inspiring research enviroment and friendly atmosphere, which stim-
ulated my work.

Västerås, October 2002 – March 2003
Dmitrii Silvestrov
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Chapter 1

Weak convergence of stochastic processes

In this chapter we present a survey of results concerning weak convergence of random
variables in metric spaces and functional limit theorems for càdlàg processes. These
results form a basis for the study of limit theorems for randomly stopped stochastic
processes and compositions of stochastic processes.

As usual, we first present general results concerning weak convergence of random
variables in the space �m and in a Polish space. Then we give basic results concern-
ing functional limit theorems for càdlàg processes. As is known, the space D of càdlàg
functions can be equipped with a metric in such a way that convergence in this metric is
equivalent to convergence in the topology J. Correspondingly, càdlàg processes can be
considered as random variables taking values in D, and their convergence in the topology
J can be regarded as weak convergence of these random variables. We also describe an
alternative approach to functional theorems for càdlàg processes, which is based on the
Skorokhod representation theorem. According to this theorem, if random variables that
take values in a Polish space weakly converge, then one can construct new random vari-
ables with the same distributions that converge with probability 1. Using this theorem
one can often reduce the corresponding functional limit theorems to simpler analogues
of these theorems for non-random càdlàg functions.

Section 1.1 contains examples and introductory comments. In Sections 1.2 and 1.3,
general results concerning weak convergence of random variables that take values in
the space �m and in a Polish space are formulated. Section 1.4 gives general facts
concerning the space D of càdlàg functions. Section 1.5 describes the main classes
of J-continuous functionals. In Section 1.6, the main limit theorems concerning J-
convergence of càdlàg stochastic processes are formulated. The last subsection also
contains bibliographical remarks.

It is necessary to note that Chapter 1 contains only a survey of the corresponding
results. The proofs are omitted in most cases. I refer to the well known books by
Billingsley (1968, 1999), Gikhman and Skorokhod (1965, 1971), Pollard (1984), Ethier
and Kurtz (1986), and Jacod and Shiryaev (1987), which give a full presentation of the
theory. These books also contain bibliographies on works in the area.

1



2 Chapter 1. Weak convergence of stochastic processes

1.1 Introductory remarks

In this section, some examples that clarify the concept of weak convergence for random
variables are considered. The concept of weak convergence is introduced for the simplest
case of real-valued random variables. Possible ways to generalise this concept to the case
of general metric spaces, in particular, to the spaces C of continuous functions, and D of
càdlàg functions are also discussed.

1.1.1. Weak convergence of random variables. Let ξε, ε ≥ 0 be a family of real-
valued random variables depending on a parameter ε ≥ 0. We denote by Fε(x) = P{ξε ≤
x}, x ∈ �1, the distribution function of a random variable ξε.

The concept of weak convergence plays a central role in probability theory and its
applications. It is enough to recall that the fundamental limit theorems such as the weak
law of large numbers and the central limit theorem are, actually, statements about weak
convergence of random variables.

We say that random variables ξε weakly converge to a random variable ξ0 as ε → 0
if Fε(x) → F0(x) as ε→ 0 for all points x which are points of continuity for the limiting
distribution function. This is denoted by ξε ⇒ ξ0 as ε→ 0.

Weak convergence of random variables is, actually, a convergence of their distribu-
tion functions. That is why we can also talk about weak convergence of distribution
functions Fε(·), instead of random variables ξε, and to use the notation Fε(·) ⇒ F0(·) as
ε→ 0.

To distinguish the weak convergence of random variables from the weak convergence
of their distributions, the term convergence in distribution could be used instead of the
term weak convergence, when one talks about weak convergence of random variables.

In such a case, the notation ξε
d−→ ξ0 as ε→ 0 would be more appropriate. However, we

prefer to use the term weak convergence and the symbol⇒ in both cases. Usually, it is
obvious what objects (random variables or distribution functions) are considered in the
corresponding relation of weak convergence.

It is also useful to note that random variables can be indexed in different ways. For
example, a sequence of random variables ξn that depends on the index n = 1, 2, . . . can be
an object of consideration. The notation of weak convergence is modified in an obvious
way: ξn ⇒ ξ0 as n→∞.

The definition of weak convergence gives rise to the following question. Why is the
pointwise convergence of distribution functions required only in points of continuity of
the corresponding limiting distribution function?

The following standard example explains why should points of discontinuity be ex-
cluded from the set of pointwise convergence. Let us consider a sequence of numbers
an, n = 1, 2, . . ., such that an → a0 as n → ∞, where a0 is a finite real constant. The
constant an can be considered as a random variable. It is natural to expect that weak
convergence an ⇒ a0 as n → ∞ would be equivalent to the usual convergence an → a0
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as n → ∞. The distribution function of an, considered as a random variable, is the indi-
cator function Fn(x) = χ[an,∞)(x). It is easy to check that an → a0 as n → ∞ if and only
if Fn(x) → F0(x) as n → ∞ for all x , a0, i.e., Fn(x) → 0 as n → ∞ for x < a0 and
Fn(x) → 1 as n → ∞ for x > a0. Note that convergence of Fn(x) to F0(x) in the point
a0, which is the only point of discontinuity of the limiting distribution function F0(x), is
not required to provide convergence of an to a0. If also, for example, an is a decreasing
sequence, then Fn(a0) = 0 for all n = 1, 2, . . ., but F0(a0) = 1. Therefore, convergence
of an to a0 does not imply convergence of Fn(a0) to F0(a0).

It should also be noted that weak convergence of random variables is equivalent to
the usual pointwise convergence of their distribution functions in all points x ∈ �1, if
the limiting distribution function is continuous.

The definition of weak convergence given above can easily be extended from ran-
dom variables to random vectors, i.e., random variables that take values in the space
�m. In this case, one-dimensional distribution functions should be replaced by the cor-
responding multi-dimensional distribution functions. One can use the definition of week
convergence as pointwise convergence in points of continuity of the corresponding lim-
iting multi-dimensional distribution function.

However, if the random variables take values in a metric space, the definition of
weak convergence should be modified. It can happen that direct analogues of the dis-
tribution functions do not exist. In this case, the definition can be given with the use of
convergence of values of the probability measures generated by the random variables.
Convergence should be required for values of these measures on sets of continuity for
the corresponding limiting measure.

1.1.2. Extension of convergence to Borel sets. As well known, any distribution
function Fε(x) = P{ξε ≤ x} uniquely determines a measure Fε(A) on the σ-algebra B1

of Borel subsets of �1. By the definition, Fε(A) = P{ξε ∈ A}. In particular, Fε(x) =

Fε((−∞, x]).
The following natural question arises. Does the weak convergence Fε(·) ⇒ F0(·) as

ε→ 0 implies convergence of Fε(A) to F0(A) as ε→ 0 for all A ∈ B1?
In some special cases, the answer is affirmative. For example, let ξn, n = 0, 1, 2, . . .

be a sequence of discrete random variables which take values k with probabilities pn(k)
for k = 0, 1, . . .. It is easy to show that the random variables ξn ⇒ ξ0 as n → ∞ if
and only if pn(k) → p0(k) as n → ∞ for every k = 0, 1, . . .. In this case, we also have
P{ξn ∈ A} → P{ξ0 ∈ A} as n→ ∞ for any Borel set A.

In the general case, the answer is negative. Let us consider the following example.
Let ηn, n = 1, 2, . . . , be a sequence of random variables which have geometrical dis-
tributions with parameters pn = 1/n. So, the random variable ηn takes a value k with
probability pn(1 − pn)k−1 for k = 1, 2, . . . . It is easy to show that the random variables
ξn = pnηn ⇒ ξ0 as n → ∞, where ξ0 is a random variable that has exponential dis-
tribution with parameter 1. Let us define the set A0 = { k/n : k, n = 1, 2, . . . }. The set
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A0 is a countable Borel set. Obviously, P{ξn ∈ A0} = 1 for every n = 1, 2, . . .. But
P{ξ0 ∈ A0} = 0, since the limiting exponential distribution is continuous. That is why
the probabilities P{ξn ∈ A0} do not converge to P{ξ0 ∈ A0} as n→ ∞.

Let us denote by ∂A the boundary of a Borel set A, i.e., the set of all points x such that
any interval (x − δ, x + δ) contains points which belong to both sets A and A. Obviously,
the class of all Borel sets A with F0(∂A) = 0 (the sets of continuity for the measure
F0(A)) is a σ-algebra.

It can be shown that weak convergence Fε(·)⇒ F0(·) as ε→ 0 implies that Fε(A)→
F0(A) as ε → 0 for all sets of continuity of the measure F0(A). Obviously, ∂(−∞, x] =

{x}. An interval (−∞, x] is a set of continuity for the measure F0(A) if and only if x is a
continuity point for the distribution function F0(x).

That is why Fε(A) → F0(A) as ε → 0 for all sets of continuity of the measure F0(A)
if and only if Fε(·)⇒ F0(·) as ε → 0.

This is one of the key general statements concerning weak convergence. It can be
used to define weak convergence of random variables that take values in a metric space.

1.1.3. Subsequence approach to weak convergence. Let Fε(x), ε ≥ 0 be a family
of distribution functions depending on parameter ε ≥ 0.

It follows from the definition of weak convergence that, in order to prove that distri-
bution functions Fε(x) weakly converge as ε→ 0, one can use the following subsequence
approach.

First, an arbitrary subsequence εn → 0 as n → ∞ should be selected. Second,
it should be shown that a subsequence ε′k = εnk can be selected from the first subse-
quence such that Fε′k(·) ⇒ F(·), where F(x) is a distribution function. Third, it should
be shown that the distribution function F(x) ≡ F0(x) does not depend on the choice of
subsequences εn and ε′k. Then Fε(·)⇒ F0(·) as ε → 0.

Let R be a subset of �1. A set S ⊆ R is dense in R, if infy∈S |x − y| = 0 for every
x ∈ R.

Let us choose a set S dense in�1. Note that S can be a countable subset of�1. Due to
continuity from the right, any distribution function F(x) is completely determined by its
values in points of the set S . In this sense, S can be referred to as a defining set. Let now
εn ≥ 0 be an arbitrary sequence such that εn → 0 as n → ∞. Using Cantor’s diagonal
method it is always possible to find a subsequence ε′k = εnk such that Fε′k (x) → F(x)
as k → ∞ for all x ∈ S , where the limits F(x) ∈ [0, 1]. The function F(x), defined
on the set S , is non-decreasing. Using this fact one can always define this function at
every point x ∈ �1 \ S as the right limit of the values F(xk) for some sequence of points
xk ∈ S , xk > x, xk → x. The function F(x), defined on �1 in this way, is non-decreasing,
continuous from the right, and F(x) ∈ [0, 1] for every x ∈ �1. So, it is a distribution
function. However, it can be an improper distribution function, i.e., it can be such that
F(+∞)−F(−∞) < 1, where F(±∞) = limx→±∞ F(x). For example, let Fε(x) = χ[aε,∞)(x),
where aε → a0 = ∞ as ε→ 0. In this case, Fε(x) → F0(x) ≡ 0 as ε→ 0.
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In order to prove that F(x) is a proper distribution function (for any subsequences
εn and ε′k chosen as is described above), one should require that the initial family of
distribution functions Fε(x), ε ≥ 0 be stochastically bounded as ε→ 0:

K1: limx→∞ limε→0(Fε(−x) + 1 − Fε(x)) = 0.

Condition K1 implies that, for any subsequence εn → 0 as n → ∞, a subsequence
ε′k = εnk can be selected from the first subsequence in such a way that the distribution
functions Fε′k(·)⇒ F(·) as k →∞, where F(x) is a proper distribution function.

Now, let us also require convergence of distribution functions Fε(x) in points of the
defining set S :

A1: Fε(x) → F0(x) as ε→ 0 for x ∈ S .

Note that limits in A1 are some numbers from the interval [0, 1]. The function F0(x),
defined in A1, is automatically non-decreasing. But it is not required that the corre-
sponding limits of F0(x), as x tends to −∞ or +∞, be equal to 0 and 1, respectively. The
function F0(x) can be continued to the whole real line, as it was described above, by
using right limits. It is a proper or improper distribution function.

Condition A1 implies, obviously, that F(x) = F0(x), x ∈ S . Since S is a defining set,
F(x) = F0(x), x ∈ �1. So, the distribution function F(x) does not depend on the choice
of the subsequences εn and ε′k.

Summarising the remarks made above one can conclude that, in order to prove weak
convergence of distribution functions Fε(·) as ε → 0 it is sufficient to assume that both
conditions K1 and A1 hold.

Moreover, it can be easily shown that conditions K1 and A1 are not only sufficient
but also necessary for weak convergence.

All the remarks made above can be repeated in the case where random variables take
values in �m.

Moreover, the method of proof of weak convergence described above can be gener-
alised and effectively used when dealing with weak convergence in metric spaces. The
corresponding theory was developed by Prokhorov (1956).

1.1.4. Skorokhod representation theorem. Let us consider a family of random
variables ξε, ε ≥ 0 depending on a parameter ε ≥ 0. Let us assume that the random
variables ξε are defined on the same probability space (Ω,F,P) for all ε ≥ 0 and ξε
converge a.s. (almost sure) to ξ0 as ε → 0, i.e., P{ω : limε→0 ξε(ω) = ξ0(ω) } = 1. It
can easily be shown that, in this case, the random variables ξε weakly converge to ξ0 as
ε→ 0.

The inverse implication does not need to hold. For example, let ξn = ξ0 if n =

1, 3, . . ., and ξn = 1 − ξ0 if n = 2, 4, . . ., where ξ0 is a random variable uniformly dis-
tributed on [0, 1]. In this case, the random variables ξn converge to ξ0 weakly but not
a.s., as n→ ∞.
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Note also that weak convergence of random variables is actually a convergence of
their distribution functions. For this reason, random variables ξε can be defined on dif-
ferent probability spaces for different ε. This is a typical situation, when one considers
the so-called triangular array models. In such cases, the random variables can converge
weakly but not almost sure.

However, if ξε ⇒ ξ0 as ε → 0, then it is possible to construct a probability space
(Ω,F,P) and random variables ξ̃ε, ε ≥ 0, defined on this space, such that (a) for every
ε ≥ 0 the random variables ξ̃ε and ξε have the same distribution, and (b) the random
variables ξ̃ε a.s. converge to ξ̃0 as ε→ 0.

Let, for example, a random variable ξε have an exponential distribution with param-
eter λε > 0, i.e., P{ξε ≤ x} = Fε(x) = 1 − exp{−λεx} for x ≥ 0. Let also λε → λ0 > 0 as
ε → 0. In this case, it is obvious that ξε ⇒ ξ0 as ε → 0. Let us consider the function
F−1
ε (y) = (−1/λε) log(1 − y), which is the inverse of the exponential distribution func-

tion Fε(x) introduced above. Let also ρ be a random variable uniformly distributed on
[0, 1]. Let us now consider the random variables ξ̃ε = −(1/λε) log(1 − ρ). It is easy
to check that the random variable ξ̃ε has the exponential distribution with parameter
λε > 0. So, for every ε ≥ 0, the random variables ξε and ξ̃ε have the same distribu-
tion. Also, the random variables ξ̃ε a.s. converge to ξ̃0 as ε → 0. This is so, because
(−1/λε) log(1−y) → (−1/λ0) log(1−y) as ε→ 0 for every y ∈ [0, 1) and P{ρ ∈ [0, 1)} = 1.

In the case of real-valued random variables, the above construction can be realised
in a similar way. Let Fε(x) be a distribution function of a random variable ξε, and
F−1
ε (y) = inf(x : Fε(x) > y) for y ∈ [0, 1]. Let also ρ be a random variable uniformly

distributed on [0, 1]. For example, we can use the probability space with the space of
outcomes [0, 1], the Borel σ-algebra of random events, and the Lebesgue measure as
the corresponding probability measure. Then we can define ρ(ω) = ω. As is known,
the random variable ξ̃ε = F−1

ε (ρ) has the distribution function Fε(x). It is not difficult
to show that the pointwise convergence of Fε(x) to F0(x) as ε → 0 (in all points of
continuity of the limiting distribution function F0(x)) implies that their inverses, F−1

ε (y),
pointwise converge to F−1

0 (y) as ε→ 0 (in all points of continuity of the limiting function
F−1

0 (y)). Since this function is monotone, it has at most a countable set of discontinuity
points. So, the set C′0 of continuity points of this function has Lebesgue measure 1, i.e.,
P{ρ ∈ C′0} = 1. Obviously, {ρ ∈ C′0} ⊆ {limε→0 ξ̃ε = ξ̃0}. Hence, P{limε→0 ξ̃ε = ξ̃0} = 1.

The Skorokhod representation theorem generalises this result to random variables
that take values in a complete separable metric space. This generalisation is not trivial.
The theorem allows to simplify proofs of some important limit theorems.

1.1.5. Weak convergence of transformed random variables. One of the important
statements connected with weak convergence deals with weak convergence of trans-
formed random variables.

Let real-valued random variables ξε ⇒ ξ0 as ε → 0. Let also f (x) be a measurable
real-valued function (the inverse image of any Borel set is a Borel set) defined on the
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real line. In this case, f (ξε) is also a real-valued random variable. The question arises if
the random variables f (ξε)⇒ f (ξ0) as ε→ 0?

It can be shown that this is true for all measurable functions f (x) that are a.s. contin-
uous with respect to the distribution of the limiting random variable ξ0.

This statement can be easily proved by using the Skorokhod representation theorem.
Indeed, let f (x) be a function that is a.s. continuous with respect to the distribution of
the limiting random variable ξ0. Then the random variables f (ξ̃ε) a.s. converge to f (ξ̃0)
as ε → 0. Since a.s. convergence implies weak convergence, the random variables f (ξ̃ε)
converge weakly to f (ξ̃0) as ε → 0. But the random variables f (ξ̃ε) and f (ξε) have the
same distribution, since this is so for the random variables ξ̃ε and ξε. Therefore, the
random variables f (ξε) converge weakly to f (ξ0) as ε→ 0.

This statement plays a very important role in the general theory of weak convergence
of random variables in metric spaces. In the case of functional metric spaces, random
variables that take values in such spaces are, actually, stochastic processes. While the
corresponding transformed random variables are functionals defined on trajectories of
these processes.

1.1.6. Weak convergence in the spaces of continuous and càdlàg functions. Let
us consider the space C[0,1] of real-valued continuous functions defined on the interval
[0, 1]. This space can be equipped with a uniform metric that transforms the space C[0,1]

in a metric space,
dU(x(·), y(·)) = sup

0≤t≤1
|x(t) − y(t)|.

Let now ξn = { ξn(t), t ∈ [0, 1] } be a continuous stochastic process for every n =

0, 1, . . .. One can consider ξn as a random variable taking values in the functional metric
space C[0,1]. Weak convergence of such random variables (stochastic processes) is a
subject of the so-called functional limit theorems for continuous stochastic processes.

An approach to functional limit theorems for continuous stochastic processes, which
is based on their reduction to weak limit theorems for random variables taking values in
the functional metric space C[0,1], was developed by Prokhorov (1956).

However, the class of continuous stochastic processes does not include many impor-
tant stochastic processes. For example, general processes with independent increments
have discontinuous trajectories.

An appropriate space for discontinuous stochastic processes is the space D[0,1] of real-
valued càdlàg functions defined on the interval [0, 1], i.e., functions that are continuous
from the right and possessing finite left limits at all points of the interval (0, 1].

The uniform metric dU(x(·), y(·)) is not an appropriate metric for the space D[0,1],
since some sequences of càdlàg functions, which would be expected to converge, do not
converge.

For example, let us consider the functions xn(t) = (1− 1
n )χ( 1

2 − 1
n ≤ t), t ∈ [0, 1]. These

functions converge pointwise to the limiting function x0(t) = χ( 1
2 ≤ t), t ∈ [0, 1]. Figure

1.1 illustrates this example.
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Figure 1.1: Functions, which J-converge.

These functions obviously do not converge in the uniform metric, since dU(xn(·), x0(·))
= 1 − 1

n for n ≥ 1. Let us define a function λn(t) to be equal to (1 − 2
n )t for 0 ≤ t < 1

2 ,
and (1 + 2

n )t − 2
n for 1

2 ≤ t ≤ 1. This function is continuous, strictly monotone, and
λn(0) = 0, λn(1) = 1. Moreover, sup0≤t≤1 |λn(t) − t| → 0 as n→ ∞.

Now, xn(λn(t)) = (1 − 1
n )x0(t) and, hence, dU(xn(λn(·)), x0(·)) = 1

n → 0 as n → ∞.
This shows that small deformations of time applied to the functions xn(t) can transform
these functions to new ones that converge uniformly to x0(t).

Skorokhod (1956) invented the so-called J-topology of convergence in the space
D[0,1]. This topology is based on the use of small time deformations that transform càdlàg
functions in uniformly convergent functions. More precisely, càdlàg functions xn(t) J-
converge to a càdlàg function x0(t) as n → ∞ if there exists a sequence of continuous
strictly monotone mappings λn(t) of the interval [0, 1] onto itself such that λn(0) = 0,
λn(1) = 1, and sup0≤t≤1(|λn(t) − t| + dU(xn(λn(·)), x0(·)))→ 0 as n→∞.

To better understand the meaning of J-convergence, let us give two examples of
sequences of càdlàg functions that converge pointwise but do not J-converge.

In the first example, consider the functions xn(t) = 1
2χ( 1

2 ≤ t)+ 1
2χ( 1

2− 1
n ≤ t), t ∈ [0, 1].

These functions converge pointwise to the limiting function x0(t) = χ( 1
2 ≤ t), t ∈ [0, 1].

But these functions do not J-converge. There always exists a point in which the function
xn(λn(·)) takes the value 1

2 for any mapping λn(t) with the properties described above.
Figure 1.2 illustrates this example.

As the second example, consider the functions xn(t) which take the values 0 for
t < 1

2 − 1
n , n(t − 1

2 ) + 1 for 1
2 − 1

n ≤ t < 1
2 , and 1 for 1

2 ≤ t ≤ 1. Again, the functions
xn(t) converge pointwise to the limiting function x0(t) = χ( 1

2 ≤ t), t ∈ [0, 1]. But these
functions do not J-converge. As in the first example, there always exists a point in
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Figure 1.2: Functions, which do not J-converge.

which the function xn(λn(·)) takes the value 1
2 for any mapping λn(t) with the properties

described above. Figure 1.3 illustrates this example.
In both examples, the functions do not J-converge, because there are close points

t′ < t < t′′ such that both increments xn(t) − xn(t′) and xn(t′′) − xn(t) are large (separated
from zero) uniformly for all n large enough. Let us formulate this more precisely.

The modulus of J-compactness ∆J(xn(·), c, 1) can be introduced to be the maximum
of the quantities |xn(t)−xn(t′)|∧|xn(t′′)−xn(t)| taken over all points 0 ≤ t′, t, t′′ ≤ 1, t−c ≤
t′ < t < t′′ ≤ t + c. Using this, the condition of J-compactness can be formulated. It
requires that ∆(xn(·), c, 1) tend to 0 as, first, n → ∞ (here the upper limit must be used)
and then c → 0. As was shown by Skorokhod, the pointwise convergence of functions
xn(t) and their J-compactness do imply J-convergence of the functions xn(t).

In both examples given above, ∆(xn(·), c, 1) = 1
2 for n ≥ c−1. Therefore, the iterated

limit of ∆(xn(·), c, 1) equals 1
2 . This means that the condition of J-compactness does not

hold.
What is very important that the space D[0,1] can be equipped with a metric dJ(x(·), y(·))

such that convergence of càdlàg functions in this metric is equivalent to their conver-
gence in the J-topology. An explicit formula that defines this metric is not simple. It
will be given in Section 1.4.

Let now ξn = { ξn(t), t ∈ [0, T ] } be a càdlàg stochastic process for every n = 0, 1, . . ..
One can consider ξn as a random variable that takes values in the functional metric
space D[0,1]. Weak convergence of such random variables (J-convergence of stochastic
processes) is a subject of the so-called functional limit theorems for càdlàg stochastic
processes. Weak limit theorems for the random variables f (ξn) play an important role in
the theory. Actually, f (ξn) are random functionals defined on trajectories of the process
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Figure 1.3: Functions, which do not J-converge.

ξn = { ξn(t), t ∈ [0, T ] }. In particular, functional limit theorems give effective conditions
of weak convergence for important functionals (defined on càdlàg processes) such as
maxima, exceeding times, integral functionals, etc.

In the case of stochastic processes, the condition of weak convergence of the so-
called finite dimensional distributions, which replaces the condition of pointwise con-
vergence, plus the condition of J-compactness of these processes in probability consti-
tute conditions for J-convergence of stochastic processes. Fortunately, realisations of
càdlàg stochastic processes usually possess the property of J-compactness in probabil-
ity under some natural minor conditions that should be added to those conditions that
provide weak convergence of finite dimensional distributions. This makes J-topology a
very natural instrument in limit theorems for càdlàg processes.

We will give a detailed description of basic results concerning functional limit theo-
rems in Sections 1.2–1.6.

1.2 Weak convergence in �m

1.2.1. Weak convergence in �m. Let ξε = (ξε1, . . . , ξεm), ε ≥ 0 be a family of random
variables (vectors) taking values in the Euclidian space �m and depending on a parame-
ter ε ≥ 0. We denote by Fε(x) = P{ξε1 ≤ x1, . . . , ξεm ≤ xm}, x = (x1, . . . , xm) ∈ �m, the
distribution function of the random variable ξε.

We start with the following traditional definition of weak convergence of random
variables.

Definition 1.2.1. Random variables ξε weakly converge to ξ0 as ε → 0 (ξε ⇒ ξ0 as
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ε→ 0) if Fε(x)→ F0(x) as ε→ 0 for all points x ∈ �m in which the limiting distribution
function is continuous.

We denote the set of continuity of the distribution function F0 by C0. In the one-
dimensional case, the set C0 is at most countable. In multi-dimensional case, this is not
true. However, the set C0 ⊆ U0, where U0 is the union of at most countable number
of hyper-planes parallel to one of the coordinate hyper-planes. Namely, U0 is the set of
points x ∈ �m that have at least one of the coordinates belonging to V0. Here V0 is the
set of points x ∈ �1 such that

∑m
i=1 P{ξ0i = x} > 0. Obviously, the set C0 is dense in �m.

LetBm be the Borel σ-algebra of subsets of�m (the minimal σ-algebra containing all
balls in �m) and Fε(A) = P{ξε ∈ A} be the probability measure on Bm generated by the
random variable ξε. This measure is called a distribution of the random variable ξε. It is
connected with the distribution function Fε(x) by the formula Fε(A(x)) = Fε(x), where
A(x) = (−∞, x1] × · · · × (−∞, xm], x ∈ �m, and is uniquely defined by this distribution
function via the corresponding extension theorem of measure theory.

Let ∂A denote the boundary of a set A, i.e., the set of points x such that every ball
Br(x) = {y : |x − y| ≤ r}, with centre in x and radius r > 0, has non-empty intersections
with both sets A and A. If F0(∂A) = 0, then A is called a set of continuity for the
distribution F0. The class of such sets, Bm(F0), is a σ-algebra of subsets of Bm.

The following statement shows that weak convergence of random variables ξε, which
is actually the convergence of the probabilities Fε(A(x)) for x ∈ C0, can be extended to
all sets of continuity for the distribution F0.

Theorem 1.2.1. Weak convergence ξε ⇒ ξ0 as ε → 0 is a necessary and sufficient
condition for the following relation to hold:

Fε(A)→ F0(A) as ε→ 0, A ∈ Bm(F0). (1.2.1)

Theorem 1.2.1 shows a way to introduce weak convergence of random variables that
take values in a general metric space. It can happen that this space does not possess a
partial order similar to the one defined by the relation x ≤ y in �m. In the sequel, ran-
dom variables do not possess distribution functions similar to those defined for random
variables taking values in �m. In this case, one can use relation (1.2.1) to define weak
convergence of random variables.

The next natural step is to characterise weak convergence via convergence of ex-
pectations for the transformed random variables. In particular, it is possible to show
that weak convergence of random variables ξε is equivalent to weak convergence of the
transformed random variables f (ξε) for all continuous functions f , as well as to conver-
gence of expectations E f (ξε) for all bounded continuous functions f . These results are
absolutely analogous for the space�m and for general complete separable metric spaces.
The latter case is considered in Section 1.3.
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1.2.2. Characteristic functions. Characteristic functions provide a very powerful
tool for weak limit theorems. Let us consider a parametric class of exponential functions,
ft(x) = exp{i(t, x)}, t ∈ �m, where (t, x) = t1x1 + . . . + tmxm. The characteristic function
of a random variable ξε is the expectation ϕε(t) = E ft(ξε) considered as a function of
t ∈ �m. Let us formulate the condition:

A2: ϕε(t) = E ft(ξε)→ ϕ0(t) = E ft(ξ0) as ε→ 0 for t ∈ �m.

Theorem 1.2.2. Condition A2 is necessary and sufficient for the weak convergence
ξε ⇒ ξ0 as ε→ 0.

It is useful to note that the assumption of existence of a limiting random variable ξ0
can be omitted in condition A2. It is enough to assume that the following holds: (a)
the characteristic functions E ft(ξε) converge pointwise to some limiting function ϕ0(t)
as ε → 0 for t ∈ �m, and (b) the limiting function ϕ0(t) is continuous at the point 0. In
this case, it is possible to show that (c) ϕ0(t) is a characteristic function of some random
variable, i.e., it can be represented in the form ϕ0(t) = E ft(ξ0). If (c) is proved, then
weak convergence of random variables ξε to ξ0 as ε→ 0, follows from Theorem 1.2.2.

The following useful lemma, known as the Wold–Cramér device allows to prove
weak convergence of m-dimensional random variables by proving weak convergence
of one-dimensional random variables from some related parametric family. The proof
of the latter could be simpler. Let us consider a parametric class of linear functions,
gt(x) = (t, x), t ∈ �m. Let us introduce the following condition:

A3: gt(ξε)⇒ gt(ξ0) as ε→ 0 for t ∈ �m.

Lemma 1.2.1. Condition A3 is necessary and sufficient for the weak convergence ξε ⇒
ξ0 as ε→ 0.

This lemma is a corollary of Theorem 1.2.2. Indeed, the expectation E exp{isgt(ξε)}
is characteristic function of the one-dimensional random variable gt(ξε) taken at the point
s ∈ �1. At the same time, it is a characteristic function of the m-dimensional random
variable ξε taken at the point st ∈ �m.

1.2.3. Reduction of the set determining weak convergence. According to the
initial definition, in order to prove that random variables ξε converge weakly to ξ0 as
ε → 0, one must check the pointwise convergence of their distribution functions, Fε(x),
for all continuity points of the limiting distribution function F0(x). Due to monotonicity
of the distribution functions Fε(x) (if x ≤ y, then Fε(x) ≤ Fε(y)), it is possible to limit
this verification to some set S dense in �m. This set can be a countable set and it is not
required to contain only points of continuity of the limiting distribution function F0. Let
us formulate the following condition:
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A4: Fε(x)→ F0(x) as ε→ 0 for x ∈ S , where S is a set dense in �m.

Lemma 1.2.2. Condition A4 is necessary and sufficient for the weak convergence ξε
⇒ ξ0 as ε→ 0.

The statement of necessity of this lemma can be improved. In condition A4, ex-
istence of the limiting distribution is assumed. However, instead of A4, one can only
assume that: (a) the limits limε→0 Fε(x) = F0(x) exist for x ∈ S , where S is a set
dense in �m, and (b) F0(x) → 0 as xmin = min1≤i≤m xi → −∞ and F0(x) → 1 as
xmin → ∞. The limiting function F0(x), defined in (a) for x ∈ S , can also be defined as
F0(x) = limx<y∈S ,y→x F0(y) for x ∈ S . Under conditions (a) and (b), the function F0(x) is
a distribution function and, according to (a), condition A4 holds.

Note that assumption (b) plays here an essential role. Without this condition there
is no guarantee that the function F0(x) is a distribution function. It is easy to give an
example where (a) is satisfied but the limits F0(x) = 0 for all x ∈ S and, consequently,
for all x ∈ �m.

1.2.4. Slutsky theorem and related results. Weak convergence of random variables
is a convergence of their distributions. For this reason, it is possible for random variables
ξε, which weakly converge to ξ0 as ε → 0, to be defined on different probability spaces
for different ε ≥ 0.

A special and important case is where the limiting random variable ξ0 = const with
probability 1. The following simple lemma shows that, in this case, weak convergence
can be interpreted as convergence in probability, despite the possibility that the random
variables ξε can be defined on different probability spaces.

Lemma 1.2.3. Random variables ξε ⇒ ξ0 as ε → 0, where ξ0 = const with probability
1, if and only if (α) P{|ξε − ξ0| > δ} → 0 as ε→ 0 for δ > 0.

Let random variables ξ′ε = (ξ′ε1, . . . , ξ
′
εm) and ξ′′ε = (ξ′′ε1, . . . , ξ

′′
εl) be defined on the

same probability space for every ε ≥ 0 (possibly different for different ε) and take val-
ues in the spaces �m and �l, respectively. In this case, the vector ξε = (ξ′ε1, . . . , ξ

′
εm,

ξ′′ε1, . . . , ξ
′′
εl) is a random variable that takes values in the space �m+l.

Suppose that the random variables ξ′ε and ξ′′ε converge weakly to ξ′0 and ξ′′0 as ε → 0,
respectively. This does not imply that the random variables ξε weakly converge to ξ0 as
ε→ 0. However, this is true if at least one of the limiting variables ξ′0 or ξ′′0 is a constant.

Theorem 1.2.3. Let (α) ξ′ε ⇒ ξ′0 as ε → 0, and (β) ξ′′ε ⇒ ξ′′0 as ε→ 0, where ξ′′0 = const
with probability 1. Then ξε ⇒ ξ0 as ε→ 0.

As a corollary we have that, under conditions of Theorem 1.2.3, the random variables
f (ξε)⇒ f (ξ0) as ε → 0 for any measurable function f acting from �m+l to �k and a.s.
continuous with respect to the distribution F0 of the random variable ξ0.

In particular, we have (for the case where m = l) that the sums ξ′ε + ξ′′ε ⇒ ξ′0 + ξ′′0 as
ε→ 0. In the case where ξ′′0 = 0, we obtain the following very useful result.
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Lemma 1.2.4. Let (α) ξ′ε ⇒ ξ′0 as ε → 0, and (β) P{|ξ′′ε | > δ} → 0 as ε → 0 for δ > 0.
Then ξ′ε + ξ′′ε ⇒ ξ′0 as ε → 0.

This lemma can be generalised in the following way. Suppose that the random vari-
ables ξε can be represented, for every ε ≥ 0 and n = 0, 1, . . ., as a sum of two random
variables,

ξε = ξ′εn + ξ′′εn. (1.2.2)

Lemma 1.2.5. Let (α) ξ′εn ⇒ ξ0n as ε→ 0 for n = 0, 1, . . . , (β) ξ′0n ⇒ ξ0 as n→∞, and
(γ) limn→∞ limε→0 P{|ξ′′εn| ≥ δ} → 0 for δ > 0. Then ξε ⇒ ξ0 as ε→ 0.

The following lemma deals with the case where random variables ξε possess upper
and lower approximations ξ±εn. Here ξ±εn are random variables such that, for every ε ≥ 0
and n = 0, 1, . . ., the following inequalities hold (for every component):

ξ−εn ≤ ξε ≤ ξ+
εn. (1.2.3)

Lemma 1.2.6. Let (α) ξ±εn ⇒ ξ±0n as ε→ 0 for n = 0, 1, . . . , and (β) ξ±0n ⇒ ξ0 as n→ ∞.
Then ξε ⇒ ξ0 as ε→ 0.

Let Fε(x) and F±εn(x) be distribution functions for the random variables ξε and ξ±εn,
respectively. Approximation inequalities (1.2.3) can be replaced in Lemma 1.2.6 by
the family of stochastic inequalities: (a) F+

εn(x) ≤ Fε(x) ≤ F−εn(x), x ∈ �m, which
obviously hold if (1.2.3) holds. Under (a), conditions of Lemma 1.2.6 imply that (b)
limn→∞ lim

ε→0 F+
εn(x) ≥ F0(x) and limn→∞ limε→0 F−εn(x) ≤ F0(x) for x ∈ C0, where C0

is the set of continuity points for the distribution function F0(x). Conditions (a) and (b)
form a combination, minimal in some sense, of conditions that are based on the upper
and the lower approximations and provide weak convergence of the random variables ξε
to ξ0 as ε→ 0.

If the stronger approximation inequalities (1.2.3) hold, then condition (β) in Lemma
1.2.6 can be replaced with the condition (c) limn→∞ P{|ξ+

0n − ξ−0n| > δ} = 0 for δ > 0.
Obviously, (c) implies (β), due to inequality (1.2.3) for ε = 0.

1.3 Weak convergence in metric spaces

1.3.1. Weak convergence in metric spaces. Let X be a metric space with a metric
d(x, y).

The space X is complete if for any fundamental sequence of points xn ∈ X, i.e., a
sequence such that d(xn, xm) → 0 as n,m → ∞, there exists a point x ∈ X such that
d(xn, x)→ 0 as n→ ∞.

The space X is separable if there exists a countable subset Y = {y1, y2, . . .} ⊆ X such
that mink≤n d(yk, x)→ 0 as n→ ∞ for any point x ∈ X.
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The term Polish space is used to indicate that X is a complete separable metric space.
Below, X is always a Polish space.

A set K is a compact (set) in a Polish space X if there exists a countable set Y =

{y1, y2, . . .} ⊆ X such that mink≤n supx∈K d(yk, x)→ 0 as n→ ∞.
Let B be the Borel σ-algebra of subsets of X (the minimal σ-algebra containing any

ball Br(x) = { y : d(x, y) ≤ r } in the space X).
The space �m is a particular example of a Polish space. Other examples that we

will be interested in are the functional spaces of continuous functions, C, and càdlàg
functions, D. These spaces become Polish spaces if appropriate metrics are introduced
in these spaces.

Random variables that take values in a Polish space may not possess distribution
functions defined in the same way as for random variables with values in the space �m.
For this reason, the definition of weak convergence in �m can not be directly extended
to Polish spaces. However, as it was mentioned above, such a definition can be made by
using a condition analogous to relation (1.2.1).

Let ξε, ε ≥ 0 be a family of random variables that take values in X and depend on a
parameter ε ≥ 0. We denote by Fε(A) = P{ξε ∈ A}, A ∈ B, the distribution of the random
variable ξε.

Let ∂A denote the boundary of the set A, i.e., the set of points x such that every ball
Br(x), with centre in x and a radius r > 0, has non-empty intersections with both sets A
and A. If F0(∂A) = 0, then A is called a set of continuity for the distribution F0. The
class of such sets, B(F0), is a σ-algebra of subsets of B.

Definition 1.3.1. Random variables ξε weakly converge to ξ0 as ε → 0 (ξε ⇒ ξ0 as
ε→ 0) if Fε(A)→ F0(A) as ε→ 0 for all sets A ∈ B(F0).

1.3.2. Convergence of expectations for transformed random variables. It is ob-
vious that if f (x) is a measurable real-valued function defined on a space X (the inverse
image of any Borel set in �1 is a Borel set in X), then f (ξε) is a real-valued random
variable.

The indicator function χA(x) of a Borel set A is a measurable function and it has the
set of discontinuity points, ∂A. The condition F0(∂A) = 0 means that χA(x) is an a.s.
continuous function with respect to the measure F0. The definition of weak convergence
given above requires that EχA(ξε) = Fε(A) → EχA(ξ0) = F0(A) as ε → 0 for all sets of
continuity for the limiting distribution F0.

Let us denote by Cb(F0) the class of all real-valued measurable bounded functions f
that are a.s. continuous with respect to the limiting distribution F0.

The following theorem connects weak convergence with convergence of expectations
of the transformed random variables for the class of bounded a.s. continuous functions.
This class is wider than the class of indicator functions.
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Theorem 1.3.1. Weak convergence ξε ⇒ ξ0 as ε → 0 is a necessary and sufficient
condition for the following relation to hold:

E f (ξε)→ E f (ξ0) as ε → 0, f ∈ Cb(F0). (1.3.1)

The statement of sufficiency in Theorem 1.3.1 is substantial. A standard proof of this
statement is based on approximating a function f from the class Cb(F0), appropriately,
by linear combinations of indicator functions. As far as the statement of necessity is
concerned, it is useful to note that the requirement of a.s. continuity of the functions f
can be replaced with the requirement of them being continuous.

It is appropriate to note that Theorem 1.3.1 allows to give another definition of weak
convergence. This definition is based on the use of relation (1.3.1), and equivalent to
Definition 1.3.1.

1.3.3. Weak convergence of transformed random variables. Let us denote by
C(F0) the class of all real-valued measurable functions f that are a.s. continuous with
respect to the limiting distribution F0. Note that boundedness of the functions f is not
required.

The following statement shows a connection between weak convergence of random
variables and their transformations.

Theorem 1.3.2. Weak convergence ξε ⇒ ξ0 as ε → 0 is a necessary and sufficient
condition for the following relation to hold:

f (ξε)⇒ f (ξ0) as ε→ 0, f ∈ C(F0). (1.3.2)

As in Theorem 1.3.1, the statement of sufficiency in Theorem 1.3.2 is substantial.
The proof can be based on the use of the characteristic functions E exp{it f (ξε)}. Their
pointwise convergence follows from Theorem 1.3.1. As far as the statement of necessity
is concerned, the requirement of a.s. continuity of functions f can be replaced with the
requirement of their continuity.

It is appropriate to note that Theorem 1.3.2 allows to give the third definition of weak
convergence of random variables ξε. This definition is based on the relation (1.3.2), and
is also equivalent to Definition 1.3.1.

Theorem 1.3.2 plays an essential role in the theory. In the case of the functional
spaces C and D, this theorem is the main tool in studies of weak convergence of func-
tionals defined on trajectories of stochastic processes.

Sometimes one can be interested in proving the joint weak convergence of several
functions of random variables which weakly converge. In this context, the following
remark is useful.

Let f1(x), . . . , fk(x) be functions a.s. continuous with respect to the measure F0.
Then their linear combination gt(x) = t1 f1(x) + · · · + tk fk(x) is also a.s. continuous with
respect to the measure F0 for every t = (t1, . . . , tk) ∈ �k. This shows that, if ξε ⇒ ξ0
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as ε → 0, then, as follows from Theorem 1.3.2, gt(ξε) ⇒ gt(ξ0) as ε → 0 for every
t ∈ �k. Due to Lemma 1.2.1, this implies joint weak convergence of the random vectors
( f1(ξε), . . . , fk(ξε))⇒ ( f1(ξ0), . . . , fk(ξ0)) as ε→ 0.

1.3.4. A subsequence approach and Prokhorov’s theorems. In the case of a gen-
eral Polish space, some effective tools related to the weak convergence do not exist (for
example, characteristic functions) or do not work so effectively. The most effective ap-
proach in the case of a metric space is based on a subsequence approach and notions
of relative compactness and tightness of a family of distributions. The corresponding
general theory was developed by Prokhorov (1956).

First of all note that weak convergence is, actually, a convergence of distributions.
So, one can consider weak convergence of distributions (probability measures) Fε, in-
stead of weak convergence of the corresponding random variables ξε; we will use the
symbol Fε ⇒ F0 as ε→ 0 instead of ξε ⇒ ξ0 as ε→ 0.

The following theorem is an analogue of the corresponding statement concerning
numerical limits: aε → a0 as ε → 0 if and only if any subsequence 0 ≤ εn → 0 as
n→ ∞ contains a subsequence ε′k = εnk , where nk →∞ as k → ∞, such that aε′k → a0 as
k →∞.

Theorem 1.3.3. Distributions Fε ⇒ F0 as ε → 0 if and only if (α) any subsequence
εn → 0 as n → ∞ contains a subsequence ε′k = εnk , where nk → ∞ as k → ∞, such that
Fε′k ⇒ F0 as k → ∞.

The notions of tightness and relative compactness for a family of distributions play a
principle role in the theory. Let us introduce the following condition:

K2: There exists a sequence of compact sets Kn ⊆ X, n = 1, 2, . . ., such that
limn→∞ limε→0 Fε(Kn) = 0.

Definition 1.3.2. A family of distributions Fε, ε ≥ 0, is tight as ε → 0, if condition K2
holds.

Definition 1.3.3. A family of distributions Fε, ε ≥ 0, is relatively compact as ε → 0, if
any subsequence εn → 0 as n → ∞ contains a subsequence ε′k = εnk , where nk → ∞ as
k → ∞, such that distributions Fε′k weakly converge to some probability measure F ′0 as
k →∞ (possibly depending of the subsequence ε′k).

The definition of tightness and relative compactness of a family of distributions given
above slightly differs from the standard ones, since we are interested in weak conver-
gence of the corresponding probability measures Fε only for ε → 0. Thus we only
consider subsequences εn that converge to 0, instead of arbitrary subsequences in the set
of the parameters {ε ≥ 0}.

The following Prokhorov theorem plays a fundamental role in the theory.
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Theorem 1.3.4. A family of probability measures Fε, ε ≥ 0 is relatively compact as
ε→ 0 if and only if it is tight as ε→ 0.

Another notion of defining class for a distribution is also important.

Definition 1.3.4. A class of sets DF from the σ-algebra B is a defining class for a prob-
ability measure F, if any probability measure F ′ that takes the same values as F on sets
from the class DF coincides with F.

Let us introduce the following condition:

A5: Fε(A) → F0(A) as ε → 0 for A ∈ DF0 , where DF0 is some defining class for the
distribution F0.

Now we can formulate the main Prokhorov theorem that gives effective conditions
for weak convergence of distributions in Polish spaces.

Theorem 1.3.5. Conditions K2 and A5 are necessary and sufficient for the weak con-
vergence Fε ⇒ F0 as ε→ 0.

It follows from Theorem 1.3.3 that, in order to prove that Fε ⇒ F0 as ε → 0, it is
sufficient (a) to show that the family of distributions Fε is relatively compact as ε → 0,
and (b) to prove that all weakly converging subsequences Fε′k have the same limiting
distribution F0. Claim (a) follows from Theorem 1.3.4. Claim (b) is also true. Indeed,
for any converging subsequence Fε′k , the corresponding limiting distribution F ′0 takes the
same values as F0 for sets in DF0 and, therefore, coincides with F0.

Obviously, if Fε ⇒ F0 as ε → 0, then the family of distributions Fε, ε ≥ 0, is rela-
tively compact as ε → 0. Therefore, due to Theorem 1.3.4, this family of distributions
is also tight as ε → 0. Also, the class of sets of continuity for the distribution F0 is
a defining class for this distribution. So, conditions K2 and A5 are also necessary for
weak convergence Fε ⇒ F0 as ε→ 0.

Let us go back to the case of the space �m. Here, Theorem 1.3.5 can be considered
as a generalisation of Lemma 1.2.2. Indeed, the class of sets A(x) = (−∞, x1] × · · · ×
(−∞, xm], x ∈ S , is a defining class for any probability measure F, if S is a set dense
in �m. Thus A4 implies condition A5. Condition A4 also implies that the family Fε,
ε ≥ 0, is tight, since A4 includes the assumption of existence of a limiting distribution
function. Indeed, due to monotonicity of the distribution functions Fε(A(x)), the set S ,
in condition A4, can be extended to the set S ∪S 0. Here S 0 is the set of continuity of the
limiting distribution function F0(A(x)). Note that the set S 0 is also dense in �m. Let us
define a sequence of the compacts Kn = { y : x′n ≤ y ≤ x′′n }, where x′n = (x′1n, . . . , x′mn) and
x′′n = (x′′1n, . . . , x′′mn) are chosen in such a way that (c) x′n, x′′n ∈ S 0, and (d) min1≤i≤m x′in →
−∞ and min1≤i≤m x′′in → ∞ as n → ∞. Obviously, (e) Fε(Kn) → F0(Kn) as ε → 0, and
the sequence Kn, n ≥ 1 satisfies the condition (f) F0(Kn)→ 0 as n→∞.
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1.3.5. Convergence in probability and convergence with probability 1. These
two types of convergence relate to a model where all random variables ξε, ε ≥ 0 are
defined on the same probability space. So, let us suppose that (Ω,F,P) is a probability
space and ξε = ξε(ω) is a random variable for every ε ≥ 0, that is, a measurable function
acting from Ω to X.

Let us first give a definition of convergence in probability.

Definition 1.3.5. Random variables ξε converge in probability to ξ0 as ε→ 0 (ξε
P−→ ξ0

as ε→ 0) if P{d(ξε, ξ0) > δ} → 0 as ε→ 0 for δ > 0.

It is easy to construct an example in which random variables are defined on the same
probability space and weakly converge but do not converge in probability. However
random variables, which converge in probability, always converge weakly.

Lemma 1.3.1. If ξε
P−→ ξ0 as ε → 0, then ξε ⇒ ξ0 as ε→ 0.

Let us now give a definition of convergence with probability 1.

Definition 1.3.6. Random variables ξε converge with probability 1 to ξ0 as ε → 0 (ξε
P1−→

ξ0 as ε→ 0) if there exists a random event A0 ∈ F such that (α) ξε(ω)→ ξ0(ω) as ε→ 0
for every ω ∈ A0, and (β) P(A0) = 1.

Convergence with probability 1 is also known as a.s. (almost sure) convergence. The

symbol
a.s.−→ can be used instead of

P1−→.
Definition 1.3.6 requires some comments. In the case of weak convergence and

convergence in probability, random variables ξε converge to ξ0 as ε → 0 if and only
if, for any subsequence 0 ≤ εn → 0 as n → ∞, the random variables ξεn converge to
ξ0 as n → ∞. This follows from the corresponding property of limits of non-random
functions.

In the case of a.s. convergence, the situation is slightly different.
If there exists a monotone sequence εn ↓ 0 as n → ∞ and ξε ≡ ξεn for εn ≤ ε < εn+1,

n ≥ 1, we actually have a countable family of random variables. In this situation, the
a.s. convergence of random variables ξεn to ξ0 as εn → 0 is obviously equivalent to the
a.s. convergence of ξεnk

to ξ0 as εnk → 0 for all subsequences nk → ∞ as k → ∞.
The situation is different in the general case where a continuum of random variables is
considered. In such a case, the a.s. convergence of ξε to ξ0 as ε → 0, in the sense of the
definition given above, obviously implies that ξεn a.s. converge to ξ0 as n → ∞ for any
subsequence 0 ≤ εn → 0 as n→ ∞. But the opposite implication is not always true.

For example, let us consider the probability space with the space of outcomes [0, 1],
the Borel σ-algebra of random events, and the Lebesgue measure as the corresponding
probability measure. Let us define, on this probability space, a random variable ξ0(ω) =

ω that is uniformly distributed on [0, 1], and then the random variables ξε = ξ0χ(ξ0 , ε2k)
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for 2−k−1 ≤ ε < 2−k, k = 0, 1, . . .. The random variables ξεn a.s. converge to ξ0 for any
subsequence εn → 0 as n → ∞, but ξε(ω) do not converges as ε → 0 for 1/2 ≤ ω < 1.
Therefore, the random variables ξε do not a.s. converge to ξ0 as ε → 0 in the sense of
the definition given above.

This remark leads us to a slightly different definition of convergence which one can
call sub-sequential convergence with probability 1 or sub-sequential a.s. convergence.

Definition 1.3.7. Random variables ξε sub-sequentially converge with probability 1 to

ξ0 as ε → 0 (ξε
s−P1−→ ξ0 as ε → 0) if the random variables ξεn

P1−→ ξ0 as n → ∞ for any
subsequence εn → 0 as n→∞.

According to the remarks made above both definitions coincide in the case of a count-
able family of random variables. In the case of a continuum family, the sub-sequential
convergence with probability 1 is weaker than the convergence with probability 1 in the
sense of the first definition.

It is easy to construct an example in which random variables, which are defined on
the same probability space, converge in probability but do not converge with probabil-
ity 1. However, random variables that converge with probability 1 always converge in
probability.

Lemma 1.3.2. If ξε
P1−→ ξ0 as ε → 0, then ξε

P−→ ξ0 as ε→ 0.

Note that the assumption ξε
P1−→ ξ0 as ε → 0 can be replaced in this lemma by a

weaker assumption, ξε
s−P1−→ ξ0 as ε→ 0. This follows from the following useful lemma.

Lemma 1.3.3. For any subsequence 0 ≤ εn → 0 as n→ ∞, random variables ξεn

P1−→ ξ0

as n→ ∞ if and only if (α) maxk≥n d(ξεk , ξ0)
P−→ 0 as n→ ∞.

Remark 1.3.1. It follows from Lemma 1.3.3 that the relations d(ξεn , ξ0)
P−→ 0 as n →

∞ and d(ξεn , ξ0)
P1−→ 0 as n → ∞ are equivalent if the sequence of random variables

d(ξεn , ξ0), n = 0, 1, . . . is monotonically non-increasing with probability 1.

Remark 1.3.2. In the case of random variables with values in �m, if ξεn+1
≥ ξεn

for all

n = 0, 1, . . . or ξεn+1
≤ ξεn

for all n = 0, 1, . . ., then the relations ξεn

P−→ ξ0 as n → ∞ and

ξεn

P1−→ ξ0 as n→∞ are equivalent.

The following lemma shows in which way the convergence in probability can be
characterised via the convergence with probability 1 for subsequences.

Lemma 1.3.4. Random variables ξε
P−→ ξ0 as ε → 0 if and only if any subsequence

0 ≤ εn → 0 as n → ∞ contains a subsequence ε′k = εnk , where nk → ∞ as k → ∞, such

that ξε′k
P1−→ ξ0 as k → ∞.
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Let also formulate the following useful lemma.

Lemma 1.3.5. If, for some subsequence εn → 0 as n → ∞, (α) the random vari-

ables ξεn

P1−→ ξ0 as n→∞, and (β) the non-negative integer random variables µn
P−→ ∞

as n→ ∞, then ξεµn

P−→ ξ0 as n→ ∞.

1.3.6. Skorokhod representation theorem. This theorem helps to simplify proofs
of many results on weak convergence by replacing weakly converging random variables
with random variables that have the same distributions and converge almost sure.

We use the symbol ξ̃ε
d
= ξε to indicate that the random variables ξ̃ε and ξε, which take

values in X, have the same distribution, i.e., P{ξ̃ε ∈ A} = P{ξε ∈ A} for A ∈ B.

Theorem 1.3.6. If ξε ⇒ ξ0 as ε → 0, it is possible to construct a probability space
(Ω,F,P) and random variables ξ̃ε, ε ≥ 0, defined on this probability space such that

(α) ξ̃ε
d
= ξε for every ε ≥ 0, and (β) ξ̃ε

P1−→ ξ̃0 as ε→ 0.

In the case of real-valued random variables, this construction was described in Sec-
tion 1.1. In the case of a Polish space, the proof is based on a much more sophisticated
construction which, however, resembles the one described above. Theorem 1.3.6 be-
longs to Skorokhod (1956). Let us briefly describe the original procedure from this
work, since it is not very easy to find it in the literature.

The first step is to construct a hierarchical system of shrinking Borel sets S i1,...,ik ⊂ X,
i1, . . . , ik, k ≥ 1, such that: (a) for every k ≥ 1, the sets S i1,...,ik ∩ S i′1,...,i

′
k

= ∅ if ik , i′k,
(b) ∪ik≥1S i1,...,ik = S i1,...,ik−1 , k > 1, and ∪i1≥1S i1 = X, (c) supx,y∈S i1 ,...,ik

d(x, y) ≤ 2−k for all
i1, . . . , ik, k ≥ 1, and (d) F0(∂S i1,...,ik) = 0 for all i1, . . . , ik, k ≥ 1.

Such a hierarchical system can be constructed in the following way. Since the space
X is separable, it is possible to find, for every k ≥ 1, a sequence of points xi,k, i = 1, 2, . . .,
such that every point of X lies at a distance not greater than 2−(k+1) to at least one point
from this sequence. It is possible to find 2−(k+1) < rk < 2−k such that F0(Brk(xi,k)) = 0
for i ≥ 1 and every k ≥ 1 (there exists at most a countable number of 2−(k+1) < r < 2−k

for which this probability is positive). Then one can define S i1,...,ik = Wi1,1 ∩ · · · ∩Wik ,k,
where Wi,k = Brk(xi,k) \ Brk(x1,k) ∩ · · · ∩ Brk(xi−1,k).

The second step is to construct a similar hierarchical system of sub-intervals of the
interval [0, 1]. We define Iε,i1,...,ik , i1, . . . , ik, k ≥ 1, to be sub-intervals of [0, 1] such that
(e) for k ≥ 1, the intervals Iε,i1,...,ik ∩ Iε,i′1,...,i′k = ∅ if ik , i′k, (f) the interval Iε,i1,...,ik lies to
the left of Iε,i′1,...,i′′k if there exists r such that i1 = i′1, . . . , ir−1 = i′r−1, ir < i′r, (g) the length
of Iε,i1,...,ik = Fε(S i1,...,ik) for i1, . . . , ik, k ≥ 1.

The third step is to define appropriate measurable functions fε(y) acting from [0, 1]
into X. Let us choose a point xi1,...,ik ∈ S i1,...,ik , i1, . . . , ik, k ≥ 1, and then, for every
ε ≥ 0 and k ≥ 1, define functions fε,k(y) = xi1,...,ik for y ∈ Iε,i1,...,ik , i1, . . . , ik ≥ 1. Since
d( fε,k(y), fε,k+m(y)) ≤ 2−k, there exist limits fε(y) = limk→∞ fε,k(y) for every y ∈ [0, 1]
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and ε ≥ 0. The length of the intervals Iε,i1,...,ik converge to that of I0,i1,...,ik as ε → 0 and,
therefore, for internal points y of the intervals I0,i1,...,ik , one has that limε→0 d( fε(y), f0(y)) ≤
2−(k+1). This shows that (h) limε→0 fε(y) = f0(y) for all y ∈ [0, 1] except for at most a
countable set of points.

Let now ρ be a random variable uniformly distributed in [0, 1]. Due to (h), the

random variables ξ̃ε = fε(ρ)
P1−→ ξ̃0 = f0(ρ) as ε→ 0. It is also not difficult to check that

the random variable ξ̃ε has the distribution Fε(A) for every ε ≥ 0.
A typical application of Theorem 1.3.6 relates to proofs of Theorems 1.3.1 and 1.3.2.

Let ξε ⇒ ξ0 as ε→ 0, and ξ̃ε be the random variables constructed according to Theorem
1.3.6. Then, for any function f a.s. continuous with respect to the distribution of the
limiting random variable ξ0, the random variables f (ξ̃ε) converge with probability 1 to
f (ξ̃0). But f (ξ̃ε)

d
= f (ξ̃ε). Since the a.s. convergence implies the weak convergence, the

random variables f (ξε) converge weakly to f (ξ0). Also, in the case where the function
f is bounded, E f (ξ̃ε) converge to E f (ξ̃0) via the Lebesgue theorem. Hence, E f (ξε)
converge to E f (ξ0), since E f (ξ̃ε) = E f (ξε).

1.4 The space D of càdlàg functions

In this section, we give a brief survey of facts related to the geometry of the space D
of càdlàg functions. The special J-metric makes this space a Polish space. This allows
to consider càdlàg processes as random variables that take values in the Polish space D
and, therefore, to study limit theorems for càdlàg processes applying general results on
weak convergence in metric spaces.

First, we consider the basic case of the space of càdlàg functions defined on a finite
interval [0, T ]. Then we show in which way the results can be extended to the space of
càdlàg functions defined on the semi-finite interval [0,∞) and other types of intervals.

1.4.1. The space of càdlàg functions. Let I ⊆ [0,∞) be a finite or semi-finite and
closed, semi-closed, or open sub-interval of [0,∞).

In the two main cases, we will be dealing with [0, T ] and [0,∞). However, we will
also consider other intervals, e.g., the interval (0,∞). The intervals [0, T ] and [0,∞)
contain the left endpoint 0. The first interval also contains the right endpoint T , while
the second one has no right endpoint.

We now introduce DI, a space of m-dimensional càdlàg functions defined on the
interval I.

Definition 1.4.1. DI is a space of functions x(t) = (x1(t), . . . , xm(t)), t ∈ I, which are
defined on the interval I, take values in �m, and are continuous from the right, that is,
possess finite right limits lims>t,s→t x(s) = x(t) at every point t ∈ I which is not the right
endpoint of I, and finite left limits lims<t,s→t x(s) = x(t − 0) ∈ �m at every point t ∈ I
which is not the left endpoint of I.
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To stress that a specific interval I is used, we employ the notations D[0,T ], D[0,∞), etc.
The dimension m is indicated, if confusion can arise, with the notations D(m)

I , D(m)
[0,T ], etc.

The notation D is used for the space of càdlàg functions with no explicit reference to the
interval or the dimension of the space. Let us also list some important special subspaces
of the space DI.

We denote by CI the space of m-dimensional continuous functions defined on the
interval I. To indicate a specific interval I, the notations C[0,T ], etc. are used. To specify
the dimension m, if needed, the notations C(m)

I , C(m)
[0,T ], etc., are also utilised. The notation

C refers to the space of continuous functions without specifying the interval and the
dimension of the space.

We also denote by DI+ the space of m-dimensional functions x(t) = (x1(t), . . . , xm(t)),
t ∈ I, with components xi(t), t ∈ I, that are non-negative and non-decreasing càdlàg
functions for every i = 1, . . . ,m. To indicate a specific interval I, the notations D[0,T ]+,
etc. are used. The dimension m is indicated with the notations D(m)

I+ , D(m)
[0,T ]+, etc.

The following lemma permits to clarify the structure of the set of discontinuity
(jump) points for a càdlàg function.

Lemma 1.4.1. If a function x(t) belongs to the space D[T1,T2], then for every δ > 0 there
exist points T1 = tδ,0 < · · · < tδ,nδ+1 = T2 such that |x(t′)−x(t′′)| ≤ δ for t′, t′′ ∈ [tδ,i, tδ,i+1),
i = 0, 1, . . . , nδ.

This lemma implies that a càdlàg function has at most a finite set of discontinuity
points in which the absolute values of jumps are greater or equal to any δ > 0, if I
is a closed finite interval, and at most a countable set of such discontinuity points, if I
is a semi-open or open interval. The total number of discontinuity points for a càdlàg
function defined on an interval of any type is at most countable.

The following lemma supplements Lemma 1.4.1.

Lemma 1.4.2. If a function x(t) belongs to the space D[T1,T2] and T1 ≤ zδ,1 < · · · < zδ,nδ ≤
T2 are points of discontinuity for the function x(t) with the absolute values of jumps not
less than δ, then there exists hδ > 0 such that |x(t′) − x(t′′)| ≤ δ for |t′ − t′′| ≤ hδ, t′,
t′′ ∈ [zδ,i, zδ,i+1), i = 0, 1, . . . , nδ (here zδ,0 = T1, zδ,nδ+1 = T2).

Let us introduce the modulus of J-compactness which plays the same role for càdlàg
functions as the modulus of continuity for continuous functions. We define, for 0 ≤ T1 <
T2 and c > 0,

∆J(x(·), c, T1, T2) =

= sup
T1∨(t−c)≤t′≤t≤t′′≤(t+c)∧T2

min(|x(t′) − x(t)|, |x(t) − x(t′′)|). (1.4.1)

The simplified notation ∆J(x(·), c, T ) is usually used instead of ∆J(x(·), c, 0, T ) in the
case of an interval [0, T ].
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Lemma 1.4.3. A function x(t) defined on an interval I with values in �m belongs to
the space DI if and only if: (α) x(t) is a function continuous from the right at points
t ∈ I excluding, possibly, the right endpoint, if this interval has such a point, and
(β) lim

c→0
∆J(x(·), c, T1, T2) = 0, [T1, T2] ⊆ I.

Let [T1, T2] ⊆ [T ′1, T
′′
2 ]. Then ∆J(x(·), c, T1, T2) ≤ ∆J(x(·), c, T ′1, T ′′2 ). This means

that, in the case of a closed finite interval I = [T ′, T ′′], it is sufficient to require that
condition (β) in Lemma 1.4.1 holds only for this interval.

1.4.2. J-topology in the space D[0,T]. It is obvious how the results concerning càdlàg
functions defined on an interval [0, T ] can be carried over to the case of any interval
[T1, T2]. So, the following consideration is reduced to the case of an interval [0, T ].

Let us introduce, in the space D[0,T ], a natural topology of convergence.
The first candidate is the uniform topology U of convergence. It is generated by the

uniform metric
dU,T (x(·), y(·)) = sup

0≤t≤T
|x(t) − y(t)|. (1.4.2)

Definition 1.4.2. Functions xε(t), t ∈ [0, T ] converge in the topology U to a function

x0(t), t ∈ [0, T ] as ε→ 0 (xε(t), t ∈ [0, T ]
U−→ x0(t), t ∈ [0, T ] as ε→ 0) if dU,T (xε(·), x0(·))

→ 0 as ε→ 0.

U-topology is very natural for the space of continuous functions C[0,T ]. Unfortu-
nately, this topology is too strong for the space D[0,T ].

Let, for example, xε(t) = χ(aε ≤ t), where aε , a for ε , 0 but aε → a0 as ε → 0.
For ε small enough, the function xε(t) differs from the function x0(t) only by a small shift
in the time of the jump. However, dU,T (xε(·), x0(·)) = 1 for all ε , 0 and, therefore, the
functions xε(t) do not converge in the uniform topology to x0(t) as ε→ 0.

A natural so-called J-topology of convergence in the space D[0,T ] was introduced by
Skorokhod (1955a, 1956). Some times it is also referred to as the Skorokhod topology.

Let Λ[0,T ] be the space of all continuous strictly monotone mappings λ(t) of the inter-
val [0, T ] onto itself such that λ(0) = 0 and λ(T ) = T .

Definition 1.4.3. Functions xε(t), t ∈ [0, T ] converge in the topology J to a function

x0(t), t ∈ [0, T ] as ε → 0 (xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0) if there

exist mappings λε ∈ Λ[0,T ] such that: (α) sup0≤t≤T |λε(t) − t| → 0 as ε → 0, and (β)
dU,T (xε(λε(·)), x0(·))→ 0 as ε→ 0.

Remark 1.4.1. Obviously, a mapping λ belongs to the space Λ[0,T ] if and only if the
corresponding inverse mapping λ−1(t) = sup(s ≥ 0 : λ(s) ≤ t), t ∈ [0, T ] belongs to this
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space. Also,

dU,T (xε(λε(·)), x0(·)) = sup
0≤t≤T

|xε(λε(t)) − x0(t)|
= sup

0≤t≤T
|xε(t) − x0(λ−1

ε (t))| = dU,T (xε(·), x0(λ−1
ε (·))). (1.4.3)

Thus, the condition (β) in Definition 1.4.3 can be replaced by the condition (β′)
dU,T (xε(t), x0(λε(·)))→ 0 as ε→ 0.

It is easy to show that J-topology is weaker than U-topology.

Lemma 1.4.4. Let xε(t), t ∈ [0, T ]
U−→ x0(t), t ∈ [0, T ] as ε → 0. Then xε(t), t ∈

[0, T ]
J−→ x0(t), t ∈ [0, T ] as ε→ 0.

The proof follows immediately from the definitions of U and J topologies, since the
identical mapping λ(t) = t belongs to the space Λ[0,T ].

Note also that the functions xε(t) = χ(aε ≤ t), used in the example above, do J-
converge to x0(t) as ε→ 0. This shows that the implication inverse to the one in Lemma
1.4.4 is not true.

1.4.3. The J-metrics in the space D(m)
[0,T]

. As is known, the space of continuous

functions C(m)
[0,T ] with the uniform metric is a Polish space.

There is a question whether it is possible to construct an appropriate metric in space
D(m)

[0,T ] that would make this space a Polish space.
The metric in the space D(m)

[0,T ] that induces a topology of convergence equivalent
to the J-convergence was constructed by Kolmogorov (1956). It was simplified by
Prokhorov (1956). The simplest modification was given in Gikhman and Skorokhod
(1965). This metric can defined in the following way:

d′J,T (x(·), y(·)) = inf
λ∈Λ[0,T ]

(dU,T (λ(·), λ0(·)) + dU,T (x(λ(·)), y(·))), (1.4.4)

where λ0(t) = t, t ∈ [0, T ].

Theorem 1.4.1. Formula (1.4.4) introduces a metric in the space D(m)
[0,T ]. Convergence in

this metric is equivalent to the J-convergence, i.e., functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈

[0, T ] as ε→ 0 if and only if d′J,T (xε(·), x0(·))→ 0 as ε→ 0.

The space D(m)
[0,T ] equipped with the metric d′J,T is a separable. Unfortunately, it is not a

complete metric space. For example, the sequence of functions xn(t) = χ( 1
2 ≤ t < 1

2 + 1
n ),

t ∈ [0, T ] is fundamental in the metric d′J,T . But it does not converge in this metric to a
function in the space D[0,T ].
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The metric in the space D(m)
[0,T ] that induces the topology of convergence equivalent to

the J-convergence and makes this space a Polish space was constructed by Billingsley
(1968).

Let us define, for a function λ ∈ Λ[0,T ],

‖λ‖T = sup
0≤t,s≤T,t,s

∣∣∣∣∣ln
λ(t) − λ(s)

t − s

∣∣∣∣∣ ≤ ∞. (1.4.5)

The metric constructed by Billingsley (1968) is given by the following formula:

dJ,T (x(·), y(·)) = inf
λ∈Λ[0,T ]

(‖λ‖T + dU,T (x(λ(·)), y(·))). (1.4.6)

Theorem 1.4.2. Formula (1.4.6) introduces a metric in the space D(m)
[0,T ]. This space,

equipped with the metric dJ,T , is a Polish space. The convergence in this metric is equiv-

alent to the J-convergence, i.e., functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε→ 0 if

and only if dJ,T (xε(·), x0(·))→ 0 as ε→ 0.

1.4.4. Necessary and sufficient conditions for J-convergence. By using the mod-
ulus ∆J , it is possible to give necessary and sufficient conditions for the J-convergence
that would not include the mappings λ ∈ Λ[0,T ] in an explicit form.

First, let us assume that the following condition holds:

O(T)
1 : x0(T − 0) = x0(T ).

Let us also introduce the following condition of pointwise convergence:

A6: xε(t) → x0(t) as ε → 0 for t ∈ S , where S is a subset of [0, T ] that is dense in this
interval and contains the points 0 and T .

We use also the following J-compactness condition:

J1: limc→0 limε→0 ∆J(xε(·), c, T ) = 0.

Now we can formulate the corresponding Skorokhod theorem.

Theorem 1.4.3. Let condition O(T)
1 hold. In this case, conditions A6 and J1 are neces-

sary and sufficient for J-convergence of càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈

[0, T ] as ε→ 0.

In the general case, where it is not known whether O
(T)
1 holds or not, condition A6

must be strengthen in the following way:
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A7: (a) xε(t)→ x0(t) as ε → 0 for t ∈ S , where S is a subset of [0, T ] that is dense in
this interval and contains the points 0 and T ;

(b) xε(T − 0)→ x0(T − 0) as ε→ 0.

The conditions of J-convergence take, in this case, the following form.

Theorem 1.4.4. Conditions A7 and J1 are necessary and sufficient for J-convergence

of càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε→ 0.

Under conditions A6 and J1, condition A7 (b) is equivalent to the following condi-
tion:

O(T)
2 : lim0<c→0 limε→0 |xε(T − c) − xε(T − 0)| = 0.

This remark permits to replace conditions A7 and J1 in Theorem 1.4.4 with condi-
tions O(T)

2 , A6, and J1.
If condition O(T)

1 holds, conditions A6 and J1 imply that conditions A7 (b) and O(T)
2

hold. Thus the conditions of Theorem 1.4.4 reduce to the conditions of Theorem 1.4.3.
1.4.5. Compact sets in D[0,T]. Let α(t) be a continuous increasing function defined

for t > 0 such that α(0 + 0) = 0, and a constant β > 0. Let us denote by K[α(·), β, T ] the
set of càdlàg functions x(t), t ∈ [0, T ], such that sup0≤t≤T |x(t)| ≤ β and ∆J(x(·), c, T ) ≤
α(c) for c > 0.

The following lemma characterises compact sets in D[0,T ].

Lemma 1.4.5. The set K[α(·), β, T ] is the space D[0,T ], and for any compact K in the
space D[0,T ] there exists a compact K[α(·), β, T ] ⊇ K.

Let condition A7 hold. Using Lemma 1.4.5 it is possible to show that, in this case,
condition J1 guarantees that for any εn → 0 the sequence of functions xεn(t) contains a
J-convergent subsequence.

For this reason, the quantity ∆J(xε(·), c, T ) can be referred to as a modulus of J-
compactness, and conditions of type J1 as J-compactness conditions.

1.4.6. J-convergence on subintervals. Let 0 < T ′ < T . If (a) xε(t), t ∈ [0, T ]
J−→

x0(t), t ∈ [0, T ] as ε → 0, then (b) xε(T ′) → x0(T ′) for any point T ′ ∈ [0, T ] that
is a point of continuity for the limiting function. Also, the corresponding modula of
J-compactness are connected by the inequality (c) ∆J(xε(·), c, T ′) ≤ ∆J(xε(·), c, T ).

So, relation (a) implies that (d) xε(t), t ∈ [0, T ′]
J−→ x0(t), t ∈ [0, T ′] as ε→ 0 if T ′ is

a point of continuity for the limiting function x0(t).
Assumption (a) does not automatically imply (b) without the assumption of conti-

nuity of the function x0(t) at the point T ′. However, (a) does imply (b) without this
assumption, if it is assumed that (e) xε(T ′ ± 0)→ x0(T ′ ± 0) as ε→ 0.
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It is useful to note that one can replace (a) with the following weaker assumption: (f)
conditions A6 and J1 hold (as it was pointed out in Subsection 1.4.4, condition A7 (b)
or O(T)

2 would be required in this case to provide (a)). Assumption (f) also implies (d),
if T ′ is a continuity point for the limiting function x0(t). Indeed, one can always choose
a point T ′ < T ′′ < T such that T ′′ is a continuity point for the function x0(t). Obviously,
(f) is satisfied for the point T ′′ and, therefore, (a) holds for the functions xε(t), t ∈ [0, T ′′].
Consequently, (d) holds. By the same arguments, (f) implies (d) without the assumption
of continuity of the function x0(t) at the point T ′ if (e) holds.

1.4.7. J-convergence of transformed càdlàg functions. Let g(t, x) be a continuous
function defined on the space [0, T ] × �m with values in the space �l. Let us also
xε(t), t ∈ [0, T ] be càdlàg function from the space D(m)

[0,T ]. Then functions g(t, xε(t)), t ∈
[0, T ] belong to the space D(l)

[0,T ]. the following simple statement readily follows from
Definition 1.4.3.

Lemma 1.4.6. If the functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0, then the

functions g(t, xε(t)), t ∈ [0, T ]
J−→ g(t, x0(t)), t ∈ [0, T ] as ε→ 0.

1.4.8. J-convergence of vector-valued càdlàg functions. Let xε j(t), t ∈ [0, T ] be a
m-dimensional càdlàg function for every j = 1, . . . , r and ε ≥ 0. Let us also consider the
rm-dimensional càdlàg functions x̃ε(t) = (xε j(t), j = 1, . . . , r), t ∈ [0, T ].

The following useful result belongs to Whitt (1973, 1980).

Lemma 1.4.7. Let (α) functions xε j(t), t ∈ [0, T ]
J−→ x0 j(t), t ∈ [0, T ] as ε→ 0 for every

j = 1, . . . , r, and (β) x0 j(t), j = 1, . . . , r have no joint jump points in the interval [0, T ],

then the functions x̃ε(t), t ∈ [0, T ]
J−→ x̃0(t), t ∈ [0, T ] as ε→ 0.

1.4.9. J-convergence to continuous functions. The case of J-convergence to a
continuous function deserves a special consideration.

Let us define the modulus of U-compactness for all c, T > 0,

∆U(x(·), c, T ) = sup
0≤t′,t′′≤T,|t′−t′′ |≤c

|x(t′) − x(t′′)|. (1.4.7)

Lemma 1.4.8. A function x(t) defined on an interval [0, T ] is continuous if and only if
lim
c→0

∆U(x(·), c, T ) = 0.

In what follows we assume that condition A6 holds. Let us introduce the following
condition of U-compactness:

U1: limc→0 limε→0 ∆U(xε(·), c, T ) = 0.
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Note that condition U1 also includes the relation limc→0 ∆U(x0(·), c, T ) = 0. There-
fore, under condition U1, the limiting function x0(t), t ∈ [0, T ] in condition A6 is con-
tinuous.

The following theorem is an extension of the Ascoli-Arzelá theorem for continuous
functions to the case where the pre-limiting functions are càdlàg functions.

Theorem 1.4.5. Conditions A6 and U1 are necessary and sufficient for U-convergence

of càdlàg functions xε(t), t ∈ [0, T ]
U−→ x0(t), t ∈ [0, T ] as ε → 0, where x0(t), t ∈ [0, T ]

is a continuous function.

The following simple inequality connects the modula ∆J and ∆U .

Lemma 1.4.9. Let x(t) and y(t) be two functions from D[0,T ]. Then, for every c, T > 0,

∆J(x(·) + y(·), c, T ) ≤ ∆U(x(·), c, T ) + ∆J(y(·), c, T ). (1.4.8)

Inequality (1.4.8) implies that for all c, T > 0,

∆J(x(·), c, T ) ≤ ∆U(x(·), c, T ). (1.4.9)

As it was mentioned above, if càdlàg functions xε(t) U-converge to a càdlàg function
x0(t) as ε→ 0, then they also J-converge to this function.

In general, the inverse statement is not true if the limiting function is not continuous.
However, it is possible to prove that the topologies of convergence J and U are equivalent
if the limiting function x0(t) is continuous.

Theorem 1.4.6. Càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0, where

x0(t), t ∈ [0, T ] is a continuous function, if and only if xε(t), t ∈ [0, T ]
U−→ x0(t), t ∈ [0, T ]

as ε→ 0.

1.4.10. A decomposition of càdlàg functions based on separation of large jumps,
and an alternative definition of J-convergence. Let us denote by ∆t(x(·)) = x(t)−x(t−
0) the value of the jump of a càdlàg function x(·) at a point t.

Let us take δ > 0 and decompose x(t) into a sum of two components, x(t) = x(δ)
+ (t) +

x(δ)
− (t), t ∈ [0, T ]. Here x(δ)

+ (t) =
∑

s≤t ∆s(x(·))χ(|∆s(x(·))| ≥ δ), t ∈ [0, T ], and x(δ)
− (t) =

x(t) − x(δ)
+ (t), t ∈ [0, T ]. By the definition, x(δ)

+ (t) is the sum of jumps, of the function
x(·) in the interval [0, t], whose absolute values are greater than or equal to δ. According
Lemma 1.4.1, the function x(t) has at most a finite number of such jumps in the interval
[0, T ]. So, x(δ)

+ (t) is a step càdlàg function with absolute values of jumps greater than
or equal to δ, whereas x(δ)

− (t) is a càdlàg function that has no jumps with absolute value
greater than or equal to δ.

Let us also denote x(δ)
# (t) =

∑
s≤t χ(|∆s(x(·))| ≥ δ), t ∈ [0, T ]. By the definition, x(δ)

# (t)
is the number of jumps of the function x(·) in the interval [0, t], whose absolute values
are greater than or equal to δ.
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In Skorokhod (1955a, 1964), the J-topology of convergence was defined in a form
equivalent to the one given in Definition 1.4.3. We formulate this alternative definition in
the form of a lemma. It is slightly modified to include the case where the right endpoint
T may be not a point of continuity of the limiting function.

Let us denote by Z[x0(·)] the set of all δ > 0 such that the càdlàg function x0(t), t ∈
[0, T ] has no jumps with absolute values equal to δ. The set Z[x0(·)] is (0,∞) except
for at most a countable set of points. Let also S [x0(·)] denote the set of all points of
continuity for the function x0(t), t ∈ [0, T ]. Note that 0 ∈ S [x0(·)].

Lemma 1.4.10. Functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0 if and only if:

(α) x(δ)
ε,+(t) → x(δ)

0,+(t) as ε → 0 and x(δ)
ε,#(t) → x(δ)

0,#(t) as ε → 0 for every δ ∈ Z[x0(·)],
t ∈ S [x0(·)] ∪ {T }, (β) limδ→0 limε→0 dU,T (x(δ)

ε,−(·), x(δ)
0,−(·)) = 0.

Using this lemma one can easily prove the following useful statement.

Lemma 1.4.11. Let functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0. Then the

functions (xε(t), x(δ)
ε,+(t), x(δ)

ε,−(t)), t ∈ [0, T ]
J−→ (x0(t), x(δ)

0,+(t), x(δ)
0,−(t)), t ∈ [0, T ] as ε → 0

for every δ ∈ Z[x0(·)].
In order to prove this lemma, one can apply Lemmas 1.4.6, 1.4.7 and 1.4.10 to the

càdlàg functions x̃ε(t) = x(δ)
ε,+(t) and x̂ε(t) = x(δ)

ε,−(t), where δ ∈ Z[x0(·)].
By the definition, (a) x̃(δ′)

ε,+ (t) = x(δ′∨δ)
ε,+ (t), x̃(δ′)

ε,# (t) = x(δ′∨δ)
ε,# (t) and x̃(δ′)

ε,− (t) = x(δ)
ε,+(t) −

x(δ′∨δ)
ε,+ (t). It is obvious that (b) Z[x̃0(·)] = Z[x0(·)] ∪ (0, δ) and S [x0(·)] ⊆ S [x̃0(·)] ⊆

S [x̃(δ′)
0,+ (·)]. By the definition, x̃(δ′)

ε,+ (t) is a step càdlàg function. Also the set S [x0(·)] is
dense in [0, T ]. That is why, (c) if t ∈ S [x̃0(·)] then there exist points t′ ≤ t ≤ t′′, t′, t′′ ∈
S [x0(·)] such that x̃(δ′)

0,+ (t′) = x̃(δ′)
0,+ (t) = x̃(δ′)

0,+ (t′′) and x̃(δ′)
0,# (t′) = x̃(δ′)

0,# (t) = x̃(δ′)
0,# (t′′). It follows

from (a) – (c) that conditions (α) and (β) of Lemma 1.4.10 hold for the functions x̃ε(t).
Thus, (d) x̃ε(t), t ∈ [0, T ]

J−→ x̃0(t), t ∈ [0, T ] as ε→ 0.
By the definition, (e) x̂(δ′)

ε,+ (t) = x(δ′∧δ)
ε,+ (t) − x(δ)

ε,+(t), x̂(δ′)
ε,# (t) = x(δ′∧δ)

ε,# (t) − x(δ)
ε,#(t) and

x̂(δ′)
ε,− (t) = xε(t)− x(δ′∧δ)

ε,+ (t). It is obvious that (f) Z[x̂0(·)] = Z[x0(·)]∪ [δ,∞) and S [x0(·)] ⊆
S [x̂0(·)] ⊆ S [x̂(δ′)

0,+ (·)]. By the definition, x̂(δ′)
ε,+ (·) is a step function. Also the set S [x0(·)]

is dense in [0, T ]. That is why, (g) if t ∈ S [x̂0(·)] then there exist points t′ ≤ t ≤ t′′,
t′, t′′ ∈ S [x0(·)] such that x̂(δ′)

0,+ (t′) = x̂(δ′)
0,+ (t) = x̂(δ′)

0,+ (t′′) and x̂(δ′)
0,# (t′) = x̂(δ′)

0,# (t) = x̂(δ′)
0,# (t′′). It

follows from (e) – (g) that conditions (α) and (β) of Lemma 1.4.10 hold for the functions

x̂ε(t). Thus, (h) x̂ε(t), t ∈ [0, T ]
J−→ x̂0(t), t ∈ [0, T ] as ε → 0.

Obviously, (i) the functions x̃0(t) and x̂0(t) have no joint jump points in the interval
[0, T ]. Using (d), (h), (i), and Lemma 1.4.7 we get that (j) the functions (x̃ε(t), x̂ε(t)), t ∈
[0, T ]

J−→ (x̃0(t), x̂0(t)), t ∈ [0, T ] as ε→ 0. To complete the proof one can apply Lemma
1.4.6. Indeed, the function (xε(t), x(δ)

ε,+(t), x(δ)
ε,−(t)) = (x(δ)

ε,+(t) + x(δ)
ε,−(t), x

(δ)
ε,+(t), x(δ)

ε,−(t)) is a
continuous transformation of the function (x(δ)

ε,+(t), x(δ)
ε,−(t)).
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1.4.11. The M-topology in the space D[0,T]. The U-topology is stronger than the J-
topology of convergence. Let us also introduce an M-topology in this space. This topol-
ogy, introduced by Skorokhod (1956), is weaker than the J-topology. The M-topology
is connected with an important class of maximum and minimum functionals.

Let us introduce a notion of the graph of a function x(t), t ∈ [0, T ] from the space
D(m)

[0,T ].

Definition 1.4.4. The graph Γ[x(·)] is a closed set in �m × [0, T ] that contains all pairs
(x, t) such that the point x belongs to the segment [x(t−0), x(t)] (the set {x(t−0)+ s(x(t)−
x(t − 0)), 0 ≤ s ≤ 1}).

Let us define, for functions x(·), y(·) ∈ D(m)
[0,T ],

dM,T (x(·), y(·)) = sup
(x,t)∈Γ[x(·)]

inf
(y,s)∈Γ[y(·)]

(|t − s| + |x − y|). (1.4.10)

Definition 1.4.5. Functions xε(t), t ∈ [0, T ] converge in the M-topology to a func-

tion x0(t), t ∈ [0, T ] as ε → 0 (xε(t), t ∈ [0, T ]
M−→ x0(t), t ∈ [0, T ] as ε → 0) if

dM,T (xε(·), x0(·))→ 0 as ε→ 0.

As was mentioned above, the J-topology is stronger than the M-topology.

Lemma 1.4.12. If càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0, then

xε(t), t ∈ [0, T ]
M−→ x0(t), t ∈ [0, T ] as ε → 0.

It is possible to give an example of càdlàg functions that converge in the M-topology
but do not converge in the J-topology.

In what follows, we assume that condition A6 holds.
Let us introduce the modulus of M-compactness,

∆M(x(·), c, T ) = sup
t∈[0,T ],t′∈[t−c ,t−c + c

2 ],t′′∈[t+c − c
2 ,t

+
c ]

H(x(t′), x(t), x(t′′)), (1.4.11)

where t−c = 0∨ t − c, t+
c = t + c ∧ T , and H(x, [x′, x′′]) is the distance from the point x to

the segment [x′, x′′], c, T > 0.
Let us introduce the following condition of M-compactness:

M1: limc→0 limε→0 ∆M(xε(·), c, T ) = 0.

As in the case of the J-topology, we formulate the corresponding condition for M-
convergence in the case where the right endpoint T is a point of continuity for the corre-
sponding limiting function, i.e., condition O(T)

1 holds.
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Theorem 1.4.7. Let condition O
(T)
1 hold. In this case, conditions A6 and M1 are neces-

sary and sufficient for M-convergence of càdlàg functions xε(t), t ∈ [0, T ]
M−→ x0(t), t ∈

[0, T ] as ε→ 0.

In the general case, if it is not known whether O(T)
1 holds or not, A7 and M1 are

necessary and sufficient conditions for the M-convergence xε(t), t ∈ [0, T ]
M−→ x0(t), t ∈

[0, T ] as ε→ 0.
1.4.12. Geometry of the space D[0,∞). The J-topology was introduced so far for

càdlàg functions defined on a finite interval [0, T ]. However, all results can be carried
over to càdlàg functions defined on intervals of other types. The most interesting is the
case of the semi-infinite interval [0,∞).

We will follow the approach of Stone (1963), whereby the J-convergence of càdlàg
functions on the interval [0,∞) is equivalent to the J-convergence of these functions on
finite intervals [0, Tn] for some sequence Tn → ∞ as n→ ∞.

Let us consider the space D(m)
[0,∞) of m-dimensional càdlàg functions defined on the

semi-infinite interval [0,∞). In this case, the notation x(t), t ∈ [0,∞) is usually replaced
by a simpler notation x(t), t ≥ 0.

Definition 1.4.6. Functions xε(t), t ≥ 0 from the space D(m)
[0,∞) converge in the topology J

to a function x0(t), t ≥ 0 as ε → 0 (xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε → 0) if there exists a

sequence 0 < Tn → ∞ as n → ∞ such that (α) xε(t), t ∈ [0, Tn]
J−→ x0(t), t ∈ [0, Tn] as

ε→ 0 for every n = 1, 2, . . ..

As it follows from the remarks made in Subsection 1.4.7, existence of a sequence Tn

in Definition 1.4.6 implies that (α) is satisfied for any other sequence 0 < T ′n → ∞ as
n→ ∞ if T ′n, n ≥ 1 are points of continuity for the limiting function.

There was a question whether the definition given above can be replaced with a
definition similar to the one used by Skorokhod for finite intervals. Another question
was whether there exists a metric that turns the space D(m)

[0,∞) into a Polish space. Both
questions were answered in the affirmative by Lindvall (1973).

Let Λ be the space of all continuous strongly monotone functions λ(t) defined on
[0,∞) such that λ(0) = 0 and λ(t)→ ∞ as t →∞.

Lemma 1.4.13. Functions xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε → 0 if and only if there

exist functions λε ∈ Λ such that (α) sup0≤t<T |λε(t) − t| → 0 as ε → 0, T > 0, and
(β) sup0≤t<T |xε(λε(t)) − x0(t)| → 0 as ε→ 0, T > 0.

Let us define, for a function λ ∈ Λ,

‖λ‖ = sup
0≤t,s<∞,t,s

∣∣∣∣∣ln
λ(t) − λ(s)

t − s

∣∣∣∣∣ ≤ ∞. (1.4.12)
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Let us also define the functions gN(t) = 1χ(t ≤ N) + (N + 1 − t)χ(N < t ≤ N + 1),
t ∈ [0,∞), for = 1, 2, . . .. By the definition, for any function x(t), t ≥ 0 from the space
D(m)

[0,∞), the product gN(t)x(t), t ≥ 0 is a function from D(m)
[0,∞), continuous at the point N +1,

and equal to 0 for t ≥ N + 1.
The following formula defines the desirable metric:

dJ(x(·), y(·)) =
∑

N≥1

2−N(1 ∧ inf
λ∈Λ

(‖λ‖ + dU,N+1(gN(λ(·))x(λ(·)), gN(·)y(·))). (1.4.13)

Theorem 1.4.8. Formula (1.4.13) introduces a metric in the space D(m)
[0,∞). This space,

equipped with the metric dJ , is a Polish space. The convergence in this metric is equiva-

lent to the J-convergence, i.e., functions xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε → 0 if and only

if dJ(xε(·), x0(·)) → 0 as ε → 0.

The following condition is an analogue of the weak convergence condition A6, but
relate to the semi-infinite interval [0,∞):

A8: xε(t)→ x0(t) as ε → 0 for t ∈ S , where S is a subset of [0,∞) that is dense in this
interval and contains the point 0.

Also, the following condition is an analogue of the J-compactness condition J1:

J2: limc→0 limε→0 ∆J(xε(·), c, T ) = 0, T > 0.

The following theorem is a direct corollary of Theorem 1.4.3 and the definition of
J-convergence on the semi-infinite interval [0,∞).

Theorem 1.4.9. Conditions A8 and J2 are necessary and sufficient for J-convergence

of càdlàg functions, xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε→ 0.

It is useful to note that the J-compactness relation in condition J2 holds for all T > 0
if and only if it holds for some sequence Tn → ∞ as n→ ∞.

Condition J2 can also be replaced in Theorem 1.4.9 with a similar condition in which
the modulus ∆J(xε(·), c, T ) is replaced with the modulus ∆′J(xε(·), c, T ).

1.4.13. The U and M-topologies in the space D[0,∞). Let us now carry over, to the
case of semi-infinite interval [0,∞), the corresponding definitions and results concerning
the U and M-topologies.

Definition 1.4.7. Functions xε(t), t ≥ 0 from the space D(m)
[0,∞) converge in the U-topology

to a function x0(t), t ≥ 0 as ε → 0 (xε(t), t ≥ 0
U−→ x0(t), t ≥ 0 as ε → 0) if there exists a

sequence 0 < Tn → ∞ as n → ∞ such that (α) xε(t), t ∈ [0, Tn]
J−→ x0(t), t ∈ [0, Tn] as

ε→ 0 for every n = 1, 2, . . ..
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The following U-compactness condition is an analogue of conditions U1, but it re-
lates to the semi-infinite interval [0,∞):

U2: limc→0 limε→0 ∆U(xε(·), c, T ) = 0, T > 0.

Note that condition U2 also includes the relation limc→0 ∆U(x0(·), c, T ) = 0, T > 0.
Therefore, under condition U2, the limiting function x0(t), t ≥ 0 in condition A8 is
continuous.

Theorem 1.4.10. Conditions A8 and U2 are necessary and sufficient for U-convergence

of càdlàg functions, xε(t), t ≥ 0
U−→ x0(t), t ≥ 0 as ε→ 0.

The case of the M-topology can be considered analogously.

Definition 1.4.8. Functions xε(t), t ≥ 0 from the space D(m)
[0,∞) converge in the M-topology

to a function x0(t), t ≥ 0 as ε → 0 (xε(t), t ≥ 0
M−→ x0(t), t ≥ 0 as ε → 0) if there exists a

sequence 0 < Tn → ∞ as n → ∞ such that (α) xε(t), t ∈ [0, Tn]
M−→ x0(t), t ∈ [0, Tn] as

ε→ 0 for every n = 1, 2, . . ..

The following M-compactness condition is an analogue of condition M1 but relates
to the semi-infinite interval [0,∞):

M2: limc→0 limε→0 ∆M(xε(·), c, T ) = 0, T > 0.

Theorem 1.4.11. Conditions A8 and M2 are necessary and sufficient for M-convergence

of càdlàg functions, xε(t), t ≥ 0
M−→ x0(t), t ≥ 0 as ε→ 0.

1.4.14. J-topology for other types of intervals. The cases of other types of open or
semi-open intervals can be treated in a similar way.

In the case of an interval I = (a, b), where 0 ≤ a < b ≤ ∞, a nested sequence of
intervals is constructed, a < T1n < T2n < b, T1n → a, T2n → b as n → ∞. For a
semi-closed interval I = [a, b), we take a = T1n < T2n < b, T2n → b, and in the case
I = (a, b], a < T1n < T2n = b, T1n → a.

One says that càdlàg functions xε(t), t ∈ I
J−→ x0(t), t ∈ I as ε → 0 if xε(t), t ∈

[T1n, T2n]
J−→ x0(t), t ∈ [T1n, T2n] as ε→ 0 for some sequence of intervals [T1n, T2n], n =

1, 2, . . . that satisfy that requirements described above.
In a way analogous to that used for the intervals [0, T ] and [0,∞), it is possible to

define the J-topology in the space DI and then to construct a metric dJ,I that makes this
space a Polish space and that generates a topology of convergence in DI equivalent to
the J-topology.

The U and M topologies of convergence on intervals of other types are introduced in
a similar way.
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1.5 J-continuous functionals

Conditions of J-continuity for various functionals defined on the space D of càdlàg func-
tions play an essential role in the theory. They lead to conditions of weak convergence
for random functionals defined on càdlàg processes. In this section, we formulate con-
ditions of J-continuity for some important functionals.

1.5.1. A.s. J-continuous functionals in space D[0,T]. Let B(m)
[0,T ] be the Borel σ-

algebra of subsets of the space D(m)
[0,T ] equipped with the metric dJ,T (the minimal σ-

algebra containing all balls in this space). Let also f (x(·)) be a measurable functional
(function) acting from the space D(m)

[0,T ] into�l (the inverse image f −1(B) = { x(·) : f (x(·))
∈ B } belongs to the σ-algebra B(m)

[0,T ] for every B ∈ Bl, where Bl is the Borel σ-algebra of
subsets of �l).

Definition 1.5.1. A functional f is J-continuous at a càdlàg function x0(t), t ∈ [0, T ] if

f (xε(·))→ f (x0(·)) as ε→ 0 for any càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ]

as ε→ 0.

Definition 1.5.2. A measurable set CJ[ f ] of càdlàg functions x0(t), t ∈ [0, T ] at which
the functional f is J-continuous is called the set of J-continuity of this functional.

Definition 1.5.3. A functional f is called J-continuous if CJ[ f ] = D(m)
[0,T ] and it is called

a.s. J-continuous with respect to a probability measure F on B(m)
[0,T ] if F(CJ[ f ]) = 1. The

class of all functionals a.s. J-continuous with respect to the measure F is denoted by
HJ[F].

To indicate the interval, the notations CJ,T [ f ] and HJ,T [F] are used instead of CJ[ f ]
and HJ[F].

Note that in order to show a.s. continuity of a functional f with respect to a measure
F it is enough to show that F(C′J[ f ]) = 1 for some Borel set C′J[ f ] ⊆ CJ[ f ].

The problem concerning conditions under which a functional f is a.s. J-continuous
with respect to a measure F can be split into two subproblems. The first one is to describe
the structure of the set of J-continuity CJ[ f ] or some appropriate set C′J[ f ]. Below we
give an answer to this question for some important classes of functionals. The second
problem is to give conditions which would imply that F(CJ[ f ]) = 1 or F(C′J[ f ]) = 1 for
the measure F generated by a càdlàg process from a given class.

1.5.2. The value of a càdlàg function and the value of jump at a point. The
simplest measurable functional is f ±t (x(·)) = x(t ± 0). Here 0 ≤ t ≤ T .

Lemma 1.5.1. If 0 < t < T , then CJ[ f ±t ] is the set of càdlàg functions that are (α)
continuous at point t. If t = 0 or t = T , then CJ[ f ±t ] = D(m)

[0,T ].
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Note also that any càdlàg function x(t) is continuous at 0. That is why, the assumption
of continuity can be omitted in (α) if t = 0.

As it follows from Theorem 1.4.4, if càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈

[0, T ] as ε → 0 then xε(T ± 0) → x0(T ± 0) as ε → 0. That is why the assumption of
continuity can also be omitted in (α) if t = T .

Let us denote by ∆t(x(·)) = x(t) − x(t − 0) the value of the jump of a càdlàg function
x(·) at a point t. Here 0 ≤ t ≤ T . Note that, for any càdlàg function, ∆0(x(·)) = 0. The
following lemma is a corollary of Lemma 1.5.1.

Lemma 1.5.2. If 0 < t < T , then CJ[∆t] is a set of càdlàg functions that are (α) contin-
uous at the point t. If t = 0 or t = T , then CJ[∆t] = D(m)

[0,T ].

1.5.3. The sum of large jumps, the number of large jumps, and the maximal
jump. Let us denote by Σ

(δ)
t1,t2(x(·)) =

∑
t1≤t≤t2 ∆s(x(·))χ(|∆s(x(·))| ≥ δ) the sum of all

jumps, in the interval [t1, t2], the absolute values of which is greater than or equal to δ.
Here 0 ≤ t1 ≤ t2 ≤ T , δ > 0.

Lemma 1.5.3. If 0 < t1 ≤ t2 < T , then CJ[Σ(δ)
t1,t2] is a set of càdlàg functions that are (α)

continuous at the points t1 and t2, and (β) ∆t(x(·)) , δ for all t ∈ [t1, t2]. If at least one
of the points t1, t2 coincides with 0 or T , then the condition of continuity in the definition
of the set CJ[Σ(δ)

t1,t2] should be omitted for the corresponding endpoint.

We will also denote by N (δ)
t1,t2(x(·)) =

∑
t1≤t≤t2 χ(|∆s(x(·))| ≥ δ) the number of jumps, in

the interval [t1, t2], that have absolute values greater than or equal to δ. Here 0 ≤ t1 <
t2 ≤ T , δ > 0.

Lemma 1.5.4. The set CJ[N(δ)
t1 ,t2]= CJ[Σ(δ)

t1,t2] for every 0 ≤ t1 ≤ t2 ≤ T .

Let us now define the functional Mt1,t2(xε(·)) = supt1≤t≤t2 |∆t(x(·))| to be the maximal
(by absolute value) jump in the interval [t1, t2]. Here 0 ≤ t1 ≤ t2 ≤ T .

Lemma 1.5.5. If 0 < t1 ≤ t2 < T , then CJ[Mt1,t2] is the set of càdlàg functions that are
(α) continuous at the points t1 and t2. If at least one of the points t1, t2 coincides with
0 or T , then the condition of continuity in the definition of the set CJ[Mt1,t2] should be
omitted for the corresponding endpoint.

1.5.4. The moments of large jumps, the values of large jumps and the sums
of large jumps. Let us denote α(δ)

kT (x(·)) = inf(s > α(δ)
k−1T (x(·)) : |∆s(x(·))| ≥ δ) ∧ T ,

k = 1, 2, . . ., where α(δ)
0T (x(·)) = 0. These functionals are the successive moments of large

jumps for a càdlàg function x(t) truncated in time by T .
To simplify the formulation, we describe the corresponding subsets, instead of the

sets of J-continuity of the functionals introduced in this subsection.
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Lemma 1.5.6. The set C′J[α(δ)
kT ] of càdlàg functions such that (α) |∆s(x(·))| , δ for t ∈

[0, T ] is a subset of CJ[α(δ)
kT ] for every k = 1, 2, . . ..

Also, let us denote β(δ)
kT (x(·)) = ∆

α
(δ)
kT (x(·))(x(·)), k = 1, 2, . . .. These functionals consti-

tute values of successive large jumps for a càdlàg function x(t). More precisely, β(δ)
kT (x(·))

is the value of k-th large jump if α(δ)
kT (x(·)) < T . But β(δ)

kT (x(·)) = ∆T (x(·)) if α(δ)
kT (x(·)) = T .

Lemma 1.5.7. The set C′J[β(δ)
kT ] = C′J[α(δ)

kT ] is a subset of CJ[β(δ)
kT ] for every k = 1, 2, . . ..

Let us also introduce, for k = 0, 1, . . ., the functional ρ(δ)
kT (x(·)) = Σ

(δ)
0,αkT

(x(·)), where
αkT = α(δ)

kT (x(·)). This functional is the sum of large jumps for the càdlàg function x(t) if
α(δ)

kT (x(·)) < T . But ρ(δ)
kT (x(·)) = Σ

(δ)
0,T (x(·)) if α(δ)

kT (x(·)) = T .

Lemma 1.5.8. The set C′J[ρ(δ)
kT ] = C′J[α(δ)

kT ] is a subset of CJ[ρ(δ)
kT ] for every k = 1, 2, . . ..

1.5.5. The maximum and the minimum. Let us define m±t1,t2(x(·)) = (m±t1,t2(xi(·)),
i = 1, . . . ,m), where m+

t1,t2(xi(·)) = supt1≤t≤t2 xi(t) and m−t1,t2(xi(·)) = inft1≤t≤t2 xi(t) for i =

1, . . . ,m. Here 0 ≤ t1 ≤ t2 ≤ T .

Lemma 1.5.9. If 0 < t1 ≤ t2 < T , then CJ[m±t1,t2] is the set of càdlàg functions, that are
(α) continuous at the pointst1 and t2. If at least one of the points t1, t2 coincides with 0 or
T , then the condition of continuity in the definition of the set CJ[m±t1,t2] should be omitted
for the corresponding endpoint.

Note that if (a) the functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0 and also

(b) xε(t ± 0)→ x0(t ± 0) as ε → 0 for t ∈ V ⊆ [0, T ], then m±t1,t2(xε(·)) → m±t1,t2(x0(·)) as
ε→ 0 without requiring that the limiting function be continuous at those endpoints t1, t2

that belong to the set V .
1.5.6. The exceeding time and the over-jump. Exceeding times are functionals

dual to the maximum and the minimum functionals. Let us define τ±a,T (x(·)) = (τ±ai,T
(xi(·)),

i = 1, . . . ,m), where τ±ai,T (xi(·)) = inf(t ≥ 0: ± xi(t) > ±ai) ∧ T for i = 1, . . . ,m. Here
a = (a1, . . . , am) ∈ �m.

Lemma 1.5.10. CJ[τ±a,T ] is the set of càdlàg functions such that (α) for every i = 1, . . . ,m
there do not exist points 0 ≤ t1 < t2 ≤ T such that m±0,t1(xi(·)) = m±0,t2(xi(·)) = ai.

The formulation of Lemma 1.5.10 will not change if the inequalities > ai are replaced
with the inequalities ≥ ai. in the definition of the functionals τ±ai,T (xi(·)).

An over-jump is a functional defined as γ±a,T (x(·)) = (γ±ai,T
(xi(·)), i = 1, . . . ,m). Here

γ±ai,T
(xi(·)) = xi(τ±ai,T

(xi(·))) − ai for i = 1, . . . ,m.

Lemma 1.5.11. The set CJ[γ±a,T ] is a set of càdlàg functions that satisfy the condition (α)
given in Lemma 1.5.10, and (β) for every i = 1, . . . ,m, the functional m±0,τi−0(xi(·)) , ai if
m±0,τi

(xi(·)) , ai, where τi = τ±ai,T
(xi(·)).
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1.5.7. The number of intersects of a strip. This functional can be defined as
ν+

T,a−,a+(x(·)) = (ν+
T,a−i ,a

+
i
(xi(·)), i = 1, . . . ,m). Here ν+

T,a−i ,a
+
i
(xi(·)) is the number of times

the càdlàg function xi(s) intersects the strip [a−i , a
+
i ] from below in the interval [0, T ].

This functional is set to be equal to k if there are k + 1 points 0 ≤ t0 < t1 < · · · <
tk ≤ T such that xi(t0) < a−i , xi(t1) > a+

i , xi(t2) < a−i , . . . and there are no k + 2 points
that have this property. The functionals ν−T,a−,a+(x(·)) and ν−T,a−i ,a+

i
(xi(·)), which are the

number of intersects of the same strip from above, are defined analogously by replacing
the determining inequalities given above by the inequalities xi(t0) > a+

i , xi(t1) < a−i ,
xi(t2) > a+

i , . . . .

Lemma 1.5.12. The set CJ[ν±T,a−,a+] is the set of càdlàg functions that satisfy the condi-
tions (α) and (β) given, respectively, in Lemmas 1.5.10 and 1.5.11 for both points a−
and a+.

1.5.8. Integral functionals. This is an important class of functionals. Let us con-
sider the case where an integral functional is defined as Ih(x(·)) =

∫
[0,T ]

h(t, x(t)) dt
(the Lebesgue integration), where h is a real-valued measurable function defined on
[0,∞) ×�m and bounded in every finite cube of this set.

Lemma 1.5.13. Let h be a continuous function. Then CJ[Ih] = D(m)
[0,T ].

Let now consider the case when the function h can be discontinuous. Below, Ch is
the set of continuity points for the function h.

In order to simplify the formulation, we prefer to describe an appropriate subset
rather than the corresponding set of J-continuity.

Lemma 1.5.14. The set C′J[Ih] of càdlàg functions that satisfy the condition
(α)

∫
[0,T ]

χ((t, x(t)) ∈ Ch) dt = 0 is a subset of CJ[Ih].

Note that condition (α) implies that the function h(t, x(t)) is Riemann integrable in
the interval [0, T ].

1.5.9. The modulus of J-compactness. The modulus of J-compactness, ∆J,c(x(·)) =

∆J(x(·), c, T ), is also a measurable functional. Here c > 0.

Lemma 1.5.15. CJ[∆J,c] is the set of càdlàg functions that (α) have no jumps with the
absolute value equal to c.

1.5.10. A.s. J-continuous functionals for transformed càdlàg functions. The
following construction allows to extend the results formulated above.

Let g(t, x) be a continuous function acting from [0,∞) × �m into �l. Obviously, the
function y(t) = g(t, x(t)) belongs to the space D(l)

[0,T ] if the function x(t) belongs to the
space D(m)

[0,T ].
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According to Lemma 1.4.6, if functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0,

then the functions yε(t) = g(t, xε(t)), t ∈ [0, T ]
J−→ y0(t) = g(t, x0(t)), t ∈ [0, T ] as ε→ 0.

The conditions of J-continuity formulated in Lemmas 1.5.1 – 1.5.15 can be applied
to transformed càdlàg functions. Let f be a measurable functional acting from D(l)

[0,T ] to
�k. Then fg(x(·)) = f (g(·, x(·))) is a measurable functional acting from D(m)

[0,T ] to �k.
Let us denote by C(l)

J [ f ] the set of J-continuity of the functional f in the space D(l)
[0,T ]

and by Ĉ(m)
J [ fg] the set of functions x(t) from the space D(m)

[0,T ] such that the correspond-
ing transformed function y(t) = g(t, x(t)) belongs to C(l)

J [ f ]. By the definition, the set
Ĉ(m)

J [ fg] ⊆ C(m)
J [ fg]. Here C(m)

J [ fg] is the set of J-continuity of the functional fg.
Therefore, condition F(Ĉ(m)

J [ fg]) = 1 is a sufficient condition for a.s. J-continuity of
the functional fg with respect to the measure F.

1.5.11. A.s. J-continuous functionals on the space D[0,∞). The definitions that
follow repeat those given above for the space D[0,T ].

Let B(m)
[0,∞) be the Borel σ-algebra of subsets of the space D(m)

[0,∞) equipped with the
metric dJ and f (x(·)) be a measurable functional acting from the space D(m)

[0,∞) into �l.
A functional f is J-continuous at a càdlàg function x0(t), t ≥ 0, if f (xε(·))→ f (x0(·))

as ε→ 0 for any càdlàg functions xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε→ 0.

The measurable set CJ[ f ] of càdlàg functions x0(·) at which the functional f is J-
continuous is called the set of J-continuity of this functional.

A functional f is called J-continuous if CJ[ f ] = D(m)
[0,∞) and it is called a.s. J-

continuous with respect to a probability measure F on B(m)
[0,∞) if F(CJ[ f ]) = 1. The class

of all functionals that are a.s. J-continuous with respect to the measure F is denoted by
HJ[F].

To exhibit the interval, the notations CJ,∞[ f ] and HJ,∞[F] are used instead of CJ[ f ]
and HJ[F], respectively.

J-convergence for càdlàg functions that are defined on the interval [0,∞) is defined
via J-convergence of their time-truncations on finite intervals. This makes it possible to
connect J-continuity of functionals defined on D(m)

[0,∞) with J-continuity of time-truncated
versions of these functionals.

Let us define, for a measurable functional f (x(·)) defined on D(m)
[0,∞), the time-truncated

version of this functional, fT , defined on D(m)
[0,T ] to be fT (xT (·)) = f (x(· ∧ T )). Here,

xT (t) = x(t), t ∈ [0, T ], is the truncation of the càdlàg function x(t), t ∈ [0,∞), to the
interval [0, T ] and x(t ∧ T ), t ∈ [0,∞), is the càdlàg function that coincides with the
function x(t) for t ∈ [0, T ] and takes the constant value x(T ) for t > T .

In many cases, the functional f (x(·)) depends on values that the functions x(t) take
on some finite interval [0, T ]. In particular, all the functionals considered above have
this property. The truncation operation described above allows to reduce consideration
to the space D(m)

[0,T ].
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However, some important functionals can also be defined in an essentially non-
truncated version. In this case, the reduction to the case of a finite interval still can
be accomplished in the following way.

Let us assume that, for a measurable functional f and a càdlàg function x0(t), t ∈
[0,∞), there exists a sequence 0 < Tn → T ≤ ∞ as n → ∞ of continuity points for the
function x0(t) such that: (a) limn→∞ limε→0 | f (xε(· ∧ Tn)) − f (xε(·))| = 0 for any càdlàg

functions xε(t), t ∈ [0,∞)
J−→ x0(t), t ∈ [0,∞) as ε → 0, and (b) the time-truncated

version of this functional, fTn , is J-continuous at the truncated function x0(t), t ∈ [0, Tn],
for every n = 1, 2, . . . . Then the functional f is J-continuous at the function x0(t),
t ∈ [0,∞).

For example, exceeding times give an example of functionals that can be defined in
a non-truncated form as τ±a (x(·)) = (τ±ai

(xi(·)), i = 1, . . . ,m), where τ±ai
(xi(·)) = inf(t ≥

0: ± xi(t) > ±ai) for i = 1, . . . ,m.
Assume that (c) limt→∞ ±m±0,t(x0i(·)) > ±ai, i = 1, . . . ,m, and (d) m±0,t(x0i(·)) is a

strictly monotone function in t for every i = 1, . . . ,m.
Let 0 < Tn → ∞ as n → ∞ be a sequence of continuity points of a càdlàg function

x0(t), t ∈ [0,∞). It follows from Lemma 1.5.10 that (c) and (d) imply (b). Obviously,
(e) τ±a (x(·)) − τ±a,Tn

(x(·)) = 0 if ±m±0,Tn
(xi(·)) > ±ai. Thus (b), (c) and (e) yield that (f)

τ±ai
(xεi(·)) < ∞, i = 1, . . . ,m, for all ε sufficiently small, and (a) holds.
The following lemma follows from the remarks made above.

Lemma 1.5.16. The set C′J[τ±a ] of càdlàg functions that satisfy conditions (c) and (d) is
a subset of CJ[τ±a ].

In a way similar to the above, the definitions of J-continuity can be extended to the
spaces DI for other types of intervals.

1.5.12. A.s. J-continuous mappings. The definitions and some results concerned
a.s. J-continuous functionals can be generalised to the case of a.s. J-continuous map-
pings. Let I and I′ be subintervals of �1 and g be a measurable mapping that acts from
the space D(m)

I to the space D(l)
I′ . Let x(t), t ∈ I be a function from the space D(m)

I . Let us
consider a function x(g)(·) = g(x(·)). By the definition, the function x(g)(t), t ∈ I′ belongs
to the space D(l)

I′ .

Definition 1.5.4. A mapping g is J-continuous at a càdlàg function x0(t), t ∈ I if

x(g)
ε (t), t ∈ I′

J−→ x(g)
0 (t), t ∈ I′ as ε → 0 for any càdlàg functions xε(t), t ∈ I

J−→
x0(t), t ∈ I as ε→ 0.

Definition 1.5.5. A measurable set C̃J[g] of càdlàg functions x0(t), t ∈ I at which the
mapping g is J-continuous is called the set of J-continuity of this mapping.

Definition 1.5.6. A mapping g is called J-continuous if C̃J[g] = D(m)
I and it is called a.s.

J-continuous with respect to a probability measure F on B(m)
I if F(C̃J[g]) = 1. The class

of all mappings a.s. J-continuous with respect to the measure F is denoted by H̃J[F].
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A typical example is a transformation mapping g : x(g)(t) = g(t, x(t)), t ∈ [0, T ].
Hear g(t, x) is a continuous function defined on the space [0, T ] × �m with values in the
space �l. This mapping acts from the space D(m)

[0,T ] to the space D(l)
[0,T ]. The mapping g is

J-continuous that follows from Lemma 1.4.6.
Another typical example is a decomposition mapping d : x(d)(t) = (x(t), x(δ)

+ (t), x(δ)
− (t)),

t ∈ [0, T ]. Here x(δ)
+ (t) =

∑
s≤t ∆s(x(·))χ(|∆s(x(·))| ≥ δ), t ∈ [0, T ], and x(δ)

− (t) = x(t) −
x(δ)

+ (t), t ∈ [0, T ]. This mapping acts from the space D(m)
[0,T ] to the space D(3m)

[0,T ]. The fol-
lowing lemma supplements the result of Lemma 1.4.11.

Lemma 1.5.17. The set of J-continuity for the mapping d coincides with the set càdlàg
functions that (α) have not jumps with absolute values equal to δ.

Let us also consider a max-mapping m : x(m)(t) = (x(t), x+(t)), t ∈ [0, T ], where
x(t) = (xi(t), i = 1, . . . ,m) ∈ D(m)

[0,T ], x+(t) = (x+
i (t), i = 1, . . . ,m) and x+

i (t) = sups∈[0,t] xi(s),
i = 1, . . . ,m. This mapping acts from the space D(m)

[0,T ] to the space D(2m)
[0,T ].

The following simple lemma supplement the result of Lemma 1.5.9.

Lemma 1.5.18. The mapping m is J-continuous.

In order to prove this lemma one can apply Definition 1.4.3. According to this

definition, if càdlàg functions xε(t), t ∈ [0, T ]
J−→ x0(t), t ∈ [0, T ] as ε → 0, then

there exist mappings λε ∈ Λ[0,T ] such that (a) sup0≤t≤T |λε(t) − t| → 0 as ε → 0,
and (b) dU,T (xε(λε(·)), x0(·)) → 0 as ε → 0. Obviously, (b) holds if and only if (c)
dU,T (xεi(λε(·)), x0i(·)) → 0 as ε → 0, for every i = 1, . . . ,m. Using (c) one get (d)
dU,T (x+

εi(λε(·)), x+
0i(·)) ≤ sup0≤t≤T sup0≤s≤t |xεi(λε(s)) − x0i(s)| = dU,T (xεi(λε(·)), x0i(·)) → 0

as ε→ 0, for i = 1, . . . ,m. But, (c) and (d) hold if and only if (e) dU,T (x(m)
ε (λε(·)), x(m)

0 (·))
→ 0 as ε→ 0. By Definition 1.4.3, (e) implies J-convergence of the functions x(m)

ε (t), t ∈
[0, T ] to the function x(m)

0 (t), t ∈ [0, T ] as ε → 0.
In an obvious way the definitions given above can be generalised to the case where

g be a measurable mapping that acts from some closed with respect to J-convergence
sub-space D̃ ⊆ D(m)

I to the space D(l)
I′ .

In context of this book, an important composition mapping is an object of special
interest. It is defined as c : x̃(c)(t) = (x1(y1(t)), . . . , xm(ym(t))), t ∈ [0,∞) where x̃(t) =

(y1(t), . . . , ym(t), x1(t), . . . , xm(t)), t ∈ [0,∞) belongs to the space D(m)
[0,∞)+ × D(m)

[0,∞). This
mapping acts from the space D(m)

[0,∞)+ × D(m)
[0,∞) to the space D(m)

[0,∞).
The notation x ◦ y(t) can be used in order to show explicitly functions that are com-

posed.
Conditions of a.s. J-continuity for the composition mapping are studied in Chapter 3.

What is interesting that the compositions x̃(c)
ε (t) = (xε1(yε1(t)), . . . , xεm(yεm(t))), t ∈ [0,∞)

can J-converge even if the functions x̃ε(t) = (yε1(t), . . . , yεm(t), xε1(t), . . . , xεm(t)), t ∈
[0,∞) do not J-converge. Such statements require to extend the concept of a.s. J-
continuous mappings.
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1.5.13. A.s. U-continuous and a.s. M-continuous functionals. Analogous defi-
nitions can be given for the topologies U and M. The definitions are given in a unified
form for both cases of the intervals I = [0, T ] and I = [0,∞), as to avoid repetitions.

In the case of the U-topology, the only case of convergence to continuous functions
is considered.

A measurable functional f is called U-continuous at a continuous function x0(t) if
f (xε(·))→ f (x0(·)) as ε→ 0 for any càdlàg functions xε(·) U−→ x0(·) as ε→ 0.

The measurable set CU[ f ] of continuous functions x0(t) at which the functional f is
U-continuous is called the set of U-continuity of this functional.

A functional f is called U-continuous if CU[ f ] = D(m)
I and it is called a.s. U-

continuous with respect to a probability measure F, defined on the Borel σ-algebra of the
corresponding space of càdlàg functions, if F(CU[ f ]) = 1. The class of all functionals
that are a.s. U-continuous with respect to a measure F is denoted by HU[F].

To indicate the interval, the notations CU,T [ f ] and HU,T [F] or CU,∞[ f ] and HU,∞[F]
replace CU[ f ] and HU[F], respectively.

By the definition, the set CU[ f ] contains only continuous functions. Let us also
recall that J-convergence and U-convergence are equivalent if the limit functions are
continuous. So, for any measurable functional f , the set of U-continuity coincides with
the intersection of the set of J-continuity of this functional and the corresponding space
C of continuous functions.

Lemma 1.5.19. The set CU[ f ] = CJ[ f ] ∩ C.

This lemma makes it simple to describe the set CU[ f ] for most of the functional
described in Subsections 1.5.2 – 1.5.9. For example, the set CU,T [ f ] coincides with the
the space C(m)

[0,T ] for all functionals introduced in Subsections 1.5.2 – 1.5.5.
It is also useful to note also that, due to Lemma 1.5.19, a measurable functional f

can be a.s. U-continuous with respect to a probability measure F only if the measure F
is concentrated on the corresponding space C of continuous functions.

In the case of the M-topology, all the definitions are analogous.
One says that a measurable functional f is M-continuous at a càdlàg function x0(t)

if f (xε(·))→ f (x0(·)) as ε→ 0 for any càdlàg functions xε(·) M−→ x0(·) as ε→ 0.
The measurable set CM[ f ] of càdlàg functions x0(t) at which the functional f is M-

continuous is called the set of M-continuity of this functional.
A functional f is called a.s. M-continuous if CM[ f ] = D(m)

I and it is called a.s. M-
continuous with respect to a probability measure F, defined on the Borel σ-algebra of the
corresponding space of càdlàg functions, if F(CM[ f ]) = 1. The class of all functionals
that are a.s. M-continuous with respect to a measure F is denoted by HM[F].

The cases of intervals [0, T ] or [0,∞) are specified, respectively, by the notations
CM,T [ f ] and HM,T [F] or CM,∞[ f ] and HM,∞[F].
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A study of conditions for M-continuity of concrete functionals is beyond the scope
of this book. We will only formulate the related result for maximum and minimum
functionals that play an important role in limit theorems for randomly stopped càdlàg
processes.

Lemma 1.5.20. CM,∞[m±t1,t2] is the set of càdlàg functions that are (α) continuous at the
points t1 and t2.

As it was pointed out by Skorokhod (1956), M-convergence can actually be char-
acterised in terms of convergence of maximum and minimum functionals. Namely,

xε(t), t ≥ 0
M−→ x0(t), t ≥ 0 as ε → 0 if and only if m(±)

t′,t′′(xε(·)) → m(±)
t′,t′′(x0(·)) as

ε→ 0 for all points 0 ≤ t1 ≤ t2 < ∞ that are continuity points for the function x0(t).

1.6 J-convergence of càdlàg processes

In this section, we give a survey of general results related to functional limit theorems
for càdlàg stochastic processes. These processes can be considered as random variables
taking values in the corresponding space of càdlàg functions D. This space becomes
a Polish space if an appropriate metric is introduced. This allows to apply the general
theory of weak convergence in metric spaces for obtaining functional limit theorems for
càdlàg processes.

1.6.1. Càdlàg stochastic processes. Let us consider a stochastic process ξ(t) =

(ξ1(t), . . . , ξm(t)), t ∈ I, defined on an interval I and taking values in the space �m. Actu-
ally, the process ξ(t) is a family of m-dimensional random variables ξ(t). These random
variables are defined on some probability space (Ω,F,P) and depend on a parameter
t ∈ I which should be interpreted as time.

A process ξ(t), t ∈ I is a càdlàg process if, for every outcome ω ∈ Ω, the realisation
of this process {ξ(t,ω), t ∈ I} belongs to the space D(m)

I .
1.6.2. Finite dimensional distributions and measures generated by càdlàg pro-

cesses. Let t1 < · · · < tn be a finite sequence of times in the interval I. Obviously,
(ξ(t1), . . . , ξ(tn)) is a random variable (vector) taking values in the space �mn. Let us
consider the distribution function of this random vector,

Ft1,...,tm(x̄) = Ft1,...,tm(x1, . . . , xn)
= P{ξ(t1) ≤ x1, . . . , ξ(tn) ≤ xn}, x̄ = (x1, . . . , xn) ∈ �mn.

The distribution function given above is in the form of a joint distribution function of
the random variables ξ(t1), . . . , ξ(tn). It is called a finite-dimensional distribution of the
process ξ(t), t ∈ I at the points t1, . . . , tn.

The family of all finite-dimensional distributions for arbitrary varying sequences of
times t1 < · · · < tn, t1, . . . , tn ∈ I, n = 1, 2, . . . , determines probability properties of the
process ξ(t), t ∈ I in the following sense.
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Denote by ZI the class of all cylindric subsets Zt1,...,tm,x1,...,xn = { x(·) ∈ DI : x(t1)
≤ x1, . . . , x(tn) ≤ xn}, x1, . . . , xn ∈ �m, t1 < . . . < tn, t1, . . . tn ∈ I, n = 1, 2, . . . .

Let us also use the symbol B(m)
I to denote the minimal σ-algebra which contains all

cylindric subsets from the class ZI.
Via the extension measure theorem, the family of finite-dimensional distributions of

the process ξ(t), t ∈ I uniquely determines a probability measure F(A) on the σ-algebra
B(m)

I . This measure takes the values F(Zt1,...,tm,x1,...,xn) = Ft1,...,tm(x1, . . . , xn) on cylindric
sets from the class ZI. By the definition, F(A) = P{ω : ξ(ω) = {ξ(ω, t), t ∈ I} ∈ A}
is a probability that the realisation of the process ξ(t), t ∈ I belongs to a set A from
the σ-algebra B(m)

I . This measure is called a measure generated by the càdlàg process
ξ(t), t ∈ I.

As was pointed out in Section 1.4, the space D(m)
I can be equipped with a metric

dJ,I that makes this space a Polish space and such that convergence in this metric is
equivalent to J-convergence. These metrics were explicitly introduced in Subsections
1.4.3 and 1.4.11 for two most important types of intervals, [0, T ] and [0,∞), respectively.
The corresponding procedure was also described in Subsection 1.4.13 for other types of
intervals.

We will use the same symbol B(m)
I to denote the Borel σ-algebra of subsets of D(m)

I
equipped with the metric dJ,I (the minimal σ-algebra containing all balls in D(m)

I ). The
following theorem explains why the double use of the symbol B(m)

I is justified.

Theorem 1.6.1. The minimal σ-algebra that contains all cylindric subsets from the class
ZI coincides with the Borel σ-algebra of subsets of D(m)

I equipped with the metric dJ,I .

This theorem allows to consider a càdlàg process ξ = {ξ(t), t ∈ I} defined on a
probability space (Ω,F,P) as a random variable defined on this probability space and
taking values in the Polish space D(m)

I endowed with the metric dJ,I. The distribution of
the random variable ξ is the measure F(A).

1.6.3. A.s. càdlàg stochastic processes. Let us also give a definition of an a.s.
càdlàg process. A process ξ(t), t ∈ I is an a.s. càdlàg process if there exists a set A0 ∈ F
such that: (a) for every ω ∈ A0, the realisation {ξ(t,ω), t ∈ I} belongs to the space D(m)

I ,
(b) P(A0) = 1.

It is always possible to replace the realisation of an a.s. càdlàg process ξ(t), t ∈ I
by some fixed càdlàg functions for ω < A0. For example, one can define ξ′(t,ω) =

ξ(t,ω)χA0(ω), ω ∈ Ω, t ∈ I. The new càdlàg process ξ′(t), t ∈ I will be stochastically
equivalent to the old one, i.e., P{ω : ξ(t,ω) = ξ′(t,ω) } = 1 for t ∈ I. Moreover, since
ξ(t,ω) = ξ′(t,ω), t ∈ I for ω ∈ A0, we have that P{ω : ξ(t,ω) = ξ′(t,ω), t ∈ I} = 1.

This shows that both processes have the same finite-dimensional distributions and,
therefore, they generate the same measure F(A) on the σ-algebra B(m)

I .
Let f be a measurable functional that is defined on D(m)

I and takes values in �l. If
ξ(t), t ∈ I is a càdlàg process, then f (ξ(·)) is a random variable that takes values in �l. It
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is called a random functional defined on the càdlàg process ξ(t).
If ξ(t), t ∈ I, is an a.s. càdlàg process, then, formally, f (ξ(·,ω)) is possibly not be

defined for ω < A0. To avoid this problem, one can define f (x(·)) = 0 for x(·) < D(m)
I and

then use the càdlàg modification ξ′(t), t ∈ I, defined above. Since f (ξ(·,ω)) = f (ξ′(·,ω))
for ω ∈ A0, we have that P{ω : f (ξ(·,ω)) = f (ξ′(·,ω))} = 1. So, the random variables
f (ξ′(·)) and f (ξ(·)) have the same distribution.

All definitions, limit theorems, and other statements concerning càdlàg stochastic
processes can be immediately translated to a.s. càdlàg stochastic processes and, hence,
one can always reduce the consideration to càdlàg processes.

Absolutely similar remarks can be made about continuous and a.s. continuous sto-
chastic processes.

A process ξ(t) is a continuous process if, for every outcome ω ∈ Ω, the realisation of
this process {ξ(t,ω), t ∈ I} belongs to the space C(m)

I .
A process ξ(t) is an a.s. continuous process if there exists a set A0 ∈ F such that: (a)

for every ω ∈ A0, the realisation {ξ(t,ω), t ∈ I} belongs to the space C(m)
I , (b) P(A0) = 1.

Any continuous process is a càdlàg process, and any a.s. continuous process is an
a.s. càdlàg process. Thus one can consider the measure F(A) generated by the process
{ξ(t,ω), t ∈ I} on the σ-algebra B(m)

I . Actually, this measure is concentrated on the space
of continuous functions, C(m)

I , i.e., F(C(m)
I ) = 1.

It is possible to replace realisations of the process {ξ(t,ω), t ∈ I} with some fixed
continuous functions for ω ∈ A0. For example, one can define ξ′(t,ω) = ξ(t,ω)χA0(ω),
ω ∈ Ω, t ∈ I. The new continuous process ξ′(t), t ∈ I, will be stochastically equivalent
to the old one, moreover, P{ω : ξ(t,ω) = ξ′(t,ω), t ∈ I} = 1. So, both processes have
the same finite-dimensional distributions and, therefore, they generate the same measure
F(A).

Again, all definitions, limit theorems, and other statements concerning continuous
stochastic processes can immediately be rephrased for a.s. continuous stochastic pro-
cesses. For this reason, the consideration can always be reduced to the case of continuous
processes.

1.6.4. Defining classes for measures generated by càdlàg processes. Let ξ(t), t ∈ I
be a càdlàg process defined on an interval I. Let also S be a subset of the interval I, which
is dense in this interval and contains its endpoints. Because the càdlàg process ξ(t) is
continuous from the right, the measure F(B) generated by this process is uniquely deter-
mined by the family of finite-dimensional distributions, F t1,...,tm(x̄) = Ft1,...,tm(x1, . . . , xn),
taken at the points x̄ = (x1, . . . , xm) ∈ Ct1,...,tm , t1 < · · · < tm, t1, . . . , tm ∈ S , m = 1, 2, . . .,
where Ct1,...,tm is the set of continuity points for the distribution function F t1,...,tm(x̄).

Denote by ZI[F, S ] the class of cylindric sets Zt1,...,tm,x1,...,xn , x̄ = (x1, . . . , xn) ∈ Ct1,...,tm ,
t1 < · · · < tm, t1, . . . , tm ∈ S , m = 1, 2, . . .. Then the fact described above can be
formulated in the following way.
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Lemma 1.6.1. The class ZI[F, S ] is a defining class for the measure F(A) generated by
a càdlàg process ξ(t), t ∈ I.

1.6.5. The set of stochastic continuity of a càdlàg process. It follows from Lemma
1.4.1 that a càdlàg process has, with probability 1, at most a finite number of disconti-
nuity points with the absolute values of jumps greater than a positive number δ > 0 in
any finite closed interval. Therefore, a càdlàg process has, with probability 1, at most a
countable set of discontinuity points.

Definition 1.6.1. A process ξ(t), t ∈ I is stochastically continuous at a point t ∈ I if

(α) ξ(t + s) − ξ(t)
P−→ 0 as s→ 0.

If (α) holds as 0 < s→ 0 or 0 > s→ 0, the process ξ(t), t ∈ I is called stochastically
continuous from the right or from the left, respectively.

By the definition, a càdlàg process is continuous and, therefore, it is also stochasti-
cally continuous from the right at any point t ∈ I that is not the right endpoint of this
interval.

Lemma 1.6.2. The set S of stochastic continuity of a càdlàg process ξ(t), t ∈ I is the
whole interval I excluding at most a countable set of points. The process ξ(t) is contin-
uous with probability 1 at every point of stochastic continuity.

It follows from Lemma 1.6.2 that a stochastically continuous càdlàg process can pos-
sess only random points of discontinuity. However, a stochastically continuous càdlàg
process may be not an a.s continuous process. The following lemma gives conditions
for a.s. continuity of a càdlàg process.

Lemma 1.6.3. A càdlàg process ξ(t), t ∈ I is a.s. continuous if and only if
(α) limc→0 P{∆U(ξ(·), c, T1, T2) > δ} = 0, δ > 0, for every interval [T1, T2] ⊆ I.

1.6.6. Weak convergence of càdlàg processes. Let ξε(t), t ∈ I be a càdlàg stochastic
process for every ε ≥ 0. Note that the processes ξε(t), t ∈ I can be defined on different
probability spaces for different ε ≥ 0.

Definition 1.6.2. We say that càdlàg processes ξε(t) weakly converge to a càdlàg process
ξ0(t) on a set V ⊆ I as ε → 0 (ξε(t), t ∈ V ⇒ ξ0(t), t ∈ V as ε → 0) if for any
finite sequence of times t1 < · · · < tn, t1, . . . , tn ∈ V , n = 1, 2, . . ., the random vectors
(ξε(t1), . . . , ξε(tn)) ⇒ (ξ0(t1), . . . , ξ0(tn)) as ε → 0. The set V is called a set of weak
convergence.

1.6.7. J-convergence of càdlàg processes. There exist several equivalent ways to
define J-convergence of càdlàg processes on various intervals I.
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One universal way is to consider the càdlàg process as a random variable ξε =

{ξε(t), t ∈ I} taking values in the Polish space D(m)
I with the metric generating the J-

topology, and then to reduce the definition of J-convergence to the definition of weak
convergence of the random variables ξε. This method can be used for any kind of inter-
vals I.

Such an approach was used by Prokhorov (1956) to introduce U-convergence of con-
tinuous processes defined on a finite interval. Due to Kolmogorov (1956) and Billingsley
(1968), this approach was also extended to the case of J-convergence of càdlàg pro-
cesses.

Theorem 1.3.2, which states that weak convergence of random variables ξε that take
values in a Polish space is equivalent to weak convergence of the transformed random
variables f (ξε) for all functions f that are a.s. continuous with respect to the distribution
of the limiting random variable ξ0, gives another universal way to define J-convergence
of càdlàg processes. J-convergence of càdlàg processes can be defined via weak conver-
gence of random functionals f (ξε(·)) for all functionals that are a.s. J-continuous with
respect to the measure generated by the corresponding limiting càdlàg process.

This way was used by Skorokhod (1956) in his originating paper, where the topol-
ogy J was invented. The advantage of this approach is that it permits to avoid explicit
metric considerations and use the same functional approach for other topologies of con-
vergence, for example, U and M.

Both methods are described below in the basic case of a closed finite interval [0, T ]
and the semi-infinite interval [0,∞). There also exists the third equivalent method to
define J convergence of càdlàg processes on the interval [0,∞) and other types of semi-
open and open intervals. This method was proposed by Stone (1963). Similarly to the
case of non-random càdlàg functions, one can define J-convergence of càdlàg processes
ξε(t), t ∈ I via J-convergence of the time-truncations of these processes ξε(t), t ∈ In for
some sequence of embedded closed finite intervals In ⊆ I such that ∪n≥1In = I.

This method yields an equivalent definition of J-convergence and, at the same time,
it has a certain advantage. It permits to avoid the explicit consideration of J-metrics for
the interval [0,∞) and other semi-open or open intervals. These metrics have structures
too complicated to apply them effectively in calculations related to J-convergence.

It is appropriate to note that J-convergence of càdlàg processes and their weak con-
vergence is not the same. In general, weak convergence of càdlàg processes ξε(t) on a
interval I does not imply their J-convergence. Also, J-convergence of ξε(t) processes
does not imply weak convergence of these processes on the whole interval I. But it does
imply that they weakly converge on the set of all points of stochastic continuity of the
limiting process.

Actually, the meaning of J-convergence for càdlàg processes is that it is equivalent
to weak convergence of random functionals that are a.s. J-continuous with respect to the
measure generated by the corresponding limiting process.

The structures of the sets of J-continuity for various functionals have been described



48 Chapter 1. Weak convergence of stochastic processes

in Section 1.5 in the case where the càdlàg functions are defined on the intervals [0, T ]
or [0,∞). Of course, the conditions that provide a.s. J-continuity of some specific
functional with respect to the measure generated by the limiting càdlàg process from a
specific class require a special investigation. As a rule, the purpose of such an investiga-
tion would be to express J-continuity conditions in terms of some natural characteristics
of the corresponding limiting process.

For example, this can be effectively done for processes with independent increments
and Markov càdlàg processes for the functionals listed in Section 1.5. An exposition of
the corresponding results is, however, beyond the scope of this work.

1.6.8. J-convergence of càdlàg processes defined on the interval [0,T]. Let, for
every ε ≥ 0, ξε(t), t ∈ [0, T ] be a m-dimensional càdlàg stochastic process. As above,
the processes ξε(t), t ∈ I, can be defined on different probability spaces for different ε.

The process ξε = {ξε(t), t ∈ [0, T ]} can be considered as a random variable taking
values in the Polish space D(m)

[0,T ] with the J-metric dJ,T introduced in Subsection 1.4.3.
The measure Fε(A) generated by the process ξε(t), t ∈ [0, T ] on the σ-algebra B(m)

[0,T ] can
be regarded as distribution of the random variable ξε.

As follows from Theorem 1.3.2, the next two definitions of J-convergence of càdlàg
processes are equivalent.

Definition 1.6.3. Càdlàg processes ξε(t), t ∈ [0, T ] converge in the topology J to a

càdlàg process ξ0(t), t ∈ [0, T ] as ε→ 0 (ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε→ 0) if

(α) the random variables ξε ⇒ ξε as ε→ 0.

Definition 1.6.4. Càdlàg processes ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε → 0 if

(α) the random variables f (ξε(·))⇒ f (ξ0(·)) as ε→ 0 for every functional f ∈ HJ,T [F0].

Let us introduce the following condition for weak convergence:

A9: ξε(t), t ∈ S ⇒ ξ0(t), t ∈ S as ε → 0, where S is a subset of [0, T ] that is dense in
this interval and contains the points 0 and T .

We also use the following J-compactness condition:

J3: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ > 0.

The next condition is an analogue of condition O(T)
1 :

O
(T)
3 : P{ξ0(T − 0) = ξ0(T )} = 1.

The following functional limit theorem belongs to Skorokhod (1956). It gives condi-
tions for J-convergence of càdlàg stochastic processes in the case where the correspond-
ing limiting process is stochastically continuous at the right endpoint T .
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Theorem 1.6.2. Let condition O
(T)
3 hold. In this case, conditions A9 and J3 are neces-

sary and sufficient for J-convergence ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε→ 0.

The original proof of this theorem was given by Skorokhod with the use of his
method of one probability space. Later, Billingsley constructed a metric making the
space D(m)

[0,T ] a Polish space. This permitted to give a proof based on the use of general
Prokhorov’s theorems about weak convergence in a metric space. A detailed presenta-
tion of this proof can be found, for example, in Billingsley (1968, 1999). Let us briefly
describe the main steps of the proof based on applying Prokhorov’s Theorem 1.3.5.

Let Fε(A) be measures generated by the càdlàg processes ξε(t), t ∈ [0, T ] on the σ-
algebra B(m)

[0,T ]. Due to Lemma 1.6.1, condition A9 implies convergence of values of the
measures Fε(A) for sets A from the class Z[0,T ][F0, S ]. This is a defining class for the
limiting measure F0(A). Therefore, condition A5 of Theorem 1.3.5 holds.

According to this theorem, one should also prove the tightness of the family of mea-
sures Fε(A) as ε→ 0, that is to show that condition K2 holds for this family.

Here Lemma 1.4.5, which gives the form of compact sets in the space D(m)
[0,T ], can

be employed. Using this lemma it is possible to show that the tightness of the mea-
sures Fε(A) as ε → 0 follows from J3 and the following two additional conditions: (a)
limc→0 limε→0 P{sup0≤t≤T |ξε(t)| > δ} = 0, δ > 0, (b) limc→0 limε→0(P{∆U(ξε(·), 0, c) >
δ} + P{∆U(ξε(·), T − c, T ) > δ}) = 0, δ > 0. However, it is not difficult to show that
conditions J3, A9, and O(T)

3 imply (a) and (b). Therefore, the tightness condition K2
holds.

By applying Theorem 1.3.5 to the measures Fε(A), one obtains a proof of the state-
ment of sufficiency in Theorem 1.6.2.

The necessity of condition J3 follows from Lemma 1.5.15 that states that the func-
tionals ∆J,c are a.s. J-continuous with respect to the measure F0(A) for all c > 0 save
for at most a countable number of c-values. The necessity of condition A9 follows
from Lemma 1.5.1 that provides a.s. J-continuity of the corresponding functionals f +

0 ,
f ±T , and f +

t ( f ±t (x(·)) = x(t ± 0)) for all points t of stochastic continuity of the process
ξ0(t), t ∈ [0, T ]. According to Lemma 1.6.2, this set is [0, T ] excluding at most a count-
able set of points. This set is dense in [0, T ]. It also contains the point 0 and, due to
condition O

(T)
3 , the point T .

In the general case, where it is not known whether O(T)
3 holds or not, condition A9

must be strengthen in the following way:

A10: (ξε(t), ξε(T − 0)), t ∈ S ⇒ (ξ0(t), ξ0(T − 0)), t ∈ S as ε→ 0, where S is a subset of
[0, T ] that is dense in this interval and contains the points 0 and T .

Conditions for J-convergence take, in this case, the following form.

Theorem 1.6.3. Conditions A10 and J3 are necessary and sufficient for J-convergence

ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε → 0.
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The following condition is an analogue of condition O
(T)
2 :

O(T)
4 : lim0<s→0 limε→0 P{|ξε(T − s) − ξε(T − 0)| > δ} = 0, δ > 0.

Note that, if J3 and O(T)
4 hold, conditions A9 and A10 are equivalent. Using this, it

possible to replace conditions A10 and J3 in Theorem 1.6.3 with conditions O(T)
4 , A9,

and J3.
If condition O

(T)
3 holds, then conditions A9 and J3 imply conditions A10 and O

(T)
4 .

So, the conditions of Theorem 1.6.3 reduce to the conditions of Theorem 1.6.2 in this
case.

1.6.9. U-convergence of càdlàg processes defined on the interval [0, T]. Let us
formulate conditions for U-convergence of càdlàg processes for the case of an a.s. con-
tinuous limiting process. In this case, it is more suitable to use the definition that is based
on weak convergence of random a.s. J-continuous functionals.

Definition 1.6.5. Càdlàg processes ξε(t), t ∈ [0, T ] converge in the topology U to an

a.s. continuous process ξ0(t), t ∈ [0, T ] as ε → 0 (ξε(t), t ∈ [0, T ]
U−→ ξ0(t), t ∈ [0, T ]

as ε → 0) if the random variables f (ξε(·)) ⇒ f (ξ0(·)) as ε → 0 for every functional
f ∈ HU,T [F0].

Let introduce the following continuity condition:

B1: ξ0(t), t ∈ [0, T ] is an a.s. continuous process.

As was mentioned in the Subsection 1.5.12, the equivalence of J-convergence and
U-convergence, if the limiting function is continuous, implies that the set CU,T [ f ] =

CJ,T [ f ] ∩C(m)
[0,T ]. Condition B1 implies, obviously, that F0(C(m)

[0,T ]) = 1. So, F0(CU,T [ f ]) =

1 if and only if F0(CJ,T [ f ]) = 1. The following lemma follows from these remarks.

Lemma 1.6.4. Let condition B1 hold. Then ξε(t), t ∈ [0, T ]
U−→ ξ0(t), t ∈ [0, T ] as ε→ 0

if and only if ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε→ 0.

In the sequel, A9 is assumed to hold. Let us introduce the following U-compactness
condition:

U3: limc→0 limε→0 P{∆U(ξε(·), c, T ) > δ} = 0, δ > 0.

Note that condition U3 includes the relation limc→0 P{∆U(ξ0(·), c, T ) > δ} = 0, δ > 0.
Therefore, under condition U3, the limiting process ξ0(·), t ∈ [0, T ] (which appears in
condition A9) is a.s. continuous.

The following functional limit theorem belongs to Prokhorov (1956). It gives condi-
tions for U-convergence of càdlàg stochastic processes to an a.s. continuous process.
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Theorem 1.6.4. Conditions A9 and U3 are necessary and sufficient for U-convergence

ξε(t), t ∈ [0, T ]
U−→ ξ0(t), t ∈ [0, T ] as ε→ 0, where ξ0(t), t ∈ [0, T ] is an a.s. continuous

process.

Remark 1.6.1. Actually, the original Prokhorov’s formulation of Theorem 1.6.4 is con-
cerned the case, when the corresponding pre-limiting processes are also a.s. continuous.
Above, the theorem is formulated in the extended form given by Skorokhod (1956), that
is, when the limiting process is continuous but the pre-limiting processes can be càdlàg
processes.

Due to inequality (1.4.9), condition U3 implies J3. Also, as was mentioned above,
U3 implies B1.

Recall that A9 and J3 are necessary and sufficient conditions for J-convergence of
the processes ξε(t), if condition O(T)

3 holds. Obviously, B1 implies O(T)
3 . Hence, the

processes ξε(t) J-converge and, therefore, they also U-converge.
So, under condition A9, conditions J3 and B1 are equivalent to condition U3.
1.6.10. M-convergence of càdlàg processes defined on the interval [0, T]. Let us

formulate conditions for M-convergence of càdlàg processes.

Definition 1.6.6. Càdlàg processes ξε(t), t ∈ [0, T ] converge in the topology M to a

càdlàg process ξ0(t), t ∈ [0, T ] as ε→ 0 (ξε(t), t ∈ [0, T ]
M−→ ξ0(t), t ∈ [0, T ] as ε→ 0) if

the random variables f (ξε(·))⇒ f (ξ0(·)) as ε→ 0 for every functional f ∈ HM,T [F0].

We assume in what follows that condition A10 holds. Let us introduce the condition:

M3: limc→0 limε→0 P{∆M(ξε(·), c, T ) > δ} = 0, δ > 0.

The functional limit theorem gives conditions for M-convergence of càdlàg pro-
cesses.

Theorem 1.6.5. Conditions A10 and M3 are necessary and sufficient for M-convergence

ξε(t), t ∈ [0, T ]
M−→ ξ0(t), t ∈ [0, T ] as ε → 0.

1.6.11. J-convergence of càdlàg processes defined on interval the [0,∞). Let, for
every ε ≥ 0, ξε(t), t ≥ 0 be a m-dimensional càdlàg stochastic process. As above, the
processes ξε(t), t ≥ 0 can be defined on different probability spaces for different ε.

The process ξε = {ξε(t), t ≥ 0} can be considered as a random variable taking values
in the Polish space D(m)

[0,∞) with the J-metric dJ that was introduced in Subsection 1.4.11.
The measure Fε(A) generated by the process ξε(t), t ≥ 0 on the σ-algebra B(m)

[0,∞) serves
as the distribution of the random variable ξε.

As was mentioned above, in this case there exist three equivalent ways to define
J-convergence of càdlàg processes.
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Definition 1.6.7. Càdlàg processes ξε(t), t ≥ 0 converge in the topology J to a càdlàg

process ξ0(t), t ≥ 0 as ε → 0 (ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε → 0) if the random

variables ξε ⇒ ξε as ε→ 0.

Definition 1.6.8. Càdlàg processes ξε(t)
J−→ ξ0(t), t ≥ 0 as ε→ 0 if the random variables

f (ξε(·))⇒ f (ξ0(·)) as ε→ 0 for every functional f ∈ HJ,∞[F0].

Definition 1.6.9. Càdlàg processes ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε → 0 if there exists

a sequence 0 < Tn → ∞ as n → ∞ such that the time truncated processes ξε(t), t ∈
[0, Tn]

J−→ ξ0(t), t ∈ [0, Tn] as ε→ 0 for every n = 1, 2, . . ..

The equivalence of the first two definitions follows from Theorem 1.3.2, while their
equivalence to the third one follows from Theorem 1.6.6 formulated below.

Let us introduce the weak convergence and J-compactness conditions that are ana-
logues of conditions A9 and J3 in the case of the interval [0,∞):

A11: ξε(t), t ∈ S ⇒ ξ0(t), t ∈ S as ε → 0, where S is a subset of [0,∞) that is dense in
this interval and contains the point 0.

J4: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Note that the asymptotic relation in J4 holds for all T > 0 if it holds for some
sequence of T -values, 0 < Tn → ∞ as n→ ∞.

The functional limit theorem gives conditions for J-convergence of càdlàg stochastic
processes defined on the interval [0,∞).

Theorem 1.6.6. Conditions A11 and J4 are necessary and sufficient for J-convergence

ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε→ 0.

1.6.12. Weak convergence of random a.s. J-continuous functionals. As was al-
ready mentioned in Subsection 1.6.7, the meaning of J-convergence of càdlàg processes
is that it is equivalent to the weak convergence of random a.s. J-continuous functionals
defined on these processes.

In what follows, we use also the notion of joint weak convergence of random vari-
ables which belong to some parametric family. Let, for every ε ≥ 0, {ξ(θ)

ε , θ ∈ Θ} be
a parametric family of m-dimensional random variables (vectors) defined on the same
probability space.

Definition 1.6.10. Random variables ξ(θ)
ε , θ ∈ Θ jointly weakly converge to random

vectors ξ(θ)
0 , θ ∈ Θ as ε → 0 (ξ(θ)

ε , θ ∈ Θ ⇒ ξ(θ)
0 , θ ∈ Θ as ε → 0) if for any finite se-

quence of parameters θ1, . . . , θn ∈ Θ, n = 1, 2, . . ., the random vectors (ξ(θ1)
ε , . . . , ξ(θn)

ε )⇒
(ξ(θ1)

0 , . . . , ξ(θn)
0 ) as ε→ 0.
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Any linear combination of functional a.s. J-continuous with respect to some measure
is also an functional a.s. J-continuous with respect to this measure. Taking in account

this fact and Lemma 1.2.1, one can easily prove that J-convergence ξε(t), t ≥ 0
J−→

ξ0(t), t ≥ 0 as ε→ 0 implies the following relation of joint weak convergence for random
a.s. J-continuous functionals

f (ξε(·)), f ∈ HJ,∞[F0]⇒ f (ξ0(·)), f ∈ HJ,∞[F0] as ε→ 0. (1.6.1)

Moreover, let us choose some points t1, . . . , tn ∈ S , where S is the set of weak conver-
gence in condition A11. Consider the process ξ̃ε(t) = (ξε(t), ξε(ti), i = 1, . . . , n), t ≥ 0. If
the conditions of Theorem 1.6.6 hold for the processes ξε(t), t ≥ 0, then these conditions
also hold for the processes ξ̃ε(t), t ≥ 0. Thus, the following relation of J-convergence

holds: (a) ξ̃ε(t), t ≥ 0
J−→ ξ̃0(t), t ≥ 0 as ε → 0. Taking into account (a), arbitrariness

in the choice of the points t1, . . . , tn ∈ S , and applying (1.6.1) to the processes ξ̃ε(t), one
can write a relation generalising (1.6.1).

Theorem 1.6.7. Let conditions A11 and J4 hold. Then

(ξε(t), f (ξε(·))), (t, f ) ∈ S × HJ,∞[F0]
⇒ (ξ0(t), f (ξ0(·))), (t, f ) ∈ S × HJ,∞[F0] as ε→ 0.

(1.6.2)

Let us use relation (1.6.2) to enlarge the set of weak convergence S , which appears
in condition A11, by adding to the set S all points of stochastic continuity of the cor-
responding limiting process. Note that the set S can also include points of stochastic
discontinuity of the process ξ0(t). In principle, all points in this set can be points of
stochastic discontinuity of the process ξ0(t).

Let S 0 be the set of points of stochastic continuity of the process ξ0(t), t ≥ 0.

Lemma 1.6.5. Let conditions A11 (with the set S ) and J4 hold and, therefore, ξε(t), t ≥
0

J−→ ξ0(t), t ≥ 0 as ε→ 0. Then ξε(t), t ∈ S ∪ S 0 ⇒ ξ0(t), t ∈ S ∪ S 0 as ε→ 0.

This statement follows from the fact that the functional f +
t (x(·)) = x(t) is a.s. J-

continuous with respect to the measure generated by the limiting process ξ0(t), t ∈ [0, T ],
for every point t ∈ S 0.

So, J-convergence of càdlàg processes implies their weak convergence on the set
S ∪ S 0.

If the process ξ0(t), t ≥ 0, is stochastically continuous, the set of weak convergence
is [0,∞). However, the inverse implication does not hold, since weak convergence of
càdlàg processes and their J-convergence is not the same.

For example, let us consider the process ξn(t) = χ[τ−1/n,∞)(t)+χ[τ,∞)(t), t ≥ 0, where τ is
a random variable exponentially distributed with parameter 1. Obviously, the processes
ξn(t), t ≥ 0 ⇒ ξ0(t), t ≥ 0 as n → ∞, where the process ξ0(t) = 2χ[τ,∞)(t), t ≥ 0. At the
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same time, these processes do not J-converge, since the process ξn(t), t ∈ [0, T ] has two
unit jumps in close points τ− 1/n and τ if 1/n < τ ≤ T . So, ∆J(ξn(·), c, T ) = χ(1/n < τ ≤
T ).

Let us formulate also conditions for weak convergence for some other J-continuous
functionals considered in Section 1.5.

Lemma 1.6.6. Let conditions A11 and J4 hold. The functional m±t1,t2 ∈ HJ,∞[F0] for 0 ≤
t1 ≤ t2 < ∞, t1, t2 ∈ S 0 and, therefore, m±t1,t2(ξε(·)), t1 ≤ t2, t1, t2 ∈ S 0 ⇒ m±t1,t2(ξ0(·)), t1 ≤
t2, t1, t2 ∈ S 0 as ε→ 0.

Let Y0 be the set of points a = (a1, . . . , am) ∈ �m such that P{m±0,t1(ξ0i(·)) = m±0,t2(ξ0i(·))
= ai} = 0 for all 0 ≤ t1 < t2 ≤ T, i = 1, . . . ,m.

Lemma 1.6.7. Let conditions A11 and J4 hold. The functional τ±a,T ∈ HJ,∞[F0] for a ∈ Y0

and, therefore, τ±a,T (ξε(·)), a ∈ Y0 ⇒ τ±a,T (ξ0(·)), a ∈ Y0 as ε→ 0.

Let Z0 be a set of all δ > 0 such that P{|∆s(ξ0(·))| , δ, s ∈ [0, T ]} = P{β(δ)
kT (ξ0(·)) ,

δ, k ≥ 1} = 0. The set Z0 coincides with (0,∞) except for at most a countable set of
points.

Lemma 1.6.8. Let conditions A11 and J4 hold. The functionals α(δ)
kT , β

(δ)
kT ∈ HJ,∞[F0]

for k ≥ 1, δ ∈ Z0, T ∈ S 0 and, therefore, (α(δ)
kT (ξε(·)), β(δ)

kT (ξε(·))), k ≥ 1 ⇒ (α(δ)
kT (ξ0(·)),

β(δ)
kT (ξ0(·))), k ≥ 1 as ε→ 0.

Lemma 1.6.9. Let conditions A11 and J4 hold. The functional Σ
(δ)
t1,t2 ∈ HJ,∞[F0] for all

0 ≤ t1 ≤ t2 < ∞, t1, t2 ∈ S 0, δ ∈ Z0 and, therefore, Σ
(δ)
t1,t2(ξε(·)), t1 ≤ t2, t1, t2 ∈ S 0 ⇒

Σ
(δ)
t1,t2(ξ0(·)), t1 ≤ t2, t1, t2 ∈ S 0 as ε→ 0.

Lemma 1.6.10. Let conditions A11 and J4 hold. The functional N (δ)
t1,t2 ∈ HJ,∞[F0] for all

0 ≤ t1 ≤ t2 < ∞, t1, t2 ∈ S 0, δ ∈ Z0 and, therefore, N (δ)
t1,t2(ξε(·)), t1 ≤ t2, t1, t2 ∈ S 0 ⇒

N(δ)
t1,t2(ξ0(·)), t1 ≤ t2, t1, t2 ∈ S 0 as ε→ 0.

Let us note that, according to (1.6.2), one can also write relations of joint weak
convergence for random functionals considered above in Lammas 1.6.6 – 1.6.10.

In similar way, one can formulate conditions for weak convergence for other J-conti-
nuous functionals introduced in Section 1.5.

1.6.13. Joint J-convergence of several càdlàg processes. In this subsection, a use-
ful “vector” extension of Theorem 1.6.7 is given. Let ξε j(t), t ≥ 0 be a m-dimensional
càdlàg stochastic process for every j = 1, . . . , r and ε ≥ 0. It is assumed that the pro-
cesses ξε j(t), t ≥ 0 for j = 1, . . . , r are defined on the same probability space for a fixed
ε, but these spaces can be different for different ε.

Further, it is assumed that the following “vector” versions of conditions A11 and J4
are satisfied:
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A12: (ξε1(t1), . . . , ξεr(tr)), (t1, . . . , tr) ∈ S 1 × · · · × S r ⇒ (ξ01(t1), . . . , ξ0r(tr)), (t1, . . . , tr) ∈
S 1 × · · · × S r as ε → 0, where S j, j = 1, . . . , r are subsets of [0,∞) that are dense
in this interval and contain the point 0.

J5: limc→0 limε→0 P{∆J(ξε j(·), c, T ) > δ} = 0, δ, T > 0, j = 1, . . . , r.

According Theorem 1.6.6, conditions A12 and J5 guarantee that (a) the processes

ξε j(t), t ≥ 0
J−→ ξ0 j(t), t ≥ 0 as ε→ 0 for every j = 1, . . . , r. But these conditions do not

imply (b) J-convergence of the vector processes (ξε j(t), j = 1, . . . , r), t ≥ 0. However,
these processes jointly weakly converge in the sense of condition A12. This makes it
possible to write an analogue of relation (1.6.2).

Let us denote by F0 j the measure generated by the process ξ0 j(t), t ≥ 0, on the σ-
algebraB(m)

[0,∞) for j = 1, . . . , r.

Theorem 1.6.8. Let conditions A12 and J5 hold. Then

(ξε j(t j), f j(ξε j(·))), (t j, f j) ∈ S j × HJ,∞[F0 j], j = 1, . . . , r
⇒ (ξ0 j(t j), f j(ξ0(·))), (t j, f j) ∈ S j × HJ,∞[F0 j], j = 1, . . . , r as ε→ 0.

(1.6.3)

The proof can be accomplished in the following way. First, one can take an arbitrary
n ≥ 1 and arbitrary points t1 j, . . . , tn j ∈ S j, j = 1, . . . , r, and consider the process ξ̃ε1(t) =

(ξε1(t), ξε j(tk j), k = 1, . . . , n, j = 1, . . . , r), t ≥ 0. Obviously, condition A12 implies that
condition A11 holds for these processes. The processes ξ̃ε1(t), t ≥ 0 and ξε1(t), t ≥ 0
have the same J-compactness modulus on every finite interval. That is why condition

J5 implies that condition J4 holds for the processes ξ̃ε1(t), t ≥ 0. So, ξ̃ε1(t), t ≥ 0
J−→

ξ̃01(t), t ≥ 0 as ε→ 0. By applying (1.6.2) to the processes ξ̃ε1(t) and taking into account
arbitrariness of the choice of the points t1 j, . . . , tn j ∈ S j, j = 1, . . . , r, we can write the
following relation:

(ξε j(t j), f1(ξε1(·))), t j ∈ S j, j = 1, . . . , r, f1 ∈ HJ,∞[F01]
⇒ (ξ0 j(t j), f1(ξ01(·))), t j ∈ S j, j = 1, . . . , r, f1 ∈ HJ,∞[F01] as ε→ 0.

(1.6.4)

Second, let us take arbitrary n ≥ 1 points t1 j, . . . , tn j ∈ S j, j = 1, . . . , r, and function-
als f11, . . . , f1n ∈ HJ,∞[F01]. Let us consider the process ξ̃ε2(t) = (ξε2(t), ξε j(tk j), f1k(ξε1(·)),
k = 1, . . . , n, j = 1, . . . , r), t ≥ 0. Obviously, condition A12 implies that condition A11
holds for these processes. The processes ξ̃ε2(t), t ≥ 0 and ξε2(t), t ≥ 0 have the same
J-compactness modulus on every finite interval. Thus, condition J5 implies that con-

dition J4 holds for the processes ξ̃ε2(t), t ≥ 0. That is why ξ̃ε2(t), t ≥ 0
J−→ ξ̃02(t), t ≥

0 as ε → 0. By applying (1.6.2) to the processes ξ̃ε2(t) and taking into account arbi-
trariness of the choice of the points t1 j, . . . , tn j ∈ S j, j = 1, . . . , r, and the functionals
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f11, . . . , f1n ∈ HJ,∞[F01], we can write the following relation:

(ξε j(t j), fl(ξεl(·))), t j ∈ S j, j = 1, . . . , r, fl ∈ HJ,∞[F0l], l = 1, 2
⇒ (ξ0 j(t j), fl(ξ0l(·))), t j ∈ S j, j = 1, . . . , r, fl ∈ HJ,∞[F0l], l = 1, 2 as ε→ 0.

(1.6.5)

By proceeding in the same way, we get, after r steps, relation (1.6.3).
In conclusion, let us formulate one useful statement that belongs to Whitt (1973,

1980). Assume that the following condition holds:

H1: P{∑r
j=1 χ(|∆t(ξ0 j(·)| > 0) ≤ 1 for t ≥ 0} = 1.

Condition H1 means that the processes ξ0 j(t), t ≥ 0, j = 1, . . . , r have no joint jump
points with probability 1.

For example, this condition satisfies if the corresponding jump components of the
processes ξ0i(t), t ≥ 0 and ξ0 j(t), t ≥ 0 are independent for every i, j = 1, . . . , r, i , j.

Consider the vector processes ξ̃ε(t) = (ξε j(t), j = 1, . . . , r), t ≥ 0.

Lemma 1.6.11. Let conditions A12, J5, and H1 hold. Then

ξ̃ε(t), t ≥ 0
J−→ ξ̃0(t), t ≥ 0 as ε→ 0. (1.6.6)

1.6.14. J-convergence of transformed càdlàg processes. The following useful
lemma permits to extend J-convergence of càdlàg processes to transformed càdlàg pro-
cesses.

Lemma 1.6.12. Let the following conditions hold: (α) ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as

ε→ 0, and (β) g(t, x) is a continuous function that acts from [0,∞)×�m to �l. Then the

càdlàg processes g(t, ξε(t)), t ≥ 0
J−→ g(t, ξ0(t)), t ≥ 0 as ε→ 0.

1.6.15. The continuous mapping theorem. Let, for every ε ≥ 0, ξε(t), t ≥ 0 be a m-
dimensional càdlàg process with real-valued components and g be a measurable mapping
that acts from the space D(m)

[0,∞) to the space D(l)
[0,∞). Let also ξ(g)

ε (·) = g(ξε(·)). By the
definition, ξ(g)

ε (t), t ≥ 0 is an l-dimensional càdlàg process with real-valued components.
Denote also by F0 the measure generated by the process ξ0(t), t ≥ 0 on the σ-algebra
B(m)

[0,∞).
The following statement is known as the continuous mapping theorem. It can be

found, for example, in Billingsley (1968).

Theorem 1.6.9. Let the following conditions hold: (α) ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as

ε → 0, and (β) g is an a.s. J-continuous mapping with respect to the measure F0. Then

the càdlàg processes ξ(g)
ε (t), t ≥ 0

J−→ ξ(g)
0 (t), t ≥ 0 as ε→ 0.
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Recall that the processes ξε = {ξε(t), t ≥ 0} can be considered as random variables
taking values in the Polish space D(m)

[0,∞) equipped with the metric defined in Subsec-
tion 1.4.12. In this context, continuous mapping theorem can be considered as a gen-
eralisation of the sufficiency statement of Theorem 1.3.2 about weak convergence of
transformed random variables. The only difference is that transformation functions take
values in the functional Polish space D(l)

[0,∞) instead of �1.
An elegant proof of Theorem 1.6.9 can be given with the use of Skorokhod repre-

sentation Theorem 1.3.6. According to this theorem, condition (α) implies that random
variables ξ̃ε, ε ≥ 0 can be constructed on some probability space such that (a) ξ̃ε

d
= ξε for

every ε ≥ 0, and (b) ξ̃ε a.s. converge to ξ̃0 as ε → 0. Relation (a) yields that the random
variable ξ̃0 has the distribution F0. Relation (b) and condition (β) imply, in an obvious
way, that (c) the random variables g(ξ̃ε) a.s. converge to g(ξ̃0) as ε → 0. Since a.s.
convergence implies weak convergence, (d) the random variables g(ξ̃ε) weakly converge
to g(ξ̃0) as ε → 0. But, (e) g(ξ̃ε)

d
= g(ξε) that follows from (a). It remains to note that

random variables g(ξ̃ε) take values in the Polish space D(l)
[0,∞) and their weak convergence

means, actually, J-convergence of transformed càdlàg processes ξ(g)
ε (t), t ≥ 0.

It should be noted that the actual value of Theorem 1.6.9 must not be overestimated.
This theorem is just a convenient way to split the proof of J-convergence of càdlàg
processes ξ(g)

ε (t), t ≥ 0 in two steps, namely, the proof of J-convergence of the initial
processes ξε(t), t ≥ 0 and the proof of a.s. J-continuity of the mapping g.

A gain can be usually achieved, when the mapping g has a comparatively simple
structure.

Lemma 1.6.12 gives the first example concerned transformed càdlàg processes.
Let also give two examples that are used in our further considerations. The following

two statements are direct corollaries of Theorem 1.6.9, and Lemmas 1.5.17 and 1.5.18
that provide conditions of J-continuity for the corresponding mappings.

First, let us consider the process ξ(d)
ε (t) = (ξε(t), ξ

(δ)
ε+ (t), ξ(δ)

ε− (t)), t ≥ 0 defined with the
use of the decomposition mapping.

Lemma 1.6.13. Let the following conditions hold: (α) ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as

ε→ 0, (β) ξ0(t), t ≥ 0 has not jumps with the absolute values equal δ with probability 1.

Then the processes ξ(d)
ε (t), t ≥ 0

J−→ ξ(d)
0 (t), t ≥ 0 as ε→ 0.

Second, let us consider the max-process ξ(m)
ε (t) = (ξε(t), ξ

+
ε (t)), t ≥ 0 defined with the

use of the max-mapping.

Lemma 1.6.14. Let the following condition holds: (α) ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as

ε→ 0. Then the processes ξ(m)
ε (t), t ≥ 0

J−→ ξ(m)
0 (t), t ≥ 0 as ε→ 0.

The main object of studies in this book is compositions of càdlàg processes. Such
processes are defined with the use of the composition mapping as ξ̃

(c)
ε (t) = (ξε1(νε1(t)), . . . ,
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ξεm(νεm(t)), t ≥ 0. Here ξ̃ε(t) = (νε1(t), . . . , νεm(t), ξε1(t), . . . , ξεm(t)), t ≥ 0 is a 2m-
dimensional càdlàg process with non-negative and non-decreasing first m components
and real-valued last m components.

The conditions of J-convergence for compositions of càdlàg processes are thor-
oughly studied in Chapter 3. As was mentioned in Subsection 1.5.11, càdlàg functions
defined with the use of composition mapping can J-converge when the corresponding
initial processes do not J-converge. Analogously, the compositions ξ̃

(c)
ε (t), t ≥ 0 can J-

converge when the initial processes ξ̃ε(t), t ≥ 0 do not J-converge. The corresponding
results are not covered by the continuous mapping theorem.

1.6.16. U-convergence of càdlàg processes defined on the interval [0,∞). Let us
define and formulate conditions for U-convergence of càdlàg processes in the case where
the limiting process is continuous. We think that, in this case, the definition based on
U-convergence on embedded intervals is preferable.

Definition 1.6.11. Càdlàg processes ξε(t), t ≥ 0
U−→ ξ0(t), t ≥ 0 as ε → 0 if (α) there

exists a sequence 0 < Tn → ∞ as n→ ∞ such that the time truncated processes ξε(t), t ∈
[0, Tn]

U−→ ξ0(t), t ∈ [0, Tn] as ε→ 0 for every n = 1, 2, . . . .

Let us introduce the following U-compactness condition:

U4: limc→0 limε→0 P{∆U(ξε(·), c, T ) > δ} = 0, δ, T > 0.

The functional limit theorem gives conditions for U-convergence.

Theorem 1.6.10. Conditions A11 and U4 are necessary and sufficient for U-convergence

ξε(t), t ≥ 0
U−→ ξ0(t), t ≥ 0 as ε→ 0, where ξ0(t), t ≥ 0 is an a.s. continuous process.

Let introduce the following continuity condition:

B2: ξ0(t), t ≥ 0 is an a.s. continuous process.

Note that condition U4 implies J4 and B2. Moreover, under condition A11, condi-
tions J4 and B2 are equivalent to condition U4.

Lemma 1.6.15. If condition B2 holds, the processes ξε(t), t ∈ [0, T ]
U−→ ξ0(t), t ∈ [0, T ]

as ε→ 0 if and only if ξε(t), t ∈ [0, T ]
J−→ ξ0(t), t ∈ [0, T ] as ε→ 0.

Let us also formulate a theorem which is an analogue of Theorem 1.6.7.

Theorem 1.6.11. Let A11 and U4 hold. Then

(ξε(t), f (ξε(·))), (t, f ) ∈ [0,∞) × HU,∞[F0]
⇒ (ξ0(t), f (ξ0(·))), (t, f ) ∈ [0,∞) × HU,∞[F0] as ε→ 0.

(1.6.7)
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In the case of the U-topology, condition U4 is equivalent to the following condition:

U
′
4: limc→0 limε→0 P{∆U(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

This shows that there is no need to formulate an analogue of Theorem 1.6.8 for the
case of U-topology. Such a theorem would be equivalent to Theorem 1.6.11.

Let us also formulate the following useful lemma. Assume that a càdlàg process
ξε(t), t ≥ 0 can be represented, for every ε ≥ 0, as a sum of two càdlàg processes,

ξε(t) = ξ′ε(t) + ξ′′ε (t), t ≥ 0.

Lemma 1.6.16. Let the conditions (α) ξ′ε(t), t ≥ 0
J−→ ξ′0(t), t ≥ 0 as ε → 0 and (β)

ξ′′ε (t), t ≥ 0
U−→ ξ′′0 (t) ≡ 0, t ≥ 0 as ε → 0 hold. Then the processes ξε(t), t ≥ 0

J−→
ξ′0(t), t ≥ 0 as ε→ 0.

1.6.17. M-convergence of càdlàg processes defined on the interval [0,∞). Let us
now formulate conditions for M-convergence of càdlàg processes.

Definition 1.6.12. Càdlàg processes ξε(t)
M−→ ξ0(t), t ≥ 0 as ε → 0 if there exists a

sequence 0 < Tn → ∞ as n → ∞ such that the time truncated processes ξε(t), t ∈ [0, Tn]
M−→ ξ0(t), t ∈ [0, Tn] as ε→ 0 for every n = 1, 2, . . . .

Let us introduce the following M-compactness condition:

M4: limc→0 limε→0 P{∆M(ξε(·), c, T ) > δ} = 0, δ, T > 0.

The gives conditions for M-convergence.

Theorem 1.6.12. Conditions A11 and M4 are necessary and sufficient for M-convergence

ξε(t), t ≥ 0
M−→ ξ0(t), t ≥ 0 as ε→ 0.

Let us also introduce the following M-compactness condition:

M5: limc→0 limε→0 P{∆M(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

In the case of the M-topology, it is possible to formulate an analogue of Theorem
1.6.8.

Theorem 1.6.13. Let conditions A12 and M5 hold. Then

(ξε j(t j), f j(ξε j(·))), (t j, f j) ∈ S j × HM,∞[F0 j], j = 1, . . . , r
⇒ (ξ0 j(t j), f j(ξ0(·))), (t j, f j) ∈ S j × HM,∞[F0 j], j = 1, . . . , r as ε→ 0.

(1.6.8)
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The following lemma, which is due to Skorokhod (1956), shows the connection be-
tween M-convergence of càdlàg processes and the weak convergence of the maximum
and the minimum functionals.

Denote by S 0 the set of points of stochastic continuity of the process ξ0(t), t ≥ 0.

Lemma 1.6.17. Càdlàg processes ξε(t), t ≥ 0
M−→ ξ0(t), t ≥ 0 as ε → 0 if and only if

(α) m±t1,t2(ξε(·)), t1 ≤ t2, t1, t2 ∈ S 0 ⇒ m±t1,t2(ξ0(·)), t1 ≤ t2, t1, t2 ∈ S 0 as ε→ 0.

1.6.18. Skorokhod representation theorems for càdlàg processes. Let, for every
ε ≥ 0, ξε(t), t ∈ I be a m-dimensional càdlàg process that is defined on an interval I.
Note that the processes ξε(t), t ∈ I can be defined on different probability spaces for
different ε.

Let us introduce the following weak convergence condition:

A13: ξε(t), t ∈ S̃ ⇒ ξ0(t), t ∈ S̃ as ε → 0, where S̃ is a countable subset of I that is
dense in this interval and contains the endpoints of I.

Let us also use the symbol ξ̃ε(t), t ∈ I d
= ξε(t), t ∈ I to indicate that the processes ξ̃ε(t),

t ∈ I and ξε(t), t ∈ I have the same finite-dimensional distributions.
The following results belong to Skorokhod (1956).

Theorem 1.6.14. Let condition A13 hold. Then it is possible to construct a probability
space (Ω,F, P) and a.s. càdlàg processes ξ̃ε(t), t ∈ I defined on this probability space for
every ε ≥ 0 such that: (α) ξ̃ε(t), t ∈ I d

= ξε(t), t ∈ I for every ε ≥ 0, (β) ξ̃εn
(s)

a.s.−→ ξ̃0(s)
as n→ ∞, s ∈ S̃ for any subsequence εn → 0 as n→ ∞.

Theorem 1.6.15. Let the interval be I = [0, T ], conditions A9 (with the set S ), J3, and
O

(T)
3 be satisfied for the càdlàg processes ξε(t), t ∈ [0, T ] and S̃ be a countable set that

is dense in [0, T ], contains the points 0, T , and is a subset of S . Let also ξ̃ε(t), t ∈ [0, T ]
be a.s. càdlàg processes constructed according to Theorem 1.6.14 with the use of the set
S̃ and, therefore, defined on the same probability space for all ε ≥ 0 and such that: (α′)
ξ̃ε(t), t ∈ [0, T ] d

= ξε(t), t ∈ [0, T ] for every ε ≥ 0, (β′) ξ̃εn
(s)

a.s.−→ ξ̃0(s) as n → ∞, s ∈ S̃
for any sequence 0 ≤ εn → 0 as n → ∞. Then (γ′) any sequence εn → 0 contains a

subsequence ε′k = εnk → 0 as k → ∞ such that P{ω : ξ̃ε′k(t,ω), t ∈ [0, T ]
J−→ ξ̃0(t,ω), t ∈

[0, T ] as k → ∞} = 1.

Let give a sketch of Skorokhod’s proofs. The proof of Theorem 1.6.14 is based on
the use of Theorem 1.3.6. Denote by X∞ the space of sequences x = (x1, x2, . . .), where
xi ∈ �m. Define a metric in X∞ by the formula d(x′, x′′) =

∑
n≥1 1/n!(1−exp{−|x′n−x′′n |}).

With this metric, X∞ is a Polish space. Choose some countable set S̃ = {t1, t2, . . .},
which is dense in [0, T ], contains points 0, T and is a subset of S . The sequence ξε =

(ξε(t1), ξε(t2), . . .) can be considered as a random variable taking values in the space �∞.
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It follows from the weak convergence condition A13 that the random variables ξε ⇒
ξ0 as ε → 0. So, one can construct, using Theorem 1.3.6, a probability space (Ω,F, P)
and random variables ξ′ε = (ξ′ε(t1), ξ′ε(t2), . . .) defined on this probability space such that
(a) ξ′ε

d
= ξε for every ε ≥ 0, (b) ξ′ε

a.s.−→ ξ′0 as ε→ 0. The condition (a) is equivalent to the
relation (c) ξ′ε(s), s ∈ S̃ d

= ξε(s), s ∈ S̃ , and the condition (b) is equivalent to the relation
(d) ξ′ε(s)

a.s.−→ ξ′0(s) as ε→ 0, s ∈ S̃ .
Since ξε(t), t ∈ I is an a.s. càdlàg process, (b) implies that (e) the random variables

ξ′ε(s) a.s. converge to some limiting random variables ξ′ε(t) as t < s, s ∈ S̃ , s→ t for ev-
ery t ∈ I which is not the right endpoint of this interval. The process ξ′ε(t), t ∈ I, defined
in this way, has the same finite-dimensional distributions as the process ξε(t), t ∈ I.

The process ξ′ε(t), t ∈ I possesses the following properties: (f) it takes values in �m,
(g) it is an a.s. continuous from the right in every point t ∈ I that is not the right endpoint
of this interval, and (h) it has the same finite-dimensional distribution as the a.s. càdlàg
process ξε(t), t ∈ I. It follows from (f) – (h) that there exists a stochastically equivalent
a.s. càdlàg modification ξ̃ε(t), t ∈ I for the process ξ′ε(t), t ∈ I.

Since the processes ξ̃ε(t), t ∈ I and ξ′ε(t), t ∈ I are stochastically equivalent, (c)
implies (α′) and (d) implies (β′). Note that the a.s. convergence in (β) is guaranteed for
subsequences but is not guaranteed in the case where ε→ 0 continuously (see Subsection
1.3.5).

The proof of Theorem 1.6.15 is based on some estimates for the modulus of J-
compactness for the processes ξ̃εn

(t), t ∈ I. The possibility to construct such processes
possessing properties (α′) and (β′) is guaranteed by Theorem 1.6.14.

The conditions J3 and (α′) imply that (i) for any sequence εn → 0 there exist se-
quences of numbers 0 < n(k)→ ∞, 0 < c(k)→ 0, and 0 < δ(k) → 0 as k → ∞ such that
maxn≥n(k) P{∆J(ξ̃εn

(·), c(k), T ) > δ(k)} ≤ 1/k2. The proof given by Skorokhod (1956) is
based on some further estimates for the modulus of J-compactness, and involve condi-
tions J3, O(T)

3 , and also (β′) and (i). These estimates prove, with the use of Borel-Cantelli
Lemma, that (j) there exist numbers nk > n(k) such that P{limc→0 limk→∞ ∆J(ξ̃ε′k(·), c, T )
= 0} = 1 for the subsequence ε′k = εnk .

Let A′ be the set of elementary events for which the random variables in (γ′) converge
for all s ∈ S̃ . By (β′), the probability P(A′) = 1. Let also A′′ be the set of elementary
events for which the convergence in (j) takes place. By (j), the probability P(A′′) = 1.
Obviously, P(A′ ∩ A′′) = 1. This implies that (γ′) holds.

Conditions A9, J3, and O
(T)
3 can be replaced with conditions A10 and J3. This can

be achieved by including the random variables ξε(T − 0) in the constructions described
in Theorems 1.6.14 and 1.6.15.

The result similar to that in Theorem 1.6.15 can also be formulated for the case of
the semi-infinite interval [0,∞).

Theorem 1.6.16. Let the interval be I = [0,∞), conditions A11 (with the set S ), and J4
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and be satisfied for the càdlàg processes ξε(t), t ∈ [0,∞), and S̃ be a countable set that
is dense in [0,∞), contains the point 0, and is a subset of S . Let also ξ̃ε(t), t ∈ [0,∞) be
a.s. càdlàg processes constructed according to Theorem 1.6.14 with the use of the set S̃
and, therefore, defined on the same probability space for all ε ≥ 0 and such that: (α′′)
ξ̃ε(t), t ∈ [0,∞) d

= ξε(t), t ∈ [0,∞) for every ε ≥ 0, (β′′) ξ̃εn
(s)

a.s.−→ ξ̃0(s) as n→ ∞, s ∈ S̃
for any sequence 0 ≤ εn → 0 as n → ∞. Then (γ′′) any sequence εn → 0 contains a

subsequence ε′k = εnk → 0 as k →∞ such that P{ω : ξ̃ε′k (t,ω), t ∈ [0,∞)
J−→ ξ̃0(t,ω), t ∈

[0,∞) as k → ∞} = 1.

The proof of Theorem 1.6.16 can be accomplished by the use of Theorems 1.6.14 –
1.6.15 and the Cantor selection procedure. A possibility to construct processes ξ̃ε(t), t ∈
[0,∞), possessing properties (α′′) and (β′′) follows from Theorem 1.6.14. Then a se-
quence of intervals [0, Tr] can be chosen such that 0 < Tr → ∞ as r → ∞ and Tr, r ≥ 1,
are points of stochastic continuity of the limiting process ξ̃0(t), t ∈ [0,∞). Conditions
A11 and J4 allow to include the points Tr, r ≥ 1, in the set S and then in the set S̃ .

Let 0 ≤ εn → 0 as n → ∞. According to Theorem 1.6.15, there exists a subse-
quence ε1,k of the sequence εn such that (γ′) holds for the processes ξ̃ε(t), t ∈ [0, T1].
According the same theorem, there exists a subsequence ε2,k of the subsequence ε1,k

such that (γ′) holds for the processes ξ̃ε(t), t ∈ [0, T2]. Continuing this selection pro-
cess one can select, by induction, a subsequence εr,k for every r = 1, 2 . . . such that
(γ′) holds for the processes ξ̃ε(t), t ∈ [0, Tr]. Let now εk,k be the corresponding diag-

onal subsequence. Obviously, P(Ar) = 1, where Ar = {ω : ξ̃εk,k
(t,ω), t ∈ [0, Tr]

J−→
ξ̃0(t,ω), t ∈ [0, Tr] as k → ∞}. Therefore, P(A) = 1, where A = ∩r≥1Ar. But, it
follows from the definition of J-convergence on the semi-infinite interval [0,∞) that

ξ̃εk,k
(t,ω), t ∈ [0,∞)

J−→ ξ̃0(t,ω), t ∈ [0,∞) as k →∞ for all ω ∈ A.
It should be noted that the statements (γ′) and (γ′′) are, actually, statements about

J-convergence of the corresponding a.s. càdlàg processes in probability.
At the time when Skorokhod (1956) has formulated the results presented above, the

metric dJ,T , which makes the space D(m)
[0,T ] a Polish space, has not been known. This

metric was constructed by Billingsley (1968). In the light of this result and Prokhorov’s
theorems about weak convergence in metric spaces, it became possible to replace the
J-convergence in probability in the relations (γ′) and (γ′′) given in Theorem 1.6.15 by
the a.s. J-convergence.

A direct application of Skorokhod representation Theorem 1.3.6 to a.s. càdlàg pro-
cesses ξε = {ξε(t), t ∈ [0, T ]}, considered as random variables taking values in the Polish
space D(m)

[0,T ] with the J-metric dJ,T (introduced in Subsection 1.4.3), yields the following
result.

Theorem 1.6.17. Let conditions A9, J3, and O
(T)
3 (A10 and J3) be satisfied. Then it

is possible to construct a probability space (Ω,F,P) and a.s. càdlàg processes ξ̃ε(t),
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t ∈ [0, T ], defined on this probability space for every ε ≥ 0 such that: (α′) ξ̃ε(t), t ∈
[0, T ] d

= ξε(t), t ∈ [0, T ] for every ε ≥ 0, (δ′) P{ω : ξ̃ε(t,ω), t ∈ [0, T ]
J−→ ξ̃0(t,ω), t ∈

[0, T ] as ε→ 0} = 1.

Let us also formulate an analogue of Theorem 1.6.17 for the case where the processes
are defined on the interval [0,∞). It is also a direct corollary of Skorokhod representation
Theorem 1.3.6 applied to the càdlàg processes ξε = {ξε(t), t ≥ 0}, considered as a random
variable taking values in the Polish space D(m)

[0,∞) with the J-metric dJ (introduced in
Subsection 1.4.11).

Theorem 1.6.18. Let conditions A11 and J4 be satisfied. Then it is possible to construct
a probability space (Ω,F,P) and a.s. càdlàg processes ξ̃ε(t), t ≥ 0 defined on this
probability space for every ε ≥ 0 such that: (α′′) ξ̃ε(t), t ≥ 0 d

= ξε(t), t ≥ 0 for every

ε ≥ 0, (δ′′) P{ω : ξ̃ε(t,ω), t ≥ 0
J−→ ξ̃0(t,ω), t ≥ 0 as ε→ 0} = 1.

One should note that the combination of conditions (α′) and (γ′) can serve in proofs
of functional limit theorems just as well as the stronger combination of conditions (α′)
and (δ′).

Let us, for example, show how Theorem 1.6.15 can be used to prove weak conver-
gence of a.s. J-continuous functionals defined on J-convergent càdlàg processes.

Let f be an arbitrary functional from the class HJ,T [F0]. This means that P(A′) = 1,
where A′ is the set of elementary events ω for which the realization {ξ̃0(t,ω), t ∈ [0, T ]}
belongs to the set of J-continuity CJ,T [ f ] of the functional f .

Let also εn ≥ 0, n = 0, 1, . . . , be an arbitrary sequence such that εn → 0 as n → ∞.
According to (γ′), one can select from this sequence a subsequence ε′k = εnk → 0 as

k → ∞ such that P(A′′) = 1, where A′′ = {ω : ξ̃ε′k (t,ω), t ∈ [0, T ]
J−→ ξ̃0(t,ω), t ∈

[0, T ] as k → ∞}. Obviously, P(A′ ∩ A′′) = 1 and, for every ω ∈ A′ ∩ A′′, the sequence
f (ξ̃ε′k(·,ω))→ f (ξ̃0(·,ω)) as k → ∞. This implies, due to Lemma 1.3.4, that the random

variables f (ξ̃ε(·))
P−→ f (ξ̃0(·)) as ε → 0. As was pointed out in Lemma 1.3.1, the

convergence in probability implies the weak convergence of random variables. That is
why f (ξ̃ε(·)) ⇒ f (ξ̃0(·)) as ε → 0. It remains to note that, due to (α′), the random
variable f (ξ̃ε(·)) d

= f (ξε(·)) for every ε ≥ 0.
At the same time, the combination of Theorems 1.6.14 and 1.6.15 have some ad-

vantage in comparison with Theorem 1.6.17. In the first case, the construction of the
corresponding processes defined on one probability space involves only the condition of
weak convergence of finite-dimensional distributions. This makes it possible to extend
the method of one probability space given in Theorems 1.6.14 and 1.6.15 to vector pro-
cesses for which the corresponding J-compactness conditions hold for their components
but do not hold for the vector processes. Similar remark can be made about Theorems
1.6.14, 1.6.16 and Theorem 1.6.18. We use this extension in Chapter 3 in theorems on
J-convergence of compositions of càdlàg processes.
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1.6.20. References. The book by Billingsley (1968, 1999) contains general results
on weak convergence of random variables and the corresponding historical remarks.

The basic Theorems 1.3.4 and 1.3.5 concerning weak convergence in metric spaces
belong to Prokhorov (1956), along with Theorem 1.6.4 that gives conditions for con-
vergence of continuous stochastic processes in the topology U. It is formulated in the
extended form given by Skorokhod (1956), that is, when the limiting process is continu-
ous but the pre-limiting processes can be càdlàg processes.

The topology J in space D of càdlàg functions was invented by Skorokhod (1955a,
1955b). Theorems 1.4.3 and 1.6.2 that give conditions for J-convergence, respectively,
of càdlàg functions and càdlàg stochastic processes, belong to Skorokhod (1956) as well
as the representation Theorem 1.3.6 that plays a central role in Skorokhod’s method of a
single probability space. The metric d′J,T was constructed in a slightly different form by
Kolmogorov (1956). The metric dJ,T , which makes the space D[0,T ] a Polish space, was
constructed by Billingsley (1968) who is also credited for Theorem 1.4.2. The extension
of J-topology to the semi-infinite interval [0,∞) via embedded sequences of close finite
intervals was introduced by Stone (1963). The extension of the metric dJ,T to the case of
the semi-open interval [0,∞) and Theorem 1.4.8 are due to Lindvall (1973).

It is appropriate to note that Prokhorov’s approach, which is based on general theo-
rem about weak convergence in metric spaces, and Skorokhod’s approach based on his
method of a single probability space, yield the same conditions and the same results
about J-convergence of càdlàg processes.

The advantage of Prokhorov’s approach is its universality, in particular, the possibil-
ity to interpret functional limit theorems for continuous and càdlàg processes as weak
limit theorems in the Polish spaces C and D, respectively.

The advantage of Skorokhod’s approach lies in the possibility to use it in studies of
convergence for other types of topologies that, in some cases, are not induced by a met-
ric in the same way as it is for the J-topology. Skorokhod (1956) has invented several
such topologies, in particular, the topology M that is useful in studies of extremal func-
tionals. Theorem 1.6.5, which gives conditions for M-convergence of càdlàg stochastic
processes, is cited from Skorokhod (1956).

In studies of functional limit theorems for randomly stopped càdlàg processes, it
is useful to modify formulations of the functional limit theorem in the case of a finite
interval [0, T ] to such a form that the condition for stochastic continuity of the càdlàg
processes in the right endpoint T would not be involved. Conditions for J-convergence
of càdlàg processes, which slightly differ from the standard ones, are given in Theorem
1.6.3.

Another extension that is important for limit theorems for randomly stopped càdlàg
processes is functional limit theorems for càdlàg processes defined on the semi-infinite
interval [0,∞). Theorems 1.6.6, 1.6.10, and 1.6.12 give conditions for J-, U-, and M-
convergence of càdlàg stochastic processes defined on the interval [0,∞). The relevant
references are Stone (1963), Whitt (1970), Borovkov (1972b), Grigelionis (1973), Lind-
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vall (1973), Mackevicius (1974), and Pomarede (1976).
Conditions for a.s. J-continuity of random functionals and mappings defined on

trajectories of càdlàg processes were studied by many authors. Some of these results,
related to the most important functionals, are formulated in Lemmas 1.5.1 – 1.5.16.
These results are attributed to the works of Skorokhod (1956, 1961), Billingsley (1968),
Borovkov (1972a, 1976), Borovkov and Pecherskij (1975), Whitt (1973, 1980, 2002),
Silvestrov (1974), Serfozo (1976), Resnick (1987), Liptser and Shiryaev (1986), and
Jacod and Shiryaev (1987).

I refer to the books by Skorokhod (1961, 1964), Parthasarathy (1967), Billings-
ley (1968, 1999), Gikhman and Skorokhod (1965, 1971), Pollard (1984), Ethier and
Kurtz (1986), Liptser and Shiryaev (1986), Jacod and Shiryaev (1987), Davidson (1994),
Borovkov, Mogul’skij and Sakhanenko (1995), and Whitt (2002) which contain a more
detailed presentation of the theory.



66 Chapter 1. Weak convergence of stochastic processes



Chapter 2

Weak convergence of randomly stopped stochastic
processes

In this chapter, general conditions for weak convergence of randomly stopped stochastic
processes and compositions of stochastic processes are considered.

The main results concerning weak convergence of randomly stopped stochastic pro-
cesses are given in Theorems 2.2.1, 2.2.2, and 2.4.1.

Theorem 2.2.2 gives three conditions that, together, imply weak convergence of ran-
domly stopped càdlàg processes. These conditions are: (a) the condition of joint weak
convergence of random stopping moments and external stochastic processes; (b) the
condition of J-compactness of external stochastic processes, and (c) the condition of
continuity, which means that the limiting external stochastic process is continuous at the
limiting stopping moment with probability 1.

This combination makes a good balance between conditions imposed on the pre-
limiting and limiting external processes, on the one hand, and the stopping moments,
on the other hand. Pre-limiting joint distributions of stopping moments and external
processes usually have a complicated structure. However, these distributions are in-
volved only in the simplest and most natural way via a condition of their joint weak
convergence. The second J-compactness condition involves only the external processes
themselves and not the stopping moments. This condition is a standard one. It was thor-
oughly studied for various classes of càdlàg stochastic processes. The third continuity
condition involves joint distributions of the limiting stopping moment and the limiting
external process. These limiting joint distributions are usually simpler than the corre-
sponding pre-limiting joint distributions. This permits to check the continuity condition
in various practically important cases. Due to a balance between conditions imposed on
the pre-limiting and limiting processes and stopping moments, Theorem 2.2.2 becomes
an effective tool for use in limit theorems for randomly stopped stochastic processes.

The continuity condition (c) mentioned above does not cover the cases where the
limiting stopping moment is a point of continuity for the corresponding limiting external
process with probability less than 1. This case is covered by Theorem 2.4.1. In this
theorem, condition (c) is replaced with the weaker condition (d) that ensures the right

67
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positioning of the pre-limiting stopping moments on the right-hand side of the moments
where the pre-limiting external processes experience large jumps. This condition does
involve the pre-limiting joint distributions of stopping moments and external processes
not only via their joint distributions but also via the joint distributions of stopping mo-
ments and moments of large jumps for external processes. Also, the latter distributions
are not so complicated and the corresponding conditions can effectively be verified in
some important cases.

In Theorems 2.2.1, 2.2.2, and 2.4.1, a model for randomly stopped scalar (one-
dimensional) càdlàg processes is considered. In Theorems 2.3.1, 2.3.4, and 2.4.3, simi-
lar results are given for randomly stopped vector càdlàg processes. In this model, each
component of the external vector process is stopped in its own stopping moment. Al-
though such a generalisation is important by itself, it also plays an essential role in
theorems on weak convergence of compositions of stochastic processes. This model
deals with a composition of an external càdlàg process and an internal non-decreasing
càdlàg stopping process. The main results concerning weak convergence of composi-
tions of stochastic processes are given, respectively, in Theorems 2.6.1, 2.6.3, 2.6.4, and
2.6.5 for scalar compositions, and in Theorems 2.7.1, 2.7.6, 2.7.8, and 2.7.10 for vector
compositions of càdlàg processes.

Section 2.1 gives examples that clarify the formulation of the problem and condi-
tions for weak convergence of randomly stopped random processes and compositions
of stochastic processes. In Sections 2.2 and 2.3, conditions for weak convergence are
given for randomly stopped scalar and vector càdlàg processes, respectively. In Section
2.4, conditions for weak convergence of randomly stopped scalar and vector càdlàg pro-
cesses are given in the case where the continuity conditions imposed on external càdlàg
processes and stopping moments are weakened. In Section 2.5, some results concerned
iterated weak limits for randomly stopped càdlàg processes are discussed. Sections 2.6
and 2.7 give conditions for weak convergence, respectively, of scalar and vector com-
positions of càdlàg processes. In Section 2.8, the so-called translation theorems are
formulated. These theorems give conditions for weak convergence of randomly stopped
processes with random normalisation. In Section 2.9, conditions for weak convergence
are given for randomly stopped stochastic processes in a model with locally compact
external processes. Reference remarks are given at the end of this section.

2.1 Introductory remarks

In this section, we discuss some examples that clarify conditions for weak convergence
of randomly stopped stochastic processes and compositions of càdlàg processes.

2.1.1. A condition of joint weak convergence. Let us use a natural number n as a
parameter, instead of ε, to index the corresponding external càdlàg stochastic processes
and stopping moments. Actually, we can always assume that ε = n−1 for n ≥ 1 and ε = 0
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(b) ν0 and ξ0(t), t ≥ 0.

Figure 2.1: C: first-type continuity condition.

for n = 0. Let, for every n = 0, 1, . . ., ξn(t), t ≥ 0 be a real-valued càdlàg process and νn a
non-negative random variable. We call ξn(t), t ≥ 0 an external process and νn a stopping
moment.

We are interested in conditions that should be imposed on the random variables νn

and the processes ξn(t), t ≥ 0 as to imply the following relation of weak convergence:

ξn(νn)⇒ ξ0(ν0) as n→∞. (2.1.1)

The condition that can be expected to provide relation (2.1.1) is the following con-
dition of joint weak convergence of random stopping moments and external càdlàg pro-
cesses:

A14: (νn, ξn(t)), t ≥ 0⇒ (ν0, ξ0(t)), t ≥ 0 as n→∞.

The following simple example shows that this hypothesis is not true and condition
A14 is not sufficient to imply (2.1.1) without some additional assumptions.

Let νn be a random variable that takes values 1 − n−1 and 1 + n−1 with probability
1
2 and ξn(t) = χ[1,∞)(t), t ≥ 0, for n ≥ 1. In this case, condition A14 obviously holds.
The limiting stopping moment ν0 = 1 with probability 1 and the limiting process ξ0(t) =

χ[1,∞)(t), t ≥ 0. However, ξn(νn) is a random variable that takes values 0 and 1 with
probability 1

2 , while ξ0(ν0) = 1 with probability 1. Therefore, (2.1.1) does not hold.
Figure 2.1 illustrates this example.
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In this example, the limiting stopping moment is a discontinuity point for the corre-
sponding limiting external process. The oscillation of stopping moments in a neighbour-
hood of the this discontinuity point causes a violation of (2.1.1).

2.1.2. A first-type continuity condition. The example considered above leads to
the following hypothesis. In order to provide (2.1.1), it is enough to add to A14 the
condition that the limiting process ξ0(t), t ≥ 0, is continuous at a random point ν0 with
probability 1,

C1: P{limt→0 ξ0(ν0 + t) = ξ0(ν0)} = 1.

The following more sophisticated example shows that this hypothesis is also not
true. Conditions A14 and C1 together are not sufficient to provide (2.1.1) without some
additional assumptions.

Let ξk, k = 0, 1, . . . be a sequence of non-negative i.i.d. random variables with a
continuous distribution function F(x) and ζn = max0≤k≤n ξk be the maximum of the first
n + 1 random variables of this sequence.

Let us introduce the random variables µn = min(r : ξr = ζn). By the definition,
ζn = ξµn . The last representation can be rewritten in the following form: ζn/n = ξn(νn),
where ξn(t) = ξ[tn]/n, t ≥ 0 and νn = µn/n.

It is easy to see that the random variable µn takes values 0, . . . , n with probability 1
n+1

and, hence,
νn ⇒ ν0 as n→ ∞, (2.1.2)

where ν0 is a random variable uniformly distributed in [0, 1].
Since the random variables ξk, k = 0, 1, . . . are i.i.d. random variables,

ξn(t)
P−→ 0 as n→ ∞, t ≥ 0. (2.1.3)

From Slutsky Theorem 1.2.3 and relations (2.1.2)–(2.1.3), it follows that

(νn, ξn(t)), t ≥ 0⇒ (ν0, 0), t ≥ 0 as n→ ∞. (2.1.4)

So, condition A14 holds. Condition C1 also holds, since the limiting process ξ0(t)
= 0, t ≥ 0 is continuous.

In this case, ξ0(ν0) = 0. However, the random variables ζn/n = ξn(νn) may not
converge weakly to 0 as n → ∞. For example, let F(x) = χ[1,∞)(x)(1 − 1/x). Then
P{ζn/n < x} = F(xn)n → exp(−x−1) as n → ∞, for x > 0. This means that the random
variables ζn/n⇒ ζ as n→ ∞, where ζ is a non-negative random variable which has the
distribution function P{ζ ≤ x} = χ[0,∞)(x) exp(−x−1).

An explanation of the example above is that the processes ξn(t), t ≥ 0 weakly con-
verge to the zero-process ξ0(t) = 0, t ≥ 0, but these processes do not converge neither
in the topology J nor in the weaker topology M. They can possess too large oscilla-
tions in small intervals. In the example above, this effect causes that the max-processes
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ξ+
n (t) = sups≤t ξn(s), t ≥ 0 do not converge weakly to the corresponding zero max-process
ξ+

0 (t) = sups≤t ξ0(s) = 0, t ≥ 0. At the same time, the stopping moments νn and the exter-
nal processes ξn(t), t ≥ 0 are connected so that ξn(νn) = ξ+

n (νn).
2.1.3. A condition of J-compactness. The above example shows that, in order to

provide (2.1.1), one should add, to the condition of join weak convergence A14 and the
continuity condition C1, an additional compactness condition on the external processes
ξn(t), t ≥ 0. For example, this can be the following J-compactness condition:

J6: limc→0 limn→∞ P{∆J(ξn(·), c, T ) > δ} = 0, δ, T > 0.

As is proved in Theorem 2.2.2, the combination of three conditions listed above,
i.e., the condition of joint weak convergence A14, the continuity condition C1, and the
condition of J-compactness J6 do imply the desirable asymptotic relation (2.1.1).

What is important is that this combination of three conditions is balanced, which was
discussed in the preamble to the chapter. This makes the combination of conditions A14,
C1, and J6 an effective instrument for use in weak limit theorems for randomly stopped
stochastic processes.

2.1.4. A condition of joint weak convergence of random stopping moments and
external max-processes. Let us introduce the maximum functionals

ξ+
n (t′, t′′) = sup

t′≤s<t′′
ξn(s), ξ−n (t′, t′′) = inf

t′≤s<t′′
ξn(s), 0 ≤ t′ < t′′ < ∞.

The pair of conditions A14 and J6 can be weakened and replaced with the condition
of joint weak convergence of the stopping moments νn and the maximum functionals
ξ±n (t′, t′′), that is, with the following condition:

A15: (νn, ξ
±
n (t′, t′′))⇒ (ν0, ξ

±
0 (t′, t′′)) as n→∞, 0 ≤ t′ ≤ t′′ < ∞.

It is proved in Theorem 2.2.1 that conditions A15 and C1 do imply the desirable
asymptotical relation (2.1.1).

In principle, condition A15 is weaker than a combination of conditions A14 and J6.
This becomes obvious considering a model with monotone processes ξn(t), t ≥ 0. In this
case, condition A15 is reduced to the condition of joint weak convergence of random
variables νn and ξn(t) for every t ≥ 0. This condition is weaker than A14. The condition
of J-compactness J6 can be omitted in this case.

2.1.5. Necessity of conditions. Let us go back to the basic conditions of joint weak
convergence A14, continuity C1, and J-compactness J6. One can talk about a certain ne-
cessity of these conditions in the sense that, taken together, these conditions are sufficient
to provide (2.1.1) but any combination of two of them is not.

In the first example considered in Subsection 2.2.2, the conditions of joint weak
convergence A14 and J-compactness J6 hold, but the continuity condition C1 does not.
For this reason, asymptotic relation (2.1.1) does not hold either.
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In the second example considered in Subsection 2.2.2, the conditions of joint weak
convergence A14 and continuity C1 hold, but the condition of J-compactness J6 does
not. This means that the asymptotic relation(2.1.1) also does not hold.

Let us now give an example in which the conditions of continuity C1 and J-compact-
ness J6 hold. Moreover, in this example, the random stopping moments νn as well as the
stochastic processes ξn(t), t ≥ 0, weakly converge. However, the condition of joint weak
convergence A14 does not hold and so neither does relation(2.1.1).

Let a random variable ν take values 0 and 1 with probability 1
2 . Then νn = ν, for

n = 0, 2, . . ., and νn = 1 − ν, for n = 1, 3, . . .. Let also ξn(t) = νχ[ 1
2 ,∞)(t), t ≥ 0, for n = 0,

1, . . . . In this case, the conditions of continuity C1 and J-compactness J6 obviously
hold. Moreover, the random variables νn weakly converge to ν0 = ν as n → ∞ and the
processes ξn(t), t ≥ 0, weakly converge to ξ0(t), t ≥ 0, as n→ ∞. However, the condition
of joint weak convergence A14 does not hold. Indeed, in this case, (νn, ξn(t)), t ≥ 0,
coincides with (1, χ[ 1

2 ,∞)(t)), t ≥ 0 if ν = 1 and (0, 0), t ≥ 0, if ν = 0, for n = 0, 2, . . ..
While (νn, ξn(t)), t ≥ 0, coincides with (0, χ[ 1

2 ,∞)(t)), t ≥ 0, if ν = 1 and (1, 0), t ≥ 0, if
ν = 0, for n = 1, 3, . . .. In this case, the random variables ξn(νn) = ν for n = 0, 2, . . . and
ξn(νn) = 0, for n = 1, 3, . . .. This implies that the asymptotic relation (2.1.1) does not
hold.

It should be noted that the combination of conditions of joint weak convergence
A14, continuity C1, and J-compactness J6 is sufficient, rather than necessary, to imply
the asymptotic relation (2.1.1). In the following example all three conditions do not hold
but (2.1.1) still does.

Let a random variable ν take values 0 and 1 with probability 1
2 . Then νn = ν, for

n = 0, 2, . . . and νn = 1 − ν, for n = 1, 3, . . .. Let also ξn(t) = ν(χ[1−n−1,1)(t) + χ[ 1
2 ,1)(t)),

t ≥ 0, for n = 1, 2, . . . and ξ0(t) = νχ[ 1
2 ,1)(t), t ≥ 0. In this case, the condition of

joint weak convergence A14 does not hold. However, the random variables νn weakly
converge to ν0 = ν as n → ∞ and the processes ξn(t), t ≥ 0, weakly converge to ξ0(t),
t ≥ 0 as n→ ∞. The condition of continuity C1 does not hold, because ν takes the value
1 with probability 1

2 while 1 is a discontinuity point for the limiting process ξ0(t), t ≥ 0.
The condition of J-compactness J6 also does not hold, since for every n = 1, 2, . . ., the
process ξn(t), t ≥ 0 has with probability 1

2 two jumps with values 1 and 2 at points 1−n−1

and 1, respectively. At the same time, it is obvious that ξn(νn) = 0 for all n = 0, 1, . . ..
Therefore, the asymptotic relation (2.1.1) holds.

2.1.6. A weakened version of the continuity condition C1. Let us return to the first
example considered in Subsection 2.1.1. In this example, the random variables ξn(νn)
do not weakly converge to the random variable ξ0(ν0) as n → ∞. This is because the
stopping moments νn can take values to the “wrong” left-hand side of the corresponding
point where the process ξn(t) has the unit jump. This occurs with a probability that is
asymptotically separated from zero as n→ ∞.

Let us modify this example by considering the same process ξn(t) = χ[1,∞)(t), t ≥ 0,
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and a modified random variable νn that takes the values 1 − n−1 and 1 + n−1 with the
probabilities 1

n and 1 − 1
n , respectively.

In this case, condition A14 obviously holds. The same is true for condition J6. How-
ever, the continuity condition C1 does not hold. As in the first example, the limiting
stopping moment ν0 = 1 with probability 1, and the limiting process ξ0(t) = χ[1,∞)(t),
t ≥ 0 has the unit jump at the point 1. This shows that ξ0(ν0) = 1 with probability 1.
However, ξn(νn) is a random variable that takes values 0 and 1 with probabilities 1

n and
1 − 1

n , respectively. Therefore, the asymptotic relation (2.1.1) does hold.
This example shows that it is possible to somewhat weaken the continuity condition

C1. This can be achieved by replacing C1 with a condition that would guarantee asymp-
totically (for all n large enough) the right positioning of the stopping moment νn with
respect to discontinuity points of the process ξn(t), t ≥ 0.

Let us denote by α(δ)
nk , k = 1, 2, . . ., the successive moments of jumps of the process

ξn(t), t ≥ 0, which have the absolute values of jumps greater than or equal to δ > 0. By
the definition, α(δ)

nk = ∞ if there exist less than k such points. The following condition
can be used instead of the continuity condition C1:

D1: limc→0 limn→∞ P{νn ∈ [α(δ)
nk − c,α(δ)

nk )} = 0 for δ > 0 and k ≥ 1.

As is proved in Theorem 2.4.1, a combination of the conditions A14, J6, and D1
imply the desirable asymptotical relation (2.1.1).

It can be shown that, if conditions A14 and J6 are verified, condition C1 implies
condition D1. This means that it is possible to consider D1 as a weakened version of
condition C1. It can occur that the opposite implication does not take place. In the
example considered above, the conditions A14, J6, and D1 hold but condition C1 does
not.

By using condition D1, instead of C1, one can deal with some cases where the lim-
iting stopping moment is a discontinuity point of the limiting external process. Some
cases where the limiting stopping moment can be a point of discontinuity or continuity
of the limiting external process with both positive probabilities can also be treated.

For instance, let us modify the example considered above once more. Now, let the
process ξn(t) = χ[1,∞)(t), t ≥ 0 be the same but the random variable νn take the values
1 − n−1, 1 + n−1, and 2 with the probabilities 1

2n , 1
2 , and 1

2 − 1
2n , respectively. Conditions

A14, J6, and D1 hold. Therefore, relation (2.1.1) also holds. In this case, the random
variable ξn(νn) takes the values 0 and 1 with the probabilities 1

2n and 1 − 1
2n , respectively.

At the same time, the limiting random variable ξ0(ν0) takes the value 1 with probability
1. However, the limiting stopping moment ν0 takes the values 1 and 2, with probability
1
2 . The point 1 is a point of discontinuity of the process ξ0(t) = χ[1,∞)(t), t ≥ 0, while 2 is
a point of continuity of this process. Condition C1 does not hold in this case. Figure 2.2
illustrates this example.

Of course, condition D1 is not as simple as condition C1. It involves pre-limiting
external processes and stopping moments, in contrast with condition C1. However, it still
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(b) ν0 and ξ0(t), t ≥ 0.

Figure 2.2: D: weakened first-type continuity condition.

involves the stopping moments νn and the external processes ξn(t), t ≥ 0, in an acceptable
combination of joint distributions of the stopping moment νn and the moments of large
jumps α(δ)

nk of the external process ξn(t), t ≥ 0. The latter functionals were thoroughly
studied for various classes of càdlàg stochastic processes. This shows that the weakened
continuity condition D1 can effectively be used in some practically important cases not
covered by the continuity condition C1.

2.1.7. Conditions of weak convergence for compositions of càdlàg processes. Let,
for every n = 0, 1, . . . , ξn(t), t ≥ 0 be a real-valued càdlàg process and νn(t), t ≥ 0 be a
non-negative monotone non-decreasing càdlàg process. We call ξn(t), t ≥ 0 an external
process and νn(t), t ≥ 0 an internal stopping process. Consider a composition of these
processes ξn(νn(t)), t ≥ 0. We are interested in conditions that would provide the weak
convergence of the compositions ξn(νn(t)), t ≥ 0 on some subset S ⊆ [0,∞),

ξn(νn(t)), t ∈ S ⇒ ξ0(ν0(t)), t ∈ S as n→ ∞. (2.1.5)

The simplest analogue of condition A14 is the following condition of joint weak
convergence of internal stopping processes and external càdlàg processes:

A16: (νn(t), ξn(t)), t ≥ 0⇒ (ν0(t), ξ0(t)), t ≥ 0 as n→ ∞.

The condition of J-compactness, J6, does not need to be changed.
For a continuity condition, one can take the following analogue of condition C1:

CS
2: P{lim

s→0
ξ0(ν0(t) + s) = ξ0(ν0(t))} = 1 for t ∈ S .
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Conditions A16, J6, and CS
2 imply weak convergence of the processes ξn(νn(t)) on

the set S ⊆ [0,∞). The set S is called a set of weak convergence.
Condition CS

2 looks rather restrictive. But, actually, it is satisfied in many important
cases. For instance, it is satisfied if the process ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0 is a sum of
two càdlàg processes such that the first one is a continuous process, possibly dependent
on the process ν0(t), t ≥ 0, while the second one is a stochastically continuous càdlàg
process independent of the stopping process ν0(t), t ≥ 0. In this case, CS

2 holds with the
set S = [0,∞).

The problem has an additional new aspect if one does not prescribe a set of weak
convergence but would like to only guarantee the weak convergence of compositions
ξn(νn(t)) on some subset S dense in the interval [0,∞). This is an important problem in
studies of functional limit theorems.

Let us note that, in the case where the process ξ0(t), t ≥ 0 admits an additive decom-
position described above, the set S is [0,∞).

There is another important case in which the existence of a desirable subset S is
guaranteed without any decomposition assumptions. This is true if the process ν0(t),
t ≥ 0, is an a.s. strictly monotone process. In this case, there exists at most a countable
set of points t ≥ 0 such that the random moment ν0(t) is a point of discontinuity of the
process ξ0(t), t ≥ 0 with a positive probability.

We show in Lemma 2.6.2 that this is also true in a situation more general than the
case of a strictly monotone limiting stopping process ν0(t). Let R[ξ0(·)] be a random set
of all discontinuity points of the process ξ0(t), t ≥ 0. Then condition CS

2 holds with some
subset S dense in the interval [0,∞) if the following continuity type condition holds:

E1: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ < ∞.

2.1.8. Weakened continuity conditions and weak convergence for compositions
of càdlàg processes. The compositions ξn(νn(t)) can, however, weakly converge on
some subset S dense in the interval [0,∞) in situation when the continuity condition E1
does not hold. As is proved in Theorem 2.6.5, it is so, if the conditions A16, J6 hold
together with the following continuity type condition, which is weaker than condition
E1:

F1: lim0<c→0 limε→0 P{α(δ)
εk − c ≤ νε(t′), νε(t′′) < α(δ)

εk } = 0 for 0 ≤ t′ < t′′ < ∞, δ > 0
and k ≥ 1.

Let us consider the following example shown in Figures 2.3, 2.4, and 2.5. Let ξn(t) =

χ[1,∞)(t), t ≥ 0, for n ≥ 1. Let also, for n ≥ 1, the process νn(t), t ≥ 0 have three possible
realisations that occur with the probabilities pn, qn and rn, where pn + qn + rn = 1. These
realisations are 1

2 for t ≥ 0; 1 − n−1 for t ≥ 0; 1 + n−1 for t ≥ 0;
We assume that probabilities pn, qn and rn converge as n → ∞ to the limiting values

p0, q0 and r0, respectively. In this case, condition A16 obviously holds. The limiting
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Figure 2.3: E and F: second-type and weakened second-type continuity conditions.

-

6

t10

r

?

HHHHHHj

ξ0(t)

r

r

1

-

-

(a) ξ0(t), t ≥ 0.

-

6

t

ν0(t)

0

r
r

r

r
q0 + r0

p0

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

J
J
J
J
J
J
J
J
J
Ĵ
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Figure 2.4: E and F: second-type and weakened second-type continuity conditions.
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Figure 2.5: E and F: second-type and weakened second-type continuity conditions.

process ξ0(t) = χ[1,∞)(t), t ≥ 0. The limiting stopping process ν0(t), t ≥ 0 has only two
possible realisations that occur with the probabilities p0 and q0 + r0, respectively. These
realisations are 1

2 for t ≥ 0, and 1 for t ≥ 0. The condition of J-compactness J6 also
holds.

For n ≥ 1, the composition ξn(νn(t)), t ≥ 0 has two possible realisations that occur
with the probabilities pn + qn and rn, respectively. These realisations are 0 for t ≥ 0, and
1 for t ≥ 0. At the same time, the composition ξ0(ν0(t)), t ≥ 0 has the same two possible
realisations that occur with the probabilities p0 and q0 + r0, respectively.

Condition E1 holds if and only if (a) p0 = 1. In this case, the limiting composition
ξ0(ν0(t)), t ≥ 0 has only one realisation 0 for t ≥ 0. The compositions ξn(νn(t)) weakly
converge to ξ0(ν0(t)) on the set S = [0,∞).

Condition F1 holds if and only if (b) q0 = 0. If also, p0 < 1, then condition F1 hold
but E1 does not. If q0 = 0, the limiting composition ξ0(ν0(t)), t ≥ 0 has two possible
realisations 0 for t ≥ 0, and 1 for t ≥ 0. They occur with the probabilities p0 and r0,
respectively. Again, the ξn(νn(t)) weakly converge to ξ0(ν0(t)) on the set S = [0,∞).

Neither condition E1 nor F1 hold, if (c) q0 > 0. In this case pn + qn 6→ p0 and
rn 6→ q0 + r0 as n → ∞. Therefore, the compositions ξn(νn(t)) do not weakly converge
to ξ0(ν0(t)) for every t ∈ [0,∞).

These statements are consistent with the remarks above.
Non-trivial examples of applications of weak convergence results for compositions

of càdlàg processes, based on continuity type condition F1, are given in Chapter 4.
These results are applied there to so-called generalised exceeding processes that describe
various renewal type models.
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2.2 Randomly stopped scalar càdlàg processes

In this section, we formulate conditions for weak convergence of randomly stopped one-
dimensional càdlàg stochastic processes. In this case, the corresponding conditions have
the most clear form.

2.2.1. Main results. Let, for every ε ≥ 0, ξε(t), t ≥ 0 be a real-valued càdlàg process,
and νε be a non-negative random variable. We call ξε(t), t ≥ 0 an external process and νε
a stopping moment.

We are interested in conditions that should be imposed on the random variables νε
and the processes ξε(t), t ≥ 0 in order to provide the following relation

ξε(νε)⇒ ξ0(ν0) as ε→ 0. (2.2.1)

The following condition can be expected to provide relation (2.2.1):

A17: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε→ 0, where U is a subset of [0,∞) that is
dense in this interval and contains the point 0.

Examples constructed in Section 2.1 show that this condition is not sufficient to imply
relation (2.2.1).

Let us introduce the following weak convergence condition:

A18: There exists a set S dense in [0,∞), containing 0, and such that P{ν0 = t} = 0 for
t ∈ S \ {0}, and, for all t′, t′′ ∈ S ,

(νε, sup
t∈[t′,t′′)

ξε(t))⇒ (ν0, sup
t∈[t′,t′′)

ξ0(t)) as ε→ 0,

(νε, inf
t∈[t′,t′′)

ξε(t))⇒ (ν0, inf
t∈[t′,t′′)

ξ0(t)) as ε→ 0.

Let us also introduce the following continuity condition:

C3: The process ξ0(t), t ≥ 0 is continuous at the point ν0 with probability 1, i.e.,
P{limt→0 ξ0(ν0 + t) = ξ0(ν0)} = 1.

The main result of this section is the following theorem from Silvestrov (1971b,
1972a).

Theorem 2.2.1. Let conditions A18 and C3 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0.

Theorem 2.2.1 does not require a separate proof. This theorem is a particular case of
Theorem 2.3.1 that gives a similar result for a more general model of randomly stopped
vector processes.

2.2.2. The condition A18 and J-convergence of the processes (νε, ξε(t)), t ≥ 0.
Condition A18 can be replaced with a more simple condition of joint weak convergence
A17 if, to assume additionally to A17, the following J-compactness condition is assumed:
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J7: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Note that conditions A17 and J7 are necessary and sufficient for J-convergence of
the vector processes (νε, ξε(t)), t ≥ 0.

Let S 0 be the set of points of stochastic continuity of the process ξ0(t), t ≥ 0. This set
is the interval [0,∞) except, perhaps, for some finite or countable set. Since the process
ξ0(t) is continuous from the right, the point 0 also belongs to S 0. Let also Y0 be a set
that includes all continuity points of the distribution function of the random variable ν0

and the point 0. Then Y0 is the set of all points t > 0 such that P{ν0 = t} > 0. This
set contains at most a countable number of points. Therefore, the set S = S 0 \ Y0 is
dense in [0,∞) and contains the point 0. Moreover, this set is [0,∞), except for at most
a countable set.

Lemma 2.2.1. Let conditions A17 and J7 hold. Then condition A18 holds with the set
S = S 0 \ Y0.

Lemma 2.2.1 does not need to be proved separately, too. It is a particular case of
Lemma 2.3.1 that gives a similar result for vector càdlàg processes.

The following theorem from Silvestrov (1971b, 1972a) is a direct corollary of Theo-
rem 2.2.1 and Lemma 2.2.1.

Theorem 2.2.2. Let conditions A17, J7, and C3 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0.

2.2.3. The case of non-random càdlàg functions. As an example, let us consider
the case where the external processes and the stopping moments are non-random. Thus,
let us consider the case where a non-random càdlàg function xε(t), t ≥ 0 is stopped at a
non-random point yε. In this case, condition A17 is reduced to the following conditions:
(a) xε(t)→ x0(t) as ε → 0 for t ∈ U, where U is some set of points everywhere dense in
[0,∞) and containing 0; and (b) yε → y0 as ε → 0. Condition J7 reduces, in this case,
to the condition of J-compactness, (c) limc→0 limε→0 ∆J(xε(·), c, T ) = 0, δ, T > 0. Note
that (a) and (c) are just necessary and sufficient conditions for the following relation of

J-convergence: (d) xε(t), t ≥ 0
J−→ x0(t), t ≥ 0 as ε → 0. Finally, condition C3 takes

the following form: (e) y0 is a continuity point of the function x0(t), t ≥ 0. Theorem
2.2.2 states in this case that, under conditions (a), (b), (c), and (e), the following relation
holds: (f) xε(yε)→ x0(y0) as ε→ 0.

An importance and utility of this statement for càdlàg functions was pointed out,
for example, in Jacod and Shiryaev (1987). The authors did not recognise that it is a
particular case of Theorem 2.2.2 from Silvestrov (1971b, 1972a).

2.2.4. Condition A18 and M-convergence of the processes (νε, ξε(t)), t ≥ 0. Con-
ditions A17 and J7 can be replaced with weaker conditions of M-convergence of vector
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processes (νε, ξε(t)), t ≥ 0, namely, with condition A17 and the following condition of
M-compactness:

M6: limc→0 limε→0 P{∆M(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Lemma 2.2.2. Let conditions A17 and M6 hold. Then condition A18 holds with the set
S = S 0 \ Y0.

Lemma 2.2.2 also does not require a separate proof, since it is a particular case of
Lemma 2.3.3 that gives a similar result for vector càdlàg processes.

The following theorem, which was also given in Silvestrov (1971b, 1972a), is a direct
corollary of Theorem 2.2.1 and Lemma 2.2.2.

Theorem 2.2.3. Let conditions A17, M6, and C3 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0.

2.2.5. Monotone external processes. Condition A18 is weaker than A17 and J7. It
is also weaker than A17 and M6.

To clarify this, let us consider a model with monotone processes ξε(t), t ≥ 0. In
this case, condition A18 is equivalent to the relation (νε, ξε(t)) ⇒ (ν0, ξ0(t)) as ε → 0
for t ∈ S , i.e., to the weak convergence of distributions that are one-dimensional with
respect to t.

In regard to condition A17, this condition demands weak convergence of distributions
that are finite dimensional in time. Also in this case, J7 is an additional J-compactness
condition. Now, condition M6 is implied by A17, since the processes ξε(t), t ≥ 0 are
monotone.

2.2.6. Decomposition condition Q1. Let us introduce a condition that is very useful
in applications,

Q1: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process, (b) ξ′′0 (t),
t ≥ 0 is a stochastically continuous càdlàg process, (c) the process ξ′′0 (t), t ≥ 0 and
the random variable ν0 are independent.

Lemma 2.2.3. Let condition Q1 hold. Then the continuity condition C3 holds, i.e., the
process ξ0(t), t ≥ 0 is continuous at the point ν0 with probability 1.

Proof of Lemma 2.2.3. The first component ξ′0(t) is a continuous process. So, it is suffi-
cient to show that

η′′0 (h, ν0)
P1−→ 0 as h→ 0, (2.2.2)

where
η′′0 (h, x) = sup

|t|≤h
|ξ′′0 (t + x) − ξ′′0 (x)|, x ≥ 0.
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By the definition, the quantities η′′0 (h, x) are monotonically non-decreasing in h for
every x ≥ 0, and, consequently, such are the quantities η′′0 (h, ν0). This and Remark 1.3.2
imply that, in order to prove (2.2.2), it is sufficient to prove the following relation:

η′′0 (h, ν0)
P−→ 0 as h→ 0. (2.2.3)

As is known, every point of stochastic continuity of a càdlàg process is also a point
of continuity of this process with probability 1. Therefore,

η′′0 (h, x)
P−→ 0 as h→ 0, x ≥ 0. (2.2.4)

Now, using (2.2.4), independence of ξ′′0 (t), t ≥ 0 and ν0, and the Lebesgue theorem,
we get

P{η′′0 (h, ν0) > δ} =

∫ ∞

0
P{η′′0 (h, x) > δ}P{ν0 ∈ dx} → 0 as h→ 0. (2.2.5)

This completes the proof. �

The requirement that the process ξ′′0 (t) in condition Q1 is stochastically continuous
can be replaced with a weaker condition that P{ν0 ∈ S ′′0 } = 1, where S ′′0 is the set of
points of stochastic continuity of the process ξ′′0 (t), t ≥ 0. Indeed, in this case relation
(2.2.4) holds for all points x ∈ S ′′0 , i.e., almost everywhere with respect to the distribution
of the random variable ν0. One can still use the Lebesgue theorem and prove that the
limit in (2.2.5) equals zero.

The assumption of continuity of the process ξ′0(t) in condition Q1 can also be weak-
ened. It can be replaced with a weaker assumption that P{ν0 ∈ U′0} = 1, where U′0 is
some set of points such that the process ξ′0(t) is continuous simultaneously at all points
t ∈ U′0 with probability 1. Indeed, let A = {ω : ν0(ω) ∈ S ′′0 } and B = {ω : ν0(ω) ∈ U′0}
be the corresponding sets of elementary events. Both events A and B have probability 1.
Obviously, ν0(ω) is a point of continuity for the realisation ξ′0(t,ω) for every elementary
event ω ∈ A ∩ B and P(A ∩ B) = 1.

For example, let ν0 have a discrete distribution concentrated in points of a countable
set U′0 = {uk}. Then the process ξ′0(t) is continuous simultaneously at all points t ∈ U ′0
with probability 1 if this process is continuous with probability 1 at each point of the
set U′0. To prove this, it is enough to assume that the process ξ′0(t) is stochastically
continuous at each point t ∈ U ′0. This is so, since this process is a càdlàg process.

Also, the additive decomposition in Q1 can be generalised to a more general form,
ξ0(t) = f (t, ξ′0(t), ξ′′0 (t)), t ≥ 0, where ξ′0(t) and ξ′′0 (t) are processes with the same proper-
ties as in Q1, and f (t, x, y) is a continuous function.

Some simple sufficient continuity conditions can also be formulated in the general
case where no decomposition assumptions are made. Since the process ξ0(t), t ≥ 0, is
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a càdlàg process, it has, with probability 1, a finite number of discontinuity points at
which the absolute values of jumps belongs to the interval [ 1

n ,
1

n−1 ) in any finite interval
[0, T ]. This is the case for every n = 1, 2, . . . . Let us recursively define τkn = inf(s >
τk−1n : |ξ0(s) − ξ0(s − 0)| ∈ [ 1

n ,
1

n−1 )), k = 1, 2, . . . , and τ0n = 0. By the definition, τkn are
successive moments of such jumps for k < µn + 1 and τkn = ∞ for k ≥ µn + 1, where
µn = max(k ≥ 0: τkn < ∞) is the total number of jumps in the interval [0,∞) which have
the absolute values in the interval [ 1

n ,
1

n−1 ). The random variables µn can take the values
0, 1, . . . ,∞. Now, let us define the random set of all points of jumps,

R[ξ0(·)] = { τkn : 1 ≤ k < µn + 1, n = 1, 2, . . .}. (2.2.6)

Condition C3 can be rewritten in an equivalent form,

C
′
3: P{ν0 ∈ R[ξ0(·)]} = 0,

or as

C
′′
3 : P{ν0 = τkn} = 0 for k, n = 1, 2, . . . .

If condition Q1 holds, then the random variable τkn can be a discontinuity point for the
process ξ0(t) if and only if it is a discontinuity point for the second component ξ′′0 (t). This
is so, because the first component ξ′0(t) is a continuous process. Therefore, ν0 and τkn

are independent, and condition C
′′
3 is equivalent to the requirement that the distribution

functions of ν0 and τkn have no common discontinuity points for every k, n ≥ 1.
Condition C

′′
3 also holds if, for every k, n = 1, 2, . . ., the random variables ν0 and τkn

are independent and their distribution functions have no common discontinuity points.
In this case, the process ξ0(t) and the random variable ν0 can be dependent. In particular,
ν0 can depend on the process ξ′0(t), t ≥ 0, and also on values of the process ξ′′0 (t), t ≥ 0 at
moments of its jumps.

Moreover, condition C
′′
3 holds also if the random variables ν0 and τkn are dependent

but the distributions of the random variables τkn − ν0 are continuous at zero.

2.3 Randomly stopped vector càdlàg processes

In this section, the results formulated in Section 2.2 are generalised to the case of vector
processes. This is a necessary step to weak convergence theorems for compositions of
stochastic processes.

2.3.1. Main results. Let, for every ε ≥ 0, ξε(t) = (ξε1(t), . . . , ξεm(t)), t ≥ 0, be a
càdlàg random process taking values in �m, and νε = (νε1, . . . , νεm) be a random vector
with non-negative components. We call ξε(t), t ≥ 0 an external process and νε a vector
stopping moment. Consider the random vectors ζε = (ξε1(νε1), . . . , ξεm(νεm)).

Let us introduce conditions that are vector analogues of conditions A18 and C3,
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A19: For every i = 1, . . . , m, there exists a set S i dense in [0,∞), containing 0, and such
that P{ν0i = t} = 0 for t ∈ S i \ {0}, and for all t′i , t′′i ∈ S i, i = 1, . . . ,m,

(νεi, sup
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)

⇒ (ν0i, sup
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0,

(νεi, inf
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)

⇒ (ν0i, inf
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0.

C4: The process ξ0i(t), t ≥ 0, is continuous at the point ν0i with probability 1 for every
i = 1, . . . ,m, i.e., P{limt→0 ξ0i(ν0i + t) = ξ0i(ν0i)} = 1 for i = 1, . . . , m.

The following theorem from Silvestrov (1971b, 1972a) is a vector analogue of The-
orem 2.2.1.

Theorem 2.3.1. Let conditions A19 and C4 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Proof of Theorem 2.3.1. For each i = 1, . . . ,m and n ≥ 1, choose partitions of the inter-
val [0,∞) such that, for every i = 1, . . . ,m, (a) 0 = zi,0,n < zi,1,n < · · · < zi,n,n < zi,n+1,n =

∞ for i = 1, . . . ,m, (b) hi(n) = max0≤k≤n−1 |zi,k+1,n − zi,k,n| → 0 as n→ ∞ for i = 1, . . . ,m,
and (c) zi,n,n → ∞ as n→ ∞.

For i = 1, . . . ,m and n ≥ 1, define the random variables

ξ+
εi(n) =

n∑

k=0

sup
t∈[zi,k,n ,zi,k+1,n)

ξεi(t)χ(νεi ∈ [zi,k,n, zi,k+1,n)), (2.3.1)

and

ξ−εi(n) =

n∑

k=0

inf
t∈[zi,k,n ,zi,k+1,n)

ξεi(t)χ(νεi ∈ [zi,k,n, zi,k+1,n)). (2.3.2)

Let also
ηεi(h, x) = sup

|t|≤h
|ξεi(x + t) − ξεi(x)|, x ≥ 0, i = 1, . . . ,m. (2.3.3)

It is clear that condition C4 is equivalent to the relation

η0i(h, ν0i)
P1−→ 0 as h→ 0, i = 1, . . . ,m. (2.3.4)
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On the other hand, by the definition of the random variables ξ±0i(n) in (2.3.1) and
(2.3.2), we have, for all i = 1, . . . , m and n ≥ 1, that

(ξ+
0i(n) − ξ−0i(n))χ(ν0i < zi,n,n) ≤ 2η0i(hi(n), ν0i). (2.3.5)

Thus, if condition C4 and, consequently, (2.3.4) hold, then for i = 1, . . . ,m,

P{ξ+
0i(n) − ξ−0i(n) > δ}
≤ P{ν0i ≥ zi,n,n} + P{η0i(hi(n), ν0i) > δ/2} → 0 as n→ 0,

(2.3.6)

that is, for all i = 1, . . . ,m,

ξ+
0i(n) − ξ−0i(n)

P−→ 0 as n→ ∞. (2.3.7)

It is clear that, for all i = 1, . . . ,m, n ≥ 1, and ε ≥ 0,

ξ−εi(n) ≤ ξεi(νεi) ≤ ξ+
εi(n). (2.3.8)

It follows from (2.3.7) and (2.3.8) that

(ξ+
0i(n), i = 1, . . . ,m)

P−→ (ξ0i(ν0i), i = 1, . . . ,m) as n→ ∞, (2.3.9)

and
(ξ−0i(n), i = 1, . . . ,m)

P−→ (ξ0i(ν0i), i = 1, . . . ,m) as n→ ∞. (2.3.10)

The sequence of partitions described in (a) – (c) can always be chosen in such a way
that zi,k,n ∈ S i for all k = 0, . . . n, n ≥ 1, and i = 1, . . . ,m.

Let also U be the subset of all points u = (u1, . . . , um) such that P{ξ0i(ν0i) = ui}
= P{ξ+

0i(n) = ui} = P{ξ−0i(n) = ui} = 0 for all n ≥ 1 and i = 1, . . . ,m. The set U is dense
in �m.

Relations (2.3.9) and (2.3.10) imply that, for all points u ∈ U,

P{ξ+
0i(n) ≤ ui, i = 1, . . . ,m} → P{ξ0i(ν0i) ≤ ui, i = 1, . . . ,m} as n→ ∞, (2.3.11)

and

P{ξ−0i(n) ≤ ui, i = 1, . . . ,m} → P{ξ0i(ν0i) ≤ ui, i = 1, . . . ,m} as n→ ∞. (2.3.12)

By the definition of ξ±εi(n), we have

P{ξ+
εi(n) < ui, i = 1, . . . ,m}

=

m∑

i=1

n∑

ki=0

P{ sup
t∈[zi,ki ,n ,zi,ki+1,n)

ξεi(t) ≤ ui, νεi ∈ [zi,ki,n, zi,ki+1,n), i = 1, . . . ,m}, (2.3.13)
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and

P{ξ−εi(n) < ui, i = 1, . . . ,m}

=

m∑

i=1

n∑

ki=0

P{ inf
t∈[zi,ki ,n ,zi,ki+1,n)

ξεi(t) ≤ ui, νεi ∈ [zi,ki,n, zi,ki+1,n), i = 1, . . . ,m}. (2.3.14)

Also, by condition A19 and (2.3.13)-(2.3.14), for all points u ∈ U,

lim
ε→0
|P{ξ+

εi(n) < ui, i = 1, . . . ,m} − P{ξ+
0i(n) < ui, i = 1, . . . ,m}|

≤ lim
ε→0

m∑

i=1

(P{νεi ≥ zi,n,n} + P{ν0i ≥ zi,n,n}) = 2
m∑

i=1

P{ν0i ≥ zi,n,n},
(2.3.15)

and

lim
ε→0
|P{ξ−εi(n) ≤ ui, i = 1, . . . ,m} − P{ξ−0i(n) ≤ ui, i = 1, . . . ,m}|

≤ lim
ε→0

m∑

i=1

(P{νεi ≥ zi,n,n} + P{ν0i ≥ zi,n,n}) = 2
m∑

i=1

P{ν0i ≥ zi,n,n}.
(2.3.16)

Now, using relations (2.3.8), (2.3.11), (2.3.12), (2.3.15), and (2.3.16) we get, for
every point u ∈ U, the following estimates:

lim
ε→0

P{ξεi(νεi) ≤ ui, i = 1, . . . ,m}
≤ lim

n→∞
lim
ε→0

P{ξ−εi(n) ≤ ui, i = 1, . . . ,m}
≤ lim

n→∞
(P{ξ−0i(n) ≤ ui, i = 1, . . . ,m} + 2

∑m

i=1
P{ν0i ≥ zi,n,n})

= P{ξ0i(ν0i) ≤ ui, i = 1, . . . ,m},

(2.3.17)

and

lim
ε→0

P{ξεi(νεi) ≤ ui, i = 1, . . . ,m}

≥ lim
n→∞

lim
ε→0

P{ξ+
εi(n) ≤ ui, i = 1, . . . ,m}

≥ lim
n→∞

(P{ξ+
0i(n) ≤ ui, i = 1, . . . ,m} − 2

∑m

i=1
P{ν0i ≥ zi,n,n})

= P{ξ0i(ν0i) ≤ ui, i = 1, . . . ,m}.

(2.3.18)

Obviously, relations (2.3.17) and (2.3.18) imply that for every u ∈ U,

lim
ε→0

P{ξεi(νεi) ≤ ui, i = 1, . . . ,m} = P{ξ0i(ν0i) ≤ ui, i = 1, . . . ,m}. (2.3.19)

Relation (2.3.19) proves the theorem (recall that distribution functions of random
vectors weakly converge if they converge on a dense subset in �m). �
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2.3.2. Joint weak convergence of randomly stopped processes and stopping mo-
ments. The statement of Theorem 2.3.1 can be strengthened in the following way.

Theorem 2.3.2. Let conditions A19 and C4 hold. Then

(νεi, ξεi(νεi), i = 1, . . . ,m)⇒ (ν0i, ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Proof of Theorem 2.3.2. If conditions A19 and C4 are fulfilled for the random vectors
(νεi, i = 1, . . . ,m) and the processes (ξεi(t), i = 1, . . . ,m), t ≥ 0, then these condi-
tions are also fulfilled for the random vectors (νεi, νεi, i = 1, . . . ,m) and the processes
(ξ′εi(t), ξεi(t), i = 1, . . . ,m), t ≥ 0, where ξ′εi(t) = t, t ≥ 0, for i = 1, . . . ,m. �

2.3.3. Condition A19 and J-convergence of vector càdlàg processes (νε, ξε(t)),
t ≥ 0. The following condition ia a vector analogue of condition A17:

A20: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε → 0, where U is a subset of [0,∞) that is
dense in this interval and contains the point 0.

The following condition of J-compactness of external processes was introduced in
Subsection 1.6.11:

J4: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Let S 0 be the set of points of stochastic continuity of the process ξ0(t), t ≥ 0. This
set is the interval [0,∞), except for at most a countable set. Note also that 0 ∈ S 0. Let
also Yi be the set that contains all points y that are points of continuity of the distribution
functions of the random variables ν0i and the point 0. By the definition, Y i is the set of
points t > 0 for which P{ν0i = t} > 0. Each such set contains at most a countable number
of points. Therefore, each set S i = S 0 \ Y i is dense in [0,∞) and contains the point 0.
Moreover, this set coincides with [0,∞) except for, possibly, some finite or countable
set.

Lemma 2.3.1. Let conditions A20 and J4 hold. Then condition A19 holds with the sets
S i = S 0 \ Y i, i = 1, . . . ,m.

Proof of Lemma 2.3.1. Obviously, ξ̃ε(t) = (νε, ξε(t)), t ≥ 0, is a càdlàg process with the
phase space �2m. The first m components of this process do not depend on time.

Condition A20 yields the weak convergence of these processes on the set U from this
condition. Also, the processes ξ̃ε(t), t ≥ 0, and ξε(t), t ≥ 0, have the same moduli of
J-compactness, i.e., ∆J(ξ̃ε(·), c, T ) = ∆J(ξε(·), c, T ) for every c, T > 0. So, J4 can serve
as a J-compactness condition for the vector processes ξ̃ε(t), t ≥ 0.

Thus, A20 and J4 provide J-convergence of the processes ξ̃ε(t), t ≥ 0, i.e.,

ξ̃ε(t), t ≥ 0
J−→ ξ̃0(t), t ≥ 0 as ε→ 0. (2.3.20)
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Let F0(A) denote the measure generated by the process ξ̃0(t), t ≥ 0 on the Borel
σ-algebra B(2m)

[0,∞).
Let x(t) = (x1(t), . . . x2m(t)), t ≥ 0 be a càdlàg function from the space D(2m)

[0,∞). Let us
consider the functionals fi(x(·)) = xi(0) and m+

i,t′,t′′(x(·)) = supt∈[t′ ,t′′) xm+i(t), m−i,t′,t′′ (x(·)) =

inft∈[t′,t′′) xm+i(t) for 0 ≤ t′ < t′′ < ∞, i = 1, . . . ,m.
According to Lemmas 1.5.1 and 1.5.9, the functionals fi(x(·)) belong to the class

HJ,∞[F0] as well as the functionals m±i,t′i ,t′′i (x(·)) for all 0 ≤ t′i < t′′i < ∞, t′i , t
′′
i ∈ S i, i =

1, . . . ,m. By the definition of these functionals, fi(ξ̃ε(·)) = νεi, while m+
i,t′i ,t

′′
i
(ξ̃ε(·)) =

supt∈[t′i ,t′′i ) ξεi(t) and m−i,t′i ,t′′i (ξ̃ε(·)) = inft∈[t′i ,t′′i ) ξεi(t).
Now, by Theorem 1.6.7, for all 0 ≤ t′i < t′′i < ∞, t′i , t′′i ∈ S i, i = 1, . . . ,m,

(νεi, sup
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0i, sup
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0, (2.3.21)

and

(νεi, inf
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0i, inf
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0. (2.3.22)

Relations (2.3.21) and (2.3.22) imply that condition A19 holds with the sets S i =

S 0 \ Y i, i = 1, . . . ,m. �

Now we can formulate the following theorem from Silvestrov (1971b, 1972a), which
is a vector analogue of Theorem 2.2.2.

Theorem 2.3.3. Let conditions A20, J4, and C4 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Condition J4 in Theorem 2.3.3 can be weakened in the following way. Let us intro-
duce the condition:

J8: limc→0 limε→0 P{∆J(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

It should be noted that condition J8 is weaker than J4. An example of vector càdlàg
functions that satisfy condition J8 but do not satisfy condition J4 is given in Section 3.1.

Lemma 2.3.2. Let conditions A20 and J8 hold. Then condition A19 holds with the sets
S i = S 0 \ Y i, i = 1, . . . , m.

Proof of Lemma 2.3.2. The proof is analogous to the proof of Lemma 2.3.1. The differ-
ence is that one must use Theorem 1.6.8 instead of Theorem 1.6.7.

Let us consider the processes ξ̃εi(t) = (νεi, ξεi(t)), t ≥ 0, for i = 1, . . . ,m. Let F0i(A)
be the measure generated by the process ξ̃0i(t), t ≥ 0 on the Borel σ-algebra of subsets



88 Chapter 2. Weak convergence of randomly stopped processes

of B(2)
[0,∞). Conditions A20 and J8 imply that these processes satisfy the conditions of

Theorem 1.6.8.
Let x(t) = (x1(t), x2(t)), t ≥ 0 be a càdlàg function from the space D(2)

[0,∞). Let us
consider the functionals f (x(·)) = x1(0) and m+

t′,t′′(x(·)) = supt∈[t′ ,t′′) x2(t), m−t′,t′′(x(·)) =

inft∈[t′,t′′) x2(t) for 0 ≤ t′ < t′′ < ∞.
Also, according Lemmas 1.5.1 and 1.5.9, for every i = 1, . . . ,m, the functionals

f (x(·)) and m±t′i ,t′′i (x(·)), for all 0 ≤ t′i < t′′i < ∞, t′i , t
′′
i ∈ S i, belong to the class HJ,∞[F0i].

Now, by Theorem 1.6.8, we get for all 0 ≤ t′i < t′′i < ∞, t′i , t′′i ∈ S i, i = 1, . . . ,m,

(νεi, sup
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0i, sup
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0. (2.3.23)

In the same way, for all 0 ≤ t′i < t′′i , t′i , t′′i ∈ S i, i = 1, . . . ,m, we get the following
relation:

(νεi, inf
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0i, inf
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0. (2.3.24)

Relations (2.3.23) and (2.3.24) obviously imply that condition A19 holds with the
sets S i = S 0 \ Y i, i = 1, . . . ,m. �

We can improve Theorem 2.3.3 by replacing the condition J4 with the weaker con-
dition J8.

Theorem 2.3.4. Let conditions A20, J8, and C4 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Remark 2.3.1. If the limiting process ξ0(t), t ≥ 0, is a.s. continuous, condition C4 au-
tomatically holds. In this case, the modulus of J-compactness in the conditions J4 and
J8 can be replaced with the corresponding modulus of U-compactness. After this, the
conditions J4 and J8 become equivalent.

2.3.3. The case of non-random functions. Let us consider the case where a non-
random càdlàg vector function xε(t) = (xεi(t), i = 1, . . . ,m), t ≥ 0 is stopped at a non-
random vector point yε = (yεi, i = 1, . . . ,m). Consider the vector zε = (xεi(yεi), i =

1, . . . ,m). In this case, condition A20 reduces to the following conditions: (a) xε(t) →
x0(t) as ε → 0 for t ∈ U, where U is some set of points everywhere dense in [0,∞) and
containing 0; and (b) yε → y0 as ε→ 0. Condition J8 is a condition of J-compactness of
the functions xεi(t), t ≥ 0, which now becomes (c) limc→0 limε→0 ∆J(xεi(·), c, T ) = 0, for
every δ, T > 0 and i = 1, . . . ,m. Note that (a) and (c) are just necessary and sufficient
conditions of J-convergence of the functions xεi(t), t ≥ 0, for every i = 1, . . . ,m. They

can be re-casted as (d) xεi(t), t ≥ 0
J−→ x0i(t), t ≥ 0 as ε → 0, i = 1, . . . ,m. Note that

J-convergence of the vector functions xε(t), t ≥ 0 is not required. Finally, condition C4
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takes the following form: (e) y0i is a continuity point of the function x0i(t), t ≥ 0 for
every i = 1, . . . ,m. In this case, Theorem 2.3.4 states that zε → z0 as ε→ 0 if conditions
(a), (b), (c), and (e) are satisfied.

2.3.4. Condition A19 and M-convergence of processes (νε, ξε(t)), t ≥ 0. Similar to
the one-dimensional case, conditions A20 and J8 can be replaced with the corresponding
conditions that are based on the weaker topology M.

Let as recall the condition of M-compactness introduced in Subsection 1.6.16,

M5: limc→0 limε→0 P{∆M(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

Lemma 2.3.3. Let conditions A20 and M5 hold. Then condition A19 holds with the sets
S i = S 0 \ Y i, i = 1, . . . ,m.

Proof of Lemma 2.3.3. The condition of joint weak convergence, A20, and the condition
of M-compactness, M5, imply M-convergence of the scalar processes ξεi(t), t ≥ 0, for
every i = 1, . . . , m. Moreover, for every ui,wi ∈ R1, i = 1, . . .m, conditions A20 and
M5 imply M-convergence of the scalar processes uiνεi + wiξεi(t), t ≥ 0 for every i = 1,
. . . , m. By using Theorem 1.6.13, one gets the following relations for all 0 ≤ t′i < t′′i <
∞, t′i , t′′i ∈ S i, i = 1, . . . ,m:

(uiνεi + wi sup
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)

⇒ (uiν0i + wi sup
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0,
(2.3.25)

and

(uiνεi + wi inf
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)

⇒ (uiν0i + wi inf
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0.
(2.3.26)

Since the choice of ui,wi ∈ R1, i = 1, . . . ,m is arbitrary, these relations imply that for
any 0 ≤ t′i < t′′i , t′i , t′′i ∈ S i, i = 1, . . . ,m,

(νεi, sup
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0, sup
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0, (2.3.27)

and

(νεi, inf
t∈[t′i ,t′′i )

ξεi(t), i = 1, . . . ,m)⇒ (ν0, inf
t∈[t′i ,t′′i )

ξ0i(t), i = 1, . . . ,m) as ε→ 0. (2.3.28)

Relations (2.3.27) and (2.3.28), obviously, imply that condition A19 holds with the
sets S i = S 0 \ Y i, i = 1, . . . ,m. �
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The following theorem is a corollary of Theorem 2.3.1 and Lemma 2.3.3.

Theorem 2.3.5. Let conditions A20, M5, and C4 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

2.3.5. The continuity condition C4. Condition C4, actually, is an assumption that
condition C3 holds for the process ξ0i(t), t ≥ 0 and the random variable ν0i for every
i = 1, . . . ,m. All remarks made in Section 2.2 can be repeated without any change.

In particular, condition C4 holds if condition Q1 holds for the process ξ0i(t), t ≥ 0,
and the random variable ν0i for every i = 1, . . . ,m.

2.3.6. Time interval (−∞,∞). All the results formulated above can be generalised
to the model where the càdlàg processes ξε(t) = (ξε1(t), . . . , ξεm(t)), t ≥ 0 are defined
on the time interval (−∞,∞), and the random vectors νε = (νε1, . . . , νεm) take values in
space �m. In this case, the sets S i in condition A19 and the set U in condition A20 must
be everywhere dense in (−∞,∞), while the relations of J-compactness in the conditions
J4 and J8 must hold for any finite interval [T ′, T ′′] where −∞ < T ′ < T ′′ < ∞.

2.3.7. Positive limiting stopping moments. In the case where the limiting stopping
moments ν0i > 0, i = 1, . . . ,m, with probability 1, one can slightly weaken the conditions
A19, A20 and the conditions J4, J8. In this case, the sets S i in condition A19 and U in
the condition A20 must be dense in (0,∞), and the relations of J-compactness in the
conditions J4 or J8 must hold for any finite interval [T ′, T ′′] with 0 < T ′ < T ′′ < ∞.

This generalisation can be achieved by using the following standard method. Let
us consider the basic case where condition A19 holds. One can always choose some
sequences 0 < sni → 0 as n → ∞ such that, for every i = 1, . . . ,m and n = 0, 1, . . ., the
point sni belongs to the set S i. Then one can consider the processes ξ(n)

εi+(t) = ξεi(t)χ(t ≥
sni), ξ

(n)
εi−(t) = ξεi(t)χ(t < sni), t ≥ 0. Obviously, ξεi(t) = ξ(n)

εi+(t) + ξ(n)
εi−(t), and, therefore,

(a) ξεi(νεi) = ξ(n)
εi+(νεi) + ξ(n)

εi−(νεi).
From A19 and positivity of the random variables ν0i, i = 1, . . . ,m, one gets the fol-

lowing estimate: (b) limn→∞ limε→0 P{|ξ(n)
εi−(νεi)| > δ} ≤ limn→∞ limε→0 P{νεi < sni} =

limn→∞ P{ν0i < sni} = 0. It is readily seen that (c) conditions A19 and C4 hold for the
processes ξε(t) = (ξ(n)

εi+(t), i = 1, . . . ,m), t ≥ 0, and the random vectors νε = (νεi, i =

1, . . . ,m) for every n = 0, 1, . . .. Hence, (d) (ξ(n)
0i+(ν0i), i = 1, . . . ,m) ⇒ (ξ(n)

0i+(ν0i), i =

1, . . . ,m) as ε→ 0. The random variables ν0i, i = 1, . . . ,m are positive. This implies that
(e) (ξ(n)

0i+(ν0i), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as n→ ∞. Finally, by Lemma 1.2.5
and relations (a) – (e),

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0. (2.3.29)

2.3.8. Random vectors (ξεi(νεi − 0), i = 1, . . . , m). Under the same conditions A19
and C4, the following relation holds:

(ξεi(νεi − 0), i = 1, . . . ,m)⇒ (ξ0i(ν0i − 0), i = 1, . . . ,m) as ε→ 0. (2.3.30)
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This relation can be proved following the proof of Theorem 2.3.1 by carrying it over
to the random vectors (ξεi(νεi − 0), i = 1, . . . ,m). What needs to be slightly changed is
only the definition of the random variables ξ±εi(n). The corresponding suprema and infima
should be taken over the intervals [zi,k−1,n, zi,k+1,n), instead of the intervals [zi,k,n, zi,k+1,n)
(here zi,−1,n = zi,0,n = 0). In this case, the same upper and lower approximations can be
used for the random variables ξεi(νεi ± 0), i.e., for all i = 1, . . . ,m, n ≥ 1, and ε ≥ 0,

ξ−εi(n) ≤ ξεi(νεi ± 0) ≤ ξ+
εi(n). (2.3.31)

Moreover, the proof of Theorem 2.3.1 can also be carried over in the same way to the
random vectors (ξεi(νεi), ξεi(νεi − 0), i = 1, . . . ,m). This yields that, under the conditions
A19 and C4, the following relation holds:

(ξεi(νεi), ξεi(νεi − 0), i = 1, . . . ,m)
⇒ (ξ0i(ν0i), ξ0i(ν0i − 0), i = 1, . . . ,m) as ε→ 0.

(2.3.32)

The idea of extending the intervals [zi,k,n, zi,k+1,n) in the definition of the random vari-
ables ξ±εi(n) can be modified. The intervals (zi,k−1,n, zi,k+1,n) and [zi,k−1,n, zi,k+1,n] can serve
equally well and replace the intervals [zi,k−1,n, zi,k+1,n) in the estimate 2.3.31.

This remark leads to modified versions of condition A19 in which the corresponding
suprema and infima should be taken over the intervals (t′i , t

′′
i ) or [t′i , t

′′
i ], instead of the

intervals [t′i , t
′′
i ). It is useful to note that the conditions A20 and J4 (or J8) imply any

modification of the condition A19 described above.
In the case where the modification of condition A19 is based on the open intervals

(t′i , t
′′
i ), an interesting method of time reversion can be employed.
Let us take some T > 0 such that (a) it is a point of stochastic continuity of the

process ξ0(t), t ≥ 0; (b) P{ν0i = T } = 0, i = 1, . . . ,m. Let us also assume for the moment
that (c) 0 ≤ νεi ≤ T, i = 1, . . . ,m for all ε ≥ 0.

Consider the process ξε(t−0) = (ξεi(t−0), i = 1, . . . ,m), t ≥ 0 (here ξε(0−0) = ξε(0)).
This process is continuous from the left, whereas the original process ξε(t), t ≥ 0, is
continuous from the right. The process with reversed time can be defined by ξ(T )

ε (t) =

ξε(T − t − 0), 0 ≤ t ≤ T , and ξ(T )
ε (t) = ξε(0) for t > T . Obviously, ξ(T )

ε (t), t ≥ 0 is a càdlàg
process. Let also ν(T )

ε = (T − νεi, i = 1, . . . ,m).
By the definition of the processes ξ(T )

ε (t), t ≥ 0 and the random vectors ν(T )
ε ,

(ξ(T )
εi (T − νεi), i = 1, . . . ,m) = (ξεi(νεi − 0), i = 1, . . . ,m). (2.3.33)

Obviously, supt∈(t′,t′′) x(t) = supt∈(t′ ,t′′) x(t − 0) and inf t∈(t′ ,t′′) x(t) = inft∈(t′,t′′) x(t − 0)
for any real-valued càdlàg function x(t), t ≥ 0. Thus, the modification of condition A19
based on open intervals holds for the processes ξ(T )

ε (t), t ≥ 0 and the random vectors ν(T )
ε .

Also, condition C4 holds for the processes ξ(T )
0 (t), t ≥ 0 and the random vectors ν(T )

0 if it
holds for the initial external processes and stopping moments.
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Therefore, Theorem 2.3.1 can be applied, and this yields relation (2.3.30).
The general case with unbounded stopping moments can be reduced to the case

where condition (c) holds. Let 0 < Tn → ∞ as n → ∞ be a sequence of points for
which conditions (a) and (b) hold. Condition (c) obviously holds for the truncated ran-
dom variables νεi ∧ T , i = 1, . . . ,m.

The following obvious estimate holds for all i = 1, . . . ,m, n ≥ 1 and σ > 0: (d)
P{|ξεi(νεi ± 0) − ξεi((νεi ∧ Tn) ± 0)| > σ} ≤ P{νεi > Tn}. It follows from this estimate
and condition A19 that (e) limn→∞ limε→0 P{|ξεi(νεi ± 0) − ξεi((νεi ∧ Tn) ± 0)| > σ} = 0.
Also, (f) (ξ0i((ν0i ∧ Tn) ± 0), i = 1, . . . ,m) ⇒ (ξ0i(ν0i ± 0), i = 1, . . . ,m) as n → 0. The
modified version of condition A19 and condition C4 imply, by the remarks made above,
(g) (ξεi((νεi ∧ Tn) ± 0), i = 1, . . . ,m) ⇒ (ξ0i((ν0i ∧ Tn) ± 0), i = 1, . . . ,m) as ε → 0 for
every n ≥ 1.

Lemma 1.2.5 and relations (d) – (g) imply that

(ξεi(νεi ± 0), i = 1, . . . ,m)⇒ (ξ0i(ν0i ± 0), i = 1, . . . ,m) as ε→ 0. (2.3.34)

2.3.9. A Polish phase space. The results given in Section 2.3 can also be generalised
to a model with càdlàg processes ξεi(t), t ≥ 0 that take values in a Polish space X. We
will show how the consideration can be reduced to real-valued processes.

The vector process ξε(t), t ≥ 0, has the phase space Xm = X × · · · ×X. A metric in the
space Xm can be defined by dm(x, y) = (

∑m
i=1 d2(xi, yi))1/2 for points x = (x1, . . . , xm), y =

(y1, . . . , ym) ∈ Xm, where d(x, y) is the corresponding metric in the space X.
The conditions A20 and C4 can be kept without any changes. In the conditions J4

and J8, the Euclidean distance |x − y| must be replaced with the corresponding metrics
dm(x, y) and d(x, y) in the formulas for the moduli of J-compactness, ∆J(ξε(·), c, T ) and
∆J(ξεi(·), c, T ). The following theorem is a new result.

Theorem 2.3.6. Let conditions A20, J4, and C4 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Proof of Theorem 2.3.6. Let us consider the processes ξ̃ε(t) = (νε, ξε(t)), t ≥ 0. These
are càdlàg processes taking values in the space �m × Xm.

Conditions A20 and J4 imply J-convergence of the processes ξ̃ε(t), t ≥ 0 to the pro-
cess ξ̃0(t), t ≥ 0 as ε→ 0.

Denote by F0(A) the measure generated by the process ξ̃0(t), t ≥ 0 on the Borel σ-
algebra of the space D of càdlàg functions x(t) = (x1(t), . . . x2m(t)), t ≥ 0 taking values in
the space �m × Xm.

Let us fi(x) be arbitrary continuous bounded functions defined on X, ui, wi ∈ �1

and points t′i < t′′i , t′i , t
′
i ∈ S 0 for i = 1, . . . ,m. Here S 0 is the set of points of stochastic

continuity of the process ξ̃0(t), t ≥ 0. The functionals
∑m

i=1 uixi(0)+wi supt∈[t′i ,t′′i ) fi(xm+i(t))
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and
∑m

i=1 uixi(0)+wi inft∈[t′i ,t′′i ) fi(xm+i(t)) are a.s. J-continuous with respect to measure F0.
Thus,

m∑

i=1

uiνεi + wi sup
t∈[t′i ,t′′i )

fi(ξεi(t))

⇒
m∑

i=1

uiν0i + wi sup
t∈[t′i ,t′′i )

fi(ξ0i(t)) as ε→ 0,

(2.3.35)

and
m∑

i=1

uiνεi + wi inf
t∈[t′i ,t′′i )

fi(ξεi(t))

⇒
m∑

i=1

uiν0i + wi inf
t∈[t′i ,t′′i )

fi(ξ0i(t)) as ε→ 0.

(2.3.36)

Since ui, wi ∈ �1, i = 1, . . . ,m, are chosen arbitrarily, (2.3.35) and (2.3.36) imply
that

(νεi, sup
t∈[t′i ,t′′i )

fi(ξεi(t)), i = 1, . . . ,m)

⇒ (ν0i, sup
t∈[t′i ,t′′i )

fi(ξ0i(t)), i = 1, . . . ,m) as ε→ 0,
(2.3.37)

and
(νεi, inf

t∈[t′i ,t′′i )
fi(ξεi(t)), i = 1, . . . ,m)

⇒ (ν0i, inf
t∈[t′i ,t′′i )

fi(ξ0i(t)), i = 1, . . . ,m) as ε→ 0.
(2.3.38)

Since t′i < t′′i are arbitrary points from S 0, the relations (2.3.37) and (2.3.38) mean
that condition A19 holds for the processes ( fi(ξεi(t)), i = 1, . . . ,m), t ≥ 0, and the random
vectors (νεi, i = 1, . . . ,m) with the sets S i = S 0 \ Y i, i = 1, . . . , m. Here Y i are sets of
points t > 0 for which P{ν0i = t} > 0, i = 1, . . . , m.

It is obvious that the processes ( fi(ξ0i(t)), i = 1, . . . ,m), t ≥ 0 and the random vec-
tors (ν0i, i = 1, . . . ,m) satisfy the continuity condition C4 if this condition holds for the
processes (ξ0i(t), i = 1, . . . ,m), t ≥ 0 and the random vectors (ν0i, i = 1, . . . ,m).

Thus, Theorem 2.3.1 is applicable to the processes ( fi(ξεi(t)), i = 1, . . . ,m), t ≥ 0 and
the random vectors (νεi, i = 1, . . . ,m), which gives the relation

( fi(ξεi(νεi)), i = 1, . . . ,m)⇒ ( fi(ξ0i(ν0i)), i = 1, . . . ,m) as ε→ 0. (2.3.39)

Since the continuous bounded functions fi(x), i = 1, . . . ,m, are arbitrary, (2.3.39)
implies the relation

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0. (2.3.40)

The proof is completed. �
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Remark 2.3.2. It is possible to weaken condition J4 and replace it with condition J8.

2.3.10. A more general space of trajectories. As follows from the proof of Theo-
rem 2.3.1, the assumption that ξε(t), t ≥ 0 is a càdlàg processes is not essential. It would
be sufficient to only require that the quantities ξεi(νεi), and supt∈[t′i ,t′′i ) ξεi(t), inft∈[t′i ,t′′i ) ξεi(t),
t′i , t′′i ∈ S i, i = 1, . . . ,m be random variables. The formulations of condition A19 as well
as Theorem 2.3.1 can be preserved without any changes.

2.4 Weakened continuity conditions

The first-type continuity condition that the limiting stopping moment is a point of conti-
nuity of the corresponding limiting external process with probability 1 is essential in the
limit theorems given in Sections 2.2 and 2.3. This condition covers a significant part of
applications. Nevertheless, it is desirable to weaken this condition in order to include in
the consideration the models in which the limiting stopping moment can be a point of
continuity of the limiting external process with a probability less than 1. In this section,
we show that in such cases one can use weaker continuity type conditions that prevent
the positioning of stopping moments at the “wrong” left-hand side of points of large
jumps of the external processes. The results in this section, in particular Theorems 2.4.1
and 2.4.2, are new.

2.4.1. A weakened continuity condition. Let, for every ε ≥ 0, ξε(t), t ≥ 0 be a
real-valued càdlàg process, and νε be a non-negative random variable.

Take δ, T > 0 and define, for a real-valued càdlàg function x(t), t ≥ 0, the functionals
α(δ)

0T (x(·)) = 0 and then, recursively, α(δ)
kT (x(·)) = inf(s > α(α)

k−1T (x(·)) : |∆s(x(·))| ≥ δ) ∧ T
for k = 1, 2, . . ..

Let us also consider the random variables α(δ)
εkT = α(δ)

kT (ξε(·)), k = 1, 2, . . .. By the
definition, α(δ)

εkT are successive moments of jumps of the process ξε(t), t ≥ 0, at which the
absolute values of the jumps are greater than or equal to δ and which are truncated in
time by T . Since ξε(t), t ≥ 0 is a càdlàg process, P{α(δ)

εkT = T } → 1 as k → ∞.
In what follows, it is assumed that conditions A17 and J7 hold. These conditions are

necessary and sufficient for J-convergence of the vector processes (νε, ξε(t)), t ≥ 0,

(νε, ξε(t)), t ≥ 0
J−→ (ν0, ξ0(t)), t ≥ 0 as ε→ 0. (2.4.1)

Let us denote by Z0 the set of all δ > 0 such that P{|∆s(ξ0(·))| , δ, s ≥ 0} = 1. By the
definition, Z0 is a set of δ > 0 for which the process ξ0(t), t ≥ 0 has no jumps with the
absolute value equal to δ with probability 1. Since the càdlàg process ξ0(t) has at most a
countable number of jumps, the set Z0 is (0,∞) except for at most a countable set.

Let also S 0 be a set of points of stochastic continuity of the process ξ0(t), t ≥ 0. This
set coincides with [0,∞) except for at most a countable set, and 0 ∈ S 0.
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Let F0,T be the measure generated by the process (ν0, ξ0(t)), t ∈ [0, T ] on the Borel
σ-algebra B(2)

[0,T ].
Take δ ∈ Z0 and 0 < T ∈ S 0. As follows from Lemma 1.6.8, the functionals α(δ)

kT (·)
belong to the class HJ[F0,T ] for all k ≥ 1. The random variable νε can be considered as
the value f0(·) of the first component of the vector process (νε, ξε(t)), t ≥ 0 at moment 0.
This functional and the difference α(δ)

kT (·) − f0(·) also belong to the class HJ[F0,T ].
So, for every δ ∈ Z0, 0 < T ∈ S 0, and k ≥ 1 and every u, which is a continuity point

of the corresponding limiting distribution function,

P{α(δ)
εkT − νε ≤ u} → P{α(δ)

0kT − ν0 ≤ u} as ε→ 0. (2.4.2)

However, it is not certain that u = 0 is a continuity point of the limiting distribution
function in (2.4.2) and, therefore, there is no guarantee that (2.4.2) holds for u = 0.

Let Y0 denote the set of all continuity points of the distribution function of the random
variable ν0. This set coincides with [0,∞) except for at most a countable set. Thus, the
set S 0 ∩ Y0 is also [0,∞) except for at most a countable set.

Let us now assume that the following condition holds:

D2: There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr ∈
S 0∩Y0, Tr → ∞ as r →∞ such that, for every l, k, r ≥ 1, lim

ε→0 P{α(δl)
εkTr
− νε ≤ 0}

≥ P{α(δl)
0kTr
− ν0 ≤ 0}.

Take some 0 < cn → 0 which are points of continuity of the distribution function of
the random variable α(δl)

0k − ν0. Then, for every l, k, r ≥ 1,

0 ≤ lim
n→∞

lim
ε→0

P{α(δl)
εkTr
− νε ∈ (0, cn]}

= lim
n→∞

lim
ε→0

(P{α(δl)
εkTr
− νε ≤ cn} − P{α(δl)

εkTr
− νε ≤ 0})

= lim
n→∞

P{α(δl)
0kTr
− ν0 ≤ cn} − lim

ε→0
P{α(δl)

εkTr
− νε ≤ 0}

= P{α(δl)
0kTr
− ν0 ≤ 0} − lim

ε→0
P{α(δl)

εkTr
− νε ≤ 0}.

(2.4.3)

It follows from relation (2.4.3) that the sign of inequality in D2 can be replaced
with the sign of equality. So, under conditions A17 and J7, one can use the following
equivalent form of condition D2:

D
′
2: There exist a sequence of δl ∈ Z0, δl → 0 as l → ∞ and a sequence of 0 < Tr ∈

S 0∩Y0, Tr → ∞ as r →∞ such that, for every l, k, r ≥ 1, limε→0 P{α(δl)
εkTr
− νε ≤ 0}

= P{α(δl)
0kTr
− ν0 ≤ 0}.
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Theorem 2.4.1. Let conditions A17, J7, and D2 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0. (2.4.4)

Proof of Theorem 2.4.1. Let us take some δ ∈ Z0 and decompose the process ξε(t), t ≥ 0
into a sum of two components,

ξ(δ)
ε,+(t) =

∑

s≤t

∆s(ξε(·))χ(|∆s(ξε(·))| ≥ δ), ξ(δ)
ε,−(t) = ξε(t) − ξ(δ)

ε,+(t), t ≥ 0.

By the definition, ξ(δ)
ε,+(t) is the sum of all jumps of the process ξε(t) in the interval

[0, t] such that their absolute values are greater than or equal to δ. The random variable
ξ(δ)
ε,−(t) is obtained by excluding all such jumps from ξε(t).

A càdlàg process has, with probability 1, at most a finite number of jumps in any
finite interval. All these jumps have absolute values greater than or equal to δ. The
process ξ(δ)

ε,+(t) is a càdlàg process with step trajectories. The process ξ(δ)
ε,−(t) is a càdlàg

process that has no jumps with absolute values greater than or equal to δwith probability
1.

Conditions A17 and J7 imply that, for every δ ∈ Z0, the vector processes

ξ(δ)
ε (t) = (νε, ξε(t), ξ

(δ)
ε,+(t), ξ(δ)

ε,−(t)), t ≥ 0
J−→ ξ(δ)

0 (t) = (ν0, ξ0(t), ξ(δ)
0,+(t), ξ(δ)

0,−(t)), t ≥ 0 as ε → 0.
(2.4.5)

A simple way to see this is to apply Lemma 1.6.13 to the processes (νε, ξε(t), t ≥ 0.
The idea of the proof of Theorem 2.4.1 is to construct and use appropriate upper and

lower approximations for the random variables ξ(δ)
0,+(νε) and ξ(δ)

0,−(νε), and then for their
sum ξε(νε) = ξ(δ)

0,+(νε) + ξ(δ)
0,−(νε).

Denote by F̃0,T the measure generated by the process ξ(δ)
0 (t), t ∈ [0, T ], on the Borel

σ-algebra B(4)
[0,T ]. Note that the process ξ(δ)

0 (t), t ≥ 0 has the same set of points of stochas-
tic continuity, S 0, as the process ξ0(t), t ≥ 0. We will be interested in certain a.s. J-
continuous functionals from the space HJ[F̃0,T ]. Below, it is assumed that (a) δ ∈ Z0 and
0 < T ∈ S 0.

Let x(t) = (x1(t), x2(t), x3(t), x4(t)) be a function from the space D(4)
[0,T ].

The first class includes the functional f (x(·)) = x1(0). Obviously, this functional
belongs to the class HJ[F̃0,T ]. The corresponding random variable, which is the value of
this functional on the process ξ(δ)

0 (t), t ∈ [0, T ], is νε.
We will also be interested in the functional χ(t1 ≤ f (x(·)) < t2) = χ(t1 ≤ x1(0) < t2),

0 ≤ t1 < t2 ≤ T . This functional belongs to the class HJ[F̃0,T ] for any t1, t2 that are points
of continuity of the distribution function of the random variable ν0. The corresponding
random variables that we are interested in are χ(t1 ≤ νε < t2).

The second class includes the functionals ζ+
t1,t2(x(·)) = supt1≤t<t2 x4(t) and ζ−t1,t2(x(·)) =

inft1≤t<t2 x4(t), 0 ≤ t1 < t2 ≤ T . These functionals belong to the class HJ[F̃0,T ] if t1, t2 ∈
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S 0. This follows from Lemmas 1.5.9 and 1.6.6. The corresponding random variables
that are of interest are ζ(δ)

ε,±[t1, t2] = ζ±t1,t2(ξ
(δ)
ε,−(·)).

The third class includes the moments of large jumps, α(δ)
kT (x(·)) = α(δ)

kT (x2(·)), k =

0, 1, . . .. Recall that α(δ)
0T (x2(·)) = 0. These functionals were already discussed above.

They belong to the class HJ[F̃0,T ] for all k = 0, 1, . . .. This follows from Lemmas 1.5.6
and 1.6.8. The corresponding random variables that are of interest are α(δ)

εkT .

The fourth class includes the functionals κ(δ)
kT (x(·)) = α(δ)

kT (x2(·)) − x1(0), k = 0, 1, . . ..
These functionals were also discussed above. They belong to the class HJ[F̃0,T ] for all
k = 0, 1, . . .. This follows from Lemmas 1.5.1, 1.5.6, and 1.6.8. The corresponding
random variables that we are interested in are α(δ)

εkT − νε.
We will also consider the functionals χ(κ(δ)

kT (x(·)) ≤ c) = χ(α(δ)
kT (x2(·)) − x1(0) ≤ c),

c ∈ �1, k = 0, 1, . . .. These functionals belong to the class HJ[F̃0,T ] for all k = 0, 1, . . .
if c is a continuity point of the distribution functions of the random variables α(δ)

0kT − ν0,
k = 0, 1, . . .. The corresponding random variables are χ(α(δ)

εkT − νε ≤ c).

The fifth class includes the functionals Σ
(δ)
t (x(·)) = x3(t), t ∈ [0, T ]. These functionals

belong to the class HJ[F̃0,T ] if t ∈ S 0, as it follows from Lemmas 1.5.3 and 1.6.9. The
random variables that we are interested in now are ξ(δ)

ε,+(t).

Finally, the last sixth class includes the functionals ρ(δ)
kT (x(·)) = x3(α(δ)

kT (x2(·))), k =

0, 1, . . .. They belong to the class HJ[F̃0,T ] for all k = 0, 1, . . ., which follows from
Lemmas 1.5.6 and 1.5.8. The random variables that we are interested in are ρ(δ)

εkT =

ξ(δ)
ε,+(α(δ)

εkT ).

Now we are in a position to use condition D
′
2. Assume, therefore, that δ = δl ∈ Z0

and T = Tr ∈ S 0 are taken from the sequences that enter this condition.

By applying Theorem 1.6.7, we can write, for every k = 0, 1, . . ., the following rela-
tion that holds for any t1 < t2, t1, t2 ∈ S 0, u± ∈ �1, c ≥ 0, w ∈ �1, such that the points
t1, t2, u±, c,w are continuity points of the distribution functions of the corresponding lim-
iting random variables,

P{t1 ≤ νε < t2, ζ
(δ)
ε,±[t1, t2] ≤ u±,

α(δl)
εkTr
− νε ≤ c,α(δl)

εk+1Tr
− νε > c, ρ(δl)

εkTr
≤ w}

→ P{t1 ≤ ν0 < t2, ζ
(δl)
0,±[t1, t2] ≤ u±,

α(δl)
0kTr
− ν0 ≤ c,α(δl)

0k+1Tr
− ν0 > c, ρ(δl)

0kTr
≤ w} as ε→ 0.

(2.4.6)

Take now a sequence of points 0 < cn → 0 as n → ∞ that are points of continu-
ity of the distribution functions of the random variables α(δl)

0kTr
− ν0 for all k = 0, 1, . . ..
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Obviously,

P{t1 ≤ ν0 < t2, ζ
(δl)
0,±[t1, t2] ≤ u±,

α(δl)
0kTr
− ν0 ≤ cn,α

(δl)
0k+1Tr

− ν0 > cn, ρ
(δl)
0kT ≤ w}

→ P{t1 ≤ ν0 < t2, ζ
(δl)
0,±[t1, t2] ≤ u±,

α(δl)
0kTr
− ν0 ≤ 0,α(δl)

0k+1Tr
− ν0 > 0, ρ(δl)

0kTr
≤ w} as n→ ∞.

(2.4.7)

At the same time,

|P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,

α(δl)
εkTr
− νε ≤ cn,α

(δl)
εk+1Tr

− νε > cn, ρ
(δl)
εkT ≤ w}

− P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,

α(δl)
εkTr
− νε ≤ 0,α(δl)

εk+1Tr
− νε > 0, ρ(δl)

εkTr
≤ w}|

≤ P{α(δl)
εkTr
− cn ≤ νε < α(δl)

εkTr
} + P{α(δl)

εk+1Tr
− cn ≤ νε < α(δl)

εk+1Tr
}.

(2.4.8)

Using condition D
′
2 and then the identity ∩n≥1{α(δl)

0kTr
− ν0 ∈ (0, cn]} = ∅, one gets for

all k = 0, 1, . . . that

lim
n→∞

lim
ε→0

(P{α(δl)
εkTr
− cn ≤ νε < α(δl)

εkTr
} + P{α(δl)

εk+1Tr
− cn ≤ νε < α(δl)

εk+1Tr
})

= lim
n→∞

(P{α(δl)
0kTr
− cn ≤ ν0 < α

(δl)
0kTr
} + P{α(δl)

0k+1Tr
− cn ≤ ν0 < α

(δl)
0k+1Tr

}) = 0.
(2.4.9)

Relations (2.4.6), (2.4.7), (2.4.8), and (2.4.9) imply, in an obvious way, the following
relation that holds for every k = 0, 1, . . . and all t1 < t2, t1, t2 ∈ S 0, u± ∈ �1, c ≥ 0, w ∈ �1

such that the points t1, t2, u±, c,w are continuity points of the distribution functions of the
corresponding limiting random variables,

P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,

α(δl)
εkTr
− νε ≤ 0,α(δl)

εk+1Tr
− νε > 0, ρ(δl)

εkTr
≤ w}

= P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,

α(δl)
εkTr
≤ νε < α(δl)

εk+1Tr
, ρ(δ)

εkT ≤ w}
→ P{t1 ≤ ν0 < t2, ζ

(δl)
0,±[t1, t2] ≤ u±,

α(δl)
0kTr
− ν0 ≤ 0,α(δl)

0k+1Tr
− ν0 > 0, ρ(δl)

0kTr
≤ w}

= P{t1 ≤ ν0 < t2, ζ
(δl)
0,± [t1, t2] ≤ u±,

α(δl)
0kTr
≤ ν0 < α

(δl)
0k+1Tr

, ρ(δl)
0kTr
≤ w} as ε→ 0.

(2.4.10)

For each n ≥ 1, choose partitions 0 = z0,n < z1,n < · · · < zn,n = Tr of the in-
terval [0, Tr] satisfying the following assumptions: (b) zi,n is a point of continuity of
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the distribution function of the random variable ν0 for all i = 1, . . . , n, n ≥ 1; (c)
h(n) = max0≤i≤n−1 |zi+1,n − zi,n| → 0 as n→∞.

Let us define, for n ≥ 1, the random variables

ζ(δl)
ε,n,± =

n−1∑

i=0

ζ(δl)
ε,± [zi,n, zi+1,n]χ(zi,n ≤ νε < zi+1,n) (2.4.11)

By the definition of these random variables, for every ε ≥ 0 and n = 1, 2, . . .,

ζ(δl)
ε,n,− ≤ ξ(δl)

ε,− (νε)χ(νε < Tr) ≤ ζ(δl)
ε,n,+. (2.4.12)

Let us also consider the random variable ξ(δl)
ε,+ (νε). The process ξ(δl)

ε,+ (t) is a step process
that takes the value ρ(δl)

εkTr
= ξ(δl)

ε,+ (α(δl)
εkTr

) in the interval [α(δl)
εkTr

,α(δl)
εk+1Tr

) for every k = 0, 1, . . ..

Since the random variables α(δl)
εkTr

P1−→ Tr as k → ∞ for every ε ≥ 0, we can write the
following representation:

ξ(δl)
ε,+ (νε)χ(νε < Tr)

P1
=

∞∑

k=0

ρ(δl)
εkTr
χ(α(δl)

εkTr
≤ νε < α(δl)

εk+1Tr
). (2.4.13)

Let us also introduce the random variables

ξ(δl)
ε,N,+ =

N∑

k=0

ρ(δl)
εkTr
χ(α(δl)

εkTr
≤ νε < α(δl)

εk+1Tr
), N ≥ 1.

The joint distribution of the random variables ζ(δl)
ε,n,± and ξ(δl)

ε,N,+(νε) has the following
form:

P{ζ(δl)
ε,n,± ≤ u±, ξ

(δl)
ε,N,+ ≤ w}

=

n−1∑

i=0

N∑

k=0

P{zi,n ≤ νε < zi+1,n, ζ
(δl)
ε,± [zi,n, zi+1,n] ≤ u±,

α(δl)
εkT ≤ νε < α(δl)

εk+1Tr
, ρ(δl)

εkTr
≤ w}

+

n−1∑

i=0

P{zi,n ≤ νε < zi+1,n, ζ
(δl)
ε,± [zi,n, zi+1,n] ≤ u±,α

(δl)
εN+1Tr

≤ νε}χ(0 ≤ w)

+ P{νε ≥ Tr}χ(0 ≤ u± ∧ w).

(2.4.14)

In the way absolutely similar to those used to prove relation (2.4.10) it can be proved
that for all t1 < t2, t1, t2 ∈ S 0, u± ∈ �1 such that points t1, t2, u± are continuity points for
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the distribution functions of the corresponding limiting random variables,

P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,α

(δl)
εN+1Tr

≤ νε}
= P{t1 ≤ νε < t2, ζ

(δl)
ε,± [t1, t2] ≤ u±}

−
N∑

k=0

P{t1 ≤ νε < t2, ζ
(δl)
ε,± [t1, t2] ≤ u±,α

(δl)
εkT ≤ νε < α(δl)

εk+1Tr
}

→ P{t1 ≤ ν0 < t2, ζ
(δl)
0,± [t1, t2] ≤ u±}

−
N∑

k=0

P{t1 ≤ ν0 < t2, ζ
(δl)
0,±[t1, t2] ≤ u±,α

(δl)
0kT ≤ ν0 < α

(δl)
0k+1Tr

}

= P{t1 ≤ ν0 < t2, ζ
(δl)
0,±[t1, t2] ≤ u±,α

(δl)
0N+1Tr

≤ ν0} as ε→ 0.

(2.4.15)

It follows from relations (2.4.10), (2.4.14), and (2.4.15) that for all u± and w, which
are continuity points of the limiting distribution function

P{ζ(δl)
ε,n,± ≤ u±, ξ

(δl)
ε,N,+ ≤ w} → P{ζ(δl)

0,n,± ≤ u±, ξ
(δl)
0,N,+ ≤ w} as ε→ 0. (2.4.16)

It is obvious that for any σ > 0,

P{|ξ(δl)
ε,+ (νε)χ(νε < Tr) − ξ(δl)

ε,N,+| > σ} ≤ P{α(δl)
εN+1Tr ≤ νε < Tr}. (2.4.17)

Since α(δl)
0kTr

P1−→ Tr as k →∞, relation (2.4.17) yields

(ζ(δl)
0,n,±, ξ

(δl)
0,N,+)⇒ (ζ(δl)

0,n,±, ξ
(δl)
0,+ (ν0)χ(ν0 < Tr)) as N → ∞. (2.4.18)

Also, taking condition D
′
2 into consideration we get

lim
N→∞

lim
ε→0

P{|ξ(δl)
ε,+ (νε)χ(νε < Tr) − ξ(δl)

ε,N,+| > σ}
≤ lim

N→∞
lim
ε→0

P{α(δl)
εN+1Tr

≤ νε < Tr} = lim
N→∞

P{α(δl)
0N+1Tr

≤ ν0 < Tr} = 0.
(2.4.19)

It follows from relations (2.4.16), (2.4.18), and (2.4.19) that for any continuity points
of the limiting distribution function, u± and w,

P{ζ(δl)
ε,n,± ≤ u±, ξ

(δl)
ε,+ (νε)χ(νε < Tr) ≤ w}

→ P{ζ(δl)
0,n,± ≤ u±, ξ

(δl)
0,+(ν0)χ(ν0 < Tr) ≤ w} as ε → 0.

(2.4.20)

Relation (2.4.20) implies that for any points of continuity of the limiting distribution
function, u±,

P{ζ(δl)
ε,n,± + ξ(δl)

ε,+ (νε)χ(νε < Tr) ≤ u±}
→ P{ζ(δl)

0,n,± + ξ(δl)
0,+ (ν0)χ(ν0 < Tr) ≤ u±} as ε→ 0.

(2.4.21)
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Obviously,

ξ(δl)
ε,− (νε)χ(νε < Tr) + ξ(δl)

ε,+ (νε)χ(νε < Tr) = ξε(νε)χ(νε < Tr). (2.4.22)

Now, using an inequality that follows from relations (2.4.12), (2.4.22) and holds for
every ε ≥ 0 and n = 1, 2, . . ., we get

ζ(δl)
ε,n,− + ξ(δl)

ε,+ (νε)χ(νε < Tr) ≤ ξε(νε)χ(νε < Tr) ≤ ζ(δl)
ε,n,+ + ξ(δl)

ε,+ (νε)χ(νε < Tr). (2.4.23)

Denote by U0 the set of continuity points of the distribution functions of the random
variables ξ0(ν0)χ(ν0 < Tr), max(ξ0(ν0), ξ0(ν0))χ(ν0 < Tr), min(ξ0(ν0), ξ0(ν0))χ(ν0 < Tr),
and ζ(δl)

0,n,± + ξ(δl)
0,+ (ν0)χ(ν0 < Tr), n ≥ 1. The set U0 differs from �1 by at most a countable

set. Take an arbitrary point u ∈ U0.
Using relation (2.4.21) and inequality (2.4.23) we get

lim
ε→0

P{ξε(νε)χ(νε < Tr) ≤ u}

≥ lim
ε→0

P{ζ(δl)
ε,n,+ + ξ(δl)

ε,+ (νε)χ(νε < Tr) ≤ u}

= P{ζ(δl)
0,n,+ + ξ(δl)

0,+ (ν0)χ(ν0 < Tr) ≤ u}.

(2.4.24)

Let x(t), t ≥ 0, be a real-valued càdlàg function. Let us consider the functionals
m+

t−h,t+h(x(·)) = supt−h≤s≤t+h x(s) and m−t−h,t+h(x(·)) = inft−h≤s≤t+h x(s) for t, h ≥ 0. Here,
we take x(s) = x(0) for s < 0. Obviously, m+

t−h,t+h(x(·)) → max(x(t), x(t − 0)) and
m−t−h,t+h(x(·)) → min(x(t), x(t − 0)) as 0 < h→ 0 for any t ≥ 0.

Taking in consideration this remark we get

m+
ν0−h,ν0+h(ξ(δl)

0,− (·))χ(ν0 < Tr)
P1−→ max(ξ(δl)

0,−(ν0), ξ(δl)
0,−(ν0 − 0))χ(ν0 < Tr) as 0 < h→ 0.

(2.4.25)

Note that, by the definition of random variables ζ(δl)
0,n,+,

ζ(δl)
0,n,+ ≤ m+

ν0−h(n),ν0+h(n)(ξ
(δl)
0,− (·))χ(ν0 < Tr). (2.4.26)

Since the process ξ(δl)
0,−(t), t ≥ 0 has no jumps with absolute values greater than or

equal to δl,

max(ξ(δl)
0,− (ν0), ξ(δl)

0,− (ν0 − 0))χ(ν0 < Tr) ≤ δl + ξ(δl)
0,− (ν0)χ(ν0 < Tr). (2.4.27)

Taking in consideration relation (2.4.25) and inequalities (2.4.26) and (2.4.27) we
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can continue relation (2.4.24) and get

lim
n→∞

P{ζ(δl)
0,n,+ + ξ(δl)

0,+ (ν0)χ(ν0 < Tr) ≤ u}

≥ lim
n→∞

P{(m+
ν0−h(n),ν0+h(n)(ξ

(δl)
0,− (·)) + ξ(δl)

0,+(ν0))χ(ν0 < Tr) ≤ u}

= P{(max(ξ(δl)
0,− (ν0), ξ(δl)

0,−(ν0 − 0)) + ξ(δl)
0,+ (ν0))χ(ν0 < Tr) ≤ u}

≥ P{δl + (ξ(δl)
0,− (ν0) + ξ(δl)

0,+ (ν0))χ(ν0 < Tr) ≤ u}
= P{δl + ξ0(ν0)χ(ν0 < Tr) ≤ u}.

(2.4.28)

Finally, for every u ∈ U0, using (2.4.24) and (2.4.28) we get that

lim
ε→0

P{ξε(νε)χ(νε < Tr) ≤ u}

≥ lim
l→∞

P{δl + ξ0(ν0)χ(ν0 < Tr) ≤ u} = P{ξ0(ν0)χ(ν0 < Tr) ≤ u}.
(2.4.29)

In a similar way, it can be proved that for every u ∈ U0,

lim
ε→0

P{ξε(νε)χ(νε < Tr) ≤ u}
≤ lim

l→∞
P{−δl + ξ0(ν0)χ(ν0 < Tr) ≤ u} = P{ξ0(ν0)χ(ν0 < Tr) ≤ u}. (2.4.30)

Relations (2.4.29) and (2.4.30) imply that for every u ∈ U0,

lim
ε→0

P{ξε(νε)χ(νε < Tr) ≤ u} = P{ξ0(ν0)χ(ν0 < Tr) ≤ u}. (2.4.31)

Since the set U0 is dense in �1, relation (2.4.31) gives

ξε(νε)χ(νε < Tr)⇒ ξ0(ν0)χ(ν0 < Tr) as ε→ 0. (2.4.32)

Obviously,
P{|ξε(νε) − ξε(νε)χ(νε < Tr)| > σ} ≤ P{νε ≥ Tr}. (2.4.33)

This yields
ξ0(ν0)χ(ν0 < Tr)⇒ ξ0(ν0) as r → ∞, (2.4.34)

and also

lim
r→∞

lim
ε→0

P{|ξε(νε) − ξε(νε)χ(νε < Tr)| > σ}
≤ lim

r→∞
lim
ε→0

P{νε ≥ Tr} = lim
r→∞

P{ν0 ≥ Tr} = 0.
(2.4.35)

Relation (2.4.4) follows from Lemma 1.2.5 and relations (2.4.32), (2.4.34), and
(2.4.35). The proof is completed. �
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2.4.2. Alternative forms of continuity condition D2. Condition D2 can be rep-
resented in equivalent forms that, in some cases, are more convenient than those given
above. Recall that we assume that the conditions A17 and J97 hold and, therefore, the
relation of J-convergence (2.4.1) holds.

The following condition, with a modified form of the corresponding asymptotic re-
lation, is equivalent to D2 and D

′
2:

D
′′
2 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr ∈ S 0 ∩

Y0, Tr →∞ as r →∞ such that, for every l, k, r ≥ 1, lim0<c→0 limε→0 P{α(δl)
εkTr
− c ≤

νε < α
(δl)
εkTr
} = 0.

In condition D
′′
2 , the asymptotic relation is given in the form of an asymptotic esti-

mate. This is more convenient than the form of asymptotic equality used in condition
D
′
2.

Let us also introduce non-truncated versions for the moments of large jumps of the
processes ξε(t), t ≥ 0. Take δ > 0 and define, for the real-valued càdlàg function
x(t), t ≥ 0, the functionals α(δ)

0 (x(·)) = 0 and then, recursively, α(δ)
k (x(·)) = inf(s >

α(δ)
k−1(x(·)) : |∆s(x(·))| ≥ δ) for k = 1, 2, . . ..

It follows from the definitions of truncated and non-truncated versions of these func-
tionals that α(δ)

kT (x(·)) = α(δ)
k (x(·)) if α(δ)

k (x(·)) < T , while α(δ)
kT (x(·)) = T if α(δ)

k (x(·)) ≥ T .
Let us also consider the random variables α(δ)

εk = α(δ)
k (ξε(·)), k = 1, 2, . . .. By the

definition, α(δ)
εk are successive moments of jumps of the process ξε(t), t ≥ 0 that have

absolute values of jumps greater than or equal to δ. Note that the random variable α(δ)
εk

takes values in the interval [0,∞], i.e., it can be an improper random variable.
Also, the following condition is equivalent to D2, D

′
2, and D

′′
2 :

D
′′′
2 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞

as r → ∞ such that, for every l, k, r ≥ 1, lim0<c→0 limε→0 P{α(δl)
εk − c ≤ νε <

α(δl)
εk ,α

(δl)
εk < Tr} = 0.

The asymptotic inequality in condition D
′′′
2 differs from the one in D

′′
2 . It involves

the non-truncated versions of the moments of large jumps. Also, it is not required that
Tr ∈ S 0 ∩ Y0.

The following lemma summarises all statements about equivalence of different forms
of condition D2 given above.

Lemma 2.4.1. Let conditions A17 and J7 hold. Then conditions D2, D
′
2, D

′′
2 , and D

′′′
2

are equivalent.

Proof of Lemma 2.4.1. Equivalence of conditions D2 and D
′
2 was proved in (2.4.3).
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Let us return to relation (2.4.3), but calculate the upper limit, instead of the lower
limit. Take some 0 < cn → 0, which is a point of continuity of the distribution functions
of the random variables α(δl)

0kTr
− ν0 for l, k, r ≥ 1 . Then, for every l, k, r ≥ 1,

0 ≤ lim
n→∞

lim
ε→0

P{α(δl)
εkTr
− cn ≤ νε < α(δl)

εkTr
}

= lim
n→∞

lim
ε→0

(P{α(δl)
εkTr
− νε ≤ cn} − P{α(δl)

εkTr
− νε ≤ 0})

= lim
n→∞

P{α(δl)
0kTr
− ν0 ≤ cn} − lim

ε→0
P{α(δl)

εkTr
− νε ≤ 0}

= P{α(δl)
0kTr
− ν0 ≤ 0} − lim

ε→0
P{α(δl)

εkTr
− νε ≤ 0}.

(2.4.36)

It follows from relation (2.4.36) that conditions D2 and D
′′
2 are equivalent. Indeed,

if D2 holds, then so does D
′
2 and, therefore, the last expression in (2.4.36) is equal to

zero. Therefore, D
′′′
2 holds. If D

′′′
2 holds, then, again, the last expression in (2.4.36) is

equal to zero and, therefore, condition D2 holds.
Due to the connection between the truncated and non-truncated moments of large

jumps, we have

P{α(δl)
εkTr
− cn ≤ νε < α(δl)

εkTr
}

= P{α(δl)
εk − cn ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr}

+ P{Tr − cn ≤ νε < Tr,α
(δl)
εk ≥ Tr}.

(2.4.37)

Since Tr ∈ S 0 ∩ Y0,

lim
n→∞

lim
ε→0

P{Tr − cn ≤ νε < Tr,α
(δl)
εk ≥ Tr}

= lim
n→∞

P{Tr − cn ≤ ν0 < Tr,α
(δl)
0k ≥ Tr} = 0.

(2.4.38)

So, the asymptotic relation in condition D
′′
2 can be replaced with the following equiv-

alent relation:
lim

0<c→0
lim
ε→0

P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr} = 0. (2.4.39)

Thus, an equivalent form of condition D
′′
2 would be to assume that there exist a

sequence δl ∈ Z0, δl → 0 as l→ ∞ and a sequence 0 < Tr ∈ S 0 ∩ Y0, Tr → ∞ as r → ∞
such that relation (2.4.39) holds for every l, k, r ≥ 1.

However, the probability P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr} is a nondecreasing func-

tion in Tr. This implies, in an obvious way, that relation (2.4.39) holds simultaneously
for all the sequences 0 < Tr → ∞ as r → ∞. �

The following condition is, obviously, sufficient for condition D
′′′
2 to hold:
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D
′′′′
2 : There exists a sequence δl ∈ Z0, δl → 0 as l → ∞ such that for every l, k ≥ 1,

lim0<c→0 limε→0 P{α(δl)
εk − c ≤ νε < α(δl)

εk } = 0.

The following lemma supplements Lemma 2.4.1.

Lemma 2.4.2. Let conditions A17 and J7 hold. Then condition D
′′′′
2 implies conditions

D2, D
′
2, D

′′
2 , and D

′′′
2 , and it is equivalent to these conditions if (α) limr→∞ limε→0 P{Tr ≤

α(δl)
εk < ∞} = 0.

Proof of Lemma 2.4.2. It is obvious that for any Tr > 0 and l, k ≥ 1, the following
relation implies (2.4.39):

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ νε < α(δl)

εk } = 0. (2.4.40)

Therefore, condition D
′′′′
2 implies condition D

′′′
2 .

Note that {α(δl)
εk − c ≤ νε < α(δl)

εk } ⊆ {α(δl)
εk < ∞}. Assume that condition (α) holds.

Conditions D
′′′
2 and (α) imply that, for any sequence 0 < Tr → ∞ as r → ∞,

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ νε < α(δl)

εk }
≤ lim

0<c→0
lim
ε→0

P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr}

+ lim
ε→0

P{Tr ≤ α(δl)
εk < ∞} = lim

ε→0
P{Tr ≤ α(δl)

εk < ∞} → 0 as r → ∞.
(2.4.41)

Relation (2.4.41) implies that the conditions D
′′′′
2 and D2 are equivalent if condition

(α) holds. �

The following lemma states that, in some sense, conditions D2 and D
′
2 – D

′′′′
2 are

invariant with respect to the choice of the sequences δl and Tr.

Lemma 2.4.3. Let conditions A17 and J7 hold. Then (α) condition D2 as well as D
′
2

and D
′′
2 can hold only for all sequences δl ∈ Z0, δl → 0 as l → ∞ and 0 < Tr ∈

S 0 ∩ Y0, Tr → ∞ as r → ∞ simultaneously; (β) condition D
′′′
2 can hold only for all

sequences δl ∈ Z0, δl → 0 as l → ∞ and Tr → ∞ as r → ∞ simultaneously; (γ)
condition D

′′′′
2 can hold only for all sequences δl ∈ Z0, δl → 0 as l→ ∞ simultaneously.

Proof of Lemma 2.4.3. Let us prove statement (α). The proofs of the statements (β) and
(γ) are similar.

Let us go back to the proof of Lemma 2.4.1. It was actually proved that any sequence
δl ∈ Z0, δl → 0 as l→ ∞ and any sequence 0 < Tr ∈ S 0 ∩ Y0, Tr → ∞ as r → ∞, which
is used in one of the conditions D2, D

′
2, or D

′′
2 , can also be used in the other two

conditions.
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Moreover, it was shown that an equivalent form of condition D
′′
2 is to assume that

there exist (a) a sequence δl ∈ Z0, δl → 0 as l → ∞ and (b) a sequence 0 < Tr ∈
S 0 ∩ Y0, Tr → ∞ as r →∞ such that (c) relation (2.4.39) holds for every l, k, r ≥ 1.

Thus, it is sufficient to prove (α) for condition D
′′
2 . To do this, it is enough to show

that the asymptotic relation used in condition D
′′
2 possesses the following property: (d)

if the relation holds for given δl ∈ Z0 and 0 < Tr ∈ S 0 ∩ Y0 for all k ≥ 1, then it also
holds for all δ′l ∈ Z0, δ

′
l > δl and 0 < T ′r ∈ S 0 ∩ Y0, T ′r < Tr for all k ≥ 1.

Let us first consider two random sequences α(δ′l )
εkTr

, k ≥ 1 and α(δl)
εkTr

, k ≥ 1. Obvi-

ously, the sequence of moments, α(δ′l )
εkTr

, k ≥ 1, is a subsequence of the random sequence

α(δl)
εkTr

, k ≥ 1, i.e., α(δ′l )
εkTr

= α(δl)
εµεkTr

. Here, µεk are the random indices that take the values
1, 2, . . . and define the corresponding subsequence. Let us show that

lim
n→∞

lim
ε→0

P{µεk > n} = 0. (2.4.42)

Obviously, (e) µεk ≤ k + βε,Tr , where βε,Tr is the number of jumps of the process
ξε(t), t ≥ 0 in the interval [0, Tr] such that absolute values of these jumps lie in the
interval [δl, δ

′
l). By the definition, βεTr is the difference between the numbers of jumps

of the process ξε(t), t ≥ 0 in the interval [0, Tr] such that absolute values of these jumps
are greater than of equal to δ′l and δl, respectively. By Lemma 1.6.10, (f) the random
variables βεTr ⇒ β0Tr as ε→ 0, and, by Lemma 1.4.1, (g) β0Tr is a finite random variable.
Obviously, (2.4.42) follows from (e) – (g).

The following estimate holds for every k ≥ 1:

P{α(δ′l )
εkTr
− c ≤ νε < α(δ′l )

εkTr
}

≤
n∑

j=1

P{α(δl)
ε jTr
− c ≤ νε < α(δl)

ε jTr
, µεk = j} + P{µεk > n}

≤
n∑

j=1

P{α(δl)
ε jTr
− c ≤ νε < α(δl)

ε jTr
} + P{µεk > n}.

(2.4.43)

The proof of statement (d) for T ′r = Tr follows from (2.4.42) and (2.4.43). The transi-
tion to the case T ′r < Tr is obvious, since the probability P{α(δl)

εk −c ≤ νε < α(δl)
εk ,α

(δl)
εk < Tr}

is a nondecreasing function in Tr. �

2.4.3. Weakened continuity conditions for randomly stopped vector processes.
The result formulated in Theorem 2.4.1 can be generalised to vector processes. Let, for
every ε ≥ 0, ξε(t) = (ξε1(t), . . . , ξεm(t)), t ≥ 0, be a m-dimensional càdlàg process with
real-valued components, and νε = (νε1, . . . , νεm) be a random vector with non-negative
components. Consider the random vectors ζε = (ξε1(νε1), . . . , ξεm(νεm)).
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Let S 0 be the set of points of stochastic continuity of the vector process ξ0(t), t ≥ 0,
and Y0 the set of t > 0 that are points of continuity of the distribution functions of the
random variables ν0i for all i = 1, . . . ,m.

Let also α(δ)
εikT = α(δ)

εkT (ξεi(·)) and α(δ)
εik = α(δ)

εk (ξεi(·)) be, respectively, the truncated and
non-truncated moments of large jumps of the processes ξεi(t), t ≥ 0, for i = 1, . . . ,m.

The following condition is a “vector” analogue of condition D2:

D3: There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr ∈
S 0 ∩ Y0, Tr → ∞ as r → ∞ such that for every l, k, r ≥ 1 and i = 1, . . . ,m,
lim

ε→0 P{α(δl)
εikTr
− νεi ≤ 0} ≥ P{α(δl)

0kiTr
− ν0i ≤ 0}.

This condition can be formulated in equivalent forms that are “vector” analogues of
the conditions D

′
2 – D

′′′
2 :

D
′
3: There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr ∈

S 0 ∩ Y0, Tr → ∞ as r → ∞ such that, for every n, k, r ≥ 1 and i = 1, . . . ,m,
limε→0 P{α(δl)

εikTr
− νεi ≤ 0} = P{α(δl)

0ikTr
− ν0 ≤ 0}.

D
′′
3 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr ∈

S 0 ∩ Y0, Tr → ∞ as r → ∞ such that, for every l, k, r ≥ 1 and i = 1, . . . ,m,
lim0<c→0 limε→0 P{α(δl)

εikTr
− c ≤ νεi < α(δl)

εikTr
} = 0.

D
′′′
3 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞ as

r → ∞ such that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)
εik −c ≤

νεi < α
(δl)
εik ,α

(δl)
εik < Tr} = 0.

The following condition is a “vector” analogue of the condition D
′′′′
2 :

D
′′′′
3 : There exist a sequence of δl ∈ Z0, δl → 0 as l → ∞ such that, for every l, k ≥ 1

and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)
εik − c ≤ νεi < α(δl)

εik } = 0.

Let us now formulate a vector analogue of Theorem 2.4.1.

Theorem 2.4.2. Let conditions A20, J4, and D3 hold. Then

ζε = (ξε1(νε1), . . . , ξεm(νεm))⇒ ζ0 = (ξ01(νε1), . . . , ξ0m(ν0m)) as ε→ 0. (2.4.44)

Condition J4 can be replaced with condition J8 in Theorem 2.4.2.

Theorem 2.4.3. Let conditions A20, J8, and D3 hold. Then

ζε = (ξε1(νε1), . . . , ξεm(νεm))⇒ ζ0 = (ξ01(νε1), . . . , ξ0m(ν0m)) as ε→ 0. (2.4.45)
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Proof of Theorems 2.4.2 and 2.4.3. Let us take arbitrary n ≥ 1, vector c̄ = (c j, j =

1, . . . , 2m, cik, i = 1, . . . ,m, k = 1, . . . , n) ∈ R2m+mn and points t1, . . . , tn ∈ U, where U
is the set which appears in condition A20. Let us consider the stochastic process

ξε1,c̄(t) = c1ξε1(t) +

m∑

j=1

cm+ jνε j +

m∑

i=1

n∑

k=1

cikξεi(tk), t ≥ 0.

Obviously, condition A20 implies the following relation

(νε1, ξε1,c̄(t)), t ∈ U ⇒ (ν01, ξ01,c̄(t)), t ∈ U as ε→ 0. (2.4.46)

Thus condition A17 holds for the random variables νε1 and the processes ξε1,c̄(t), t ≥ 0
with the same set of weak convergence U as in condition A20.

Condition J8 implies that condition J7 holds for the processes ξε1,c̄(t), t ≥ 0. Indeed,
the modulus of J-compactness ∆J(ξε1,c̄(·), c, T ) ≡ |c1|∆J(ξε1(·), c, T ).

Finally, condition D
′′′
3 implies that condition D

′′′
2 holds for the random variables νε1

and the processes ξε1,c̄(t), t ≥ 0. Indeed, the processes ξε1(t), t ≥ 0 and ξε1,c̄(t) have the
same moments and values of jumps. Thus, by applying Theorem 2.4.1 to the random
variables νε1 and the processes ξε1,c̄(t), t ≥ 0, we get

c1ξε1(νε1) +

m∑

j=1

cm+ jνε j +

m∑

i=1

n∑

k=1

cikξεi(tk)

⇒ c1ξ01(ν01) +

m∑

j=1

cm+ jν0 j +

m∑

i=1

n∑

k=1

cikξ0i(tk) as ε→ 0.

(2.4.47)

Let us consider the processes

ξε2,c̄(t) = c2ξε2(t) + c1ξε1(νε1) +

m∑

j=1

cm+ jνε j +

m∑

i=1

n∑

k=1

cikξεi(tk), t ≥ 0.

Relation (2.4.47) implies, due to Lemma 1.2.1 and arbitrariness in the choice of
n ≥ 1, c̄ ∈ �2m+mn, and t1, . . . , tn ∈ U,

(νε2, ξε2,c̄(t)), t ∈ U ⇒ (ν02, ξ02,c̄(t)), t ∈ U as ε→ 0. (2.4.48)

Thus condition A17 holds for the random variables νε2 and the processes ξε2,c̄(t), t ≥ 0
with the same set of weak convergence U as in condition A20.

Condition J8 implies that condition J7 holds for the processes ξε2,c̄(t), t ≥ 0. Indeed,
the modulus of J-compactness ∆J(ξε2,c̄(·), c, T ) ≡ |c2|∆J(ξε2(·), c, T ).

Finally, condition D
′′′
3 implies that D

′′′
2 holds for the random variables νε2 and the

processes ξε2,c̄(t), t ≥ 0. Indeed, the processes ξε2(t), t ≥ 0 and ξε2,c̄(t) have the same
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moments and values of jumps. Thus, we get applying Theorem 2.4.1 to the random
variables νε2 and the processes ξε2,c̄(t), t ≥ 0,

c2ξε2(νε2) + c1ξε1(νε1) +

m∑

j=1

cm+ jνε j +

m∑

i=1

n∑

k=1

cikξεi(tk)

⇒ c2ξ02(ν02) + c1ξ01(ν01) +

m∑

j=1

cm+ jν0 j +

m∑

i=1

n∑

k=1

cikξ0i(tk) as ε→ 0.

(2.4.49)

By proceeding in the same way, we get, after m steps, the following relation
m∑

i=1

ciξεi(νεi) +

m∑

j=1

cm+ jνε j +

m∑

i=1

n∑

k=1

cikξεi(tk)

⇒
m∑

i=1

ciξ0i(ν0i) +

m∑

j=1

cm+ jν0 j +

m∑

i=1

n∑

k=1

cikξ0i(tk) as ε→ 0.

(2.4.50)

Relation (2.4.50) implies, due to Lemma 1.2.1 and arbitrariness in the choice of
c̄ ∈ �2m+mn, the statement of the theorem. �

2.4.4. Random vectors (ξεi(νεi − 0), i = 1, . . . , m). In this case, the conditions
of weak convergence should be slightly modified, since the processes (ξεi(t − 0), i =

1, . . . ,m), t ≥ 0 (here ξεi(0 − 0) = ξεi(0)) are a.s. continuous from the left.
The inequalities α(δl)

εikTr
− νεi ≤ 0 in the conditions D3 and D

′
3 should be replaced with

the inequalities α(δl)
εikTr
− νεi ≥ 0. Analogously, the inequalities α(δl)

εik − c ≤ νεi < α(δl)
εik in D

′′
3

and D
′′′′
3 should be replaced with the inequalities α(δl)

εik + c ≥ νεi > α(δl)
εik .

The conditions A20, J4 or J8, and the modified version of condition D3 (or one of
the conditions D

′
3 – D

′′′′
3 ) imply that

(ξεi(νεi − 0), i = 1, . . . ,m)⇒ (ξ0i(ν0i − 0), i = 1, . . . ,m) as ε→ 0. (2.4.51)

This can be proved by repeating the proofs above with obvious changes in the defi-
nitions of the corresponding functionals.

Also, the method of time reversion can be used. As in Subsection 2.3.8, the con-
sideration can be reduced to the case where the stopping moments are bounded, i.e.,
(a) νεi ∈ [0, T ], i = 1, . . .m; (b) T is a point of stochastic continuity of the processes
ξ0i(t), t ≥ 0, for i = 1, . . . ,m; and (c) T is a point of continuity of the distribution func-
tions of the random variables ν0i, i = 1, . . . ,m.

Let us define the processes ξ(T )
ε (t) = ξε(T − t − 0) for t ∈ [0, T ] and ξ(T )

ε (t) = ξε(0)
for t > T . Obviously, ξ(T )

ε (t), t ≥ 0, is a càdlàg process. Let us also consider the random
vectors ν(T )

ε = (ν(T )
εi , i = 1, . . . ,m) = (T − νεi, i = 1, . . . ,m). By the definition of these

processes and the random vectors,

(ξ(T )
εi (ν(T )

εi ), i = 1, . . . ,m) = (ξεi(νεi − 0), i = 1, . . . ,m). (2.4.52)
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If the conditions A20 and J4 (or J8) hold for the processes ξε(t), t ≥ 0 and the random
vectors νε, then this condition also holds for the processes ξ(T )

ε (t), t ≥ 0 and the random
vectors ν(T )

ε .
Indeed, the functional f −t (x(·)) = x(t − 0) is an a.s. J-continuous functional with

respect to the measure generated by the process ξ0(t), t ≥ 0 for every point t where this
process is stochastically continuous. So, the processes (ν(T )

ε , ξ(T )
ε (t)) weakly converge on

the set that contains all points t ∈ [0, T ], such that T −t are points of stochastic continuity
of the process ξ0(t), and all points t ≥ T .

For condition J4 (or J8), this implication follows from the equalities ∆J(ξε(·), c, T ) =

∆J(ξ(T )
ε (·), c, T ) and ∆J(ξεi(·), c, T ) = ∆J(ξ(T )

εi (·), c, T ), i = 1, . . . ,m, which hold with prob-
ability 1 under assumption (b).

Finally, if the modified version of condition D3 (or one of the conditions D
′
3 – D

′′′′
3 )

described above holds for the processes ξε(t), t ≥ 0 and the random vectors νε, then the
corresponding condition D3 (or one of the conditions D

′
3 – D

′′′′
3 ) holds for the processes

ξ(T )
ε (t), t ≥ 0 and the random vectors ν(T )

ε .
Summarising the remarks made above one obtains relation (2.4.51).
Moreover, if conditions A20, J4 (or J8) hold, together with the modified versions

of the condition D3 (or one of the conditions D
′
3 – D

′′′′
3 ), then one also obtains the

following more general relation:

(ξεi(νεi), ξεi(νεi − 0), i = 1, . . . ,m)
⇒ (ξ0i(ν0i), ξ0i(ν0i − 0), i = 1, . . . ,m) as ε → 0.

(2.4.53)

2.4.5. Examples. Let us return to the basic scalar case (m = 1). The following
lemma shows that, under the assumption that conditions A17, J7 hold, condition D2 can
be considered as a weakened form of the continuity condition C3.

Lemma 2.4.4. Let conditions A17 and J7 hold. Then condition C3 implies condition D2.

Proof of Lemma 2.4.4. Condition C3 means that ν0 can coincide with any discontinuity
point of the process ξ0(t), t ≥ 0 only with probability 0. This actually means that P{α(δl)

0kT−
ν0 = 0} = 0 for any δl ∈ Z0, Tr ∈ Y0 and k ≥ 1. So, the point 0 is a continuity point of
the distribution function of the random variable α(δl)

0kTr
− ν0 for every δl ∈ Z0, Tr ∈ Y0 and

k ≥ 1. Thus, condition D
′
2 holds. Recall that conditions D2 and D

′
2 are equivalent. �

However, condition D2 can hold in cases where ν0 is not a point of continuity of the
process ξ0(t), t ≥ 0, but rather a point of jump of this process.

For example, condition D2 is satisfied if νε = α(δ)
εnT is itself a moment of large jump

of the process ξε(t), t ≥ 0.
Indeed, in this case, the event {α(δl)

εk − c ≤ α(δ)
εnT < α

(δl)
εk ,α

(δl)
εk < Tr} ⊆ {∆J(ξε(·), c, Tr) ≥

δl ∧ δ} if n ≤ k, T ≤ Tr. So, if condition D2 does not hold, then the condition of
J-compactness J7, does not hold.
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Let us reformulate this fact in a more general form. Assuming that the following
condition holds:

Ō5: lim0<σ→0 limε→0 P{|∆νε(ξε(·))| ≤ σ} = 0.

This condition means that the stopping moments νε are, asymptotically, moments of
large jumps of the processes ξε(t), t ≥ 0.

Lemma 2.4.5. Let conditions A17 and J7 hold. Then condition Ō5 implies condition
D2.

Proof of Lemma 2.4.5. Let us consider the events Aε,c,klr = {α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk <

Tr}. Assume for the moment that condition D
′′′
2 does not hold. This means that there

exist 0 < δl ∈ Z0 and Tr > 0 such that (a) lim0<c→0 limε→0 P(Aε,c,klr) = aklr > 0. Consider
also the events Bε,σ = {|∆νε(ξε(·))| > σ}. Condition Ō5 implies that this σ > 0 can be
chosen so that (b) limε→0 P(Bε,σ) < aklr. Obviously, (c) Aε,c,klr ∩ Bε,σ ⊆ {∆J(ξε(·), c, Tr) ≥
δl ∧ σ}. Using (a) – (c) one gets

lim
0<c→0

lim
ε→0

P{∆J(ξε(·), c, Tr) ≥ δl ∧ σ}
≥ lim

0<c→0
lim
ε→0

P{Aε,c,klr ∩ Bε,σ} ≥ lim
0<c→0

lim
ε→0

(P(Aε,c,klr) + P(Bε,σ) − 1)

≥ lim
0<c→0

lim
ε→0

P(Aε,c,klr) − lim
ε→0

P(Bε,σ) > 0.

(2.4.54)

This shows that the condition of J-compactness J7 does not hold, which contradicts
the conditions of the lemma. �

It can be shown in the same way that, under the conditions A17 and J7, condition Ō5
also implies that the modified version of condition D2, which was described in Subsec-
tion 2.4.4, holds.

Taking this remark into consideration one can write relation (2.4.53) under conditions
A17, J7, and Ō5. This relation obviously implies that

∆νε(ξε(·))⇒ ∆ν0(ξ0(·)) as ε → 0. (2.4.55)

For non-random càdlàg functions, relation (2.4.55) was mentioned by Kolmogorov
(1956). It was extended to the case of càdlàg processes by Anisimov (1975) with the use
of Skorokhod’s representation theorem for càdlàg processes.

Condition Ō5 and relation (2.4.55) imply, in an obvious way, that the random variable
∆ν0(ξ0(·)) > 0 with probability 1, i.e., ν0 is a discontinuity point of the process ξ0(t), t ≥ 0
with probability 1.

Condition Ō5 is restrictive in the sense that it requires that the pre-limiting stopping
moment νε itself be a discontinuity point of the pre-limiting external process ξε(t), t ≥ 0
with a probability that tends to 1 as ε→ 0.

Let us weaken condition Ō5 and assume that the following condition holds:
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Ō6: νε = ν′ε + ν′′ε , where (a) Ō5 holds for the processes ξε(t), t ≥ 0 and the random

variables ν′ε; (b) ν′′ε are non-negative random variables; (c) ν′′ε
P−→ 0 as ε→ 0.

Lemma 2.4.6. Let conditions A17 and J7 hold. Then condition Ō6 implies condition
D2.

Proof of Lemma 2.4.6. by Lemma 2.4.5, condition D
′′′
2 holds for the processes ξε(t), t ≥

0, and the random variables ν′ε. This means that there exist a sequence δl ∈ Z0, δl → 0 as
l→ ∞ and a sequence 0 < Tr → ∞ as r → ∞ such that, for every l, k, r ≥ 1,

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ ν′ε < α(δl)

εk ,α
(δl)
εk < Tr} = 0. (2.4.56)

It is sufficient to show that relation (2.4.56) will hold for the same sequences δl ∈
Z0, δl → 0 as l→ ∞ and 0 < Tr → ∞ as r → ∞ and for every l, k, r ≥ 1 if the moments
ν′ε are replaced with the moments νε = ν′ε + ν′′ε . Indeed, using Ō6 (b) we get

P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr}

≤ P{ν′′ε > c} + P{ν′′ε ≤ c,α(δl)
εk − c ≤ ν′ε + ν′′ε < α

(δl)
εk ,α

(δl)
εk < Tr}

≤ P{ν′′ε > c} + P{α(δl)
εk − 2c ≤ ν′ε < α(δl)

εk ,α
(δl)
εk < Tr}.

(2.4.57)

Estimate (2.4.57) and the conditions Ō6 (a) and (c) imply, in an obvious way, that
(2.4.56) holds for the stopping moments νε. �

Note that conditions A17, J7, and Ō6 also imply that the limiting stopping moment
ν0 is a discontinuity point of the limiting external process ξ0(t), t ≥ 0, with probability
1. However, condition Ō6 does not require that νε be a discontinuity point of the pre-
limiting process ξε(t), t ≥ 0 with a positive probability. Conversely, νε can be a point of
continuity of the process ξε(t), t ≥ 0 with probability 1 for all ε > 0.

It is possible that condition Ō6 holds for the processes ξε(t), t ≥ 0 and the stopping
moments νε, but condition Ō5 does not.

For example, let us assume that conditions A17, J7, and Ō6 hold and, additionally,
the following condition holds: (d) limε→0 P{ν′′ε , 0} = a > 0. In this case, condition Ō5
does not hold.

Indeed, let us assume, for the moment, that condition Ō5 holds. Conditions A17,
Ō6 (a), and Ō5 imply that it is possible to choose T > 0 and σ > 0 such that (e)
limε→0 P{∆ν′ε(ξε(·)) ≤ 2σ}+limε→0 P{∆νε(ξε(·)) ≤ 2σ}+limε→0 P{ν′ε ≥ T/2} < a, where a is
the same as in condition (d). Obviously, (f) {ν′′ε , 0, ν′′ε < c,∆ν′ε(ξε(·)) ≥ 2σ,∆νε(ξε(·)) ≥
2σ, ν′ε ≤ T/2} ⊆ {∆J(ξε(·), c, T ) ≥ σ} for 0 < c < T/2. Using (d) – (f) and condition Ō6
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(c) we get

lim
0<c→0

lim
ε→0

P{∆J(ξε(·), c, T ) ≥ σ}
≥ lim

0<c→0
lim
ε→0

(P{ν′′ε , 0}
+ P{ν′′ε < c,∆ν′ε(ξε(·)) ≥ 2σ,∆νε(ξε(·)) ≥ 2σ, ν′ε ≤ T/2} − 1)

≥ lim
ε→0

P{ν′′ε , 0} − lim
0<c→0

lim
ε→0

P{ν′′ε ≥ c} − lim
ε→0

P{∆ν′ε(ξε(·)) ≤ 2σ}
− lim

ε→0
P{∆νε(ξε(·)) ≤ 2σ} − lim

ε→0
P{ν′ε ≥ T/2} > 0.

(2.4.58)

Thus, the condition of J-compactness J7 does not hold. This contradicts the assump-
tion that condition Ō5 holds.

Condition D2 can also hold in situations where neither the continuity condition C3
nor the condition of asymptotic discontinuity Ō5 or Ō6 holds.

Let us first consider the case where the stopping moment νε can be represented in
the following form for every ε ≥ 0: νε = νεµε . Here (a) νεn, n = 0, 1, . . . are non-negative
random variables and (b) µε is a random variable that takes the values 0, 1, . . ., (c) the
random variables νεn, n = 0, 1, . . . and µε are defined on the same probability space
(possibly different for different ε).

Lemma 2.4.7. Let (α) condition D2 hold for the processes ξε(t), t ≥ 0 and the stop-
ping moments νεn for every n = 0, 1, . . ., and (β) limN→∞ limε→0 P{µε > N} = 0. Then
condition D2 holds for the processes ξε(t), t ≥ 0 and the stopping moments νε.

Proof of Lemma 2.4.7. We use the following estimate that holds for any δl ∈ Z0 and
Tr > 0:

P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr}

≤ P{µε > n} +
n∑

j=0

P{α(δl)
εk − c ≤ νε j < α

(δl)
εk ,α

(δl)
εk < Tr, µε = j}

≤ P{µε > n} +
n∑

j=0

P{α(δl)
εk − c ≤ νε j < α

(δl)
εk ,α

(δl)
εk < Tr}.

(2.4.59)

Due to Lemma 2.4.3, it is possible to choose sequences δl ∈ Z0, δl → 0 as l → ∞
and 0 < Tr → ∞ as r → ∞ such that condition D

′′′
2 holds, with these sequences, for the

processes ξε(t), t ≥ 0 and the stopping moments νεn for every n = 0, 1, . . .. Then, using
the conditions (α), (β) and estimate (2.4.59) we get

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ νε < α(δl)

εk ,α
(δl)
εk < Tr}

≤ lim
ε→0

P{µε > N} +
N∑

n=0

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ νεn < α(δl)

εk ,α
(δl)
εk < Tr}

≤ lim
ε→0

P{µε > N} → 0 as N → ∞.

(2.4.60)
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This completes the proof. �

Let us now give an example in which neither the continuity condition C3 nor the
discontinuity condition Ō5 or Ō6 holds but the condition D2 does.

Let (g) the random variable µε take only two values 0 and 1, i.e., the stopping moment
νε can be represented in the form

νε = νε0χ(µε = 0) + νε1χ(µε = 1).

Let us also assume that (h) (µε, νεi, ξε(t)), t ∈ U ⇒ (µ0, ν0i, ξ0(t)), t ∈ U as ε → 0 for
i = 0, 1, where U is a subset of [0,∞), dense in this interval and containing the point 0;
(i) 0 < p0 < 1, where pε = P{µε = 0}; (j) condition C3 holds for the processes ξ0(t), t ≥ 0
and the stopping moments ν00; (k) condition Ō5 or Ō6 holds for the processes ξε(t), t ≥ 0
and the stopping moments νε1, (l) condition J7 holds for the processes ξε(t), t ≥ 0.

It is clear that condition A17 holds, in this case, for the processes ξε(t), t ≥ 0 and the
stopping moments νε, as well as the stopping moments νε0 and νε1.

Lemmas 2.4.4, 2.4.5, and 2.4.6 imply that, in this case, the conditions of Lemma
2.4.7 hold and, therefore, condition D2 holds for the processes ξε(t), t ≥ 0, and the
stopping moments νε.

However, neither condition C3 nor condition Ō5 or Ō6 holds for the processes ξε(t),
t ≥ 0 and the stopping moments νε. Indeed, in this case, the limiting stopping moment
ν0 is either a point of continuity of the process ξ0(t), t ≥ 0 or a point of discontinuity of
this process with probabilities p0 and 1 − p0, respectively. By (i), both probabilities are
positive.

The example given above is, in some sense, artificially constructed. However, there
is an important class of models, the so-called generalised exceeding processes, where the
weakened continuity conditions of the type D can be effectively used. Limit theorems
for these processes are systematically studied in Chapter 4.

2.5 Iterated weak limits

In this section, we discuss some conditions of weak convergence for randomly stopped
càdlàg processes, which are based on the so-called iterated weak limits.

2.5.1. Iterated weak limits. Let, for every ε ≥ 0, ξε(t) = (ξε1(t), . . . , ξεm(t)), t ≥ 0
be a càdlàg process with real-valued components and νε = (νε1, . . . , νεm) be random
vectors with non-negative components. Let us also introduce the random vectors ζε =

(ξε1(νε1), . . . , ξεm(νεm)).
The following question arises. Is it possible to avoid continuity conditions of the

types C or D when proving weak convergence of the random vectors ζε? In particular, is
it possible to prove this if conditions A20 and J4 hold but neither the continuity condition
C4 nor the condition D3 does? The examples in the Section 2.1, give a negative answer
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to this question. However, some weaker statements concerning iterated weak limits of
the random vectors (ξεi(νεi + c), i = 1, . . . ,m) as ε → 0 and then 0 < c → 0, can be
proved without using any continuity type conditions.

Let ζ = (ζ1, . . . , ζm) and ζεc = (ζε1c, . . . , ζεic), for c > 0 and ε ≥ 0, be random
variables that take values in �m.

Definition 2.5.1. The iterated weak convergence of the random variables ζεc to the ran-
dom variable ζ as ε → 0 and then 0 < c → 0 (w-lim0<c→0 limε→0 ζεc = ζ), means that
(α) lim0<c→0 limε→0 P{ζεic ≤ ui, i = 1, . . . ,m} = lim0<c→0 lim

ε→0 P{ζεic ≤ ui, i = 1, . . . ,m}
= P{ζi ≤ ui, i = 1, . . . ,m} for every continuity point u = (u1, . . . , um) for the limiting
distribution function.

Note that in the case where the random vectors ζεc = ζε, c > 0 do not depend on the
parameter c, the convergence defined above is reduced to the usual weak convergence of
the random vectors ζε to the random vectors ζ as ε→ 0.

Let us prove two lemmas that will generalise Lemmas 1.2.5 and 1.2.6.
Suppose that, for every c > 0, the random vector ζεc can be represented in the form

of a sum of two random vectors ζ′εc = (ζ′εic, i = 1, . . . ,m) and ζ′′εc = (ζ′′εic, i = 1, . . . ,m),

ζεc = ζ′εc + ζ′′εc. (2.5.1)

Lemma 2.5.1. Let (α) w-lim0<c→0 limε→0 ζ
′
εc = ζ, and (β) lim0<c→0 limε→0 P{|ζ′′εc| > σ} =

0, σ > 0. Then w-lim0<c→0 limε→0 ζεc = ζ.

Proof of Lemma 2.5.1. Let u = (u1, . . . , um) be an arbitrary continuity point of the dis-
tribution function of the random vector ζ. One can always choose sequences of num-
bers 0 < σin → 0 as n → ∞, i = 1, . . . ,m, such that, for every n ≥ 1, the point
(u1 − σ1n, . . . , um − σmn) is a continuity point of the distribution function of the random
vector ζ. Now, let us use the following estimate:

P{ζεi ≤ ui, i = 1, . . . ,m}
≥ P{ζ′εi + |ζ′′εi| ≤ ui, i = 1, . . . ,m}
≥ P{ζ′εi + σin ≤ ui, |ξ′′εi| ≤ σin, i = 1, . . . ,m}
≥ P{ζ′εi ≤ ui − σin, i = 1, . . . ,m} −

∑
1≤i≤m

P{|ζ′′εi| > σin}.

(2.5.2)

Passing to the limit in (2.5.2) as, first, ε → 0 and then 0 < c → 0, and taking into
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account the conditions (α) and (β) of Lemma 2.5.1, we get

lim
0<c→0

lim
ε→0

P{ζεi ≤ ui, i = 1, . . . ,m}

≥ lim
n→∞

lim
0<c→0

lim
ε→0

P{ζ′εi ≤ ui − σin, i = 1, . . . ,m}

−
∑

1≤i≤m
lim
n→∞

lim
0<c→0

lim
ε→0

P{|ζ′′εi| > σin}
≥ lim

n→∞
P{ζ0i ≤ ui − σin, i = 1, . . . ,m}

= P{ζ0i ≤ ui, i = 1, . . . ,m}.

(2.5.3)

Similarly to (2.5.3), it can be shown that, for an arbitrary continuity point u =

(u1, . . . , um) of the distribution function of the random vector ζ,

lim
0<c→0

lim
ε→0

P{ζεi ≤ ui, i = 1, . . . ,m} ≤ P{ζ0i ≤ ui, i = 1, . . . ,m}. (2.5.4)

Relations (2.5.3) and (2.5.4) prove the assertion of the lemma. �

The second lemma concerns the case where the random vectors ζεc possess upper
and lower approximations ζ±εc = (ζ±εic, i = 1, . . . ,m) that are random vectors such that the
following inequalities hold for every c > 0:

ζ−εic ≤ ζεic ≤ ζ+
εic, i = 1, . . . ,m. (2.5.5)

Lemma 2.5.2. Let (α) ζ±εc ⇒ ζ±0c as ε→ 0 for every c > 0, and (β) ζ±0c ⇒ ζ as 0 < c→ 0.
Then w-lim0<c→0 limε→0 ζεc = ζ.

Proof of Lemma 2.5.2. Obviously, there is no loss of generality in assuming that the
parameter c runs only over a countable number of values 0 < cn → 0 as n → ∞. Let
u = (u1, . . . um) be an arbitrary continuity point of distribution functions of the random
vectors ζ and ζ±0cn

, n ≥ 1. The set U of such points is dense in �m.
Taking (2.5.5) into account we get

lim
n→∞

lim
ε→0

P{ζεicn ≤ ui, i = 1, . . . ,m}

≥ lim
n→∞

lim
ε→0

P{ζ+
εicn
≤ ui, i = 1, . . . ,m}

= lim
n→∞

P{ζ+
0icn
≤ ui, i = 1, . . . ,m} = P{ζ0i ≤ ui, i = 1, . . . ,m}.

(2.5.6)

Similarly to (2.5.6), it can be shown that

lim
n→∞

lim
ε→0

P{ζεicn ≤ ui, i = 1, . . . ,m} ≤ P{ζ0i ≤ ui, i = 1, . . . ,m}. (2.5.7)

Relations (2.5.6) and (2.5.7) prove the assertion of the lemma. �
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2.5.2. Iterated weak limits for randomly stopped càdlàg processes. Let us now
assume that condition A19 holds. As was pointed out in Lemma 2.3.1, conditions A20
and J4 are sufficient for condition A19 to hold.

Let us introduce the random vectors ζεc = (ζεic, i = 1, . . . ,m), where ζεic = ξεi(νεi +

c), i = 1, . . . ,m, and ζ = (ζi, i = 1, . . . ,m), ζi = ξ0i(ν0i), i = 1, . . . ,m.
The following theorem is a vector variant of the corresponding statement from Mishu-

ra and Silvestrov (1978).

Theorem 2.5.1. Let condition A19 hold. Then
w− lim0<c→0 limε→0 = ζεc = ζ0.

Proof of Theorem 2.5.1. Let S i be the sets in the condition A19. For every c > 0, one
can always construct a sequence of partitions 0 = zi,0,c < zi,1,c < . . . < zi,n,c < . . . of
the interval [0,∞) satisfying the following assumptions: (a) zi,n,c ∈ S i for all n ≥ 1 and
i = 1, . . . ,m; (b) c/2 ≤ zi,n+1,c − zi,n,c < c all n ≥ 1 and i = 1, . . . ,m.

Let us define random vectors ζ±εc = (ζ±εic, i = 1, . . . ,m), where

ζ+
εic =

∞∑

n=0

sup
t∈[zi,n+1,c ,zi,n+3,c)

ξεi(t)χ(νεi ∈ [zi,n,c, zi,n+1,c))

and

ζ−εic =

∞∑

n=0

inf
t∈[zi,n+1,c ,zi,n+3,c)

ξεi(t)χ(νεi ∈ [zi,n,c, zi,n+1,c)).

Obviously, if νεi ∈ [zi,n,c, zi,n+1,c), then, necessarily, νεi+c ∈ [zi,n+1,c, zi,n+3,c). Therefore,
for any c > 0 and ε ≥ 0,

ζ−εic ≤ ξεi(νεi + c) ≤ ζ+
εic, i = 1, . . . ,m. (2.5.8)

The random vector ξ±εc has the distribution function given the following formula:

P{ζ+
εic ≤ ui, i = 1, . . . ,m}

=

∞∑

n1,...,nm=0

P{ sup
t∈[zi,ni+1,c ,zi,ni+3,c)

ξεi(t) ≤ ui, νεi ∈ [zi,ni,c, zi,ni+1,c), i = 1, . . . ,m}. (2.5.9)

The series in the right-hand side of (2.5.9) converges asymptotically and uniformly
in ε→ 0, namely,

lim
N→∞

lim
ε→0

∑

max(n1,...,nm)≥N

P{ sup
t∈[zi,ni+1,c,zi,ni+3,c)

ξεi(t) ≤ ui,

νεi ∈ [zi,ni,c, zi,ni+1,c), i = 1, . . . ,m}
≤ lim

N→∞
lim
ε→0

∑

max(n1,...,nm)≥N

P{νεi ∈ [zi,ni,c, zi,ni+1,c)}

= lim
N→∞

lim
ε→0

m∑

i=1

P{νεi ≥ zi,N,c} = lim
N→∞

m∑

i=1

P{ν0i ≥ zi,N,c} = 0.

(2.5.10)
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At the same time, for every N ≥ 1 by A19,

lim
ε→0

N∑

n1,...,nm=0

P{ sup
t∈[zi,n+1,c ,zi,n+3,c)

ξεi(t) ≤ ui, νεi ∈ [zi,n,c, zi,n+1,c), i = 1, . . . ,m}

=

N∑

n1,...,nm=0

P{ sup
t∈[zi,n+1,c ,zi,n+3,c)

ξ0i(t) ≤ ui, ν0i ∈ [zi,n,c, zi,n+1,c), i = 1, . . .m}.
(2.5.11)

Relations (2.5.10) and (2.5.11) imply, in an obvious way, that for any c > 0,

ζ+
εc ⇒ ζ+

0c as ε → 0. (2.5.12)

Also, by the continuity of the càdlàg process ξ0(t), t ≥ 0, from the right,

ζ+
0c ⇒ ζ as 0 < c→ 0. (2.5.13)

So, the conditions (α) and (β) of Lemma 2.5.2 hold for the random vectors ζ+
εc and ζ.

Similarly, these conditions can be verified for the random vectors ζ−εc and ζ.
By applying Lemma 2.5.2 to the random vectors ζεc, ξ

±
εc, and ζ, we get the assertion

of the theorem. �

2.5.3. A condition of asymptotic stochastic continuity at a random stopping
point. For simplicity, we restrict the consideration to the scalar case, m = 1. Let us
introduce a condition that can be interpreted as a condition of asymptotic stochastic
continuity of the processes ξε(t), t ≥ 0 at the random points νε:

O7: lim0<c→0 limε→0 P{|ξε(νε + c) − ξε(νε)| > σ} = 0, σ > 0.

It was conjectured by Anisimov (1974b) that, assuming that A17 and J7 hold, con-
dition O7 becomes necessary and sufficient for the random variables ξε(νε) to weakly
converge to ξ0(ν0) as ε→ 0.

Condition O7 is sufficient, as was shown in Mishura and Silvestrov (1978), even if
condition A18 holds (this condition is weaker than A17 and J7). So, the conditions A18
and O7 imply that ξε(νε)⇒ ξ0(ν0) as ε→ 0.

This can be simply proved by applying Lemma 2.5.1 to the random variables ζεc =

ζε = ξε(νε), ζ′εc = ξε(νε + c) and ζ′′εc = ξε(νε) − ξε(νε + c). The condition (α) in Lemma
2.5.1 holds due to Theorem 2.5.1, while the condition (β) in this lemma coincides with
O7.

Condition O7 is not, however, necessary, as the following simple example shows.
Let, for every ε ≥ 0, the process ξε(t), t ≥ 0, have two possible realisations χ(t ≥ 1), t ≥ 0,
and 1− χ(t ≥ 1), t ≥ 0, that can occur with probability 1/2. Let also νε = 1 − ε for ε ≥ 0.
Obviously, conditions A17 and J7 hold. In this case, for every ε ≥ 0, the random variable
ξε(νε) takes the values 0 or 1 with probability 1/2. Therefore, the random variables ξε(νε)
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weakly converge to ξ0(ν0) as ε → 0. At the same time, |ξε(νε + c) − ξε(νε)| = 1 if ε < c
for every c > 0. Hence, O7 does not hold.

A corrected version of the corresponding necessary and sufficient conditions was
given in Mishura and Silvestrov (1978). Denote Aε,c,u = {ξε(νε + c) ≤ u}. Evidently,

P{ξε(νε + c) ≤ u} − P{ξε(νε) ≤ u} = P{Aε,c,u \ Aε,0,u} − P{Aε,0,u \ Aε,c,u}. (2.5.14)

Let us introduce the following condition that can also be interpreted as a condition of
asymptotic weak stochastic continuity of the processes ξε(t), t ≥ 0 at the random points
νε:

O8: lim0<c→0 limε→0 |P{Aε,c,u\Aε,0,u}−P{Aε,0,u\Aε,c,u}| = 0 for every u that is a continuity
point of the distribution function of the random variable ξ0(ν0).

Let A18 hold. Then condition O8 is necessary and sufficient for the relation ξε(νε)⇒
ξ0(ν0) as ε → 0 to hold. The proof follows in an obvious way from Theorem 2.5.1 and
relation (2.5.14).

It should be noted, however, that the actual value of assertions that are based on
conditions O7 and O8 must not be overestimated.

In fact, the reason for studying the weak convergence of compositions ξε(νε) is to
simplify conditions that involve jointly the pre-limiting external processes ξε(t), t ≥ 0
and the stopping moments νε. A reasonable variant is to use only the joint finite-
dimensional distributions of the stopping moments νε and the external processes ξε(t), t ≥
0, i.e., condition A17.

Theorem 2.2.2 gives a well balanced version of conditions that provide weak conver-
gence of random variables ξε(νε) to ξ0(ν0) as ε → 0. One should supplement A17 with
the continuity condition C3 and the condition of J-compactness J7 that only involves the
external processes ξε(t), t ≥ 0. The former continuity condition does involve jointly the
limiting stopping moment ν0 and the limiting external process ξ0(t), t ≥ 0. But, this pair,
usually, has a much more simple structure than the corresponding pre-limiting stopping
moments and the external processes. Condition C3 can be effectively verified in many
cases and covers a significant part of applications.

Theorem 2.4.1 is another example. Here, the continuity condition C3 is weakened
and replaced with condition D2. A drawback is that one should now use, in addition to
condition A17, condition D2 that is based on joint distributions of the stopping moments
νε and moments of large jumps of the external processes ξε(t), t ≥ 0. These distribu-
tions are also not very complicated. Condition D2 can be effectively verified in some
important cases not covered by condition C3.

Unfortunately, neither condition O7 nor O8 satisfies these requirements. The prob-
lem here is caused by a direct use of joint distributions of the random variables ξε(νε + c)
and ξε(νε). These joint distributions are involved in a form that makes the conditions O7
and O8 too close to the tautology that the relation of weak convergence ξε(νε) ⇒ ξ0(ν0)
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follows from itself. Moreover, conditions O7 and O8 involve repeated limits, which
makes the asymptotic relations appearing in these conditions in a form even more com-
plicated than the assertion of weak convergence, ξε(νε) ⇒ ξ0(ν0). This indicates that
these conditions can, at most, yield a very preliminary framework for potential proofs in
weak limit theorems for compositions ξε(νε).

The same remarks can partially be applied to the conditions Ō5 and Ō6. These condi-
tions also do not separate external processes and internal stopping moments and directly
involve the joint distribution of the random variables ξε(νε) and ξε(νε − 0).

2.6 Scalar compositions of càdlàg processes

In this section, we formulate conditions of weak convergence for compositions of real-
valued càdlàg processes. A special attention is paid to conditions that provide weak
convergence of compositions on a set dense in the time interval [0,∞). Such weak
convergence is one of necessary conditions for J-convergence of compositions of càdlàg
stochastic processes.

2.6.1. Weak convergence of compositions on a preassigned set. Let, for every
ε ≥ 0, ξε(t), t ≥ 0 be a real-valued càdlàg process and νε(t), t ≥ 0 be a non-negative and
non-decreasing càdlàg process. We call ξε(t), t ≥ 0 an external process and νε(t), t ≥ 0 a
internal stopping process. We are interested in their composition ζε(t) = ξε(νε(t)), t ≥ 0.
This process is also a càdlàg process.

Let U, V , W ⊆ [0,∞). The following condition of joint weak convergence makes a
basis for further consideration:

AV
21: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where U is a

subset of [0,∞) that is dense in this interval and contains the point 0.

It is useful to note that, under condition J7, the set U in AV
21 can be extended to the

set U ∪ U0, where U0 is the set of points of stochastic continuity of the processes ξ0(t),
t ≥ 0. Note that U ∪ U0 is [0,∞) except for at most a countable set, and 0 ∈ U ∪ U0.

The following continuity condition also plays a principal role in what follows:

CW
5 : P{ν0(t) ∈ R[ξ0(·)]} = 0 for t ∈ W.

The following theorem can be found in Silvestrov (1971b, 1972a, 1972e).

Theorem 2.6.1. Let conditions AV
21, J7, and CW

5 hold. Then, for the set S = V ∩W,

ζε(t) = ξε(νε(t)), t ∈ S ⇒ ζ0(t) = ξ0(ν0(t)), t ∈ S as ε→ 0.

Proof of Theorem 2.6.1. This theorem is a corollary of Theorem 2.3.3. Indeed, condi-
tions AV

21 and CW
5 imply that, for any n ≥ 1 and points ti ∈ S , i = 1, . . . , n, condi-

tions A20 and C4 hold for the n-dimensional vector processes with identical components
ξ(n)
ε (t) = (ξε(t), . . . , ξε(t)), t ≥ 0 and the random vectors (νε(t1), . . . , νε(tn)).
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It is obvious that ∆J(ξ(n)
ε (·), c, T ) =

√
n∆J(ξε(·), c, T ). Hence, condition J7 implies

that condition J4 holds for the processes ξ(n)
ε (t), t ≥ 0.

By applying Theorem 2.3.3, we get that for all ti ∈ S , i = 1, . . . , n,

(ξεi(νεi(ti)), i = 1, . . . , n)⇒ (ξ0i(ν0i(ti)), i = 1, . . . , n) as ε→ 0. (2.6.1)

Relation (2.6.1) is equivalent to the statement of Theorem 2.6.1. �

2.6.2. Weak convergence on a set dense in [0,∞). Theorem 2.6.1 implies weak
convergence of compositions on a prescribed set S = V ∩ W. Now, we would like
to investigate conditions that would guarantee for the set S to be dense in the interval
[0,∞).

Let V0 be the set of points of stochastic continuity of the process ν0(t), t ≥ 0, and
V ′0 = V0 \ {0}. Due to monotonicity of the processes νε(t), if the set V from AV

21 is dense
in [0,∞), then V can be extended to the sets V ∪V ′0. The set V ∪V ′0 coincides with [0,∞)
except for at most a countable set, namely, the set V ∩V

′
0. Note that 0 ∈ V ∪V ′0 does not

necessarily holds, although 0 ∈ V ∪ V ′0 if 0 ∈ V .
Let also introduce the following continuity condition:

C
(w)
5 : P{ν0(w) ∈ R[ξ0(·)]} = 0.

Actually, C(w)
5 coincides with condition CW

5 if the set W = {w} contains only the point
w.

Denote by W0 the set of all points t ≥ 0 satisfying condition C(w)
5 . By the definition,

W ⊆ W0. As follows from Lemma 2.6.1, which we will formulate below, if condition
CW

5 holds for some set W dense in [0,∞), then the set W0 is [0,∞) except for at most
a countable set, namely the set W0. Note that 0 ∈ W0 does not necessarily holds, but
0 ∈ W0 if 0 ∈ W.

So, if both sets V and W are dense in [0,∞), then the set S 0 = (V ∪V ′0)∩W0 is [0,∞)
except for at most a countable set, namely (V ∩ V

′
0) ∪W0.

The following theorem is a variant of Theorem 2.6.1.

Theorem 2.6.2. Let conditions AV
21 and CW

5 hold for some sets V, W dense in [0,∞) and
let also condition J7 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t) = ξε(νε(t)), t ∈ S 0 ⇒ ζ0(t) = ξ0(ν0(t)), t ∈ S 0 as ε→ 0.

Remark 2.6.1. The set of weak convergence, S 0, in Theorem 2.6.2 can differ from [0,∞)
by at most a countable set. However, there is no certainty that this set contains some
preassigned point w ∈ [0,∞) (in particular 0). In order for a point w to be in the set of
convergence one should, for example, additionally assume that condition C

(w)
5 holds and

also require that w ∈ V ∪ V ′0.
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Now, we give a simple sufficient condition which implies that condition CW
5 holds

with some set W dense in [0,∞).
First, let us consider the case where the following analogue of condition Q1 holds:

Q2: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process;
(b) ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process; (c) the processes
ξ′′0 (t), t ≥ 0 and ν0(t), t ≥ 0 are independent.

The following lemma directly follows from Lemma 2.2.3.

Lemma 2.6.1. Suppose that condition Q2 holds. Then condition CW
5 holds with the set

W = [0,∞).

In condition Q2, the assumption that the càdlàg process ξ′′0 (t), t ≥ 0 is stochastically
continuous can be weakened and replaced with the assumption that, for any point tk of
stochastic discontinuity of this process (the number of such points is always at most
countable), P{ν0(t) = tk} = 0 for all t ≥ 0. Of course, if this condition holds for all points
t from some set W dense in [0,∞), then the condition CW

5 also holds for this set.
Let us now formulate a necessary and sufficient condition that implies that condition

CW
5 holds for some set dense in [0,∞). This condition was introduced in Silvestrov and

Teugels (1998) and Silvestrov (2000b):

E1: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ < ∞.

Conditions of type E will be referred to as the second-type continuity conditions,
as to to distinguish them from conditions of type C that are called first-type continuity
conditions.

Let τkn, k ≥ 1, be successive moments of jumps of the process ξ0(t), t ≥ 0 with the
absolute values of jumps belonging to the interval [ 1

n ,
1

n−1 ). Here n = 1, 2, . . ..
We need the following lemma from Silvestrov and Teugels (1998) and Silvestrov

(2000b).

Lemma 2.6.2. The condition E1 is necessary for CW
5 to hold for some set W dense in

[0,∞). It is sufficient for CW
5 to hold for some set W that coincides with [0,∞) except for

at most a countable set.

Proof of Lemma 2.6.2. Suppose E1 does not hold, i.e., the probability corresponding
to this condition is positive for some t′ < t′′. Then the set W in condition CW

5 can not
contain any point t from the interval [t′, t′′]. Indeed, {ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} ⊆ {ν0(t) ∈
R[ξ0(·)]} for any t′ ≤ t ≤ t′′ and, therefore, 0 < P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} ≤ P{ν0(t) ∈
R[ξ0(·)]}. So, W can not be dense in [0,∞). This implies the necessity statement.

To prove sufficiency, let us suppose that E1 holds but the set W of points t for which
P{ν0(t) ∈ R[ξ0(·)]} > 0 is infinite and not countable. Then, at least for some k, n, and m,
the set Zknm of points t with P(Btkn) > 1/m has to be infinite. Here Btkn = {ν0(t) = τkn}.
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Since E1 holds, P{Bt′kn∩Bt′′kn} = 0 for t′, t′′ ∈ Zknm, t′ , t′′. Let us take l > m and choose
points t1 < . . . < tl from the set Zknm. Then P(∪1≤r≤lBtrkn) =

∑
1≤r≤l P(Btrkn) > l

m > 1.
This is impossible. Therefore, the set W must be empty, finite, or countable. �

Remark 2.6.2. The statement of Lemma 2.6.2 is valid if condition E1 is weakened by
assuming that the relation P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 holds only for 0 < t′ < t′′ <
∞.

Indeed, take some sequence 0 < tn → 0 as n → ∞. Lemma 2.6.2 can be applied to
the processes ξ0(t), t ≥ 0 and ν0(t + tn), t ≥ 0. In this way, it can be proved that for every
n ≥ 1 there exists a set Wn dense in interval [tn,∞) such that condition CWn

5 holds. In this
case, condition CW

5 holds for the set W = ∪n≥1Wn that is dense in [0,∞).

We can reformulate now Theorem 2.6.2 in the following equivalent form, more suit-
able for applications.

Theorem 2.6.3. Let condition AV
21 hold for some set V dense in [0,∞), and also condi-

tions J7 and E1 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t) = ξε(νε(t)), t ∈ S 0 ⇒ ζ0(t) = ξ0(ν0(t)), t ∈ S 0 as ε→ 0.

Remark 2.6.3. The set of weak convergence, S 0, in Theorem 2.6.2 differs from [0,∞)
by at most a countable set. However, it is possible that this set does not contain a given
point w ∈ [0,∞) (in particular, the point 0). In order to include a point w in the set S 0, it
is sufficient to assume that condition C(w)

5 holds and w ∈ V ∪ V ′0.

2.6.3. The continuity condition E1. As follows from the definition of the set
R[ξ0(·)], condition E1 can be reformulated in the following equivalent form:

E
′
1: P{ν0(t′) = ν0(t′′) = τkn} = 0 for k, n = 1, 2, . . . , 0 ≤ t′ < t′′ < ∞.

Denote by D−1
+ the space of functions of the form y−1(t) = inf(s ≥ 0: y(s) ≥ t), t ≥ 0,

where y(t), t ≥ 0 belongs to the space D+ of non-negative and non-decreasing càdlàg
functions. It is easy to show that D−1

+ is the space of functions that take values in the
interval [0,∞], non-decreasing, and continuous from the left. Let R[y−1(·)] denote the
set of points of discontinuity for the function y−1(t), t ≥ 0. The set R[y−1(·)] is an empty,
finite, or countable subset of the interval [0,∞).

A very important property of the set R[y−1(·)] is that (a) a point t ∈ R[y−1(·)] if and
only if the point y−1(t) = z′t is the left endpoint of the interval [z′t , z

′′
t ] of positive length

such that y(s) < t for s < z′t , y(s) = t for s ∈ [z′t , z′′t ), and y(s) > t for s > z′′t . The right
endpoint z′′t = inf(s ≥ 0: y(s) > t), so the case z′′t = ∞ is also admitted.

Let us now introduce the inverse exceeding level process ν−1
0 (t) = inf(s ≥ 0: ν0(s) ≥

t), t ≥ 0. By the definition, the process ν−1
0 (t), t ≥ 0 has realisations that belong to

the space D−1
+ with probability 1. The corresponding set R[ν−1

0 (·)] is an empty, finite, or
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countable subset of random points of the interval [0,∞). These points can be enumerated
in the same way as it was done for the points of the set R[ξ0(·)] in condition E

′
1.

The following condition was introduced in Silvestrov (1974):

E2: P{t ∈ R[ξ0(·)] for t ∈ R[ν−1
0 (·)]} = 0.

In virtue of property (a), condition E2 can also be reformulated in the following
equivalent form given in Silvestrov (1974):

E
′
2: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)] for some 0 ≤ t′ < t′′ < ∞} = 0.

The following lemma is from Silvestrov (2000b).

Lemma 2.6.3. The conditions E1 and E2 are equivalent.

Proof of Lemma 2.6.3. Let A[t′, t′′] denote the event {ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]}, t′ < t′′.
Let Z be some countable set dense in [0,∞) and containing 0. Also, denote by A =

{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)] for some 0 ≤ t′ < t′′ < ∞}. It is obvious that the event A
occurs if and only if there exist points t′ < t′′, t′, t′′ ∈ Z such that the event A[t′, t′′]
occurs, that is, A = ∪t′ ,t′′∈Z,t′<t′′A[t′, t′′].

Due to (a), condition E2 is equivalent to the equality P(A) = 0. Obviously, A[t′, t′′] ⊆
A for all t′ < t′′. Therefore, P(A[t′, t′′]) = 0 for all t′ < t′′ if P(A) = 0. Hence, E2 implies
E1.

Condition E1 means that P(A[t′, t′′]) = 0 for all t′ < t′′. In this case, P(A) ≤∑
t′,t′′∈Z,t′<t′′ P(A[t′, t′′]) = 0. Therefore, E1 implies E2. �

It should be noted that, despite the equivalence of conditions E1 and E2, condition
E1 is essentially simpler than condition E2 or its equivalent version E

′
2. As a matter

of fact, E2 and E
′
2 deal with the whole internal stopping process ν0(t), t ≥ 0, under

the probability sign in these conditions. At the same time, E1 involves only values of
the internal stopping process ν0(t) at points t′ < t′′ under the probability sign in this
condition. The latter form of probabilities is much simpler than any of the first ones.

Obviously, condition Q2 is sufficient for condition E1 to hold.
Instead of Q2, one can assume that, for each k, n = 1, 2, . . ., the random variable τkn

and the process ν0(t), t ≥ 0 are independent, and the distribution functions of τkn and
ν0(t) do not have common points of discontinuity for each k, n ≥ 1 and t ≥ 0. In this
case, E1 also holds with the set W = [0,∞). Note that the process ν0(t), t ≥ 0 can depend
on values of jumps of the processes ξ0(t), t ≥ 0, as well as on the continuous component
of this process.

But E1 can also hold in situations where no assumptions on independence are made.
For example, the following condition obviously implies E1:

I1: ν0(t), t ≥ 0 is an a.s. strictly increasing process.
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In some applications, e.g., random sums and extrema with random sample size, inter-
nal stopping processes can have the following structure: νε(t) = tνε, t ≥ 0, where νε are
nonnegative random variables. The corresponding limiting random variable ν0 is usu-
ally assumed to be positive with probability 1. In this case, the corresponding limiting
process ν0(t) = tν0, t ≥ 0 satisfies condition I1.

2.6.4. Conditions of weak convergence of compositions of càdlàg processes,
based on M-topology. The proofs of Theorem 2.6.1, Theorems 2.6.2 and 2.6.3 were
based on applying Theorem 2.3.3 to vector processes with n identical components,
ξ(n)
ε (t) = (ξε(t), . . . , ξε(t)), t ≥ 0 and the random vectors (νε(t1), . . . , νε(tn)), where ti ∈

S , i = 1, . . . , n. By the reasons explained in Subsection 2.3.4, the condition of J-
compactness J4 can be replaced in Theorem 2.3.3 with the condition of M-compactness
M5. The corresponding statement is given in Theorem 2.3.5. Since the process ξ(n)

ε (t),
t ≥ 0 has the identical components, condition M5 reduces to the condition of M-
compactness M6 for the scalar processes ξε(t), t ≥ 0.

So, the condition of J-compactness J7 can be replaced in Theorems 2.6.1, 2.6.2, and
2.6.3 with the condition of M-compactness M6.

2.6.5. Weakened continuity conditions. Let us also formulate conditions of weak
convergence, which are based on results of Section 2.4. The following Theorems 2.6.4,
2.6.5, and Lemma 2.6.4 are new.

We use below the notations introduced in Section 2.4, in particular, denote by α(δ)
εk the

successive moments of jumps of the process ξε(t), t ≥ 0, with absolute values of jumps
greater than or equal to δ.

Let us introduce the following condition:

DW
4 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞

as r → ∞ such that, for every l, k, r ≥ 1, lim0<c→0 limε→0 P{α(δl)
εk − c ≤ νε(t) <

α(δl)
εk ,α

(δl)
εk < Tr} = 0 for t ∈ W.

This condition replaces condition CW
5 .

Theorem 2.6.4. Let conditions AV
21, J7, and DW

4 hold. Then, for the set S = V ∩W,

ζε(t) = ξε(νε(t)), t ∈ S ⇒ ζ0(t) = ξ0(ν0(t)), t ∈ S as ε→ 0.

Proof of Theorem 2.6.4. This theorem is a corollary of Theorem 2.4.2. Indeed, condi-
tions AV

21 and DW
4 imply that, for any n ≥ 1 and points ti ∈ S , i = 1, . . . , n, conditions

A20 and D
′′′
3 hold for the n-dimensional vector processes with the identical components

ξ(n)
ε (t) = (ξε(t), . . . , ξε(t)), t ≥ 0, and the random vectors (νε(t1), . . . , νε(tn)).

It is obvious that ∆J(ξ(n)
ε (·), c, T ) =

√
n∆J(ξε(·), c, T ). So, condition J7 implies that

condition J4 holds for the processes ξ(n)
ε (t), t ≥ 0.

By applying Theorem 2.4.2, we get that for all ti ∈ S , i = 1, . . . , n,

(ξε(νε(ti)), i = 1, . . . , n)⇒ (ξ0(ν0(ti)), i = 1, . . . , n) as ε→ 0. (2.6.2)
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Relation (2.6.2) is equivalent to the statement of Theorem 2.6.4. �

Lemma 2.4.4 yields that, if condition AV
21 and J7 hold, then condition CW

5 implies
that condition DS

4 holds. Here S = V ∩W.
Also note that condition CW

5 in Theorem 2.6.1 and condition DW
4 in Theorem 2.6.4

can be reduced to weaker conditions. Namely, the set W can be replaced with the set
S = V ∩W in these conditions. This does not change the statements of the theorems.

This shows that Theorem 2.6.4 can be regarded as an extension of Theorem 2.6.1.
Let us now introduce the following condition:

F2: There exist sequences of δl ∈ Z0, δl → 0 as l→ ∞ and 0 < Tr → ∞ as r →∞ such
that, for every l, k, r ≥ 1, lim0<c→0 limε→0 P{α(δl)

εk − c ≤ νε(t′), νε(t′′) < α(δl)
εk ,α

(δl)
εk <

Tr} = 0 for all 0 ≤ t′ < t′′ < ∞.

The following lemma is an analogue of Lemma 2.6.2.

Lemma 2.6.4. The condition F2 is necessary for DW
4 to hold for some set W dense in

[0,∞), and sufficient for DW
4 to hold for some set W which is [0,∞) except for at most a

countable set.

Proof of Lemma2.6.4. Denote Bεcklr,t = {α(δl)
εk − c ≤ νε(t) < α(δl)

εk , α
(δl)
εk < Tr}. Suppose F2

does not hold, that is, the iterated limit of probabilities in this condition is positive for
some l, k, r ≥ 1 and t′ < t′′. Then the set W in condition DW

4 can not contain any point t
of the interval [t′, t′′]. Indeed, Bεcklr,t′ ∩Bεcklr,t′′ ⊆ Bεcklr,t for any t′ ≤ t ≤ t′′ and, therefore,
0 < lim0<c→0 limε→0 P(Bεcklr,t′ ∩Bεcklr,t′′ ) ≤ lim0<c→0 limε→0 P(Bεcklr,t). Thus, W can not be
dense in [0,∞), which implies the statement of necessity.

To prove sufficiency, let us suppose that F2 holds but the set W of points t for
which lim0<c→0 limε→0 P(Bεcklr,t) > 0 for some k, l, r ≥ 1 is infinite and not count-
able. Then, at least for some k, l, r and m ≥ 1, the set Zklrm of points t for which
lim0<c→0 limε→0 P(Bεcklr,t) > 1

m has to be infinite. Since condition F2 holds, we have
(a) lim0<c→0 limε→0 P(Bεcklr,t′ ∩ Bεcklr,t′′ ) = 0 for t′, t′′ ∈ Zklrm, t′ , t′′. Let us take
n > m and choose points t1 < . . . < tn in the set Zklrm. Relations (a) imply the fol-
lowing relation: (b) lim0<c→0 limε→0 P(∪1≤r≤nBεcklr,tr ) ≥ lim0<c→0 limε→0(

∑
1≤r≤n P(Bεcklr,tr )

−∑
1≤r′<r′′≤n P(Bεcklr,tr′ ∩ Bεcklr,tr′′ )) = lim0<c→0 limε→0

∑
1≤r≤n P(Bεcklr,tr ) ≥ n

m > 1. This is
impossible. Therefore, the set W must be empty, finite, or countable. �

Remark 2.6.4. The statement of Lemma 2.6.4 is valid if condition F2 is weakened by
assuming that the asymptotic relation in this condition holds only for 0 < t′ < t′′ < ∞.

Indeed, take some sequence 0 < tn → 0 as n → ∞. Lemma 2.6.2 can be applied to
the process ξε(t), t ≥ 0 and νε(t + tn), t ≥ 0, and this will prove that for every n ≥ 1 there
exists a set Wn dense in the interval [tn,∞) such that condition DWn

4 holds. In this case,
condition DW

4 holds for set W = ∪n≥1Wn that is dense in [0,∞).
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The following lemma shows a connection between conditions F2 and E1.

Lemma 2.6.5. Let condition AV
21 hold for some V that is dense in [0,∞). Let also

condition J7 hold. Then condition E1 implies condition F2.

Proof of Lemma 2.6.5. Condition E1 implies that condition C(w)
5 holds for some set W

which is [0,∞) except for at most a countable set. Due to monotonicity of the processes
νε(t), the set V in condition AV

21 can be extended to the set V∪V ′0 that, again, differs from
[0,∞) in except at most a countable set. Condition C(w)

5 holds for every point w ∈ S ,
where S = (V ∪ V ′0) ∩W. This implies, due to Lemma 2.4.4, that condition D(w)

4 holds
for every point w ∈ S . It remains to note that the set S is [0,∞) except for at most a
countable set and then to apply Lemma 2.6.4. �

Now, introduce a condition that is actually condition DW
4 for the case where set W

contains only one point w,

D
(w)
4 : There exist a sequence of δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞

as r → ∞ such that, for every l, k, r ≥ 1, lim0<c→0 limε→0 P{α(δl)
εk − c ≤ νε(w) <

α(δl)
εk ,α

(δl)
εk < Tr} = 0.

Let W ′
0 denote the set of all points w ≥ 0 that satisfy condition D(w)

4 . According to
Lemma 2.6.4, if condition DW

4 holds for some set W dense in [0,∞), then the set W ′
0 is

[0,∞) except for at most a countable set.
We can now formulate an analogue of Theorem 2.6.3 with condition E1 replaced

with condition F2.

Theorem 2.6.5. Let condition AV
21 hold for some set V dense in [0,∞), and let also

conditions J7 and F2 be fulfilled. Then, for the set S 0 = (V ∪ V ′0) ∩W ′
0,

ζε(t) = ξε(νε(t)), t ∈ S 0 ⇒ ζ0(t) = ξ0(ν0(t)), t ∈ S 0 as ε→ 0.

Note that the set of weak convergence S 0 in Theorem 2.6.5 is [0,∞) except for at
most a countable set.

Remark 2.6.5. Condition F2 does not necessarily imply that a given point w belongs
to the set S 0. In order for a point w to be in the set S 0, it is sufficient to assume that
condition D

(w)
4 holds and w ∈ V ∪ V ′0.

2.6.6. The time interval [0, T]. The results concerning weak convergence of com-
positions of càdlàg processes obtained so far deal with processes defined on the semi-
infinite interval [0,∞). These results can also be obtained in the case where internal
stopping càdlàg processes are defined on a finite interval [0, T ].

So, let ξε(t), t ≥ 0 be a real-valued càdlàg process and νε(t), t ∈ [0, T ] a non-negative
and non-decreasing càdlàg process. We will consider their composition ζε(t) = ξε(νε(t)),
t ∈ [0, T ].
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Note, first of all, that we can always continue the internal stopping process to the
interval [0,∞) by the following formula:

νε(t) =


νε(t), if 0 ≤ t ≤ T,
νε(T ), if t ≥ T.

(2.6.3)

The case of weak convergence on a preassigned set is simple. Note that the sets V and
W in conditions AV

21 and CW
5 are arbitrary subsets of the interval [0,∞). Here, these sets

should be chosen so that V , W ⊆ [0, T ]. In this case, it is obvious that S = V∩W ⊆ [0, T ].
Taking into consideration the remarks made above we can conclude that conditions

AV
21, CW

5 , and J7, as well as Theorem 2.6.1, do not require any changes, except for an
additional assumption that V , W ⊆ [0, T ]. With these minor changes, Theorem 2.6.1 is
valid for the composition of the càdlàg processes ξε(t), t ≥ 0 and νε(t), t ∈ [0, T ].

The situation with conditions of weak convergence on a set dense in [0, T ] is more
complicated.

A direct application of the results of Subsections 2.6.1 – 2.6.5 to the processes ξε(t),
t ≥ 0 and νε(t), t ≥ 0 defined by formula (2.6.3) has a certain side effect. The assumption
that the set of weak convergence V is dense in the interval [0,∞) would automatically
imply that T ∈ V . However, it could be convenient to avoid an automatic use of this
assumption. In such a case, we should repeat the analysis of the conditions and reformu-
late the results for a finite interval in the same way as it was done for the semi-infinite
interval [0,∞).

Let V0 be the set of points of stochastic continuity of the process ν0(t), t ∈ [0, T ].
Instead of the set V ′0 = V0 \ {0}, consider the set V ′′0 = V0 \ {0, T }. In the first case, the
endpoint 0 of the interval [0,∞) is excluded, whereas in the second case, both endpoints
of the interval [0, 1], 0 and T , are excluded.

Since the processes νε(t) is monotone, if the set V in AV
21 is dense in [0, T ], V can be

extended to the set V ∪ V ′′0 . The set V ∪ V ′′0 is [0, T ] except for at most a countable set,
namely the set V ∩ V

′′
0 . Note that it might happen that 0, T ∈ V ∪ V ′′0 . But 0, T ∈ V ∪ V ′0

if 0, T ∈ V .
In this case, we also introduce W0 as a set of all points t ∈ [0, T ] such that P{ν0(t) ∈

R[ξ0(·)]} = 0. As follows from the remarks above, if condition CW
5 holds for some set

W dense in [0, T ], then the set W0 is [0, T ] except for at most a countable set, namely
the set W0. Note there is no guarantee that 0, T ∈ W0. But 0, T ∈ W0 if 0, T ∈ W, i.e.,
conditions C(0)

5 and C(T)
5 hold.

So, if both sets V and W are dense in [0,∞), then the set S 0 = (V ∪V ′′0 )∩W0 is [0, T ]
except for at most a countable set, namely (V ∩ V

′′
0 ) ∪W0.

Taking into consideration the remarks above it is easy to see that Theorem 2.6.2 does
not need any changes save for the assumption that the sets V , W are dense in [0, T ]
(instead of [0,∞)), with the corresponding changes in the definition of the set S 0 above.
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The set of convergence S 0 in the new variant of Theorem 2.6.2 is [0, T ] except for at
most a countable set. However, there is no guarantee that this set contains a preassigned
point w ∈ [0, T ]. For a point w to be in the set of convergence, one should make, in the
conditions of Theorem 2.6.2, an additional assumption that w ∈ S 0, that is to require that
w ∈ V ∪ V ′′0 and w ∈ W. In particular, 0, T ∈ S 0 if 0, T ∈ V , W.

Condition E1 requires an obvious change. It should be replaced with the following
truncated version of this condition:

E3: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ ≤ T .

Analogously to Lemma 2.6.2, it can be shown that condition E3 is necessary for CW
5

to hold for some set W, which is everywhere dense in [0, T ], and sufficient for CW
5 to

hold for some set W, which is [0, T ] except for, perhaps, some finite or countable set.
Taking in consideration the remarks made above we see that Theorem 2.6.3 remains

the same except for the assumption that the set V is dense in [0, T ], the change in the def-
inition of the set S 0 described above, and the replacement of condition E1 with condition
E3.

2.6.7. The time interval (0,∞). In the same way as above, the results given in
Subsections 2.2.1 – 2.6.5 can be carried over to the case of the semi-infinite interval
(0,∞). Here we will choose the sets V , W ⊆ (0,∞). We can directly use the set V0

of points of stochastic continuity of the process νε(t), t ∈ (0,∞) in the definition of the
sets of convergence S and S 0. In condition E1, the assumption 0 ≤ t′ < t′′ < ∞ should
be replaced with the assumption 0 < t′ < t′′ < ∞. Finally, if in addition, ν0(t) > 0
with probability 1 for every t > 0, then the condition of J-compactness J7 can also
be weakened. The corresponding J-compactness relation in this condition should be
required to hold for every finite interval [T ′, T ′′], where 0 < T ′ < T ′′ < ∞.

With these changes, Theorems 2.6.1, 2.6.2, and 2.6.3 hold for the composition of
càdlàg processes ξε(t), t ≥ 0 and νε(t), t > 0.

2.6.8. Random variables ξε(νε(t − 0)). Sometimes it is useful to include, in the
statement of weak convergence of the compositions ξε(νε(t)), t ∈ S 0, the random vari-
ables ξε(νε(t − 0)), t ∈ Ŝ 0, where Ŝ 0 is a subset of [0,∞). Here it is assumed that
νε(0 − 0) = νε(0).

For this to hold, one should include the random variable νε(t−0), t ∈ V̂ in the relation
of weak convergence in condition AV

21. Here V̂ is a dense subset of [0,∞).
One should also add, in condition CW

5 , the assumption that C
(w)
5 holds for the limiting

process ξ0(t), t ≥ 0 and the random variable ν0(w − 0) for w ∈ Ŵ. Here, Ŵ is a dense
subset of [0,∞). The set Ŵ0 should be introduced as a set of all w ≥ 0 satisfying C(w)

5 for
the process ξ0(t), t ≥ 0 and the random variable ν0(w − 0). The set of weak convergence
is Ŝ 0 = (V̂ ∪ V ′0) ∩ Ŵ0.

Another way would be to add, in condition DW
4 , the assumption that condition D

(w)
4

holds for the processes ξε(t), t ≥ 0 and the random variables νε(w − 0) for w ∈ Ŵ. Here
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Ŵ is a dense subset of [0,∞). The set Ŵ ′
0 should be introduced as a set of all w ≥ 0 for

which D(w)
4 holds for the processes ξε(t), t ≥ 0 and the random variables νε(w − 0). The

set of weak convergence is Ŝ 0 = (V̂ ∪ V ′0) ∩ Ŵ ′
0.

If condition E1 is used, then the same condition must be used and the random vari-
ables ν0(t) must be replaced with ν0(t − 0). If condition F2 is used, then the same
condition should also be required, with the random variables νε(t) being replaced with
νε(t − 0).

With the changes in the conditions, which were described above, the joint weak
convergence of random variables ξε(νε(t)), t ∈ S 0 and ξε(νε(t − 0)), t ∈ Ŝ 0 can be proved.

2.6.9. Non-monotone internal stopping processes. The requirement that νε(t), t ≥
0 be a non-decreasing process is not essential in conditions CW

5 and DW
4 and, therefore,

in Theorems 2.6.1, 2.6.2, and 2.6.4. These theorems also hold if the only assumptions
made are that the random variables νε(t) are non-negative for all t ≥ 0. Of course, this
does not guarantee, in this case, that the composition ξε(νε(t)), t ≥ 0 is a càdlàg process.

The requirement that νε(t), t ≥ 0 is a non-decreasing process is essential in conditions
E1 and F2. Therefore, Theorems 2.6.3 and 2.6.5 do require the monotonicity assumption
on the internal stopping processes.

2.7 Vector compositions of càdlàg processes

In this section, we formulate conditions for weak convergence of vector compositions of
càdlàg processes. The results are similar to those obtained for one-dimensional compo-
sitions.

2.7.1. Weak convergence of vector compositions on a preassigned set. Let, for
each ε > 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be an m-dimensional càdlàg process with
real-valued components and νε(t) = (νεi(t), i = 1, . . . ,m), t ≥ 0 be an m-dimensional
càdlàg processes with non-negative and non-decreasing components. We call ξε(t), t ≥ 0
an external process and νε(t), t ≥ 0 a internal stopping process. We are interested in
the vector composition ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ≥ 0, which is also an m-
dimensional càdlàg processes with real-valued components.

Let V , U, W ⊆ [0,∞). The following conditions are vector versions of the conditions
AV

21 and CW
5 :

AV
22: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where U is a

subset of [0,∞) that is dense in this interval and contains the point 0.

and

CW
6 : P{ν0i(t) ∈ R[ξ0i(·)]} = 0 for t ∈ W, i = 1, . . . ,m.
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It is useful to note that, under AV
22 and J4 or J8, the set U, in condition AV

19, can be
enlarged to the set U ∪ U0. Here U0 is the set of points of stochastic continuity of the
process ξ0(t), t ≥ 0. Note that U ∪ U0 is [0,∞) except for at most a countable set.

The following theorem from Silvestrov (19721b, 1972b, 1972e) is a vector analogue
of Theorem 2.6.1.

Theorem 2.7.1. Let conditions AV
22, J4, and CW

6 hold. Then, for the set S = V ∩W,

ζε(t), t ∈ S ⇒ ζ0(t), t ∈ S as ε→ 0.

Proof of Theorem 2.7.1. As in the one-dimensional case, Theorem 2.7.1 is a corollary of
Theorem 2.3.3. Indeed, conditions AV

22 and CW
6 imply that, for any m, n ≥ 1, and points

ti j ∈ S , i = 1, . . . ,m, j = 1, . . . , n, conditions A20 and J4 hold for the mn-dimensional
vector processes ξ(mn)

ε (t) = (ξεi j(t), i = 1, . . . ,m, j = 1, . . . , n), t ≥ 0 with the components
ξεi j(t) = ξεi(t), t ≥ 0, and the random vectors (νεi(ti j), i = 1, . . . ,m, j = 1, . . . , n).

It is obvious that ∆J(ξ(mn)
ε (·), c, T ) =

√
n∆J(ξε(·), c, T ). So, condition J4, assumed for

the processes ξε(t), t ≥ 0, implies that condition J4 holds also for the processes ξ(mn)
ε (t),

t ≥ 0.
By applying Theorem 2.3.3, we get that, for all ti j ∈ S , i = 1, . . . ,m, j = 1, . . . , n,

(ξεi(νεi(ti j)), i = 1, . . . ,m, j = 1, . . . , n)
⇒ (ξ0i(ν0i(ti j)), i = 1 . . . ,m, j = 1, . . . , n) as ε→ 0.

(2.7.1)

Relation (2.7.1) is equivalent to the statement of Theorem 2.7.1. �

Theorem 2.7.1 can be improved. The condition of J-compactness J4 can be replaced
with the weaker condition J8.

Theorem 2.7.2. Let conditions AV
22, J8, and CW

6 hold. Then, for the set S = V ∩W,

ζε(t), t ∈ S ⇒ ζ0(t), t ∈ S as ε→ 0.

Proof of Theorem 2.7.2. The proof repeats the proof of Theorem 2.7.1 with the only
one change. The reference to Theorem 2.3.3 should be replaced with the reference to
Theorem 2.3.4. �

2.7.2. Weak convergence of vector compositions on a set dense in [0,∞). The cor-
responding results are analogous to those given for the one-dimensional case in Section
2.6.

Let us denote by V0 the set of points of stochastic continuity of the process ν0(t),
t ≥ 0, and V ′0 = V0 \ {0}. Recall that νεi(t), t ≥ 0 is a non-decreasing càdlàg process for
every i = 1, . . . ,m and ε ≥ 0. Thus, if the set V in AV

22 is dense in [0,∞), then V can
be extended to the set V ∪ V ′0. Note that V ∪ V ′0 is [0,∞) except for at most a countable
set, namely the set V ∩ V

′
0. Note, there is no guarantee that 0 ∈ V ∪ V ′0. But this is so if

0 ∈ V .
Let us introduce the continuity condition:
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C
(w)
6 : P{ν0i(w) ∈ R[ξ0i(·)]} = 0 for i = 1, . . . ,m.

Actually, C(w)
6 coincides with condition CW

6 for the set W = {w} that contains only
one point w.

For every i = 1, . . . ,m, denote by W0i the set of all points t ≥ 0 such that P{ν0i(t) ∈
R[ξ0i(·)]} = 0. Let also W0 = ∩m

i=1W0i. As follows from Lemma 2.6.2, if condition CW
6

holds for some set W dense in [0,∞), then the set W 0i is empty, finite, or countable for
every i = 1, . . . ,m. So, W0 is [0,∞) except for at most a countable set, namely the set
W0. Note there is no guarantee that 0 ∈ W0. But this is so if 0 ∈ W, i.e., condition C

(0)
6

holds.
If both sets V and W are dense in [0,∞), then the set S 0 = (V ∪ V ′0) ∩ W0 is [0,∞)

except for at most a countable set, namely (V ∩ V
′
0) ∪W0.

The following theorem is a vector analogue of Theorem 2.6.3.

Theorem 2.7.3. Let conditions AV
22, J4, and CW

6 hold for some sets V, W dense in [0,∞).
Then for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.

Remark 2.7.1. The set of weak convergence S 0 in Theorem 2.6.2 is [0,∞) except for at
most a countable set. However, there is no guarantee that this set contains a preassigned
point w ∈ [0,∞), in particular the point 0. In order to include a point w in the set
of convergence, one should assume that condition C(w)

6 holds and also to require that
w ∈ V ∪ V ′0.

Let us also formulate a variant of Theorem 2.7.3, in which the J-compactness condi-
tion J4 is replaced with the weaker condition J8.

Theorem 2.7.4. Let conditions AV
22, J8, and CW

6 hold for some sets V, W dense in [0,∞).
Then, for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.

The following condition is a vector analogue of the condition Q2:

Q3: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process;
(b) ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process; (c) the processes
ξ′′0 (t), t ≥ 0 and ν0(t), t ≥ 0 are independent.

The following lemma is a vector analogue of Lemma 2.6.1. This follows from
Lemma 2.2.3.

Lemma 2.7.1. Suppose that condition Q3 holds. Then condition CW
6 holds with the set

W = [0,∞).
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It is useful to note that condition Q3 can be replaced, in Lemma 2.7.1 by the following
weaker condition:

Q4: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process; (b)
ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process; (c) for every i = 1, . . . ,m,
the processes ξ′′0i(t), t ≥ 0 and ν0i(t), t ≥ 0 are independent.

A vector analogue of the condition E1 is the following condition:

E4: P{ν0i(t′) = ν0i(t′′) ∈ R[ξ0i(·)]} = 0 for 0 ≤ t′ < t′′ < ∞, i = 1, . . . ,m.

Lemma 2.7.2. The condition E4 is necessary for CW
6 to hold for some set W, which is

dense in [0,∞), and sufficient for CW
6 to hold for some set W, which is [0,∞) except for

at most a countable set.

Proof of Lemma 2.7.2. Lemma 2.7.2 directly follows from Lemma 2.6.2, since condi-
tion E4 implies that condition E1 holds for the processes ξ0i(t), t ≥ 0 and ν0i(t), t ≥ 0, for
every i = 1, . . . ,m. Thus the set W0i is empty, finite, or countable for every i = 1, . . . ,m.
That is why W0 = ∩m

i=1W0i is [0,∞) except for at most a countable set. �

The following theorem is a vector analogue of Theorem 2.6.3.

Theorem 2.7.5. Let condition AV
22 hold for some set V dense in [0,∞), and also condi-

tions J4 and E4 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.

Condition J4 in the Theorems 2.7.5 can be replaced with the weaker condition J8.

Theorem 2.7.6. Let condition AV
22 hold for some set V dense in [0,∞), and also condi-

tions J8 and E4 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.

Note that the set of weak convergence S 0 in Theorems 2.7.5 and 2.7.6 is [0,∞) except
for at most a countable set.

The condition Q3 as well as Q4 is sufficient for E4 to hold with the set W = [0,∞).
But condition E4 can also hold if no assumptions about independence are made. For

example, the following condition obviously implies E4:

I2: ν0i(t), t ≥ 0 is an a.s. strictly increasing process for every i = 1, . . . ,m.
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2.7.3. Conditions for weak convergence of compositions of càdlàg processes,
based on M-topology. The proofs of Theorems 2.7.1, 2.7.3, and 2.7.5 are based on
applying Theorem 2.3.3. Similarly, the proofs of Theorems 2.7.2, 2.7.4, and 2.7.6 are
based on application of Theorem 2.3.4.

For the reasons explained in Subsection 2.3.4, the condition of J-compactness J8
can be replaced, in Theorems 2.3.3 and 2.3.4, with the condition of M-compactness M5.
The corresponding statement is given in Theorem 2.3.5. As in the proof of Theorem
2.7.1, one should apply Theorem 2.3.5 to the process ξ(mn)

ε (t), t ≥ 0 with the components
ξεi j(t) = ξεi(t), t ≥ 0 for j = 1, . . . , n and i = 1, . . . ,m. In this case, condition M5 for the
processes ξ(mn)

ε (t), t ≥ 0 reduces to the same condition M5 for the processes ξε(t), t ≥ 0.
2.7.4. Weakened continuity conditions. Let us also formulate conditions of weak

convergence, based on the results of Section 2.4. Theorems 2.7.7 and 2.7.9 given below
are new results.

We use the notations introduced in that section, in particular, let α(δ)
εik be the successive

moments of jumps of the process ξεi(t), t ≥ 0, at which the absolute values of the jumps
are greater than or equal to δ.

Let us introduce a condition that replaces condition CW
6 ,

DW
5 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞ as

r → ∞ such that for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)
εik −c ≤

νε(t) < α
(δl)
εik ,α

(δl)
εik < Tr} = 0 for t ∈ W.

Theorem 2.7.7. Let conditions AV
22, J4, and DW

5 hold. Then for the set S = V ∩W,

ζε(t), t ∈ S ⇒ ζ0(t), t ∈ S as ε→ 0.

Proof of Theorem 2.7.7. Theorem 2.7.7 is a simple corollary of Theorem 2.4.2. Indeed,
let us choose arbitrary m, n ≥ 1, and points ti j ∈ S , i = 1, . . . ,m, j = 1, . . . , n. Conditions
AV

22 and DW
5 imply that conditions A20 and D3 hold for the mn-dimensional vector

processes ξ(mn)
ε (t) = (ξεi j(t), i = 1, . . . ,m, j = 1, . . . , n), t ≥ 0 with the components

ξεi j(t) = ξεi(t), t ≥ 0, and the random vectors (νεi(ti j), i = 1, . . . ,m, j = 1, . . . , n).
It is obvious that ∆J(ξ(mn)

ε (·), c, T ) =
√

n∆J(ξε(·), c, T ). Thus, condition J4, assumed
for the processes ξε(t), t ≥ 0, implies that condition J4 holds also for the processes
ξ(mn)
ε (t), t ≥ 0.

By applying Theorem 2.4.2, we get that, for all ti j ∈ S , i = 1, . . . ,m, j = 1, . . . , n,

(ξεi(νεi(ti j)), i = 1, . . . ,m, j = 1, . . . , n)
⇒ (ξ0i(ν0i(ti j)), i = 1 . . . ,m, j = 1, . . . , n) as ε→ 0.

(2.7.2)

Relation (2.7.2) is equivalent to the statement of Theorem 2.7.7. �
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Let us also formulate a variant of Theorem 2.7.7, in which the condition of J-
compactness J4 is replaced with the weaker J-compactness condition J8.

Theorem 2.7.8. Let conditions AV
22, J8, and DW

5 hold. Then, for the set S = V ∩W,

ζε(t), t ∈ S ⇒ ζ0(t), t ∈ S as ε→ 0.

Proof of Theorem 2.7.8. The proof repeats the proof of Theorem 2.7.7 with only one
change. The reference to Theorem 2.4.2 should be changed to the reference to Theorem
2.4.3. �

Introduce now a continuity condition that replaces condition E4,

F3: There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞ as
r → ∞ such that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)

εik −c ≤
νεi(t′), νεi(t′′) < α

(δl)
εik ,α

(δl)
εik < Tr} = 0 for 0 ≤ t′ < t′′ < ∞.

The following lemma is a direct corollary of Lemma 2.6.4.

Lemma 2.7.3. The condition F3 is necessary for DW
5 to hold for some set W, dense in

[0,∞), and sufficient for DW
5 to hold for some set W which is [0,∞) except for at most a

countable set.

The following condition coincides with condition DW
5 for the case where set W con-

tains only one point w:

D
(w)
5 : There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞ as

r → ∞ such that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)
εik −c ≤

νεi(w) < α(δl)
εik ,α

(δl)
εik < Tr} = 0.

Let W ′
0 denote the set of all points w ≥ 0 that satisfy condition D(w)

5 . As follows
from Lemma 2.7.3, if condition DW

5 holds for some set W, dense in [0,∞), then the set
W ′

0 is [0,∞) except for at most a countable set, namely the set W 0. Note that there is no
guarantee that 0 ∈ W ′

0. But this is so if 0 ∈ W, i.e., condition C(0)
6 holds.

If both sets V and W are dense in [0,∞), then the set S 0 = (V ∪ V ′0) ∩ W0 is [0,∞)
except for at most a countable set, namely (V ∩ V

′
0) ∪W0.

We now give an analogue of Theorem 2.7.5, where condition E4 is replaced with
condition F3.

Theorem 2.7.9. Let condition AV
22 hold for some sets V that are dense in [0,∞), and let

also conditions J4 and F3 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W ′
0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.



136 Chapter 2. Weak convergence of randomly stopped processes

Condition F3 does not guarantee that a point w belongs to the set S 0. In order for a
particular point w to be in the set S 0, it is sufficient to assume that condition D(w)

5 holds
and w ∈ V ∪ V ′0.

Let us also formulate an analogue of Theorem 2.7.9, where the condition of J-
compactness J4 is replaced with the weaker J-compactness condition J8.

Theorem 2.7.10. Let condition AV
22 hold for some set V dense in [0,∞), and also con-

ditions J8 and F3 hold. Then, for the set S 0 = (V ∪ V ′0) ∩W ′
0,

ζε(t), t ∈ S 0 ⇒ ζ0(t), t ∈ S 0 as ε → 0.

Note that the set of weak convergence S 0 in Theorems 2.7.9 and 2.7.10 is [0,∞)
except for at most a countable set.

2.7.5. The time interval [0, T]. Subsection 2.6.6 contains remarks concerning weak
convergence of compositions of scalar càdlàg processes defined on a finite interval.
These remarks are still true in the case of vector compositions of càdlàg processes.

In this case, we are interested in the vector composition ζε(t) = (ξεi(νεi(t)), i =

1, . . . ,m), t ∈ [0, T ]. Here ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 is a vector càdlàg pro-
cess with real-valued components and νε(t) = (νεi(t), i = 1, . . . ,m), t ∈ [0, T ] is a vector
càdlàg process with non-negative and non-decreasing components.

As in the case of scalar processes, one can always continue internal stopping process
to the interval [0,∞) by the following formula:

νε(t) =


νε(t), if 0 ≤ t ≤ T,
νε(T ), if t ≥ T.

(2.7.3)

The sets V and W are arbitrary subsets of the interval [0,∞) in conditions AV
22 and

CW
6 . Here, these sets should be chosen such that V , W ⊆ [0, T ]. In this case, it is obvious

that S = V ∩W ⊆ [0, T ].
Taking into consideration the remarks made above we can conclude that the con-

ditions AV
22, CW

6 , and J4, J8, as well as Theorems 2.7.1 and 2.7.2, do not require any
changes, except for an additional assumption that V , W ⊆ [0, T ]. With these minor
changes, Theorems 2.7.1 and 2.7.2 are valid for the vector composition of the càdlàg
processes ξε(t), t ≥ 0, and νε(t), t ∈ [0, T ].

A direct application of Theorems 2.7.3 and 2.7.4 to the processes ξε(t), t ≥ 0 and
νε(t), t ≥ 0, defined by formula (2.7.3), has some side effect. The assumption that the set
of weak convergence V is dense in the interval [0,∞) would automatically imply that the
point T ∈ V . However, it can be convenient to avoid an automatic use of this assumption.

Let V0 be the set of points of stochastic continuity of the process ν0(t), t ∈ [0, T ].
Instead of the set V ′0 = V0 \ {0}, we consider the set V ′′0 = V0 \ {0, T }. In the first case,
the endpoint 0 of the interval [0,∞) is excluded, whereas in the second case, the two
endpoints 0 and T of the interval [0, T ] are excluded.
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Due to monotonicity of the processes νεi(t), if the set V in AV
22 is dense in [0, T ], then

V can be extended to the sets V ∪ V ′′0 . This set is [0, T ] except for at most a countable
set, namely the set V ∩ V

′′
0 . Note there is no guarantee that 0, T ∈ V ∪ V ′0. But this is so

if 0, T ∈ V .
Let, for every i = 1, . . . ,m, the set W0i be a set of all points w ∈ [0, T ] such that

P{ν0i(w) ∈ R[ξ0i(·)]} = 0. Let also W0 = ∩m
i=1W0i. If condition CW

6 holds for some set
W dense in [0, T ], then the set W0i is empty, finite, or countable for every i = 1, . . . ,m.
In the sequel, the set W0 is [0, T ] except for at most a countable set, namely the set W 0.
Note there is no guarantee that 0 ∈ W0. But 0 ∈ W0 if 0 ∈ W.

So, if both sets V and W are dense in [0,∞), then the set S 0 = (V ∪V ′0)∩W0 is [0,∞)
except for at most a countable set, namely (V ∩ V

′
0) ∪W0.

Taking into consideration the remarks made above one can conclude that Theorems
2.7.3 and 2.7.4 do not require any changes, except for the assumption that the sets V , W
are some sets dense in [0, T ] (instead of [0,∞)) and for the change in the definition of
the set S 0 described above.

In the new variant of Theorems 2.7.3 and 2.7.4, the set of convergence S 0 is [0, T ]
except for at most a countable set. However, there is no guarantee that this set contains
some preassigned point w ∈ [0, T ]. In order for a point w to belong to the set of conver-
gence, one also needs to add the assumption w ∈ S 0 to the conditions of Theorem 2.6.2,
that is to require that w ∈ V ∪V ′′0 , W. In particular, both endpoints 0, T ∈ S 0 if 0, T ∈ V ,
W.

Condition E4 requires an obvious change. It should be replaced with the following
truncated version of this condition:

E5: P{ν0i(t′) = ν0i(t′′) ∈ R[ξ0i(·)]} = 0 for 0 ≤ t′ < t′′ ≤ T , i = 1, . . . ,m.

Similar to Lemma 2.7.2, it can be shown that condition E5 is necessary for CW
6 to

hold for some set W that is everywhere dense in [0, T ], and sufficient for CW
6 to hold for

some set W that coincides with [0, T ] except for at most a countable set.
Using the remarks above we can conclude that Theorems 2.7.5 and 2.7.6 still remain

true if to assume that the set V is dense in [0, T ], to make the changes in the definition
of the set S 0 described above, and to replace condition E4 with condition E5.

Condition F3 also requires an obvious change. It should be replaced with the follow-
ing truncated version of this condition:

F4: There exist a sequence δl ∈ Z0, δl → 0 as l → ∞ and a sequence 0 < Tr → ∞ as
r → ∞ such that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)

εik −c ≤
νεi(t′), νεi(t′′) < α

(δl)
εik ,α

(δl)
εik < Tr} = 0 for 0 ≤ t′ < t′′ ≤ T .

In the same way as in Lemma 2.7.3, it can be shown that condition F4 is necessary
for DW

5 to hold for some set W that is everywhere dense in [0, T ], and sufficient for DW
5

to hold for some set W which is [0, T ] except for at most some finite or countable set.
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As follows from the above, the only changes are to be made for Theorems 2.7.9 and
2.7.10 to hold is to require that the set V is a set dense in [0, T ], to make a change in the
definition of the set S 0 described above, and to replace condition F3 with condition F4.

2.7.6. The time interval (0,∞). The results of the section can also be restated in
the case of the semi-infinite interval (0,∞). In this case, it is necessary to choose V ,
W ⊆ (0,∞). One can use directly the set V0 of points of stochastic continuity of the
process νε(t), t ∈ (0,∞) in the definition of the sets S and S 0 of weak convergence.
Also, the assumption that 0 ≤ t′ < t′′ < ∞ should be replaced with the assumption
0 < t′ < t′′ < ∞ in conditions E4 and F3. Finally, if ν0i(t) > 0 with probability 1 for
every t > 0 and i = 1, . . . ,m, then the conditions of J-compactness J4 and J8 can be
weakened. The corresponding J-compactness relations in these conditions need to be
assumed to hold for every finite interval [T ′, T ′′], where 0 < T ′ < T ′′ < ∞.

With these changes, Theorems 2.7.1 – 2.7.10 hold for the vector composition ζε(t), t ∈
(0,∞) of the càdlàg processes ξε(t), t ≥ 0 and νε(t), t ∈ (0,∞).

2.7.7. The random vectors ζε(t − 0). Sometimes it is useful to include, in the
statement of weak convergence of the compositions ζε(t), t ∈ S 0, the random vectors
ζε(t − 0) for t ∈ Ŝ 0 where Ŝ 0 ⊆ [0,∞). Here, we assume that νε(0 − 0) = νε(0).

To provide this inclusion, one should include the random variables νε(t − 0), t ∈ V̂ in
the relation of weak convergence in condition AV

22. Here V̂ is a dense subset of [0,∞).
Also, one should add, in condition CW

6 , the assumption that the limiting process ξ0i(t),
t ≥ 0 is continuous at the limiting random point ν0i(t−0) with probability 1 for t ∈ Ŵ and
i = 1, . . . ,m. Here Ŵ is a dense subset of [0,∞). Also, the set Ŵ0 should be introduced
as a set of all t ≥ 0 such that ν0i(t − 0) is a point of continuity of the process ξ0(t), t ≥ 0
with probability 1. In this case, the set of weak convergence is Ŝ 0 = (V̂ ∪ V ′0) ∩ Ŵ0.

If condition DW
5 is used, then the corresponding asymptotic relation in this condition

should be additionally required for the processes ξεi(t), t ≥ 0 and the random variables
νεi(t − 0) for every t ∈ Ŵ and i = 1, . . . ,m. Here Ŵ is a dense subset of [0,∞). In this
case, the set Ŵ ′

0 should be introduced as a set of all w ≥ 0 for which condition Dw
5 holds

for the processes ξε(t), t ≥ 0 and the random variables νε(w − 0). In this case, the set of
weak convergence is Ŝ 0 = (V̂ ∪ V ′0) ∩ Ŵ ′

0.
If the above conditions are extended, it is possible to prove the joint weak con-

vergence of random variables (ξεi(νεi(t)), i = 1, . . . ,m), t ∈ S 0 and (ξεi(νεi(t − 0)), i =

1, . . . ,m), t ∈ Ŝ 0.

2.7.8. A Polish phase space. The results in this section can be generalised to a
model where the external stochastic processes ξεi(t), t ≥ 0 take values in a Polish space
X. The formulation of conditions AV

22, CW
6 , and DW

5 can be kept without a change. In
the conditions J4 and J8, the Euclidian distance |x − y| must be replaced, in the formula
for the moduli of J-compactness ∆J(ξεi(·), c, T ), i = 1, . . . ,m, with the corresponding
metric d(x, y). Details of a procedure that allows to reduce the consideration to the case
of real-valued processes can be found in Subsection 2.3.9.
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2.8 Translation theorems

In this section we obtain the so-called “translation theorems” for randomly stopped
càdlàg processes and compositions of càdlàg processes. These theorems play an es-
sential role in applications.

2.8.1. Translation theorems for randomly stopped stochastic processes. We con-
sider the same model of randomly stopped vector càdlàg processes as in Section 2.3, but
assume that the following representation holds for the càdlàg process ξε(t) = (ξεi(t), i =

1, . . . ,m), t ≥ 0 and the random vector νε = (νεi, i = 1, . . . ,m) for every ε > 0:

νεi =
µεi
nεi
, ξεi(t) =

ηεi(tnεi)
nαi
εi hi(nεi)

, t ≥ 0, i = 1, . . . ,m, (2.8.1)

where: (a) αi = const ≥ 0, i = 1, . . . ,m; (b) nεi, i = 1, . . . ,m, are non-random positive
functions such that nεi → ∞ as ε → 0; (c) hi(x), x ≥ 0, i = 1, . . . ,m are slowly varying
functions.

In this section, we assume that the parameter ε → 0 taking only positive values, as
to avoid considering the expression in the right-hand side of (2.8.1) for ε = 0.

It should be noted that representation (2.8.1) admits the values αi = 0, i = 1, . . . ,m,
and functions hi(x) ≡ 1, i = 1, . . . ,m.

Also, some remark should be made about slowly varying functions hi(x). By the
definition, such a function (d) should be Borel-measurable, and slow variation means
that (e) hi(zy)/hi(y)→ 1 as y→ ∞ for every x > 0.

It follows from the definition that a slowly varying function is not equal to zero for
all x large enough. Since the quantities nαi

εi hi(nεi) are used as normalisation functions
and nεi → ∞ as ε → 0, one can always assume that hi(x) , 0 for all x ≥ 0 and every
i = 1, . . . ,m.

As is known (see, for example, Bingham, Goldie, and Teugels (1989)), for any slowly
varying function and, therefore, for the functions hi(x), i = 1, . . . ,m, and every 0 < z′ <
z′′ < ∞,

sup
z′≤z≤z′′

|hi(zy)
hi(y)

− 1| → 0 as y→ ∞. (2.8.2)

We are interested in the random vectors

ζ′εi =
ηεi(µεi)
µαi
εi hi(µεi)

· χ(µεi , 0), i = 1, . . . ,m.

Here, the product in the right-hand side should be interpreted as zero if µεi = 0 and,
therefore, χ(µεi , 0) = 0. The indicator χ(µεi , 0) is used to avoid considering improper
random variables.

Let us also introduce the corresponding limiting random variables,

ζ′0i = ν−αi
0i ξ0i(ν0i), i = 1, . . . ,m.



140 Chapter 2. Weak convergence of randomly stopped processes

We assume also that the following condition holds:

I3: ν0i > 0 with probability 1 for i = 1, . . . ,m.

Due to this condition, ζ′0i, i = 1, . . . ,m are proper random variables.
The following theorem can be found in Silvestrov (1972a, 1972e).

Theorem 2.8.1. Let conditions A19, C4, and I3 hold. Then

(ζ′εi, i = 1, . . . ,m)⇒ (ζ′0i, i = 1, . . . ,m) as ε→ 0.

Proof of Theorem 2.8.1. By applying Theorem 2.3.2 we get the following relation:

(νεi, ξεi(νεi), i = 1, . . . ,m)⇒ (ν0i, ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0. (2.8.3)

Note also that conditions A19 and I3 imply that the random variables

χ(µεi , 0) = χ(νεi , 0)
P−→ 1 as ε→ 0. (2.8.4)

Let us introduce the functions f (xi, yi) =
∑m

i=1 uix
−αi
i yi · χ(xi , 0), i = 1, . . . ,m,

where ui ∈ �1, i = 1, . . . ,m. Due to condition I3, every such a function is continuous
almost everywhere with respect to the distribution of the random vector (ν0i, ξ0i(ν0i), i =

1, . . . ,m). Thus, we get using Theorem 1.3.2 that

m∑

i=1

uiν
−αi
εi ξεi(νεi) · χ(νεi , 0) =

m∑

i=1

ui
ηεi(µεi)
µαi
εi hi(nεi)

· χ(µεi , 0)

⇒
m∑

i=1

uiν
−αi
0i ξ0i(ν0i) as ε→ 0.

(2.8.5)

Since ui ∈ �1, i = 1, . . . ,m can be chosen arbitrarily, (2.8.5) is equivalent to the
following relation:

(
ηεi(µεi)
µαi
εi hi(nεi)

· χ(µεi , 0), i = 1, . . . ,m)⇒ (ν−αi
0i ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0. (2.8.6)

Now let us show that

hi(µεi)
hi(nεi)

P−→ 1 as ε→ 0, i = 1, . . . ,m. (2.8.7)

Choose an arbitrary δ > 0. Since ν0i > 0, i = 1, . . . ,m with probability 1, one
can choose points 0 < z′ < z′′ < ∞, which are points of continuity of the distribution
functions of the random variables ν0i, i = 1, . . . ,m, such that

P{ν0i < [z′, z′′]} ≤ δ/2, i = 1, . . . ,m. (2.8.8)
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By (2.8.2), for an arbitrary σ > 0 there exists ε0 > 0 such that, if ε ≤ ε0, then for
every x ∈ [z′, z′′], ∣∣∣∣∣

hi(xnεi)
hi(nεi)

− 1
∣∣∣∣∣ ≤ σ. (2.8.9)

We can always assume that ε0 in (2.8.9) is chosen in such a way that, for ε ≤ ε0,

|P{µεi
nεi

< [z′, z′′]} − P{ν0i < [z′, z′′]}| ≤ δ/2. (2.8.10)

By using relations (2.8.8)–(2.8.10), we get, for ε ≤ ε0,

P{|hi(µεi)
hi(nεi)

− 1| > σ} =

∫ ∞

0
P{|hi(xnεi)

hi(nεi)
− 1| > σ}P{µεi

nεi
∈ dx}

≤
∫ z′′

z′
P{|hi(xnεi)

hi(nεi)
− 1| > σ}P{µεi

nεi
∈ dx} + P{µεi

nεi
< [z′, z′′]}

≤ P{ν0i < [z′, z′′]} + |P{µεi
nεi
∈ [z′, z′′]} − P{ν0i ∈ [z′, z′′]}| ≤ δ.

(2.8.11)

Since δ and σ are arbitrary, relation (2.8.7) follows from (2.8.11). In virtue of Lemma
1.2.1 and relations (2.8.6)–(2.8.7),

(
ηεi(µεi)
µαi
εi hi(µεi)

, i = 1, . . . ,m)

= ((
hi(µεi)
hi(nεi)

)−1 · ηεi(µεi)
µαi
εi hi(nεi)

· χ(µεi , 0), i = 1, . . . ,m)

⇒ (ν−αi
0i ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

(2.8.12)

This completes the proof. �

Remark 2.8.1. Note that condition A19 can be replaced with a combination of conditions
A20, J8, which implies condition A19.

Remark 2.8.2. Note that, due to condition I3 and the remarks in Subsection 2.3.8, one
can slightly weaken conditions A19 or A20 and J8. In condition A19, the sets S i can be
assumed to be dense in (0,∞) and the assumption 0 ∈ S i can be omitted. Analogously,
in condition A20, the set U can be assumed to be dense in (0,∞) and the assumption
0 ∈ U can be omitted. Also, in condition J8, the relation of J-compactness should be
assumed only for for the intervals [T ′, T ′′] where 0 < T ′ < T ′′ < ∞.

2.8.2. Translation theorems for semi-vector compositions of càdlàg processes.
The result of Theorem 2.8.1 can be generalised to the case of stochastic processes.

Let us first consider the case of semi-vector compositions. Consider the same model
for randomly stopped vector càdlàg processes as in Section 2.7 but assume that the vec-
tor stopping processes have identical components, i.e., νε(t) = (νε(t), . . . , νε(t)), t ≥ 0.
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Moreover, we assume that the external càdlàg process ξε(t) = (ξε1(t), . . . , ξεm(t)), t ≥ 0
and the stopping process νε(t), t ≥ 0 can be represented in the following form for every
ε > 0:

νε(t) = tνε = t
µε

nε
, ξεi(t) =

ηεi(tnε)
nαε h(nε)

, t ≥ 0, i = 1, . . . ,m, (2.8.13)

where: (a) α = const ≥ 0; (b) nε is a non-random positive function such that nε → ∞ as
ε→ 0; (c) h(x), x ≥ 0 is a slowly varying function.

It should be noted that representation (2.8.13) is still valid if α = 0 and h(x) ≡ 1.
Condition AV

22 takes, in this case, the following form:

A23: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε→ 0, where U is a subset of [0,∞) that is
dense in this interval and contains the point 0.

We also assume that the following condition holds:

I4: ν0 > 0 with probability 1.

Consider the stochastic processes

ζ′εi(t) =
ηεi(tµε)
µαε h(µε)

· χ(µε , 0), t ≥ 0, i = 1, . . . ,m.

Also introduce the corresponding limiting processes

ζ′0i(t) = ν−α0 ξ0i(tν0), t ≥ 0, i = 1, . . . ,m.

Denote by W0i the set of t ≥ 0 such that P{τkni/ν0 = t} = 0 for all k, n = 1, 2, . . .,
where τkni, k = 1, 2 . . . are successive moments of jumps of the process ξ0i(t), t ≥ 0 such
that absolute values of the jumps belong to the interval [ 1

n ,
1

n−1 ). Let also W = ∩m
i=1W0i.

Obviously, the sets W0i, i = 1, . . . ,m, and W are [0,∞) except for at most countable sets.
Also, 0 ∈ W.

Theorem 2.8.2. Let conditions A23, J4, and I4 hold. Then

ζ′ε(t) = (ζ′εi(t), i = 1, . . . ,m), t ∈ W ⇒ ζ′0(t) = (ζ′0i(t), i = 1, . . . ,m), t ∈ W as ε→ 0.

Proof of Theorem 2.8.2. Let us introduce the processes

ξ′εi(t) =
ηεi(tnε)
µαε h(µε)

· χ(µε , 0), t ≥ 0, i = 1, . . . ,m. (2.8.14)

Obviously,
ζ′εi(t) = ξ′εi(tνε), t ≥ 0, i = 1, . . . ,m. (2.8.15)

The processes ξ′εi(t), t ≥ 0 can be represented as

ξ′εi(t) = (h(µε)/h(nε))−1ν−αε ξεi(t) · χ(µε , 0), t ≥ 0, i = 1, . . . ,m. (2.8.16)
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Let us choose an arbitrary n ≥ 1 and points s1, . . . , sn ≥ 0, and t1, . . . , tn ∈ U. As

was shown in the proof of Theorem 2.8.1, (d) h(µε)/h(nε)
P−→ 1 as ε → 0 and also (e)

χ(µε , 0) = χ(νε , 0)
P−→ 1 as ε → 0. Using representation (2.8.16), the relations (d)

and (e), condition A23, and the Slutsky Theorem 1.2.3, we get

(s jνε, ξ
′
εi(t j), j = 1, . . . , n, i = 1, . . . ,m)
⇒ (s jν0, ξ

′
0i(t j), j = 1, . . . , n, i = 1, . . . ,m) as ε→ 0,

(2.8.17)

where
ξ′0i(t) = ν−α0 ξ0i(t), t ≥ 0, i = 1, . . . ,m.

Since the points points s1, . . . , sn ≥ 0 and t1, . . . , tn ∈ U are arbitrary, relation (2.8.17)
can be rewritten in the following form:

(sνε, ξ′εi(t), i = 1, . . . ,m), (s, t) ∈ [0,∞) × U
⇒ (sν0, ξ

′
0i(t), i = 1, . . . ,m), (s, t) ∈ [0,∞) × U as ε→ 0.

(2.8.18)

Relation (2.8.18) means that condition AV
22, with the set V = [0,∞), holds for the

processes νε(t) = (tνε, . . . , tνε), t ≥ 0 and ξ′ε(t) = (ξ′ε1(t), . . . , ξ′εm(t)), t ≥ 0.
Let us show now that condition J4 holds for the processes ξ′ε(t), t ≥ 0.
We use the following simple equality, which is valid for an arbitrary càdlàg function

x(t), t ≥ 0 that takes values in �m and a positive constant b,

∆J(bx(·), c, T ) = b∆J(x(·), c, T ), c, T > 0. (2.8.19)

Let us denote
βε = ν−αε (h(µε)/h(nε))−1 · χ(µε , 0).

Using this inequality (2.8.19) and formula (2.8.16) we get

P{∆J(ξ′ε(·), c, T ) > δ}
= P{βε · ∆J(ξε(·), c, T ) > δ}
≤ P{βε ≥ b} + P{∆J(ξε(·), c, T ) > δ/b}.

(2.8.20)

Since h(µε)/h(nε)
P−→ 1 as ε → 0 and χ(µε , 0)

P−→ 1 as ε → 0, condition A23
implies that

βε ⇒ β0 = ν−α0 as ε→ 0. (2.8.21)

For an arbitrary σ > 0, by (2.8.21) and condition I4, we can choose b such that
limε→0 P{βε > b} ≤ σ/2. By fixing b and then using condition J4, we can find c > 0 such
that limε→0 P{∆J(ξε(·), c, T ) > δ/b} ≤ σ/2. If we pass to limit in (2.8.20), making first
ε→ 0 and then c→ 0, we find

lim
c→0

lim
ε→0

P{∆J(ξ′ε(·), c, T ) > δ} ≤ σ. (2.8.22)
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Since σ is arbitrary, 2.8.22 proves that condition J4 holds for the processes ξ′ε(t),
t ≥ 0.

Finally, one can note that condition CW
6 holds for the processes ν0(t), t ≥ 0 and ξ′0(t),

t ≥ 0 with the set W described above. This is so, since the processes ξ′0(t), t ≥ 0 and
ξ0(t), t ≥ 0 have the same set of discontinuity points, i.e., R[ξ′0(·)] = R[ξ0(·)].

To complete the proof of the theorem, it remains to apply Theorem 2.7.1 to the
processes ξ′ε(t), t ≥ 0 and νε(t), t ≥ 0. �

Remark 2.8.3. Note that the point 0 belongs to the set of weak convergence W. If the
set of weak convergence in condition A23 does not contain 0 and the relation of J-
compactness in condition J4 holds only for intervals [T ′, T ′′], where 0 < T ′ < T ′′ < ∞,
one should exclude the point 0 from the set W.

2.8.3. Translation theorems for vector compositions of càdlàg processes. Let us
consider the general case of vector compositions where the stopping processes νεi(t), t ≥
0 can be different for i = 1, . . . ,m. We assume that the external càdlàg process ξε(t) =

(ξε1(t), . . . , ξεm(t)), t ≥ 0 and the stopping process νε(t) = (νε1(t), . . . , νεm(t)), t ≥ 0 can be
represented in the following form for every E > 0:

νεi(t) = tνεi = t
µεi
nεi
, ξεi(t) =

ηεi(tnεi)
nαi
εi hi(nεi)

, i = 1, . . . ,m, t ≥ 0, (2.8.23)

where: (a) αi = const ≥ 0, i = 1, . . . ,m; (b) nεi, i = 1, . . . ,m are non-random positive
functions such that nεi → ∞ as ε → 0; (c) hi(x), x ≥ 0, i = 1, . . . ,m are slowly varying
functions.

Condition A23 should be replaced with the following vector analogue:

A24: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε → 0, where U is a subset of [0,∞) that is
dense in this interval and contains the point 0.

We also assume that condition I3 holds.
Now, consider the processes

ζ′′εi(t) =
ηεi(tµεi)
µαi
εi hi(µεi)

· χ(µεi , 0), t ≥ 0, i = 1, . . . ,m.

Let us introduce also the corresponding limiting processes

ζ′′0i(t) = ν−αi
0i ξ0i(tν0i), t ≥ 0, i = 1, . . . ,m.

Denote by W ′
0i the set of t ≥ 0 such that P{τkni/ν0i = t} = 0 for all k, n = 1, 2, . . .,

where τkni, k = 1, 2, . . . are successive moments of jumps of the process ξ0i(t), t ≥ 0 that
have absolute values of the jumps in the interval [ 1

n ,
1

n−1 ). These moments were defined
in Section 2.2.1. Let also W ′ = ∩m

i=1W ′
0i. Obviously, the sets W ′

0i, i = 1, . . .m, and W ′

coincide with [0,∞) except for, perhaps, some finite or countable sets.
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Theorem 2.8.3. Let conditions A24, J8, and I3 hold. Then

ζ′′ε (t) = (ζ′′εi(t), i = 1, . . . ,m), t ∈ W ′ ⇒ ζ′′0 (t) = (ζ′′0i(t), i = 1, . . . ,m), t ∈ W ′ as ε → 0.

Proof of Theorem 2.8.3. The first step in the proof repeats, mainly, the proof of Theorem
2.8.2. Let us introduce the processes

ξ′′εi(t) =
ηεi(tnεi)
µαεihi(µεi)

· χ(µεi , 0), t ≥ 0, i = 1, . . . ,m. (2.8.24)

Obviously,
ζ′′εi(t) = ξ′′εi(tνεi), t ≥ 0, i = 1, . . . ,m. (2.8.25)

Using a method, similar to the one used in the proof of Theorem 2.8.2 in relations
(2.8.16), (2.8.17), and (2.8.18), we get

(sνεi, ξ′′εi(t), i = 1, . . . ,m), (s, t) ∈ [0,∞) × U
⇒ (sν0i, ξ

′
0i(t), i = 1, . . . ,m), (s, t) ∈ [0,∞) × U as ε→ 0,

(2.8.26)

where
ξ′′0i(t) = ν−αi

0i ξ0i(t), t ≥ 0, i = 1, . . . ,m.

So, condition AV
22 holds for the processes νε(t) = (tνεi, i = 1, . . . ,m), t ≥ 0 and

ξ′′ε (t) = (ξ′εi(t), i = 1, . . . ,m), t ≥ 0 with the set V = [0,∞).
The next step is slightly different. Since the stopping processes are different for

different i, the equality (2.8.19) can not be used for proving J-compactness of the vector
compositions ζ′′ε (t) = (ξ′′εi(tνεi), i = 1, . . . ,m), t ≥ 0. However, this equality can still be
used to prove J-compactness of the scalar processes ζ′′εi(t) = ξ′′εi(tνεi), t ≥ 0, for every
i = 1, . . . ,m. So, using a reasoning similar to that in the proof of Theorem2.8.2 in
relations(2.8.19) – (2.8.22), we can get

lim
c→0

lim
ε→0

P{∆J(ξ′′εi(·), c, T > δ} = 0, δ, T > 0, i = 1, . . . ,m. (2.8.27)

Therefore, condition J8 holds for the processes ξ′′ε (t), t ≥ 0.
Finally, one can note that condition CW′

6 holds for the processes ξ′′0 (t), t ≥ 0 and ν0(t),
t ≥ 0 with the set W ′ described above. This is true, since the processes ξ′′0i(t), t ≥ 0 and
ξ0i(t), t ≥ 0 have the same set of discontinuity points, that is, R[ξ′′0i(·)] = R[ξ0i(·)] for
every i = 1, . . . ,m.

For completing the proof of theorem, it remains to apply Theorem 2.7.2 to the pro-
cesses ξ′′ε (t), t ≥ 0 and νε(t), t ≥ 0. �

Remark 2.8.4. Note that point 0 belongs to the set of weak convergence W ′. If the set of
weak convergence in condition A24 does not contain 0 and the relation of J-compactness
in condition J8 holds only for intervals [T ′, T ′′], where 0 < T ′ < T ′′ < ∞, one should
exclude the point 0 from the set W ′.
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2.8.4. Translation theorems for randomly stopped stochastic sequences. Let us
consider an example that explains the appearance of power type normalising functions
in the translation theorems given above. The results presented in this subsection, mainly,
are due to Durrett and Resnik (1977). We present them with slight variations, in the
context of the general translation theorems given above in Subsections 2.8.1 - 2.8.3.

Let ξn, n = 0, 1, . . . be a sequence of real-valued random variables and µn, n = 1, . . .
be a sequence of non-negative integer random variables. Let also an > 0 and bn be two
sequences of real numbers.

We assume that the random variables ξn, n = 0, 1, . . . and µn, n = 1, . . . are defined
on the same probability space. Let us now define, for n ≥ 1,

νn =
µn

n
, ξn(t) =

ξ[tn] − bn

an
, t ≥ 0.

Here we prefer to index the random variables and the processes by n. However, one
can always define the random variables νε = νn and the processes ξε(t) = ξn(t), t ≥ 0, for
ε ∈ [ 1

n ,
1

n−1 ), where n ≥ 1, and use the index ε > 0 that runs over all positive real values.
Let us assume the following condition of weak convergence:

A25: (νn, ξn(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as n → ∞, where ξ0(t), t > 0 is a càdlàg
process and U is a subset of (0,∞) dense in this interval.

We also assume the following variant of the J-compactness condition:

J9: limc→0 limn→∞ P{∆J(ξn(·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

Note that conditions A25 and J9 are necessary and sufficient for the J-convergence

(νn, ξn(t)), t > 0
J−→ (ν0, ξ0(t)), t > 0 as n→ ∞. (2.8.28)

We also assume the positivity condition I4, i.e., that ν0 > 0 with probability 1.
Denote by W the set of t > 0 such that P{τknr/ν0 = t} = 0 for all k, n, r = 1, 2, . . .,

where τknr, k = 1, 2 . . . are successive moments of jumps of the process ξ0(t), t ≥ r−1,
such that absolute values of the jumps belong to the interval [ 1

n ,
1

n−1 ). It is clear that the
set W is the interval (0,∞) except for at most a countable set.

By applying Theorem 2.6.1 to the composition of the processes ξn(t), t ≥ 0 and
νn(t) = tνn, t ≥ 0, and taking into account Remark 2.8.3, we get the following relation:

ξn(tνn) =
ξ[tµn] − bn

an
, t ∈ W ⇒ ξ0(tν0), t ∈ W as n→∞. (2.8.29)

Let us now assume the following condition:

I5: ξ0(t) has a non-degenerate distribution for each t > 0.
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It follows from a convergence types theorem (See, Lamperti (1962b), Weissman

(1975), and Durrett and Resnik (1977)) that, if the processes ξn(t), t > 0
J−→ ξ0(t), t > 0

as n → ∞ and condition I5 holds, then the normalisation constants an and the centrali-
sation constants bn must satisfy the following relations:

a[tn]

an
→ αρ(s) as n→ ∞, t > 0, (2.8.30)

and
b[tn] − bn

an
→ βρ(s) as n→∞, t > 0. (2.8.31)

Moreover, there exist only three possibilities (a) αρ(s) = sρ, βρ(s) = b · (sρ − 1),
ρ > 0; (b) a0(s) = 1, b0(s) = b · ln s, ρ = 0; and (c) aρ(s) = sρ, bρ(s) = b · (1− sρ), ρ < 0,
where b = const.

Also, as was shown in Durrett and Resnik (1977), in this case, ξ0(t), t > 0, is a
stochastically continuous càdlàg process.

Relation (2.8.30) implies that the function a[s] is a regularly varying function, that is,
it can be represented in the form a[s] = sρh(s), where h(s) is a slowly varying function.
Using this fact and (2.8.2) one can easily show that the convergence in (2.8.30) and
(2.8.31) is uniform in every finite interval separated from zero, that is, for any 0 < s′ <
s′′ < ∞,

sup
s′≤s≤s′′

|a[sn]

an
− αρ(s)| → 0 as n→ ∞, (2.8.32)

and

sup
s′≤s≤s′′

|b[sn] − bn

an
− βρ(s)| → 0 as n→ ∞. (2.8.33)

As soon as the form of normalisation constants an = nρh(n) is obtained, the general
translation Theorem 2.8.2 and Remark 2.8.3 can be applied. This yields the following
asymptotic relation:

ξ[tµn] − bn

aµn

· χ(µn , 0), t ∈ W ⇒ ν
−ρ
0 ξ0(tν0), t ∈ W as n→ ∞. (2.8.34)

It also follows from relation (2.8.33) that the non-random functions

bn(t) =
b[tn] − bn

an
, t > 0

U−→ βρ(t), t > 0 as n→ ∞. (2.8.35)

Due to Lemma 1.6.11, it follows from the relations (2.8.28) and (2.8.35) that

(νn, ξn(t), bn(t)), t > 0
J−→ (ν0, ξ0(t), βρ(t)), t > 0 as n→ ∞. (2.8.36)
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Now, by applying the translation Theorem 2.8.2 and Remark 2.8.3 once more, one
can get the following relation:

(
ξ[tµn] − bn

aµn

,
b[tµn] − bn

aµn

) · χ(µn , 0), t ∈ W

⇒ (ν−ρ0 ξ0(tν0), βρ(tν0)), t ∈ W as n→ ∞.
(2.8.37)

As a corollary of (2.8.37), one gets, in an obvious way, the following relations:

ξ[tµn] − b[tµn]

aµn

· χ(µn , 0), t ∈ W

⇒ (ν−ρ0 ξ0(tν0) − βρ(tν0)), t ∈ W as n→ ∞,
(2.8.38)

as well as
ξ[tµn] − b[µn]

aµn

· χ(µn , 0), t ∈ W

⇒ (ν−ρ0 ξ0(tν0) − βρ(ν0)), t ∈ W as n→∞.
(2.8.39)

Note also that not only weak convergence but also the convergence of the correspond-
ing processes in the topology J can be proved by using theorems on J-convergence of
compositions of càdlàg processes. We formulate such statements in Subsection 3.4.9.

2.9 Randomly stopped locally compact càdlàg processes

In this section, we obtain conditions for weak convergence of randomly stopped càdlàg
processes and compositions of càdlàg processes for a model with asymptotically locally
compact external processes. A standard combination of general conditions that provides
weak convergence of randomly stopped càdlàg processes includes the condition of joint
weak convergence of random stopping moments and external processes, A17, the condi-
tion of J-compactness of external processes, J7, and the continuity condition C3. These
conditions can be effectively checked and are sufficient for a wide range of applications.
Nevertheless, in the case under consideration, the conditions of J-compactness, J7, and
continuity, C3, can be weakened. They can be replaced with a condition of local condi-
tional compactness of external processes at every point of a set S . Here S is a set, where
the distribution of the limiting stopping moment is concentrated.

2.9.1. A condition of local compactness for scalar randomly stopped processes.
Let, for every ε ≥ 0, ξε(t), t ≥ 0 be a real-valued càdlàg process and νε a non-negative
random variable.

Let Y0 be the set that contains all continuity points of the distribution function of
the random variable ν0 and the point 0. Then Y0 is the set of all points t > 0 such that
P{ν0 = t} > 0. This set contains at most a countable number of points.

We assume the following variant of condition A17:
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A26: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε → 0, where U is a subset of [0,∞) such
that the set U \ Y0 is dense in [0,∞), and 0 ∈ U.

Note that, if the set of weak convergence U is [0,∞) except for at most a countable
set, then the set U \ Y0 is also [0,∞) except for at most a countable set. So, condition
A26 holds with the set U.

Let us define, for a function x(t), t ≥ 0 from the space D(1)
[0,∞), a functional that is the

oscillation of the function x(t) on the interval [u,w), 0 ≤ u < w < ∞,

∆u,w(x(·)) = sup
t′ ,t′′∈[u,w)

|x(t′) − x(t′′)|.

Let S 0 be the set of points t ≥ 0 such that P{ν0 ∈ [u,w)} > 0 for all u ≤ t < w (the
set of points of growth of the distribution function of ν0). It is not difficult to show that
S 0 is a Borel-measurable subset of [0,∞) and P{ν0 ∈ S 0} = 1.

We use the following condition that replaces the condition of J-compactness J7:

L1: There exists a Borel-measurable subset S ⊆ S 0 such that (a) P{ν0 ∈ S } = 1, (b)
limu≤t<w,w−u→0 limε→0 P{∆u,w(ξε(·)) > δ/νε ∈ [u,w)} = 0, δ > 0 for t ∈ S .

The main result of this section is the following theorem from Silvestrov (1979a).

Theorem 2.9.1. Let conditions A26 and L1 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0.

Proof of Theorem 2.9.1. Let 0 = z0,n < z1,n < . . . be, for every n = 0, 1, . . ., a partition
of the interval [0,∞) and let also these partitions satisfy the following conditions: (a)
zk,n ∈ U \ Y0 for all k, n = 0, 1, . . .; (b) zk,n → ∞ as k → ∞ for n = 0, 1, . . ., (c)
maxk≥0(zk+1,n − zk,n)→ 0 as n→ 0. Such partitions exist, since the set U \ Y 0 is dense in
[0,∞) and contains 0.

Let us now define, for n = 0, 1, . . ., the stochastic processes

ξ(n)
ε (t) = ξε(zk+1,n) for t ∈ [zk,n, zk+1,n), k = 0, 1, . . . . (2.9.1)

We are going to use the approximation representation

ξε(νε) = ξ(n)
ε (νε) + (ξε(νε) − ξ(n)

ε (νε)), (2.9.2)

and show that, for every n = 0, 1, . . .,

ξ(n)
ε (νε)⇒ ξ(n)

0 (ν0) as ε→ 0, (2.9.3)

and
lim
n→∞

lim
ε→0

P{|ξε(νε) − ξ(n)
ε (νε)| > δ} = 0, δ > 0. (2.9.4)
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Theorem 2.9.1 follows from relations (2.9.1)–(2.9.4) and Lemma 1.2.5.
By the definition of the processes ξ(n)

ε (t), t ≥ 0,

P{ξ(n)
ε (νε) < u} =

∞∑

k=0

P{ξε(zk+1,n) < u, νε ∈ [zk,n, zk+1,n)}. (2.9.5)

For an arbitrary δ > 0 and every n = 0, 1, . . ., one can always select a number mn

such that P{ν0 ≥ zmn,n} ≤ δ. Let X be the set of discontinuity points of the distribution
functions of the random variables ξ0(zk,n), k, n = 0, 1, . . .. The set X is at most countable.
Using (2.9.5), condition A26, and the choice of points zk,n, we have, for all n = 0, 1, . . .
and u ∈ X,

|P{ξ(n)
ε (νε) < u} − P{ξ(n)

0 (ν0) < u}|
≤ lim

ε→0
P{νε ≥ zmn,n} + P{ν0 ≥ zmn,n}

+

mn−1∑

k=0

lim
ε→0
|P{ξε(zk+1,n) < u, νε ∈ [zk,n, zk+1,n)}

− P{ξ0(zk+1,n) < u, ν0 ∈ [zk,n, zk+1,n)}| ≤ 2δ.

(2.9.6)

Since δ is arbitrary, relation (2.9.6) implies that, for every n = 0, 1, . . . and u ∈ Z,

lim
ε→0

P{ξ(n)
ε (νε) < u} = P{ξ(n)

0 (ν0) < u}. (2.9.7)

Recall that weak convergence of distribution functions follows from their conver-
gence on a countable everywhere dense set in �1. Hence, relation (2.9.3) follows from
(2.9.7).

Let us show that conditions A26 and L1 imply relation (2.9.4). For the random
variable ξε(νε) − ξ(n)

ε (νε), we have the following estimate:

|ξε(νε) − ξ(n)
ε (νε)| ≤

∞∑

k=0

χ(νε ∈ [zk,n, zk+1,n))∆zk,n,zk+1,n(ξε(·)). (2.9.8)

Denote by In the set of indices k such that P{ν0 ∈ [zk,n, zk+1,n)} > 0, and by In the set
of all other natural k.

Let, as above, for arbitrary δ > 0, a number m be chosen such that P{ν0 ≥ zm,n} ≤ δ.
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Using estimate (2.9.8), condition A26, and the choice of points zk,n we have

lim
ε→0

P{|ξε(νε) − ξ(n)
ε (νε)| > δ}

≤ lim
ε→0

∞∑

k=0

P{νε ∈ [zk,n, zk+1,n),∆zk,n,zk+1,n(ξε(·)) > δ}

≤
∑

k<m,k∈In

lim
ε→0

P{∆zk,n ,zk+1,n(ξε(·)) > δ/νε ∈ [zk,n, zk+1,n)}P{νε ∈ [zk,n, zk+1,n)}

+
∑

k<m,k∈In

lim
ε→0

P{νε ∈ [zk,n, zk+1,n)} + lim
ε→0

P{νε ≥ zm,n}

≤
∑

k<m,k∈In

lim
ε→0

P{∆zk,n ,zk+1,n(ξε(·)) > δ/νε ∈ [zk,n, zk+1,n)}P{ν0 ∈ [zk,n, zk+1,n)} + δ

≤
∫ ∞

0
fn(t)P{ν0 ∈ dt} + δ,

(2.9.9)

where

fn(t) =

∞∑

k=0

χ(t ∈ [zk,n, zk+1,n))χ(k ∈ In)

× lim
ε→0

P{∆zk,n,zk+1,n(ξε(·)) > δ/νε ∈ [zk,n, zk+1,n)}.
(2.9.10)

By the definition, (d) 0 ≤ fn(t) ≤ 1 for t ∈ [0,∞), and, by condition L1, (e) fn(t)→ 0
as n→ ∞ for t ∈ S .

Using the Lebesgue theorem we obtain, by (d) – (e), and (2.9.9),

lim
n→∞

lim
ε→0

P{|ξε(νε) − ξ(n)
ε (νε)| > δ} ≤ lim

n→∞

∫ ∞

0
fn(t)P{ν0 ∈ dt} + δ = δ. (2.9.11)

Since δ is arbitrary, the last relation proves (2.9.4). �

2.9.2. Asymptotically independent stopping moments and external processes.
We will now study the case where the following condition holds for càdlàg processes
ξε(t), t ≥ 0 and stopping moments νε:

Q5: νε = αε + βε, where (a) for every ε ≥ 0, the random variable αε and the process

ξε(t), t ≥ 0 are independent; (b) the random variables βε
P−→ 0 as ε→ 0.

It follows from Lemma 1.2.4 that, under Q5, condition A26 is equivalent to the fol-
lowing two conditions:

A27: νε ⇒ ν0 as ε → 0.
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and

A28: ξε(t), t ∈ U ⇒ ξ0(t), t ∈ U as ε→ 0, where U is a subset of [0,∞) such that the set
U \ Y0 is dense in [0,∞), and 0 ∈ U.

In this case, the limiting process ξ0(t), t ≥ 0 and the stopping moment ν0 in A26 are
independent.

Also, under condition Q5, condition L1 can be simplified and replaced with the fol-
lowing condition:

L2: There exists a Borel-measurable set S ⊆ S 0 such that, (a) P{ν0 ∈ S } = 1; (b)
limu≤t<w,w−u→0 limε→0 P{∆u,w(ξε(·)) > δ} = 0, δ > 0 for t ∈ S .

Theorem 2.9.2. Let conditions Q5, A27, A28, and L2 hold. Then

ξε(νε)⇒ ξ0(ν0) as ε→ 0,

where the random variable ν0 and the process ξ0(t), t ≥ 0 are independent.

Proof of Theorem 2.9.2. In order to prove the theorem, it would be sufficient to show
that, under Q5 and A27, condition L2 implies condition L1.

It is obvious that the outer limit (as u ≤ t < w,w − u → 0) is equal to 0 in L2 if (a)
this limit is equal to 0 under an additional assumption that the points u, w ∈ U \ Y 0. So,
it is enough to show that, with this additional assumption, for t ∈ S ,

lim
u≤t<w,w−u→0

lim
ε→0

P{∆u,w(ξε(·)) > δ/νε ∈ [u,w)}
≤ lim

u≤t<w,w−u→0
lim
ε→0

P{∆u,w(ξε(·)) > δ}.
(2.9.12)

Since t is a point of growth of the distribution function of ν0, and u, w ∈ U \ Y0, by
condition L2 there exists ε0 > 0 such that P{νε ∈ [u,w)} > 0 for all ε ≤ ε0. For ε ≤ ε0

and γ > 0, the following estimate holds:

P{∆u,v(ξε(·)) > δ/νε ∈ [u,w)}
≤ P{∆u,w(ξε(·)) > δ,αε ∈ [u − γ,w + γ)} + P{|βε| ≥ γ}

P{νε ∈ [u,w)}
≤ P{∆u,w(ξε(·)) > δ}P{αε ∈ [u − γ,w + γ)} + P{|βε| ≥ γ}

P{νε ∈ [u,w)} .

(2.9.13)

For any σ > 0, one can always select γ = γ(u,w) > 0 such that the points u − γ and
w + γ are points of continuity of the distribution function of ν0 and

P{ν0 ∈ [u − γ,w + γ)} ≤ P{ν0 ∈ [u,w)}(1 + σ). (2.9.14)
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Using (2.9.14) and passing to the limit in (2.9.13), as ε → ∞ and then as u ≤ t <
w, u,w ∈ U \ Y0, w − u→ 0, we have for t ∈ S ,

lim
u≤t<w,w−u→0

lim
ε→0

P{∆u,w(ξε(·)) > δ/νε ∈ [u,w)}

≤ lim
u≤t<w,w−u→0

lim
ε→0

P{∆u,w(ξε(·)) > δ}P{ν0 ∈ [u − γ,w + γ)}
P{ν0 ∈ [u,w)}

≤ lim
u≤t<w,w−u→0

lim
ε→0

P{∆u,w(ξε(·)) > δ}(1 + σ).

(2.9.15)

Since σ > 0 is arbitrary, the last relation yields (2.9.12). The theorem is proved. �

2.9.3. A condition of local compactness for vector randomly stopped processes.
Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be a càdlàg process with
real-valued components and νε = (νεi, i = 1, . . . ,m) a random vector with non-negative
components.

Let Y0i be the set that contains all continuity points of the distribution function of
the random variable ν0i and the point 0. Then Y0i is the set of all points t > 0 such
that P{ν0i = t} > 0. This set contains at most a countable number of points for every
i = 1, . . .m.

We assume the following variant of condition A26:

A29: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε → 0, where U is a subset of [0,∞) such
that the set U \ Y0i is dense in [0,∞) for every i = 1, . . .m, and 0 ∈ U.

Let S 0i be a set of points t ≥ 0 such that P{ν0i ∈ [u,w)} > 0 for all u ≤ t < w (the set
of points of growth of the distribution function of ν0i). It is not difficult to show that S 0i

is a Borel-measurable subset of [0,∞) and P{ν0i ∈ S 0i} = 1, i = 1, . . .m.
We use the following local compactness condition:

L3: There exist Borel-measurable sets S i ⊆ S 0i such that (a) P{ν0i ∈ S i} = 1, i =

1, . . . ,m, (b) limu≤t<w,w−u→0 limε→0 P{∆u,v(ξεi(·)) > δ/νεi ∈ [u,w)} = 0, δ > 0 for
t ∈ S i, i = 1, . . . ,m.

Theorem 2.9.3. Let conditions A29 and L3 hold. Then

(ξεi(νεi), i = 1, . . . ,m)⇒ (ξ0i(ν0i), i = 1, . . . ,m) as ε→ 0.

Proof of Theorem 2.9.3. The proof of this theorem is similar to the proof of Theorem
2.9.1. Let 0 = zi,0,n < zi,1,n < . . ., for every i = 1, . . . ,m and n = 0, 1, . . ., be a partition
of the interval [0,∞) and also let these partitions satisfy the following conditions: (a)
zi,k,n ∈ Ui \ Y0i for all i = 1, . . . ,m and k, n = 0, 1, . . ., (b) zi,k,n → ∞ as k → ∞ for
i = 1, . . . ,m and n = 0, 1, . . ., (c) maxk≥0(zi,k+1,n − zi,k,n) → 0 as n → 0 for i = 1, . . . ,m.
Such partitions exist, since the set U \ Y0i is dense in [0,∞) for every i = 1, . . . ,m.
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Now we define, for i = 1, . . . ,m and n = 0, 1, . . ., the processes

ξ(n)
εi (t) = ξεi(zi,k+1,n) for t ∈ [zi,k,n, zi,k+1,n), k = 0, 1, . . . . (2.9.16)

As in the scalar case, it is enough to show that for every n = 0, 1, . . .,

(ξ(n)
εi (νεi), i = 1, . . . ,m)⇒ (ξ(n)

0i (ν0i, i = 1, . . . ,m) as ε→ 0, (2.9.17)

and
lim
n→∞

lim
ε→0

P{|ξεi(νεi) − ξ(n)
εi (νεi)| > δ} = 0, δ > 0, i = 1, . . . ,m. (2.9.18)

The following formula is an analogue of (2.9.5):

P{ξ(n)
εi (νεi) < ui, i = 1, . . .m} =

m∑

i=1

∞∑

k=0

P{ξεi(zi,k+1,n) < ui, νεi ∈ [zi,k,n, zi,k+1,n)}. (2.9.19)

Using this formula one can prove relation (2.9.17) absolutely the same way as it was
done in the proof of relation (2.9.3) in Theorem 2.9.1.

Relation (2.9.18) coincides with (2.9.4) for every i = 1, . . . ,m. Therefore, it does not
require a separate proof. �

2.9.4. Weak convergence of compositions of càdlàg processes based on a local
compactness condition. Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be a
càdlàg process with real-valued components and νε(t) = (νεi(t), i = 1, . . . ,m), t ≥ 0 a
càdlàg process with non-negative and non-decreasing components.

Let, for every i = 1, . . . ,m and s ≥ 0, Yi,s be a set that contains all continuity points
of the distribution function of the random variable ν0i(s) and the point 0. Then Y i,s is the
set of all points t > 0 such that P{ν0i(s) = t} > 0. This set contains at most a countable
number of points for every i = 1, . . .m and s ≥ 0.

Below, U, V ⊆ [0,∞). Let us assume the following condition:

AV
30: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where U is a

subset of [0,∞) such that the sets U \Y i,s are dense in [0,∞) for every i = 1, . . . ,m
and s ∈ V , and 0 ∈ U.

Let S 0i,s be a set of points t ≥ 0 such that P{ν0i(s) ∈ [u,w)} > 0 for all u ≤ t < w (the
set of points of growth of the distribution function of ν0i(s)). It is not difficult to show that
S 0i,s is a Borel-measurable subset of [0,∞) and P{ν0i(s) ∈ S 0i(s)} = 1, i = 1, . . .m, s ≥ 0.

We use the following local compactness condition:

L4: There exist Borel-measurable sets S i,s ⊆ S 0i,s such that (a) P{ν0i(s) ∈ S i,s} = 1 for
i = 1, . . . ,m, s ∈ V , (b) limu≤t<w,w−u→0 limε→0 P{∆u,w(ξεi(·)) > δ/νεi(s) ∈ [u,w)} =

0, δ > 0 for t ∈ S i,s, i = 1, . . . ,m, s ∈ V .
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Theorem 2.9.4. Let conditions AV
30 and L4 hold. Then

(ξεi(νεi(t)), i = 1, . . . ,m), t ∈ V ⇒ (ξ0i(ν0i(t)), i = 1, . . . ,m), t ∈ V as ε→ 0.

Proof of Theorem 2.9.4. The proof follows from Theorem 2.9.3 that should be applied,
for every sequence of points t1, . . . , tn ∈ V , n ≥ 1, to the processes (ξεi j(t), i = 1, . . . ,m, j =

1, . . . , n), t ≥ 0, where ξεi j(t) = ξεi(t), t ≥ 0, for i = 1, . . . ,m, j = 1, . . . , n, and
(νεi(t j), i = 1, . . . ,m, j = 1, . . . , n). Obviously, conditions AV

30 and L4 imply that A29
and L3 hold for these processes. �

2.9.5. Asymptotically independent internal stopping processes and external pro-
cesses. The following condition is an analogue of condition Q5:

Q6: νε(t) = αε(t) + βε(t), t ≥ 0, where (a) the processes αε(t), t ≥ 0 and ξε(t), t ≥ 0

are independent for every ε ≥ 0, (b) the random variables βε(t)
P−→ 0 as ε→ 0 for

every t ≥ 0.

It follows from Lemma 1.2.4, under condition Q6, that condition AV
30 is equivalent

to the following two conditions:

A31: νε(t), t ∈ V ⇒ ν0(t), t ∈ V as ε→ 0,

and

A32: ξε(t), t ∈ U ⇒ ξ0(t), t ∈ U as ε → 0, where U is a subset of [0,∞) such that the
set U \ Y0i is dense in [0,∞) for every i = 1, . . . ,m, and 0 ∈ U.

In this case, the limiting external process ξ0(t), t ≥ 0 and the limiting stopping
process ν0(t), t ∈ V in AV

30 are independent.
The following condition is an analogue of condition L4:

L5: There exist Borel-measurable subsets S i,s ⊆ S 0i,s such that (a) P{ν0i(s) ∈ S i,s} = 1
for i = 1, . . . ,m, s ∈ V , (b) limu≤t<w,w−u→0 limε→0 P{∆u,w(ξεi(·)) > δ} = 0, δ > 0 for
t ∈ S i,s, i = 1, . . . ,m, s ∈ V .

Theorem 2.9.5. Let conditions Q6, A31, A32, and L5 hold. Then

(ξε(νε(t)), i = 1, . . . ,m), t ∈ V ⇒ (ξ0(ν0(t)), i = 1, . . . ,m), t ∈ V as ε→ 0,

where the processes ξ0(t), t ≥ 0 and ν0(t), t ∈ V are independent.

Proof of Theorem 2.9.5. It follows from Lemma 1.2.5 that, under conditionsQ6, A31,
and A32, the condition AV

30 holds, and the limiting processes ξ0(t), t ≥ 0 and ν0(t), t ∈ V
are independent. Also, conditions Q6, A31, and L5 imply condition L4, which can be
proved using the same reasoning as in the proof of Theorem 2.9.2. �
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2.9.6. References. Conditions of weak convergence of randomly stopped càdlàg
processes presented in Theorems 2.2.1, 2.2.2, 2.3.1, and 2.3.3 as well as Lemmas 2.2.3
and 2.3.1 can be found in Silvestrov (1971b, 1972a). These theorems cover the case
where one of the first-type continuity conditions, C, introduced in Silvestrov (1971b),
holds. This condition requires that the limiting stopping moment be a continuity point
of the limiting external process with probability 1. A simpler case where the limiting
external process is continuous was considered earlier by Billingsley (1968). Theorem
2.3.4 with a weakened J-compactness condition as well as Theorem 2.3.6 that extends
the results to the case of external processes with a Polish phase space are new.

Theorems 2.4.1 and 2.4.2 are also new results announced in Silvestrov (2002b).
These theorems give conditions for weak convergence of randomly stopped càdlàg pro-
cesses in the case where continuity conditions of type C are replaced with new weakened
continuity conditions of type D.

Conditions of weak convergence for compositions of càdlàg processes presented in
Theorems 2.6.1, 2.6.2, 2.7.1, 2.7.4 and Lemmas 2.6.1, 2.7.1 are from Silvestrov (1972a,
1972b, 1972e). The case where both the limiting external process and the limiting inter-
nal stopping process are continuous was considered earlier by Billigsley (1968).

Theorems 2.6.3, 2.7.3, and 2.7.5 are from Silvestrov (1974), where the continuity
condition of the second-type E2 was introduced. A new more convenient equivalent
form of this condition, E1, and Lemmas 2.6.2 and 2.6.3 are from Silvestrov and Teugels
(1998a) and Silvestrov (2000b). The theorems mentioned above are given in a new and
more convenient form, where condition E2 is replaced with condition E1. The versions
of these theorems with the improved J-compactness condition, given in Theorems 2.7.2,
2.7.4, and 2.7.6, are new results. The more detailed analysis of the structure of the set of
weak convergence, as compared to that in Silvestrov (1974), is partly due to Silvestrov
and Teugels (1998a) and Silvestrov (2000b).

Theorems 2.6.4 – 2.6.5 and 2.7.7 – 2.7.10, which are based on a new weakened
continuity conditions of types D and F, and Lemma 2.6.4 are new results.

Translation theorems 2.8.1, 2.8.2, and 2.8.3 are from Silvestrov (1972a, 1972b,
1972e). Conditions for weak convergence of randomly stopped locally compact pro-
cesses, given in Theorems 2.9.1 – 2.9.5, are from Silvestrov (1979a).



Chapter 3

J-convergence of compositions of stochastic processes

In this chapter, general conditions for J-convergence of compositions of càdlàg stochas-
tic processes are presented.

The main results concerning J-convergence of compositions of càdlàg stochastic pro-
cesses are Theorems 3.4.2, 3.6.1, and 3.6.2.

In Theorem 3.4.2, conditions for J-convergence of compositions of càdlàg processes
are given in the case where the corresponding limiting internal stopping process is con-
tinuous. This theorem covers a significant part of applications. In Theorems 3.6.1
and 3.6.2, general conditions for J-compactness and J-convergence of compositions of
càdlàg processes are given for the case where both the limiting external process and the
limiting internal stopping process can be discontinuous.

The latter theorem gives the most general conditions that, together, provide J-conver-
gence of compositions of càdlàg processes. These are (a) the condition of joint weak
convergence of external stochastic processes and internal stopping processes; (b) the
conditions of J-compactness of external and internal stopping processes; and the follow-
ing two continuity conditions on the limiting processes: (c) the left and the right limiting
values of the internal stopping process at points where the process has jumps are, with
probability 1, points of continuity for the corresponding external process; and (d) there
does not exist with probability 1 a time interval such that the internal stopping process
takes a constant value in this interval and this value is a point of discontinuity for the
corresponding external process.

These conditions have a good balance between conditions imposed on the pre-limiting
processes and the corresponding limiting processes.

Pre-limiting joint distributions of external processes and internal stopping processes
usually have a complicated structure. However, these joint distributions are involved
only in the simplest and most natural way via the condition of their joint weak conver-
gence. The conditions of J-compactness of pre-limiting external and internal processes
involve only their distributions separately. These conditions were thoroughly studied
for various classes of stochastic càdlàg processes. The continuity conditions described
above involve joint distributions of the limiting external process and the limiting internal
stopping process. These limiting distributions are usually simpler than the correspond-
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ing pre-limiting joint distributions. This permits to check these continuity conditions in
various practically important cases. Because of a good balance, the conditions described
above make an effective tool in establishing functional limit theorems for compositions
of càdlàg stochastic processes.

In the theorems mentioned above, a model for compositions of scalar (one-dimen-
sional) càdlàg processes was considered. In Theorems 3.8.1 and 3.8.2, analogous results
are given for vector compositions of càdlàg processes. In this model, the composition
of each component of the external vector process with its own internal stopping pro-
cess is taken. There, some additional continuity conditions should be imposed on the
corresponding limiting external and internal processes. That is, it should be assumed
that (e) the components of the limiting vector external process do not have, with prob-
ability 1, simultaneous jumps at the corresponding limiting stopping points defined by
components of the limiting internal stopping processes.

In Section 3.1, examples that clarify the formulation of the problem and conditions
for J-convergence of compositions of càdlàg stochastic processes are given. In Sec-
tion 3.2, conditions for U-compactness and U-convergence are given for compositions
of asymptotically continuous càdlàg processes. In Sections 3.3 and 3.4, conditions for
J-convergence are given for the cases where, respectively, the external limiting pro-
cess or the internal limiting process is continuous. In Sections 3.5 and 3.6, conditions
for J-compactness and J-convergence are given for general scalar compositions of non-
random càdlàg functions and scalar compositions of càdlàg stochastic processes, re-
spectively. This is the case where both the limiting external and internal functions or
processes can be discontinuous. In Sections 3.7 and 3.8, similar results are given for
vector compositions of non-random càdlàg functions and vector compositions of càdlàg
processes, respectively. This section also contains reference remarks.

3.1 Introductory remarks

In this section we discuss some examples that clarify conditions for J-convergence of
compositions of càdlàg stochastic processes presented in Chapter 3.

3.1.1. Conditions for joint weak convergence and J-compactness. Let us use
a natural parameter n, instead of ε, to index the corresponding external processes and
internal stopping processes. Actually, we can always assume that ε = n−1 for n ≥ 1 and
ε = 0 for n = 0. Let ξn(t), t ≥ 0 and νn(t), t ≥ 0 be for every n = 0, 1, . . . , respectively,
a real-valued càdlàg process and a non-negative and non-decreasing càdlàg process. We
are interested in their composition ξn(νn(t)), t ≥ 0, which is also a real-valued càdlàg
process.

We are interested in conditions that should be imposed on the processes ξn(t), t ≥ 0
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Figure 3.1: G: third-type continuity condition.

and νn(t), t ≥ 0, as to have the following J-convergence relation:

ξn(νn(t)), t ≥ 0
J−→ ξ0(ν0(t)), t ≥ 0 as n→ ∞. (3.1.1)

Natural candidates that are expected to provide the relation (3.1.1) to hold are the
following three conditions.

The first one is the condition for joint weak convergence of the external càdlàg pro-
cesses and the internal stopping processes,

A16: (νn(t), ξn(t)), t ≥ 0⇒ (ν0(t), ξ0(t)), t ≥ 0 as n→ ∞.
The second one is the condition of J-compactness for the external processes,

J6: limc→0 limn→∞ P{∆J(ξn(·), c, T ) > δ} = 0, δ, T > 0.

The third one is the condition of J-compactness for the internal stopping processes,

J10: limc→0 limn→∞ P{∆J(νn(·), c, T ) > δ} = 0, δ, T > 0.

Conditions A16 and J6 provide J-convergence for the processes ξn(t), t ≥ 0. Condi-
tions A16 and J10 provide J-convergence for the processes νn(t), t ≥ 0. But these three
conditions together, A16, J6, and J10, do not imply that the vector processes (νn(t), ξn(t)),
t ≥ 0 or the compositions ξn(νn(t)), t ≥ 0 J-converge.

Let us consider the following example illustrated in Figures 3.1 and 3.2. We define
ξn(t) = χ[1, 7

4 )(t), t ≥ 0, for n ≥ 1, and νn(t) = t + n−1 if t < 1 and t + 1 if t ≥ 1, for n ≥ 1.
In this case condition A16 obviously holds. The corresponding limiting process

ξ0(t) = χ[1, 7
4 )(t), t ≥ 0, and the limiting stopping process ν0(t) = t if t < 1 and t + 1

if t ≥ 1. Conditions J6 and J10 also hold.
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Figure 3.2: G: third-type continuity condition.

In this case, the composition ξn(νn(t)) = χ[1−n−1,1)(t), t ≥ 0, while ξ0(ν0(t)) = 0, t ≥ 0.
The process ξn(νn(t)), t ≥ 0 has two jumps with the values 1 and −1 in the close

points 1 − n−1 and 1, respectively. So, ∆J(ξn(νn(·)), c, T ) = 1 if n−1 < c and, therefore,
limc→0 limn→∞ ∆J(ξn(νn(·)), c, T ) = 1. This shows that the condition of J-compactness
does not hold for the processes ξn(νn(t)), t ≥ 0.

Therefore, the processes ξn(νn(t)), t ≥ 0 do not J-converge, since the left limiting
value of the limiting stopping process ν0(t), t ≥ 0, at point 1, which is a point of dis-
continuity for the limiting stopping process, is ν0(1 − 0) = 1. This value is a point
of discontinuity for the external limiting processes ξ0(t), t ≥ 0. The example can be
easily modified such that the right limiting value of the limiting stopping process at a
discontinuity point would cause the same effect.

3.1.2. Third-type continuity conditions. The example considered above leads to
the following hypothesis. In order to provide (3.1.1), it is enough to add, to the conditions
A16, J6 and J10, the following condition:

G1: P{ν0(t ± 0) < R[ξ0(·)] for t ∈ R[ν0(·)]} = 1.

Here R[ξ0(·)] and R[ν0(·)] are sets of discontinuity points, respectively, for the pro-
cess ξ0(t), t ≥ 0 and the process ν0(t), t ≥ 0.

This hypothesis is not true. Conditions A16, J6, J10, and G1 do not provide J-
convergence of the processes ξn(νn(t)), t ≥ 0. However, we prove in Theorem 3.6.1
that conditions A16, J6, J10, and G1 do provide J-compactness of the processes ξn(νn(t)),
t ≥ 0, that is, the following relation holds:

lim
c→0

lim
n→∞

P{∆J(ξn(νn(·)), c, T ) > δ} = 0, δ, T > 0. (3.1.2)
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Figure 3.3: E: second-type continuity condition.
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Figure 3.4: E: second-type continuity condition.
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Figure 3.5: E: second-type continuity condition.

Let us consider the following example shown in Figures 3.3, 3.4, and 3.5. Let ξn(t) =

t + χ[1,∞)(t), t ≥ 0, for n ≥ 1. Let also, for n ≥ 1, the process νn(t), t ≥ 0 have two
possible realisations that occur with probability 1

2 . These realisations are (1 ± n−1)t for
t < 1; 1 ± n−1 for 1 ≤ t < 2; 1 ± n−1 + t − 2 for t ≥ 2.

In this case, condition A16 obviously holds. The limiting process ξ0(t) = χ[1,∞)(t), t ≥
0. At the same time, the limiting stopping process ν0(t), t ≥ 0 has only one realisation,
which is t for t < 1; 1 for 1 ≤ t < 2; t − 1 for t ≥ 2. The conditions of J-compactness J6
and J10 also hold. Condition G1 holds as well, since the limiting stopping process ν0(t),
t ≥ 0 is continuous.

In this case, the composition ξn(νn(t)), t ≥ 0 also has two possible realisations that
occur with probability 1

2 . The first realisation is (1 + n−1)t for 0 ≤ t < (1 + n−1)−1;
1 + (1 + n−1)t for (1 + n−1)−1 ≤ t < 1; 2 + n−1 for 1 ≤ t < 2; n−1 + t for t ≥ 2. The second
one is (1 − n−1)t for 0 ≤ t < 1; 1 − n−1 for 1 ≤ t < 2; −n−1 − 1 + t for 2 ≤ t < 2 + n−1;
−n−1 + t for t ≥ 2 + n−1. The composition ξ0(ν0(t)), t ≥ 0 has only one realisation, t for
0 ≤ t < 1; 2 for 1 ≤ t < 2; t for t ≥ 2.

The relation of J-compactness (3.1.2) holds for these processes, which is consistent
with the remarks made above.

At the same time, the processes ξn(νn(t)), t ≥ 0 do not J-converge to the correspond-
ing limiting process ξ0(ν0(t)), t ≥ 0. Indeed, for every t ∈ [1, 2), the random variable
ξn(νn(t)) takes two values, 2 + n−1 and 1 − n−1, with probability 1

2 . We also have that
ξ0(ν0(t)) = 2 with probability 1. So, for every t ∈ [1, 2), the random variables ξn(νn(t))
do not weakly converge to the random variable ξ0(ν0(t)).

In this example, the condition of weak convergence does not hold for the processes
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Figure 3.6: Compositions, which J-converge.

ξn(νn(t)), t ≥ 0 in the interval [1, 2), because the limiting process ν0(t) takes the constant
value 1 in the interval [1, 2) and this value 1 is a point of discontinuity for the external
limiting process ξ0(t), t ≥ 0.

3.1.3. Second-type continuity conditions. The example considered above leads to
the following hypothesis. In order to provide (3.1.1), it is enough to add, to A16, J6, and
J10, condition G1 and the following condition already introduced in Section 2.1:

E1: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ < ∞.

Theorem 2.2.1 states that conditions A16, J6, and E1 imply that there exists some set
S dense in [0,∞) such that

ξn(νn(t)), t ∈ S ⇒ ξ0(ν0(t)), t ∈ S as n→ ∞. (3.1.3)

In order for the set of weak convergence S to contain a point 0, one can additionally
assume the following condition:

C(0)
5 : P{ν0(0) ∈ R[ξ0(·)]} = 0.

We prove in Theorem 3.6.2 that the conditions A16, J6, J10, together with the conti-
nuity conditions G1, E1, and C

(0)
5 , imply the desirable asymptotical relation (3.1.1), i.e.,

that the compositions ξn(νn(t)), t ≥ 0 J-converge to ξ0(ν0(t)), t ≥ 0 as n→ ∞.
In both examples given above, the vector processes (νn(t), ξn(t)), t ≥ 0 J-converge.

However, as was mentioned in Subsections 1.5.11 and 1.6.15, the compositions ξn(νn(t)),
t ≥ 0 can J-converge even if the vector processes (νn(t), ξn(t)), t ≥ 0 do not J-converge.

Let us modify the first example considered in Subsection 3.1.1. Figure 3.6 illustrates
this modified example. We use the same external processes ξn(t) = χ[1, 7

4 )(t), t ≥ 0, for
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n ≥ 1, but define new internal stopping processes νn(t) = 1
2 (1 − n−1)−1t if t < 1 − n−1 and

t + 1 + n−1 if t ≥ 1 − n−1, for n ≥ 1.
In this case, the corresponding limiting process ξ0(t) = χ[1, 7

4 )(t), t ≥ 0, and the
limiting stopping process ν0(t) = 1

2 t if t < 1 and t +1 if t ≥ 1. Hence, ξn(νn(t)) = 0, t ≥ 0,
for n ≥ 1 as well as for n = 0. Therefore, the compositions ξn(νn(t)), t ≥ 0 J-converge.
This is consistent with Theorem 3.6.2, since all conditions of this theorem listed above,
hold. However, the vector processes (νn(t), ξn(t)), t ≥ 0 do not J-converge, since the
process (νn(t), ξn(t)) has two large jumps with the absolute values 3

2 and 1 in the close
points 1 − n−1 and 1, respectively.

As the example above shows, Theorem 3.6.2 extends the setting of J-continuous
mapping theorem with respect to the composition mapping. Additional comments are
given in Subsections 3.5.3 and 3.6.3.

3.1.4. Weakened second-type continuity conditions. Let go back to the example
considered in Subsection 2.1.8 and shown in Figures 2.3, 2.4, and 2.5. In this example,
conditions A16, J6, J10, and the continuity conditions G1 hold.

In the case (a) p0 = 1, conditions E1, and C
(0)
5 hold. Therefore, according Theorem

3.6.2 mentioned above, the compositions ξn(νn(t)), t ≥ 0 J-converge to ξ0(ν0(t)), t ≥ 0
as n→ ∞.

In the case (b) q0 = 0, p0 < 1, conditions E1, and C(0)
5 do not hold. However, in this

case, the following condition, which is weaker than E1, holds:

F1: lim0<c→0 limε→0 P{α(δ)
εk − c ≤ νε(t′), νε(t′′) < α(δ)

εk } = 0 for 0 ≤ t′ < t′′ < ∞, δ > 0
and k ≥ 1.

Here α(δ)
nk , k = 1, 2, . . . are the successive moments of jumps of the process ξn(t), t ≥ 0,

which have the absolute values of jumps greater than or equal to δ > 0. By the definition,
α(δ)

nk = ∞ if there exist less than k such points.
Also, the following condition, which is weaker than C(0)

5 , holds:

D(0)
6 : limc→0 limn→∞ P{νn(0) ∈ [α(δ)

nk − c,α(δ)
nk )} = 0 for δ > 0 and k ≥ 1.

We prove in Theorem 3.4.3 that the conditions A16, J6, J10, together with the conti-
nuity conditions G1, F1, and D(0)

6 , also imply the desirable asymptotical relation (3.1.1),
i.e., that the compositions ξn(νn(t)), t ≥ 0 J-converge to ξ0(ν0(t)), t ≥ 0 as n→ ∞.

3.1.5. Vector compositions of càdlàg processes and fourth-type continuity con-
ditions. In a model, one considers vector càdlàg process ξn(t) = (ξni(t), i = 1, . . . ,m),
t ≥ 0 with real-valued components, vector càdlàg process νn(t) = (νni(t), i = 1, . . . ,m),
t ≥ 0 with non-negative and non-decreasing components, and their vector composition
ζn(t) = (ξni(νni(t)), i = 1, . . . ,m), t ≥ 0, which is also a vector càdlàg process with
real-valued components.

Let us assume that the following condition of joint weak convergence holds:
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(b) νn1(t), νn2(t), t ≥ 0.

Figure 3.7: H: fourth-type continuity condition.

A33: (νn(t), ξn(t)), t ≥ 0⇒ (ν0(t), ξ0(t)), t ≥ 0 as n→ ∞.

We are interested in additional conditions to be imposed on the processes (νn(t), ξε(t)),
t ≥ 0 as to provide the following relation of J-convergence:

ζn(t) = (ξni(νni(t)), i = 1, . . . ,m), t ≥ 0
J−→ ζ0(t) = (ξ0i(ν0i(t)), i = 1, . . . ,m), t ≥ 0 as ε→ 0.

(3.1.4)

Let us also assume that conditions J6, J10, G1, E1, and C
(0)
5 hold for the processes

ξni(t), t ≥ 0 and νni(t), t ≥ 0, for every i = 1, . . .m.
These assumptions imply that, for every i = 1, . . . ,m,

ξni(νni(t)), t ≥ 0
J−→ ξ0i(ν0i(t)), t ≥ 0 as n→∞. (3.1.5)

The following two examples show that condition A33, together with all conditions
J6, J10, G1, E1, and C(0)

5 , does not, however, provide J-convergence of the vector com-
positions ζn(t), t ≥ 0.

Figures 3.7, 3.8, and 3.9 illustrate the first example. Let ξn1(t) = t, t ≥ 0 and ξn2(t) =
1
2 t, t ≥ 0, for n = 1, 2, . . . . Let also νn1(t) = t + χ[1−n−1,∞)(t), t ≥ 0, while νn2(t) =
1
2 t + χ[1,∞)(t), t ≥ 0, for n = 1, 2, . . . . In this case, condition A33 obviously holds. The
corresponding limiting processes are ξ01(t) = t, t ≥ 0 and ξ02(t) = 1

2 t, t ≥ 0, while
ν01(t) = t + χ[1,∞)(t), t ≥ 0 and ν02(t) = 1

2 t + χ[1,∞)(t), t ≥ 0. Also, conditions J6 and
J10, as well as conditions G1, E1, and C(0)

5 hold for i = 1, 2. However, ξn1(νn1(t)) =

t + χ[1−n−1,∞)(t), t ≥ 0 and ξn2(νn2(t)) = 1
4 t + 1

2χ[1,∞)(t). Therefore, the vector process
ζn(t) = (ξn1(νn1(t)), ξn2(νn2(t))), t ≥ 0 has two jumps with the absolute values 1 and 1

2 in
close points 1 − n−1 and 1, respectively.
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(b) ν01(t), ν02(t), t ≥ 0.

Figure 3.8: H: fourth-type continuity condition.

This shows that the condition of J-compactness does not hold for the vector processes
ζn(t), t ≥ 0 and, therefore, they do not J-converge.

Figures 3.10, 3.11, and 3.12 illustrate the second example. Let ξn1(t) = 1
4 t+ 1

4χ[2,∞)(t),
t ≥ 0 and ξn2(t) = t + χ[1−n−1,∞)(t), t ≥ 0, for n = 1, 2 . . .. Let also νn1(t) = 2t, t ≥ 0 and
νn2(t) = t, t ≥ 0, for n = 1, 2, . . .. Again, condition A33 holds and the corresponding
limiting processes are ξ01(t) = 1

4 t + 1
4χ[2,∞)(t), t ≥ 0 and ξ02(t) = t + χ[1,∞)(t), t ≥ 0,

while ν01(t) = 2t, t ≥ 0 and ν01(t) = t, t ≥ 0. Also, conditions J6 and J10, and also
conditions G1, E1, and C

(0)
5 hold for i = 1, 2. However, ξn1(νn1(t)) = 1

2 t + 1
4χ[2,∞)(2t) =

1
2 t + 1

4χ[1,∞)(t), t ≥ 0 and ξn2(νn2(t)) = t + χ[1−n−1,∞)(t), t ≥ 0. The vector process ζn(t) =

(ξn1(νn1(t)), ξn2(νn2(t))), t ≥ 0 has two jumps with the absolute values 1 and 1
4 in the close

points 1 − n−1 and 1, respectively.
So, the condition of J-compactness does not hold for the processes ζn(t), t ≥ 0 and,

therefore, they do not J-converge.
In the first example, the vector process ζn(t), t ≥ 0 has two large jumps in the close

points 1 − n−1 and 1. These jumps appear, because the first and the second components
of the internal vector stopping process νn(t) = (νn1(t), νn2(t)), t ≥ 0 has jumps in the close
points 1 − n−1 and 1, respectively.

In the second example, the vector process ζn(t), t ≥ 0 also has two large jumps
in the close points 1 − n−1 and 1. These jumps occur, since the first and the second
components of the external vector process ξn(t) = (ξn1(t), ξn2(t)), t ≥ 0 has jumps in the
points νn1(1) = 2 and νn2(1 − n−1) = 1 − n−1.

These examples lead to the following hypothesis. In order to provide J-convergence
of the vector compositions ζn(t), t ≥ 0, it is sufficient to supplement the conditions listed
above with the following fourth-type continuity condition:
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Figure 3.9: H: fourth-type continuity condition.

-

6

t1 − 1
n 2

1
2

1 − 1
n

2 − 1
n

r
r

rr -

?

ξn2(t)

r
6

� ξn1(t)
���

���
���

���:

�
�
�
���

���
���:

�
�
��

(a) ξn1(t), ξn2(t), t ≥ 0.

-

6

r
t

�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
���

νn1(t)

νn2(t)

(b) νn1(t), νn2(t), t ≥ 0.

Figure 3.10: H: fourth-type continuity condition.
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Figure 3.11: H: fourth-type continuity condition.
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Figure 3.12: H: fourth-type continuity condition.
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H2: P{∑m
i=1 χ(t ∈ R[ξ0i(ν0i(·))]) ≤ 1 for t ≥ 0} = 1.

This hypothesis is true, as shown in Theorem 3.8.5. However, condition H2 is too
restrictive. It usually prohibits the processes ξ0i(·) to have synchronous jumps (for dif-
ferent i) at the points ν0i(t) for every t ≥ 0, and the processes ν0i(·) to have simultaneous
jumps (for different i) at a point t for every t ≥ 0. The latter requirement is restric-
tive. In many applications, the limiting internal vector stopping process has the form
ν0(t) = (qiν0(t), i = 1, . . . ,m), t ≥ 0, where qi, i = 1, . . . ,m are positive constants and
ν0(t), t ≥ 0 is a scalar non-negative and non-decreasing càdlàg process. In this case, the
processes qiν0(t) have simultaneous jumps (for every i) at any jump point of the process
ν0(t).

In Theorem 3.8.2 we use a weaker modification of this condition. We show that
under the natural additional assumption that

νn(t), t ≥ 0
J−→ ν0(t), t ≥ 0 as n→∞, (3.1.6)

condition H2 can be replaced with the following weaker continuity condition:

H3: P{∑m
i=1 χ(ν0i(t) ∈ R[ξ0i(·)]) ≤ 1 for t ≥ 0} = 1.

Condition H3 only prohibits the processes ξ0i(·) to have synchronous jumps (for
different i) at the points ν0i(t) for every t ≥ 0.

Let us return to the first example considered in this subsection. Condition H2 does
not hold in this case, but condition H3 does. The processes ζn(t), t ≥ 0 do not J-
converge, because condition (3.1.6) is not fulfilled. However, let us slightly modify the
example and assume that νn1(t) = t + χ[1−n−1,∞)(t), t ≥ 0 and νn2(t) = 1

2 t + χ[1−n−1,∞)(t),
t ≥ 0. In this case again, H2 does not hold, but condition H3 does. Also, condition
(3.1.6) holds true. The processes ζn(t), t ≥ 0 J-converge to the process ζ0(t), t ≥ 0 as
n→ ∞.

In conclusion, we would like to note that continuity conditions G1, E1 (for every
i = 1, . . . ,m) and H3 are satisfied in many important cases. The corresponding examples
are given in Subsection 3.8.3.

3.2 Compositions with asymptotically continuous components

In this section, we formulate conditions for U-convergence of compositions of asymp-
totically continuous processes. In the case of convergence to continuous processes, there
is no essential distinction between scalar and vector compositions, hence we do not con-
sider the scalar case separately.

3.2.1. U-convergence of vector compositions of asymptotically continuous càdlàg
processes. Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be a vector càdlàg
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process with real-valued components, and νε(t) = (νεi(t), i = 1, . . . ,m), t ≥ 0 be a vector
càdlàg process with non-negative and non-decreasing components. We will consider the
vector composition ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ≥ 0 that is also a càdlàg process
with real-valued components.

The following condition is a basis for subsequent considerations:

A34: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where U and
V are some subsets of [0,∞) that are dense in this interval and contain the point 0.

We also assume that the following conditions of U-compactness hold for the external
processes and the internal stopping processes:

U4: limc→0 limε→0 P{∆U(ξε(·), c, T ) > δ} = 0, δ, T > 0,

and

U5: limc→0 limε→0 P{∆U(νε(·), c, T ) > δ} = 0, δ, T > 0.

Conditions A34 and U4 imply U-convergence of the processes ξε(t), t ≥ 0.
Since U4 includes also the case ε = 0, this condition also implies that:

B2: ξ0(t), t ≥ 0 is an a.s. continuous process.

Conditions A34 and U5 imply U-convergence of the processes νε(t), t ≥ 0.
Condition U5 implies also the following condition:

B3: ν0(t), t ≥ 0 is an a.s. continuous process.

Since both limiting processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0 are a.s. continuous, their
composition ζ0(t), t ≥ 0 is also an a.s. continuous process.

It follows from the remarks above and Theorem 1.6.11 that the sets U and V in A34
can be enlarged to the interval [0,∞) under conditions U4 and U5, respectively.

It is also useful to note that conditions U4 and U5 are equivalent, respectively, to the
following conditions:

U
′
4: limc→0 limε→0 P{∆U(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m,

and

U
′
5: limc→0 limε→0 P{∆U(νεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

Let us introduce the following condition:

A35: νε(s), s ∈ V ⇒ ν0(s), s ∈ V as ε→ 0, where V is a subset of [0,∞) that is dense in
this interval and contains the point 0.
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The following lemma allows to simplify conditions for U-convergence of composi-
tions of càdlàg processes.

Lemma 3.2.1. Let condition A35 hold. Then conditions B3 and U5 are equivalent.

Proof of Lemma 3.2.1. It should only be proved that conditions A35 and B3 imply U5.
Let us choose an arbitrary positive T ∈ V . It is always possible to construct a sequence
of partitions 0 = t0,n < t1,n < . . . < tn,n = T , n ≥ 1, of the interval [0, T ] such that: (a)
tk,n ∈ V , k = 0, . . . , n, n ≥ 1; (b) hn = max0≤k≤n−1(tk+1,n − tk,n)→ 0 as n→∞.

Since the processes νεi(t), t ∈ [0, T ], i = 1, . . . ,m are monotone,

∆U(νεi(·), hn, T )
≤ 2 max

1≤k≤n
sup

t∈[tk−1,n ,tk,n]
|νεi(t) − νεi(tk−1,n)|

≤ 2 max
1≤k≤n

(νεi(tk,n) − νεi(tk−1,n))

= αεi(n).

(3.2.1)

It readily follows from condition A35 that for all i = 1, . . . ,m and n ≥ 1,

αεi(n)⇒ α0i(n) as ε→ 0. (3.2.2)

The process ν0i(t), t ∈ [0, T ] is continuous with probability 1 in the interval [0, T ]
and, therefore, it is also uniformly continuous with probability 1 in this interval for every
i = 1, . . . ,m. This implies that for every i = 1, . . .m,

α0i(n)
P1−→ 0 as n→ ∞. (3.2.3)

For an arbitrary δ > 0, one can always choose δ′ ∈ (0, δ) such that the point δ′/m
is a continuity point for the distribution function of the random variable α0i(n) for every
i = 1, . . . ,m and n ≥ 1. By using (3.2.1), (3.2.2), and (3.2.3), we get

lim
ε→0

P{∆U(νε(·), hn, T ) > δ}

≤
m∑

i=1

lim
ε→0

P{∆U(νεi(·), hn, T ) > δ/m}

≤
m∑

i=1

lim
ε→0

P{αεi(n) > δ′/m} =

m∑

i=1

P{α0i(n) > δ′/m} → 0 as n→ ∞.

(3.2.4)

The proof is completed. �

The following lemma is a direct corollary of Lemma 3.2.1.
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Lemma 3.2.2. Let conditions A35 and B3 hold. Then

νε(t), t ≥ 0
U−→ ν0(t), t ≥ 0 as ε→ 0.

The following theorem is the main result of this section. In the case of scalar compo-
sitions of càdlàg processes it belongs to Billingsley (1968). An extension of this result
to the case of vector compositions of càdlàg processes, presented below, was given in
Silvestrov (1974).

Theorem 3.2.1. Let conditions A34, U4, and B3 hold. Then

ζε(t), t ≥ 0
U−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.2.1. Condition A34 implies that condition AV
22 holds with the set V

as in A34. Condition U4 obviously implies that condition J4 holds. Since ξ0(t), t ≥ 0 is
an a.s. continuous process, condition CW

6 holds with the set W = [0,∞). Therefore, it
follows from Theorem 2.7.1 that, for the set V ,

ζε(t), t ∈ V ⇒ ζ0(t), t ∈ V as ε→ 0. (3.2.5)

By A34, the set V is everywhere dense in [0,∞) and contains 0.
To prove the theorem, we must also supplement the relation of weak convergence

(3.2.5) with the following relation of U-compactness:

lim
c→0

lim
ε→0

P{∆U(ζε(·), c, T ) > δ} = 0, T, δ > 0. (3.2.6)

Now, we are going to use the following estimate which is valid for composition of
any real-valued càdlàg function x(t), t ≥ 0 and any non-negative càdlàg function y(t),
t ≥ 0:

∆U(x(y(·)), c, T )χ(∆U (y(·), c, T ) ≤ c′, sup
0≤t≤T

y(t) ≤ T ′) ≤ ∆U(x(·), c′, T ′). (3.2.7)

Using (3.2.7) and taking into account the monotonicity of the processes νεi(t), t ≥ 0,
i = 1, . . . ,m, we get

P{∆U(ζε(·), c, T ) > δ}

≤
m∑

i=1

P{∆U(ξεi(νεi(·)), c, T ) > δ/m}

≤
m∑

i=1

(P{∆U(ξεi(νεi(·)), c, T ) > δ/m,∆U(νεi(·), c, T ) ≤ c′, νεi(T ) ≤ T ′}

+ P{∆U(νεi(·), c, T ) > c′} + P{νεi(T ) > T ′})

≤
m∑

i=1

(P{∆U(ξεi(·), c′, T ′) > δ/m}

+ P{∆U(νεi(·), c, T ) > c′} + P{νεi(T ) > T ′}).

(3.2.8)
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For an arbitrary σ > 0, by condition A34, we can choose T ′′ ∈ V and then T ′, which
is a point of continuity for the distribution functions of the random variables ν0i(T ′′), i =

1, . . . ,m such that limε→0 P{νεi(T ) > T ′} ≤ limε→0 P{νεi(T ′′) > T ′} ≤ σ/2m. Then, fixing
T ′ and using condition U4, we can find c′ > 0 such that limε→0 P{∆U(ξεi(·), c′, T ′) > δ} ≤
σ/2m. If we pass to limit in (3.2.8), first making ε→ 0 and then c→ 0, and use Lemma
3.2.1, we get

lim
c→0

lim
ε→0

P{∆U(ζε(·), c, T ) > δ}

≤
m∑

i=1

(lim
ε→0

P{∆U(ξεi(·), c′, T ′) > δ/m}

+ lim
ε→0

P{∆U(νεi(·), c, T ) > c′} + lim
ε→0

P{νεi(T ) > T ′/2})

≤ σ +

m∑

i=1

lim
ε→0

P{∆U(νεi(·), c, T ) > c′} = σ.

(3.2.9)

This proves (3.2.6), since σ is arbitrary. �

3.2.2. Conditions of U-compactness. It is useful to note that relation (3.2.6), i.e., U-
compactness of the processes ζε(t), t ≥ 0 can be obtained without the use of the condition
of weak convergence A34.

Let introduce the following condition:

K(0)
3 : limt→∞ limε→0 P{νεi(0) > t} = 0, i = 1, . . . ,m.

Lemma 3.2.3. Let conditions U4, U5, and K(0)
3 hold. Then

lim
c→0

lim
ε→0

P{∆U(ζε(·), c, T ) > δ} = 0, δ > 0.

Proof of Lemma 3.2.3. Let x(t), t ≥ 0 be a real-valued càdlàg function. The following
estimate is valid for every 0 < c < T < ∞:

|x(T )| ≤ |x(0)| + ([T/c] + 1)∆U(x(·), c, T ). (3.2.10)

Using (3.2.10) for c = 1/T ′ and conditions U5 and K
(0)
3 we get, for every i = 1, . . . ,m

and T > 0,

lim
T ′→∞

lim
ε→0

P{νεi(T ) ≥ T ′}
≤ lim

T ′→∞
lim
ε→0

P{νεi(0) ≥ T ′/2}
+ lim

T ′→∞
lim
ε→0

P{∆U(νεi(·), 1/T ′, T ) ≥ T ′/2([TT ′] + 1)} = 0,

(3.2.11)

since T ′/2([TT ′] + 1)→ 1/2T > 0 as T ′ →∞.
The proof of the lemma follows directly from relations (3.2.8) and (3.2.11). �
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3.2.3. The set of weak convergence. It follows from Theorem 1.6.11 that, under
conditions of Theorem 3.2.1,

ζε(t), t ≥ 0⇒ ζ0(t), t ≥ 0 as ε→ 0. (3.2.12)

3.2.4. Non-monotone internal stopping processes. Theorem 3.2.1 can be gener-
alised to a model where the monotonicity of non-negative càdlàg processes νεi(t), t ≥ 0
is not assumed. In this case there is no guarantee that the composition ζε(t), t ≥ 0 is a
càdlàg processes.

Conditions A34 and U4 still provide, due to Theorem 2.7.1, weak convergence of the
compositions ζε(t) on the set V .

Let 0 = t0,n < t1,n < · · · < tn,n = T , n ≥ 1 be a sequence of partitions of the interval
[0, T ] such that: (a) tk,n ∈ V , k = 0, . . . , n, n ≥ 1; (b) hn = max

0≤k≤n−1
(tk+1,n − tk,n) → 0 as

n→ ∞. The following estimate holds for all 0 < c < T < ∞:

| sup
t≤T

νεi(t) − max
0≤k≤n

νεi(tk,n)| ≤ ∆U(νεi(·), hn, T ). (3.2.13)

Relation (3.2.13) and conditions A34 and U5 imply, due to Lemma 1.2.5, the follow-
ing relation for every i = 1, . . . ,m:

sup
t≤T

νεi(t)⇒ sup
t≤T

ν0i(t) as ε→ 0. (3.2.14)

Relation (3.2.14) and conditions U4 and U5 permit to repeat the proof of the U-
compactness relation (3.2.6) given above for relations (3.2.8) and (3.2.9). The only dif-
ference is that the random variables νεi(T ) should be replaced with the random variables
supt≤T νεi(t).

Note that the modulus ∆U can be defined by the same formula not only for a càdlàg
process for any real-valued function. Also, estimate 3.2.7 is valid for any real-valued
functions.

So, under conditions A34, U4, and U5, the processes ζε(t) weakly converge on the
set V and satisfy the relation of J-compactness (3.3.2).

As was mentioned above, the pre-limiting composition ζε(t), t ≥ 0 may be not an a.s.
càdlàg process for ε > 0. However, the limiting process ζ0(t), t ≥ 0 is an a.s. continuous
process.

The question about the corresponding class of a.s. U-continuous functionals should
belong to needs in this case, a special investigation. We refer here to the works by
Borovkov (1976) and Borovkov, Mogul’skij, and Sakhanenko (1995).

3.2.5. The time interval [0, T]. In this case, we consider the vector composi-
tion ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ∈ [0, T ] of a vector càdlàg process ξε(t) =

(ξεi(t), i = 1, . . . ,m), t ≥ 0, with real-valued components, and a vector càdlàg process



3.2. Asymptotically continuous components 175

νε(t) = (νεi(t), i = 1, . . . ,m), t ∈ [0, T ], with non-negative and non-decreasing compo-
nents.

We can always continue the internal stopping process to the interval [0,∞) by the
following formula:

νε(t) =


νε(t) if 0 ≤ t ≤ T,
νε(T ) if t ≥ T.

(3.2.15)

Now we can apply Theorem 3.2.1. Condition A34 should be replaced with a condi-
tion in which the set V is dense in [0, T ] and contains the points 0 and T . The condition
of U-compactness U4 does not require any changes. In the condition of U-compactness
U5 the corresponding asymptotic relation should be required to hold only for the interval
[0, T ]. Finally, by applying Theorem 3.2.1, we get

ζε(t), t ∈ [0, T ]
U−→ ζ0(t), t ∈ [0, T ] as ε→ 0. (3.2.16)

Also, in Lemma 3.2.3, conditions U4 and K(0)
3 remain the same, while U5 should

be used in the modified form described above in order to prove U-compactness of the
processes ζε(t), t ∈ [0, T ].

3.2.6. The time interval (0,∞). The results of the previous section can easily be
translated to the case of the semi-infinite interval (0,∞) under the condition that the
limiting internal stopping random variable ν0i(t) is positive with probability 1 for every
t > 0 and i = 1, . . . ,m. In this case, the point 0 can be excluded from the sets U and V
in condition A34. Also, in conditions U4 and U5, the relations of U-compactness should
be required to hold for any finite interval [T ′, T ′′], where 0 < T ′ < T ′′ < ∞.

By applying Theorem 2.7.1 and taking into account the remarks made in Subsection
2.7.6, one can prove weak convergence of the vector compositions

ζε(t), t ∈ V ⇒ ζε(t), t ∈ V as ε→ 0. (3.2.17)

As easily seen, the U-compactness condition can be obtained by a slight modification
of estimates (3.2.7) and (3.2.8).

The first one holds for any non-negative real-valued function x(t), t ≥ 0, and any
non-decreasing function y(t), t ≥ 0 and 0 < T ′ < T ′′ < ∞, 0 < T1 < T2 < ∞,

∆U(x(y(·)), c, T ′, T ′′)χ(∆U(y(·), c, T ′, T ′′) ≤ c′, y(T ′) ≥ T1, y(T ′′) ≤ T2)
≤ ∆U(x(·), c′, T1, T2).

(3.2.18)
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The second one takes the form

P{∆U(ζε(·), c, T ′, T ′′) > δ}

≤
m∑

i=1

P{∆U(ξεi(νεi(·)), c, T ′, T ′′) > δ/m}

≤
m∑

i=1

(P{∆U(ξεi(νεi(·)), c, T ′, T ′′) > δ/m, νεi(T ′) ≥ T1,

νεi(T ′′) ≤ T2,∆U(νεi(·), c, T ′, T ′′) ≤ c′} + P{νεi(T ′) < T1}
+ P{νεi(T ′′) > T2} + P{∆U(νεi(·), c, T ′, T ′′) > c′})

≤
m∑

i=1

(P{∆U(ξεi(·), c′, T1, T2) > δ/m} ≤ P{νεi(T ′) < T1}

+ P{νεi(T ′′) > T2} + P{∆U(νεi(·), c, T ′, T ′′) > c′}).

(3.2.19)

By repeating the subsequent steps in the proof of Theorem 3.2.1, one can get a rela-
tion of U-compactness for 0 < T ′ < T ′′ < ∞,

lim
c→0

lim
ε→0

P{∆U(ζε(·), c, T ′, T ′′) > δ} = 0, δ > 0. (3.2.20)

The relations (3.2.17) and (3.2.20) imply that

ζε(t), t ∈ (0,∞)
U−→ ζ0(t), t ∈ (0,∞) as ε→ 0. (3.2.21)

3.2.7. A Polish phase space. The results presented in this section can be generalised
to a model with external stochastic processes, ξε(t), t ≥ 0, the components of which,
ξεi(t), t ≥ 0, take values in a Polish space X.

The formulation of condition A34 remains the same. In the condition U
′
4, the Eu-

clidean distance |x − y| must be replaced with the corresponding metric d(x, y) in the
formula for the modula of U-compactness, ∆U(ξεi(·), c, T ).

Conditions A34 and U
′
4, modified as described above, still imply weak convergence

of the compositions ζε(t) on the set V , as follows from Theorem 2.3.6.
All estimates for the modula of U-compactness ∆U(ζεi(·), c, T ), given in (3.2.8)–

(3.2.9), can be repeated and the U-compactness relation (3.2.6) can be written.
Finally, under conditions A34, U

′
4, and U5, we get

ζε(t), t ≥ 0
U−→ ζ0(t), t ≥ 0 as ε→ 0. (3.2.22)

3.3 Asymptotically continuous external processes

In this section, we formulate conditions for J-convergence of compositions of càdlàg
processes and asymptotically continuous external processes.
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3.3.1. J-convergence of semi-vector compositions with an asymptotically contin-
uous external component. Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be a
vector càdlàg process with real-valued components, and νε(t), t ≥ 0 a non-negative non-
decreasing càdlàg process. Consider the semi-vector composition ζε(t) = (ξεi(νε(t)), i =

1, . . . ,m), t ≥ 0, which is also a vector càdlàg process with real-valued components.
We assume that the following analogue of the condition of joint weak convergence

A34 holds:

A36: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where U and
V are some subsets of [0,∞) that are dense in this interval and contain the point 0.

We also assume that the condition of U-compactness U4 holds for the external pro-
cesses ξε(t), t ≥ 0. It is also useful to note that condition U4 is equivalent to condition
U
′
4.

Conditions A36 and U4 imply U-convergence of the processes ξε(t), t ≥ 0 and a.s.
continuity of the limiting process ξ0(t), t ≥ 0.

For the internal component νε(t), t ≥ 0, we assume that the following condition of
J-compactness holds:

J11: limc→0 limε→0 P{∆J(νε(·), c, T ) > δ} = 0, δ, T > 0.

Conditions A36 and J11 imply J-convergence of the processes νε(t), t ≥ 0. However,
continuity of the corresponding càdlàg limiting processes ν0(t), t ≥ 0 is not required.

The following theorem presents a result given in Whitt (1973, 1980) and Silvestrov
(1974).

Theorem 3.3.1. Let conditions A36, U4, and J11 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Theorem 3.3.1 does not require a separate proof. This theorem is a particular case of
Theorem 3.3.2 that gives a similar result for a more general model of vector compositions
of càdlàg processes.

3.3.2. J-convergence of vector compositions with an asymptotically continuous
external component. Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be a vector
càdlàg process with real-valued components, and νε(t) = (νεi(t), i = 1, . . . ,m), t ≥ 0 a
vector càdlàg process with non-negative and non-decreasing components. Consider the
vector composition ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ≥ 0, which is also a vector càdlàg
process with real-valued components.

In this subsection, we consider a model where the external processes ξε(t), t ≥ 0 are
asymptotically continuous.

We assume that the condition of joint weak convergence A34 holds, together with the
condition of U-compactness U4 for the processes ξε(t), t ≥ 0.
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Conditions A34 and U4 imply U-convergence of the processes ξε(t), t ≥ 0, and a.s.
continuity of the limiting process ξ0(t), t ≥ 0.

We assume that the internal component νε(t), t ≥ 0 satisfies the following vector
analogue of condition J11:

J12: limc→0 limε→0 P{∆J(νε(·), c, T ) > δ} = 0, δ, T > 0.

Conditions A34 and J12 imply J-convergence of the processes νε(t), t ≥ 0. However,
the continuity of the limiting càdlàg processes ν0(t), t ≥ 0 is not required.

The following new theorem generalises the result of Theorem 3.3.1 to the model of
vector compositions of càdlàg processes.

Theorem 3.3.2. Let conditions A34, U4, and J12 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.3.2. Condition A34 implies that condition AV
22 holds with the set V

used in A34. Condition U4 obviously implies that condition J4 holds. Since ξ0(t), t ≥ 0 is
a continuous process, condition CW

6 holds with the set W = [0,∞). Therefore, it follows
from Theorem 2.7.1 that, for the set V ,

ζε(t), t ∈ V ⇒ ζ0(t), t ∈ V as ε→ 0. (3.3.1)

By A34, the set V is everywhere dense in [0,∞) and contains the point 0.
To prove the theorem, we must also supplement the relation of weak convergence

(3.3.1) with the relation of J-compactness,

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0. (3.3.2)

Let x(t) = (xi(t), i = 1, . . . ,m), t ≥ 0 be a vector càdlàg function with real-valued
components and y(t) = (yi(t), i = 1, . . . ,m), t ≥ 0 be a vector càdlàg function with
non-negative and non-decreasing components. Let also z(t) = (xi(yi(t)), i = 1, . . . ,m),
t ≥ 0 be their vector composition, which is also a vector càdlàg function with real-valued
components.

It is clear that if t′ ≤ t ≤ t′′ and min(|y(t)−y(t′)|, |y(t)−y(t′′)|) ≤ c′, then |yi(t)−yi(t′)| ≤
c′, i = 1, . . .m or |yi(t) − yi(t′′)| ≤ c′, i = 1, . . . ,m. Hence,

min(|z(t) − z(t′)|, |z(t) − z(t′′)|)
× χ(min(|y(t) − y(t′)|, |y(t) − y(t′′)|) ≤ c′, max

1≤i≤m
yi(t′′) ≤ T ′)

≤ min(
m∑

i=1

|xi(yi(t)) − xi(yi(t′))|,
m∑

i=1

|xi(yi(t)) − xi(yi(t′′))|)

× χ(min(|y(t) − y(t′)|, |y(t) − y(t′′)|) ≤ c′, max
1≤i≤m

yi(t′′) ≤ T ′)

≤
m∑

i=1

∆U(xi(·), c′, T ′)
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and, therefore,

∆J(z(·), c, T )χ(∆J(y(·), c, T ) ≤ c′, max
1≤i≤m

yi(T ) ≤ T ′) ≤
m∑

i=1

∆U(xi(·), c′, T ′). (3.3.3)

Using (3.3.3) and taking into account monotonicity of the processes νεi(t), t ≥ 0,
i = 1, . . . ,m, we have

P{∆J(ζε(·), c, T ) > δ}

≤ P{
m∑

i=1

∆U(ξεi(·), c, T ) > δ}

+ P{∆J(νε(·), c, T ) > c′} + P{max
1≤i≤m

νεi(T ) > T ′}

≤
m∑

i=1

P{∆U(ξεi(·), c′, T ′) > δ/m}

+ P{∆J(νε(·), c, T ) > c′} +
m∑

i=1

P{νεi(T ) > T ′}.

(3.3.4)

For an arbitrary σ > 0, by condition A34, we can choose T ′′ ∈ V and then T ′, which
is a point of continuity for the distribution functions of the random variables ν0i(T ′′), i =

1, . . . ,m, such that limε→0 P{νεi(T ) > T ′} ≤ limε→0 P{νεi(T ′′) > T ′} ≤ σ/2m. Then, by
using condition U4, we can find c′ > 0 such that limε→0 P{∆U(ξεi(·), c′, T ′) > δ} ≤ σ/2m.
If we pass to the limit in (3.3.4), first for ε → 0 and then for c → 0, and use condition
J12, we get

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} ≤ σ + lim
c→0

lim
ε→0

P{∆J(νε(·), c, T ) > c′} = σ. (3.3.5)

This proves (3.3.2), since σ is arbitrary. �

3.3.3. Conditions of J-compactness. It is useful to note that J-compactness of the
processes ζε(t), t ≥ 0, can be proved without the use of the condition of weak conver-
gence A34.

Let us introduce the following condition:

K
(T)
3 : limt→∞ limε→0 P{νεi(T ) > t} = 0, i = 1, . . . ,m.

It follows directly from (3.3.4) that the relation of J-compactness (3.3.2) holds for a
given T > 0 if (a) condition U4 holds, (b) the relation of J-compactness in condition J12
holds for this T , and (c) condition K

(T)
3 holds.

3.3.4. J-convergence of monotone càdlàg processes. In this subsection, we study
conditions for J-compactness and J-convergence of monotone càdlàg processes.
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Let, for every ε ≥ 0, νε(t), t ∈ [0, T ] be a non-negative and non-decreasing càdlàg
process.

Let x(t), t ∈ [0, T ] be a non-decreasing càdlàg function. For every k ≥ 1, we define
the functional

κ(δ)
T,k(x(·)) = κ(δ)

k =


inf(s ∈ (κ(δ)

k−1, T ] : x(s) ≥ x(κ(δ)
k−1) + δ, if x(T ) ≥ x(κ(δ)

k−1) + δ,

κ(δ)
k−1 + T, if x(T ) < x(κ(δ)

k−1) + δ,

where κ(δ)
T,0(x(·)) = κ(δ)

0 = 0.
Let us also define, for every r ≥ 1, the following functional, which is the minimal

distance between successive moments of minimal δ-increments for the function x(t),
t ∈ [0, T ],

π(δ)
T,r(x(·)) = min

1≤k≤r
(κ(δ)

T,k(x(·)) − κ(δ)
T,k−1(x(·))).

Let us introduce the following condition:

N1: (a) limT ′→∞ limε→0 P{|νε(T ) − νε(0)| > T ′} = 0;

(b) limc→0 limε→0 P{π(δl)
T,r (νε(·)) ≤ c} = 0, r ≥ 1 for some sequence 0 < δl → 0 as

l→ ∞.

The following theorem is given in Silvestrov (1974), where one can also find some
applications to monotone Markov type processes.

Theorem 3.3.3. Let condition N1 hold. Then

lim
c→0

lim
ε→0

P{∆J(νε(·), c, T ) > σ} = 0, σ > 0.

Proof of Theorem 3.3.3. Let us also define the following functional

π(δ)
T (x(·)) = min

k≥1
(κ(δ)

T,k(x(·)) − κ(δ)
T,k−1(x(·))).

Let us show that, for any non-decreasing càdlàg function x(t), t ∈ [0, T ] and c, δ > 0,
if

∆J(x(·), c/2, T ) ≥ 2δ, (3.3.6)

then
π(δ)

T (x(·)) ≤ c. (3.3.7)

Suppose that (3.3.6) holds. Then there exist three points t′, t, t′′ ∈ [0, T ], t − c/2 ≤
t′ ≤ t ≤ t′′ ≤ t + c/2 such that x(t) − x(t′) ≥ δ and x(t′′) − x(t) ≥ δ.

There always exists k = 0, 1, . . . such that (a) t ∈ [κ(δ)
k , κ(δ)

k+1). Let us assume that
(b) κ(δ)

k ≤ t′. Then (c) x(t) − x(κ(δ)
k ) ≥ x(t) − x(t′) ≥ δ. Obviously, (c) implies that (d)
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κ(δ)
k+1 ≤ t. But, (d) contradicts (a). So, assumption (b) does not hold, and, therefore, (e)

t′ < κ(δ)
k ≤ t′. Then (f) x(t′′) − x(κ(δ)

k ) ≥ x(t′′) − x(t) ≥ δ. Thus, (g) κ(δ)
k+1 ≤ t′′. Obviously,

(e) and (g) imply that (h) κ(δ)
k+1 − κ(δ)

k ≤ t′′ − t′ ≤ c.
Let us define

µ(δ)
T (x(·)) = max(k : x(T ) ≥ x(κ(δ)

T,k−1(x(·))) + h).

It follows from the definition of µ(δ)
T (x(·)) and κ(δ)

T,k(x(·)) that

µ(δ)
T (x(·)) ≤ x(T ) − x(0)

δ
.

On the other hand, by the definition of the functionals π(δ)
T,r(x(·)) and π(δ)

T (x(·)), we
have

π(δ)
T,r(x(·)) − π(δ)

T (x(·)) = 0 if µ(h)
T (x(·)) ≤ r.

Hence, we get the following estimate:

P{|π(δ)
T,r(νε(·)) − π(δ)

T (νε(·))| > 0}
≤ P{µ(δ)

T (νε(·)) > r} ≤ P{νε(T ) − νε(0) > δr}. (3.3.8)

By using (3.3.8) and condition N1, we get

lim
r→∞

lim
ε→0

P{|π(δ)
T,r(νε(·)) − π(δ)

T (νε(·))| > 0}
≤ lim

r→∞
lim
ε→0

P{νε(T ) − νε(0) > δr} = 0.
(3.3.9)

By using (3.3.9) and condition N1, we get, for δl, l ≥ 1 from this condition,

lim
c→0

lim
ε→0

P{π(δl)
T (νε(·)) ≤ c}

≤ lim
c→0

lim
ε→0

P{π(δl)
T,r (νε(·)) − |π(δl)

T,r (νε(·)) − π(δl)
T (νε(·))| ≤ c}

≤ lim
c→0

lim
ε→0

(P{π(δl)
T,r (νε(·)) ≤ c}

+ P{|π(δl)
T,r (νε(·)) − π(δl)

T (νε(·))| > 0})
= lim

ε→0
P{|π(δl)

T,r (νε(·)) − π(δl)
T (νε(·))| > 0} → 0 as r → ∞,

(3.3.10)

and, consequently,
lim
c→0

lim
ε→0

P{π(δl)
T (νε(·)) ≤ c} = 0, l ≥ 1. (3.3.11)

It clearly follows from (3.3.11) that, for arbitrary α, σ > 0, there exists c > 0 and
2δl < σ such that

lim
ε→0

P{π(δl)
T (νε(·)) ≤ c} ≤ α. (3.3.12)
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By using (3.3.6) and (3.3.7), we get

lim
ε→0

P{∆J(νε(·), c/2, T ) > σ}
≤ lim

ε→0
P{∆J(νε(·), c/2, T ) ≥ 2δl}

≤ lim
ε→0

P{π(δl)
T (νε(·)) ≤ c} ≤ α,

(3.3.13)

and so, due to arbitrary choice of α

lim
c→0

lim
ε→0

P{∆J(νε(·), c/2, T ) > σ} = 0. (3.3.14)

The proof is completed. �

Let us assume the following condition:

A37: νε(s), s ∈ V ⇒ ν0(s), s ∈ V as ε→ 0, where V is a subset of [0,∞) that is dense in
this interval and contains the point 0.

Taking into account Theorem 3.3.3 we can formulate the following condition for
J-convergence of monotone càdlàg processes.

Theorem 3.3.4. Let conditions A37 and N1 hold. Then

νε(t), t ≥ 0
J−→ ν0(t), t ≥ 0 as ε → 0.

3.3.5. The set of weak convergence. Let V0 be the set of points of stochastic conti-
nuity of the limiting stopping process ν0(t), t ≥ 0, and Z0 be the set of points of stochastic
continuity of the limiting stopping process ζ0(t), t ≥ 0. Since the limiting external pro-
cess ξ0(t), t ≥ 0 is a.s. continuous, V0 ⊆ Z0. Under conditions A34 and J12, the set
of weak convergence V , in condition A34, can be enlarged, by Lemma 1.6.5, to the set
V ∪ V0. In sequel, the set of weak convergence V will be replaced with the set V ∪ V0

from the proof of Theorem 3.3.1. This set coincides with [0,∞) except for at most a
countable set. Also, 0 ∈ V ∪ V0. The processes ζε(t), t ≥ 0 J-converge and, therefore, by
Lemma 1.6.5, the set V ∪ V0 can be extended to the set V ∪ V0 ∪ Z0 = V ∪ Z0. Finally,
under the conditions of Theorem 3.3.2, we get that

ζε(t), t ∈ V ∪ Z0 ⇒ ζ0(t), t ∈ V ∪ Z0 as ε→ 0. (3.3.15)

3.3.6. Non-monotone internal stopping processes. The result of Theorems 3.3.1
and 3.3.2 can be generalised to include the case where the monotonicity of the non-
negative càdlàg processes νεi(t), t ≥ 0 is not assumed. In this case, it can be that the
compositions ζε(t), t ≥ 0 are not càdlàg processes.
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Conditions A34 and U4 provide, due to Theorem 2.7.1, weak convergence of the
compositions ζε(t) on the set V .

Let 0 = t0,n < t1,n < . . . < tn,n = T , n ≥ 1 be a sequence of partitions of the interval
[0, T ] such that: (a) tk,n ∈ V , k = 0, . . . n, n ≥ 1; (b) hn = max

0≤k≤n−1
(tk+1,n − tk,n) → 0 as

n→ ∞. Then
| sup

t≤T
νεi(t) − max

0≤k≤n
νεi(tk,n)| ≤ ∆J(νεi(·), hn, T ). (3.3.16)

Relation (3.3.16) and conditions A34 and J12 imply, due to Lemma 1.2.5, the follow-
ing relation for every i = 1, . . . ,m:

sup
t≤T

νεi(t)⇒ sup
t≤T

ν0i(t) as ε→ 0. (3.3.17)

Relation (3.3.17) and conditions U4 and J12 permit to follow the proof of the relation
of J-compactness (3.3.2) given in the proof of Theorem 3.3.2. One should only replace
the random variables νεi(T ) with the random variables supt≤T νεi(t) in relations (3.3.3)
and (3.3.4). Note that estimate (3.3.3) does not require monotonicity of the functions
yi(t) and, in sequel, estimate (3.3.4) will not require monotonicity of the processes νεi(t).

Moreover, it is useful to note that the moduli ∆U and ∆J can be defined by the same
formulas not only for càdlàg functions, but for any real-valued function. Also the esti-
mate 3.2.7 is valid for any real-valued functions.

So, under conditions A34, U4, and J12, the processes ζε(t) weakly converge on the
set V and satisfy the relation of J-compactness (3.3.2).

As was mentioned above, it is not certain that the pre-limiting composition ζε(t), t ≥
0, is an a.s. càdlàg process for ε > 0. However, the limiting process ζ0(t), t ≥ 0 is an a.s.
càdlàg process, since the external limiting process ξ0(t), t ≥ 0 is a.s. continuous.

We refer to works by Borovkov (1976) and Borovkov, Mogul’skij, and Sakhanenko
(1995) where one can find a discussion concerning J-convergence of stochastic processes
in such a case.

3.3.7. The time interval [0, T]. In this case, we consider the vector composi-
tion ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ∈ [0, T ] of a vector càdlàg process ξε(t) =

(ξεi(t), i = 1, . . . ,m), t ≥ 0 with real-valued components, and a vector càdlàg process
νε(t) = (νεi(t), i = 1, . . . ,m), t ∈ [0, T ] with non-negative and non-decreasing compo-
nents.

The internal stopping process can be continued to the interval [0,∞) by the following
formula:

νε(t) =


νε(t) if 0 ≤ t ≤ T,
νε(T ) if t ≥ T.

(3.3.18)

We can apply Theorem 3.3.2 to the processes ζε(t), t ≥ 0 with the internal stopping
processes νε(t), t ≥ 0 defined in (3.3.18). Conditions of this theorem should be modified
taking into account (3.3.18).
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The condition of weak convergence A34 should be replaced with a condition in
which V is a set dense in [0, T ] and contains the points 0 and T . The condition of
U-compactness U4 remains the same. In the condition of J-compactness J12, the cor-
responding asymptotic relation should be required to hold only for the interval [0, T ].

With these changes, conditions A34, U4, and J12 imply that ζε(t), t ∈ [0,∞)
J−→ ζ0(t), t ∈

[0,∞) as ε→ 0.
Note that J-convergence of the processes ζε(t) on the interval [0,∞) does automat-

ically imply J-convergence of these processes on the interval [0, T ] if the point T is
a point of stochastic continuity for the limiting process ζ0(t), t ≥ 0. In this case, no
additional conditions are required.

However, it can happen that T is not a point of stochastic continuity for the limiting
process ζ0(t), t ≥ 0. Since the process ξ0(t), t ≥ 0 is a.s. continuous, this can occur if T
is not a point of stochastic continuity for the limiting stopping process ν0(t), t ≥ 0. Note
that this process may be not an a.s. continuous process.

In this case, as follows from Theorem 1.6.3, the random variables ζε(T − 0) must be
added in the relation of weak convergence for the processes ζε(t) on the set V . In order
to provide this convergence, it is necessary add, in the relation of weak convergence in
condition A34, the random variables νε(T − 0). These modified versions of conditions
A34 and U4 imply that (ζε(t), ζε(T − 0)), t ∈ V ⇒ (ζ0(t), ζ0(T − 0)), t ∈ V as ε→ 0.

Finally, the modified versions of conditions A34, U4, and J12 imply that

ζε(t), t ∈ [0, T ]
J−→ ζ0(t), t ∈ [0, T ] as ε→ 0. (3.3.19)

3.3.8. The time interval (0,∞). The results of the section can also be restated for
the case of the semi-infinite interval (0,∞) under the condition that the limiting stopping
random variable ν0i(t) is positive with probability 1 for every t > 0 and i = 1, . . .m. In
this case, the point 0 can be excluded from the sets U and V in condition A34. Also, the
relations of U- and J-compactness, respectively, in conditions of U4 and J12 should be
required to hold for any finite interval [T ′, T ′′], where 0 < T ′ < T ′′ < ∞.

By applying Theorem 2.7.1 and taking into account the remarks in Subsection 2.7.6,
one can prove weak convergence of the vector compositions

ζε(t), t ∈ V ⇒ ζε(t), t ∈ V as ε→ 0. (3.3.20)

The condition of J-compactness can be obtained by using the modified estimates
(3.2.7) and (3.2.8).

The first one is valid for any m-dimensional càdlàg function x(t) = (xi(t), i = 1, . . . ,m),
t ≥ 0, any m-dimensional càdlàg function y(t) = (yi(t), i = 1, . . . ,m), t ≥ 0, with non-
negative components, and their vector composition z(t) = (xi(yi(t)), i = 1, . . . ,m), t ≥ 0
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and 0 < T ′ < T ′′ < ∞, 0 < T1 < T2 < ∞,

∆J(z(·), c, T ′, T ′′)χ(∆J(y(·), c, T ′, T ′′) ≤ c′,

min
1≤i≤m

yi(T ′) ≥ T1, max
1≤i≤m

yi(T ′′) ≤ T2) ≤
m∑

i=1

∆U(xi(·), c′, T1, T2).
(3.3.21)

Using (3.3.21) we have

P{∆J(ζε(·), c, T ′, T ′′) > δ}

≤ P{
m∑

i=1

∆U(ξεi(·), c, T1, T2) > δ} + P{∆J(νε(·), c, T ′, T ′′) > c′}

+ P{min
1≤i≤m

νεi(T ′) < T1} + P{max
1≤i≤m

νεi(T ′′) > T2}

≤
m∑

i=1

P{∆U(ξεi(·), c′, T1, T2) > δ/m} + P{∆J(νε(·), c, T ′, T ′′) > c′}

+

m∑

i=1

P{νεi(T ′) < T1} +
m∑

i=1

P{νεi(T ′′) > T2}.

(3.3.22)

By repeating the steps that follow in the proof of Theorem 3.3.2, one can get the
relation of J-compactness for 0 < T ′ < T ′′ < ∞,

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ′, T ′′) > δ} = 0, δ > 0. (3.3.23)

The relations (3.3.20) and (3.3.23) imply that

ζε(t), t ∈ (0,∞)
J−→ ζ0(t), t ∈ (0,∞) as ε→ 0. (3.3.24)

3.3.8. A Polish phase space. Results presented in this section can be generalised to
a model with external stochastic processes ξε(t), t ≥ 0, which components ξεi(t), t ≥ 0,
take values in a Polish space X.

The formulation of condition A34 will be the same. In the conditions U
′
4, the Euclid-

ian distance |x−y|must be replaced with the corresponding metric d(x, y) in the formulas
that define the corresponding moduli of U-compactness. Condition J12 does not require
any changes.

3.4 Asymptotically continuous internal stopping processes

In this section, we formulate conditions for J-convergence of compositions of càdlàg
processes with asymptotically continuous internal stopping processes. This model cov-
ers a significant part of applications.
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3.4.1. J-convergence of semi-vector compositions with asymptotically continu-
ous internal stopping component. Let, for every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m),
t ≥ 0 be an m-dimensional càdlàg process with real-valued components and νε(t), t ≥ 0
be a non-negative non-decreasing càdlàg process. We will consider the semi-vector com-
position ζε(t) = (ξεi(νε(t)), i = 1, . . . ,m), t ≥ 0, which is also an m-dimensional càdlàg
process with real-valued components.

We impose the following condition of J-compactness on the external processes ξε(t),
t ≥ 0. This condition was actually introduced in Subsection 1.6.11,

J4: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Conditions A36 and J4 imply J-convergence of the processes ξε(t), t ≥ 0, but they do
not require a.s. continuity of the corresponding limiting càdlàg processes ξ0(t), t ≥ 0.

As follows from the remark above and Lemma 1.6.5, the set U in A36 can be en-
larged, under condition J4, to the set U ∪ U0. Here U0 is a set of points of stochastic
continuity for the process ξ0(t), t ≥ 0.

We assume that the internal stopping processes νε(t), t ≥ 0, satisfy a condition that is
a scalar analogue of the condition B3,

B4: ν0(t), t ≥ 0 is an a.s. continuous process.

Lemma 3.2.1 implies that, under A36, condition B4 is equivalent to the following
condition of U-compactness, a scalar analogue of condition U5:

U6: limc→0 limε→0 P{∆U(νε(·), c, T ) > δ} = 0, δ, T > 0.

We also use the following form of the first-type continuity condition CW
6 , in which

the set W is not specified,

C7: There exists a set W such that (a) P{ν0(t) ∈ R[ξ0(·)]} = 0 for t ∈ W, (b) W is a
subset of [0,∞) that is dense in this interval and contains the point 0.

The following theorem can be found in Silvestrov (1972b, 1972e, 1973a).

Theorem 3.4.1. Let conditions A36, J4, B4, and C7 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.4.1. We first apply Theorem 2.7.1 to the vector composition ζε(t) =

(ξε1(νε(t)), . . . , ξεm(νε(t))), t ≥ 0 of the external processes ξε(t) = (ξε1(t), . . . , ξεm(t)),
t ≥ 0 and the internal stopping processes νε(t) = (νε(t), . . . , νε(t)), ≥ 0, with m identical
components. It follows from Lemma 3.2.1 that conditions A36 and B4 imply condition
U5. It also follows from Theorem 1.6.11 that, under condition U5, the set V in A36
can be taken to be the interval [0,∞). Therefore, condition AV

22 holds with the set V =
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[0,∞). Condition C7 means that condition CW
6 holds with some set W dense in [0,∞)

and containing 0. Therefore, it follows from Theorem 2.7.1 that, for this set W,

ζε(t), t ∈ W ⇒ ζ0(t), t ∈ W as ε→ 0. (3.4.1)

To prove the theorem we must also supplement the relation of weak convergence
(3.4.1) with the relation of J-compactness

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0. (3.4.2)

Let x(t), t ≥ 0 be a càdlàg function taking values in �m and y(t), t ≥ 0 be a non-
negative and non-decreasing càdlàg function.

It is clear that, if t′ ≤ t ≤ t′′, then

min(|x(y(t)) − x(y(t′))|, |x(y(t)) − x(y(t′′))|)
× χ(max(|y(t) − y(t′)|, |y(t) − y(t′′)|) ≤ c′, y(t′′) ≤ T ′)
≤ ∆J(x(·), c′, T ′)

and, therefore,

∆J(x(y(·)), c, T )χ(∆U(y(·), c, T ) ≤ c′, y(T ) ≤ T ′) ≤ ∆J(x(·), c′, T ′). (3.4.3)

Using (3.4.3) we have

P{∆J(ξε(νε(·)), c, T ) > δ}
≤ P{∆J(ξε(νε(·)), c, T ) > δ,∆U(νε(·), c, T ) ≤ c′, νε(T ) ≤ T ′}
+ P{∆U(νε(·), c, T ) > c′} + P{νε(T ) > T ′}
≤ P{∆J(ξε(·), c′, T ′) > δ}
+ P{∆U(νε(·), c, T ) > c′} + P{νε(T ) > T ′}.

(3.4.4)

For an arbitrary σ > 0, by condition A36, we can choose T ′′ ∈ V and then T ′, which
is a point of continuity for the distribution function of the random variable ν0(T ′′), such
that limε→0 P{νε(T ) > T ′} ≤ limε→0 P{νε(T ′′) > T ′} ≤ σ/2. Then, fixing T ′ and using
condition J4, we can find c′ > 0 such that limε→0 P{∆J(ξε(·), c′, T ′) > δ} ≤ σ/2. If we
pass to the limit in (3.4.4), first making ε→ 0 and then c→ 0, and use condition U5, we
find

lim
c→0

lim
ε→0

P{∆J(ξε(νε(·)), c, T > δ} ≤ σ + lim
c→0

lim
ε→0

P{∆U(νε(·), c, T ) > c′} = σ. (3.4.5)

This proves (3.4.2), since σ is arbitrary. �

Condition Q3 takes in this case the following form:
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Q7: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t) is a continuous process, (b) ξ′′0 (t) is a
stochastically continuous càdlàg process, (c) the processes ξ′′0 (t), t ≥ 0 and ν0(t),
t ≥ 0 are independent.

It follows from Lemma 2.7.1 that condition Q7 implies that condition C7 holds with
the set W = [0,∞).

Condition E4 takes the following form:

E6: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ < ∞.

Let us also introduce a condition that, actually, coincides with CW
6 in the case where

the set W = {w} contains only one point w and the process ν0(t) = (ν0(t), . . . , ν0(t)), t ≥ 0
has identical components,

C(w)
8 : P{ν0(w) ∈ R[ξ0(·)]} = 0.

As follows from Lemma 2.7.2, conditions E6 and C(0)
8 are necessary and sufficient

for condition C7 to hold.
The following theorem is the main result of this section. It is, actually, equivalent to

Theorem 3.4.1 and does not require a separate proof.

Theorem 3.4.2. Let conditions A36, J4, B4, E6, and C(0)
8 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Despite that the Theorems 3.4.1 and 3.4.2 are equivalent, the latter one has an advan-
tage, since conditions E6 and C(0)

8 have a more explicit form than condition C7 used in
Theorem 3.4.1.

Condition E6 is satisfied if the following condition introduced in Subsection 2.6.3
holds:

I1: ν0(t), t ≥ 0 is an a.s. strictly increasing process.

In applications to renewal type models, the limiting internal stopping process is often
an exceeding time process. It has the following form: ν0(t) = sup(s : κ0(s) ≤ t), t ≥ 0,
where κ0(s), s ≥ 0 is a càdlàg process such that (a) κ+

0 (s) = supu≤s κ0(u), s ≥ 0 is an a.s.

strictly increasing process, (b) κ+
0 (s)

P−→ ∞ as s→ ∞.
Condition (b) implies that ν0(t) < ∞ with probability 1 for every t ≥ 0, whereas the

condition (a) implies that ν0(t), t ≥ 0 is an a.s. continuous process.
In this case, condition I1 usually prohibits the process κ0(s), s ≥ 0 to have positive

jumps. This restricts applications of condition I1.
Condition E6 can hold in situations where the process κ0(s), s ≥ 0 may possess

positive jumps. For example, condition E6 holds if the process ξ0(s), s ≥ 0 can be



3.4. Asymptotically continuous internal stopping processes 189

decomposed into the sum ξ0(s) = ξ′0(s) + ξ′′0 (s), s ≥ 0, where the first component is
an a.s. continuous process possibly dependent on the process κ0(s), s ≥ 0, whereas
the second component is a stochastically continuous càdlàg process independent of the
process κ0(s), s ≥ 0.

3.4.2. Conditions of J-compactness. It is useful to note that J-compactness of the
processes ζε(t), t ≥ 0, can be proved without the use of the weak convergence condition
A36.

Let us introduce the following condition:

K(0)
4 : limt→∞ limε→0 P{νε(0) > t} = 0.

Lemma 3.4.1. Let conditions J4, U5, and K(0)
4 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Lemma 3.4.1. Using estimate (3.2.10) for c = 1/T and conditions U5 and K
(0)
4

we get for every T > 0 that

lim
T ′→∞

lim
ε→0

P{νε(T ) ≥ T ′} ≤ lim
T ′→∞

lim
ε→0

P{νε(0) ≥ T ′/2}
+ lim

T ′→∞
lim
ε→0

P{∆U(νε(·), 1/T ′, T ) ≥ T ′/2([TT ′] + 1)} = 0.
(3.4.6)

Now, the proof of the lemma follows directly from estimate (3.4.4) and relation
(3.4.6). �

3.4.3. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.4.2, in which the continuity conditions E6 and C(0)

8 are weakened. Intro-
duce the following conditions:

F4: There exist sequences δl ∈ Z0, δl → 0 as l → ∞ and 0 < Tr → ∞ as r → ∞
such that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)

εik − c ≤
νε(t′), νε(t′′) < α

(δl)
εik ,α

(δl)
εik < Tr} = 0 for all 0 ≤ t′ < t′′ < ∞;

and

D(w)
7 : There exist sequences δl ∈ Z0, δl → 0 as l → ∞ and 0 < Tr → ∞ as r → ∞ such

that, for every l, k, r ≥ 1 and i = 1, . . . ,m, lim0<c→0 limε→0 P{α(δl)
εik − c ≤ νε(w) <

α(δl)
εik ,α

(δl)
εik < Tr} = 0.

Theorem 3.4.3. Let conditions A36, J4, B4, F4, and D(0)
7 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.
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Proof of Theorem 3.4.3. Conditions A36, J4, F4, and D
(0)
7 imply that conditions of The-

orem 2.7.9 hold for the external processes ξε(t), t ≥ 0 and the internal stopping processes
νε(t) = (νε(t), . . . , νε(t)), t ≥ 0, with m identical components. In particular, condition A36
implies that condition AV

22 holds for the set V in A36. Condition J4 is required in both
Theorems 3.4.3 and 2.7.9. Also, condition F4 implies that condition F3 holds. By apply-
ing Theorem 2.7.9, we prove that the processes ζε(t) weakly converge to ζ0(t) as ε → 0
on the set S 0 defined in this theorem. This set is dense in [0,∞). Due to condition D(0)

7 ,
the point 0 can also be included in the set S 0.

Conditions A36, J4, and B4 imply that the conditions of Lemma 3.4.1 hold. In
particular, condition A36 implies condition K

(0)
4 . Also, by Lemma 3.2.1, conditions A36

and B4 imply condition U5. By applying Lemma 3.4.1, we prove J-compactness of the
processes ζε(t), t ≥ 0, on any finite interval.

To complete the proof, it remains to use Theorem 1.6.6 that gives conditions for
J-convergence of càdlàg processes defined on interval [0,∞). �

3.4.4. The set of weak convergence. Denote by W0 the set of points w that satisfy
condition C

(w)
8 . Obviously, W ⊆ W0. Let also Z0 be the set of points of stochastic conti-

nuity for the limiting stopping process ζ0(t), t ≥ 0. The set W can obviously be replaced
with the set W0 in the proof of Theorem 3.4.1. So, we can prove weak convergence of
the processes ζε(t), t ≥ 0 on set W0. This set is dense in [0,∞) and contains the point 0.
The processes ζε(t), t ≥ 0 J-converge and therefore, by Lemma 1.6.5, the set W0 can be
extended to the set W0 ∪ Z0. Finally, we get that, under conditions of Theorem 3.4.1, the
following relation holds:

ζε(t), t ∈ W0 ∪ Z0 ⇒ ζ0(t), t ∈ W0 ∪ Z0 as ε→ 0. (3.4.7)

3.4.5. Non-monotone internal stopping processes. If the external processes are not
asymptotically continuous, then monotonicity of the internal stopping processes plays an
essential role. As a matter of fact, the key estimate (3.4.3) does require that the order
t′ ≤ t ≤ t′′ be preserved for the values y(t′) ≤ y(t) ≤ y(t′′). We discuss this problem in
Subsection 3.6.8.

3.4.6. The time interval [0, T]. In this case, we consider the semi-vector com-
position ζε(t) = (ξεi(νε(t)), i = 1, . . . ,m), t ∈ [0, T ] of a vector càdlàg process ξε(t) =

(ξεi(t), i = 1, . . . ,m), t ≥ 0, with real-valued components, and a non-negative and non-
decreasing càdlàg process νε(t), t ∈ [0, T ].

We can always continue the internal stopping process to the interval [0,∞) by the
following formula:

νε(t) =


νε(t) if 0 ≤ t ≤ T,
νε(T ) if t ≥ T.

(3.4.8)

No we can apply Theorems 3.4.1 or 3.4.2 to the processes ζε(t), t ≥ 0 with internal
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stopping processes νε(t), t ≥ 0, defined in (3.4.8). Conditions of this theorems should be
modified taking into account (3.4.8).

The condition of weak convergence A36 should be replaced with a condition in
which the set V is dense in [0, T ] and contains the points 0 and T . The condition of
J-compactness J4 does not require any changes. The condition of continuity B4 should
be restricted to the interval [0, T ].

Also, it should be assumed that the set W in condition C7 is a dense set in [0, T ] and
contains the points 0 and T . If condition E6 is used, instead of C7, it should be assumed
that the points t′, t′′ in this condition are taken such that 0 ≤ t′ < t′′ ≤ T . Also, condition
C(0)

8 and, additionally, condition C(T)
8 must be assumed to hold.

If condition F4 is used, instead of C7, then it should be assumed that the points t′, t′′

in this condition are taken such that 0 ≤ t′ < t′′ ≤ T . Also, it should be assumed that
condition D(0)

7 and, additionally, condition D(T)
7 hold.

With these changes, conditions A36, J4, B4, and one of the following combinations
of conditions (a) C7, (b) E6, C(0)

8 , C(T)
8 , or (c) F4, D(0)

7 , D(T)
7 imply that the processes

ζε(t), t ∈ [0,∞) J-converge to the process ζ0(t), t ∈ [0,∞) as ε→ 0.
Again, J-convergence of the processes ζε(t) on the interval [0,∞) automatically im-

plies that these processes J-convergence on the interval [0, T ] if the point T is a point of
stochastic continuity for the limiting process ζ0(t), t ∈ [0, T ]. In this case, no additional
conditions are needed. This pertains to cases (a) and (b). Indeed, conditions B4 and C(T)

8
imply that T is a point of stochastic continuity for the process ζ0(t). In the case (c), it is
possible that T is a point of stochastic discontinuity for the process ζ0(t). So, condition
D(T−)

7 i.e., condition D(T)
7 where the random variables νε(T ) are replaced with νε(T − 0),

should additionally be assumed. This allows to include the random variables ζε(T −0) in
the corresponding relation of weak convergence and, in the sequel, to get J-convergence
of the processes ζε(t), t ∈ [0, T ].

3.4.7. The time interval (0,∞). The results of this section can also be recast in the
case of the semi-infinite interval (0,∞). The condition that the limiting internal stopping
random variable ν0(t) > 0 with probability 1 for every t > 0 should be imposed. In this
case, the point 0 can be excluded from the sets U and V in condition A36. Also, the
relations of J and U-compactness, respectively, in conditions of J4 and U6 should be
requested to hold for any finite interval [T ′, T ′′], where 0 < T ′ < T ′′ < ∞. Finally, the
set W in condition C7 should be dense in the open interval (0,∞). Also, in conditions
E6, the corresponding relation should be required to hold only for 0 < t′ < t′′ < ∞ and
condition C(0)

8 should be omitted. Analogously, if condition F4 is employed, then the
corresponding asymptotic relation in this condition should be requested to hold only for
0 < t′ < t′′ < ∞ and condition D(0)

7 should be omitted.
By applying Theorem 2.7.1 and taking into account remarks in Subsection 2.7.6, one

can prove weak convergence of the vector compositions

ζε(t), t ∈ V ⇒ ζε(t), t ∈ V as ε→ 0. (3.4.9)
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The J-compactness condition can be obtained with a slight modification of estimates
(3.4.3) and (3.4.4).

The first one is valid for any m-dimensional càdlàg function x(t), t ≥ 0, non-negative
and non-decreasing càdlàg function y(t), t ≥ 0, and 0 < T ′ < T ′′ < ∞, 0 < T1 < T2 < ∞,

∆J(x(y(·)), c, T ′, T ′′)χ(∆U(y(·), c, T ′, T ′′) ≤ c′, y(T ′) ≥ T1, y(T ′′) ≤ T2)
≤ ∆J(x(·), c′, T1, T2).

(3.4.10)

Using (3.4.10) we have

P{∆J(ξε(νε(·)), c, T ′, T ′′) > δ}
≤ P{∆J(ξε(νε(·)), c, T ′, T ′′) > δ,

∆U(νε(·), c, T ′, T ′′) ≤ c′, νε(T ′) ≥ T1, νε(T ′′) ≤ T2}
+ P{∆U(νε(·), c, T ) > c′} + P{νε(T ′) < T1} + P{νε(T ′′) > T2}
≤ P{∆J(ξε(·), c′, T1, T2) > δ} + P{∆U(νε(·), c, T ′, T ′′) > c′}
+ P{νε(T ′) < T1} + P{νε(T ′′) > T2}.

(3.4.11)

By repeating the subsequent steps in the proof of Theorem 3.4.2, one can get relation
of J-compactness for 0 < T ′ < T ′′ < ∞,

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ′, T ′′) > δ} = 0, δ > 0. (3.4.12)

Relations (3.4.9) and (3.4.12) imply that

ζε(t), t ∈ (0,∞)
J−→ ζ0(t), t ∈ (0,∞) as ε→ 0. (3.4.13)

3.4.8. A Polish phase space. Results in this section can be generalised to a model
with the external processes ξε(t), t ≥ 0, that have values of the components ξεi(t), t ≥ 0
in a Polish space X.

The formulation of condition A36 can be kept without changes. In the condition J4,
the Euclidean distance |x − y| must be replaced with the corresponding metric d(x, y) in
the formulas for the moduli ∆J(ξεi(·), c, T ), i = 1, . . . ,m.

All other conditions B4, E6, and C(0)
8 of Theorems 3.4.1 and 3.4.2 remain the same.

With these changes in the conditions, the proofs of these theorems can be repeated. In
particular, the estimates for the modulus of J-compactness ∆J(ζεi(·), c, T ), given in the
proofs of Theorem 3.4.1 and 3.4.2, still hold. Finally, we get that, under conditions of
Theorems 3.4.1 or Theorem 3.4.2,

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0. (3.4.14)
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3.4.9. J-convergence in translation theorems. As an example of application of
Theorem 3.4.2, let us consider the model introduced in Section 2.8. We, therefore, as-
sume that the following representation holds:

νε(t) = tνε = t
µε

nε
, ξεi(t) =

ηεi(tnε)
nαε h(nε)

, t ≥ 0, i = 1, . . . ,m,

where (a) α = const ≥ 0; (b) nε is a non-random positive function such that nε → ∞ as
ε→ 0; (c) h(x), x ≥ 0 is a slowly varying function.

We will consider the processes ζ′ε(t) = (ζ′εi(t), i = 1, . . . ,m), t ≥ 0, where

ζ′εi(t) =
ηεi(tµε)
µαε h(µε)

· χ(µε , 0), t ≥ 0, i = 1, . . . ,m.

As was shown in Section 2.8, the processes ζ′ε(t), t ≥ 0 can be represented in the
form of a semi-vector composition ζ′ε(t) = ξ′ε(νε(t)), t ≥ 0. Here, the external process
ξ′ε(t) = βεξε(t), t ≥ 0, where βε = ν−αε (h(µε)/h(nε))−1 ·χ(µε , 0), and the internal stopping
process is νε(t) = tνε, t ≥ 0.

It was shown in the proof of Theorem 2.8.2 that, under conditions A23, J4, and I4 of
this theorem,

(νε(s), ξ′ε(t)), (s, t) ∈ [0,∞) × U ⇒ (ν0(t), ξ′0(t)), t ∈ [0,∞) × U as ε→ 0, (3.4.15)

where ξ′0(t) = ν−α0 ξ0(t), t ≥ 0.
This means that condition A36 holds for the processes νε(t), t ≥ 0, and ξ′ε(t), t ≥ 0,

with the set V = [0,∞). Also, it was shown in the proof of Theorem 2.8.2 that condition
J4 holds for the processes ξ′ε(t), t ≥ 0. Conditions B4, E6, C(0)

8 obviously hold, since the
limiting internal stopping process is ν0(t) = tν0, t ≥ 0. Therefore, Theorem 3.4.2 can be
applied to the compositions ζ′ε(t) = ξ′ε(tνε), t ≥ 0. This yields the following statement.

Theorem 3.4.4. Let conditions A23, J4, and I4 of Theorem 2.8.2 hold. Then

ζ′ε(t), t ≥ 0
J−→ ζ′0(t), t ≥ 0 as ε→ 0.

3.4.10. J-convergence for randomly stopped stochastic sequences. Let us also
consider the model of randomly stopped stochastic sequences, introduced in Subsection
2.8.4. In this case, the conditions A25, J9, and I5, introduced in Subsection 2.8.4, and
the condition I4, introduced in Subsection 2.8.2, imply relation (2.8.36). This relation
imply, in its turn, that conditions A36 and J4 hold for the processes νn(t) = tνn, t > 0
and ξn(t) = (ξn(t), bn(t)), t > 0. Also, conditions B4, E6, C

(0)
8 obviously hold, since the

limiting internal stopping process ν0(t) = tν0, t > 0 is continuous. Therefore, Theorem
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3.4.2 can be applied to the compositions ξn(tνn), t > 0. The following relations, which
improve relations (2.8.37), (2.8.38), and (2.8.39), can be written:

(
ξ[tµn] − bn

aµn

,
b[tµn] − bn

aµn

) · χ(µn , 0), t > 0

J−→ (ν−ρ0 ξ0(tν0), βρ(tν0)), t > 0 as n→∞,
(3.4.16)

and

ξ[tµn] − b[tµn]

aµn

· χ(µn , 0), t > 0

J−→ (ν−ρ0 ξ0(tν0) − βρ(tν0)), t > 0 as n→ ∞,
(3.4.17)

as well as

ξ[tµn] − b[µn]

aµn

· χ(µn , 0), t > 0

J−→ (ν−ρ0 ξ0(tν0) − βρ(ν0)), t > 0 as n→ ∞.
(3.4.18)

3.5 Semi-vector compositions of càdlàg functions

In this section, we formulate general conditions for J-compactness and J-convergence
of semi-vector compositions of non-random càdlàg functions for the general case where
both the external and the internal limiting functions can be discontinuous. These con-
ditions are used in an essential way in the next Section 3.6, where the corresponding
results are obtained for semi-vector compositions of càdlàg stochastic processes.

3.5.1. Conditions for J-compactness of semi-vector compositions of non-random
càdlàg functions. Let x(t), t ≥ 0 be a function from the space D(m)

[0,∞). We denote by
R[x(·)] the set of points of discontinuity for the function x(t), t ≥ 0. The set R[x(·)] is
empty, finite, or countable. The structure of this set can be described in the following
way. Define recursively the functionals τkn(x(·)) = inf(s > τk−1n(x(·)) : |x(s) − x(s − 0)| ∈
[ 1

n ,
1

n−1 )), k = 1, 2, . . ., where τ0n(x(·)) = 0. The functionals τkn(x(·)), k ≥ 1 take values
in the interval (0,∞]. If τkn(x(·)) < ∞, then it is a point of the k-th jump of the function
x(t), t ≥ 0, with absolute value of the jump belonging to the interval [ 1

n ,
1

n−1 ). Denote by
µn(x(·)) = max(k : τkn(x(·)) < ∞) the total number of such points of jumps. Obviously,

R[x(·)] = {τkn(x(·)), 1 ≤ k < µn(x(·)) + 1, n = 1, 2, . . .}.
The definitions above can also be applied to functions from the space D(1)

[0,∞)+ of
non-negative and non-decreasing càdlàg functions. Let y(t), t ≥ 0 be a function from
this space. Let R[y(·)] denote the set of points of discontinuity for the function y(t),
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t ≥ 0. The set R[y(·)] is empty, finite, or countable. Its structure can be described in the
following way. Define recursively the functionals κkn(y(·)) = inf(s > κk−1n(y(·)) : y(s) −
y(s−0) ∈ [ 1

n ,
1

n−1 )), k = 1, 2, . . ., where κ0n(y(·)) = 0. The functionals κkn(y(·)), k ≥ 1 take
values in the interval (0,∞]. If κkn(y(·)) < ∞, then it is a point of the k-th jump of the
function y(t), t ≥ 0, with value of the jump belonging to the interval [ 1

n ,
1

n−1 ). Denote by
µn(y(·)) = max(k : κkn(y(·)) < ∞) the total number of such points of jumps. Obviously,

R[y(·)] = {κkn(y(·)), 1 ≤ k < µn(y(·)) + 1, n = 1, 2, . . . }.
Let xn(t) = (xn1(t), . . . , xnm(t)), t ≥ 0, n = 0, 1, . . ., be a sequence of functions from

D(m)
[0,∞), and let yn(t), t ≥ 0, n = 0, 1, . . . be a sequence of functions from D(1)

[0,∞)+.
We assume that the following conditions of J-convergence for the functions xn(t) are

verified:

A38: xn(t) → x0(t) as n → ∞, t ∈ X, where X is a subset of [0,∞) that is dense in this
interval and contains the point 0;

and

J13: limc→0 limn→∞ ∆J(xn(·), c, T ) = 0, T > 0.

We also impose the following conditions of J-convergence on the functions yn(t):

A39: yn(t) → y0(t) as n → ∞, t ∈ Y , where Y is a subset of [0,∞) that is dense in this
interval and contains the point 0;

and

J14: limc→0 limn→∞ ∆J(yn(·), c, T ) = 0, T > 0.

Note that the limiting functions x0(t), t ≥ 0 and y0(t), t ≥ 0 are not assumed to be
continuous.

Conditions A38 and J13 imply J-convergence of the functions xn(t), t ≥ 0, and con-
ditions A39 and J14 imply J-convergence of the functions yn(t), t ≥ 0. However, these
conditions together do not imply either J-convergence or J-compactness of the vector
functions (yn(t), xn(t)), t ≥ 0 and their compositions x(yn(t)), t ≥ 0. The corresponding
examples are given in Section 3.1.

The following condition plays a key role in the subsequent consideration:

G2: y0(t ± 0) < R[x0(·)] for t ∈ R[y0(·)].
The following result is from Silvestrov (1974).

Lemma 3.5.1. Let conditions A38, J13, A39, J14, and G2 hold. Then

lim
c→0

lim
n→∞

∆J(xn(yn(·)), c, T ) = 0, T > 0.
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Proof of Lemma 3.5.1. Conditions A38 and J13 imply that xn(·), t ≥ 0
J−→ x0(t), t ≥ 0

as ε → 0. This shows that the set X in condition A38 can be enlarged to the set X ∪ X0,
where X0 = [0,∞) \ R[x0(·)] is the set of continuity points for the function x0(t), t ≥ 0.

Analogously, conditions A39 and J14 imply that yn(·), t ≥ 0
J−→ y0(t), t ≥ 0 as ε → 0.

Thus, the set Y in the condition A39 can be extended to the set Y ∪ Y0, where Y0 =

[0,∞) \ R[y0(·)] is the set of continuity points for the function y0(t), t ≥ 0. Both sets
X0 and Y0 are dense in [0,∞), moreover, they coincide with [0,∞) except for at most
countable sets.

It is sufficient to show that the compactness relation in Lemma 3.5.1 holds for any

T ∈ Y0. In this case, by A39 and J14, the functions yn(t), t ∈ [0, T ]
J−→ y0(t), t ∈ [0, T ] as

n → ∞. This implies existence of a sequence of continuous one-to-one mappings λn(t),
n ≥ 1 of the interval [0, T ] into itself such that

lim
n→∞

sup
t∈[0,T ]

(|yn(t) − y0(λn(t))| + |λn(t) − t|) = 0. (3.5.1)

Since yn(T ) → y0(T ) as n → ∞, there exists T ′ such that maxn yn(T ) ≤ T ′. Ob-
viously, T ′ can be taken from the set X0. In this case, by G2, the functions xn(t), t ∈
[0, T ′]

J−→ x0(t), t ∈ [0, T ′] as n → ∞. This implies existence of a sequence of continu-
ous one-to-one mappings λ′n(t), n ≥ 1 of the interval [0, T ′] into itself such that

lim
n→∞

sup
t∈[0,T ′]

(|xn(t) − x0(λ′n(t))| + |λ′n(t) − t|) = 0. (3.5.2)

By using estimate (1.4.8), given in Lemma 1.4.9, we get

∆J(xn(yn(·)), c, T )
≤ ∆J(x0(λ′n(yn(·))), c, T ) + sup

t∈[0,T ]
|xn(yn(t)) − x0(λ′n(yn(t)))|

≤ ∆J(x0(λ′n(yn(·))), c, T ) + sup
t∈[0,T ′]

|xn(t) − x0(λ′n(t))|.
(3.5.3)

It follows from estimate (3.5.3) and (3.5.2) that, to prove the lemma, it will be suffi-
cient to show that

lim
c→0

lim
n→∞

∆J(x0(λ′n(yn(·))), c, T )

= lim
c→0

lim
n→∞

∆J(x0(λ′n(yn(λn
−1(λn(·))))), c, T ) = 0.

(3.5.4)

Relation (3.5.4) will be proved if we apply Lemma 3.4.1 to the composition of càdlàg
functions x0(λ′n(yn(λn

−1(t)))), t ∈ [0, T ] and λn(t), t ∈ [0, T ]. In order to show that Lemma
3.4.1 can be used, we must show that conditions U5, K

(0)
4 , and J4 are satisfied in this

case.
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Conditions U5 and K
(0)
4 obviously hold for the functions λn(t), t ∈ [0, T ]. Condition

J4 takes in this case the following form:

lim
c→0

lim
n→∞

∆J(x0(λ′n(yn(λn
−1(·)))), c, T )

= lim
c→0

lim
n→∞

∆J(x0(y0(·) + βn(·)), c, T ) = 0,
(3.5.5)

where
βn(t) = λ′n(yn(λn

−1(t))) − y0(t).

By (3.5.1) and (3.5.2), we have

βn = sup
t∈[0,T ]

|βn(t)| ≤ sup
t∈[0,T ]

|λ′n(yn(λn
−1(t))) − yn(λn

−1(t))|

+ sup
t∈[0,T ]

|yn(λn
−1(t)) − y0(t)| ≤ sup

t∈[0,T ′]
|λ′n(t) − t|

+ sup
t∈[0,T ]

|yn(t) − y0(λn(t))| → 0 as n→ ∞.
(3.5.6)

Take an arbitrary σ > 0 and choose h (see Lemma 1.4.1) such that

∆J(x0(·), h, T ′) ≤ σ. (3.5.7)

Denote by uk = u(h)
k , k = 1, . . . rh, the points of the interval (0, T ) at which absolute

values of the jumps of the function y0(t) are not less than h/2 (there is a finite number of
such points).

Since, by condition G2, the function x0(t) is continuous at the points y0(uk ± 0),
k = 1, . . . rh, there is h′ > 0 such that

max
1≤k≤rh

sup
|s′ |,|s′′ |≤h′

|x0(y0(uk ± 0) + s′) − x0(y0(uk ± 0) + s′′)| ≤ σ. (3.5.8)

By Lemma 1.4.2, there exists c > 0 such that, if the points t′, t′′ belong to one of
the intervals [u0, u1), [u1, u2), . . . , [urh−1, urh), [urh , urh+1] (here u0 = 0, urh+1 = T ) and
|t′ − t′′| ≤ c, then

|y0(t′) − y0(t′′)| ≤ h/2. (3.5.9)

Here we can assume that c is chosen such that

max
1≤k≤rh

sup
0<t≤2c

|y0(uk − 0) − y0(uk − t)| ≤ h′/2, (3.5.10)

and
max
1≤k≤rh

sup
0≤t≤2c

|y0(uk) − y0(uk + t)| ≤ h′/2, (3.5.11)

and, moreover,
sup

0<≤2c
|y0(T ) − y0(T − t)| ≤ h/4, (3.5.12)
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and
sup

0≤t≤2c
|y0(0) − y0(t)| ≤ h/4. (3.5.13)

Let n0 be such that, for n ≥ n0,

βn = sup
t∈[0,T ]

|βn(t)| ≤ min(h/4, h′/4). (3.5.14)

To prove the lemma it is sufficient to show that, if n ≥ n0, for any three points t′, t′′,
t′′′ ∈ [0, T ], t − c ≤ t′ < t < t′′ ≤ t + c, we have

Rn[t′, t, t′′] = min(|x0(sn(t)) − x0(sn(t′))|, |x0(sn(t)) − x0(sn(t′′))| ≤ σ, (3.5.15)

where
sn(t) = y0(t) + βn(t) = λ′n(yn(λn

−1(t))).

The following three cases are possible.
(a) t′ = 0 or t′′ = T . Consider the case where t′ = 0 (the case t′′ = T is treated

similarly). By using (3.5.12) and (3.5.14), we get

|sn(0) − sn(t)| ≤ 2βn + sup
0≤s≤c

|y0(0) − y0(s)| ≤ h,

and
|sn(t) − sn(t′′)| ≤ 2βn + 2 sup

0≤s≤2c
|y0(0) − y0(s)| ≤ h,

whence, by (3.5.7), we obtain

Rn[t′, t, t′′] ≤ ∆J(x0(t), h, T ′) ≤ σ.

(b) t′ ≤ uk ≤ t < t′′ or t′ < t < uk ≤ t′′ for some k = 1, . . . , rn. In the first case (the
second one is similar), we get from (3.5.10), (3.5.11), (3.5.13), and (3.5.12) that

|sn(t) − y0(uk)| ≤ sup
0≤s≤c

|y0(uk + s) − y0(uk)| + βn ≤ h′,

and
|sn(t′′) − y0(uk)| ≤ sup

0≤s≤2c
|y0(uk + s) − y0(uk)| + βn ≤ h′,

whence, by (3.5.8),

Rn[t′, t, t′′] ≤ |x0(sn(t)) − x0(sn(t′′))| ≤ σ.

(c) t′, t, t′′ ∈ (uk, uk+1) for some k = 0, . . . , rh. Then, by (3.5.9) and (3.5.14), we get

|sn(t′) − sn(t)| ≤ |y0(t′) − y0(t)| + 2βn ≤ h,
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and
|sn(t′′) − sn(t)| ≤ |y0(t′′) − y0(t)| + 2βn ≤ h,

whence, from (3.5.7) again,

Rn[t′, t, t′′] ≤ ∆J(x0(·), h, T ′) ≤ σ.

This completes the proof. �

3.5.2. J-convergence of semi-vector compositions of non-random càdlàg func-
tions. Note first of all that, as follows from the examples given in Section 3.1, condi-
tions A38, J13, A39, J14, and G2 do not guarantee J-convergence of the compositions
xn(yn(t)), t ≥ 0. These conditions do provide J-compactness of these functions but they
do not guarantee pointwise convergence of these functions on some set dense in [0,∞)
and containing the point 0. Some additional conditions should be added.

Let us introduce the following conditions:

C9: There exists a set W such that (a) y0(t) < R[x0(·)] for t ∈ W, (b) W is a subset of
[0,∞) that is dense in this interval and contains the point 0;

E7: There do not exist points 0 ≤ t′ < t′′ < ∞ such that y0(t′) = y0(t′′) ∈ R[x0(·)];

and

C(w)
10 : y0(w) < R[x0(·)].

Conditions C9, E7, and C(w)
10 coincide, respectively, with conditions C7, E6, and C(w)

8
in the case of non-random functions x0(t), t ≥ 0 and y0(t), t ≥ 0, which replace in this
case, respectively, the stochastic processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0.

As follows from Lemma 2.7.2, conditions E7 and C
(0)
10 are necessary and sufficient

for existence of a set W such that condition C9 holds with this set.
Let W0 denote the set of all points for which condition C(w)

10 holds. Obviously,
W ⊆ W0 for any set W that can appear in condition C9. Hence, under condition C9
or conditions E7 and C(0)

10 , the set W0 is the interval [0,∞) except for at most a countable
set, and 0 ∈ W0.

Denote by Y0 the set of points of continuity for the function y0(t), t ≥ 0. This set and
therefore, the set Y ∪ Y0 is [0,∞) except for at most a countable set. Also 0 ∈ Y ∪ Y0.

Denote Z0 = (Y ∪ Y0) ∩W0. If condition C9 or conditions E7 and C
(0)
10 hold, then the

set Z0 is [0,∞) except for at most a countable set. Also, 0 ∈ Z0.

Lemma 3.5.2. Let conditions A38, J13, A39, E7, and C
(0)
10 hold. Then

xn(yn(t))→ x0(y0(t)) as n→ ∞, t ∈ Z0.
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Proof of Lemma 3.5.2. The proof can be obtained by applying Theorem 2.7.5 to the vec-
tor compositions zn(t) = (xn1(yn(t)), . . . , xnm(yn(t))), t ≥ 0 of the vector càdlàg functions
xn(t) = (xn1(t), . . . , xnm(t)), t ≥ 0, with real-valued components, and the vector càdlàg
functions yn(t) = (yn(t), . . . yn(t)), t ≥ 0, with identical components that are non-negative
and nondecreasing functions. Here n−1 can play the role of the parameter ε.

Conditions A38 and A39 obviously imply that condition AV
22 holds with the set

V = Y . Condition J13 implies that the condition of J-compactness, J4, holds. Finally,
conditions E7 and C

(0)
10 imply that the continuity condition E4 holds. In this case, the set

of weak convergence that enters Theorem 2.7.5, S 0, coincides with set Z0. �

Now, general conditions for J-convergence of compositions of the càdlàg functions
xn(t), t ≥ 0 and yn(t), t ≥ 0 can be obtained by combining the conditions of Lemmas
3.5.1 and 3.5.2 and by applying Theorem 1.4.9 to these functions. These conditions
were given in Silvestrov (1974).

Lemma 3.5.3. Let conditions A38, J13, A39, J14, G2, E7, and C(0)
10 hold. Then

xn(yn(t)), t ≥ 0
J−→ x0(y0(t)), t ≥ 0 as n→ ∞.

3.5.3. J-continuity properties of the composition mapping. Lemma 3.5.3 gives
the most general conditions for J-convergence of compositions of càdlàg functions for
the case where both limiting functions can be discontinuous. These conditions require
J-convergence of components yn(t), t ≥ 0 and xn(t), t ≥ 0, but they do not require J-
convergence of vector càdlàg functions (yn(t), xn(t)), t ≥ 0. The corresponding example
is given in Subsection 3.1.3. In this sense, Lemma 3.5.3 extends, with respect to the
composition mapping, setting of the definition of a J-continuous mapping.

However, there are particular cases, where the composition mapping is J-continuous.
The first case is where (a) both limiting functions y0(t), t ≥ 0 and x0(t), t ≥ 0 are con-

tinuous. This case was considered by Billingsley (1968). Here, conditions of Lemma
3.5.3 are reduced to the conditions of Theorem 3.2.1 applied to semi-vector composi-
tions of non-random càdlàg functions. Conditions G2, E7, and C

(0)
10 automatically hold.

Condition J13 is reduced to condition U4. Condition J14 also holds, due to Lemma 3.2.1.
The second case is where (b) the limiting external function x0(t), t ≥ 0 is contin-

uous. This case was considered by Whitt (1973, 1980) and Silvestrov (1974). Here,
conditions of Lemma 3.5.3 are reduced to the conditions of Theorem 3.3.2 applied to
semi-vector compositions of non-random càdlàg functions. Again, conditions G2, E7,
and C(0)

10 automatically hold, and condition J13 reduces to condition U4.
The third case is where (c) the limiting internal stopping function y0(t), t ≥ 0 is con-

tinuous. This case was considered by Silvestrov (1972b, 1972e, 1973a, 1974). Here,
conditions of Lemma 3.5.3 are reduced to the conditions of Theorem 3.4.2 applied to
semi-vector compositions of non-random càdlàg functions. Condition G2 automatically
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holds. Condition J14 also holds, due to Lemma 3.2.1. Conditions E7 and C
(0)
10 remain.

As show the example given in Subsection 3.1.2, if condition E7 does not hold, then
compositions may not converge pointwise on some interval. In the sequel, they do not
J-converge. Condition E7 holds, for example, if the limiting internal stopping function
y0(t), t ≥ 0 is not only continuous but also strictly monotone. This case was indepen-
dently considered by Whitt (1973, 1980).

3.5.4. The finite interval [0, T]. The result of Lemmas 3.5.1 and 3.5.3 can be easily
reduced to the case of a finite interval [0, T ].

Conditions A38 and J13 do not need any change, but condition A39 and J14 have to
be reduced to the following form:

A40: yn(t) → y0(t) as n → ∞, t ∈ Y , where Y is a subset of [0, T ] that is dense in this
interval and contains the points 0 and T ;

and

J15: limc→0 limn→∞ ∆J(yn(·), c, T ) = 0.

Let RT [y(·)] = R[y(·)] ∩ [0, T ] denote the set of points of discontinuity for the càdlàg
function y(t), t ≥ 0 in the interval [0, T ]. Condition G2 must be transformed to the
following form:

G3: y0(t ± 0) < R[x0(·)] for t ∈ RT [y0(·)].
Let us first formulate a statement that is an analogue of Lemma 3.5.1.

Lemma 3.5.4. Let conditions A38, J13, A40, J15, and G3 hold. Then

lim
c→0

lim
n→∞

∆J(xn(yn(·)), c, T ) = 0.

Proof of Lemma 3.5.4. The case of a finite interval [0, T ] can be reduced to the case of
the semi-infinite interval [0,∞) by applying Lemma 3.5.1 to the functions xn(t), t ≥ 0
and yn(t) = yn(t ∧ T ), t ≥ 0. Conditions A38 and J13 are not changed. It is obvious
that conditions A40, J15, and G3 imply that conditions A39, J14, and G2 hold for the
functions xn(t), t ≥ 0 and yn(t), t ≥ 0. By applying Lemma 3.5.1, we get a relation of
J-compactness for the functions xn(yn(t)), t ≥ 0, for all intervals [0, T ′]. For T ′ ≥ T , this
relation coincides with the relation given in Lemma 3.5.4. �

An analogous reduction to the case of a finite interval can be made in Lemma 3.5.2.
In this case, we should add to A40 the assumption of convergence of the values

yn(T − 0), that is, to replace A40 by the following condition:

A41: (a) yn(t) → y0(t) as n → ∞ for t ∈ Y , where Y is a subset of [0, T ] that is dense
in this interval and contains the points 0 and T ;
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(b) yn(T − 0)→ y0(T − 0) as n→ ∞.

Also conditions C9 and E7 should be modified in the following way:

C11: There exists a set W such that (a) y0(t) < R[x0(·)] for t ∈ W, (b) W is a subset of
[0, T ] that is dense in this interval and contains the points 0 and T ;

and

E8: There do not exist points 0 ≤ t′ < t′′ ≤ T such that y0(t′) = y0(t′′) ∈ R[x0(·)].
Let us modify condition C

(w)
10 in the following way:

C
(w±)
10 : y0(w ± 0) < R[x0(·)].

Note that C
(w+)
10 coincides with C

(w)
10 .

Denote by W0(T ) = W0 ∩ [0, T ] the set of all points w ∈ [0, T ] that satisfy condition
C

(w)
10 .

It follows from Lemma 2.7.2 that conditions E8, C(0)
10 , and C(T)

10 are necessary and
sufficient for condition C11 to hold. Actually, it follows from Lemma 2.7.2 that, under
condition C11 or conditions E8, C(0)

10 , and C(T)
10 , the set W, which appears in C11, is the

interval [0, T ] except for at most a countable set. Since W ⊆ W0(T ), the set W0(T ) is also
the interval [0, T ] except for at most a countable set.

Let Y0(T ) = Y0 ∩ [0, T ]. This set and the set Y ∪ Y0(T ) are [0, T ] except for at most
countable sets. Finally, denote Z0 = (Y ∪ Y0(T )) ∩W0(T ). If condition C11 or conditions
E8, C(0)

10 , and C(T)
10 hold, then the set Z0 coincides with [0, T ] except for at most a countable

set. Also, 0, T ∈ Z0.

Lemma 3.5.5. Let conditions A38, J13, A41, E8, C(0)
10 , and C(T)

10 hold. Then

xn(yn(t))→ x0(y0(t)) as n→ ∞, t ∈ Z0.

If, additionally, condition C(T−)
10 holds, then also xn(yn(T −0))→ x0(y0(T −0)) as n→ ∞.

Proof of Lemma 3.5.5. To prove the first statement, i.e., to prove that xn(yn(t)) converges
to x0(y0(t)) in points t ∈ Z0, it is enough to apply Lemma 3.5.2 to the functions xn(t),
t ≥ 0, and yn(t ∧ T ), t ≥ 0. Condition A41 implies A40. Conditions E8 and C(T)

10 imply
condition E7.

It should be noted that the proof of Lemma 3.5.2 given above is based on applying
Theorem 2.7.5. This theorem, in its turn, is based on Theorem 2.3.3.

To prove the second statement of the lemma, i.e., that xn(yn(T − 0)) converges to
x0(y0(T − 0)) as n → ∞, we can apply Theorem 2.3.3 directly to the non-random func-
tions xn(t), t ≥ 0 and the vector stopping points xn(T −0) = (y0(T −0), . . . y0(T −0)) with
identical m components. Conditions A38 and A41 (b) imply condition A20. Condition
J13 implies condition J4. Condition CT−

10 implies condition C4. �
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Lemma 3.5.6. Let conditions A38, J13, A41, J15, G3, E8, C
(0)
10 , and C

(T)
10 hold. Then

xn(yn(t)), t ∈ [0, T ]
J−→ x0(y0(t)), t ∈ [0, T ] as n→ ∞.

Proof of Lemma 3.5.6. The proof can be obtained by combining the conditions of Lem-
mas 3.5.4 and 3.5.5, and applying Theorem 1.4.4 to the functions xn(yn(t)), t ∈ [0, T ].
What remains to be explained is why condition C

(T−)
10 is omitted in Lemma 3.5.6. As a

matter of fact, conditions G3 and C(T)
10 imply this condition. Indeed, if y0(T − 0) = y0(T ),

then condition C(T−)
10 coincides with C(T)

10 . If y0(T − 0) , y0(T ), then condition G3 implies
C(T−)

10 . �

Remark 3.5.1. If the point T is a point of continuity for the limiting function x0(y0(t)),
condition A41 can be replaced in Lemma 3.5.6 by condition A40, i.e., condition A41 (b)
yn(T − 0)→ y0(T − 0) as n→∞ can be omitted.

3.6 Semi-vector compositions of càdlàg processes

In this section, we formulate conditions for J-convergence of general semi-vector com-
positions of càdlàg processes. We consider a model where both limiting external and
internal stopping processes can be discontinuous.

3.6.1. J-compactness of semi-vector compositions of càdlàg processes. Let, for
every ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be an m-dimensional càdlàg process with
real-valued components, and νε(t), t ≥ 0 be a non-negative and non-decreasing càdlàg
process. Consider their semi-vector composition ζε(t) = ξε(νε(t)), t ≥ 0, which, in this
case, is also an m-dimensional càdlàg process.

A basis for further considerations is the condition of joint weak convergence A36,
and the conditions of J-compactness J4 and J11.

Conditions A36 and J4 imply J-convergence of the processes ξε(t), t ≥ 0, while
conditions A36 and J11 imply J-convergence of the processes νε(t), t ≥ 0. However, the
examples given in Section 3.1 show that, together, conditions A36, J4, and J11 do not
imply either J-convergence or J-compactness for the vector processes (νε(t), ξε(t)), t ≥ 0
and their compositions ζε(t), t ≥ 0.

We first give general conditions that would yield J-compactness of compositions.
These conditions can be combined with various conditions that imply weak convergence
of compositions, in order to get conditions for J-convergence. For this reason, we for-
mulate J-compactness conditions separately.

Let us formulate a condition that is, actually, a stochastic analogue of conditionG2,

G4: P{ν0(t ± 0) < R[ξ0(·)] for t ∈ R[ν0(·)]} = 1.

The first main result is the following theorem from Silvestrov (1974).
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Theorem 3.6.1. Let conditions A36, J4, J11, and G4 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Theorem 3.6.1. We are going to reduce the proof to the case of non-random
càdlàg functions using Skorokhod’s representation Theorem 1.6.16 and then Lemma
3.5.1.

Unfortunately, Theorem 1.6.16 can not be directly applied either to the vector pro-
cesses (νε(t), ξε(t)), t ≥ 0, or to their compositions ζε(t), t ≥ 0. Indeed, as it was re-
marked above, conditions A36, J4, J11, and G4 do not necessarily imply J-convergence
of these processes. So, this approach must be carried out in a more delicate modified
way. The result can be achieved by applying first Theorem 1.6.14 to the vector pro-
cesses (νε(t), ξε(t)), t ≥ 0, and then Theorem 1.6.16 to the processes ξε(t), t ≥ 0 and νε(t),
t ≥ 0.

Note, first of all, that conditions A36, J4, and J11 allow to enlarge the sets of weak
convergence, U and V , in condition A36 to the sets U′ = U ∪U0 and V ′ = V ∪ V0. Here
U0 and V0 are sets of stochastic continuity of the processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0,
respectively. Both sets U ′ and V ′ equal [0,∞) except for at most countable sets. Also,
both sets, U′ and V ′, contain the point 0. This implies that the set S ′ = U′ ∩ V ′ is also
[0,∞) except for at most a countable set, and 0 ∈ S ′. Also, the following relation holds:

(νε(t), ξε(t)), t ∈ S ′ ⇒ (ν0(t), ξ0(t)), t ∈ S ′ as ε→ 0. (3.6.1)

Choose a countable set S̃ ⊆ S ′ such that S̃ is dense in [0,∞) and contains the point 0.
Relation (3.6.1) permits to apply Theorem 1.6.14 and construct some probability space
(Ω,F,P) and an a.s. càdlàg processes (ν̃ε(t), ξ̃ε(t)), t ≥ 0, defined on this space for every
ε ≥ 0 and such that

(ν̃ε(t), ξ̃ε(t)), t ≥ 0 d
= (νε(t), ξε(t)), t ≥ 0, (3.6.2)

and, for an arbitrary sequence 0 ≤ εn → 0 as n→ ∞,

(ν̃εn(t), ξ̃εn
(t))

a.s.−→ (ν̃0(t), ξ̃0(t)) as n→ ∞, t ∈ S̃ . (3.6.3)

Let εn be an arbitrary sequence such 0 ≤ εn → 0 as n→ ∞.
Relations (3.6.1), (3.6.2), (3.6.3) and condition J4 allow to apply Theorem 1.6.16 to

the processes ξε(t), t ≥ 0, and ξ̃ε(t), t ≥ 0.
Therefore, there exists a subsequence ε′k = εnk → 0 as k → ∞ of the sequence εn

such that P(A) = 1, where A ∈ F is the set of elementary events ω such that

ξ̃ε′k (t,ω), t ≥ 0
J−→ ξ̃0(t,ω), t ≥ 0 as k → ∞. (3.6.4)

Due to relations (3.6.1), (3.6.2), (3.6.3) and condition J4, we can apply Theorem
1.6.16 to the processes νε(t), t ≥ 0 and ν̃ε(t), t ≥ 0.
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Therefore, there exists a subsequence ε′′r = ε′kr
→ 0 as r → ∞ of the sequence ε′k

such that P(B) = 1, where B ∈ F is the set of elementary events ω such that

ν̃ε′′r (t,ω), t ≥ 0
J−→ ν̃0(t,ω), t ≥ 0 as r → ∞. (3.6.5)

Using relation (3.6.2) we see that condition G4 also implies that P(C) = 1, where
C ∈ F is the set of elementary events ω for which

ν̃0(t ± 0,ω) < R[ξ̃0(·,ω)] for t ∈ R[ν̃0(·,ω)]. (3.6.6)

Obviously, P(A ∩ B ∩ C) = 1 and, for ω ∈ A ∩ B ∩C, conditions A38, J13, A39, J14,
and G2 in Lemma 3.5.1 hold for sequences of the càdlàg functions ξ̃ε′′r (t,ω), t ≥ 0 and
ν̃ε′′r (t,ω), t ≥ 0. By applying Lemma 3.5.1 to their compositions, ζ̃ε′′r (t) = ξ̃ε′′r (ν̃ε′′r (t)),
t ≥ 0, we get that, for ω ∈ A ∩ B ∩ C,

lim
c→0

lim
r→∞

∆J(ζ̃ε′′r (·,ω), c, T ) = 0, T > 0. (3.6.7)

Relation (3.6.7) implies that

lim
c→0

lim
r→∞

P{∆J(ζ̃ε′′r (·), c, T ) ≥ δ} = 0, δ, T > 0. (3.6.8)

In the case of the usual limits, this implication is obvious, since a.s. convergence
of random variables implies their convergence in probability. In the case of iterated
limits, the same implication takes place. The relation (3.6.7) means that the random
variables ∆c = limr→∞ ∆J(ζ̃ε′′r (·), c, T )

a.s.−→ 0 as c → 0. Therefore, these random vari-
ables also converge in probability, and so (a) limc→0 P{∆c ≥ δ} = 0 for all δ > 0. Set
∆c,r = maxl≥r ∆J(ζ̃ε′′l (·), c, T ). The sequence of random variables ∆c,r, r = 1, 2, . . . is non-

increasing in r and ∆c,r
a.s.−→ ∆c as r → ∞. Hence, limr→∞ P{∆c,r ≥ δ} = P{∆c ≥ δ}.

But P{∆c,r ≥ δ} ≥ maxl≥r P{∆J(ζ̃ε′′l (·), c, T ) ≥ δ} and, therefore, (b) P{∆c ≥ δ} ≥
limr→∞maxl≥r P{∆J(ζ̃ε′′l (·), c, T ) ≥ δ} = limr→∞ P{∆J(ζ̃ε′′r (·), c, T ) ≥ δ}. Obviously, (a)
and (b) imply (3.6.8).

Since the subsequence ε′′r was selected from an arbitrarily chosen sequence 0 ≤ εn →
∞, relation (3.6.8) implies that

lim
c→0

lim
ε→0

P{∆J(ζ̃ε(·), c, T ) ≥ δ} = 0, δ, T > 0. (3.6.9)

Again, this implication is obvious in the case of the usual limits. In the case of iter-
ated limits, the same implication takes place. Assume that (3.6.9) does not hold. This
means that there exist δ, T, γ > 0 such that (c) limc→0 limε→0 P{∆J(ζ̃ε(·), c, T ) ≥ δ} ≥ γ.
Choose an arbitrary sequence 0 < cn → 0 as n → ∞. Note that P{∆J(ζ̃ε(·), c, T ) ≥ δ} is
a non-decreasing function in c > 0. Hence, (c) implies that (d) there exists a sequence
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0 < εn → 0 as n → ∞ such that P{∆J(ζ̃εn
(·), cn, T ) ≥ δ} ≥ γ/2. By (3.6.4) – (3.6.8),

(e) there exists a subsequence εnr = ε′′r → 0 as r → ∞ such that (3.6.8) holds. Ob-
viously, (e) implies that (f) there exists c̃ = c̃(γ) such that limr→∞ P{∆J(ζ̃ε′′r (·), c̃, T ) ≥
δ} ≤ γ/8. As a consequence, (f) implies that (g) there exists r̃ = r̃(γ) such that
maxr≥r̃ P{∆J(ζ̃ε′′r (·), c̃, T ) ≥ δ} ≤ γ/4. But cn → 0 as n → ∞ and, therefore, (h) there
exists r ≥ r̃ such that cnr ≤ c̃. Obviously, (h) implies that (i) γ/4 ≥ P{∆J(ζ̃ε′′r (·), c̃, T ) ≥
δ} ≥ P{∆J(ζ̃εnr

(·), cnr , T ) ≥ δ}. But (i) contradicts (d). Therefore, relation (3.6.9) does
hold.

The relation (3.6.9) implies the relation stated in the theorem, since, due to (3.6.2),
∆J(ζ̃ε(·), c, T ) d

= ∆J(ζε(·), c, T ). �

3.6.2. J-convergence of semi-vector compositions of càdlàg processes. In order
to obtain general conditions for J-convergence, one can combine the conditions of J-
compactness formulated above in Theorem 3.6.1 and the conditions of weak convergence
for compositions of càdlàg processes formulated in Theorem 2.7.5.

The second main result in this section is the following theorem from Silvestrov
(1974).

Theorem 3.6.2. Let conditions A36, J4, J11, G4, E6, and C(0)
8 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.6.2. Conditions A36, J4, J11, and G4 are conditions of Theorem
3.6.1. This theorem implies J-compactness of the processes ζε(t), t ≥ 0 on any finite
interval.

Conditions A36, J4, E6, and C
(0)
8 imply that conditions of Theorem 2.7.5 hold for the

external processes ξε(t), t ≥ 0 and the internal stopping processes νε(t) = (νε(t), . . . , νε(t)),
t ≥ 0, with m identical components. In particular, condition A36 implies that condition
AV

22 holds for the set V in A36. Condition J4 is required in both Theorems 3.6.2 and
2.7.5. Also, condition E6 implies, in this case, that condition E4 holds. By applying
Theorem 2.7.5, we prove that the processes ζε(t) weakly converge to ζ0(t) as ε → 0 on
the set S 0 defined in this theorem. This set is dense in [0,∞). Due to condition C(0)

8 , the
point 0 can also be included in the set S 0.

To complete the proof, it remains to refer to Theorem 1.6.6 which gives conditions
for J-convergence of càdlàg processes defined on the interval [0,∞). �

3.6.3. Skorokhod’s method of a single probability space. The proof of Theorem
3.6.2 can also be accomplished with the use of the modified method of a single proba-
bility space. One only needs to continue the proof of Theorem 3.6.1.

Due to relation (3.6.2), condition E6 implies that P(D) = 1, where D ∈ F is a set
of elementary events ω for which there do not exist points 0 ≤ t′ < t′′ ≤ T such that
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ν0(t′,ω) = ν0(t′′,ω) ∈ R[ξ0(·,ω)]. Also, due to relation (3.6.2), condition C
(0)
10 implies

that P(E) = 1, where E ∈ F is a set of elementary events ω for which ν0(0,ω) <
R[ξ0(·,ω)].

Obviously, P(A∩B∩C∩D∩E) = 1 and, forω ∈ A∩B∩C∩D∩E, conditions A38, J13,
A39, J14, G2, E7, and C

(0)
10 of Lemma 3.5.3 hold for the sequences of càdlàg functions

ξ̃ε′′r (t,ω), t ≥ 0, and ν̃ε′′r (t,ω), t ≥ 0. By applying Lemma 3.5.3 to their compositions
ζ̃ε′′r (t) = ξ̃ε′′r (ν̃ε′′r (t)), t ≥ 0, we get, for ω ∈ A ∩ B ∩ C ∩ D ∩ E, the following relation:

ζ̃ε′′r (t,ω), t ≥ 0
J−→ ζ̃0(t,ω), t ≥ 0 as r → ∞. In terms of the metrics dJ , the last relation

means that dJ(ζ̃ε′′r (·,ω), ζ̃0(·,ω)) → 0. Since the initial sequence εn was arbitrary, this

relation means that the random variables dJ(ζ̃ε(·), ζ̃0(·)) P−→ 0 as ε → 0. As it was
pointed out in Lemma 1.3.1, convergence in probability implies weak convergence. So,
we get that the processes ζ̃ε = {ζ̃ε(t), t ≥ 0}, considered as random variables that take
values in the space D(m)

[0,∞) with the metric dJ , weakly converge. Since ζ̃ε
d
= ζε, this

completes the proof.
Let us compare the method described above and the ”combined” method used in the

proof of Theorem 3.6.2 given in Subsection 3.6.2. That method combines a modified
version of the method of a single probability space, used to prove J-compactness of the
corresponding càdlàg processes, with the general conditions of weak convergence given
Theorem 2.7.5 and based on the continuity condition E6.

We think that the separation of the proof of J-compactness and the proof of weak
convergence of compositions of càdlàg processes on a set dense in [0,∞) is a signif-
icant advantage of the combined method. One can combine conditions that imply J-
compactness with various conditions that yield weak convergence, in particular, with
conditions based on continuity conditions weaker than the second-type continuity con-
dition E6. For example, the conditions of J-compactness, formulated above in Theorem
3.6.1, can be combined with the conditions for weak convergence formulated in Theo-
rem 2.7.9 that are more general than conditions given in Theorem 2.7.5 (see Theorem
3.6.4 in Subsection 3.6.6). In this case the ”pure” method of a single probability space,
described above, can not be applied. Other examples are given in Chapter 4 of this book
and in Silvestrov (1974).

The proof of Theorem 3.6.2, based on the modified method of a single probability
space, was given in Silvestrov (1974). Some advantage of this approach is connected
with a possibility to carry it over to some other topologies of convergence. For example,
Anisimov (1977, 1988) gave a sketch of such an application to the topologies M, J2

and some others. In the case of the J-topology, the results replicated Theorem 3.6.2
but in a weaker form. In particular, the continuity condition E1 has been used in an
”awkward” form, E

′
2 (see Subsection 2.6.3), together with an additional condition of

stochastic boundedness of internal stopping processes.
Theorems 3.6.2 and 3.6.4 give the most general conditions for J-convergence of
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compositions of càdlàg processes for the case (d) where both limiting processes can
be discontinuous. These conditions require ”separate” J-convergence of components
νε(t), t ≥ 0 and ξε(t), t ≥ 0, but they do not require J-convergence of vector càdlàg pro-
cesses (νε(t), ξε(t)), t ≥ 0. The corresponding example is given in Subsection 3.1.3. In
this sense, Theorems 3.6.2 and 3.6.4 extend, with respect to the composition mapping,
setting of the continuous mapping theorem.

However, there are particular cases, where the continuous mapping theorem can be
applied. These are the cases where at least one component of the limiting composi-
tion is a.s. continuous. Here, the conditions of joint weak convergence, A36, and J-
compactness, J4 and J11, do imply J-convergence of the vector processes (νε(t), ξε(t)), t ≥
0. This makes it possible to reduce the consideration to the case of non-random càdlàg
functions using the continuous mapping theorem. It should be noted that the use of this
theorem should be anticipated by the proof of J-continuity of the composition mapping
in every particular case.

We prefer, however, to use, in these cases, the most simple ”direct” method com-
bining results on weak convergence of compositions with the direct check of the cor-
responding J-compactness conditions. The main advantage of this method is the same
as for the combined method described above. It is connected with the separation of
conditions of weak convergence and conditions of J-compactness. Another advantage
of this method is that it provides an additional information about the structure of the
corresponding sets of weak convergence.

Let us compare results that can be obtained with the use of Theorem 3.6.2 in the
situations where at least one component of of the limiting composition is a.s. continuous.

There are two simplest cases where all methods give similar results.
The first case is where (a) both limiting processes ν0(t), t ≥ 0 and ξ0(t), t ≥ 0 are

a.s. continuous. This case was treated by Billingsley (1968) with the use of the contin-
uous mapping theorem. Theorem 3.2.1, proved in Section 3.2 with the use of the direct
method, yields a similar result for vector compositions of càdlàg processes. The con-
ditions of Theorem 3.6.2 are reduced, in this case, to the conditions of Theorem 3.2.1
applied to semi-vector compositions of càdlàg processes. Conditions G4, E6, and C

(0)
8

automatically hold. Condition J4 are reduced to condition U4. Condition J11 also holds,
due to Lemma 3.2.1.

The second case is where (b) the limiting external process ξ0(t), t ≥ 0 is a.s. contin-
uous. This case was considered by Whitt (1973, 1980) with the use of the continuous
mapping theorem and by Silvestrov (1974) with the use of the direct method. Theo-
rem 3.3.2 proved, in Section 3.3, with the use of direct method gives a similar result for
vector compositions of càdlàg processes. In this case, the conditions of Theorem 3.6.2
are reduced to the conditions of Theorem 3.3.2 applied to semi-vector compositions of
càdlàg processes. Conditions G4, E6, and C(0)

8 automatically hold, and condition J4 is
reduced to condition U4.

A situation is more interesting in the case where (c) the limiting internal stopping
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processes ν0(t), t ≥ 0 is a.s. continuous. This case was considered by Silvestrov (1972b,
1972e, 1973a, 1974) with the use of the direct method. Here, conditions of Theorem
3.3.2 are reduced to the conditions of Theorem 3.4.2. Condition G4 automatically holds.
Condition J11 also holds, due to Lemma 3.2.1. Conditions E6 and C(0)

8 remain. As the
example given in Subsection 3.1.2 shows, if condition E6 does not hold, then composi-
tions may not weakly converge on some interval. In the sequel, they do not J-converge.
Condition E6 holds, for example, if the limiting internal stopping process ν0(t), t ≥ 0 is
not only continuous but also strictly monotone. This case was independently considered
by Whitt (1973, 1980) with the use of the continuous mapping theorem.

However, the direct method used in Section 3.4 and the combined method used in
Subsection 3.6.2., also yield more general results that are not covered by the continuous
mapping theorem. These are Theorems 3.4.3 and 3.6.4 based on the weakened second-
type continuity condition F4.

3.6.4. The set of weak convergence. Let V0 be the set of points of stochastic con-
tinuity of the limiting stopping process ν0(t), t ≥ 0, and V ′0 = V0 \ {0}. This set is the
interval [0,∞), except for at most a countable set.

Let also W0 be the set of all points for which condition C(w)
8 holds. Conditions E6

and C(0)
8 imply that set W0 is the interval [0,∞), except for at most a countable set, and

also that 0 ∈ W0.
According to Theorem 2.7.5, the set of weak convergence, used in the proof of The-

orem 3.6.2, is S 0 = (V ∪ V ′0) ∩W0. This set also is the interval [0,∞), except for at most
a countable set. Also, 0 ∈ S 0.

However, the set S 0 can be enlarged in the following way. Let Z0 be the set of points
of stochastic continuity for the limiting composition ζ0(t), t ≥ 0. The processes ζε(t),
t ≥ 0 J-converge and, therefore, by Lemma 1.6.5, the set S 0 can be enlarged to the set
S 0 ∪ Z0. Finally, we get that, under the conditions of Theorem 3.6.2,

ζε(t), t ∈ S 0 ∪ Z0 ⇒ ζ0(t), t ∈ S 0 ∪ Z0 as ε→ 0. (3.6.10)

3.6.5. The continuity conditions E6 and G4. Let us consider moments of jumps of
the process ξ0(t), t ≥ 0, namely τkn = inf(s > τk−1n : |ξ0(s) − ξ0(s − 0)| ∈ [ 1

n ,
1

n−1 )), k, n =

1, 2, . . ., where τ0n = 0. By the definition, τkn are successive moments of jumps with
absolute values in the interval [ 1

n ,
1

n−1 ) for k < µn + 1 and τkn = ∞ for k ≥ µn + 1, where
µn = max(k ≥ 0: τkn < ∞) is the total number of such jumps in the interval [0,∞).

Similar notations can be introduced for moments of jumps of the process ν0(t), t ≥ 0,
namely, κkn = inf(s > κk−1n : |ν0(s) − ν0(s − 0)| ∈ [ 1

n ,
1

n−1 )), k, n = 1, 2, . . ., where κ0n = 0.
By the definition, κkn are successive moments of such jumps with absolute values in the
the interval [ 1

n ,
1

n−1 ) for k < λn + 1 and κkn = ∞ for k ≥ λn + 1, where λn = max(k ≥ 0:
κkn < ∞) is the total number of such jumps in the interval [0,∞).

Condition E6 can be reformulated in the following equivalent form (see, also Sub-
section 2.6.3):
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E
′
6: P{ν0(t′) = ν0(t′′) = τrl} = 0 for 0 ≤ t′ < t′′ < ∞ and r, l = 1, 2, . . ..

Condition G4 is equivalent to the following:

G
′
4: P{ν0(κkn ± 0) = τrl} = 0 for k, n, r, l = 1, 2, . . ..

Note that the random variables ν0(κkn ± 0) can take values in the interval [0,∞],
since the random variables κkn can take the value +∞. In this case, by the definition,
ν0(+∞ ± 0) = limt→∞ ν0(t).

Let us recall that condition Q7. This condition means that the process ξ0(t), t ≥ 0 can
be decomposed in a sum of two processes ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where ξ′0(t), t ≥ 0
is a continuous process, and ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process
independent of the process ν0(t), t ≥ 0.

As follows from Lemma 2.7.1, condition Q7 implies that condition E6 holds. Since
Lemma 2.7.1 was given without a proof in Subsection 2.7.2, let us give it here.

Lemma 3.6.1. Let condition Q7 hold. Then condition E6 also holds.

Proof of Lemma 3.6.1. If condition Q7 holds, then every random variable τrl is a moment
of jump of the process ξ0(t) if and only if it is a corresponding moment of jump of the
second component ξ′′0 (t). This is so, since the first component ξ′0(t) is a continuous
process. Therefore, the process ν0(t), t ≥ 0 and the random variable τrl are independent.
Since the process ξ′′0 (t), t ≥ 0 is stochastically continuous, the random variables τrl have
continuous distribution functions. This implies that condition E6 holds. Note that, in this
case, form of the distribution of random vector (ν0(t′), ν0(t′′)) does not play any role. �

Let us also formulate a similar statement concerning condition G4.

Lemma 3.6.2. Let condition Q7 hold. Then condition G4 also holds.

Proof of Lemma 3.6.2. As was shown in the proof of Lemma 3.6.1, every random vari-
able τrl is a moment of jump of the second component ξ′′0 (t). Therefore, the process ν0(t),
t ≥ 0, and the random variable τrl are independent. Consequently, the random variables
ν0(κkn ± 0) and τrl are independent. It was also shown in the proof of Lemma 3.6.1 that
the random variables τrl have continuous distribution functions. Hence, condition G4
holds. In this case, form of the distribution functions of random variables ν0(κkn ± 0) do
not play any role. �

If the process ξ′′0 (t), t ≥ 0 is not stochastically continuous, then the distribution
functions of the random variables τrl can possess discontinuity points.

In this case, in order to prove that condition E6 holds, it is enough to require that the
distribution functions of the random variables ν0(t) and τrl have not common points of
discontinuity for any t ≥ 0 and r, l = 1, 2, . . ..
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Analogously, to make the condition G4 hold, it will suffice to require that the distri-
bution functions of the random variables ν0(κkn ± 0) and τrl have not common points of
discontinuity for any k, n, r, l = 1, 2, . . ..

Also, condition Q7 implies condition C(w)
8 for any w ≥ 0. This follows from Lemma

2.2.3.
Using the remarks made above and Lemmas 3.6.1 and 3.6.2, we can formulate the

following theorem from Silvestrov (1974), which is a direct corollary of Theorem 3.6.2.
This theorem is used in a significant number of applications.

Theorem 3.6.3. Let conditions A36, J4, J11, Q7 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

3.6.6. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.6.2, in which the continuity conditions E6 and C(0)

8 are weakened and
replaced with conditions F4 and D(0)

7 .

Theorem 3.6.4. Let conditions A36, J4, J11, G4, F4, and D(0)
7 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.6.4. Conditions A36, J4, J11, and G4 are conditions of Theorem
3.6.1. Using this theorem we prove J-compactness of the processes ζε(t), t ≥ 0, on
any finite interval.

Conditions A36, J4, F4, and D
(0)
7 imply that the conditions of Theorem 2.7.9 hold

for the external processes ξε(t), t ≥ 0, and the internal stopping processes νε(t) = (νε(t),
. . . , νε(t)), t ≥ 0, with m identical components. In particular, condition A36 implies that
condition AV

22 holds for set V in A36. Condition J4 is required for both Theorems 3.6.4
and 2.7.9. Also, condition F4 implies condition F3. Applying Theorem 2.7.9 we prove
that the processes ζε(t) weakly converge to ζ0(t) as ε → 0 on the set S 0 defined in this
theorem. This set is dense in [0,∞). Due to condition D(0)

7 , the point 0 can also be
included in set S 0.

To complete the proof we use Theorem 1.6.6 that gives conditions for J-convergence
of càdlàg processes defined on interval [0,∞). �

Remark 3.6.1. Note that, in the case where the limiting stopping process ν0(t), t ≥ 0 is
a.s. continuous, conditions J11 and G4 automatically hold. In this case, Theorem 3.6.4
becomes Theorem 3.4.3.

3.6.7. The time interval [0, T]. In this case, we consider the semi-vector com-
position ζε(t) = (ξεi(νε(t)), i = 1, . . . ,m), t ∈ [0, T ] of a vector càdlàg process ξε(t) =

(ξεi(t), i = 1, . . . ,m), t ≥ 0, with real-valued components, and a scalar non-negative and
non-decreasing càdlàg process νε(t), t ∈ [0, T ].
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We can always continue the internal stopping process to the interval [0,∞) by the
following formula:

νε(t) =


νε(t) if 0 ≤ t ≤ T,
νε(T ) if t ≥ T.

(3.6.11)

Formula (3.6.11) implies that

ξε(νε(t)) =


ξε(νε(t)) if 0 ≤ t ≤ T,
ξε(νε(T )) if t ≥ T.

(3.6.12)

The processes νε(t) and ξε(νε(t)) take, respectively, the values νε(T ) and ξε(νε(T )) for
t ≥ T . This fact should be taken into account when modifying the conditions.

Condition A36 takes, in this case, the following form:

A42: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where (a) U
is a subset of [0,∞) that is dense in this interval and contains the point 0, (b) V is
a subset of [0, T ] that is dense in this interval and contains the points 0 and T .

Condition J4 does not require any changes, whereas condition J11 takes the following
form:

J16: limc→0 limε→0 P{∆J(νε(·), c, T ) > δ} = 0, δ > 0.

Denote by RT [ν0(·)] the random set of points of discontinuity of the process ν0(t), t ∈
[0, T ].

Condition G4 takes the following form:

G5: P{ν0(t ± 0) < R[ξ0(·)] for t ∈ RT [ν0(·)]} = 1.

The following theorem is an analogue of Theorem 3.6.1.

Theorem 3.6.5. Let conditions A42, J4, J16, and G5 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ > 0.

Proof of Theorem 3.6.5. It is sufficient to apply Theorem 3.6.1 to the semi-vector com-
position of the processes ξε(t), t ≥ 0 and νε(t), t ≥ 0, where the latter process is defined
in (3.6.11). Condition A42 implies condition A36, condition J16 implies J11, and, finally,
condition G5 implies G4. �

We also use the following modification of condition A42 in which the random vari-
ables νε(T − 0) are additionally included in the relation of weak convergence:
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A43: (νε(s), νε(T − 0), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0,
where (a) U is a subset of [0,∞) that is dense in this interval and contains the point
0, (b) V is a subset of [0, T ] that is dense in this interval and contains the points 0
and T .

Condition E6 takes, in this case, the following form:

E9: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 ≤ t′ < t′′ ≤ T .

Condition C(w)
8 does not require any changes. However, we also use the following

modification of this condition:

C(w±)
8 : P{ν0(w ± 0) ∈ R[ξ0(·)]} = 0.

The following theorem is an analogue of Theorem 3.6.2.

Theorem 3.6.6. Let conditions A43, J4, J16, G5, E9, C(0)
8 , and C(T)

8 hold. Then

ζε(t), t ∈ [0, T ]
J−→ ζ0(t), t ∈ [0, T ] as ε→ 0.

Proof of Theorem 3.6.6. The proof can be obtained by applying Theorem 3.6.2 to the
semi-vector composition of the processes ξε(t), t ≥ 0 and νε(t), t ≥ 0, where the latter
process is defined in (3.6.11). Condition A43 implies A36, condition J16 implies J11, and
condition G5 implies G4. Also, conditions E9 and C(T)

8 imply E6. Conditions J4 and C(0)
8

are required in both Theorems 3.6.6 and 3.6.2. By applying Theorem 3.6.2 we prove that

the processes ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

However, J-convergence of the processes ζε(t) on the interval [0,∞) does not au-
tomatically imply J-convergence of these processes on the interval [0, T ]. In order for
the processes ζε(t) to be J-convergent on the interval [0, T ], the random variables ζε(T )
must be included in the relation of weak convergence for these processes on the set
S 0(T ) = S 0 ∩ [0, T ]. Note that this set is dense in [0, T ] and contains the point 0. More-
over, as follows from Theorem 1.6.3, if the point T is not a point of stochastic continuity
of the limiting process ζ0(t), then the random variables ζε(T − 0) must also be included
in the corresponding relation of weak convergence.

The random variables ζε(T ) can be included due to condition C(T)
8 . Also, conditions

G5 and C(T)
8 imply that C(T−)

8 holds. Indeed, let AT denote the set of elementary events in
condition G5 that has, according this condition, probability 1. Then we have

P{ν0(T − 0) ∈ R[ξ0(·)]}
= P{ν0(T − 0) ∈ R[ξ0(·)], ν0(T − 0) = ν0(T )}
+ P{ν0(T − 0) ∈ R[ξ0(·)], ν0(T − 0) , ν0(T )}
= P{ν0(T ) ∈ R[ξ0(·)], ν0(T − 0) = ν0(T )}
+ P{ν0(T − 0) ∈ R[ξ0(·)], T ∈ R[ν0(·)]}
≤ P{ν0(T ) ∈ R[ξ0(·)]} + P(AT ) = 0.

(3.6.13)
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Since condition C
(T−)
8 holds, the random variable ζε(T − 0) can also be included in

the relation of weak convergence of the processes ζε(t).
Reference to Theorem 1.6.3, which gives conditions for J-convergence of càdlàg

processes defined on the interval [0, T ], completes the proof. �

Condition A43 can be simplified if the point T is a point of continuity of the limiting
function ξ0(ν0(t)), i.e., the following condition holds:

O(T)
9 : P{ξ0(ν0(T − 0)) = ξ0(ν0(T ))} = 1.

In this case, A43 can be replaced, in Theorem 3.6.6, with condition A42.
Let us also give a description of the corresponding set of weak convergence. It

follows from (3.6.10) that, in the case under consideration, the set of weak convergence
is S 0 ∪ Z0, where S 0 = (V ∪ V ′′0 ) ∩W0.

Here V is the set of weak convergence that appears in condition A43, V ′′0 = V0\{0, T },
V0 is a set of points of stochastic continuity for the process ζ0(t), t ∈ [0, T ]. Also, W0 is
a set of all points in the interval [0, T ] that satisfy condition C(w)

8 , and, finally, Z0 is a set
of all points of stochastic continuity for the limiting composition ζ0(t), t ∈ [0, T ]. The
set S 0 ∪ Z0 is the interval [0, T ] except for at most a countable set. Also, the points 0 an
T belong to this set.

3.6.8. Non-monotone internal processes. In the case where the external processes
are not asymptotically continuous, the assumption of monotonicity of the internal stop-
ping processes plays an essential role.

Our conjecture is that the results formulated in Theorems 3.6.1 and 3.6.2 can be
generalised to a model in which the internal stopping processes are piecewise monotone.
This means that there exist random moments 0 = ςε0 ≤ ςε1 ≤ . . ., and a set of elementary
events, Aε, with P(Aε) = 1 such that for every ω ∈ Aε, (a) ςεk(ω) → ∞ as k → ∞,
(b) the trajectory νε(t,ω), t ≥ 0 is a monotone function in every non-empty subinterval
[ςεk(ω), ςεk+1(ω)).

Two conditions should be included in the conditions of Theorems 3.6.1 and 3.6.2.
The first one is the condition (c) of joint weak convergence of the processes (νε(t), ξε(t)),
t ≥ 0 and the random sequence ςεk, k = 0, 1, . . .. The second one is the condition (d) that
the limiting external process ξ0(t), t ≥ 0 is continuous with probability 1 at the random
point ν0(ς0k ± 0) for every k = 0, 1, . . ..

Under these additional conditions, it will be possible to extend the proofs of The-
orems 3.6.1 and 3.6.2, which are based on their reduction to the case of compositions
of non-random càdlàg functions, to the case of piecewise monotone internal stopping
processes. More precisely, it will be possible to prove the corresponding relation of J-
compactness and weak convergence of the compositions on some set dense in [0,∞) and
containing the point 0.
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In this case, the pre-limiting processes ζε(t) = ξε(νε(t)), t ≥ 0, may not be càdlàg
processes. However, the corresponding limiting process ζ0(t) = ξ0(ν0(t)), t ≥ 0 that
verifies condition (d) is an a.s. process without discontinuities of the second kind.

We again refer to works by Borovkov (1976) and Borovkov, Mogul’skij, and Sakha-
nenko (1995), where one can find results concerning J-convergence of stochastic pro-
cesses in such a case.

3.6.9. A Polish phase space. The results in this section can be generalised to a
model with external stochastic processes ξε(t), t ≥ 0 that take values in a Polish space X.

The formulation of condition A36 or A43 does not change. In the condition J4, the
Euclidean distance |x − y| must be replaced with the corresponding metric d(x, y) in the
formula for the modulus ∆J(ξε(·), c, T ).

All other conditions of Theorems 3.6.1 – 3.6.6 remain without changes. With these
modifications in the conditions, the proofs of these theorems can be repeated.

3.7 Vector compositions of càdlàg functions

In this section, we will study conditions for J-compactness and J-convergence of general
vector compositions of non-random càdlàg functions. This conditions will be essentially
used in the next Section 3.8, where the corresponding results are obtained for vector
compositions of càdlàg stochastic processes.

3.7.1. J-compactness of vector compositions of non-random càdlàg functions.
Let xn(t) = (xni(t), i = 1, . . . ,m), t ≥ 0, n = 0, 1, . . . be a sequence of vector càdlàg
functions with real-valued components, yn(t) = (yni(t), i = 1, . . . ,m), t ≥ 0, n = 0, 1, . . ., a
sequence of vector càdlàg functions with non-negative and non-decreasing components.
Let also zn(t) = (xni(yni(t)), i = 1, . . . ,m), t ≥ 0 be vector compositions of the functions
xn(t) and yn(t). The functions zn(t), t ≥ 0, n = 0, 1, . . . are also vector càdlàg functions
with real-valued components.

We impose the following conditions on the functions xn(t):

A44: xni(t) → x0i(t) as n → ∞, t ∈ Xi, i = 1, . . . ,m, where Xi are subsets of [0,∞) that
are dense in this interval and contain the point 0;

and

J17: limc→0 limn→∞ ∆J(xni(·), c, T ) = 0, T > 0, i = 1, . . . ,m.

We also assume that the functions yn(t) satisfy the following conditions:

A45: yni(t) → y0i(t) as n → ∞, t ∈ Yi, i = 1, . . . ,m, where Yi are subsets of [0,∞) that
are dense in this interval and contain the point 0;

and
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J18: limc→0 limn→∞ ∆J(yn(·), c, T ) = 0, T > 0.

Note that both limiting functions x0(t), t ≥ 0 and y0(t), t ≥ 0 are not assumed to be
continuous.

Conditions A44 and J17 imply that the functions xni(t), t ≥ 0 J-converge to x0i(t),
t ≥ 0 as n → ∞ for every i = 1, . . . ,m. Conditions A45 and J18 provide J-convergence
of the functions yn(t), t ≥ 0. However, these conditions together do not provide either
J-convergence or J-compactness for the vector functions xn(t), t ≥ 0 and (yn(t), xn(t)),
t ≥ 0, or the compositions zn(t), t ≥ 0. The corresponding examples are given in Section
3.1.

The following continuity conditions play a key role in further consideration:

G6: y0i(t ± 0) < R[x0i(·)], i = 1, . . . ,m for t ∈ ∪m
i=1R[y0i(·)];

and

H4:
m∑

i=1

χ(y0i(t) ∈ R[x0i(·)]) ≤ 1 for t ≥ 0.

Lemma 3.7.1. Let conditions A44, J17, A45, J18, G6, and H4 hold. Then

lim
c→0

lim
n→∞

∆J(zn(·), c, T ) = 0, T > 0.

Proof of Lemma 3.7.1. As in the case of one-dimensional functions, the proof consists
of two parts. The first part reduces the proof to simpler functions and is similar to
that given in the proof of Lemma 3.5.1. The second part gives a uniform estimate of the
corresponding local modulus Rn[t′, t, t′′]. It is much more difficult than the corresponding
part of the proof of Lemma3.5.1. This is due to a much more complicated relation
between points of discontinuity of the internal functions yn(t) and the external functions
xn(t) in the vector case.

Conditions A44 and J17 imply that the functions xni(·), t ≥ 0
J−→ x0i(t), t ≥ 0 as

ε → 0 for every i = 1, . . . ,m. Hence, the sets Xi in condition A44 can be enlarged to the
set Xi ∪ X0i. Here X0i = [0,∞) \ R[x0i(·)] is the set of continuity points for the function
x0i(t), t ≥ 0. For every i = 1, . . . ,m, the set X0i is dense in [0,∞), moreover, it coincides
with [0,∞) except for at most a countable set. Thus the set X = ∩m

i=1(Xi ∪ X0i) is also
[0,∞), except for at most a countable set.

Analogously, conditions A45 and J18 imply that the functions yni(·), t ≥ 0
J−→

y0i(t), t ≥ 0 as ε → 0 for every i = 1, . . . ,m. So, for every i = 1, . . . ,m, the set Yi

in the condition A45 can be enlarged to the set Yi ∪ Y0i. Here Y0i = [0,∞) \ R[y0i(·)] is a
set of continuity points for the function y0i(t), t ≥ 0. For every i = 1, . . . ,m, the set Y0i

is dense in [0,∞), moreover, it is the interval [0,∞), except for at most a countable set.
Hence, the set Y = ∩m

i=1(Yi ∪ Y0i) is also [0,∞) except for at most a countable set.
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It is sufficient to show that the compactness relation in Lemma 3.7.1 holds for any
T ∈ Y .

Conditions A45 and J18 also imply that the vector functions yn(t) → y0(t) as n → ∞
for t ∈ Y . Since T is a point of continuity for the function y0(t), this convergence,
together with the conditions A45 and J18, implies that the vector functions yn(t), t ∈
[0, T ]

J−→ y0(t), t ∈ [0, T ] as n → ∞. This means that there exists a sequence λn(t),
n ≥ 1 of continuous one-to-one mappings of the interval [0, T ] into itself such that

lim
n→∞

sup
t∈[0,T ]

(|yn(t) − y0(λn(t))| + |λn(t) − t|) = 0. (3.7.1)

Let Tk, k ≥ 1, be a sequence of points of the set X such that Tk → ∞ as k → ∞.
For every i = 1, . . . ,m, the function x0i(t) is continuous in the points Tk, k ≥ 1. So, by

conditions A44 and J17, the functions xni(t), t ∈ [0, Tk]
J−→ x0i(t), t ∈ [0, Tk] as n → ∞

for every i = 1, . . . ,m and k ≥ 1.
Since the sequence yni(T ), n ≥ 1 is bounded for every i = 1, . . . ,m, there exists

T ′ = Tk such that yni(T ) ≤ T ′ for every n ≥ 1, i = 1, . . . ,m.
Let λni(t), n ≥ 1 be sequences of continuous one-to-one mappings of the interval

[0, T ′], for i = 1, . . . ,m, such that

lim
n→∞

sup
t∈[0,T ′]

(|xni(t) − x0i(λni(t))| + |λni(t) − t|) = 0, i = 1, . . . ,m. (3.7.2)

By using estimate (1.4.8) given in Lemma 1.4.9, we get

∆J(zn(t), c, T ) ≤

≤ ∆J(wn(t), c, T ) +

m∑

i=1

sup
t∈[0,T ]

|xni(yni(t)) − x0i(λni(yni(t)))|

≤ ∆J(wn(t), c, T ) +

m∑

i=1

sup
t∈[0,T ′]

|xni(t) − x0i(λni(t))|,

(3.7.3)

where
wn(t) = (x0i(λni(yni(t))), i = 1, . . . ,m), t ∈ [0, T ].

In virtue of (3.7.2) and estimate (3.7.3), we see that it is sufficient to show that

lim
c→0

lim
n→∞

∆J(wn(t), c, T ) = 0. (3.7.4)

Let us introduce the functions

vn(t) = (x0i(λni(yni(λ−1
n (t)))), i = 1, . . . ,m), t ∈ [0, T ],



218 Chapter 3. J-convergence of compositions of stochastic processes

and assume, for a moment, that we could show that

lim
c→0

lim
n→∞

∆J(vn(t), c, T ) = 0. (3.7.5)

Then, by applying Lemma 3.4.1 to the non-random functions vn(t), t ∈ [0, T ], and
λn(t), t ∈ [0, T ], we would obtain (3.7.4).

Denote

Rn[t′, t, t′′] = min(
m∑

i=1

|x0i(sni(t′)) − x0i(sni(t))|,
m∑

i=1

|x0i(sni(t′′)) − x0i(sni(t))|),

where
sni(t) = λni(yni(λ−1

n (t))), t ∈ [0, T ], i = 1, . . . ,m.

To prove (3.7.5), it is sufficient to show that

lim
c→0

lim
n→∞

sup
0∨(t−c)≤t′≤t≤t′′≤(t+c)∧T

Rn[t′, t, t′′] = 0. (3.7.6)

Denote βni(t) = sni(t) − y0i(t), t ∈ [0, T ], i = 1, . . . ,m, and

βn = max
1≤i≤m

sup
t∈[0,T ]

|βni(t)|.

By using (3.7.1) and (3.7.2), we have

βn ≤ max
1≤i≤m

sup
t∈[0,T ]

|λni(yni(λ−1
n (t))) − yni(λ−1

n (t))|

+ max
1≤i≤m

sup
t∈[0,T ]

|yni(λ−1
n (t)) − y0i(t)|

≤ max
1≤i≤m

sup
t∈[0,T ′]

|λni(t) − t|

+ max
1≤i≤m

sup
t∈[0,T ]

|yni(t) − y0i(λn(t))| → 0 as n→ ∞.

(3.7.7)

First of all we are going to estimate Rn[t′, t, t′′] locally in a neighbourhood of a point
u ∈ [0, T ].

We will say that the points t′, t, t′′ ∈ [0, T ] satisfy condition Au,c if t − c ≤ t′ ≤ t ≤
t′′ ≤ t + c and at least one of these points belongs to the interval [u − c, u + c].

Take an arbitrary σ > 0. First we show that for every fixed point u ∈ [0, T ] there exist
c = cu and a number nu such that, if the points t′, t, t′′ satisfy condition Au,cu and n ≥ nu,
then

Rn[t′, t, t′′] ≤ σ. (3.7.8)

Three cases are possible.
(i). The point u is a point in which the function y0(t) is discontinuous.
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In this case, by condition G6, the function x0i(s) is continuous in the points y0i(u± 0),
for every i = 1, . . . ,m. Hence, there exists δ > 0 such that, for all points s′, s′′ ∈
[y0i(u ± 0) − δ, y0i(u ± 0) + δ], we have |x0i(s′) − x0i(s′′)| ≤ σ/m, for every i = 1, . . . ,m.
There always exists c = cu such that

max
1≤i≤m

sup
0<s≤3c

|y0i(u − 0) − y0i(u − s)| ≤ δ/2 (3.7.9)

and
max
1≤i≤m

sup
0≤s≤3c

|y0i(u) − y0i(u + s)| ≤ δ/2. (3.7.10)

If the points t′, t, t′′ satisfy condition Au,cu , then u − 2c ≤ t′ ≤ t < u ≤ t′′ ≤ u + c or
u − c ≤ t′ ≤ u ≤ t ≤ t′′ ≤ u + 2c.

Consider the first case (the second is absolutely similar). It follows from (3.7.9) and
(3.7.10) that

max
1≤i≤m

|y0i(t) − y0i(u − 0)| ≤ δ/2 (3.7.11)

and
max
1≤i≤m

|y0i(t′) − y0i(u − 0)| ≤ δ/2. (3.7.12)

Choose now nu such that βn ≤ δ/2 for n ≥ nu (this can be done due to (3.7.7)). Then,
by using (3.7.11) and (3.7.12), we get for n ≥ nu that

|sni(t) − y0i(u − 0)| ≤ βn + |y0i(t) − y0i(u − 0)| ≤ δ, i = 1, . . . ,m, (3.7.13)

and

|sni(t′) − y0i(u − 0)| ≤ βn + |y0i(t) − y0i(u − 0)| ≤ δ, i = 1, . . . ,m. (3.7.14)

By the choice of δ and relations (3.7.13) and (3.7.14),

Rn[t′, t, t′′] ≤
m∑

i=1

|x0i(sni(t)) − x0i(sni(t′))| ≤ σ. (3.7.15)

(ii). The function y0(s) is continuous in the point u but there is i such that the function
x0i(s) is discontinuous in the point y0i(u).

It is clear that there exists δ > 0 such that

sup
0<s′,s′′≤δ

|x0i(y0i(u) − s′) − x0i(y0i(u) − s′′)| ≤ σ/m, (3.7.16)

and
sup

0≤s′,s′′≤δ
|x0i(y0i(u) + s′) − x0i(y0i(u) + s′′)| ≤ σ/m. (3.7.17)
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Let now cu be chosen such that, if t ∈ [u− 3cu, u + 3cu], then |y0i(t)− y0i(u)| ≤ δ/2. If
nu are chosen so that βn ≤ δ/2 for n ≥ nu, then

|sni(t′) − y0i(u)| ∨ |sni(t) − y0i(u)| ∨ |sni(t′′) − y0i(u)| ≤ δ (3.7.18)

if the points t′, t, t′′ satisfy condition Au,cu .
For the points sni(t′), sni(t), and sni(t′), we have either sni(t′) ≤ sni(t) < y0i(u) or

y0i(u) ≤ sni(t) ≤ sni(t′′). By the definition, the functions sni(t) are non-decreasing, and so
in the first case, because of (3.7.16), (3.7.17), and (3.7.18), |x0i(sni(t′))−x0i(sni(t))| ≤ σ/m.
In the second case, by (3.7.16), (3.7.17), and (3.7.18), |x0i(sni(t))− x0i(sni(t′′))| < σ/m. In
any case,

min(|x0i(sni(t)) − x0i(sni(t′))|, |x0i(sni(t)) − x0i(sni(t′′))|) ≤ σ/m. (3.7.19)

Because of condition H4, the function x0 j(s) is continuous in the point y0 j(u) for
every j , i. Hence, there exists δ′ > 0 such that

max
j,i

sup
|s′ |,|s′′ |≤δ′

|x0 j(y0 j(u) + s′) − x0 j(y0 j(u) + s′′)| ≤ σ/m. (3.7.20)

We can assume that cu is chosen in such a way that

max
j,i
|y0 j(t) − y0 j(u)| ≤ δ′/2 (3.7.21)

if t ∈ [u − 3cu, u + 3cu], and also that the choice of nu yields that βn ≤ δ′/2 for n ≥ nu.
Then,

max
j,i

(|sn j(t) − y0 j(u)| ∨ |sn j(t′) − y0 j(u)| ∨ |sn j(t′′) − y0 j(u)|) ≤ δ′ (3.7.22)

for n ≥ nu if the points t′, t, t′′ satisfy condition Au,cu (see also (3.7.13) and (3.7.14).
It follows from (3.7.20) and (3.7.22) that

max
j,i

(|x0 j(sn j(t)) − x0 j(sn j(t′))| ∨ |x0 j(sn j(t)) − x0 j(sn j(t′′))|) ≤ σ/m. (3.7.23)

Finally, we get using (3.7.19) and (3.7.23) that

Rn[t′, t, t′′] =

= min(
m∑

j=1

|x0 j(sn j(t)) − x0 j(sn j(t′))|,
m∑

j=1

|x0 j(sn j(t)) − x0 j(sn j(t′′))|)

≤ min(|x0i(sni(t)) − x0i(sni(t′))|, |x0i(sni(t)) − x0i(sni(t′′))|)
+ (m − 1) max

j,i
max(|x0 j(sn j(t)) − x0 j(sn j(t′))|,

|x0 j(sn j(t)) − x0 j(sn j(t′′))|) ≤ σ.

(3.7.24)
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(iii). The function y0(s) is continuous in the point u and the function x0 j(s) is contin-
uous in the point y0 j(u) for every j = 1, . . . ,m.

In this case, there exists δ > 0 such that

max
1≤ j≤m

sup
|s′ |,|s′′ |≤δ

|x0 j(y0 j(u) + s′) − x0 j(y0 j(u) + s′′)| ≤ σ/m, (3.7.25)

and there is cu such that

max
1≤ j≤m

sup
|s|≤3cu

|y0 j(u) − y0 j(u + s)| ≤ δ/2. (3.7.26)

If we choose nu in such a way that βn ≤ δ/2 for n ≥ nk, then

max
1≤ j≤m

(|sn j(t′) − y0 j(u)| ∨ |sn j(t) − y0 j(u)| ∨ |sn j(t′′) − y0 j(u)|) ≤ δ (3.7.27)

for points t′, t, t′′ satisfying condition Au,cu for n ≥ nu.
Finally, we get using and, by (3.7.25) and (3.7.27),

Rn[t′, t, t′′] ≤ m max
1≤ j≤m

max(|x0 j(sn j(t′)) − x0 j(sn j(t))|,
|x0 j(sn j(t′′)) − x0 j(sn j(t))|) ≤ σ.

(3.7.28)

Now we split the interval [0, T ] into several domains depending on the location of
points of discontinuity for the functions x(t) and y(t), and show that the corresponding
estimates for Rn[t′, t, t′′] are uniform in these domains.

Condition Au,c′ implies condition Au,c′′ if c′ < c′′. So, for any c′ ≤ c′′ and any finite
collection of points vk ∈ [0, T ], k = 1, . . . , r, there exist c and a number n0 (depending
on the points vk) such that, if points t′, t, t′′ satisfy one of conditions Avk ,c, k = 1, . . . , r,
and n ≥ n0, then Rn[t′, t, t′′] ≤ σ.

Let c1 ∈ (0, T/2) and a number n1 be chosen such that, if points t′, t, t′′ satisfy one of
conditions A0,c1 or AT,c1 and n ≥ n1, then Rn[t′, t, t′′] ≤ σ.

Let z1i < z2i < · · · < zki,i be points, for every i = 1, . . . ,m, in which the function
x0i(t) is discontinuous with absolute values of the jumps greater than or equal to σ/m.
By Lemma 1.4.2, we can always choose h0 such that, if |t′− t′′| ≤ h0 and t′ and t′′ belong
to one of the intervals I0i = [z0i, z1i), . . . , Iki−1,i = [zki−1,i, zki,i), Iki,i = [zki,i, zki+1,i] (here
z0i = 0, zki+1,i = T ), then

max
1≤i≤m

|x0i(t′) − x0i(t′′)| ≤ σ/m. (3.7.29)

Let Ji = {r1,i, . . . , rli,i} be a set of indices r for which there exists s ∈ [c1, T − c1] such
that y0i(s) = zri (by condition G6, the functions y0 j(·), j = 1, . . . ,m are continuous in each
such point). By the definition, li ≤ ki, i = 1, . . . ,m. For r ∈ Ji, define

v−ri = inf(s ∈ [c1, T − c1] : y0i(s) = zri), v+
ri = sup(s ∈ [c1, T − c1] : y0i(s) = zri).



222 Chapter 3. J-convergence of compositions of stochastic processes

By the foregoing remark, there exist c2 < c1 and a number n2 > n1 such that, if
points t′, t, t′′ satisfy one of conditions Av±ri,c2 , r ∈ Ji, i = 1, . . . ,m, and n ≥ n2, then
Rn[t′, t, t′′] ≤ σ.

Denote

U = [c1, T − c1] \
m⋃

i=1

⋃

r∈Ji

(v−ri − c2, v+
ri + c2).

By the definition, the set U = ∪1≤l≤l0 [al, bl] is the union of a finite number of closed
intervals.

By the construction of the set U and conditions G6 and H4, y0i(t ± 0) , zri for all
r = 1, . . . , ki, i = 1, . . . ,m, and every t ∈ U. Since the functions y0i(t) belong to the space
D(1)

[0,∞)+, this implies that there exists γ > 0 such that

min
i=1,...,m

min
1≤r≤ki

inf
t∈U
|y0i(t ± 0) − zri| > γ. (3.7.30)

Now we show that every closed interval [a, b] ⊆ U on which the function y0i(s)
does not have jumps exceeding in magnitude γ/2 has the following property (recall that
the functions y0i(s), i = 1, . . . ,m are non-decreasing). If y0i(t0) ∈ Iri for some point
t0 ∈ [a, b], then: (a) y0i(t) ∈ Iri for all t ∈ [a, b]; (b) y0i(b) ≤ zr+1i − γ

2 (if r = 0, . . . , ki − 1);
(c) y0i(a) ≥ zri +

γ

2 , t ∈ [a, b] (if r = 1, . . . , ki). This is true for every i = 1, . . . ,m.
Indeed, if y0i(t0) ∈ Iri, then zr+1i − zri ≥ γ. This follows from (3.7.30). Denote

τ+ = inf(s ≥ t0 : y0i(s) > zr+li − γ/2) and τ− = sup(s ≤ t0 : y0i(s − 0) < zri + γ/2).
Clearly, it is sufficient to show that τ+ < [a, b] if r = 0, . . . , ki − 1, and τ− < [a, b] if
r = 1, . . . , ki. Let us consider, for example, the first case (the second is similar). Suppose
that τ+ ∈ [a, b]. Because y0i(t0) < zr+1i − γ by (3.7.30), τ+ > t0. So y0i(τ+ − 0) ≥ y0i(t0),
since the function y0i(s) is monotone. On the other hand, y0i(τ+ − 0) ≤ zr+1,i − γ/2. So
y0i(τ+ − 0) ∈ Iri and, hence, y0i(τ+ − 0) < zr+1i − γ by (3.7.30). But then the function y0i(s)
has, in the point τ+, a jump of magnitude greater than or equal to γ/2, which contradicts
the assumption.

Now choose h < min(γ/2, h0/2), and let uk = u(h)
k , k = 1, . . . , k0, be points in which

at least one of the functions y0i(s) has a jump with magnitude greater than or equal to h
(note that, in other points of the interval [0, T ], all the functions y0i(s), i = 1, . . . ,m, do
not have jumps with magnitude greater than or equal to h).

Choose now c3 ≤ c2 and a number n3 ≥ n2 such that, if points t′, t, t′′ satisfy one of
conditions Auk ,c3 , k = 1, . . . , k0, and n ≥ n3, then Rn[t′, t, t′′] ≤ σ.

Denote

V = U \
k0⋃

k=1

(uk − c3, uk + c3).

It is easy to see that three points t′, t, t′′ ∈ [0, T ] such that t − c ≤ t′ ≤ t ≤ t′′ ≤ t + c
can lie in the interval [0, T ] in one of the following ways: (i) at least one of the points
t′, t, t′′ belongs to [0, c1] or [T − c1, T ]; (ii) at least one of the points t′, t, t′′ belongs
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to [v±ri − c2, v±ri + c2] for some r, i; (iii) at least one of the points t′, t, t′′ belongs to
[uk − c3, uk + c3] for some k; (iv) all three points t′, t, t′′ belong to the set V; (v) all three
points t′, t, t′′ belong to the interval [v−ri, v

+
ri] for some r, i.

It was shown before that in cases (i) – (iii), due to the choice of c1 ≥ c2 ≥ c3 and
n1 ≤ n2 ≤ n3, Rn[t′, t, t′′] ≤ σ if c ≤ c3 and n ≥ n3. So, consider now cases (iv) and (v).

By the definition, the set V = ∪1≤l≤l′0 [a′l , b
′
l] is the union of a finite number of closed

intervals. We can assume that a′1 ≤ b′1 < a′2 ≤ b′2 < . . . a
′
l′0
≤ b′l′0 .

On every interval [a′l , b
′
l], the functions y0i(s), i = 1, . . . ,m, do not have jumps with

the values greater than or equal to γ/2 and, hence, for every l = 1, . . . , l′0 and i = 1, . . . ,m
there is an interval Irl,i,i such that: (d) y0i(t) ∈ Irl,i,i, t ∈ [a′l , b

′
l]; (e) y0i(b′l) ≤ zrl,i+1,i + γ/2

(if rl,i = 0, . . . , ki − 1); (f) y0i(a′l) ≥ zrl,i,i − γ/2 (if rl,i = 1, . . . , ki).
Choose n4 ≥ n3 such that βn ≤ min(γ/4, h0/4) for n ≥ n4. Then it is clear that, for all

n ≥ n4,
sni(t) ∈ Irt,i,i, t ∈ [a′l , b

′
l], i = 1, . . . ,m. (3.7.31)

Since the functions y0i(s), i = 1, . . . ,m, do not have jumps in the interval [a′l , b
′
l] with

the values greater than or equal to h0/2, by the construction of the set V and Lemma
1.4.2, there exists c4 ≤ c3 such that for t′, t′′ ∈ [a′l , b

′
l] and |t′ − t′′| ≤ c4,

max
i=1,...,m

|y0i(t′) − y0i(t′′)| ≤ h0/2. (3.7.32)

By the choice of n4 and (3.7.32), it follows that if t′, t′′ ∈ [a′l , b
′
l], |t′ − t′′| ≤ c4 then,

for n ≥ n4,
max

i=1,...,m
|sni(t′) − sni(t′′)| ≤ h0. (3.7.33)

It follows from (3.7.31), (3.7.33), and (3.7.29) that if |t′ − t′′| ≤ c4 then, for n ≥ n4,

max
1≤i≤m

|x0i(sni(t′)) − x0i(sni(t′′)| ≤ σ/m. (3.7.34)

Relation (3.7.34) implies, in its turn, that if t′, t, t′′ ∈ [a′l , b
′
l] and t − c4 ≤ t′ ≤ t ≤

t′′ ≤ t + c4 then, for n ≥ n4,

Rn[t′, t, t′′] ≤ m max
1≤i≤m

max(|x0i(sni(t′)) − x0i(sni(t))|,
|x0i(sni(t′′) − x0i(sni(t))|) ≤ σ.

(3.7.35)

Clearly, c4 and then the number n4 can be chosen such that relations (3.7.31) –
(3.7.35) hold for all l = 1, . . . , l′0. We can also assume that c4 is chosen to satisfy

d = min
0≤l≤l′0−1

(a′l+1 − b′l) ≥ 3c4. (3.7.36)

Relation (3.7.36) implies that, if t′, t, t′′ ∈ V and t − c4 ≤ t′ ≤ t ≤ t′′ ≤ t + c4, then all
three points t′, t, t′′ belong to one of the intervals [a′l , b

′
l].
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So, finally, we get that, if t′, t, t′′ ∈ V and t − c4 ≤ t′ ≤ t ≤ t′′ ≤ t + c4, then
Rn[t′, t, t′′] ≤ σ for all n ≥ n4.

To finish the proof of the lemma, it only remains to consider the last case (v) and
show that there exist c5 ≤ c4 and a number n5 ≥ n4 such that, if the points t′, t, t′′

belong to the interval [v−r,i, v
+
r,i] for some r and i, and t − c5 ≤ t′ ≤ t ≤ t′′ ≤ t + c5, then

Rn[t′, t, t′′] ≤ σ for n ≥ n5.
In this case, y0i(t) = zri and t ∈ [v−ri, v

+
ri]. Indeed, by the definition, y0i(t) = zri for

t ∈ (v−ri, v
+
ri). But, condition G6 implies that the function y0i(t) is continuous in the points

v±ri. Let δ > 0 be such that

sup
0<s′,s′′≤δ

|x0i(zri − s′) − x0i(zri − s′′)| ≤ σ/m (3.7.37)

and
sup

0≤s′,s′′≤δ
|x0i(zri + s′) − x0i(zri + s′′)| ≤ σ/m. (3.7.38)

Choose now n5 ≥ n4 so that βn ≤ δ/2 for n ≥ n5. Then, for all t ∈ [v−ri, v
+
ri],

|sni(t) − zri| ≤ δ. (3.7.39)

Because sni(t′) ≤ sni(t) < zri or zri ≤ sni(t) ≤ sni(t′′), it follows from (3.7.37), (3.7.38),
and (3.7.39) that

min(|x0i(sni(t′)) − x0i(sni(t))|, |x0i(sni(t)) − x0i(sni(t′′)|) ≤ σ/m. (3.7.40)

Condition G6 implies that the functions y0 j(s), j , i are continuous on the interval
[v−ri, v

+
ri]. Indeed, assume that s ∈ [v−ri, v

+
ri] and it is a point of discontinuity for the function

y0 j(s) for some j , i. Then, according G6, y0i(s) < R[x0i(·)] that contradicts the equality
y0i(s) = zri.

Also, condition H4 implies that the function x0 j(s), is continuous on the interval
[y0 j(v−ri), y0 j(v+

ri)], for every j , i. Indeed, according H4, the function x0 j(t) must be
continuous in the point y0 j(s) for every s ∈ [v−ri, v

+
ri] and j , i, since x0i(s) = zri ∈ R[x0i(·)]

for s ∈ [v−ri, v
+
ri]. But the functions y0 j(s), j , i are monotone and continuous on the

interval [v−ri, v
+
ri]. Thus, y0 j(s) takes all values in the interval [y0 j(v−ri), y0 j(v+

ri)] when s
runs through all values in the interval [v−ri, v

+
ri].

Continuity of the functions x0 j(s), j , i on the interval [y0 j(v−ri), y0 j(v+
ri)] implies that

there is h′ > 0 such that, for |s′ − s′′| ≤ h′, s′, s′′ ∈ [y0 j(v−ri) − h′, y0 j(v+
ri) + h′], and j , i,

|x0 j(s′) − x0 j(s′′)| ≤ σ/m. (3.7.41)

Since the functions y0 j(s), j , i are continuous on the interval [v−ri, v
+
ri], it follows that

there is c5 ≤ c4 such that, for |t′ − t′′| ≤ c5, t′, t′′ ∈ [v−ri, v
+
ri], and j , i,

|y0 j(t′) − y0 j(t′′)| ≤ h′/2. (3.7.42)
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The number n5 can be chosen in such a way that βn ≤ h′/4 for n ≥ n5. Then,
obviously, sn j(t) ∈ [y0 j(v−ri) − h′, y0 j(v+

ri) + h′] for t ∈ [v−ri, v
+
ri], j , i, and for |t′ − t′′| ≤ c5,

t′, t′′ ∈ [v−ri, v
+
ri], and j , i,

|sn j(t′) − sn j(t′′)| ≤ h′. (3.7.43)

If follows from relation (3.7.42) and (3.7.43) that, for all points |t′ − t′′| ≤ c5, t′,
t′′ ∈ [v−ri, v

+
ri] and n ≥ n5,

max
j,i
|x0 j(sn j(t′)) − x0 j(sn j(t′′))| ≤ σ/m. (3.7.44)

Finally we see, by relations (3.7.40) and (3.7.44), that

Rn[t′, t, t′′] ≤
≤ min(|x0i(sni(t′)) − x0i(sni(t′′))|, |x0i(sni(t′′)) − x0i(sni(t))|)
+ (m − 1) max

j,i
max(|x0 j(sn j(t′)) − x0 j(sn j(t))|,

|x0 j(sn j(t′′)) − x0 j(sn j(t))|) ≤ σ

(3.7.45)

for n ≥ n5 if the points t′, t, t′′ ∈ [v−ri, v
+
ri], and t − c5 ≤ t′ ≤ t ≤ t′′ ≤ t + c5.

It only remains to note that c5 and the number n5 can be chosen for all r and i simul-
taneously.

The proof of the lemma is completed. �

3.7.2. J-convergence of vector compositions of non-random càdlàg functions.
First of all note that, as follows from the examples considered in Section 3.1, con-
ditions A44, J17, A45, J18, G6, and H4 of Lemma 3.7.1 do not necessarily imply J-
convergence of the vector compositions zn(t), t ≥ 0. However, these conditions do imply
J-compactness of these functions, although they do not guarantee pointwise convergence
of the functions zn(t) on a set dense in [0,∞) and containing the point 0. Some additional
conditions should be imposed.

Let us introduce the following conditions:

C12: There exists a set W such that (a) y0i(t) < R[x0i(·)], i = 1, . . . ,m, for t ∈ W; (b) W
is a subset of [0,∞) that is dense in this interval and contains the point 0;

E10: There do not exist points 0 ≤ t′ < t′′ < ∞ and i = 1, . . . ,m such that y0i(t′) =

y0i(t′′) ∈ R[x0i(·)];

and

C(w)
13 : y0i(w) < R[x0i(·)], i = 1, . . . ,m.
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Conditions E10 and C
(w)
13 coincide, respectively, with conditions E4 and C

(w)
6 in the

case of non-random functions x0(t), t ≥ 0, and any y0(t), t ≥ 0. These non-random
functions replace in this case, respectively, the stochastic processes ξ0(t), t ≥ 0 and ν0(t),
t ≥ 0.

As follows from Lemma 2.7.2, condition E10 and C(0)
13 are necessary and sufficient

for existence of a set W dense in [0,∞), containing 0, and such that condition C12 holds
with this set W.

Let W0 denote the set of all point w ≥ 0 for which condition C(w)
13 holds. Obviously,

W ⊆ W0 for any set W that can appear in condition C12. So, under condition C12 or
conditions E10 and C

(0)
13 , the set W0 is the interval [0,∞), except for at most a countable

set, and 0 ∈ W0.
Denote Y0 = ∩m

i=1(Yi ∪ Y0i), where Y0i is the set of continuity points of the function
y0i(t), t ≥ 0. Let also Z0 = Y0 ∩W0. This set is also [0,∞), except for at most a countable
set. Also, 0 ∈ Z0.

Lemma 3.7.2. Let conditions A44, J17, A45, E10, and C(0)
13 hold. Then

zn(t)→ z0(t) as n→ ∞, t ∈ Z0.

Proof of Lemma 3.7.2. The proof can be obtained by applying Theorem 2.7.6 to the vec-
tor compositions zn(t) = (xn1(yn1(t)), . . . , xnm(ynm(t))), t ≥ 0 of the vector càdlàg functions
xn(t), t ≥ 0 and yn(t), t ≥ 0. Here n−1 can be regarded as the parameter ε.

Note that, for every i = 1, . . . ,m, the set Yi in condition A45 can be enlarged to the
set Yi ∪ Y0i, since monotonicity of the functions yn1(t), i = 1, . . . ,m.

Conditions A44 and A45 imply that the weak convergence condition AV
22 holds with

the set V = Y0. The condition J17 implies that the condition of J-compactness J8 holds.
Finally, condition E10 and C

(0)
13 imply that the continuity condition E4 holds. In this case,

the set of weak convergence S 0 in Theorem 2.7.6 coincides with the set Z0. �

General conditions of J-convergence for compositions of càdlàg functions can be
obtained by combining the conditions of Lemmas 3.7.1 and 3.7.2.

Lemma 3.7.3. Let conditions A44, J17, A45, J18, G6, H4, E10, and C(0)
13 hold. Then

zn(t), t ≥ 0
J−→ z0(t), t ≥ 0 as n→ ∞.

3.7.3. J-convergence of vector non-random càdlàg functions. Let us consider
the case where the internal functions yni(t) = t, t ≥ 0, for i = 1, . . . ,m. In this case,
conditions A45, J18, G6, E10, and C(0)

13 obviously hold.
Condition H4 now takes the following form:

H5:
∑m

i=1 χ(t ∈ R[x0i(·)]) ≤ 1 for t ≥ 0,
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or, equivalently,

H
′
5: R[x0i(·)] ∩ R[x0 j(·)] = ∅ for i , j.

In this case, the functions xn(t), t ≥ 0 and zn(t), t ≥ 0 coincide. By applying Lemma
3.7.3 one can obtain the following simple conditions for J-convergence of the vector
càdlàg functions xn(t), t ≥ 0. This result is due to Whitt (1973, 1980).

Lemma 3.7.4. Let conditions A44, J17, and H5 hold. Then

xn(t), t ≥ 0
J−→ x0(t), t ≥ 0 as n→ ∞.

Note that condition J17 requires J-compactness of the components xni(t), t ≥ 0 sep-
arately for every i = 1, . . . ,m. It may happen that, under conditions A44 and J17, the
vector functions xn(t), t ≥ 0 are not J-compact and do not J-converge. Condition H5 is
a condition additional to conditions A44 and J17, in order to provide J-compactness and
J-convergence of the vector functions xn(t), t ≥ 0.

Let us now go back to the case of general compositions zn(t), t ≥ 0. Condition H5
takes the following form:

H6:
∑m

i=1 χ(t ∈ R[x0i(y0i(·))]) ≤ 1 for all t ≥ 0;

or, equivalently,

H
′
6: R[x0i(y0i(·))] ∩ R[x0 j(y0 j(·))] = ∅ for i , j.

Lemma 3.7.4 allows to formulate the following conditions of J-convergence for vec-
tor compositions of non-random càdlàg functions. These conditions make an alternative
to those given above in Lemma 3.7.1.

Let us replace condition J17 with the weaker condition:

J19: limc→0 lim
n→∞

∆J(yni(·), c, T ) = 0, T > 0, i = 1, . . . ,m.

Lemma 3.7.5. Let conditions A44, J17, A45, J19, G6, H6, E10, and C(0)
13 hold. Then

zn(t), t ≥ 0
J−→ z0(t), t ≥ 0 as n→ ∞.

Proof of Lemma 3.7.5. Conditions A44, J17, A45, J19, G6, E10, and C(0)
13 imply that the

functions xni(t), t ≥ 0 and yni(t), t ≥ 0 satisfy conditions A38, J13, A39, J14, G2, E7, and
C

(0)
10 of Lemma 3.5.3 for every i = 1, . . . ,m. By applying Lemma 3.5.3 to these functions,

we prove that xni(yni(t)), t ≥ 0
J−→ x0i(y0i(t)), t ≥ 0 as n → ∞ for every i = 1, . . . ,m.

Also, condition H6 coincides with condition H5 for the functions zni(t) = xni(yni(t)),
t ≥ 0, i = 1, . . . ,m. Now, by applying Lemma 3.7.4 to the functions zni(t) = xni(yni(t)),
t ≥ 0, i = 1, . . . ,m, we prove Lemma 3.7.5. �
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Let us explain the difference between conditions of J-convergence given in Lemmas
3.7.3 and 3.7.5.

Conditions H6 and H4 used in these lemmas are not equivalent.
Condition H4 only excludes the situation where (a) two or more functions x0i(·) have

synchronous jumps in points y0i(t) for some t ≥ 0.
Condition H6 prohibits the case (a) and, usually, also the case where (b) two or more

functions y0i(·) have simultaneous jumps in a point t for some t ≥ 0.
At the same time, condition J18 is stronger than condition J19.
However, conditions J18 and J19 are equivalent if (c) two or more functions y0i(·)

have not simultaneous jumps, i.e., condition H5 holds for these functions.
3.7.4. The finite interval [0, T]. The statements of Lemmas 3.7.1 – 3.7.3 can easily

be reduced to the case of a finite interval [0, T ] in the same way as it was done for
semi-vector compositions of non-random càdlàg functions in Section 3.5.

Conditions A44 and J17 do not require any changes. But conditions A45 and J18 have
to be taken in the following form:

A46: yni(t) → y0i(t) as n → ∞, t ∈ Yi, i = 1, . . . ,m, where Yi are subsets of [0, T ] that
are dense in this interval and contain the points 0 and T ;

and

J20: limc→0 limn→∞ ∆J(yn(·), c, T ) = 0, T > 0.

Denote by RT [y(·)] = R[y(·)] ∩ [0, T ] the set of points of discontinuity for a càdlàg
function y(t), t ≥ 0, in the interval [0, T ]. Conditions G6 and H4 must be taken in the
following form:

G7: y0i(t ± 0) < R[x0i(·)], i = 1, . . . ,m for t ∈ ∪m
i=1RT [y0i(·)];

and

H7:
∑m

i=1 χ(y0i(t) ∈ R[x0i(·)]) ≤ 1 for t ∈ [0, T ].

Let us first formulate an analogue of Lemma 3.7.1.

Lemma 3.7.6. Let conditions A44, J17, A46, J20, G7, and H7 hold. Then

lim
c→0

lim
n→∞

∆J(zn(·), c, T ) = 0.

Proof of Lemma 3.7.6. The consideration can be reduced to the case of the semi-infinite
interval [0,∞) by applying Lemma 3.7.1 to the functions xn(t), t ≥ 0 and yn(t) = yn(t∧T ),
t ≥ 0. It is obvious that conditions A44, J17, A46, J20, G7, and H7 imply that these
functions satisfy conditions A44, J17, A45, J18, G6, and H4. By applying Lemma 3.7.1,
we get the relation of J-compactness for the functions zn(t), t ≥ 0 on the intervals [0, T ′]
for T ′ > 0. For T ′ ≥ T , this relation coincides with the relation of J-compactness given
in Lemma 3.7.6. �
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An analogous reduction to the case of a finite interval can be carried out for Lemmas
3.7.2 and 3.7.3.

In this case, we should add to A46 the assumption that the left limits yn(T − 0)
converge,

A47: (a) yni(t) → y0i(t) as n → ∞ for t ∈ Yi, i = 1, . . . ,m, where Yi are subsets of
[0, T ] that are dense in this interval and contain the points 0 and T ;

(b) yni(T − 0)→ y0i(T − 0) as n→ ∞, i = 1, . . . ,m.

Conditions C12 and E10 should also be modified in the following way:

C14: There exists a set W such that (a) y0i(t) < R[x0i(·)], i = 1, . . . ,m, for t ∈ W, (b) W
is a subset of [0, T ] that is dense in this interval and contains the points 0 and T ;

and

E11: There do not exist points 0 ≤ t′ < t′′ ≤ T and i = 1, . . . ,m such that y0i(t′) =

y0i(t′′) ∈ RT [x0i(·)].
As follows from Lemma 2.7.2, conditions E11, C(0)

13 , and C(T)
13 are necessary and suf-

ficient for existence of a set W dense in [0, T ], containing 0, T and such that condition
C14 holds with this set W.

Let W0(T ) denote the set of all points w ∈ [0, T ] that satisfy condition C(w)
13 . Obvi-

ously, W ⊆ W0(T ) for any set W that can appear in condition C14. So, if condition C14 or
conditions E11, C

(0)
13 , and C

(T)
13 hold, then the set W0(T ) coincides with the interval [0, T ],

except for at most a countable set. Also, 0, T ∈ W0.
Denote Y0(T ) = ∩m

i=1(Yi ∪ Y0i(T )), where Y0i(T ) is the set of continuity points of
function y0i(t), t ∈ [0, T ]. Let also Z0(T ) = Y0(T ) ∩W0(T ). This set is [0, T ], except for
at most a countable set. Also, 0, T ∈ Z0(T ).

Lemma 3.7.7. Let conditions A44, J17, A47, E11, C(0)
13 , and C(T)

13 hold. Then

zn(t)→ z0(t) as n→∞, t ∈ Z0(T ).

If, additionally, condition C(T−)
13 holds, then also zn(T − 0)→ z0(T − 0) as n→∞.

Proof of Lemma 3.7.7. To obtain pointwise convergence of the compositions zn(t) to the
functions z0(t) at points from the set Z0(T ), it will suffice to apply Lemma 3.7.2 to the
functions xn(t), t ≥ 0 and yn(t) = yn(t ∧ T ), t ≥ 0. Conditions A44, J17, A47, E11, C(0)

13 ,
and C(T)

13 imply that these functions satisfy conditions A44, J17, A45, E10, C(0)
13 , and C(T)

13 .
The proof of Lemma 3.7.2 is based Theorem 2.7.6. This theorem, in its turn, is based
on Theorem 2.3.4. To prove that zn(T − 0) converges to z0(T − 0) as n → ∞, one can
apply Theorem 2.3.4 to the non-random functions xn(t), t ≥ 0 and the vector stopping
moments yn(T −0). In this case, the conditions of this theorem are reduced to conditions
A44, A47 (b), J17, and C(T−)

13 . �
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Lemma 3.7.8. Let conditions A44, J17, A47, J20, G7, H7, E11, C
(0)
13 , and C

(T)
13 hold. Then

zn(t), t ∈ [0, T ]
J−→ z0(t), t ∈ [0, T ] as n→∞.

Proof of Lemma 3.7.8. The proof can be obtained by combining the conditions of Lem-
mas 3.7.6 and 3.7.7 and applying Theorem 1.4.4 to the functions zn(t), t ∈ [0, T ].

It only remains to show why condition C(T−)
13 is omitted in Lemma 3.7.8. As a matter

of fact, conditions G7 and C(T)
13 imply this condition. Indeed, if y0(T − 0) = y0(T ), then

condition C
(T−)
13 coincides with C

(T)
13 . If y0(T − 0) , y0(T ), then condition G7 implies

C
(T−)
13 . �

Remark 3.7.1. If the point T is a point of continuity of the limiting function z0(t), then
condition A47 in Lemma 3.7.8 can be replaced with condition A46.

3.8 Vector compositions of càdlàg processes

In this section, we study conditions for J-convergence of general vector compositions
of càdlàg processes. This model is more complicated than the model for semi-vector
compositions of càdlàg processes considered in Section 3.6.

3.8.1. J-compactness of vector compositions of càdlàg processes. Let, for every
ε ≥ 0, ξε(t) = (ξεi(t), i = 1, . . . ,m), t ≥ 0 be an m-dimensional càdlàg process with real-
valued components and νε(t) = (νεi(t), i = 1, . . . ,m), t ≥ 0 be an m-dimensional càdlàg
process with non-negative and non-decreasing components. Consider the vector com-
positions ζε(t) = (ξεi(νεi(t), i = 1, . . . ,m), t ≥ 0. This process is also an m-dimensional
càdlàg process with real-valued components.

The subsequent considerations will be based on the condition of joint weak conver-
gence A34, and the conditions of J-compactness J8 and J12. Let us recall here condition
J8 that was introduced in Subsection 2.3.2,

J8: limc→0 limε→0 P{∆J(ξεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

Conditions A34 and J8 imply J-convergence of the processes ξεi(t), t ≥ 0, for every
i = 1, . . . ,m. At the same time, conditions A34 and J12 imply J-convergence of the pro-
cesses νε(t), t ≥ 0. However, the examples given in Section 3.1 show that all conditions
together, A34, J8, and J12, do not imply that either J-convergence of the vector processes
(νε(t), ξε(t)), t ≥ 0, or their vector compositions ζε(t), t ≥ 0.

We first give general conditions that would provide J-compactness of the compo-
sitions ζε(t), t ≥ 0. These conditions can be combined with various other conditions,
which imply weak convergence of these processes, in order to get conditions for their
J-convergence. This suggests that it makes sense to formulate the J-compactness condi-
tions separately.
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Let us formulate a continuity condition that is a vector variant of condition G4 and a
stochastic analogue of condition G6,

G8: P{ν0i(t ± 0) < R[ξ0i(·)], i = 1, . . . ,m for t ∈ ∪m
i=1R[ν0i(·)]} = 1.

Let us also formulate a continuity condition that is a stochastic analogue of condition
H4,

H8: P{∑m
i=1 χ(ν0i(t) ∈ R[ξ0i(·)]) ≤ 1 for t ≥ 0} = 1.

The first main result is the following theorem from Silvestrov (1974).

Theorem 3.8.1. Let conditions A34, J8, J12, G8, and H8 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Theorem 3.8.1. The proof is similar to that of Theorem 3.6.1. We are going to
reduce the proof to the case of non-random functions using Skorokhod’s method of a
single probability space, which is based on his representation Theorem 1.6.16, and then
use Lemma 3.7.1. Unfortunately, Theorem 1.6.16 can not be directly applied either to
the vector processes (νε(t), ξε(t)), t ≥ 0, or to their compositions ζε(t), t ≥ 0. As was
mentioned above, conditions A34, J8, J12, G8, and H8 do not guarantee J-convergence
of these processes. So, this method must be realised in a more sophisticated way. This
can be done by first applying Theorem 1.6.14 to the vector processes (νε(t), ξε(t)), t ≥ 0,
and then Theorem 1.6.16, separately, to the processes ξεi(t), t ≥ 0, for every i = 1, . . . ,m,
and to the processes νε(t), t ≥ 0.

Note, first of all, that conditions A34 and J8, and J12 and Theorem 1.6.8 permit to
extend the sets of weak convergence, U and V , in condition A34 to the sets U′ = U ∪U0

and V ′ = V ∪ V0. Here U0 = ∩m
i=1U0i, where U0i is the set of points of stochastic

continuity for the process ξεi(t), t ≥ 0, for i = 1, . . . ,m, and V0 is the set of stochastic
continuity for the process ν0(t), t ≥ 0.

Both sets, U′ and V ′, coincide with [0,∞), except for at most countable sets. Also,
both sets U′ and V ′ contain the point 0. Hence, the set S ′ = U′ ∩ V ′ is also the interval
[0,∞), except for at most a countable set, and 0 ∈ S ′.

Condition A34 implies the following relation:

(νε(t), ξε(t)), t ∈ S ′ ⇒ (ν0(t), ξ0(t)), t ∈ S ′ as ε→ 0. (3.8.1)

Let us choose a countable subset S̃ ⊆ S ′ that is dense in [0,∞) and contains the point
0. Using relation (3.8.1) we can apply Theorem 1.6.14 and construct some probability
space (Ω,F,P) and a.s. càdlàg processes (ν̃ε(t), ξ̃ε(t)), t ≥ 0, defined on this space for
every ε ≥ 0 and such that

(ν̃ε(t), ξ̃ε(t)), t ≥ 0 d
= (νε(t), ξε(t)), t ≥ 0, (3.8.2)
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and, for an arbitrary sequence 0 ≤ εn → 0 as n→ ∞,

(ν̃εn(t), ξ̃εn
(t))

a.s.−→ (ν̃0(t), ξ̃0(t)) as n→∞, t ∈ S̃ . (3.8.3)

Let ε0,n be an arbitrary sequence such that 0 ≤ ε0,n → 0 as n→ ∞.
Relations (3.8.1), (3.8.2), (3.8.3), and condition J8 permit to apply Theorem 1.6.16

to the processes ξεi(t), t ≥ 0 and ξ̃εi(t), t ≥ 0, for every i = 1, . . . ,m.
Therefore, there is a subsequence ε1,n → 0 as n → ∞ of the sequence ε0,n such that

P(A1) = 1, where A1 ∈ F is the set of elementary events ω such that

ξ̃ε1,n1(t,ω), t ≥ 0
J−→ ξ̃01(t,ω), t ≥ 0 as n→ ∞. (3.8.4)

Then there is a subsequence ε2,n → 0 as n → ∞ of the subsequence ε1,n such that
P(A2) = 1, where A2 ∈ F is the set of elementary events ω such that

ξ̃ε2,n2(t,ω), t ≥ 0
J−→ ξ̃02(t,ω), t ≥ 0 as n→ ∞. (3.8.5)

By continuing this procedure, one can select, for every i = 1, . . . ,m, a subsequence
εi,n → 0 as n → ∞ from the subsequence εi−1,n such that P(Ai) = 1, where Ai ∈ F is the
set of elementary events ω such that

ξ̃εi,ni(t,ω), t ≥ 0
J−→ ξ̃0i(t,ω), t ≥ 0 as n→∞. (3.8.6)

Let A = ∩m
i=1Ai. Obviously, P(A) = 1. Since εm,n is a subsequence of all preceding

subsequences, we have for every elementary event ω ∈ A that

ξ̃εm,ni(t,ω), t ≥ 0
J−→ ξ̃0i(t,ω), t ≥ 0 as n→∞, i = 1, . . . ,m. (3.8.7)

Relations (3.8.1), (3.8.2), (3.8.3), and condition J12 also permit to apply Theorem
1.6.16 to the processes νε(t), t ≥ 0 and ν̃ε(t), t ≥ 0.

Therefore, one can choose a subsequence ε′n → 0 as n → ∞ from the subsequence
εm,n such that P(B) = 1, where B ∈ F is the set of elementary events ω such that

ν̃ε′n(t,ω), t ≥ 0
J−→ ν̃0(t,ω), t ≥ 0 as n→ ∞. (3.8.8)

Due to relation (3.8.2), condition G8 implies that P(C) = 1, where C ∈ F is the set of
elementary events ω satisfying

ν̃0i(t ± 0,ω) < R[ξ̃0i(·,ω)], i = 1, . . . ,m for t ∈ ∪m
i=1R[ν̃0i(·,ω)]. (3.8.9)

Also, due to relation (3.8.2), condition H8 implies that P(D) = 1, where D ∈ F is
the set of elementary events ω for which

m∑

i=1

χ(ν̃0i(t,ω) ∈ R[ξ̃0i(·,ω)]) ≤ 1 for t ≥ 0. (3.8.10)



3.8. Vector compositions of càdlàg processes 233

Obviously, P(A ∩ B ∩ C ∩ D) = 1 and, for ω ∈ A ∩ B ∩ C ∩ D, conditions A44, J17,
A45, J18, G6, and H4 hold for the sequences of functions ξ̃ε′n(t,ω), t ≥ 0 and ν̃ε′n(t,ω),
t ≥ 0. By applying Lemma 3.7.1 to their vector compositions ζ̃ε′n(t) = (ξ̃ε′ni(ν̃ε′ni(t)), i =

1, . . . ,m), t ≥ 0, we get for ω ∈ A ∩ B ∩ C ∩ D that

lim
c→0

lim
n→∞

∆J(ζ̃ε′n(·,ω), c, T ) = 0, T > 0. (3.8.11)

Relation (3.8.11) implies the following relation:

lim
c→0

lim
n→∞

P{∆J(ζ̃εn
(·), c, T ) ≥ δ} = 0, δ, T > 0, (3.8.12)

which, due to arbitrariness in the choice of the sequence εn → 0, implies in its turn that

lim
c→0

lim
ε→0

P{∆J(ζ̃ε(·), c, T ) ≥ δ} = 0, δ, T > 0. (3.8.13)

The proof that relation (3.8.11) implies relations (3.8.12) and (3.8.13) is absolutely
analogous to the proof that relation (3.6.7) implies relations (3.6.8) and (3.6.9), which
was given in Theorem 3.6.1.

Relation (3.8.13) implies the relation stated in the theorem since, due to (3.8.2),
∆J(ζ̃ε(·), c, T ) d

= ∆J(ζε(·), c, T ). �

3.8.2. J-convergence of vector compositions of càdlàg processes. To obtain gen-
eral conditions for J-convergence of vector compositions of càdlàg processes, it is suffi-
cient to combine the conditions of J-compactness formulated in Theorem 3.8.1 with the
conditions of weak convergence for compositions obtained in Chapter 2, in particular,
those formulated in Theorem 2.7.6.

Let also recall the conditions that were introduced in Subsection 2.7.2:

E4: P{ν0i(t′) = ν0i(t′′) ∈ R[ξ0i(·)]} = 0 for 0 ≤ t′ < t′′ < ∞, i = 1, . . . ,m;

and

C
(w)
6 : P{ν0i(w) ∈ R[ξ0i(·)]} = 0 for i = 1, . . . ,m.

The second main result of the section is the following theorem from Silvestrov
(1974).

Theorem 3.8.2. Let conditions A34, J8, J12, G8, H8, E4, and C(0)
6 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.
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Proof of Theorem 3.8.2. Conditions A34, J8, J12, G8, and H8 are conditions of Theorem
3.8.1. By applying this theorem, we prove J-compactness of the processes ζε(t), t ≥ 0,
on any finite interval.

Conditions A34, J8, E4, and C(0)
6 imply that the conditions of Theorem 2.7.6 hold for

the external processes ξε(t), t ≥ 0 and the internal stopping processes νε(t), t ≥ 0. In
particular, condition A34 implies that condition AV

22 holds with the set V in condition
A34. This set is dense in [0,∞) and contains the point 0. Conditions J8 and E4 are
required in both Theorems 3.8.2 and 2.7.6. The corresponding set of weak convergence,
S 0, is dense in [0,∞). Condition C(0)

6 permits to include the point 0 in S 0. By applying
Theorem 2.7.6, we prove weak convergence of the processes ζε(t) to ζ0(t) as ε → 0 on
the set S 0.

To complete the proof one should apply Theorem 1.6.6, which gives conditions for
J-convergence of càdlàg processes.

The proof of Theorem 3.8.2 can also be accomplished with the use of the method of
a single probability space. One only needs to continue the proof of Theorem 3.8.1.

Due to relation (3.8.2), condition E4 implies that P(E) = 1, where E ∈ F is a set of
elementary events ω for which there do not exist points 0 ≤ t′ < t′′ ≤ T and i = 1, . . . ,m
such that ν0i(t′,ω) = ν0i(t′′,ω) ∈ R[ξ0i(·,ω)]. Also, due to relation (3.8.2), condition
C

(0)
6 implies that P(F) = 1, where F ∈ F is a set of elementary events ω for which

ν0i(0,ω) < R[ξ0i(·,ω)] for i = 1, . . . ,m.
Obviously P(A∩B∩C∩D∩E∩F) = 1 and, for ω ∈ A∩B∩C∩D∩E∩F, conditions

A44, J17, A45, J18, G6, H4, E10, and C(0)
13 of Lemma 3.7.3 hold for the sequences of

càdlàg functions ξ̃ε′n(t,ω), t ≥ 0, and ν̃ε′n(t,ω), t ≥ 0. By applying Lemma 3.7.3 to
their compositions ζ̃ε′n(t) = (ξ̃ε′ni(ν̃ε′ni(t)), i = 1, . . . ,m), t ≥ 0, we get, for ω ∈ A ∩
B ∩ C ∩ D ∩ E ∩ F, the following relation: ζ̃ε′n(t,ω), t ≥ 0

J−→ ζ̃0(t,ω), t ≥ 0 as
r →∞. In terms of the metrics dJ , the last relation means that dJ(ζ̃ε′n(·,ω), ζ̃0(·,ω))→ 0.
Since the initial sequence εn was arbitrary, this relation means that the random variables

dJ(ζ̃ε(·), ζ̃0(·)) P−→ 0 as ε → 0. As it was pointed out in Lemma 1.3.1, convergence in
probability implies weak convergence. So, we get that the processes ζ̃ε = {ζ̃ε(t), t ≥ 0},
considered as random variables that take values in the space D(m)

[0,∞) with the metric dJ ,

weakly converge. Since ζ̃ε
d
= ζε, this completes the proof. �

In conclusion, let us compare the conditions of Theorems 3.8.2 and 3.6.2 in the
semi-vector case, where the internal stopping process νε(t) = (νε(t), . . . , νε(t)), t ≥ 0 has
identical components.

In this case, condition A34 is reduced to condition A36, condition J12 to J11, condi-
tion E4 to E6, condition G8 to G4, and condition C

(0)
6 to C

(0)
8 .

The condition of J-compactness of external processes, J8, used in Theorem 3.8.2 is
weaker than condition J4 used in Theorem 3.6.2. However, this is compensated by the
use of the additional condition H8 in Theorem 3.8.2.
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In the scalar case, where m = 1, the conditions of Theorems 3.8.2 and 3.6.2 coincide.
In this case, conditions J8 and J4 coincide while condition H8 holds automatically.

3.8.3. The continuity conditions E4, G8, and H8. Let us formulate these conditions
in a more convenient form and give some simple sufficient conditions.

Determine the moments of jumps of the process ξ0i(t), t ≥ 0, namely τkni = inf(s >
τk−1ni : |ξ0i(s) − ξ0i(s − 0)| ∈ [ 1

n ,
1

n−1 )), k = 1, 2, . . . , where τ0ni = 0. By the definition,
τkni are successive moments of jumps with absolute values in the interval [ 1

n ,
1

n−1 ) for
k < µni + 1 and τkni = ∞ for k ≥ µni + 1. Here µni = max(k ≥ 0: τkni < ∞) is the total
number of such jumps in the interval [0,∞).

Similar notations can be introduced for moments of jumps of the process ν0i(t), t ≥ 0,
namely, κkni = inf(s > κk−1ni : |ν0i(s)− ν0i(s− 0)| ∈ [ 1

n ,
1

n−1 )), k = 1, 2, . . ., where κ0ni = 0.
By the definition, κkni are successive moments of jumps with absolute values in the
interval [ 1

n ,
1

n−1 ) for k < λn + 1 and κkni = ∞ for k ≥ λni + 1. Here λni = max(k ≥ 0: κkni <
∞) is the total number of such jumps in the interval [0,∞).

The condition E4 can be rewritten in an equivalent form,

E
′
4: P{ν0i(t′) = ν0i(t′′) = τrli} = 0 for 0 ≤ t′ < t′′ < ∞, r, l = 1, 2, . . . and i = 1, . . . ,m.

Note, first of all, that the following condition, introduced in Subsection 2.7.2, is
obviously sufficient for condition E4 to hold:

I2: ν0i(t), t ≥ 0 is an a.s. strictly increasing process for every i = 1, . . . ,m.

The following condition, introduced in the same Subsection 2.7.2, is also sufficient
for condition E4 to hold:

Q4: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process, (b)
ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process, (c) for every i = 1, . . . ,m,
the processes ξ′′0i(t), t ≥ 0 and ν0i(t), t ≥ 0 are independent.

Lemma 3.8.1. Let condition Q4 hold. Then condition E4 holds.

Proof of Lemma 3.8.1. If condition Q4 holds, then the random variable τrli is a point of
jump of the process ξ0i(t) if and only if it is the corresponding point of jump of the
second component ξ′′0i(t) in the decomposition. This is so, because the first component
ξ′0i(t) is continuous. Therefore (a) the process ν0i(t), t ≥ 0 and the random variable τrli are
independent. The process ξ0i(t), t ≥ 0 is stochastically continuous. So, (b) the random
variables τrli have continuous distribution functions. Obviously, (a) and (b) imply that
condition E4 holds. �

Suppose that condition Q4 holds without the assumption that the processes ξ′′0i(t),
i = 1, . . . ,m are stochastically continuous. Then the distribution functions of the random
variables τrli can possess discontinuity points. To make condition E4 hold, it is enough to



236 Chapter 3. J-convergence of compositions of stochastic processes

require in this case that (c) the random variables ν0i(t) and τrli be independent for every
t ≥ 0, r, l = 1, 2, . . ., and i = 1, . . . ,m, and that (d) their distribution functions have not
common points of discontinuity. Note that, in this case, the processes ξ0(t), t ≥ 0 and
ν0(t), t ≥ 0 can be dependent.

Note also that condition Q4 implies that condition C(w)
6 holds for any w ≥ 0.

Condition G8 can be rewritten in an equivalent form,

G
′
8: P{ν0i(κkn j ± 0) = τrli} = 0 for k, n, r, l = 1, 2, . . . and i, j = 1, . . . ,m.

Note that the random variables ν0i(κkn j±0) can take values in the interval [0,∞], since
the random variables κkn j can take the value +∞. In this case by definition, ν0i(+∞±0) =

limt→∞ ν0i(t).
The following condition, which is slightly stronger than Q4, is sufficient for G8 to

hold:

Q8: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process, (b)
ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process, (c) for every i = 1, . . . ,m,
the processes ξ′′0i(t), t ≥ 0 and the vector process ν0(t), t ≥ 0 are independent.

Lemma 3.8.2. Let condition Q8 hold. Then condition G8 holds.

Proof of Lemma 3.8.2. If condition Q8 holds, then the random variable τrli is a moment
of jump of the process ξ0i(t) if and only if it is the corresponding point of jump of the
second component in the decomposition, ξ′′0i(t). Therefore, the process ν0(t), t ≥ 0 and
the random variable τrli are independent. In sequel, (e) the random variables ν0i(κkn j ± 0)
and τrli are independent. The process ξ0i(t), t ≥ 0 is stochastically continuous. Thus, (f)
the random variables τrli have continuous distribution functions. Obviously, (e) and (f)
imply that condition G8 holds. �

Suppose that Q8 holds without the assumption that the processes ξ′′0i(t), i = 1, . . . ,m
are stochastically continuous. Then the distributions of the random variables τrli can
possess discontinuity points. To make condition G8 hold, it is enough to require in this
case that the distribution functions of the random variables ν0i(κkn j ± 0) and τrli have not
common points of discontinuity for every k, n, r, l = 1, 2, . . . and i, j = 1, . . . ,m.

The analysis of condition H8 is more complicated. Define, for every a ≥ 0, the
random functionals γi(a) = inf(t ≥ 0: ν0i(t) = a). By the definition, γi(a) is the left
endpoint of the interval where the process ν0i(t) takes the value a. Note that it can
happen that this interval consists only of the point γi(a) itself. Also, γi(a) = ∞ if such
an interval does not exist. It is clear that there exist a point t ≥ 0 and i , j such that
ν0i(t) ∈ R[ξ0i(·)] and ν0 j(t) ∈ R[ξ0 j(·)] if and only if there exist some k, n, r, l ≥ 1 and
i , j such that ν0 j(γi(τrli)) = τkn j.

So, condition H8 can be rewritten in the following equivalent form:
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H
′
8: P{ν0 j(γi(τrli)) = τkn j} = 0 for k, n, r, l = 1, 2, . . . and i , j.

The following condition, which is stronger than Q4 and Q8, is sufficient for H
′
8 to

hold:

Q9: ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, where (a) ξ′0(t), t ≥ 0 is a continuous process, (b)
ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process, (c) the processes ξ′′0i(t),
t ≥ 0, for i = 1, . . . ,m and ν0(t), t ≥ 0 are mutually independent.

Lemma 3.8.3. Let condition Q9 hold. Then condition H8 holds.

Proof of Lemma 3.8.3. If condition Q9 holds, then the random variable τrli is a point of
jump of the process ξ0i(t) if and only if it is the corresponding point of jump of the
second component in the decomposition, ξ′′0i(t). Therefore, by condition Q9 (c), the
process ν0(t), t ≥ 0 and the random variables τrli, i = 1, . . . ,m are mutually independent.
In sequel, (g) the random variables ν0 j(γi(τrli)) and τkn j are independent for every i , j.
The process ξ0i(t), t ≥ 0 is stochastically continuous. So, (h) the random variables τkn j

have continuous distribution functions. Obviously, (g) and (h) imply that condition H
′
8

holds. �

Suppose that condition Q9 holds without imposing the assumption on the processes
ξ′′0 j(t), t ≥ 0 to be stochastically continuous. Then the distributions of the random vari-
ables τkn j can possess discontinuity points. To provide condition H

′
8, it is enough to

require in this case that the distribution functions of the random variables ν0 j(γi(τrli))
and τkn j have not common points of discontinuity for every k, n, r, l = 1, 2, . . . and i , j.

Note that conditions Q4, Q8, and Q9 admit dependence of the processes ξ′0(t), t ≥ 0
and ν0(t), t ≥ 0. Due to this dependence, the processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0 can
be dependent.

The following theorem from Silvestrov (1974) is applicable in many cases. It is a
direct corollary of Theorem 3.8.2 and Lemmas 3.8.1 – 3.8.3.

Theorem 3.8.3. Let conditions A34, J8, J12, and Q9 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

3.8.4. J-convergence of vector càdlàg processes. Let us assume that the processes
νεi(t) = t, t ≥ 0, for all i = 1, . . . ,m. In this case, the processes ζε(t) = ξε(t), t ≥ 0.

Condition A34 takes, in this case, the following form:

A48: ξε(t), t ∈ U ⇒ ξ0(t), t ∈ U as ε → 0, where U is a subset of [0,∞) that is dense in
this interval and contains the point 0.
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The condition of J-compactness J8, which requires J-compactness of the processes
ξεi(t), t ≥ 0, separately for every i = 1, . . . ,m, does not change.

Condition H8 takes the following form:

H9:
∑m

i=1 χ(t ∈ R[ξ0i(·)]) ≤ 1 for t ≥ 0} = 1.

It can also be formulated in the following equivalent forms:

H
′
9: P{R[ξ0i(·)] ∩ R[ξ0 j(·)] = ∅} = 1 for i , j;

or

H
′′
9 : P{τkni = τrl j} = 0 for k, n, r, l = 1, 2, . . . and i , j.

The condition of J-compactness J12 obviously holds, as well as conditions G8, E4,
and C

(0)
6 .

Theorems 3.8.2 yields, in this case, the following simple sufficient conditions for
J-convergence of vector càdlàg processes. This result belongs to Whitt (1973, 1980).

Theorem 3.8.4. Let conditions A48, J8, and H9 hold. Then

ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε→ 0.

Note that condition J8 requires J-compactness for the components ξεi(t), t ≥ 0 sepa-
rately for every i = 1, . . . ,m. It can happen that, under conditions A48 and J8, the vector
processes ξε(t), t ≥ 0 are not J-compact and do not J-converge. Condition H9 is an
additional condition that should be added to conditions A48 and J8 in order to provide
J-compactness and also J-convergence of the vector processes ξε(t), t ≥ 0.

Let us now go back to the case of general vector compositions ζε(t), t ≥ 0. Condition
H9 takes the following form:

H10: P{∑m
i=1 χ(t ∈ R[ξ0i(ν0i(·))]) ≤ 1 for t ≥ 0} = 1;

or the equivalent form:

H
′
10: P{R[ξ0i(ν0i(·))] ∩ R[ξ0 j(ν0 j(·))] = ∅} = 1 for i , j.

Let us introduce the following condition for J-compactness of the internal stopping
processes, which is weaker than condition J12:

J21: limc→0 limn→∞ P{∆J(νεi(·), c, T ) > δ} = 0, δ, T > 0, i = 1, . . . ,m.

Theorem 3.8.4 permits to formulate conditions for J-convergence of vector composi-
tions of càdlàg processes, which would be alternative to the conditions given in Theorem
3.8.2.
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Theorem 3.8.5. Let conditions A34, J8, J21, G8, H10, E4, and C
(0)
6 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.8.5. Conditions A34, J18, J21, G8, E4, and C
(0)
6 imply that conditions

of Theorem 3.6.2 hold for the scalar processes ξεi(t), t ≥ 0 and νεi(t), t ≥ 0, for every i =

1, . . . ,m. By applying Theorem 3.6.2 to these processes, we prove that ξεi(νεi(t)), t ≥ 0
J−→ ξ0i(ν0i(t)), t ≥ 0 as ε → 0, for every i = 1, . . . ,m. Finally, condition H10 permits to

apply Theorem 3.8.4 to the vector processes ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ≥ 0, and
to prove Theorem 3.8.5. �

Let us explain the difference between conditions of J-convergence in Theorems 3.8.2
and 3.8.5. Conditions H10 and H8 used in these theorems are not equivalent.

Condition H8 prohibits only the case where (a) two or more processes ξ0i(·) have
synchronous jumps at random points ν0i(t) for some t ≥ 0. This means that the probabil-
ity of the event described in (a) equals 0.

Condition H10 does not allow for the case (a) and usually also for the case where (b)
two or more processes ν0i(·) have simultaneous jumps at a point t for some t ≥ 0. This
means that both probabilities of the events described in (a) and (b) equal 0.

At the same time, condition J12 is stronger than condition J21.
However, conditions J12 and J21 are equivalent if (c) two or more processes ν0i(·)

have not simultaneous jumps with probability 1, i.e., condition H9 holds for processes
the ν0(t), t ≥ 0.

Let consider two examples that illustrate the difference between Theorems 3.8.5 and
3.8.2.

In the model of semi-vector composition of càdlàg processes, the internal stopping
process νε(t) = (νε(t), . . . , νε(t)), t ≥ 0 has identical components. If the correspond-
ing limiting process ν0(t), t ≥ 0 is discontinuous, then condition H9 does not hold for
the processes ν0(t), t ≥ 0. In this case, condition H10 may not hold for the processes
ζ0(t), t ≥ 0. Theorem 3.8.5 does not work. At the same time, conditions J12 and H8 may
hold and Theorem 3.8.2 can be used.

In many applications, the components of the internal stopping processes νε(t), t ≥ 0
are asymptotically proportional. This means that the limiting process ν0(t), t ≥ 0 has
the following structure: ν0(t) = (qiν0(t), i = 1, . . . ,m), t ≥ 0, where qi, i = 1, . . . ,m are
positive constants. If the corresponding limiting process ν0(t), t ≥ 0 is discontinuous,
then condition H9 does not hold for the processes ν0(t), t ≥ 0. In this case, condition
H10 may not hold for the processes ζ0(t), t ≥ 0. In such situations, Theorem 3.8.5 does
not work. At the same time, conditions J12 and H8 may hold. Theorem 3.8.2 can be
applicable.

3.8.5. Weakened second-type continuity conditions. Let us formulate an analogue
of Theorem 3.8.2 in which the continuity conditions E4 and C(0)

6 are weakened.
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Theorem 3.8.6. Let conditions A34, J8, J12, G8, H8, F3, and D
(0)
5 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 3.8.6. Conditions A34, J8, J12, G8, and H8 are conditions of Theorem
3.8.1. By applying this theorem, we prove J-compactness of the processes ζε(t), t ≥ 0,
for any finite interval.

Conditions A34, J8, F3, and D
(0)
5 imply that the conditions of Theorem 2.7.10 hold

for the external processes ξε(t), t ≥ 0, and the internal stopping processes νε(t), t ≥ 0.
In particular, condition A34 implies that condition AV

22 holds with the set V that enters
condition A34. This set is dense in [0,∞) and contains the point 0. Condition F3 is
required in both Theorems 3.8.6 and 2.7.10. The corresponding set of weak convergence,
S 0, is dense in [0,∞). Condition D(0)

5 permits to include the point 0 in S 0. By applying
Theorem 2.7.10, we prove that the processes ζε(t) weakly converge to ζ0(t) as ε → 0 on
the set S 0.

To complete the proof, it remains to apply Theorem 1.6.6 that gives conditions for
J-convergence of càdlàg processes. �

3.8.6. The time interval [0, T]. In this case, we consider the vector composi-
tion ζε(t) = (ξεi(νεi(t)), i = 1, . . . ,m), t ∈ [0, T ] of a vector càdlàg process ξε(t) =

(ξεi(t), i = 1, . . . ,m), t ≥ 0, with real-valued components and a vector càdlàg process
νε(t) = (νεi(t), i = 1, . . . ,m), t ∈ [0, T ], with non-negative and non-decreasing compo-
nents.

We can always continue internal stopping process to the interval [0,∞) by the fol-
lowing formula:

νε(t) =


νε(t), if 0 ≤ t ≤ T,
νε(T ), if t ≥ T.

(3.8.14)

Formula (3.8.14) implies that, for every i = 1, . . . ,m,

ξεi(νεi(t)) =


ξεi(νεi(t)), if 0 ≤ t ≤ T,
ξεi(νεi(T )), if t ≥ T.

(3.8.15)

It follows from formulas (3.8.14) and (3.8.15) that the processes νε(t) and ζε(t) take
the values, respectively, νε(T ) and ζε(T ) for t ≥ T .

Formulas (3.8.14) and (3.8.15) allow to derive conditions for J-compactness and J-
convergence of compositions of càdlàg processes defined on finite intervals from the
corresponding results for the case of the semi-infinite interval [0,∞).

Condition A34 takes, in this case, the following form:

A49: (νε(s), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where (a) U
is a subset of [0,∞) that is dense in this interval and contains the point 0, (b) V is
a subset of [0, T ] that is dense in this interval and contains the points 0 and T .
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The condition for J-compactness of external processes J8 does not require any changes.
Condition for J-compactness of internal stopping processes J12, however, should be
modified to the following form:

J22: limc→0 limε→0 P{∆J(νε(·), c, T ) > δ} = 0, δ > 0.

Denote by RT [ν0(·)] the random set of discontinuity points for the process ν0(t), t ∈
[0, T ].

Continuity conditions E4, G8, and H8 take the following form:

E12: P{ν0i(t′) = ν0i(t′′) ∈ R[ξ0i(·)]} = 0 for 0 ≤ t′ < t′′ ≤ T , i = 1, . . . ,m;

G9: P{ν0i(t ± 0) < R[ξ0i(·)], i = 1, . . . ,m for t ∈ ∪m
i=1RT [ν0i(·)]} = 1;

and

H11: P{∑m
i=1 χ(ν0i(t) ∈ R[ξ0i(·)]) ≤ 1 for t ∈ [0, T ]} = 1.

The following theorem is an analogue of Theorem 3.8.1.

Theorem 3.8.7. Let conditions A49, J8, J22, G9, and H11 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ > 0.

Proof of Theorem 3.8.7. It is enough to apply Theorem 3.8.1 to the vector composition
of the processes ξε(t), t ≥ 0 and νε(t), t ≥ 0, where the latter process is defined in
(3.8.14). Condition A49 implies A34, condition J22 implies J12, condition G9 implies
G8, and condition H11 implies H8. Condition J8 is the same in Theorems 3.8.1 and
3.8.7. The relation of J-compactness given in Theorem 3.8.1 yields, for T ′ > T , the
relation of J-compactness given in Theorem 3.8.7. �

We also use the following modification of condition A49 where the random variables
νε(T − 0) are additionally included in the relation of weak convergence:

A50: (νε(s), νε(T − 0), ξε(t)), (s, t) ∈ V × U ⇒ (ν0(s), ν0(T − 0), ξ0(t)), (s, t) ∈ V × U as
ε → 0, where (a) U is a subset of [0,∞) that is dense in this interval and contains
the point 0, (b) V is a subset of [0, T ] that is dense in this interval and contains the
points 0 and T .

The following theorem is an analogue of Theorem 3.8.2.

Theorem 3.8.8. Let conditions A50, J8, J22, G9, H11, E12, C
(0)
6 , and C

(T)
6 hold. Then

ζε(t), t ∈ [0, T ]
J−→ ζ0(t), t ∈ [0, T ] as ε→ 0.
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Proof of Theorem 3.8.8. Let us apply Theorems 3.8.2 to the vector composition ζε(t),
t ≥ 0 of the processes ξε(t), t ≥ 0 and νε(t), t ≥ 0, where the latter process is defined in
(3.8.14). Condition A50 implies A34, condition J22 implies J12, condition G9 implies G8,
and condition H11 implies H8. Conditions J8, C(0)

6 , and C(T)
6 are the same in Theorems

3.8.2 and 3.8.8. Also, conditions E12 and C
(T)
6 imply E4. Now, by applying Theorem

3.8.2, we prove J-convergence of the processes ζε(t) on the interval [0,∞).
However, this does not automatically yields J-convergence of these processes on

the interval [0, T ]. In order to have J-convergence on the interval [0, T ], the random
variables ζ0(T ) must be included in the relation of weak convergence of these processes.
Moreover, if the point T is not a point of stochastic continuity for the limiting process
ζ0(t), then the random variables ζε(T − 0) should also be included in the relation of
weak convergence on the set S 0(T ) = S 0 ∩ [0, T ]. The random variables ζε(T ) can be
included due to condition C(T)

6 . Also, conditions G9 and C(T)
6 imply that C(T−)

6 holds.
To prove this, one can apply (3.6.13) in the case of scalar processes and show that (a)
P{ν0i(T − 0) ∈ R[ξ0i(·)]} = 0 for every i = 1, . . . ,m. These relations are equivalent to
condition C(T−)

6 . This condition allows to include the random variables ζε(T − 0) in the
relation of weak convergence of the processes ζε(t).

The proof is completed by referring to Theorem 1.6.3 that gives conditions for J-
convergence of càdlàg processes defined on a finite interval. �

Let us introduce the following condition:

O(T)
10 : P{ζ0(T − 0) = ζ0(T )} = 1.

Remark 3.8.1. Condition A50 can be replaced in Theorem 3.8.8 with conditionA49 if
the point T is a point of stochastic continuity for the limiting process ζ0(t), which is
equivalent to condition O(T)

10 .

3.8.7. A Polish phase space. Results in this section can be generalised to a model
with external stochastic processes ξεi(t), t ≥ 0 that take values in a Polish space X.

The formulation of condition A34 remains without changes. In the conditions J8,
the Euclidean distance |x − y| must be replaced with the corresponding metric d(x, y)
in the formula for the moduli ∆J(ξεi(·), c, T ), i = 1, . . . ,m. With these changes in the
conditions, the formulations and the proofs of Theorems 3.8.1 – 3.8.8 can be repeated.

3.8.8. References. Conditions for U-convergence of scalar compositions of càdlàg
processes were obtained by Billingsley (1968). Theorem 3.2.1 and Lemmas 3.2.1 – 3.2.3
present vector versions of these results in the form given in Silvestrov (1974).

Conditions for J-convergence of semi-vector compositions with a continuous limit-
ing external process, formulated in Theorem 3.3.1, are from Silvestrov (1974). Similar
results were obtained by Whitt (1973, 1980). Theorem 3.3.2 and Lemma 3.2.3 present a
new improved version of Theorem 3.3.1 for vector compositions of càdlàg processes.
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Conditions for J-compactness and J-convergence of monotone processes given in
Theorems 3.3.3 and 3.3.4 are from Silvestrov (1974).

Conditions for J-convergence of compositions of càdlàg processes with a continuous
limiting internal stopping process, formulated in Theorems 3.4.1 and 3.4.4, are from
Silvestrov (1972b, 1972e). These theorems cover an essential part of applications.

Theorem 3.4.2, which is an equivalent version of Theorem 3.4.1, and Lemma 3.4.1
are from Silvestrov (1974), where condition E2 was introduced and used, instead of E1.
The latter condition, equivalent to E2 but more convenient for application, was given in
Silvestrov and Teugels (1998a) and Silvestrov (2000b). Theorem 3.4.2 is given in a new
form where condition E2 is replaced with condition E1. A weaker form of Theorems
3.4.1 and 3.4.2 was also given by Whitt (1973, 1980) under an additional condition that
the limiting internal process is not only continuous but also strictly monotone. Theorem
3.4.3, with the weakened continuity condition F4 used instead of E1, is a new.

Conditions for J-compactness and J-convergence of compositions of càdlàg pro-
cesses for a general model, where both limiting external and internal stopping processes
can be discontinuous, were obtained in Silvestrov (1974). These results are formulated
in Theorems 3.6.1 and 3.6.5, which give conditions for J-compactness of semi-vector
compositions of càdlàg processes, and Theorem 3.6.2, 3.6.3, and 3.6.6, which give con-
ditions for J-convergence of semi-vector compositions of càdlàg processes. A key role is
played, in these theorems, by continuity conditions of type G4 also introduced in Silve-
strov (1974). Theorem 3.6.4, with the weakened continuity condition F3, is a new result
announced in Silvestrov (2002b).

A vector form of these results is also given in Silvestrov (1974). Theorems 3.8.1
and 3.8.7 give conditions for J-compactness of vector compositions of càdlàg processes,
whereas Theorems 3.8.2 and 3.8.8 give conditions for J-convergence of vector compo-
sitions of càdlàg processes. In these theorems, an important role is played by condition
H8 introduced in Silvestrov (1974). It should be noted that, in the case of vector com-
positions, the corresponding theorems are given in a new improved form with a weaker
version of J-compactness condition for external processes, J8, used instead of condi-
tion J4 employed in Silvestrov (1974). It should also be mentioned that analogues of
the theorems mentioned above for compositions of non-random càdlàg functions, given
in Sections 3.5 and 3.7, are also from Silvestrov (1974). Theorem 3.8.4, which gives
a simple sufficient condition for J-convergence of vector càdlàg processes, belongs to
Whitt (1973, 1980). Theorem 3.8.6, where the weakened continuity condition F3 is
used instead of E4, is new. This theorem is from Silvestrov (2002a).
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Chapter 4

Summary of applications

This chapter gives a summary of applications of general limit theorems on randomly
stopped stochastic processes and compositions of stochastic processes. The goal is
to show how the general limit theorems given in Chapters 2 and 3 can be applied to
some classical models of càdlàg processes with random stopping. These models include
sum-processes (random sums), randomly stopped max-processes (extremes with random
sample size), generalised exceeding processes, and various renewal models, namely,
sum-processes and max-processes with renewal stopping and the so-called shock mod-
els. We also consider some related models, for example, accumulation processes.

First, we present results in the most general form with no special independence as-
sumptions imposed on the random variables that are used to construct the correspond-
ing processes. Then we proceed to the most important case where the corresponding
processes are constructed from sequences of independent identically distributed (i.i.d.)
random variables. We will not extend here the examples to processes defined on Markov
chains, semi-Markov processes, etc. This would overload the book. Bibliographical
remarks reflect our interest in these applications.

The most well known results for classical models of random sums and extremes with
random sample size relate to two classes of models based on i.i.d. random variables.
The first one concerns the model where random stopping indices and the corresponding
external processes are independent. The second one deals with a model in which the ran-
dom indices depend on the external processes but, being properly normalised, converge
in probability. This provides asymptotic independence of the corresponding external
processes and normalised random stopping indices.

We consider a general model where the corresponding external sum- or max-processes
and stopping indices can be dependent in an arbitrary way. We show that weak conver-
gence as well as J-convergence of the corresponding randomly stopped sum- or max-
processes can be obtained under only two conditions. The first one is the condition of
joint weak convergence of the normalised random stopping indices and external sum- or
max-processes with non-random stopping indices, and the second one is the condition
of J-compactness of the external processes. No extra assumptions on their independence
or even on their asymptotic independence is required. In some sense, these results are
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surprising. They give a unified approach to various concrete models including those
mentioned above. Theorems 4.2.1, 4.2.2 and 4.7.1, 4.7.2 contain results for general ran-
dom sums and extremes with random sample size, whereas Theorems 4.2.3, 4.2.4 and
4.7.3, 4.7.4 cover the case of random sums and extremes with random sample size in the
models constructed from sequences of i.i.d. random variables.

For renewal models, we first concentrate on the model of generalised exceeding pro-
cesses. Such a process is constructed by random stopping of a càdlàg process at the mo-
ments when another non-decreasing càdlàg process exceeds the levels t ≥ 0. This class
of processes includes many various renewal models. In particular, sum-processes and
max-processes with renewal stopping, as well as shock processes, are examples of the
generalised exceeding processes. We show that weak convergence as well J-convergence
of the generalised exceeding processes can be obtained under the only condition of J-
convergence of two-dimensional càdlàg processes used to construct the generalised ex-
ceeding processes. The main results concerning weak convergence are given in Theo-
rems 4.3.1 – 4.3.3 and 4.3.6. The main results concerning the J-convergence are given
in Theorems 4.3.4, 4.3.5 and 4.3.7. The case of step generalised exceeding processes
requires a special consideration. This is done in Theorems 4.4.1 and 4.4.2.

Application of these results to renewal models constructed from sequences of i.i.d.
random variables yields very natural and general conditions of weak and J-convergence
of renewal type processes in general triangular array mode. These results cover many re-
sults in the area, in particular those related to the classical case when external processes
converge to a Wiener process and internal stopping processes converge to non-random
functions. Our main results concerning the classical model of sum-processes with re-
newal stopping is Theorem 4.5.5 that covers the case where the limiting external process
is a Wiener process, and Theorems 4.5.6 and 4.5.7 that treat the general case where the
limiting external process can be an arbitrary càdlàg homogeneous process with inde-
pendent increments. In both cases, the corresponding limiting stopping process is an
exceeding process constructed from a non-negative càdlàg homogeneous process with
independent increments.

As was mentioned above, we will also consider some models related to renewal type
processes, namely accumulation processes. Here, the main results for general accumula-
tion processes are given in Theorem 4.6.1 and 4.6.2. The case of accumulation processes
with embedded regeneration cycles is covered in Theorems 4.6.3 and 4.6.4.

We also consider two types of models constructed from two dimensional càdlàg pro-
cesses which has a sum-process as its first component and a max-process as the second
one.

The first class is represented by max-processes with renewal stopping. Here our main
results concerning weak and J-convergence for these processes are given in Theorems
4.9.1 and 4.9.2. Theorems 4.9.3 and 4.9.4 cover the case of max-processes with renewal
stopping based on sequences of i.i.d. random variables.

The second class is represented by so-called shock processes. Here the main re-
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sult is Theorem 4.10.1, which gives conditions of weak and J-convergence for general
shock processes. Theorems 4.10.2 – 4.10.4 cover the case of shock processes based on
sequences of i.i.d. random variables.

In this context, we would like also to mention Theorems 4.8.1 and 4.8.2, which
gives general conditions of weak convergence and J-convergence for mixed sum-max
processes based on sequences of i.i.d. random variables.

It seems us, results presented in Chapter 4 illustrate in a spectacular way a power
of general limit theorems for randomly stopped processes and compositions of càdlàg
processes presented in Chapters 2 and 3.

In Section 4.1, we introduce the models of càdlàg processes with random stopping
mentioned above. Section 4.2 contains results concerned randomly stopped sum-proces-
ses (random sums). Limit theorems for generalised exceeding processes are given in
Sections 4.3 and 4.4. Section 4.5 contains results concerned sum-processes with renewal
stopping. Limit theorems for accumulation processes are given in Section 4.6. Limit
theorems for extremes with random sample size are given in Section 4.7. In Section 4.8,
limit theorems for mixed sum-max processes are given. In Section 4.9 limit theorems for
max-processes with renewal stopping are given. The last Section 4.10 contains results
on limit theorems for shock processes. The reference remarks are also given in the end
of this section.

4.1 Introductory remarks

In this section, we describe some basic classes of stochastic processes used in applica-
tions of general limit theorems for compositions of càdlàg stochastic processes.

Let us make the following remark. In Chapter 4, we systematically study the so-
called triangular array model in which the stochastic processes, say ζε(t), t ≥ 0, depend
on some small series parameter ε ≥ 0. In the introductory section, however, we restrict
consideration to a simpler model where the dependence of the processes on the parameter
ε is introduced in terms of non-random scale normalisation coefficients uε, tε > 0, and
the processes have the following structure: ζε(t) = ζ(ttε)/uε, t ≥ 0. This will permit to
concentrate on the structure of the model of the corresponding processes.

We would also like to mention a general convention concerning notations used in
Chapter 4. Henceforth, except for Sections 4.3 and 4.4, the parameter ε takes only pos-
itive values and, therefore, the symbol ε → 0 means that 0 < ε → 0. As a matter of
fact, in Sections 4.3 and 4.4, we consider general càdlàg processes that have the same
structure in the pre-limiting case (ε > 0) as well as in the limiting case (ε = 0). In other
sections, we consider various models constructed from sequences of random variables,
for example, sum-processes, renewal processes, etc. At the same time, the correspond-
ing limiting processes, usually, are constructed from some homogeneous processes with
independent increments. Their structure differs from the structure of the corresponding
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(b) A random stopping.

Figure 4.1: A randomly stopped sum-process.

pre-limiting processes.
4.1.1. Randomly stopped sum-processes (random sums). Let ξk, k = 1, 2, . . . be a

sequence of real-valued random variables. The classical object of studies in probability
theory is sums of random variables ξ(n) = ξ1 + . . . ξn, n = 0, 1, . . ., where ξ(0) = 0. The
case, where ξk, k = 1, 2, . . . are i.i.d. random variables, is the most important and well
investigated.

In order to study the whole trajectory of the sum-sequence ξ(n), n = 0, 1, 2, . . ., it is
convenient to connect with these sums the stochastic sum-process ξ(t) =

∑[t]
k=1 ξk, t ≥ 0.

Studies of the asymptotic behaviour are usually concerned with a model in which
the number of summands tends to infinity and the sums are normalised in a proper way.
These elements can be introduced in the following way. Let nε, uε be positive functions
of a “small“ parameter ε > 0 such that nε, uε → ∞ as ε → 0 (here tε = nε). We will
consider the asymptotic behaviour of the stochastic sum-processes

ξε(t) =

[tnε]∑

k=1

ξε,k, t ≥ 0, (4.1.1)

where the random variables ξε,k = ξk/uε, k ≥ 1.
Note that the normalised random variables ξε,k = ξk/uε, k ≥ 1 represent a particular

case of the so-called triangular array model in which the random variables ξε,k depend
on a small parameter ε.

A natural generalisation is a model in which the non-random indices nε, which de-
termine the number of summands, are replaced with non-negative random variables µε.
In this model, the random variables µε, ε > 0 should be defined on the same probability
space as the random variables ξk, k ≥ 1.
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Sum-processes with random stopping index (random sums) appear, for example, in
various sample models with random sample size. In order to have a consistent model,
it is natural to normalise the random variables µε by nε and consider the normalised
random stopping indices νε = µε/nε, The object of interest is the randomly stopped
sum-processes

ζε(t) =

[tµε]∑

k=1

ξε,k = ξε(tνε), t ≥ 0. (4.1.2)

Relation (4.1.2) shows that the randomly stopped sum-process ζε(t), t ≥ 0 can be
represented in the form of a composition of the external sum-process ξε(t), t ≥ 0 and the
internal stopping process νε(t) = tνε, t ≥ 0.

Figure 4.1 shows the behaviour of the trajectories of a sum-process with non-random
and random stopping.

4.1.2. Randomly stopped max-processes (extremes with random sample size).
Let ρk, k = 1, 2, . . . be a sequence of real-valued random variables. Another clas-
sical object of studies in probability theory is maxima of random variables ρ(n) =

max(ρ1, . . . , ρn), n = 0, 1, . . ., where ρ(0) = 0. Again, the case, where ρk, k = 1, 2, . . . are
i.i.d. random variables, is the most important and well investigated.

In order to study the whole trajectory of the max-sequence ρ(n), n = 0, 1, 2, . . ., it is
convenient to consider the max-processes ρ(t) = max1≤k≤[t] ρk, t ≥ 0.

Studies of the asymptotics are usually concerned with a model in which the sample
size tends to infinity and the maxima are normalised in a proper way. These elements
can be introduced in the following way. Let nε, uε be positive functions of a “small”
parameter ε > 0 such that nε, uε → ∞ as ε → 0. Consider the asymptotics of the
stochastic max-processes

ρε(t) = max
1≤k≤[tnε ]

ρε,k, t ≥ 0, (4.1.3)

where the random variables ρε,k = ρk/uε, k ≥ 1.
A natural generalisation is a model in which the non-random indices nε are replaced

with non-negative random variables µε. The random variables µε, ε > 0 should be defined
on the same probability space as the random variables ρk, k ≥ 1.

Max-processes with random stopping indices (extremes with random sample size)
appear in sample models with random sample size. In order to have a consistent model,
it is natural to normalise the random variables µε by nε and consider the normalised
random stopping indices νε = µε/nε. In this case, the object of interest is the randomly
stopped max-processes

ζε(t) = max
1≤k≤[tµε ]

ρε,k = ρε(tνε), t ≥ 0. (4.1.4)

Relation (4.1.4) shows that the randomly stopped max-process ζε(t), t ≥ 0 can be
represented in the form of a composition of the external max-process ρε(t), t ≥ 0, and
the internal stopping process νε(t) = tνε, t ≥ 0.
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(b) A random stopping.

Figure 4.2: A randomly stopped max-process.

Figure 4.2 shows the behaviour of trajectories of max-processes with non-random
and random stopping.

4.1.3. Renewal type processes. This is one of the models of stochastic processes
widely used in applications, e.g., queuing theory, reliability theory, etc. Let κk, k =

1, 2, . . . be a sequence of non-negative random variables. Let also κ(n) = κ1 + . . . κn, n =

0, 1, . . ., where κ(0) = 0. The random variables κ(n) are usually interpreted as “renewal”

moments. A standard additional assumption is that the random variables κ(n)
P−→ ∞

as n → ∞. The case, where κk, k = 1, 2, . . . are i.i.d. random variables, is the most
important and well investigated. As above, the corresponding sum-processes can be
constructed as κ(t) =

∑[t]
k=1 κk, t ≥ 0.

Let nε, tε be positive functions of a “small” parameter ε > 0 such that nε, tε → ∞ as
ε → 0. The corresponding normalised version of the process κ(t), t ≥ 0 can be defined
by

κε(t) =

[tnε]∑

k=1

κε,k, t ≥ 0, (4.1.5)

where the random variables κε,k = κk/tε, k ≥ 1.
The renewal process can be defined by µ(t) = min(n : κ(n) > t) = inf(s : κ(s) > t) =

sup(s : κ(s) ≤ t), t ≥ 0. The corresponding normalised version of the renewal process
with rescaled time can be defined by

νε(t) = µ(ttε)/nε = sup(s : κε(s) ≤ t), t ≥ 0. (4.1.6)
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Figure 4.3: A renewal process.
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Figure 4.4: A sum-process with renewal stopping.
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Figure 4.3 shows the behaviour of trajectories of a non-negative sum-process and the
corresponding renewal process.

There is a slightly modified version of the renewal process, which is defined by
µ′(t) = µ(t) − 1 = max(n : κ(n) ≤ t). The process µ′(t) = µ(t) − 1 counts the number of
renewal moments in the interval [0, t]. The corresponding normalised version of the re-
newal process with rescaled time can be defined by ν′ε(t) = µ′(ttε)/nε = νε(t)−1/nε, t ≥ 0.

4.1.4. Sum-processes with renewal stopping. We are now in a position to introduce
a model for randomly stopped processes, which generalises the model of renewal pro-
cesses. This model is also widely used in queuing theory, insurance mathematics, etc.
Let (κk, ξk), k = 1, 2, . . . be a sequence of random vectors with, respectively, the first com-
ponent non-negative and the second one real-valued. As above, κ(n) = κ1 + . . . κn, ξ(n) =

ξ1 + . . . ξn, n = 0, 1, . . ., where κ(0) = ξ(0) = 0. The case, where (κk, ξk), k = 1, 2, . . . are
i.i.d. random vectors, is the most important and well investigated. Let us introduce sum-
process with renewal stopping by ζ(t) =

∑[µ(t)]
k=1 ξk = ξ(µ(t)), t ≥ 0, where ξ(t) =

∑[t]
k=1 ξk

and µ(t) = sup(s : κ(s) ≤ t), t ≥ 0.
The corresponding normalised version of sum-process with renewal stopping and

rescaled time can be defined by

ζε(t) = ξ(µ(ttε))/uε = ξε(νε(t)), t ≥ 0, (4.1.7)

where ξε(t) = ξε(tnε)/uε and νε(t) = µ(ttε)/nε.
A slightly modified version of sum-process with renewal stopping and rescaled time

can be defined by
ζ′ε(t) = ξε(ν′ε(t)) = ξε(νε(t) − 1/nε), t ≥ 0. (4.1.8)

Figure 4.4 shows the difference in the behaviour of trajectories of the processes
ζε(t), t ≥ 0 and ζ′ε(t), t ≥ 0.

4.1.5. Accumulation processes. This model deals with a càdlàg stochastic process
ζ(t), t ≥ 0 and a sequence of random renewal moments 0 = τ0 < τ1 < τ2 < . . . such

that τn
P−→ ∞ as n → ∞. Both the process and the sequence are defined on the same

probability space. Let us also define random variables κk = τk − τk−1, ξk = ζ(τk)− ζ(τk−1)
and ςk = supt∈[τk−1,τk) |ζ(t) − ζ(τk−1)|, for k ≥ 1. The basic case is where (κk, ξk, ςk), k ≥ 1
is a sequence of i.i.d. random vectors.

The random variables κk are usually interpreted as times between successive “re-
newals”, τk as successive renewal moments, ζk as accumulations between the successive
renewals, and ςk as oscillations of the accumulation process ζ(t), t ≥ 0 between succes-
sive renewal moments.

The key role in studying limit theorems for accumulation processes is played by
the following representation of the accumulation process ζ(t), t ≥ 0 in the form of a
renewal type random sum: (a) ζ(t) = ζ(0) +

∑µ(t)−1
k=1 ξk + ς(t), t ≥ 0, where (b) ς(t) =

ζ(t) − ζ(0) − ∑µ(t)−1
k=1 ξk, t ≥ 0, and (c) µ(t) = min(n : τn > t), t ≥ 0. This representation
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Figure 4.7: A max-renewal process.

also implies the following estimate for the residual accumulation process ς(t), t ≥ 0: (d)
|ς(t)| ≤ max1≤k≤µ(t) ςk, t ≥ 0.

The corresponding normalised version of representation (a) takes the form

ζε(t) = ζ(ttε)/uε = ξε(νε(t) − 1/nε) + ς(ttε)/uε, t ≥ 0, (4.1.9)

where ξε(t) = ξε(tnε)/uε =
∑[tnε]

k=0 ξk/uε, ξ0 = ξ(0) and νε(t) = µ(ttε)/nε.
Figure 4.5 illustrates the behaviour of trajectories of an accumulation process and the

corresponding embedded sum-process with renewal stopping.
4.1.6. Max-processes with renewal stopping. Let (κk, ρk), k = 1, 2, . . . be a se-

quence of random vectors with, respectively, non-negative and real-valued first and sec-
ond components. As above, κ(n) = κ1 + . . . κn, ρ(n) = max(ρ1, . . . , ρn), n = 0, 1, . . .,
where κ(0) = ρ(0) = 0. Again, the case, where (κk, ρk), k = 1, 2, . . . are i.i.d. ran-
dom vectors, is the most important and well investigated. The max-processes with
renewal stopping can be defined by ζ(t) = max1≤k≤[µ(t)] ρk = ρ(µ(t)), t ≥ 0, where
ρ(t) = max1≤k≤[t] ρk, t ≥ 0 and µ(t) = sup(s : κ(s) ≤ t), t ≥ 0.

The corresponding normalised version of this process with rescaled time is defined
by

ζε(t) = ρ(µ(ttε))/uε = ρε(νε(t)), t ≥ 0, (4.1.10)

where ρε(t) = ρε(tnε)/uε and νε(t) = µ(ttε)/nε.
Figure 4.6 shows a typical trajectory for a max-process with renewal stopping.
4.1.7. Shock processes. Shock processes are constructed in a way opposite, in some

sense, to the one employed for max-processes with renewal stopping. In this model, a
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Figure 4.8: A shock process.

sum-process is randomly stopped at moments when the max-process exceeds the lev-
els t > 0. In this model, one should first define the so-called max-renewal process.
Let (ξk, ρk), k = 1, 2, . . . be a sequence of random vectors with the first component be-
ing non-negative and the second one real-valued. As above, ξ(n) = ξ1 + . . . ξn, ρ(n) =

max(ρ1, . . . , ρn), n = 0, 1, . . ., where ξ(0) = ρ(0) = 0. The most important and well
investigated is again the case where (ξk, ρk), k = 1, 2, . . . are i.i.d. random vectors. To
avoid the situation where the random variables are improper, one should assume that the

random variables ρ(n)
P−→ ∞ as n → ∞. A max-renewal process can be defined by

µ(t) = min(n : ρ(n) > t) = sup(s : ρ(s) ≤ t), t ≥ 0. Then, the corresponding shock
process can be defined as ζ(t) = ξ(µ(t)), t ≥ 0, where ξ(t) =

∑[t]
k=1 ξk.

The corresponding normalised version of a max-renewal process with rescaled time
can be defined by

νε(t) = µ(ttε)/nε = sup(s : ρε(s) ≤ t), t ≥ 0, (4.1.11)

where ρε(t) = ρ(tnε)/tε (note that the normalisation function tε is used instead of uε, since
the latter function is used as a normalisation function for the external process ξε(t) =∑[tnε]

k=1 ξk/uε).
Then the corresponding normalised version of the shock process with rescaled time

can be defined by
ζε(t) = ξ(µ(ttε))/uε = ξε(νε(t)), t ≥ 0. (4.1.12)

Figures 4.7 and 4.8 illustrate the behaviour of the trajectories of a max-renewal pro-
cess and a shock process.
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Figure 4.9: An exceeding time process.
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(b) A generalised exceeding process.

Figure 4.10: A generalised exceeding process.
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4.1.8. Generalised exceeding processes. Such processes are constructed with the
use of random stopping of a càdlàg process ξ(t), t ≥ 0 at the moments when another
non-decreasing càdlàg process κ(s), s ≥ 0 exceeds the level t ≥ 0. So, we first introduce
the exceeding time process µ(t) = sup(s : κ(s) ≤ t), t ≥ 0, and then the generalised
exceeding process as the composition ζ(t) = ξ(µ(t)), t ≥ 0.

The corresponding normalised versions of the processes ξ(t), t ≥ 0 and κ(t), t ≥ 0
can be defined by

ξε(t) = ξ(tnε)/uε, κε(t) = κ(tnε)/tε, t ≥ 0. (4.1.13)

Then the normalised versions of the exceeding time process and the generalised ex-
ceeding time process can be defined by

νε(t) = µ(ttε)/nε = sup(s : κε(s) ≤ t), t ≥ 0, (4.1.14)

and
ζε(t) = ζ(ttε)/uε = ξε(νε(t)), t ≥ 0. (4.1.15)

This class of processes includes many renewal type models. In particular, sum-
processes and max-processes with renewal stopping, as well as shock processes, are
examples of the generalised exceeding processes.

Figures 4.9 and 4.10 show the behaviour of trajectories of an exceeding time process
and a generalised exceeding process, respectively. To show the relation between the
corresponding trajectories, we took an example of concrete realisations shown in these
figures.

4.2 Randomly stopped sum-processes

In this section, we will study limit theorems for the classical model of randomly stopped
sum-processes.

4.2.1. Sum-processes with random stopping indices. Let, for every ε > 0, ξε,n,
n = 1, 2, . . . be a sequence of real-valued random variables and µε a non-negative random
variable. Further, we need a non-random function nε > 0 of parameter ε such that
nε → ∞ as ε→ 0.

Consider a sum-process with non-random stopping index,

ξε(t) =
∑

k≤tnε

ξε,k, t ≥ 0.

We will be interested in an analogue of this process the stopping index of which is
also random. So, define the càdlàg process

ζε(t) =
∑

k≤tµε

ξε,k, t ≥ 0.
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Denote by νε = µε/nε the normalised random stopping index. Then the process
ζε(t) = ξε(tνε), t ≥ 0 can be represented in the form of a composition of two processes
ξε(t), t ≥ 0 and νε(t) = tνε, t ≥ 0.

Consider the following weak convergence condition:

A51: (νε, ξε(t)), t ∈ U ⇒ (ν0, ξ0(t)), t ∈ U as ε → 0, where (a) ν0 ia a non-negative
random variable; (b) ξ0(t), t ≥ 0 is a càdlàg process; (c) U is a subset of [0,∞) that
is dense in this interval and contains the point 0.

Let us also assume that the following condition of J-compactness holds for the sum-
processes ξε(t), t ≥ 0:

J23: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Denote by W0 the set of t ≥ 0 such that P{τkn/ν0 = t} = 0 for all k, n = 1, 2, . . . ,
where τkn, k = 1, 2, . . . are successive moments of jumps of the process ξ0(t), t ≥ 0,
with absolute values of the jumps lying in the interval [ 1

n ,
1

n−1 ) (see Subsection 2.2.6 for
details). Recall that the random variables τkn take values in the interval (0,∞] and the
random variable ν0 takes values in the interval [0,∞). So, the random variable τkn/ν0

takes values in the interval (0,∞], that is, it is positive and, possibly, improper.
The set W0 coincides with [0,∞) except for at most a countable set. Also, 0 ∈ W0.

Indeed, the set W0 = [0,∞) \ W0 coincides with the set of all atoms of the distribution
functions of the random variables τkn/ν0, k, n = 1, 2, . . .. This set is at most countable
and 0 < W0. Therefore, the set W0 equals [0,∞) except for the countable set W 0. Also,
0 ∈ W0.

Note that W0 is a set of points of stochastic continuity for the process ξ0(tν0), t ≥ 0.
The following theorem is a direct corollary of the results in Silvestrov (1971b, 1972a,

1972b).

Theorem 4.2.1. Let conditions A51 and J23 hold. Then

ζε(t) = ξε(tνε), t ∈ W0 ⇒ ζ0(t) = ξ0(tν0), t ∈ W0 as ε→ 0.

Theorem 4.2.2. Let conditions A51 and J23 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorems 4.2.1 and 4.2.2. These theorems are direct corollaries of Theorems
2.6.1 and 3.4.1 applied to the processes ξε(t), t ≥ 0 and νε(t) = tνε, t ≥ 0. Condition
A51 obviously implies in this case that condition AV

21 holds with the set V = [0,∞).
Condition J23 coincides with condition J7. By the definition, the set W0 is a set of all
points w ≥ 0 that satisfy condition C

(w)
5 . Therefore, by applying Theorem 2.6.1, we

obtain weak convergence of the compositions ζε(t) = ξε(tνε) on the set W0.
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Condition A51 obviously implies in this case that condition A36 holds. Also, condi-
tion J23 coincides with condition J4. Condition C7 holds, since W0 equals [0,∞) except
for at most a countable set, and also 0 ∈ W0. Finally, condition B4 holds, since the
limiting stopping process ν0(t) = tν0, t ≥ 0 is continuous. Therefore, applying Theorem
3.4.1 proves that the compositions ζε(t), t ≥ 0 J-converge to the process ζ0(t), t ≥ 0 as
ε→ 0. �

Remark 4.2.1. Theorems 4.2.1 and 4.2.2 are also direct corollaries of the translation
Theorems 2.8.2 and 3.4.4. This can be seen by applying these theorems to the compo-
sitions ζε(t) = ξε(tνε), t ≥ 0 in the case where the constant α = 0 and h(x) ≡ 1 is taken
as the slowly varying function. However, one should involve in this case the additional
condition I4 that requires a.s. positivity of the random variable ν0.

Note that Theorems 4.2.1 and 4.2.2 do not require any independence conditions to
be imposed on the random variables ξε,n, n = 1, 2, . . . and the stopping indices νε.

It should also be noted that there is an advantage to formulate Theorems 4.2.1 and
4.2.2 separately. As a matter of fact, Theorem 4.2.1 gives additional information about
the set of weak convergence of the processes ζε(t), t ≥ 0.

4.2.2. Sum-processes based on i.i.d. random variables. Let us now consider the
classical case where the following condition holds:

T1: ξε,n, n = 1, 2, . . . is (for every ε > 0) a sequence of real-valued i.i.d. random
variables .

In this case, the process ξε(t), t > 0 is a sum-process of i.i.d. random variables.
Let us recall conditions for weak convergence of such processes known as the cen-

tral criterion for convergence in the form given, for example, in Loève (1955). These
conditions involve the tail probabilities, the truncated means, and the truncated variances
of the random variables ξε,1:

S1: (a) nεP{ξε,1 > v} → π2(v) as ε → 0 for all v > 0 that are points of continuity of
the limiting function π2(v);

(b) nεP{ξε,1 ≤ v} → π2(v) as ε → 0 for all v < 0 that are points of continuity of
the limiting function π2(v).

S2: nεEξε,1χ(|ξε,1| ≤ v) → a(v) as ε → 0 for some v > 0 for which the points ±v are
points of continuity of the limiting function π2(v).

S3: nε Var ξε,1χ(|ξε,1| ≤ v) → b2 as ε → 0 and then v → 0. This expression refers to
two iterated limits of the form lim0<v→0 limε→0 and lim0<v→0 lim

ε→0.
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The limits above satisfy a number of conditions: (a) the function π2(v) is non-
negative, non-increasing, and right-continuous for v > 0 and π2(∞) = 0; (b) the function
π2(v) is non-negative, non-decreasing, and right-continuous for v < 0 and π2(−∞) = 0;
(c) for these functions, define a measure Π2(A) on B̃1, the Borel σ-algebra of subsets of
(−∞, 0) ∪ (0,∞), by the relations Π2((v1, v2]) = π2(v1) − π2(v2) for 0 < v1 ≤ v2 < ∞
and Π2((v1, v2]) = π2(v2) − π2(v1) for −∞ < v1 ≤ v2 < 0; (d) this measure possesses the
following property:

>

�1

s2

1+s2 Π2(ds) < ∞, where
>

is the integral over the corresponding
interval with the point 0 excluded from the interval of integration; (e) under S1, condition
S2 can hold only simultaneously for all points v > 0 such that ±v are points of continuity
of π2(v) and, for any such points satisfying 0 < v1 < v2 < ∞, the following equality
holds: a(v1) = a(v2) −

∫
v1≤|s|<v2

s3

1+s2 Π2(ds) −
∫

v1<|s|≤v2

s
1+s2 Π2(ds); (f) the function a(v) is

real-valued and b2 is a non-negative constant.
The central criterion for convergence states (in a form that extends the correspond-

ing one-dimensional result) that conditions S1 - S3 are necessary and sufficient for the
following condition of weak convergence to hold:

A52: ξε(t), t ≥ 0 ⇒ ξ0(t), t ≥ 0 as ε → 0, where ξ0(t), t ≥ 0 is a càdlàg homogeneous
process with independent increments.

The limiting process ξ0(t), t ≥ 0 in A52 has the characteristic function given, for
every t ≥ 0, by the following Lévy–Khintchine representation formula:

E exp{izξ0(t)} = φ2(t, z)

= exp{t(iaz − 1
2

b2z2 +

?

�1

(eizs − 1 − izs
1 + s2 )Π2(ds))} (4.2.1)

with the constant

a = a(v) −
?

|s|<v

s3

1 + s2 Π2(ds) +

∫

|s|>v

s
1 + s2 Π2(ds) (4.2.2)

that does not depend on the choice of the point v in S2.
Moreover, as was shown by Skorokhod (1957, 1964), conditions S1 - S3 without any

additional assumptions imply that

ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε→ 0. (4.2.3)

In conclusion, let us also recall that the càdlàg homogeneous process with indepen-
dent increments ξ0(t), t ≥ 0 can be decomposed into a sum of two independent processes,

ξ0(t) = ξ′0(t) + ξ′′0 (t), t ≥ 0, (4.2.4)
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where ξ′0(t), t ≥ 0, is a Wiener process, that is, a continuous homogeneous process with
independent increments and the characteristic function given, for every t ≥ 0, by the
formula

E exp{izξ′0(t)} = φ′2(t, z) = exp{itaz − 1
2

tb2z2}, (4.2.5)

and ξ′′0 (t), t ≥ 0 is a càdlàg homogeneous process with independent increments of Poisson
type and the characteristic function given, for every t ≥ 0, by the formula

E exp{izξ′′0 (t)} = φ′′2 (t, z) = exp{t
?

�1

(eizs − 1 − izs
1 + s2 )Π2(ds)}. (4.2.6)

In conclusion, note a is usually referred as a drift, b as a diffusion (coefficient) and
Π2(A) as a jump measure for the process ξ0(t), t ≥ 0.

4.2.3. Randomly stopped sum-process based on i.i.d. random variables. We
now generalise the limit theorems given in condition A52 and relation (4.2.3) to sum-
processes with random stopping indices. Of course, we have to put some condition on
the asymptotic behaviour of the random stopping indices. Such a minimal condition
would be

A53: νε = µε/nε ⇒ ν0 as ε→ 0, where ν0 is a non-negative random variable.

Conditions A52 and A53 are sufficient to imply weak convergence of sum-processes
with random stopping indices in the case where the sum-process ξε(t), t ≥ 0, and the ran-
dom stopping index νε are independent. However, it is clear that, if they are dependent,
conditions A52 and A53 should be replaced with a stronger condition expressed in terms
of the joint distribution of νε and ξε(t), t ≥ 0. The following condition plays a key role
in subsequent consideration:

A54: (νε, ξε(t)), t ≥ 0 ⇒ (ν0, ξ0(t)), t ≥ 0 as ε → 0, where (a) ν0 is a non-negative
random variable, and (b) ξ0(t), t ≥ 0 is a càdlàg homogeneous process with inde-
pendent increments.

Due to relation (4.2.3), condition A54 implies that condition J23 holds. So, applying
Theorems 4.2.1 and 4.2.2 we can formulate the following two theorems.

Theorem 4.2.3. Let conditions T1 and A54 hold. Then

ζε(t) = ξε(tνε), t ∈ W0 ⇒ ζ0(t) = ξ0(tν0), t ∈ W0 as ε→ 0.

Theorem 4.2.4. Let conditions T1 and A54 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.
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We remark once more that external sum-processes and random stopping indices in
Theorems 4.2.3 and 4.2.4 can have an arbitrary form of dependence. The only condi-
tion required is that of joint weak convergence of these processes. No independence
or asymptotic independence conditions for random stopping indices and external sum-
processes are needed.

4.2.4. The structure of the set W0. Let us recursively define τkn = inf(s > τk−1n :
|ξ′′0 (s) − ξ′′0 (s − 0)| ∈ [ 1

n ,
1

n−1 )), k = 1, 2, . . ., where τ0n = 0. The random variables τkn are
successive moments of jumps of the process ξ′′0 (t), t ≥ 0 that have the absolute values
in the interval [ 1

n ,
1

n−1 ). By the definition, τkn = ∞ if such a jump does not exist. Since
the process ξ′0(t), t ≥ 0 is continuous, the processes ξ0(t), t ≥ 0 and ξ′′0 (t), t ≥ 0 have
the same points of jumps. So, the set of points of discontinuity R[ξ0(·)] = R[ξ′′0 (·)] =

{τkn : k, n = 1, 2, . . . }.
By the definition, the set W0 is a set of all t ≥ 0 such that P{tν0 = τkn} = 0 for all

k, n = 1, 2, . . . . So, we can define the set W0 as a set of all t ≥ 0 satisfying P{tν0 ∈
R[ξ′′0 (·)]} = 0, that is, as a set of all w ≥ 0 satisfying condition C

(w)
5 .

It is useful to generalise the indexing scheme for points of jumps of the process ξ′′0 (t),
t ≥ 0. Let An, n = 1, 2, . . . be a sequence of sets such that (a) An ⊆ { x : |x| ≥ an }, where
0 < an → 0 as n → ∞; (b) An′ ∩ An′′ = ∅ if n′ , n′′; (c) ∪∞n=1An = �1 \ {0}. Define now,
recursively, τ̃kn = inf(s > τ̃k−1n : ξ′′0 (s) − ξ′′0 (s − 0) ∈ An), k = 1, 2, . . ., where τ̃0n = 0. By
the definition, τ̃kn = ∞ if such a jump does not exist.

Obviously, the random points τ̃kn index the same random set R[ξ′′0 (·)] of discontinuity
points of the process ξ′′0 (t), t ≥ 0, i.e., the random set R[ξ0(·)] = R[ξ′′0 (·)] = { τ̃kn : k, n =

1, 2, . . . } for any sequence An, n = 1, 2, . . . that satisfies conditions (a)–(c). By the
definition, τ̃kn, k = 1, 2, . . . are successive moments of jumps of the process ξ′′0 (t), t ≥ 0,
with values of the jumps in the set An. If an = n−1, n = 1, 2, . . ., and the sets An =

{ x : |x| ∈ [ 1
n ,

1
n−1 )}, n = 1, 2, . . ., then the random variables τ̃kn = τkn, k, n ≥ 1.

The set W0 coincides with the set of all t ≥ 0 such that P{tν0 = τ̃kn} = 0 for all k,
n = 1, 2, . . .. Therefore, the set W0 = [0,∞) \ W0 coincides with the set of all atoms of
the distribution functions of the random variables τ̃kn/ν0, k, n = 1, 2, . . .. This set is at
most countable. The set W0 equals [0,∞) except for the set W0. Also, 0 ∈ W0.

Denote λn = Π2(An). Since ξ′′0 (t), t ≥ 0 is a càdlàg homogeneous process with
independent increments, there are only two alternatives for every n ≥ 1: (d) if λn = 0,
then τ̃kn = ∞ with probability 1 for all k ≥ 1; (e) if λn > 0, then τ̃kn < ∞ with probability
1 for all k ≥ 1. In the latter case, the random variables τ̃kn, k ≥ 1 are successive moments
of jumps of the Poisson process µn(t) = max(k ≥ 0: τ̃kn ≤ t), t ≥ 0 that counts jumps of
the process ξ′′0 (t) in the interval [0, t] with values in the set An. The Poisson process µn(t),
t ≥ 0 has an intensity parameter λn. Thus, the random variable τ̃kn has Erlang distribution
with the parameters k and λn.

If the process ξ′′0 (t), t ≥ 0 and the random variable ν0 are independent, then the
set W0 is empty and, therefore, the set W0 = [0,∞). This follows from the fact that
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the random variables τ̃kn have continuous distributions and are independent of ν0. Note
that the process ξ′0(t), t ≥ 0 and the random variable ν0 can have an arbitrary form of
dependence.

However, the assumption of independence of the process ξ′′0 (t), t ≥ 0 and the random
variable ν0 can be replaced with a weaker assumption that the random variables τ̃kn and
ν0 are independent for every k, n = 1, 2, . . .. In this case, the process ξ′′0 (t), t ≥ 0, and the
random variable ν0 can be dependent. For example, the random variable ν0 can depend
on values of jumps of the process ξ′′0 (t), t ≥ 0 at the points τ̃kn, k, n = 1, 2, . . .. Also, as
was mentioned above, the process ξ′0(t), t ≥ 0 and the random variable ν0 can also be
dependent. Still, the set W0 = [0,∞).

It is also clear that the distribution functions of the random variables τ̃kn/ν0 can be
continuous even in the case where the random variables τ̃kn and ν0 are dependent.

First of all note that the sets of random variables {τ̃kn, k = 1, 2, }̇ are mutually inde-
pendent for n = 1, 2, . . .. This is so because the corresponding Poisson processes µn(t),
t ≥ 0 are mutually independent for n = 1, 2, . . . due to the fact that the sets An′ ∩An′′ = ∅
for n′ , n′′.

Let us consider an example where ν0 = τ̃k0n0 . It follows from the remark above
that the random variable τ̃kn/τ̃k0n0 has a continuous distribution function if n , n0 for
every k = 1, 2, . . .. Consider the case where n = n0 but k , k0. If k > k0, then the
random variable κ̃k0kn = τ̃kn − τ̃k0n0 is independent of the random variable τ̃k0n0 . It has
Erlang distribution with the parameters k−k0 and λn. So, the random variable τ̃kn/τ̃k0n0 =

1 + κ̃kk0n/τ̃k0n0 has a continuous distribution function. If k < k0, then the random variable
κ̃kk0n = τ̃k0n0 − τ̃kn is independent of the random variable τ̃k0n0 . It has Erlang distribution
with the parameters k0−k and λn. Again the random variable τ̃kn/τ̃k0n0 = 1−κ̃k0kn/τ̃k0n0 has
a continuous distribution function. It remains to consider the case where (n, k) = (n0, k0).
In this case, the random variable τ̃kn/τ̃k0n0 ≡ 1. This random variable has the only one unit
atom at the point t = 1. Taking into consideration the remarks above one can conclude
that, in the case where ν0 = τ̃k0n0 , the set W0 = [0,∞) \ {1} = [0, 1) ∪ (1,∞).

It should be noted that in this particular example the condition D(w)
4 holds for the

corresponding external processes ξε(t), t ≥ 0 and the stopping processes νε(t) = tνε, t ≥
0, for every w ≥ 0. Thus, applying Theorem 2.6.4 would yield a better result, namely, it
would prove weak convergence of the compositions ξε(tνε) on the whole interval [0,∞).

Let us modify the above example and consider the case ν0 = τ̃k0n0 + t0, where t0

is a positive constant. In this case, using the same reasoning one can show that the
random variable τ̃kn/(τ̃k0n0 + t0) has a continuous distribution function if (n, k) , (n0, k0).
However, even in the case where (n, k) = (n0, k0), the random variable τ̃kn/(τ̃k0n0 + t0) has
a continuous distribution function. Taking this into consideration one can conclude that,
in the case where ν0 = τ̃k0n0 + t0, the set W0 = [0,∞).

One can easily generalise this example to the case where the random variable ν0 =

f (τ̃k0n0). Here f (x) is a non-random measurable function defined on [0,∞) and positive
almost everywhere with respect to the Lebesgue measure on [0,∞).
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If (n, k) , (n0, k0), independence of the random variables τ̃kn − τ̃k0n0 and f (τ̃k0n0) im-
plies that the random variable τ̃kn/ f (τ̃k0n0) has a continuous distribution function. Let
us now consider the case where (n, k) = (n0, k0). Denote Bs = { t ≥ 0: t/ f (t) = s },
s ≥ 0. Obviously, P{τ̃k0n0/ f (τ̃k0n0) = s} = P{τ̃k0n0 ∈ Bs} =

∫ ∞
0 χBs(t)pk0,λn0

(t) dt, where
pk0n0(t) is the probability density of Erlang distribution with the parameters k0 and λn0 .
Since pk0,λn0

(t) > 0 for t ≥ 0, this probability equals 0 if and only if the Lebesgue mea-
sure m(Bs) = 0. Hence, the random variable τ̃k0n0/ f (τ̃k0n0) has a continuous distribution
function if and only if m(Bs) = 0 for all s ≥ 0. So, in the case ν0 = f (τ̃k0n0), the set
W0 = [0,∞) if and only if m(Bs) = 0 for all s ≥ 0. Otherwise, the set W0, which is at
most countable, is a set of s ≥ 0 such that m(Bs) > 0.

A similar analysis can be carried out in the case where ν0 is a function of several
random variables τ̃kn.

4.2.5. Random stopping indices converging in probability. Let us now consider a
model where the random stopping indices νε converge in probability.

It is natural to assume in this case that the random variables ξε,n, n = 1, 2, . . . and
µε are defined on the same probability space for all ε > 0. We also assume that the
independence condition imposed on the random variables ξε,n is satisfied in the following
stronger form:

T2: The sets of random variables {ξε,n, ε > 0} are mutually independent for n ≥ 1.

It is obvious that conditions T1 and T2 hold for the scale-location model. In this case,
the random variables ξε,n have the form ξε,n = (ξn−aε)/bε, where ξn, n = 1, 2, . . . are i.i.d.
random variables and aε and bε are some non-random centralisation and normalisation
constants. It also holds for a more general model with random the variables ξε,n = hε(ξn),
n = 1, 2, . . ., where hε(·) are non-random measurable real-valued functions.

The condition of weak convergence A54 is replaced with two conditions. The first
one is the condition A52 of weak convergence of sum-processes with non-random stop-
ping indices. The second one is the following condition of convergence of normalised
stopping indices in probability, which is stronger than A53:

P1: νε = µε/nε
P−→ ν0 as ε → 0, where ν0 is a non-negative random variable.

The simplest classical case, first studied by Anscombe (1952), is where ν0 is a con-
stant with probability 1.

The following lemma shows that the model with normalised stopping indices con-
verging in probability is a particular case of the model where the condition of joint weak
convergence of external sum-processes and stopping indices A54 is involved. The fol-
lowing lemma is a generalisation of the well known result of Rényi (1958, 1960) to the
triangular array mode.

Lemma 4.2.1. Let conditions T1, T2, A52 (or S1 - S3), and P1 hold. Then condition A54
holds, moreover, (α) the limiting process ξ0(t), t ≥ 0 and the limiting random variable
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ν0 are independent; (β) ξ0(t), t ≥ 0 is a càdlàg homogeneous process with independent
increments which has the same finite-dimensional distribution as the corresponding pro-
cess in condition A52; (γ) ν0 is a random variable which has the same distribution as
the the corresponding random variable in condition P1.

Proof of Lemma 4.2.1. Take an arbitrary subsequence 0 < εn → 0 as n→ ∞ and choose
some 0 < t1 < . . . < tr < ∞ and s1 ≤ . . . ≤ sr < ∞ that are points of continuity for the
distribution functions of the random variables ξ0(t1), . . . , ξ0(tr), respectively. Define

An = {ξεn(t j) =
∑

k≤t jnεn

ξεn,k ≤ s j, j = 1, . . . , r},

and
A = {ξ0(t j) ≤ s j, j = 1, . . . , r}.

First, we are going to prove that the sequence of events {An} is a mixing sequence in
the sense of Rényi (1958), that is, for any l ≥ 1,

lim
n→∞

P(An ∩ Al) = P(A)P(Al). (4.2.7)

Let us introduce the random variables

ξ−nrl =
∑

k≤trnεl

ξεn,k, ξ
+
n jrl =

∑

trnεl<k≤t jnεn

ξεn,k, j = 1, . . . , r.

Also denote
Anrl = P{ξ+

n jrl < s j, j = 1, . . . , r}.
By the definition, the events Anrl and Al are independent for n large enough, more

precisely, if trnεl < t1nεn .

From conditions A52 and T1, it follows that ξεn,k
P−→ 0 as n→∞ and, consequently,

ξ−nrl
P−→ 0 as n→ ∞. (4.2.8)

From conditions A52, T1, T2, relation (4.2.8), and the remark about independence of
the events Anrl and Al, it follows that

lim
n→∞

P(An ∩ Al) = lim
n→∞

P(Anrl ∩ Al)

= lim
n→∞

P(Anrl)P(Al) = lim
n→∞

P(An)P(Al) = P(A)P(Al).
(4.2.9)

Relation (4.2.9) means that the sequence An is mixing in the sense of Rényi (1958)
and so, for an arbitrary random event B,

P(An ∩ B)→ P(A)P(B) as n→ ∞. (4.2.10)
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Consider the event as Bz = {ν0 ≤ z}. Let also Bz,n = {νεn ≤ z}. Condition P1 implies
that probability of the symmetric difference of these events tends to zero for any z if it is
a point of continuity for the distribution function of the random variable ν0, i.e.,

P(Bz ∆ Bz,n)→ 0 as n→∞. (4.2.11)

Using asymptotic relations (4.2.10) and (4.2.11) we finally get

lim
n→∞

P(An ∩ Bz,n) = lim
n→∞

P(An ∩ Bz) = P(A)P(Bz). (4.2.12)

Since the points 0 < t1 < . . . < tm < ∞ and s1 ≤ . . . ≤ sm < ∞, and the subsequence
εn → 0 were chosen arbitrarily, relation (4.2.12) yields the statement of Lemma 4.2.1.

�

The following theorem gives a triangular array version of the results known in dif-
ferent variants for the case of the scale-location model. Because of Lemma 4.2.1, these
theorems directly follow from Theorems 4.2.3 and 4.2.4. Note that we use the fact that
the set W0 = [0,∞) if the limiting external process and limiting stopping index are inde-
pendent.

Theorem 4.2.5. Let conditions T1, T2, A52 (or S1 - S3), and P1 hold. Then condition
A54 holds with the process ξ0(t), t ≥ 0 and the random variable ν0 which are independent,
and

ζε(t) = ξε(tνε), t ≥ 0⇒ ζ0(t) = ξ0(tν0), t ≥ 0 as ε→ 0.

Theorem 4.2.6. Let conditions T1, T2, A52 (or S1 - S3), and P1 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.

Remark 4.2.2. In the particular case, where the limiting stopping index ν0 is a constant,
Theorem 4.2.1 can be associated with well known Anscombe theorem. This theorem
(see Anscombe (1952)) gives conditions for weak convergence of randomly indexed
stochastic sequences in the model with stopping indices asymptotically degenerating in
a constant. Applied to randomly stopped sum-processes based on i.i.d. random variables
(in the scale-location model), Anscombe theorem gives the result equivalent to Theorem
4.2.1, in the case where ν0 = const with probability 1.

4.2.6. Translation theorems for sum-processes with random stopping indices.
Let us consider the case where the random variables ξε,n = (ξ′ε,n − aε)/nαε h(nε), n =

1, 2, . . ., where (a) α = const > 0, and (b) h(x) is a slowly varying function.
Consider the processes

ζ′ε(t) =
∑

k≤tµε

ξ′ε,k − aε
µαε h(µε)

, t ≥ 0.

Applying Theorems 2.8.2 and 3.4.4 to these processes yields the following transla-
tion theorems.
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Theorem 4.2.7. Let conditions T1 and A54 hold. Then

ζ′ε(t), t ∈ W0 ⇒ ζ′0(t) = ν−α0 ξ0(tν0), t ∈ W0 as ε→ 0.

Theorem 4.2.8. Let conditions T1 and A54 hold. Then

ζ′ε(t), t ≥ 0
J−→ ζ′0(t), t ≥ 0 as ε → 0.

Consider the scale-location model where ε = n−1, nε = n, and ξn,k = (ξ′k − an)/nαh(n).
Here ξk, k = 1, 2, . . . are i.i.d. random variables, aε are some non-random centralisation
constants, h(x) is a slowly varying function.

It is well known (see, for example, Feller (1966)) that in this case α ∈ [1/2,∞) and
the limiting process with independent increments ξ0(t), t ≥ 0 is a stable with parameter
α. With a minor exclusion (non-symetrical case with α = 1), it has the characteristic
function of the form E exp{isξ0(t)} = exp{−|s|α−1c(s)t}, t ≥ 0, where c(s) = c+χ(s >
0) + c−χ(s < 0). In this case, if the random variable ν0 and the process ξ0(t), t ≥ 0 are
independent, then the process ν−α0 ξ0(tν0), t ≥ 0 d

= ξ0(t), t ≥ 0.
4.2.7. Asymptotics of the sample mean for a sample with random sample size.

One of typical examples related to this model concerns the asymptotic distribution of
the sample mean for a sample with random sample size. Let ξ1, ξ2, . . . be a sequence of
i.i.d. random variables with Eξ1 = m,Var ξ1 = σ2 < ∞. Let also µn, n = 1, 2, . . . be
non-negative integer random variables defined on the same probability space.

In this case, it is convenient to index the corresponding processes with the index n,
that is, to use ε = 1

n as the small parameter. Without loss of generality, one can also use
nε = n as the normalisation constant.

Let us introduce normalised stopping indices and sum-processes with non-random
indices in the following form:

νn =
µn

n
, ξn(t) =

∑

k≤tn

ξk − m
σ
√

n
, t ≥ 0.

Condition A54 takes the following form:

A55: (νn, ξn(t)), t ≥ 0 ⇒ (ν0, ξ0(t)), t ≥ 0, as n → ∞, where (a) ν0 is a positive random
variable, and (b) ξ0(t) = w(t), t ≥ 0 is a standard Wiener process.

Let us consider the processes

ζ′n(t) =
∑

k≤tµn

ξk − m
σ
√
µn
, t ≥ 0.

We can apply Theorems 4.2.7 and 4.2.8. Since ξ0(t), t ≥ 0 is a continuous process,
the set of weak convergence W0 = [0,∞). Also, since the corresponding limiting process
ξ0(tν0), t ≥ 0 is continuous, J-convergence and U-convergence are equivalent.
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Theorem 4.2.9. Let Var ξ1 = σ2 < ∞ and condition A55 hold. Then

ζ′n(t), t ≥ 0⇒ ζ′0(t) = ν
− 1

2
0 ξ0(tν0), t ≥ 0 as n→ ∞.

Theorem 4.2.10. Let Var ξ1 = σ2 < ∞ and condition A55 hold. Then

ζ′n(t), t ≥ 0
U−→ ζ′0(t), t ≥ 0 as n→ ∞.

If the random variable ν0 and the process ξ0(t), t ≥ 0 are independent, then the pro-
cess ν−

1
2

0 ξ0(ν0t), t ≥ 0 d
= ξ0(t), t ≥ 0.

Theorems 4.2.9 and 4.2.10 can be used to asymptotic confidence intervals and tests
for the unknown mean m in the model with a random sample size in the case where the
variance σ2 is known. However, these theorems can easily be modified to cover the case
of unknown variance.

Let us define a sample mean and a sample variance as follows:

xn =
ξ1 + . . . + ξn

n
, S 2

n =
1

n − 1

n∑

k=1

(ξk − xn)2.

Consider the stochastic process

ζ′′n (t) =
∑

k≤tµn

ξk − m
S µn

√
µn
, t ≥ 0.

Theorem 4.2.11. Let Var ξ1 = σ2 < ∞ and condition A55 hold. Then

ζ′′n (t), t ≥ 0⇒ ζ′′0 (t) = ν
− 1

2
0 ξ0(tν0), t ≥ 0 as n→ ∞.

Theorem 4.2.12. Let Var ξ1 = σ2 < ∞ and condition A55 hold. Then

ζ′′n (t), t ≥ 0
U−→ ζ′′0 (t), t ≥ 0 as n→ ∞.

Proof of Theorems 4.2.11 and 4.2.12. It is well known that xn
P1−→ m as n → ∞ and

S 2
n

P1−→ σ2 as n→∞. Due to Lemma 1.3.5, these two relations imply that

xµn

P−→ m as n→ ∞, (4.2.13)

and
S 2
µn

P−→ σ2 as n→∞. (4.2.14)

Obviously,
ζ′′n (t) = (S µn/σ)−1ζ′n(t), t ≥ 0. (4.2.15)
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This representation and relation (4.2.14) show that Theorem 4.2.11 is a direct corol-
lary of Theorem 4.2.9 and Slutsky Theorem 1.2.3.

Use the following simple inequality: ∆U(bx(·), c, T ) ≤ b∆U(x(·), c, T ), which holds
for an arbitrary càdlàg function x(t), t ≥ 0 and b > 0. This inequality and representation
(4.2.15) yield, for δ, b > 0, that

P{∆U(ζ′′n (·), c, T ) > δ} ≤ P{σ/S µn ≥ b} + P{∆U(ζ′n(·), c, T ) > δ/b}. (4.2.16)

Take an arbitrary σ > 0. By (4.2.14), we can choose b such that limn→∞ P{σ/S µn >
b} ≤ σ. If we pass to the limit in (4.2.16), first as n → ∞ and then as c → 0, we find
using Theorem 4.2.10 that limc→0 limn→∞ P{∆U(ζ′′n (·), c, T > δ} ≤ σ. Since σ is arbitrary,
this proves J-compactness of the processes ζ′′n (t), t ≥ 0. �

4.3 Generalised exceeding processes

In this section, we consider limit theorems for the so-called generalised exceeding pro-
cesses. Such a process is constructed from a two-dimensional càdlàg process by stopping
the first component of this process at the moment when the second component exceeds
the level t ≥ 0 for the first time. In this model, t is being interpreted as time. The class
of generalised exceeding processes includes many models of renewal type processes, in
particular, sum-processes with renewal stopping, max-processes with renewal stopping,
and shock processes.

4.3.1. Weak convergence of generalised exceeding processes. Let, for every ε ≥ 0,
αε(t) = (κε(t), ξε(t)), t ≥ 0 be a two-dimensional càdlàg process with real-valued compo-
nents. We also assume that the first component κε(t), t ≥ 0 is a non-decreasing process.
Note that it is not required for this process to be non-negative.

Let us now introduce an exceeding time process by

νε(t) = sup(s ≥ 0 : κε(s) ≤ t) = inf(s ≥ 0 : κε(s) > t), t ≥ 0

This formula requires some comments. First of all, let us remark that we will prefer
to use the second expression in the defining formula in the right-hand side. As a matter
of fact, the second formula automatically yields the correct value νε(t) = 0 if κε(0) > t.
At the same time, the use of the first expression does require the additional convention
that sup(s : κε(s) ≤ t) = 0 if κε(0) > t.

Also note that one can assume that the parameter s in both formulas runs over the
domain s > 0, instead of s ≥ 0. This modification does not change values of process
νε(t), t ≥ 0. At the same time, such a modification permits to introduce exceeding time
processes using the same formula also in the case where the initial process κε(s), s > 0
is defined on the open interval (0,∞), instead of the semi-open interval [0,∞).
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Now, introduce a process, which we call a generalised exceeding process, by the
following formula:

ζε(t) = ξε(νε(t)), t ≥ 0.

Let us assume that the following weak convergence condition holds:

A56: (κε(s), ξε(t)), (s, t) ∈ V ×U ⇒ (κ0(s), ξ0(t)), (s, t) ∈ V ×U as ε→ 0, where (a) V is
a subset of (0,∞), dense in this interval, and (b) U is a subset of [0,∞), dense in
this interval and containing the point 0.

To avoid the need of considering the case where the random variables νε(t) can be
improper, let us also impose the following condition:

K̄5: κε(t)
P−→ ∞ as t → ∞ for every ε ≥ 0.

Since we are interested in limit theorems for the generalised exceeding processes

ζε(t) = ξε(νε(t)), t ≥ 0 as ε→ 0, it will be sufficient to require that κε(t)
P−→ ∞ as t → ∞

in condition K̄5 for all ε small enough. We require this relation to hold for all ε ≥ 0 just
in order to simplify the formulations.

Condition K̄5 implies that the random variable νε(t) is finite with probability 1 for
every t ≥ 0.

Denote by V0 the set of points t > 0 that are points of stochastic continuity for the
process ν0(t), t ≥ 0. Note that V0 coincides with (0,∞), except for at most a countable
set of points.

Lemma 4.3.1. Let conditions A56 and K̄5 hold. Then

(νε(s), ξε(t)), (s, t) ∈ V0 × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ V0 × U as ε→ 0.

Proof of Lemma 4.3.1. For every ε ≥ 0, by the definition of the process νε(t), t ≥ 0, the
following relation holds for any s, t ≥ 0:

{κε(s) < t} ⊆ {νε(t) > s} ⊆ {κε(s) ≤ t}. (4.3.1)

Using (4.3.1) we get that for any t1, . . . , tn ≥ 0, u1, . . . , un ∈ �1, 0 ≤ s1 ≤ . . . ≤ sn,
0 ≤ w1 ≤ . . . ≤ wn, n ≥ 1,

P{κε(wi) < si, ξε(ti) ≤ ui, i = 1, . . . n}
≤ P{νε(si) > wi, ξε(ti) ≤ ui, i = 1, . . . n}
≤ P{κε(wi) ≤ si, ξε(ti) ≤ ui, i = 1, . . . n}.

(4.3.2)

Denote by Ct the set of u ∈ �1 such that P{ξ0(t) = u} = 0. Choose a countable set of
points X = {x1, x2, . . .} such that (a) it is a subset of V and dense in the interval (0,∞).
Since any distribution function has not more than a countable set of discontinuity points,
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we can choose a countable set of points Y = {y1, y2, . . .} ⊂ (0,∞) in such a way that (b)
it is dense in (0,∞), and (c) P{κ0(xi) = y j} = 0 for all i, j ≥ 1. Using condition A56 we
have, for arbitrary n ≥ 1 and points t1, . . . , tn ∈ U, ui ∈ Cti , wi ∈ X, si ∈ Y , i = 1, . . . n,
that

lim
ε→0

P{κε(wi) < si, ξε(ti) ≤ ui, i = 1, . . . n}
= P{κ0(wi) < si, ξ0(ti) ≤ ui, i = 1, . . . n}
= lim

ε→0
P{κε(wi) ≤ si, ξε(ti) ≤ ui, i = 1, . . . n}

= P{κ0(wi) ≤ si, ξ0(ti) ≤ ui, i = 1, . . . n},

(4.3.3)

and then using (4.3.2) we find

P{νε(si) > wi, ξε(ti) ≤ ui, i = 1, . . . n}
→ P{ν0(si) > wi, ξ0(ti) ≤ ui, i = 1, . . . n}
= P{κ0(wi) ≤ si, ξ0(ti) ≤ ui, i = 1, . . . n} as ε→ 0.

(4.3.4)

Since weak convergence of distribution functions of random vectors follows from
their convergence on some countable set dense in the corresponding phase space and
the random variables ν0(si) are non-negative, we get from (4.3.4), for ti ∈ U, si ∈ Y ,
i = 1, . . . n, that

(νε(si), ξε(ti), i = 1, . . . , n)⇒ (ν0(si), ξ0(ti), i = 1, . . . , n) as ε→ 0. (4.3.5)

Because n ≥ 1 and ti ∈ U, si ∈ Y , i = 1, . . . , n, were chosen arbitrarily, relation
(4.3.5) implies that

(νε(s), ξε(t)), (s, t) ∈ Y × U ⇒ (ν0(s), ξ0(t)), (s, t) ∈ Y × U as ε→ 0. (4.3.6)

Since νε(t), t ≥ 0 are non-decreasing processes and the set Y is dense in (0,∞),
relation (4.3.6) can be extended, by an obvious argument, to the relation given in Lemma
4.3.1. �

Remark 4.3.1. It is useful to mention that formula (4.3.4) also express the finite-dimen-
sional distributions of the process (ν0(s), ξ0(t)), t ≥ 0 in terms of the corresponding finite-
dimensional distributions of the process (κ0(s), ξ0(t)), t ≥ 0.

Note that the point 0 can not be automatically included in the set Y constructed in
the proof. In what follows, weak convergence can only be proved for the set V0 of all
positive points of stochastic continuity for the limiting exceeding process ν0(t), t ≥ 0.

Taking into account this remark, we first give conditions for weak convergence of
generalised exceeding processes on a set dense in the interval (0,∞).
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The question about whether it is possible to include the point 0 in the set of weak
convergence does require a special investigation that will be postponed until later sub-
sections.

We also assume that the following condition of J-compactness introduced in Subsec-
tion 2.2.2 holds:

J7: limc→0 limε→0 P{∆J(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Let us first consider the case where the following decomposition condition holds:

Q10: ξ0(t) = ξ′0(t)+ξ′′0 (t), t ≥ 0, where (a) the process ξ′0(t), t ≥ 0 is a continuous process,
(b) ξ′′0 (t), t ≥ 0 is a stochastically continuous càdlàg process, (c) the processes
ξ′′0 (t), t ≥ 0 and κ0(t), t ≥ 0 are independent.

Theorem 4.3.1. Let conditions A56, K̄5, J7, and Q10 hold. Then

ζε(t), t ∈ V0 ⇒ ζ0(t), t ∈ V0 as ε→ 0.

Proof of Theorem 4.3.1. Lemma 4.3.1 implies that condition AV
21 holds for the processes

ξε(t), t ≥ 0 and νε(t), t ≥ 0 with the set V = V0.
It is obvious that, in this case, the processes ξ′′0 (t), t ≥ 0 and ν0(t), t ≥ 0 are indepen-

dent. This means that condition Q2 holds for the processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0.
Due to Lemma 2.6.1, this implies that the continuity condition CW

5 holds for these pro-
cesses with the set W = [0,∞). Now, applying Theorem 2.6.1 or Theorem 2.6.2 finishes
the proof of Theorem 4.3.1. �

Let us consider the case where the following continuity condition is satisfied:

E13: P{ν0(t′) = ν0(t′′) ∈ R[ξ0(·)]} = 0 for 0 < t′ < t′′ < ∞.

Obviously, condition E13 coincides with condition E1 applied to the process ξ0(t), t ≥
0 and the exceeding time process ν0(t), t ≥ 0. Here, we used Remark 2.6.2.

Let W0 be the set of t > 0 that satisfy condition C(w)
5 , that is, P{ν0(t) ∈ R[ξ0(·)]} = 0.

Due to Lemma 2.6.2, condition E13 implies that the set W0 is the interval (0,∞) except
for at most a countable set.

Condition E13 holds, if the process ν0(t), t ≥ 0 is an a.s. strictly monotone process.
For example, this is so if κ0(t), t ≥ 0 is an a.s. non-decreasing continuous càdlàg

process and, in the sequel, ν0(t), t ≥ 0, will be an a.s. strictly monotone càdlàg process. A
particular case is where κ0(t), t ≥ 0 is a non-decreasing continuous non-random function
and, therefore, ν0(t), t ≥ 0 is a strictly monotone càdlàg non-random function.

Also, condition Q10 implies that condition E13 holds. As was mentioned above,
W0 = (0,∞) in this case.

Obviously, the set V0 ∩W0 is (0,∞) except for at most a countable set of points.
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Theorem 4.3.2. Let conditions K̄5, A56, J7, and E13 hold. Then

ζε(t), t ∈ V0 ∩W0 ⇒ ζ0(t), t ∈ V0 ∩W0 as ε→ 0.

Proof of Theorem 4.3.2. A direct application of Theorem 2.6.3 to the processes ξε(t),
t ≥ 0 and νε(t), t ≥ 0 proves the theorem. �

Finally, let us consider the case where the following continuity condition, which is
weaker than E13, holds:

F5: There exist a sequences of δl ∈ Z0, δl → 0 as l → ∞ and 0 < Tr → ∞ as
r → ∞ such that, for every l, k, r ≥ 1, we have lim0<c→0 lim0≤ε→0 P{α(δl)

εk − c ≤
νε(t′), νε(t′′) < α

(δl)
εk ,α

(δl)
εk < Tr} = 0 for all 0 < t′ < t′′ < ∞.

Here, α(δl)
εk are successive moments of jumps of the sum-process ξε(t), t ≥ 0 with

absolute values of the jumps greater than or equal to δ (see Subsection 2.4.1 for details).
It is clear that condition F5 coincides with condition F2 applied to the processes

ξε(t), t ≥ 0 and the exceeding time processes νε(t), t ≥ 0. Here, we make use of Remark
2.6.4.

Let W ′
0 be the set of t > 0 such that condition D(w)

4 holds for the processes ξε(t), t ≥ 0
and νε(t), t ≥ 0. As follows from Lemma 2.6.4, condition F5 implies that set W ′

0 equals
(0,∞) except for at most a countable set.

The set V0∩W ′
0 also coincides with the interval (0,∞) except for at most a countable

set.

Theorem 4.3.3. Let conditions K̄5, A56, J7, and F5 hold. Then

ζε(t), t ∈ V0 ∩W ′
0 ⇒ ζ0(t), t ∈ V0 ∩W ′

0 as ε→ 0.

Proof of Theorem 4.3.3. A direct application of Theorem 2.6.5 to the processes ξε(t),
t ≥ 0 and νε(t), t ≥ 0 proves the theorem. �

4.3.2. Convergence of generalised exceeding processes at the point 0. Let us now
discuss the possibility of including the point 0 in the set of weak convergence.

First of all, it should be possible to add this point to the set V0 in the statement of
weak convergence given in Lemma 4.3.1.

Recall that V0 is the set of points t > 0 that are points of stochastic continuity for the
process ν0(t), t ≥ 0. Also, V is the set that enters condition A56.

The most important for applications is the case where the following conditions holds:

I6: κ0(0) ≥ 0 with probability 1.

and
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I7: κ0(t), t ≥ 0 is a.s. strictly monotonic at the point 0.

Conditions I6 and I7 imply that (a) ν0(0) = 0 with probability 1.
Let us assume that conditions A56 and K̄5 hold. Choose a sequence of points sn ∈ V0

such that 0 < sn → 0 as n→ ∞. Obviously, (b) 0 ≤ νε(0) ≤ νε(sn). Under the conditions
of Lemma 4.3.1, (c) νε(sn) ⇒ ν0(sn) as ε → 0 for n ≥ 1. Also, conditions I6 and I7

imply that (d) ν0(sn)
P−→ ν0(0) = 0 as n → ∞. By Lemma 1.2.6, (b) - (d) imply that (e)

νε(0) ⇒ ν0(0) = 0 as ε → 0. Due to Slutsky Theorem 1.2.3, it follows from (d) that the
set of weak convergence in Lemma 4.3.1 can be extended to the set V0 ∪ {0}.

The càdlàg process ξ0(t), t ≥ 0 is continuous at the point ν0(0) = 0 with probability
1, i.e., condition C(0)

5 holds. So, by Remark 2.6.3, the point 0 can also be included in
the set of weak convergence V0 in Theorem 4.3.1 and in the set of weak convergence
V0 ∩W0 in Theorem 4.3.2.

As it was pointed out in Subsection 2.4.5, condition C(0)
5 implies condition D(0)

4 . So,
by Remark 2.6.5, the point 0 can be added to the set of weak convergence V0 ∩ W ′

0 in
Theorem 4.3.3.

More complicated is the case where the random variable ν0(0) can take positive val-
ues. Let us introduce the condition

I8: P{κ0(xi) = 0} = 0, xi ∈ V .

Now, assume that conditions A56 and I8 hold. Then the point 0 can be included in
the set Y that enters relations (4.3.3) - (4.3.6) in the proof of Lemma 4.3.1.

So, the set of weak convergence V0 in the statement of weak convergence in Lemma
4.3.1 can be extended to the set V0 ∪ {0}.

Note also that, as it was shown in Silvestrov (1974), if the processes κε(t), t ≥ 0
J−→

κ0(t), t ≥ 0 as ε→ 0, then condition I8 can be replaced by a similar but weaker condition.
This condition requires that P{κ0(x′i ) = κ0(x′′i ) = 0} = 0, x′i , x′′i ∈ V, x′i , x′′i .

In some cases, the following condition of asymptotic local continuity of the processes
νε(t), t ≥ 0 can be used:

O11: lim0<s→0 limε→0 P{νε(s) − νε(0) > δ} = 0, δ > 0.

Let us show that conditions A56, K̄5, and O11 imply the following relation of weak
convergence:

(νε(s), ξε(t)), (s, t) ∈ (V0 ∪ {0}) × U
⇒ (ν0(s), ξ0(t)), (s, t) ∈ (V0 ∪ {0}) × U as ε→ 0.

(4.3.7)

Chose a sequence of points sn ∈ V0 such that 0 < sn → 0 as n → ∞, and also take
an arbitrary k ≥ 1 and 0 < t1 < . . . < tk, t1, . . . , tk ∈ V0. Consider the random vectors
ν̃ε,n,k = (νε(sn), νε(t1), . . . , νε(tk)) and ν̃ε,0,k = (νε(0), νε(t1), . . . , νε(tk)). By Lemma 4.3.1,
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(f) ν̃ε,n,k ⇒ ν̃0,n,k as ε → 0. Also, by condition O11, (g) limn→∞ limε→0 P{ν̃ε,n,k − ν̃ε,0,k >
δ} = 0, δ > 0. Relation (g), taken for ε = 0, implies that (h) ν̃0,n,k ⇒ ν̃0,0,k as n → ∞.
Relations (f) - (h) and Lemma 1.2.5 imply that (i) ν̃ε,0,k ⇒ ν̃0,0,k as ε→ 0. It follows from
(i) that the set of weak convergence in Lemma 4.3.1 can be extended to the set V0 ∪ {0}.

It should be noted that, if A56 and K̄5 hold, relation (4.3.7) implies that condition
O11 holds.

Indeed, relation (4.3.7) implies that, for any sequence sn ∈ V0 such that 0 < sn → 0
as n→ ∞, (j) νε(sn)−νε(0)⇒ ν0(sn)−ν0(0) as ε→ 0. Since ν0(t), t ≥ 0 is an a.s. càdlàg

process, (k) ν0(sn)
P−→ ν0(0) as n → ∞. Relations (j) and (k) imply condition O11 in an

obvious way.
These remarks show that, under A56 and K̄5, conditions I6 and I7, as well as condi-

tion I8, are sufficient for condition O11 to hold.
At the same time, condition O11 should not be overestimated. It is just a convenient

way of imposing on the processes νε(t), t ≥ 0 a condition that would allow to include the
point 0 in the relation of weak convergence given in Lemma 4.3.1.

Nevertheless, condition O11 can be applied in some cases where the exceeding time
processes have a simple structure. For example, this is so in the case of step exceeding
time processes considered in Section 4.4.

It should be pointed out that even if the point 0 can be included in the set of weak
convergence V0 in Lemma 4.3.1, it is not certain that the process ξ0(t), t ≥ 0 is continuous
at the point ν0(0) with probability 1.

The process ξ0(t), t ≥ 0 is continuous at the random point ν0(0) with probability 1 if
condition Q10 holds. In this case, by Remark 2.6.3, the point 0 can be added to the set of
weak convergence, V0, in Theorem 4.3.1.

In the general case, one should require condition C(0)
5 to hold (for the stopping mo-

ment ν0(0) and the process ξ0(t), t ≥ 0) in order to include the point 0 in the set W0.
In this case, by Remark 2.6.3, the point 0 can be added to the set of weak convergence
V0 ∩W0 in Theorem 4.3.2.

Analogously, one should require that condition D
(0)
4 holds (for the stopping moments

νε(0) and the processes ξε(t), t ≥ 0) in order for the point 0 to be in the set W ′
0. In this

case, by Remark 2.6.5, the point 0 can be added to the set of weak convergence V0 ∩W ′
0

in Theorem 4.3.3.
In some cases, the following condition of asymptotic local continuity of the processes

ζε(t), t ≥ 0 can be used:

O12: lim0<s→0 limε→0 P{|ζε(s) − ζε(0)| > δ} = 0, δ > 0.

In the same way as it was done above for exceeding time processes, it can be shown
that, by adding condition O12 to conditions of Theorem 4.3.2 or 4.3.3, one can include
the point 0 in the corresponding set of weak convergence, V0∩W0 or V0∩W ′

0, respectively.
Moreover, if the weak convergence of the generalised exceeding processes takes

place on the extended set (V0 ∩W0) ∪ {0} or (V0 ∩W ′
0) ∪ {0}, then condition O12 holds.
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Thus, if K̄5, A56, and J7 hold, then condition C
(0)
5 , as well as D

(0)
4 , is a sufficient

condition for O12 to hold.
Condition O12, as well as condition O11, should not be overestimated. It is just a

convenient way to impose on the processes ζε(t), t ≥ 0 a condition that would permit to
include the point 0 in the relation of weak convergence given in Theorems 4.3.2 or 4.3.3.

Nevertheless, condition O12 can be applied in some cases where the exceeding time
processes have a simple structure. For example, this is the case for step generalised
exceeding processes considered in Section 4.4.

4.3.3. J-convergence of generalised exceeding processes. There are two basic
cases for which we give conditions for J-convergence of generalised exceeding pro-
cesses. The first one is where the limiting process κ0(t), t ≥ 0 is an a.s. strictly monotone
càdlàg process. The second one is where the limiting process κ0(t), t ≥ 0 is a step càdlàg
process. The latter case is considered in the next section.

For first case, the following condition holds:

I9: κ0(t), t ≥ 0 is an a.s. strictly monotone process.

Condition I9 implies that (a) ν0(t), t ≥ 0 is an a.s. continuous process. It is also
obvious that condition I9 implies condition I7.

Theorem 4.3.4. Let conditions K̄5, A56, J7, I6, I9, and E13 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.3.4. A direct application of Theorem 3.4.2 to the processes ξε(t),
t ≥ 0 and νε(t), t ≥ 0 proves the theorem. �

Let Y0 denote the set of points of stochastic continuity for the limiting process ζ0(t) =

ξ0(ν0(t)), t ≥ 0.

Remark 4.3.2. Obviously, (V0 ∩W0) ∪ {0} ⊆ Y0. Due to Theorem 4.3.4, the set of weak
convergence, (V0 ∩W0)∪ {0}, which is guaranteed by Theorem 4.3.2, can be extended to
the set Y0.

The key condition E13 has some limitation. It does not cover the case when the
limiting process κ0(t), t ≥ 0 has positive jumps simultaneous with jumps of the process
ξ0(t), t ≥ 0. Indeed, if τ is such a point and P{κ0(τ − 0) ≤ t′ < t′′ ≤ κ0(τ),∆τ(ξ0(·)) , 0}
> 0, then P{ν0(t′) = ν0(t′′) = τ} > 0. Therefore, condition E13 does not hold.

The following theorem covers the case in which the limiting process κ0(t), t ≥ 0
may possess positive jumps simultaneous with the corresponding jumps of the process
ξ0(t), t ≥ 0.

Theorem 4.3.5. Let conditions K̄5, A56, J7, I6, I9, and F5 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.
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Proof of Theorem 4.3.5. The proof follows by directly applying Theorem 3.4.3 to the
processes ξε(t), t ≥ 0 and νε(t), t ≥ 0. �

Remark 4.3.3. Condition I6 can be replaced by condition I8 or by condition O11 in The-
orems 4.3.4 and 4.3.5. However, in both cases, one should also require that at least one
of the conditions Q10, C(0)

5 (for the stopping moment ν0(0) and the process ξ0(t), t ≥ 0) or
D(0)

4 (for the stopping moments νε(0) and the processes ξε(t), t ≥ 0) holds. Alternatively,
one can replace condition I6 by condition O12.

Remark 4.3.4. Due to Theorem 4.3.5, the set of weak convergence (V0∩W ′
0)∪{0}, which

is guaranteed by Theorem 4.3.3, can be extended to the set (V0 ∩W ′
0) ∪ Y0.

4.3.4. Generalised exceeding processes based on J-convergent processes. In this
subsection we improve Theorem 4.3.5. This theorem is used for the processes κε(t), t ≥ 0
and ξε(t), t ≥ 0 that have simultaneous jumps. It is not convenient in this theorem that
condition F5 involves the exceeding time processes νε(t), t ≥ 0 instead of the processes
κε(t), t ≥ 0.

Let us now strengthen the condition of J-compactness J7 and replace it by the fol-
lowing condition of J-compactness for the bivariate processes αε(t), t ≥ 0:

J24: limc→0 limε→0 P{∆J(αε(·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

We also supplement it by the following condition of local continuity for the external
processes ξε(t), t ≥ 0 at the point 0:

O13: lim0<c→0 limε→0 P{sup0≤t≤c |ξε(t) − ξε(0)| > δ} = 0, δ > 0.

Note that conditions J24 and O13 imply that the condition of J-compactness J7 holds
for the processes ξε(t), t ≥ 0.

Let us now prove the following useful lemma.

Lemma 4.3.2. Conditions K̄5, J24, and O13 imply condition F5 to hold.

Proof of Lemma 4.3.2. Assume that condition F5 does not hold. This means that there
exist 0 < t′ < t′′ < ∞, δl ∈ Z0, Tr > 0, and k ≥ 1 such that

lim
0<c→0

lim
ε→0

P{α(δl)
εk − c ≤ νε(t′), νε(t′′) < α(δl)

εk ,α
(δl)
εk < Tr} > 0. (4.3.8)

Condition O13 implies that, for every δl ∈ Z0,

lim
0<c→0

lim
ε→0

P{α(δl)
εk ≤ c} ≤ lim

0<c→0
lim
ε→0

2P{ sup
0≤t≤c
|ξε(t) − ξε(0))| ≥ δl/2} = 0. (4.3.9)
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Relations (4.3.8) and (4.3.9) imply that there exist small enough 0 < T < Tr such
that

lim
0<c→0

lim
ε→0

P{T < α(δl)
εk − c ≤ νε(t′), νε(t′′) < α(δl)

εk ,α
(δl)
εk < Tr}

≥ lim
0<c→0

lim
ε→0

(P{α(δl)
εk − c ≤ νε(t′), νε(t′′) < α(δl)

εk ,α
(δl)
εk < Tr}

− lim
0<c→0

lim
ε→0

P{α(δl)
ε1 ≤ T + c} > 0.

(4.3.10)

Let us choose some 0 < σ ≤ t′′−t′
2 ∧ δl and show that

Aε,klr,T = {T < α(δl)
εk − c ≤ νε(t′), νε(t′′) < α(δl)

εk ,α
(δl)
εk < Tr}

⊆ {∆J(αε(·), 2c, Tr) > σ}.
(4.3.11)

Indeed, since κε(t), t ≥ 0 is a càdlàg process, we have κε(νε(t)) ≥ t and κε(νε(t) −
0) ≤ t if νε(t) > 0. It follows from the definition that νε(t) = sup(s : κε(s) ≤ t) =

inf(s : κε(s) > t). Let the random event Aε,klr,T occur. If (a) κε(νε(t′)) ≤ t′+t′′
2 , then

κε(α
(δl)
εk − 0) − κε(νε(t′) − 0) ≥ κε(νε(t′′)) − κε(νε(t′)) ≥ t′′−t′

2 ≥ σ. If (b) κε(νε(t′)) ≥ t′+t′′
2 ,

then κε(α
(δl)
εk − 0)− κε(νε(t′) − 0) ≥ κε(νε(t′)) − κε(νε(t′) − 0) ≥ t′′−t′

2 ≥ σ. Also, |ξε(α(δl)
εk ) −

ξε(α
(δl)
εk −0)| ≥ δl ≥ σ. In any case, |αε(t′−0)−αε(α(δl)

εk −0)|∧ |αε(α(δl)
εk −0)−αε(α(δl)

εk )| ≥ σ.
But 0 < T < α(δl)

εk − c < νε(t′) < α(δl)
εk < Tr. Hence, ∆J(αε(·), c, T, Tr) ≥ σ. This means

that relation (4.3.11) holds.
Using (4.3.11) we get

lim
0<c→0

lim
ε→0

P{∆J(αε(·), 2c, Tr) > σ}
≥ lim

0<c→0
lim
ε→0

P{α(δl)
εk − c ≤ νε(t′), νε(t′′) < α(δl)

εk ,α
(δl)
εk ≤ Tr} > 0.

(4.3.12)

Relation (4.3.12) contradicts condition J24. Therefore, condition F5 holds. �

Remark 4.3.5. It follows from monotonicity of the sequence of random variables α(δl)
εk , k =

1, 2, . . ., and relation (4.3.9), given in the proof of Lemma 4.3.2, that condition O13 can
be replaced by the following weaker condition:

O14: lim0<c→0 limε→0 P{α(δl)
ε1 ≤ c} = 0, δl ∈ Z0.

Conditions A56 and J24 are necessary and sufficient for the following J-convergence
relation to hold:

αε(t), t > 0
J−→ α0(t), t > 0 as ε→ 0. (4.3.13)

Together with condition O13, these conditions also imply that

ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε→ 0. (4.3.14)
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Also note that the relation of J-convergence (4.3.14) implies that condition O13
holds.

Lemma 4.3.2 allows to improve Theorems 4.3.3 and 4.3.5 and state them in the
following form.

Theorem 4.3.6. Let conditions K̄5, A56, J24, and O13 hold. Then

ζε(t), t ∈ V0 ∩W ′
0 ⇒ ζ0(t), t ∈ V0 ∩W ′

0 as ε→ 0.

Theorem 4.3.7. Let conditions K̄5, A56, J24, O13, I6, and I9 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Remark 4.3.6. According to Remark 4.3.3, condition I6 can be replaced by condition I8
or by condition O11 in Theorem 4.3.7. However, in both cases one should also require
that at least one of the conditions Q10, C

(0)
5 (for the stopping moment ν0(0) and the

process ξ0(t), t ≥ 0) or D(0)
4 (for the stopping moments νε(0) and the processes ξε(t), t ≥

0) holds. Alternatively, one can replace condition I6 by condition O12.

Remark 4.3.7. According to Remark 4.3.4, the set of weak convergence (V0 ∩W ′
0)∪ {0},

which is guaranteed by Theorem 4.3.6, can be extended to the set (V0 ∩W ′
0) ∪ Y0.

4.3.5. Generalised exceeding processes based on non-negative exceeding time
processes. In this subsection, we show that in the case of J-convergent processes αε(t),
t ≥ 0, the consideration can be reduced to the case of non-decreasing and non-negative
exceeding time processes κε(t), t ≥ 0.

Let us define the process κ++
ε (t) = max(0, κε(t)), t ≥ 0 and the corresponding exceed-

ing time process ν++
ε (t) = sup(s : κ++

ε (s) ≤ t), t ≥ 0.
By the definition, κ++

ε (t), t ≥ 0 is a non-negative and non-decreasing càdlàg process.
But νε(t) = sup(s : κε(s) ≤ t) = ν++

ε (t), t ≥ 0. So, we can consider the generalised
exceeding process ζε(t) = ξε(νε(t)) = ξε(ν++

ε (t)), t ≥ 0 as a process based on the bivariate
process α++

ε (t) = (κ++
ε (t), ξε(t)), t ≥ 0 with the second component κ++

ε (t), t ≥ 0 being a
non-negative and non-decreasing càdlàg process.

Let us replace condition A56 by the following condition:

A57: (κ++
ε (s), ξε(t)), (s, t) ∈ V ×U ⇒ (κ++

0 (s), ξ0(t)), (s, t) ∈ V ×U as ε→ 0, where (a) V
is a subset of (0,∞), dense in this interval; (b) U is a subset of [0,∞), dense in this
interval and containing the point 0.

If condition A56 holds for the processes αε(t), t ≥ 0, then condition A57 holds for the
processes α++

ε (t), t ≥ 0, that is, condition A57 is weaker than condition A56. This fact
follows from continuity of the function f (x) = max(0, x) and Theorem 1.3.2.

Let us now introduce the following J-compactness condition:
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J25: limc→0 limε→0 P{∆J(α++
ε (·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

It is obvious that 0 ≤ κ++
ε (t′′)−κ++

ε (t′) ≤ κε(t′′)−κε(t′) for any 0 < t′ ≤ t′′ < ∞. Thus
we see that the following estimate is valid for any c, δ > 0 and 0 < T ′ < T ′′ < ∞:

P{∆J(α++
ε (·), c, T ′, T ′′) > δ} ≤ P{∆J(αε(·), c, T ′, T ′′) > δ}. (4.3.15)

It follows from (4.3.15) that condition J24 always implies condition J25, that is, con-
dition J25 is weaker than condition J24.

Note also that condition K̄5 holds for the processes κ++
ε (t), t ≥ 0, if and only if this

condition holds for the processes κε(t), t ≥ 0.
Condition I6 automatically holds for the processes κ++

0 (t), t ≥ 0.
A direct analogue of I9 is the following condition:

I10: κ++
0 (t), t ≥ 0 is an a.s. strictly increasing càdlàg process.

Condition I10 implies that random variable ν0(0) = 0 with probability 1.
Taking in account the remarks above we can improve Theorems 4.3.6 and 4.3.7 to

the following form.

Theorem 4.3.8. Let conditions K̄5, A57, J25, and O13 hold. Then

ζε(t), t ∈ V0 ∩W ′
0 ⇒ ζ0(t), t ∈ V0 ∩W ′

0 as ε→ 0.

Theorem 4.3.9. Let conditions K̄5, A57, J25, O13, and I10 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

As was pointed out above, condition I10 implies that ν0(0) = 0 with probability 1.
This excludes from the consideration the case where ν0(0) can take positive values. This
may happen if the random variable κ0(0) can take negative values.

Let us assume that the process κ0(t), t ≥ 0 is a.s. strictly monotone but we allow the
random variable κ0(0) to take negative values.

In this case, κ++
0 (t) = 0 for t < ν0(0) = sup(s : κε(s) ≤ 0), while this process strictly

increases for t ≥ ν0(0) with probability 1.
According this remark, we modify condition I10 and replace it by the following

weaker condition:

I11: κ++
0 (t) = 0 for t < ν0(0), where ν0(0) = inf(s : κ++

0 (s) > 0) and the càdlàg process
κ++

0 (t) strictly increases for t ≥ ν0(0) with probability 1.

By condition I11, the process ν++
0 (t) = ν0(t), t ≥ 0 is again an a.s. continuous process.

Therefore, Theorem 3.4.2 can be applied.
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In this case, one should additionally provide for the possibility to include the point 0
in the set of weak convergence for the generalised exceeding processes ζε(t), t ≥ 0.

One can require that condition I8 holds for the process κ++
0 (t), t ≥ 0, or that condi-

tion O11 holds. Additionally, at least one of the conditions Q10, C(0)
5 (for the stopping

moment ν0(0) and the process ξ0(t), t ≥ 0 ) or D(0)
4 (for the stopping moments νε(0) and

the processes ξε(t), t ≥ 0) holds. Then the point 0 can be included in the set of weak
convergence. Alternatively, one can assume that condition O12 holds.

4.3.6. Weak and J-convergence on the interval (0,∞). Theorems 4.3.1, 4.3.2,
4.3.3, and 4.3.6 give conditions for weak convergence of generalised exceeding pro-
cesses on sets that are dense in (0,∞). Also, conditions of Theorems 4.3.4, 4.3.5,
and 4.3.7 imply J-compactness of the processes ζε(t) on any finite interval [T ′, T ′′] for
0 < T ′ < T ′′ < ∞. This follows directly from Lemma 3.4.1, if applied to the processes
ξε(t), t ≥ 0 and νε(T ′ + t), t ≥ 0. So, omitting condition I6 in Theorems 4.3.4, 4.3.5 or
4.3.7 one obtains J-convergence of the processes ζε(t) on the open interval (0,∞).

Using Theorem 4.3.9 one can prove J-convergence of the processes ζε(t) on the open
interval (0,∞), instead of [0,∞), if condition I10 in this theorem is replaced by condition
I11. Conditions Q10, C(0)

5 , or D(0)
4 can be omitted in this case.

4.3.7. Exceeding time processes defined on the interval (0,∞). The results of
Lemmas 4.3.1 – 4.3.2 and Theorems 4.3.1 – 4.3.9 can be generalised to a model in
which the process κε(t), t ≥ 0 is defined on the interval [0,∞) but the value of this
process, κε(0), at the point 0 may be a proper or an improper random variable (the value
−∞ has positive probability).

The same can be true if the process κε(t), t ≥ 0 is initially defined on the open interval
(0,∞). In this case, one can always use monotonicity of the processes κε(t), t > 0, and
define κε(0) = κε(0 + 0) = lim0<t→0 κε(0). This limit exists with probability 1. Such a
definition needs to allow the random variable κε(0) to be improper.

Note that neither the definition of an exceeding time process given above nor condi-
tions A56 and J24 involve the random variables κε(0). Also, the formulations of condi-
tions Q10, E13, and F5, as well as conditions K̄5 and I6–I11, remain the same.

Thus, Lemmas 4.3.1 – 4.3.2 and Theorems 4.3.1 – 4.3.9 also remain unchanged.
It should also be noted that one can always reduce the model to the case of non-

negative exceeding time processes. This can be achieved by the use of the truncation
transformation described in Subsection 4.3.6.

4.3.8. External processes that do not converge at the point 0. Results of Lemmas
4.3.1 – 4.3.2 and Theorems 4.3.1 – 4.3.9 can also be generalised to the case when the
processes ξε(t), t ≥ 0 are defined on the interval [0,∞) for ε > 0 but do not weakly
converge at the point 0. In this case, the corresponding limiting process ξ0(t), t ≥ 0
can be a càdlàg process on the open interval (0,∞) but the point 0 can be a point of
discontinuity for this process. Moreover, it can occur that this process a.s. has a right
limit at the point 0 that is an improper random variable, or it can even happen that this
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limit does not exist at all.
In such a case, one can assign the standard value, ξ0(0) ≡ 0. This will not affect

the limiting composition ζ0(t) = ξ0(ν0(t)) if the corresponding limiting internal stopping
process ν0(t), t ≥ 0 is an a.s. strictly positive process for t > 0 or t ≥ 0. In this case, one
can get weak convergence or J-convergence of the corresponding generalised exceeding
processes ζε(t) = ξε(νε(t) on the interval (0,∞) or [0,∞), respectively.

Also, we can admit the case when the limit κε(0) = κε(0 + 0) = lim0<t→0 κε(0), which
exists with probability 1, is a proper or an improper random variable.

Condition A56 should be modified to the following form:

A58: (κε(s), ξε(t)), (s, t) ∈ V × U ⇒ (κ0(s), ξ0(t)), (s, t) ∈ V × U as ε → 0, where (a) V
and U are subsets of (0,∞) dense in this interval.

Conditions Q10 and E13 can be preserved.
Condition F5 should be modified in a more complicated way, because it is necessary

to change the definition of successive moments of jumps for the process ξ0(t) in the
situation where this process needs to be considered on the open interval (0,∞).

Let us take some sn > 0 and introduce the process

ξ(sn)
ε (t) = ξε(t ∨ sn) =


ξε(sn) if t < sn,

ξε(t) if t ≥ sn,

and then the corresponding generalised exceeding process

ζ(sn)
ε (t) = ξ(sn)

ε (νε(t)), t ≥ 0.

Let α(δ)
εkn, k = 1, 2, . . . be successive moments of jumps of the càdlàg process ξ(sn)

ε (t),
t ≥ 0, such that absolute values of the jumps are greater than or equal to δ.

Let also U0 be the set of points t > 0 that are points of stochastic continuity for the
process ξ0(t), t > 0. This set coincides with (0,∞) except for at most a countable set.

Let also Z0 be the set of δ > 0 for which the process ξ0(t), t > 0 has, with probability
1, no jumps with absolute values equal to δ. Since the càdlàg process ξ0(t), t > 0 has at
most a countable set of jump points, the set Z0 is (0,∞) except for at most a countable
set.

Condition F5 should be modified in the following way:

F6: There exist sequences sn ∈ U0, 0 < sn → 0 as n→∞ such that condition F5 holds
for the processes ξ(sn)

ε (t), t ≥ 0, and νε(t), t ≥ 0 for every n ≥ 1.

Let W ′′
0n be the set of t > 0 for which condition D(w)

4 holds for the processes ξ(sn)
ε (t), t ≥

0 and νε(t), t ≥ 0. Due to Lemma 2.6.4, condition F6 implies that, for every n ≥ 1, the
set W ′′

0n is (0,∞) except for at most a countable set. Hence, the set W ′′
0 = ∩n≥1W ′′

0n also is
(0,∞) except for at most a countable set.
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It is possible to show that if condition F6 holds for some sequence sn ∈ U0, 0 < sn →
0 as n → ∞, it also holds for any other sequence s′n ∈ U0, 0 < s′n → 0 as n→ ∞ and the
set W ′′

0 defined as above is the same for any such a sequence.
Recall that V0 is the set of points t > 0 that are points of stochastic continuity for the

process ν0(t), t ≥ 0. This set equals (0,∞) except for at most a countable set.
Finally, V0 ∩W ′′

0 is also the interval (0,∞) except for at most a countable set.
Conditions J24 and J25 do not need any changes, since they involve the processes

αε(t) and α++
ε (t) only for t ∈ (0,∞).

Condition K̄5 also does not need to be modified.
Condition O13 should be omitted in the corresponding theorems.
There are two cases that need to be considered. The first one is where (a) ν0(t) > 0

with probability 1 for t > 0. In the second case, (b) ν0(0) > 0 with probability 1.
If (a) is satisfied and (b) can not be guaranteed to hold, the point 0 needs to be

excluded from the set of weak convergence, and J-convergence is guaranteed only on
the interval (0,∞). If (b) is satisfied, one can include the point 0 in the set of weak
convergence, and prove J-convergence of the generalised exceeding processes on the
interval [0,∞).

Let us impose the following condition:

I13: κ0(0) ≤ 0 with probability 1.

Condition I13 holds if and only if the random variables ν0(t) > 0 with probability 1
for every t > 0.

Let us formulate analogues of Theorems 4.3.6 and 4.3.7.

Theorem 4.3.10. Let conditions K̄5, A58, J24, and I13 hold. Then

ζε(t), t ∈ V0 ∩W ′′
0 ⇒ ζ0(t), t ∈ V0 ∩W ′′

0 as ε→ 0.

Theorem 4.3.11. Let conditions K̄5, A58, J24, I9, and I13 hold. Then

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε → 0.

Proof of Theorems 4.3.10 and 4.3.11. Conditions K̄5, A58, and J24 imply that F6 holds
for every sequence sn ∈ U0, 0 < sn → 0. Indeed, conditions A58 and J24 imply that
the processes αε(t) J-converge on the open interval (0,∞). This permits to extend the
set U in condition A58 by including all points of stochastic continuity for the process
ξ0(t), t > 0. This shows that condition A56 holds for the processes ξ(sn)

ε (t), t ≥ 0 and
κε(t), t ≥ 0, for every n ≥ 1. It is also obvious that condition O13 holds for the processes
ξ(sn)
ε (t), t ≥ 0, for every n ≥ 1. Hence, condition F5 holds for the processes ξ(sn)

ε (t), t ≥ 0
and νε(t), t ≥ 0, for every n ≥ 1.
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By applying Theorem 4.3.6 to the processes ξ(sn)
ε (t), t ≥ 0 and νε(t), t ≥ 0, and taking

into consideration that W ′′
0 ⊆ W ′′

0n, we get the following relation for every n ≥ 1:

ζ(sn)
ε (t), t ∈ V0 ∩W ′′

0 ⇒ ζ(sn)
0 (t), t ∈ V0 ∩W ′′

0 as ε→ 0. (4.3.16)

Let us introduce the processes

α(sn)
ε (t) = (κε(t), ξ(sn)

ε (t)), t ≥ 0.

We are going to prove that condition J24 holds for these processes, i.e. for every
n ≥ 1 and δ > 0, 0 < T ′ < T ′′ < ∞,

lim
0<c→0

lim
ε→0

P{∆J(α(sn)
ε (·), c, T ′, T ′′) > δ} = 0. (4.3.17)

Relation (4.3.17) is obvious if (c) sn ≥ T ′′. Indeed, in this case,

∆J(α(sn)
ε (·), c, T ′, T ′′) = ∆J(κε(·), c, T ′, T ′′). (4.3.18)

Relation (4.3.17) is also obvious if (d) sn ≤ T ′. Indeed, in this case,

∆J(α(sn)
ε (·), c, T ′, T ′′) = ∆J(αε(·), c, T ′, T ′′). (4.3.19)

The only non-trivial case is (e) T ′ < sn < T ′′. The following estimate holds for
any two-dimensional càdlàg function z(t) = (x(t), y(t)), t ≥ 0, and the function z(sn)(t) =

(x(t ∨ sn), y(t)), t ≥ 0, for c < T ′/2:

∆J(z(sn)(·), c, T ′, T ′′)
≤ ∆J(y(·), c, T ′, sn) + ∆J(z(·), c, sn, T ′′)
+ sup

sn−2c≤t′ ,t′′≤sn+2c
|z(t′) − z(t′′)|.

(4.3.20)

Recall again that conditions A58 and J24 provide J-convergence of the processes
αε(t) on the open interval (0,∞). Recall also that sn is a point of stochastic continuity for
the process α0(t), t ≥ 0. Taking this into account and using condition J24 and estimate
(4.3.20) we get, for every δ > 0 and 0 < T ′ < T ′′ < ∞, that

lim
0<c→0

lim
ε→0

P{∆J(α(sn)
ε (·), c, T ′, T ′′) > δ}

≤ lim
0<c→0

lim
ε→0

(P{∆J(κε(·), c, T ′, sn) > δ/3} + P{∆J(αε(·), c, sn, T ′′) > δ/3}
+ P{ sup

sn−2c≤t′ ,t′′≤sn+2c
|αε(t′) − αε(t′′)| > δ/3}) = 0.

(4.3.21)

Now, by applying Theorem 4.3.7 to the truncated generalised exceeding processes
ζ(sn)
ε (t), t ≥ 0, and taking into consideration the remarks in Subsection 4.3.6, we get

J-convergence of these processes on the interval (0,∞) for every n ≥ 1,

ζ(sn)
ε (t), t > 0

J−→ ζ(sn)
0 (t), t > 0 as ε→ 0. (4.3.22)



4.3. Generalised exceeding processes 285

Take now any T > 0. The following estimate follows from the definition of the
truncated processes ξ(sn)

ε (t), t ≥ 0, and condition I13:

lim
n→∞

lim
ε→0

P{sup
t≥T
|ζε(t) − ζ(sn)

ε (t)| > 0}

≤ lim
n→∞

lim
ε→0

P{νε(T ) ≤ sn} ≤ lim
n→∞

lim
ε→0

P{κε(sn) ≥ T/2} = 0.
(4.3.23)

Relation (4.3.23) also holds in the case where ε = 0 and implies, in this case, that

ζ(sn)
0 (t), t > 0⇒ ζ0(t), t > 0 as n→ ∞. (4.3.24)

Relations (4.3.16), (4.3.23), (4.3.24), and Lemma 1.2.5 imply relation of weak con-
vergence given in Theorem 4.3.10.

Using the estimate in Lemma 1.4.9 and (4.3.23) we get, for every 0 < T ′ < T ′′ < ∞,
that

lim
0<c→0

lim
ε→0

P{∆J(ζε(·), c, T ′, T ′′) > δ}
≤ lim

0<c→0
lim
ε→0

(P{∆J(ζ(sn)
ε (·), c, T ′, T ′′) > δ/2}

+ P{∆U(ζε(·) − ζ(sn)
ε (·), c, T ′, T ′′) > δ/2})

≤ lim
ε→0

P{sup
t≥T ′
|ζε(t) − ζ(sn)

ε (t)| > δ/4} → 0 as n→ ∞.

(4.3.25)

Relation of weak convergence, given in Theorem 4.3.10, and estimate (4.3.25) prove
Theorem 4.3.11. �

Let us now consider the case when the following condition holds:

I14: ν0(0) > 0 with probability 1.

Note that condition I14 implies that the process ζ0(t) = ξ0(ν0(t)), t ≥ 0 is an a.s.
càdlàg process despite a possible discontinuity of the process ξ0(t), t ≥ 0 at the point 0.

In this case, in order to include the point 0 in the set of weak convergence, V0 ∩W ′′
0n,

of the generalised exceeding processes ζ(sn)
ε (t), t ≥ 0, for every n ≥ 1, one should require

that condition I8 or O11 holds. Additionally, one should require that at least one of
conditions Q10 or C(0)

5 (for the stopping moment ν0(0) and the process ξ0(t), t > 0) or
D(0)

4 (for the stopping moments νε(0) and the processes ξ(sn)
ε (t), t ≥ 0, for every n ≥ 1)

holds.
Note that condition Q10 or C(0)

5 holds for the stopping moment ν0(0) and the pro-
cess ξ0(t), t > 0, if and only if it holds for the stopping moment ν0(0) and the process
ξ(sn)

0 (t), t > 0, for every n ≥ 1.
Alternatively, one can assume that conditions O11 and O12 hold.
For example, let us formulate versions of Theorems 4.3.10 and 4.3.11 in which con-

ditions O11 and O12 are assumed to hold.



286 Chapter 4. Summary of applications

Theorem 4.3.12. Let conditions K̄5, A58, J24, I14, O11, and O12 hold. Then

ζε(t), t ∈ (V0 ∩W ′′
0 ) ∩ {0} ⇒ ζ0(t), t ∈ (V0 ∩W ′′

0 ) ∩ {0} as ε→ 0.

Theorem 4.3.13. Let conditions K̄5, A58, J24, I9, I14, O11, and O12 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.3.12 and 4.3.13. Take again an arbitrary sequence sn ∈ U0, 0 <
sn → 0. Using condition O12 and the remarks made in Subsection 4.3.2 and repeat-
ing the reasoning used in the proof of Theorem 4.3.10 for getting relation (4.3.16) we
can prove that, for every n ≥ 1,

ζ(sn)
ε (t), t ∈ (V0 ∩W ′′

0 ) ∪ {0} ⇒ ζ(sn)
0 (t), t ∈ (V0 ∩W ′′

0 ) ∪ {0} as ε→ 0. (4.3.26)

It was shown in the proof of Theorem 4.3.11 that for every δ > 0, 0 < T ′ < T ′′ < ∞
and every n ≥ 1,

lim
0<c→0

lim
ε→0

P{∆J(α(sn)
ε (·), c, T ′, T ′′) > δ} = 0. (4.3.27)

Also, it is obvious that condition O13 holds for the processes ξ(sn)
ε (t), t ≥ 0, for every

n ≥ 1. Relation (4.3.27) and condition O13 imply that, for every δ > 0, 0 < T < ∞, and
every n ≥ 1,

lim
0<c→0

lim
ε→0

P{∆J(α(sn)
ε (·), c, T ) > δ} = 0. (4.3.28)

Relations (4.3.26) and (4.3.28) imply that for every n ≥ 1,

ζ(sn)
ε (t), t ≥ 0

J−→ ζ(sn)
0 (t), t ≥ 0 as ε→ 0. (4.3.29)

Taking into consideration condition O11 and the remarks made in Subsection 4.3.2
we get, by using condition I14, that

lim
n→∞

lim
ε→0

P{νε(0) < sn} ≤ lim
n→∞

P{ν0(0) < sn/2} = 0. (4.3.30)

The following estimate follows from the definition of the truncated processes ξ(sn)
ε (t),

t ≥ 0, and relation (4.3.30):

lim
n→∞

lim
ε→0

P{sup
t≥0
|ζε(t) − ζ(sn)

ε (t)| > 0} ≤ lim
n→∞

lim
ε→0

P{νε(0) < sn} = 0. (4.3.31)

Relation (4.3.31) can also be applied in the case where ε = 0 to give

ζ(sn)
0 (t), t ≥ 0⇒ ζ0(t), t ≥ 0 as n→ ∞. (4.3.32)

Relations (4.3.26), (4.3.31), (4.3.32), and Lemma 1.2.5 imply the relation of weak
convergence given in Theorem 4.3.12.
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Using estimate obtained in Lemma 1.4.9 and (4.3.31) we get, for every δ > 0 and
0 < T < ∞, that

lim
0<c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ}
≤ lim

0<c→0
lim
ε→0

(P{∆J(ζ(sn)
ε (·), c, T ) > δ/2}

+ P{∆U(ζε(·) − ζ(sn)
ε (·), c, T ) > δ/2})

≤ lim
ε→0

P{sup
t≥0
|ζε(t) − ζ(sn)

ε (t)| > δ/4} → 0 as n→ ∞.

(4.3.33)

The relation of weak convergence in Theorem 4.3.12 and estimate (4.3.33) prove
Theorem 4.3.13. �

4.3.9. Generalised exceeding processes based on non-monotone exceeding time
processes. Let, for every ε ≥ 0, αε(t) = (κε(t), ξε(t)), t ≥ 0 be a two-dimensional càdlàg
process with real-valued components. Here, neither monotonicity nor non-negativity of
the component κε(t), t ≥ 0 is required.

Let us introduce an exceeding time process νε(t) = sup(s : κε(s) ≤ t), t ≥ 0, and a
generalised exceeding process ζε(t) = ξε(νε(t)), t ≥ 0.

This model can be reduced to a model with the non-decreasing component κε(t), t ≥ 0
in the following way. Define the process κ+

ε (t) = sups≤t κε(s), t ≥ 0 and the corresponding
exceeding time process ν+

ε (t) = sup(s : κ+
ε (s) ≤ t), t ≥ 0. By the definition, κ+

ε (t), t ≥ 0
is a non-decreasing càdlàg process. But νε(t) = ν+

ε (t), t ≥ 0. Thus, one can consider the
generalised exceeding process ζε(t) = ξε(νε(t)) = ξε(ν+

ε (t)), t ≥ 0 as a process based on
the bivariate process α+

ε (t) = (κ+
ε (t), ξε(t)), t ≥ 0, whose second component κ+

ε (t), t ≥ 0
is a nondecreasing càdlàg process.

An analogue of condition K̄5 takes the following form:

K̄6: κ+
ε (t)

P−→ ∞ as t → ∞ for every ε ≥ 0.

In this case, it is reasonable to try to replace conditions A56 and J24 by similar con-
ditions formulated in terms of the initial processes αε(t) = (κε(t), ξε(t)), t ≥ 0.

Let us denote by V0 the set of points t > 0 that are points of stochastic continuity for
the process κ0(t), t ≥ 0, and by U0 the set of points t ≥ 0 that are points of stochastic
continuity for the process ξ0(t), t ≥ 0. The set V0 equals (0,∞) except for at most a
countable set and also the set U0 coincides with [0,∞) except for at most a countable
set. Also, 0 ∈ U0.

Lemma 4.3.3. If conditions A56 and J24 hold for the processes αε(t) = (κε(t), ξε(t)),
t ≥ 0, then (α) condition A56 holds for the processes α+

ε (t) = (κ+
ε (t), ξε(t)), t ≥ 0, with

the sets V = V0 and U = U0; (β) condition J24 holds for the processes α+
ε (t), t ≥ 0.
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Proof of Lemma 4.3.3. Take an arbitrary point 0 < T < ∞ that is a point of stochastic
continuity for the process α0(t), t ≥ 0. By applying Lemma 1.6.14 to the processes

αε(t + T ), t ≥ 0 we prove that (a) the processes α+
ε (t), t ∈ [T,∞)

J−→ α+
0 (t), t ∈ [T,∞) as

ε→ 0. Since the choice of 0 < T < ∞ was arbitrary, (a) implies that (b) α+
ε (t), t > 0

J−→
α+

0 (t), t > 0 as ε→ 0.
Note also that (c) every point of stochastic continuity of the process κ0(t), t ≥ 0 is

also a point of stochastic continuity for the process κ+
0 (t), t ≥ 0. Obviously, (b) and (c)

imply the statement (α) of Lemma 4.3.3. Also, (b) implies the statement (β) of Lemma
4.3.3. �

Since κ0(0) ≡ κ+
0 (0), condition I6, in which κ0(0) ≥ 0 with probability 1, does not

need any changes.
Condition I9 takes in this case the following form:

I15: κ+
0 (t), t ≥ 0 is an a.s. strictly increasing process.

The following theorem is a direct corollary of Lemma 4.3.3 and Theorem 4.3.7.

Theorem 4.3.14. Let conditions K̄6, A56, J24, O13, I6, and I15 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Remark 4.3.8. Condition I6 can be replaced by condition I8, which should be required
to hold for the process κ+

0 (t), t ≥ 0, or by condition O11. In both cases, one should
also require that at least one of conditions Q10, C(0)

5 (for the stopping moment ν0(0)
and the process ξ0(t), t ≥ 0) or D(0)

4 (for the stopping moments νε(0) and the processes
ξε(t), t ≥ 0) holds. In this case, the point 0 can be included in the set of weak convergence
V0 ∩W ′

0. Alternatively, condition O12 can be assumed to hold.

Let us illustrate the theorem by the following example. Let, for every ε ≥ 0, αε(t) =

(κε(t), ξε(t)), t ≥ 0 be a càdlàg homogeneous process with independent increments. For
simplicity, let us assume that αε(0) = (0, 0) with probability 1.

Condition A56 can be formulated in an equivalent form in terms of characteristics in
Lévy–Khintchine representation for the characteristic function of the process αε(t), t ≥ 0.
The corresponding formulations can be found, for example, in Skorokhod (1964) or
Gikhman and Skorokhod (1971). As is known (see, for example, Skorokhod (1964)),
condition A56 (it is actually enough to require in this condition that the random variables
αε(1) weakly converge) implies in this case, without any additional assumptions, that (d)
the processes αε(t), t ≥ 0

J−→ α0(t), t ≥ 0 as ε → 0. Relation (d) implies that conditions
A56, J24, and O12 hold for the processes αε(t), t ≥ 0.

Therefore, conditions K̄6, A56, and I15 imply that the corresponding generalised

exceeding processes ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε→ 0.
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Note that, in this case, any assumptions about independence of the processes κ0(t), t ≥
0 and ξ0(t), t ≥ 0 are not needed.

4.3.10. Generalised exceeding processes based on improper exceeding time pro-
cesses. This is the case where condition K̄5 does not hold. Denote κε(∞) = limt→∞ κε(t).
This limit exists with probability 1, since κε(t), t ≥ 0 is a non-decreasing process.
Condition K̄5 does not hold if and only if P{κε(∞) < ∞} > 0. In this case, the ex-
ceeding time process νε(t) = sup(s : κε(s) ≤ t), t ≥ 0 can be improper. Moreover,
P{νε(t) = +∞} = P{κε(∞) ≤ t}.

To avoid this situation, one can choose some T ∈ (0,∞) and consider the truncated
exceeding time processes νε,T (t) = min(νε(t), T ), t ≥ 0 and the truncated generalised
exceeding processes ζε,T (t) = ξε(νε,T (t)), t ≥ 0. The results formulated in Subsections
4.3.1 - 4.3.9 can be carried over to this case with some modifications.

We refer to Silvestrov (1974, 2000a), where one can find results concerning truncated
generalised exceeding processes.

4.3.11. An alternative approach to limit theorems for generalised exceeding pro-
cesses. A more general model for generalised exceeding processes was studied in Sil-
vestrov (1974, 2000a). This model is based on a study of homogeneous families of
functionals µt(x(·)), t ≥ 0, defined on the space D̄(m)

[0,∞) of m-dimensional càdlàg func-
tions x(t), t ≥ 0 that are invariant with respect to monotone transformations of time. The
homogeneity property mentioned above means that µλ(t)(x(·)) = µt(x(λ(·))), t ≥ 0, for
any continuous one-to-one mapping λ(t) of the interval [0,∞) into itself, and any càdlàg
function x(t), t ≥ 0. An exceeding time process based on a m-dimensional càdlàg pro-
cesses ξε(t), t ≥ 0 is defined as νε(t) = inf(s : µs(ξε(·)) > t), t ≥ 0, and a generalised
exceeding process is defined as ζε(t) = g(ξε(νε(t))), t ≥ 0, where g(x) is a continuous
function acting from �m to �l. It is easily seen that the generalised exceeding processes
considered in Section 4.3 is a particular case of the model described above. The method
used in Silvestrov (1974, 2000a) is based on thorough studies of J-continuity properties
of the random functionals inf(s : µs(ξε(·)) > t) and g(ξε(νε(t))).

For the model of generalised exceeding processes considered in Section 4.3, the
results obtained in Silvestrov (1974, 2000a) are similar to those given in Theorems 4.3.6
– 4.3.7. Note that these theorems require stronger J-compactness conditions than, for
example, the preceding Theorems 4.3.1 – 4.3.5.

4.4 Step generalised exceeding processes

In this section, we continue studies of limit theorems for generalised exceeding pro-
cesses. In Section 4.3, a model for generalised exceeding processes with asymptotically
continuous exceeding time stopping processes was considered. In the present section, a
model with step stopping exceeding time processes is considered.
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4.4.1. Conditions for weak and J-convergence based on imbedded sequences.
Consider an important class of generalised exceeding processes where the process κε(t),
t ≥ 0 is a step càdlàg process for every ε ≥ 0. This means that there exists an a.s.
strictly increasing sequence of random variables 0 = τε0 < τε1 < τε2 < . . . such that
κε(t) = κε(τεn) for t ∈ [τεn, τεn+1), n = 0, 1, . . .. The random variables τεn, n = 1, 2, . . .
are successive moments moments of jumps, whereas the random variables κε(τεn), n =

1, 2, . . . are values of the process κε(t), t ≥ 0 at the moments of jumps. We exclude
the case of fictitious jumps, that is, assume that κε(τε0) < κε(τε1) < κε(τε2) < . . . with
probability 1.

We summarise the above assumptions as the following condition:

I16: τεn, n = 0, 1, . . . and κε(τεn), n = 0, 1, . . . are a.s. strictly increasing sequences of
random variables for every ε ≥ 0.

We also restrict the consideration to the most important case where the process
κε(t), t ≥ 0 a.s. has a finite number of jumps in any finite interval, that is,

K̄7: τεn
P−→ ∞ as n→ ∞ for every ε ≥ 0.

It is clear that in this case the exceeding time process νε(t) = sup(s : κε(s) ≤ t), t ≥ 0
can be represented in the following form:

νε(t) =


0 if t < κε(τε0),
τεk+1 if κε(τεk) ≤ t < κε(τεk+1), k = 0, 1, . . . .

(4.4.1)

The process νε(t), t ≥ 0 is also a càdlàg step process.
The process νε(t), t ≥ 0 a.s. has a finite number of jumps in any finite interval if the

following condition holds:

K̄8: κε(τεn)
P−→ ∞ as n→ ∞ for every ε ≥ 0.

It is useful to note that, under K̄7, conditions K̄8 and K̄5 are equivalent. Indeed,
since the process κε(t) is monotone, we have (a) κε(t)

a.s.−→ κε(∞), where κε(∞) is a
random variable (possibly improper) that a.s. takes values in the interval (−∞,∞]. Since
the sequence of random variables τεn is monotone, condition K̄7 is equivalent to the
relation (b) τεn

a.s.−→ ∞ as n→∞. Obviously, (a) and (b) imply that (c) κε(τεn)
a.s.−→ κε(∞)

as n → ∞. Condition K̄5, as well as condition K̄8, holds if and only if κε(∞) = ∞ with
probability 1. So, these conditions are equivalent.

Condition K̄8 implies that the random variable νε(t) < ∞with probability 1 for every
t ≥ 0.
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Let us now consider the generalised exceeding process ζε(t) = ξε(νε(t)), t ≥ 0. Since
νε(t), t ≥ 0 is a step càdlàg process, ζε(t) = ξε(νε(t)), t ≥ 0 is also a step càdlàg process.
Obviously,

ζε(t) =


ξε(0) if t < κε(τε0),
ξε(τεk+1) if κε(τεk) ≤ t < τε(τεk+1), k = 0, 1, . . . .

(4.4.2)

Let us consider the case where the limiting exceeding time process ν0(t), t ≥ 0 is
a step process. We give conditions for weak convergence and J-convergence of gener-
alised exceeding processes formulated in terms of the“embedded” sequence of random
vectors (κε(τεn), ξ(τεn)), n = 0, 1, . . .. Let us assume the following condition:

A59: (κε(τεn), ξ(τεn)), n = 0, 1, . . .⇒ (κ0(τ0n), ξ(τ0n)), n = 0, 1, . . . as ε→ 0.

Denote by Z0 the set of all t ≥ 0 that are points of continuity of distribution functions
of the random variables κ0(τ0n), n = 0, 1, . . . . This set is [0,∞) except for at most a
countable set.

Lemma 4.4.1. Let conditions I16, K̄7, K̄8, and A59 holds. Then

ζε(t), t ∈ Z0 ⇒ ζ0(t), t ∈ Z0 as ε→ 0.

Proof of Lemma 4.4.1. Let us choose arbitrary n ≥ 1, tk ∈ Z0, and xk such that P{ξ0(tk) =

xk} = 0 for k = 1, . . . n. By conditions I16 and K̄7,

P{ζε(tk) ≤ xk, k = 1, . . . n}

=

n∑

k=1

∞∑

rk=0

P{ξε(τεrk ) ≤ xk, κε(τεrk−1) ≤ tk < κε(τεrk ), k = 1, . . . , n}, (4.4.3)

where κε(τε−1) = −∞.
By conditions A59 and K̄8, for any t ≥ 0,

lim
N→∞

lim
ε→0

P{κε(τεN) ≤ t} ≤ lim
N→∞

P{κ0(τ0N) ≤ 2t} = 0. (4.4.4)

Condition A59 and relation (4.4.4) imply that

lim
ε→0

P{ζε(tk) ≤ xk, k = 1, . . . n}

= lim
N→∞

lim
ε→0

n∑

k=1

N∑

rk=0

P{ξε(τεrk ) ≤ xk, κε(τεrk−1) ≤ tk < κε(τεrk ), k = 1, . . . , n}

= lim
N→∞

n∑

k=1

N∑

rk=0

P{ξ(τ0rk) ≤ xk, κ0(τ0rk−1) ≤ tk < κ0(τ0rk ), k = 1, . . . , n}

=

n∑

k=1

∞∑

rk=0

P{ξ0(τ0rk ) ≤ xk, κ0(τ0rk−1) ≤ tk < κ0(τ0rk ), k = 1, . . . , n}

= P{ζ0(tk) ≤ xk, k = 1, . . . n}.

(4.4.5)
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Since the choice of tk ∈ Z0 and xk such that P{ζ0(tk) = xk} = 0 for k = 1, . . . n, n ≥ 1
was arbitrary, relation (4.4.5) is equivalent to the weak convergence relation given in
Lemma 4.4.1. �

Conditions of J-compactness can also be formulated in terms of the “embedded”
sequence of random variables κε(τεn), n = 0, 1, . . . . It is sufficient to assume validity of
the following condition, which is weaker than A59:

A60: κε(τεn), n = 0, 1, . . .⇒ κ0(τ0n), n = 0, 1, . . . as ε → 0.

Lemma 4.4.2. Let conditions I16, K̄7, K̄8, and A60 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Lemma 4.4.2. Consider the random functionals ηε(T ) = max(n : κε(τεn) ≤ T )
and θε(n) = min1≤k≤n(κε(τεk) − κε(τεk−1)).

It is readily seen that θε(ηε(T )) is greater than or equal to the minimal length of the
intervals between the moments of jumps of the process ζε(t) in the interval [0, T ]. So,
we have the following implication for the random events:

{∆J(ζε(·), c, T ) > 0} ⊆ {θε(ηε(T )) ≤ c}. (4.4.6)

Relation (4.4.6) implies that

P{∆J(ζε(·), c, T ) ≥ δ} ≤ P{θε(ηε(T )) ≤ c}
≤ P{θε(n) ≤ c} + P{ηε(T ) > n}
= P{θε(n) ≤ c} + P{κε(τεn) ≤ T }.

(4.4.7)

Since f (x1, . . . , xn) = min1≤k≤n(xk − xk−1) is a continuous function for every n ≥ 1,
condition A60 implies that

θε(n)⇒ θ0(n) as ε→ 0, n ≥ 1. (4.4.8)

Note also that, by condition I16, the random variable θ0(n) > 0 with probability 1,
for every n ≥ 1. Using this fact and conditions I16, K̄7, K̄8, and A60 we get

lim
0<c→0

lim
ε→0

P{∆J(ζε(·), c, T ) ≥ δ}
≤ lim

0<c→0
lim
ε→0

P{θε(ηε(T )) ≤ c}
≤ lim

0<c→0
lim
ε→0

(P{θε(n) ≤ c} + P{κε(τεn) ≤ T })
≤ lim

0<c→0
P{θ0(n) ≤ 2c} + P{κ0(τ0n) ≤ 2T }

= P{κ0(τ0n) ≤ 2T } → 0 as n→ ∞.

(4.4.9)

This completes the proof. �
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If condition I16 holds, then condition A60 can be replaced by the following weaker
condition:

N2: (a) limn→∞ limε→0 P{κε(τεn) ≤ T } = 0 for T < ∞;

(b) lim0<c→0 limε→0 P{κε(τεn) − κε(τεn−1) ≤ c} = 0 for n ≥ 1.

Lemma 4.4.3. Let conditions I16, K̄7, K̄8, and N2 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Lemma 4.4.3. The first part of the proof repeats the proof of Lemma 4.4.2 up
to the estimate (4.4.7). This estimate can be continued in the following way:

P{∆J(ζε(·), c, T ) ≥ δ} ≤ P{θε(ηε(T )) ≤ c}
≤ P{θε(n) ≤ c} + P{κε(τεn) ≤ T }

≤
n∑

k=1

P{κε(τεk) − κε(τεk−1) ≤ c} + P{κε(τεn) ≤ T }.
(4.4.10)

Take an arbitrary σ > 0. Using condition N2 (a) we can choose n so large that
limε→0 P{κε(τεn) ≤ T } ≤ σ. Then we get, using condition N2 (b), that

lim
0<c→0

lim
ε→0

P{∆J(ζε(·), c, T ) ≥ δ}

≤ lim
0<c→0

lim
ε→0

(
n∑

k=1

P{κε(τεk) − κε(τεk−1) ≤ c} + P{κε(τεn) ≤ T })

≤
n∑

k=1

lim
0<c→0

lim
ε→0

P{κε(τεk) − κε(τεk−1) ≤ c} + σ = σ.

(4.4.11)

Since the choice of σ > 0 is arbitrary, relation (4.4.11) implies the relation of J-
compactness stated in the lemma. �

The question about possibility to include the point 0 in the set of weak convergence
Z0 requires a special consideration. Let us formulate the following condition:

R1: lim0<t→0 limε→0 P{0 < κε(τεn) ≤ t} = 0 for n = 0, 1, . . ..

Lemma 4.4.4. Let conditions I16, K̄7, K̄8, N2 (a), and R1 hold. Then

lim
0<t→0

lim
ε→0

P{νε(t) − νε(0) > δ} = 0, δ > 0.
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Proof of Lemma 4.4.4. By using conditions N2 (a) and R1, we get

lim
0<t→0

lim
ε→0

P{νε(t) − νε(0) > δ} ≤ lim
0<t→0

lim
ε→0

P{νε(t) , νε(0)}

≤
n∑

k=0

lim
0<t→0

lim
ε→0

P{0 < κε(τεk) ≤ t} + lim
0<t→0

lim
ε→0

P{κε(τεn+1) ≤ t}

≤ lim
ε→0

P{κε(τεn+1) ≤ 0} → 0 as n→ ∞.

(4.4.12)

The relation given in Lemma 4.4.4 follows from estimate (4.4.12). �

Lemma 4.4.5. Let conditions I16, K̄7, K̄8, N2 (a), and R1 hold. Then

lim
c→0

lim
ε→0

P{|ζε(t) − ζε(0)| > δ} = 0, δ > 0.

Proof of Lemma 4.4.5. Using relation (4.4.12) we get

lim
0<t→0

lim
ε→0

P{|ζε(t) − ζε(0)| > δ} ≤ lim
0<t→0

lim
ε→0

P{νε(t) , νε(0)} = 0. (4.4.13)

�

As was mentioned above, if condition I16 holds, then condition A60 implies condi-
tion N2.

The following theorem is a corollary of Lemmas 4.4.1 – 4.4.5.

Theorem 4.4.1. Let conditions I16, K̄7, K̄8, A59, and R1 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

The most important for applications is the case where the following condition holds:

I17: κε(0) ≥ 0 with probability 1 for every ε ≥ 0.

Obviously, if condition I17 holds, then the following condition is sufficient for con-
dition R1 to hold:

R2: lim0<t→0 limε→0(P{0 < κε(0) ≤ t} + P{κε(τε1) ≤ t}) = 0.

Remark 4.4.1. Under conditions I16 and I17, condition A60 implies condition R2 to hold
if (a) P{κε(0) = 0} → P{κ0(0) = 0} as ε→ 0. Note that (a) and condition I17 hold if (b)
P{κε(0) = 0} = 1 for every ε ≥ 0.

Remark 4.4.2. If (b) holds, then condition N2 (b) implies that condition R1 holds.
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4.4.2. General conditions for weak and J-convergence of step generalised ex-
ceeding processes. It should be noted that the results on weak convergence of gener-
alised exceeding processes, given in Theorems 4.3.1 – 4.3.3, 4.3.6, 4.3.8, 4.3.10, and
4.3.12, as well as in Lemmas 4.3.1 – 4.3.3, can also be applied to step generalised ex-
ceeding processes.

As a matter of fact, the only assumption that the processes κε(t), t ≥ 0 are non-
decreasing is involved. No other assumptions about the character of trajectories of these
processes were used in these theorems.

Considering the J-convergence, one should be more careful. Theorems 4.3.4, 4.3.5,
4.3.7, 4.3.9, 4.3.11, and 4.3.13 can be applied in the case where the corresponding lim-
iting exceeding time process ν0(t), t ≥ 0 is an a.s. continuous process. Instead of using
these theorems, one can combine the conditions of Theorems 4.3.1 – 4.3.3, 4.3.6, 4.3.8,
4.3.10, and 4.3.12 with the conditions of Lemmas 4.4.3 – 4.4.5 in order to get conditions
for J-convergence of the step generalised exceeding processes.

For example, the following theorem combines the conditions of Theorem 4.3.7 and
the ones pointed out in Remark 4.3.6 with the conditions of Lemmas 4.4.3 – 4.4.5. Note
that condition R1 replaces conditions O11 and O12. This is possible due to Lemmas 4.4.4
and 4.4.5.

Theorem 4.4.2. Let conditions I16, K̄7, K̄8, A56, J24, O13, N2, and R1 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Remark 4.4.3. Omitting condition R1 in Theorem 4.4.2 we get conditions for J-conver-
gence of the processes ζε(t) on the interval (0,∞).

The case considered in Subsection 4.3.8 requires a special consideration. In this
case, the conditions of Theorems 4.3.11 or 4.3.13 can be combined with the conditions
of Lemmas 4.4.3 – 4.4.5.

Theorem 4.4.3. Let conditions I16, K̄7, K̄8, A58, J24, I13, and N2 hold. Then

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε → 0.

Theorem 4.4.4. Let conditions I16, K̄7, K̄8, A58, J24, I14, N2, and R1 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

There is an essential difference between Theorem 4.4.1 and Theorems 4.4.2 – 4.4.4.
Theorem 4.4.1 is based on conditions for weak convergence of the embedded random
sequence (κε(τεn), ξ(τεn)), n = 0, 1, . . . . At the same time, Theorems 4.4.2 – 4.4.4 are
based on the condition for J-convergence of the bivariate processes (κε(t), ξε(t)), t ≥ 0.
Both variants have their own advantages in applications.
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4.4.3. The case of step exceeding time processes defined on (0,∞). Let us also
consider a model where, for every ε ≥ 0, κε(t), t > 0 is a step càdlàg process defined on
the interval (0,∞). This means that for every s > 0 there exists an a.s. strictly increasing
sequence of random variables s = τ(s)

ε0 < τ(s)
ε1 < τ(s)

ε2 < . . . such that κε(t) = κε(τ
(s)
εn ) for

t ∈ [τ(s)
εn , τ

(s)
εn+1), n = 0, 1, . . .. The random variables τ(s)

εn , n = 1, 2 . . . are moments of jumps
and the random variables κε(τ

(s)
εn ), n = 1, 2, . . . are values of the process κε(t), t ≥ s at

the moments of jumps. We exclude the case of fictitious jumps, that is, we assume that
κε(τ

(s)
ε0 ) < κε(τ

(s)
ε1 ) < κε(τ

(s)
ε2 ) < . . . with probability 1. Let us summarise the assumptions

made above in the following condition:

I18: τ(s)
εn , n = 0, 1, . . . and κε(τ

(s)
ε0 ), n = 0, 1, . . . are a.s. strictly increasing sequences of

random variables for every s > 0 and every ε ≥ 0.

Note that we allow here for the random variable κε(0 + 0) = lim0<s→0 κε(s) to be
improper, i.e., to take the value −∞ with a positive probability. Note that this limit exists
with probability 1, since ξε(t) is a non-decreasing process. As far as the first component
ξε(t), t ≥ 0, is concerned, we restrict the consideration to a basic case where this process
is a càdlàg process defined on the interval [0,∞).

Conditions K̄7 and K̄8 take in this case the following forms:

K̄9: τ(s)
εn

P−→ ∞ as n→ ∞, s > 0 for every ε ≥ 0,

and

K̄10: κε(τ
(s)
εn )

P−→ ∞ as n→ ∞, s > 0 for every ε ≥ 0.

Note that, under K̄9, condition K̄10 is equivalent to condition K̄5. The proof is
absolutely analogous to the one in Subsection 4.4.1 for conditions K̄8 and K̄5.

Let us now take some sr > 0 and define the process

κ(sr)
ε (t) = κε(t ∨ sr) =


κε(sr) if t < sr,

κε(t) if t ≥ sr,
(4.4.14)

and then the corresponding exceeding time process

ν̂(sr)
ε (t) = sup(s : κ(sr)

ε (s) ≤ t), t ≥ 0,

as well as the generalised exceeding process

ζ̂(sr)
ε (t) = ξε(ν̂(sr)

ε (t)), t ≥ 0.

By the definition,

νε(t) ≥ ν̂(sr)
ε (t) =


0 if t < κ(sr),
νε(t) if t ≥ κ(sr).

(4.4.15)
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Note that relation (4.4.15) does not imply that ν̂(sr)
ε (0) = 0, since it can occur that the

event {t < κ(sr)} = ∅.
Also by the definition of the exceeding time processes, (a) νε(t) ≤ sr for t < κ(sr).

Relations (4.4.15) and (a) imply that the following estimate holds:

0 = sup
t<κ(sr )

ν(sr)
ε (t) ≤ sup

t<κ(sr)
νε(t) ≤ sr. (4.4.16)

Here the supremum over the empty set should be interpreted as 0.
Take a sequence 0 < sr → 0 as r → ∞. The following lemma gives a useful estimate

for generalised exceeding processes at zero.

Lemma 4.4.6. Let conditions I18, K̄9, K̄10, and O13 hold. Then

lim
r→∞

lim
ε→0

P{sup
t≥0
|ζε(t) − ζ̂(sr)

ε (t)| > δ} = 0, δ > 0.

Proof of Lemma 4.4.6. Using relations (4.4.15) – (4.4.16) and condition O13 we get, for
δ > 0, that

lim
n→∞

lim
ε→0

P{sup
t≥0
|ζε(t) − ζ̂(sr)

ε (t)| > δ}

= lim
n→∞

lim
ε→0

P{ sup
t<κ(sr )

|ξε(νε(t)) − ξε(ν(sr)
ε (t))| > δ}

≤ lim
n→∞

lim
ε→0

P{ sup
t′,t′′≤sr

|ξε(t′) − ξε(t′′)| > δ}

≤ lim
n→∞

lim
ε→0

P{sup
t≤sr

|ξε(t) − ξε(0)| > δ/2} = 0.

(4.4.17)

This estimate completes the proof. �

Let us assume the following condition:

A61: (κε(τ
(sr)
εn ), ξ(τ(sr)

εn )), n = 0, 1, . . . ⇒ (κ0(τ(sr)
0n ), ξ(τ(sr)

0n )), n = 0, 1, . . . as ε → 0, for
r ≥ 1.

For every r ≥ 1, let Z0r be the set of all t > 0 which are points of discontinuity for
distribution functions of the random variables κ0(τ(sr)

0n ), n = 0, 1, . . . . The set Z0r equals
[0,∞) except for at most a countable set. Let us also denote Z0 = ∩r≥1Z0r. This set is
also [0,∞) except for at most a countable set.

Lemma 4.4.7. Let conditions I18, K̄9, K̄10, A61, and O13 hold. Then

ζε(t), t ∈ Z0 ⇒ ζ0(t), t ∈ Z0 as ε→ 0.
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Proof of Lemma 4.4.7. Conditions I18, K̄9, K̄10, and A61 imply that conditions of Lemma
4.4.1 hold for the processes ξε(t), t ≥ 0 and κ(sr)

ε (t), t ≥ 0 for every r ≥ 1. By applying
Lemma 4.4.1 to these processes and taking into consideration that the set Z0 ⊆ Z0r for
r ≥ 1, we get the following relation for every r ≥ 1:

ζ̂(sr)
ε (t), t ∈ Z0 ⇒ ζ̂(sr)

0 (t), t ∈ Z0 as ε→ 0. (4.4.18)

Lemma 4.4.6 also implies that

ζ̂(sr)
0 (t), t ≥ 0⇒ ζ0(t), t ≥ 0 as r →∞. (4.4.19)

Lemmas 1.2.5 and 4.4.6, together with relations (4.4.18) and (4.4.19), imply the
relation given in Lemma 4.4.7. �

We now formulate a lemma which is an analogue of Lemma 4.4.3. The following
condition replaces, in this case, condition N2:

N3: There exists a sequence 0 < sr → 0 as r → ∞ such that

(a) limn→∞ limε→0 P{κε(τ(sr)
εn ) ≤ T } = 0 for T < ∞, r ≥ 1;

(b) lim0<c→0 limε→0 P{κε(τ(sr )
εn ) − κε(τ(sr)

εn−1) ≤ c} = 0 for n, r ≥ 1.

Lemma 4.4.8. Let conditions K̄9, K̄10, N3, and O13 hold. Then

lim
c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ} = 0, δ, T > 0.

Proof of Lemma 4.4.8. Condition N3 implies that condition N2 holds for the generalised
exceeding processes ζ̂(sr)

ε (t), t ≥ 0 for every r ≥ 1. Thus Lemma 4.4.3 can be applied to
these processes. This yields the following relation for every r ≥ 1:

lim
c→0

lim
ε→0

P{∆J(ζ̂(sr)
ε (·), c, T ) > δ} = 0, δ, T > 0. (4.4.20)

Using the estimate obtained in Lemma 4.4.6 and relation (4.4.20) we get, for 0 <
T < ∞, that

lim
0<c→0

lim
ε→0

P{∆J(ζε(·), c, T ) > δ}
≤ lim

0<c→0
lim
ε→0

(P{∆J(ζ̂(sr)
ε (·), c, T ) > δ/2}

+ P{∆U(ζε(·) − ζ̂(sr)
ε (·), c, T ) > δ/2})

≤ lim
ε→0

P{sup
t≥0
|ζε(t) − ζ̂(sr)

ε (t)| > δ/4} → 0 as r →∞.

(4.4.21)

This estimate completes the proof. �
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Let us also formulate a lemma which is an analogue of Lemma 4.4.4. The following
condition replaces, in this case, condition R1:

R3: There exists a sequence 0 < sr → 0 as r → ∞ such that lim0<t→0 limε→0 P{0 <
κε(τ

(sr)
εn ) ≤ t} = 0 for n = 0, 1, . . ., r ≥ 1.

Theorem 4.4.5. Let conditions I18, K̄9, K̄10, A61, N3, R3, and O13 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.4.5. Condition R3 implies that condition R1 holds for the gener-
alised exceeding processes ζ̂(sr)

ε (t), t ≥ 0, for every r ≥ 1. So, we apply Lemma 4.4.5
to these processes. This yields, together with Lemma 4.4.7, the following relation for
every r ≥ 1:

ζ̂(sr)
ε (t), t ∈ Z0 ∪ {0} ⇒ ζ̂(sr)

0 (t), ∈ Z0 ∪ {0} as ε→ 0. (4.4.22)

Relation (4.4.22) and Lemma 4.4.8 imply the statement of Theorem 4.4.5. �

As was mentioned above, the most important for applications is the case where con-
dition I16 holds.

Obviously, if condition I16 holds, then the following condition is sufficient for con-
dition R3 to hold:

R4: There exists a sequence 0 < sr → 0 as r → ∞ such that (a) lim0<t→0 limε→0(P{0 <
κε(sr) ≤ t} + P{κε(τ(sr)

ε1 ) ≤ t}) = 0 for r ≥ 1.

The results given in Section 4.3 can also be applied to step generalised exceeding
processes defined on the interval (0,∞). The remarks made in Subsection 4.3.7 are also
valid in this case.

Let us only formulate an analogue of Theorem 4.4.2.

Theorem 4.4.6. Let conditions I18, K̄9, K̄10, A56, J24, O13, N3, and R3 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Remark 4.4.4. Omitting condition R3 in Theorem 4.4.6 one gets conditions for J-conver-
gence of the processes ζε(t) on the interval (0,∞).
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4.5 Sum-processes with renewal stopping

In this section, we get limit theorems for renewal processes and sum-processes with
renewal stopping. This model gives the most important examples of exceeding time
processes and generalised exceeding processes.

4.5.1. General sum-processes with renewal stopping. Let, for every ε > 0,
(κε,n, ξε,n), n = 1, 2, . . . be a sequence of random vectors taking values in [0,∞) × �1.
Further, let nε > 0 be a non-random function such that nε → ∞ as ε → 0.

We first introduce a sum-process with non-random stopping index,

αε(t) = (κε(t), ξε(t)) = (
∑

k≤tnε

κε,k,
∑

k≤tnε

ξε,k), t ≥ 0.

In this case, the following process is usually referred as a renewal (stopping) process:

νε(t) = sup(s : κε(s) ≤ t), t ≥ 0,

The following process is called a sum-process with renewal stopping:

ζε(t) = ξε(νε(t)), t ≥ 0.

All theorems formulated in Section 4.3 can be directly carried over to sum-processes
with renewal stopping.

Let us just repeat here the formulations of the theorems that will be directly applied
to sum-processes with renewal stopping constructed from i.i.d. random variables.

Condition A56 takes, in this case, the following form:

A62: (κε(s), ξε(t)), (s, t) ∈ V ×U ⇒ (κ0(s), ξ0(t)), (s, t) ∈ V ×U as ε→ 0, where (a) V is
a subset of (0,∞), dense in this interval, (b) U is a subset of [0,∞) that is dense in
this interval and contains the point 0, (c) (κ0(t), ξ0(t)), t ≥ 0 is a càdlàg process with
non-negative and non-decreasing first component and real-valued second compo-
nent.

It should be noted that (a) κε(t), t ≥ 0 is a non-negative and non-decreasing process
for ε > 0. So, it is only necessary to require in condition A62 (c) that the limiting
process (κ0(s), ξ0(t)), t ≥ 0 be a càdlàg process omitting the requirement for this process
to be non-negative and no-decreasing. Indeed, the relation of weak convergence given in
condition A62 and (a) imply that the first component of the limiting process κ0(t), t ≥ 0
should be an a.s. non-negative and non-decreasing càdlàg process at least for t ∈ V . The
set V is dense in (0,∞) and κ0(t), t ≥ 0 is a càdlàg process. So, κ0(t), t ≥ 0 is an a.s.
non-negative and non-decreasing càdlàg process. This process can always be replaced
by a stochastically equivalent càdlàg modification in condition A62.
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Since the process κ0(t), t ≥ 0 is non-negative, condition I6 automatically holds, i.e.,
κ0(0) ≥ 0 with probability 1.

However, it is useful to note that condition A62 does not require weak convergence
of the processes κε(t), t ≥ 0 at the point 0. It can occur that the random variable κ0(0)
takes positive values, although the random variable κε(0) = 0 with probability 1 for every
ε > 0. It should also be noted that the assumption 0 < ε → 0 does not affect conditions
J24 and O13. The asymptotic relations that enter these conditions also hold for ε = 0.
Indeed, by condition A62, (κ0(s), ξ0(t)), t ≥ 0 is a càdlàg process.

Let us reformulate Theorem 4.3.7.

Theorem 4.5.1. Let conditions A62, K̄5, J24, O13, and I9 hold for the sum-processes
αε(t), t ≥ 0. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Note that, in this case, ν0(0) = 0 with probability 1. Also, by the definition, ξ0(0) = 0
with probability 1 for ε > 0. Since 0 ∈ U, condition A62 also implies that ξ0(0) = 0 with
probability 1 and, consequently, ζ0(0) = ξ0(ν0(0)) = 0 with probability 1.

Let us also consider the case when the limiting renewal process is a step càdlàg
process.

In this case, the random variables τεn, n = 0, 1, . . . should be defined in the same way
as in Subsection 4.4.1, that is, as successive moments of positive jumps of the process
κε(t), t ≥ 0, for ε > 0 as well as for ε = 0.

Conditions I16, K̄7, K̄8 do not require any changes in the formulations. They should
be required to hold.

Condition A59 takes, in this case, the following form:

A63: (κε(τεn), ξ(τεn)), n = 0, 1, . . . ⇒ (κ0(τ0n), ξ(τ0n)), n = 0, 1, . . . as ε → 0, where
(κ0(τ0n), ξ(τ0n)), n = 0, 1, . . . is a sequence of random vectors with non-negative
first and real-valued second component.

Since, (a) κε(t), t ≥ 0 is a non-negative and non-decreasing process for ε > 0, the re-
quirement of non-negativity of the corresponding random variables κ0(τ0n) in conditions
A63 can be omitted. This automatically follows from the relation of weak convergence
given in condition A63. Also note that (a) implies that condition I17 holds. Hence,
condition R1 can be replaced by condition R2.

Let us reformulate Theorems 4.4.1 and 4.4.4.

Theorem 4.5.2. Let conditions I16, K̄7, K̄8, A63, and R2 hold for the sum-processes
αε(t), t ≥ 0. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.
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Theorem 4.5.3. Let conditions I16, K̄7, K̄8, A62, J24, O13, N2, and R2 hold for the
sum-processes αε(t), t ≥ 0. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Let us also consider a general model in which κε,n, n = 1, 2, . . . are real-valued ran-
dom variables. This case does not require any changes in the definitions of the renewal
processes and the sum-processes with renewal stopping. In this case, κε(t), t ≥ 0, is
not a non-decreasing process. However, the process κ+

ε (t) = sups≤t κε(s), t ≥ 0, is non-
decreasing. At the same time, the corresponding renewal process νε(t) = sup(s : κε(s) ≤
t) = sup(s : κ+

ε (s) ≤ t), t ≥ 0 can be considered as an exceeding time process constructed
from the process κ+

ε (t), t ≥ 0.
Let us just reformulate Theorem 4.3.14. Note that κ+

ε (0) = 0 which allows to one
omit condition I6.

Theorem 4.5.4. Let conditions A57, K̄6, J25, O13, and I15 hold for the sum-processes
αε(t), t ≥ 0. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Here we do not formulate separately conditions for weak convergence. Only note
that, under condition Q10, the corresponding set of weak convergence in Theorem 4.5.1
– 4.5.4 is the interval [0,∞).

The renewal stopping processes are defined above as νε(t) = sup(s : κε(s) ≤ t) =

inf(s : κε(s) > t) = 1
nε

min(n :
∑

k≤n κε,k > t), t ≥ 0. In some applications, slightly
modified sum-processes with renewal stopping are used. In that case, the renewal stop-
ping moments are defined as ν′ε(t) = 1

nε
max(n :

∑
k≤n κε,k ≤ t) = νε(t) − 1/nε, t ≥ 0.

Respectively, a slightly modified version of the generalised exceeding process, ζ′ε(t) =

ξε(ν′ε(t)) = ξε(νε(t) − 1/nε), t ≥ 0, is considered.
The modification of sum-processes with renewal stopping affects neither the condi-

tions nor the formulations of the theorems given in Section 4.3. In particular, one can
replace the processes νε(t), t ≥ 0 by the processes ν′ε(t), t ≥ 0 and, as a consequence, the
processes ζε(t), t ≥ 0 by the processes ζ′ε(t), t ≥ 0 in all lemmas and theorems given in
this section.

The only slight changes are required in the case of step sum-processes with renewal
stopping, i.e., where condition A58 is employed. As a matter of fact, in this case κε(τε0) =

0 and, therefore, the modified sum-process with renewal stopping ζ′ε(t) = ξε(τεk+1−1/nε)
if κε(τεk) ≤ t < κε(τεk+1), k = 0, 1, . . .. So, the random variables ξ(τεn) should be replaced,
in this condition, by the random variables ξ(τεn−1/nε) and the limiting random variables
ξ(τ0n) by the random variables ξ(τ0n − 0) for n = 0, 1, . . ..

4.5.2. Non-negative sum-processes based on i.i.d. random variables. Let us
consider the sum-processes κε(t) =

∑
k≤tnε κε,k, t ≥ 0. We assume that the following

condition holds:
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T3: κε,k, k = 1, 2, . . . is (for every ε > 0) a sequence of non-negative i.i.d. random
variables.

Conditions S1 – S3, which provide marginal weak convergence of the sum-processes
ξε(t), t ≥ 0, were formulated in Subsection 4.2.2. Let us now formulate similar condi-
tions for the sum-processes κε(t), t ≥ 0.

The process κε(t), t ≥ 0 is a sum-process of i.i.d. random variables. As easily
seen, this is a particular case of the sum-process ξε(t), t ≥ 0. However, due to its
non-negativity, the process κε(t), t > 0 is simpler to deal with. Conditions for weak
convergence of such processes involve the tail probabilities and the truncated means for
the random variables κε,1 but not their truncated variances,

S4: nεP{κε,1 > u} → π1(u) as ε→ 0 for all u > 0, which are points of continuity of the
limiting function π1(u).

S5: nεEκε,1χ(κε,1 ≤ u) → c(u) as ε → 0 for some u > 0, which is a point of continuity
of π1(u).

Also here the limits satisfy a number of conditions: (a) π1(u) is a non-negative, non-
increasing, and right-continuous function for u > 0 and π1(∞) = 0; (b) the measure
Π1(A) on σ-algebra B+

1 , the Borel σ-algebra of subsets of (0,∞), defined by the relation
Π1((u1, u2]) = π1(u1) − π1(u2), 0 < u1 ≤ u2 < ∞, satisfies the condition

∫ ∞
0

s
1+s Π1(ds) <

∞; (c) under S4, condition S5 can only hold simultaneously for all continuity points of
π1(u) and c(u1) = c(u2) −

∫ u2

u1
sΠ1(ds) for any such points 0 < u1 < u2 < ∞; (d) c(u) is a

non-negative function.
Note that, due to non-negativity of the random variables κε,1, conditions S4 and S5

imply condition S6 to hold with the constant b2 = 0.
Indeed, it follows from S5 in an obvious way that nε(Eκε,1χ(κε,1 ≤ u))2 → 0 as ε → 0.

Also, nεEκ2
ε,1χ(κε,1 ≤ u) ≤ unεEκε,1χ(κε,1 ≤ u)→ 0 as ε→ 0 and then 0 < u→ 0.

According to the central criterium of convergence, conditions S4 and S5 are neces-
sary and sufficient for the following condition of weak convergence to hold:

A64: κε(t), t ≥ 0 ⇒ κ0(t), t ≥ 0 as ε → 0, where κ0(t), t ≥ 0 is a non-negative and
non-decreasing càdlàg homogeneous process with independent increments.

The limiting process κ0(t), t ≥ 0 has the following characteristic function for t ≥ 0,

E exp{izκ0(t)} = φ1(t, y)

= exp{t(icy +

∫ ∞

0
(eiys − 1)Π1(ds))}

= exp{t(idy +

∫ ∞

0
(eiys − 1 − iys

1 + s2 )Π1(ds))},
(4.5.1)
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where the constants

c = c(u) −
∫ u

0
sΠ1(ds) ≥ 0, d = c +

∫ ∞

0

s
1 + s2 Π1(ds) (4.5.2)

do not depend of the choice of the point u in condition S5.
As was shown by Skorokhod (1957, 1964), conditions S4 – S5 imply, without any

additional assumptions, that

κε(t), t ≥ 0
J−→ κ0(t), t ≥ 0 as ε→ 0. (4.5.3)

4.5.3. Renewal processes based on i.i.d. random variables. To exclude the trivial
case where the process κ0(t) = 0, t > 0, we also assume the following condition:

I19: (a) c > 0, or (b) π1(0+) = lim0<w→0 π1(w) ∈ (0,∞].

It is easy to show that condition I19 holds if and only if (a) κ0(t)
P−→ ∞ as t → ∞.

Conditions S4 – S5 and I19 also imply that (b) P{κε,1 > 0} > 0 for all ε small enough.

Without loss of generality, one can assume that (b) holds and, therefore, (c) κε(t)
P−→ ∞

as t → ∞ for every ε > 0.
So, we can assume that condition K̄5 holds.
Let us consider the corresponding pre-limiting renewal stopping processes νε(t) =

sup(s : κε(s) ≤ t), t > 0. Note that we can interpret the random variables κε,k as inter-
renewal times. Hence, nενε(t) − 1 can be interpreted as the number of renewals in the
interval [0, tnε].

The corresponding limiting process ν0(t) = sup(s : κ0(s) ≤ t), t > 0 is an exceeding
time process for the process κ0(t), t ≥ 0.

Denote by V0 the set of points t > 0 that are points of stochastic continuity of the
process ν0(t), t ≥ 0.

The following statement is a direct corollary of Lemma 4.3.1.

Lemma 4.5.1. Let conditions T3, A64 (or S4, S5) and I19 hold. Then

νε(t), t ∈ V0 ⇒ ν0(t), t ∈ V0 as ε→ 0.

The process ν0(t), t ≥ 0 is stochastically continuous and V0 = (0,∞) if the following
condition, which is stronger than I19, holds:

I20: (a) c > 0, or (b) π1(0+) = ∞, or (c) π1(0+) ∈ (0,∞) and π1(u), u > 0 is a
continuous function.

If condition I20 does not hold, then the set V0 is (0,∞) except for at most a countable
set. Namely, V0 is the set of points of discontinuity for the distribution function of
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κ0(1). It can be described in the following way: V 0 = {v = v1l1 + . . . vnln : l1, . . . ln =

0, 1, . . . , n, l1 + . . . + ln ≥ 1, n ≥ 1}, where v1, v2, . . . are points of discontinuity of the
function π1(u), u > 0.

Condition I19 contains two alternatives. The first one corresponds to the case when
the following condition holds:

I21: (a) c > 0 or (b) π1(0+) = ∞.

In this case, κ0(t), t > 0 is an a.s. strictly increasing càdlàg process and, therefore,
the corresponding renewal process ν0(t) = sup(s : κ0(t) ≤ t), t > 0 is a.s. continuous.

The second one corresponds to the case when the following condition holds:

I22: (a) c = 0 and (b) π1(0+) ∈ (0,∞).

In this case, κ0(t), t > 0 is a compound Poisson process. It is a step càdlàg process
with positive jumps and, therefore, the corresponding renewal process ν0(t) = sup(s ≥
0 : κ0(t) ≤ t), t > 0 is also a step càdlàg process with positive jumps.

Lemma 4.5.2. Let conditions T3, A64 (or S4, S5) and I21 hold. Then

νε(t), t ≥ 0
U−→ ν0(t), t ≥ 0 as ε→ 0.

Proof of Lemma 4.5.2. In this case, νε(0) = 0 for ε > 0, and also for ε = 0. So, the point
0 can be included in the set V0 that appears in the relation of weak convergence given
in Lemma 4.5.1. Since the limiting process ν0(t), t ≥ 0 is a.s. continuous, Lemma 3.2.1
implies the statement of Lemma 4.5.2. Note that condition I21 implies I20. Hence, the
set of weak convergence V0, described in Lemma 4.5.1, can be extended to [0,∞). �

Let us introduce the following condition:

S6: nεP{κε,1 > 0} → π1(0+) < ∞ as ε→ 0.

Lemma 4.5.3. Let conditions T3, A64 (or S4, S5), S6 and I22 hold. Then

νε(t), t ≥ 0
J−→ ν0(t), t ≥ 0 as ε→ 0.

Proof of Lemma 4.5.3. The process κε(t), t ≥ 0 is a step càdlàg process for ε > 0, as well
as for ε = 0. Obviously, κε(0) = 0 and this process has only positive jumps. Let αεk, k =

1, 2, . . . be the successive inter-jump times for this process and βεk, k = 1, 2, . . ., the
corresponding successive jumps. Obviously, (d) the random variables αεk, k = 1, 2, . . .
and βεk, k = 1, 2, . . . are mutually independent, (e) the random variables αεk, k = 1, 2, . . .
have the same distribution, (f) the random variables βεk, k = 1, 2, . . . have the same
distribution.
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Let us describe the process κε(t), t ≥ 0, for ε > 0. Denote Pε = P{κε,1 > 0}. In this
case, (g) the random variable αε1 takes the value l/nε with probability (1 − Pε)l−1Pε for
l = 1, 2, . . .; (h) the random variable βε1 has the distribution function Gε(u) = P{κε1 ≤
u/κε1 > 0}, u > 0.

The limiting process κ0(t), t ≥ 0, is a compound Poisson process. In this case, (i)
the random variable α01 has the exponential distribution with parameter π1(0+), (j) the
random variable β01 has the distribution function G0(u) = 1 − π1(u)/π1(0+), u > 0.

Obviously, conditions S4 – S6 and I20 imply that (k) the random variables αε1 ⇒ α01

as ε→ 0 and (l) the random variables βε1 ⇒ β01 as ε→ 0.
The process νε(t), t ≥ 0 is also a càdlàg process with step trajectories and posi-

tive jumps for ε > 0, as well as for ε = 0. The inter-jump times are, in this case,
βεk, k = 1, 2, . . ., and νε(0) = αε1. Values of the successive jumps are the random vari-
ables αεk, k = 2, 3, . . ..

Lemmas 4.4.1 and 4.4.2 can be applied to the processes νε(t), t ≥ 0. Here, we should
assume that the external processes ξε(t) = t, t ≥ 0 and, therefore, the process ζε(t) =

νε(t), t ≥ 0.
In this case, the random variables τεn =

∑n
k=1 αεk and κε(τεn) = ξ(τεn) =

∑n
k=1 βεk for

n = 0, 1, . . .. Relations (d) – (l) imply, in an obvious way, that conditions K̄7, I16, K̄8,
and A59 hold. Also relations (d) – (l) imply that conditions N2 and R2 hold.

So, Lemma 4.5.3 follows from Theorems 4.4.1 or 4.5.2. Alternatively, Theorems
4.4.4 and 4.5.3 can be employed. Condition A64 implies conditions A56 and A62. Also,
relation (4.5.3) implies that conditions J24 and O13 hold. �

Note that condition S6 plays an essential role in Lemma 4.5.3. The following two
examples show that without this condition J-convergence of the processes νε(t), t ≥ 0
can not be guaranteed.

Let the random variables κε,k take values 0 and 1, respectively, with probabilities
1 − pε = 1 − 1/nε and pε = 1/nε. In this case, conditions S4 - S5 and I20 hold. Simple
calculations yield that the functions π1(u) = 1− χ[1,∞)(u) and c(u) = χ[1,∞)(u). Therefore,
c = 0, π1(0+) = 1 and G0(u) = χ[1,∞)(u).

In this case, for every ε > 0, the random variable αε1 has the geometrical distribution
with parameter pε, i.e., it takes the value l/nε with probability (1 − pε)l−1 pε for l =

1, 2, . . ., and the random variable βε1 = 1 with probability 1. The corresponding limiting
random variable α01 has the exponential distribution with parameter 1, and β01 = 1 with
probability 1.

In this case, κ0(t), t ≥ 0 is a standard Poisson process with parameter 1. The process
ν0(t), t ≥ 0 is also a càdlàg process with step trajectories. The random variable ν0(0) =

α01 and the inter-jump times for this process all equal to 1. At the same time, the values
of the successive jumps at moments 1, 2, . . . are, respectively, α02,α03, . . ..

In this case, the set V0 = {1, 2, . . .} and V0 = (0,∞) \ V0. Lemma 4.5.1 guarantees
that νε(t), t ∈ V0 ⇒ ν0(t), t ∈ V0 as ε → 0. In this case, the set of weak convergence V0
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can be extended to the interval [0,∞). Indeed, the pre-limiting processes νε(t) have the
same fixed moments of jumps, 1, 2, . . ., for every ε > 0 as well as for ε = 0. The value
at 0, which is αε1, and the values of the successive jumps, which are αε2,αε3, . . ., weakly
converge to the corresponding limiting random variables.

Condition S6 also holds, since nεP{κε,1 > 0} = nεpε = 1. Therefore, Lemma 4.5.3

implies that the processes νε(t), t ≥ 0
J−→ ν0(t), t ≥ 0 as ε→ 0.

Now, let us slightly modify the model. Let the random variables κε,k take values hε
and 1, respectively, with probabilities 1 − pε = 1 − 1/nε and pε = 1/nε. Here, hε > 0
and hε = o(pε) as ε → 0. In this case again, conditions S4 - S5 and I22 hold. Simple
calculations yield that the functions π1(u) = 1 − χ[1,∞)(u) and c(u) = χ[1,∞)(u) are the
same as above. Consequently, c = 0, π1(0+) = 1 and G0(u) = χ[1,∞)(u).

Therefore, the limiting processes κ0(t), t ≥ 0 and ν0(t), t ≥ 0 are the same as in the
first example. Again, due to Lemma 4.5.1, νε(t), t ∈ V0 ⇒ ν0(t), t ∈ V0 as ε → 0, where
the sets V0 = (0,∞) \ V0 and V0 = {1, 2, . . .}.

However, in this case, condition S6 does not hold, since P{κε,1 > 0} = 1 and, there-
fore, nεP{κε,1 > 0} = nε →∞ as ε→ 0.

In this case, for every ε > 0, the pre-limiting random variables αε1 = 1/nε and the
random variable βε1 take the values hε and 1, respectively, with probabilities 1 − pε and
pε. The corresponding limiting random variables are the same as in the first example,
i.e., α01 has the exponential distribution with parameter 1 and β01 = 1 with probability 1.
The random variables αε1 do not weakly converge to α01 as ε→ 0 and, hence, the random
variables νε(t) do not weakly converge to ν0(t) as ε→ 0 for every point t = 0, 1, . . ..

Moreover, let α̃εk be the successive moments of jumps, with value 1, of the process
κε(t), t ≥ 0. These random variables are independent and have the same distribution.
Obviously, α̃ε1 takes the value l/nε with probability (1 − pε)l−1 pε for l = 1, 2, . . .. Let
also τεn =

∑
1≤k≤n(nεα̃εk − 1)hε, n = 0, 1, . . .. The process νε(t) can be described in the

following way. Its trajectories have the same step structure in each interval [τεn, τεn+1 +1)
for n = 0, 1, . . .. In each such interval, a trajectory first has positive jumps of the value
1/nε at the moments τεn, τεn + hε, τεn + 2hε, . . . τεn+1 − hε and then takes the value α̃εn+1

in the sub-interval [τεn+1, τεn+1 + 1). The length of each sub-interval with small jumps

of the value 1/nε is (nεα̃εn − 1)hε. Obviously, (nεα̃εn − 1)hε
P−→ 0 as ε → 0 since

hε = o(pε). However, the value of the increment of the process νε(t) in this sub-interval
is (nεα̃εn − 1)/nε. Obviously, (nεα̃εn − 1)/nε ⇒ α̃0n as ε → 0, where the limiting random
variable has exponential distribution with parameter 1. It can be easily derived from this
that the processes νε(t) are not J-compact on any finite interval. So, these processes do
not J-converge.

4.5.4. Two-dimensional sum-processes based on i.i.d. random variables. Let us
consider the case when the following condition holds:

T4: (κε,k, ξε,k), k = 1, 2, . . . is (for every ε > 0) a sequence of i.i.d. random vectors that
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take values in [0,∞) ×�1.

First consider an important particular case when the limiting process ξ0(t), t ≥ 0 is a
Wiener process.

So, assume that conditions S1 - S3 hold in the following specific form:

S7: nεP{|ξε,1| > u} → 0 as ε→ 0 for every u > 0.

S8: nεEξε,1χ(|ξε,1| ≤ u)→ a as ε→ 0 for some u > 0.

S9: nε Var ξε,1χ(|ξε,1| ≤ u)→ b2 as ε→ 0 for some u > 0.

Note that, under condition S7, the asymptotic relation in conditions S8 and S9 hold
simultaneously for all u > 0 and the constants a and b2 do not depend on the choice of
u > 0.

According to the central criterium of convergence (in the form extending the corre-
sponding one-dimensional result), conditions S7 – S9 are necessary and sufficient for the
following condition for weak convergence to hold:

A65: ξε(t), t ≥ 0 ⇒ ξ0(t), t ≥ 0 as ε → 0, where ξ0(t) = at + bw(t), t > 0 and w(t), t ≥ 0
is a standard Wiener process.

We are interested to improve the classical bivariate criterion of convergence which
gives necessary and sufficient conditions for the following condition to hold:

A66: (κε(t), ξε(t)), t ≥ 0 ⇒ (κ0(t), ξ0(t)), t ≥ 0 as ε → 0, where (κ0(t), ξ0(t)), t ≥ 0
is a càdlàg homogeneous process with independent increments, non-negative and
non-decreasing first component, and real-valued second component.

Let us first formulate the following useful lemma.

Lemma 4.5.4. Let conditions T4, A64 (or S4, S5) and A65 (or S7 – S9) hold. Then
condition A66 holds, moreover, (α) the limiting processes κ0(t), t ≥ 0 and ξ0(t), t ≥ 0
are independent; (β) κ0(t), t ≥ 0 is a non-negative càdlàg homogeneous process with
independent increments which has the same finite-dimensional distributions as the cor-
responding process in condition A64; (γ) ξ0(t), t ≥ 0 is a Wiener process which has the
same finite-dimensional distributions as the corresponding process in condition A65.

Proof of Lemma 4.5.4. Let us take some t > 0. Conditions S4 - S5 imply that (a) the
random variables κε(t) ⇒ κ0(t) as ε → 0. Also conditions S7 - S8 imply that (b) the
random variables ξε(t) ⇒ ξ0(t) as ε → 0. Relations (a) and (b) imply that the family
of distributions of the random vectors (κε(t), ξε(t)) as ε → 0 is tight. The corresponding
compacts can be chosen as Kn = [0, k′n] × [−k′′n , k

′′
n ], where 0 < k′n, k

′′
n → ∞ as n →
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∞. Due to Theorem 1.3.4, the tightness of this family implies its relative compactness.
Hence, any sequence 0 < εn → 0 as n → ∞ contains a subsequence ε′k = εnk → 0 as
k →∞ such that (c) the random vectors (κε′k(t), ξε′k(t))⇒ (κ̃0(t), ξ̃0(t)) as k → ∞.

By the definition, (κε′k(t), ξε′k(t)) is a sum of i.i.d. random vectors. Due to the cen-
tral criterium of convergence, (c) implies that (d) the distribution of the limiting random
vector (κ̃0(t), ξ̃0(t)) is infinitely divisible. Recall that the random variables κε(t) are non-
negative. Conditions S4 - S5 and S7 - S9 imply that (e) the components of this vector,
κ̃0(t)) and ξ̃0(t), have distributions of Poisson and Gaussian types, respectively. There-
fore, (f) the random variables κ̃0(t) and ξ̃0(t) are independent. This is so, because Poisson
type and Gaussian components of a vector with an infinitely divisible distribution should
be independent. Conditions S4 - S5 (g) show that the random variables κ̃0(t) and κ0(t)
have the same distribution. Also, using S7 - S9 (h) we see that the random variables ξ̃0(t)
and ξ0(t) have the same distribution.

It follows from (e) - (h) that the distribution of the limiting random vector (κ̃0(t), ξ̃0(t))
does not depend on the choice of the sequence εn and the subsequence ε′k = εnk . As was
shown above, the components of this vector are independent and have distributions of
Poisson and Gaussian types. So, the random vectors (κε(t), ξε(t)) ⇒ (κ̃0(t), ξ̃0(t)) as
ε→ 0. This completes the proof for one-dimensional distributions. The proof for multi-
dimensional distributions is absolutely analogous. �

4.5.5. Two-dimensional sum-processes based on i.i.d. random variables. The
general case. In the general case, the following condition for the off-boundary sets
should be added to conditions S1 – S3 and S4 – S5:

S10: (a) nεP{κε,1 > u, ξε,1 > v} → π1,2(u, v) as ε → 0 for all u > 0, v > 0 that are
points of continuity of the limiting function π1,2(u, v).

(b) nεP{κε,1 > u, ξε,1 ≤ v} → π1,2(u, v) as ε → 0 for all u > 0, v < 0 that are
points of continuity of the limiting function π1,2(u, v).

The limits above satisfy a number of conditions: (a) π1,2(u, v) is a function that is
non-negative, non-increasing, right-continuous in every argument for u > 0, v > 0,
and π1,2(∞, v) = π1,2(u,∞) = 0; (b) π1,2(u, v) is a function that is non-negative, non-
decreasing in v < 0, and non-increasing in u > 0, right-continuous in every argument
for u > 0, v < 0, and π1,2(∞, v) = π1,2(u,−∞) = 0; (c) Π1,2((u1, u2] × (v1, v2]) =

π1,2(u1, v1) − π1,2(u2, v1) − π1,2(u1, v2) + π1,2(u2, v2) is a non-negative function for 0 <
u1 ≤ u2 < ∞, 0 < v1 ≤ v2 < ∞, which defines the measure Π1,2(A) on the σ-
algebra B+

1 × B+
1 (the Borel σ-algebra of subsets of (0,∞) × (0,∞)); (d) similarly,

Π1,2((u1, u2] × (v1, v2]) = π1,2(u2,w2) − π1,2(u1, v2)− π1,2(u2, v1) + π1,2(u1, v1) is a non-
negative function for 0 < u1 ≤ u2 < ∞, −∞ < v1 ≤ v2 < 0, which defines the measure
Π1,2(A) on the σ-algebraB+

1 ×B+
1 ; (e) the measure Π1,2(A) ≤ Π1(B)∧Π2(C) for any Borel

set A = B × C ⊆ ((−∞, 0) ∪ (0,∞)) × (0,∞); (f) the measure Π1,2(A) is extended to B̃+
2 ,
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the σ-algebra of subsets of �̃+
2 = ((−∞,∞)× [0,∞)) \ {(0, 0)}, first by additionally defin-

ing its values on boundary sets Π1,2(B × [0,∞)) = Π1(B) for Borel subsets B ⊆ (0,∞),
and Π1,2((−∞,∞) × C) = Π2(C) for Borel subsets C ⊆ (−∞, 0) ∪ (0,∞), and second by
using the standard extension procedure of the measure theory; (g) the projection mea-
sure Π1(B) possesses properties (a) – (d) listed in connection with conditions S4 – S5 (in
Subsection 4.5.2); (h) the projection measure Π2(C) possesses properties (a) – (f) listed
in connection with conditions S1 – S3 (in Subsection 4.2.2).

According to the central criterium of convergence, conditions S1 – S5 and S10 are
necessary and sufficient for condition A66 to hold.

If the random variables κε,1 could take positive and negative values, then one should
add to the above conditions also conditions on convergence of the truncated variances
nε Var κε,1χ(|κε,1| ≤ u) and a similar condition on convergence of the truncated covari-
ances nεE(κε,kχ(|κε,1| ≤ u) − Eκε,kχ(|κε,1| ≤ u))(ξε,1χ(|ξε,1| ≤ u) − Eξε,1χ(|ξε,1| ≤ u)). How-
ever, due to non-negativity of the random variables κε,k, both repeated limits equal to 0.
It was shown in Subsection 4.2.3 that (g) nε Var κε,1χ(κε,1 ≤ u) → 0 as ε → 0 and then
0 < u → 0. It follows from relation (g) and condition S9 that (nεE(κε,kχ(κε,1 ≤ u)
−Eκε,kχ(κε,1 ≤ u))(ξε,1χ(|ξε,1| ≤ u) − Eξε,1χ(|ξε,1| ≤ u)))2 ≤ nε Var κε,1χ(κε,1 ≤ u) ×
nε Var ξε,1χ(|ξε,1| ≤ u)→ 0 as ε→ 0.

The limiting process (κ0(t), ξ0(t)), t ≥ 0 has the characteristic function given, for
every t > 0, by the following formula:

E exp{i(yκ0(t) + zξ0(t))} = φ1,2(t, y, z)

= exp{t(idy + iaz − 1
2

b2z2+

+

∫

�̃+
2

(ei(yu+zw) − 1 − i(yu + zw)
1 + u2 + w2 )Π1,2(du × dw))}.

(4.5.4)

As was shown by Skorokhod (1957, 1964), conditions S1 - S5 and S10 imply, without
any additional assumptions, that

(κε(t), ξε(t)), t ≥ 0
J−→ (κ0(t), ξ0(t)), t ≥ 0 as ε→ 0. (4.5.5)

4.5.6. Sum-processes with renewal stopping based on i.i.d. random variables.
In this subsection, we present the main applications to renewal models, which can be
obtained as corollaries of the general limit theorems given in Sections 4.3 and 4.4 and
Subsection 4.5.1.

Let us first consider the case when conditions T4, A64, A65, and I21 hold. In
this case, (a) both the external limiting processes ξ0(t), t ≥ 0 and the limiting inter-
nal stopping process ν0(t), t ≥ 0 are a.s. continuous, as well as their composition
ζ0(t) = ξ0(ν0(t)), t ≥ 0. Also, Lemmas 4.5.4 and 4.3.1 (see formula (4.3.4)) imply that
(b) the limiting external process ξ0(t), t ≥ 0 and the limiting internal stopping process
ν0(t), t ≥ 0 are independent.
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Theorem 4.5.5. Let conditions T4, A64 (or S4 – S5), A65 (or S7 – S9) and I21 hold.
Then

ζε(t), t ≥ 0
U−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.5.5. Theorem follows from the relation of J-convergence (4.5.5),
Lemma 4.5.4, Theorem 4.5.1, and Lemma 1.6.15. �

Note that it follows from Theorem 1.6.11 that the corresponding set of weak conver-
gence in Theorem 4.5.5 is the interval [0,∞).

Let us now consider the general case, where condition A66 holds. We formulate
below general conditions for weak and J-convergence of sum-processes with renewal
stopping constructed from i.i.d. random variables. The following theorem covers the
most essential part of applications and many preceding results in the area.

Theorem 4.5.6. Let conditions T4, A66 (or S1 – S5 and S10) and I21 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.5.6. Let us apply Theorem 4.5.1. Condition A66 and the relation of
J-convergence (4.5.5) imply that conditions A62, J24, and O13 hold. Conditions S4 - S5

and condition I21 imply that condition K̄5 holds (at least κε(t)
P−→ ∞ as t → ∞ for all ε

small enough). Also, condition I21 implies that condition I9 holds. Therefore, Theorem
4.5.1 can be applied to yield the statement of Theorem 4.5.6. �

Let Y0 be the set of points of stochastic continuity of the limiting process ζ0(t) =

ξ0(ν0(t)), t ≥ 0. This set is [0,∞) except for at most a countable set. Also 0 ∈ Y0,
because ν0(0) = 0 with probability 1. It follows from Lemma 1.6.5 that the processes
ζε(t), t ≥ 0 weakly converge on the set Y0.

The question about the structure of the set Y0 does require a special consideration. In
particular, it would be interesting to know whether condition I19 implies that Y0 = [0,∞).

Let us also consider the case when condition I22 holds, i.e., the limiting renewal
stopping process ν0(t), t ≥ 0 is a step càdlàg process.

Theorem 4.5.7. Let conditions T4, A66 (or S1 - S6 and S10) and I22 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorems 4.5.7. Let us apply Theorem 4.5.3. Condition A66 and the relation
of J-convergence (4.5.5) imply that conditions A62, J24, and O13 hold. The structure of
the step processes κε(t), t ≥ 0 is described in the proof of Lemma 4.5.3. It is readily seen
that relations (d) - (l) given in this proof imply that conditions K̄7, K̄8 hold (at least for
all ε small enough) and that conditions N2 and R1 hold. Therefore, Theorem 4.5.3 can
be applied, and this yields the statement of the Theorem 4.5.7. �
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Let Y0 be the set of all points of stochastic continuity for the process ζ0(t), t ≥ 0.
Recall that V0 ∪ {0}, which is the set points of stochastic continuity for the process
ν0(t), t ≥ 0. This set is [0,∞) except for at most a countable set which was described
in Subsection 4.5.3. Obviously, the process ζ0(t) = ξ0(ν0(t)), t ≥ 0 is stochastically
continuous at points of the set V0 ∪ {0}, i.e., V0 ∪ {0} ⊆ Y0. It follows from Lemma 1.6.5
that the processes ζε(t), t ≥ 0 weakly converge on the set Y0.

The question about the structure of the set Y0 does also require a special consid-
eration. In particular, it would be interesting to know whether, under condition I16,
Y0 = V0 ∪ {0} if the external limiting process ξ0(t), t ≥ 0 does not degenerate, i.e.
P{ξ0(1) , 0} > 0.

4.5.7. Markov property for renewal stopping processes based on i.i.d. random
variables. An alternative approach to limit theorems for this class of processes was
introduced in Silvestrov (1974) and also used in Silvestrov and Teugels (2001). As a
matter of fact, the stopping moment νε(t) is a Markov moment for the two-dimensional
process with independent increments (κε(t), ξε(t)), t ≥ 0. This makes it possible to apply,
to sum-processes with renewal stopping based on i.i.d. random variables, the general
limit theorems for càdlàg processes with random Markov type stopping given in Silve-
strov (1974). The results obtained using this method are similar to those given above in
Theorems 4.5.5 – 4.5.7.

4.6 Accumulation processes

In this section, we give general limit theorems for the so-called accumulation processes.
The results of this section are based on the results obtained in Silvestrov (1971c, 1972c,
1972d, 1972e).

4.6.1. General accumulation processes. Let, for every ε > 0, ζε(t), t ≥ 0, be a
m-dimensional càdlàg process and let κε,k, k = 1, 2, . . ., be a sequence of non-negative
random variables.

We will also consider the random variables

τε,k = κε,1 + . . . + κε,k, ξε,k = ζε(τε,k) − ζε(τε,k−1), k = 1, 2, . . . ,

and
ςε,k = sup

t∈[τε,k−1 ,τε,k)
|ζε(t) − ζε(τε,k−1)|, k = 1, 2, . . . ,

where τε,0 = κε,0 = 0, ξε,0 = ζε(0).
The random variables τε,k can be interpreted as ”renewal moments” for the process

ζε(t), t ≥ 0. Then κε,k is the inter-renewal time between the renewal moments τε,k−1 and
τε,k, and ςε,k is the maximal absolute value of the oscillation of the process ζε(t) in the
renewal interval [τε,k−1, τε,k) for k = 1, 2, . . ..



4.6. Accumulation processes 313

It often occurs in applications that the times τε,k are indeed renewal moments for the
process ζε(t), t ≥ 0, and the sequence (κε,k, ξε,k, ςε,k), k = 1, 2, . . . is a sequence of i.i.d.
random vectors.

Let also tε, uε, nε be non-random positive functions. We assume that nε → ∞ as
ε→ 0 but do not require this to hold for the functions tε and uε.

We shall study the accumulation processes ζε(ttε)/uε, t ≥ 0. The normalisation func-
tions tε and uε are explicitly included in the model in order to simplify application of
results to the scale-location model. In this model, the accumulation process ζ(t), t ≥ 0
and the random variables ξk, κk and ςk do not depend on the series parameter ε. In
principle, one can always reduce the consideration to the case where tε, uε ≡ 1 by con-
sidering the accumulation process ζ′ε(t) = ζε(ttε)/uε, t ≥ 0 instead of the accumulation
process ζε(t), t ≥ 0. In the sequel, this would lead to the embedded random variables
ξ′ε,k = ξε,k/uε and κ′ε,k = κε,k/tε.

Let us define the “embedded” sum-process

(κε(t), ξε(t)) = (
[tnε]∑

k=0

κε,k/tε,
[tnε]∑

k=0

ξε,k/uε), t ≥ 0.

Introduce the following weak convergence condition:

A67: (κε(t), ξε(t)), t ≥ 0 ⇒ (κ0(t), ξ0(t)), t ≥ 0 as ε → 0, where (κ0(t), ξ0(t)), t ≥ 0 is a
càdlàg process such that: (a) κ0(t), t ≥ 0 is an a.s. strictly monotone process; (b)

κ0(t)
P−→ ∞ as t → ∞; (c) ξ0(t), t ≥ 0 is an a.s. continuous process.

We also assume the following condition of U-compactness:

U6: limc→0 limε→0 P{∆U(ξε(·), c, T ) > δ} = 0, δ, T > 0.

Let us introduce a condition that makes the normalised outliers of accumulation pro-
cesses stochastically negligible,

K11:
∑[Tnε]

k=1 P{ςε,k > δuε} → 0 as ε→ 0, δ > 0 for T > 0.

Define the renewal process ν0(t) = sup(s : κ0(s) ≤ t), t ≥ 0. Due to condition A67
(b), ν0(t) < ∞ with probability 1 for all t ≥ 0. Due to condition A67 (a), the process
ν0(t), t ≥ 0 is an a.s. continuous process.

Let us also introduce the process ζ0(t) = ξ0(ν0(t)), t ≥ 0. This composition is a.s.
continuous due to conditions A67 (a) and (c).

Theorem 4.6.1. Let conditions A67, U6, and K11 hold. Then

ζε(ttε)/uε, t ≥ 0
U−→ ζ0(t), t ≥ 0 as ε→ 0.
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Proof of Theorem 4.6.1. Introduce the stochastic process

µε(t) = min(n :
n∑

k=0

κε,k > t), t ≥ 0.

In principle, this process can be improper, since the random variable µε(t) can take
the value +∞ with a positive probability. This can happened if the random series κε =∑∞

k=1 κε,k converges with a positive probability. To avoid dealing with improper random
variables, we truncate the random variables µε(t). So, let 0 < Tε → ∞ as ε→ 0. Choose
Tε in such a way that nεTε take positive integer values. We consider the process

µ̂ε(t) = µε(t) ∧ nεTε, t ≥ 0,

and also define the process

νε(t) =
µ̂ε(ttε)

nε
=
µε(ttε)

nε
∧ Tε, t ≥ 0.

.
By the definition of the process νε(t), t ≥ 0,

P{νε(sk) > xk, ξε(yk) ≤ zk, k = 1, . . . , r}

=

r∏

k=1

χ(Tε > xk) · P{κε(xk) ≤ sk, ξε(yk) ≤ zk, k = 1, . . . , r}. (4.6.1)

Choose X = {xk, k = 1, 2, . . . } to be some countable set of positive numbers, dense
in (0,∞). Since any distribution function has at most a countable set of discontinuity
points, there exists a set S = {s1, s2, . . . }, dense in [0,∞), such that P{κ0(xk) = sr} = 0
for all sr ∈ S , r ≥ 1 and xk ∈ X, k ≥ 1. Here we can assume that 0 ∈ S because, by
condition A67, the random variables κ0(xk), k ≥ 1, are positive with probability 1.

Recall that l-dimensional distribution functions weakly converge if these functions
converge on a countable set dense in�l. Thus, it follows from condition A67 and relation
(4.6.1) that, for all sk ∈ S , yk ≥ 0, k = 1, . . . r, r ≥ 1,

(νε(sk), ξε(yk), k = 1, . . . , r)⇒ (ν0(sk), ξ0(yk), k = 1, . . . , r) as ε→ 0. (4.6.2)

Since sk ∈ S , yk ≥ 0, k = 1, . . . r, r ≥ 1, are arbitrary, this relation means that

(νε(s), ξε(t)), (s, t) ∈ S × [0,∞)⇒ (ν0(s), ξ0(t)), (s, t) ∈ S × [0,∞) as ε→ 0. (4.6.3)

The limiting process ν0(t), t ≥ 0 is a.s. continuous. So, relation (4.6.3) and Lemma

3.2.2 imply that νε(t), t ≥ 0
U−→ ν0(t), t ≥ 0 as ε → 0. Hence, the set S can be replaced
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by the interval [0,∞) in relation (4.6.3). So, (4.6.3) can be rewritten in the following
extended form:

(νε(t), ξε(t)), t ≥ 0⇒ (ν0(t), ξ0(t)), t ≥ 0 as ε→ 0. (4.6.4)

Obviously, the pre-limiting stochastic process νε(t), t ≥ 0 can be replaced, in relations
(4.6.4), by the process νε(t) − 1/nε, t ≥ 0.

Relation (4.6.4) and condition U6 permit to apply Theorem 3.2.1 to the composition
of the processes ξε(t), t ≥ 0 and νε(t) − 1/nε, t ≥ 0. This yields the following relation:

ξε(νε(t) − 1/nε) =

µ̂ε(ttε)−1∑

k=0

ξε,k/uε, t ≥ 0
U−→ ξ0(ν0(t)), t ≥ 0 as ε → 0. (4.6.5)

Consider the residual accumulation process

ςε(t) =
ζ(ttε)

uε
−
µ̂ε(ttε)−1∑

k=0

ξε,k
uε
, t ≥ 0.

By the definition of the processes µε(t) and µ̂ε(t), if µ̂ε(t) = µε(t) = k, then t ∈
[τε,k−1, τε,k) and, hence, |ςε(t)| ≤ ςε,k/uε. Thus, for any T > 0, if µε(Ttε) ≤ n ∧ nεTε, then
sup0≤t≤T |ςε(t)| ≤ max1≤k≤n ςε,k/uε.

Take an arbitrary u > 0. Obviously, [unε] ≤ nεTε for ε small enough. Taking into
account the estimates given above we have for such ε the following estimate:

P{ sup
0≤t≤T

|ςε(t)| > δ}
≤ P{µε(TTε) > [unε] ∧ nεTε} + P{ max

1≤k≤[unε]
ςε,k > δuε}

≤ P{νε(T ) > [unε]/nε} +
[unε]∑

k=1

P{ςε,k > δuε}.
(4.6.6)

By choosing, for any σ > 0, a sufficiently large u (we can always choose u to be a
point of continuity of the random variable ν0(T )), we can make P{ν0(T ) > u} ≤ σ. Then,
by passing in (4.6.6) to limit as ε → 0 and using condition K11 and relation (4.6.4), we
obtain

lim
ε→0

P{ sup
0≤t≤T

|ςε(t)| > δ} ≤ P{ν0(T ) > u} + lim
ε→0

[unε]∑

k=1

P{ςε,k > δuε} ≤ σ. (4.6.7)

Since δ, σ > 0 are arbitrary, relation (4.6.7) means that

sup
0≤t≤T

|ςε(t)|
P−→ 0 as ε→ 0, T > 0. (4.6.8)
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Relation (4.6.8) implies, in an obvious way, that

ςε(t), t ≥ 0
U−→ ς0(t), t ≥ 0 as ε→ 0, (4.6.9)

where ς0(t) = (0, . . . , 0), t ≥ 0.
Relations (4.6.5) and (4.6.8) imply (see, for example, Lemma 1.6.16) that

ζε(tTε)/uε, t ≥ 0
U−→ ξ0(ν0(t)), t ≥ 0 as ε→ 0. (4.6.10)

The proof is completed. �

4.6.2. Centralised accumulation processes. Let us introduce the centralised ac-
cumulation processes ζ′ε(t) = ζε(t) − cεt, t ≥ 0, where cε = const ∈ �m. In order to
formulate conditions for U-convergence of these processes, let us consider the following
embedded sum-processes:

(κε(t), ξ
′
ε(t)) = (

[tnε]∑

k=0

κε,k/tε,
[tnε]∑

k=0

(ξε,k − cεκε,k)/uε), t ≥ 0.

Let us introduce the following weak convergence condition:

A68: (κε(t), ξ
′
ε(t)), t ≥ 0 ⇒ (κ0(t), ξ′0(t)), t ≥ 0 as ε → 0, where (κ0(t), ξ′0(t)), t ≥ 0 is a

càdlàg process such that: (a) κ0(t), t ≥ 0 is an a.s. strictly monotone process; (b)

κ0(t)
P−→ ∞ as t → ∞; (c) ξ′0(t), t ≥ 0 is an a.s. continuous process.

We also assume the following condition of U-compactness:

U7: limc→0 limε→0 P{∆U(ξ′ε(·), c, T ) > δ} = 0, δ, T > 0.

Now, introduce a condition that, together with K11, implies that the normalised out-
liers for accumulation processes are stochastically negligible,

K12:
∑[Tnε]

k=1 P{|cε|κε,k > δuε} → 0 as ε→ 0, δ > 0 for T > 0.

Introduce the process ζ′0(t) = ξ′0(ν0(t)), t ≥ 0. This process is a.s. continuous, due to
conditions A68 (a) and (c).

The following version of Theorem 4.6.1 is also useful in applications.

Theorem 4.6.2. Let conditions A68, U7, K11, and K12 hold. Then

ζ′ε(ttε)/uε, t ≥ 0
U−→ ζ′0(t), t ≥ 0 as ε→ 0.
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Proof of Theorem 4.6.2. The proof is based on the application of Theorem 4.6.1 to the
processes ζ′ε(t), t ≥ 0, and the random variables κε,k, k = 0, 1, . . ..

In this case, the random variables ξε,k should be replaced by the random variables
ξ′ε,k = ξε,k − cεκε,k and the random variables ςε,k by the random variables

ς′ε,k = sup
t∈[τε,k−1 ,τε,k)

|ζ′ε(t) − ζ′ε(τε,k−1)|

≤ sup
t∈[τε,k−1 ,τε,k)

|ξε(t) − ξε(τε,k−1)| + |cε|κε,k = ςε,k + |cε|κε,k.
(4.6.11)

Respectively, the sum-process (κε(t), ξε(t)), t ≥ 0 should be replaced by the sum-
process (κε(t), ξ

′
ε(t)), t ≥ 0.

Condition A68 implies condition A67, condition U7 implies U6. Also, conditions
K11 and K12 imply that condition K11 holds for the random variables ς′ε,k, k ≥ 1. �

4.6.3. Accumulation processes with embedded regeneration cycles. Let us con-
sider the basic case where the following condition holds:

T5: (κε,k, ξε,k, ςε,k), k = 1, 2, . . . is (for every ε > 0) a sequence of i.i.d. random vectors
taking values in [0,∞) ×�m × [0,∞).

Typical examples are supplied by various models in which the process ζε(t) = ϕt(ηε(·)),
t ≥ 0, where ηε(t), t ≥ 0 is a regenerative process with regenerative moments τε,k, k =

1, 2, . . ., and ϕt(·), t ≥ 0 is a family of additive type functionals defined on trajectories of
this process.

For example, let ηε(t), t ≥ 0 be a càdlàg regenerative process with a Polish phase
space X and regenerative moments 0 = τε,0 ≤ τε,1 ≤ . . ., and ψε(x) be a measurable
function acting from X to �m. Let also

ζε(t) =

∫ t

0
ψε(ηε(s))ds, t ≥ 0,

where we use the Lebesgue integration for every component of vector process ψε(ηε(s)).
In this case, the random variables are

κε,k = τε,k − τε,k−1, ξε,k =

∫ τε,k

τε,k−1

ψε(ηε(s))ds, k = 1, 2, . . .

and

ςε,k = sup
t∈[τε,k−1 ,τε,k)

|
∫ t

τε,k−1

ψε(ηε(s))ds|, k = 1, 2, . . . .

If T5 holds, then the formulations of Theorems 4.6.1 and 4.6.2 take an especially
simple form.
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Recall that the embedded sum-process ξε(t) =
∑[tnε]

k=0 ξε,k/uε, t ≥ 0 includes the term
ξε,0 = ζε(0)/uε. Let us change the definition of these processes and define the embedded
sum-process

ξε(t) =

[tnε]∑

k=1

ξε,k/uε, t ≥ 0.

Usually, the random variables ξε,0 = ζε(0)/uε are asymptotically negligible. So, it is
natural to use the following condition:

A69: (a) ζε(0)/uε
P−→ 0 as ε→ 0;

(b) ξε(t), t ≥ 0 ⇒ ξ0(t), t ≥ 0 as ε → 0, where ξ0(t) = at + w(t), t ≥ 0 is a
m-dimensional Wiener process with drift a and covariance matrix Σ.

Condition A69 implies (see, for example, Prokhorov (1956), Skorokhod (1957, 1964)),
without any additional assumptions, that

ξε(t), t ≥ 0
U−→ ξ0(t), t ≥ 0 as ε→ 0. (4.6.12)

This result is known as an invariance principle after the work of Donsker (1951),
who obtained it for continuous piecewise linear sum-processes under conditions of the
standard central limit theorem.

The embedded sum-process κε(t) =
∑[tnε]

k=0 κε,k/uε, t ≥ 0 includes the summand κε,0 =

0. The corresponding weak convergence condition can be formulated in the following
form:

A70: κε(t), t ≥ 0 ⇒ κ0(t), t ≥ 0 as ε → 0, where κ0(t), t ≥ 0 is a non-negative and a.s.
strictly monotone càdlàg homogeneous process with independent increments.

Finally, condition K11 takes in this case the following form:

K13: nεP{ςε1 > δuε} → 0 as ε → 0, δ > 0 for T > 0.

The corresponding limiting process ζ0(t) = ξ0(ν0(t)), t ≥ 0, where ν0(t) = sup(s :
κ0(s) ≤ t), t ≥ 0. In this case, (a) the processes ξ0(t), t ≥ 0 and ν0(t), t ≥ 0 are indepen-
dent. Obviously, (b) ν0(t), t ≥ 0, as well as ζ0(t) = ξ0(ν0(t)), t ≥ 0, are a.s. continuous
processes.

Theorem 4.6.3. Let conditions T5, A69, A70, and K13 hold. Then

ζε(ttε)/uε, t ≥ 0
U−→ ζ0(t), t ≥ 0 as ε→ 0.
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Proof of Theorem 4.6.3. The proof is based on the application of Theorem 4.6.1. The
first step in the proof is to show that conditions A69 and A70 imply condition A67 to
hold with the independent limiting processes κ0(t), t ≥ 0 and ξ0(t), t ≥ 0. This can be
done by reducing the proof to the case of scalar processes considered in Lemma 4.5.4.

Let us take an arbitrary s0 ∈ �1 and a vector s = (s1, . . . sm) ∈ �m. Introduce,
for every ε > 0, the scalar càdlàg processes ξ(s)

ε (t) = (s, ξε(t)) =
∑

1≤k≤tnε (s, ξε,k), t ≥
0 and s0κε(t) =

∑
1≤k≤tnε s0κε,k, t ≥ 0. Condition A69 implies that (c) the processes

ξ(s)
ε (t), t ≥ 0 ⇒ ξ(s)

0 (t), t ≥ 0 as ε → 0. Obviously, ξ(s)
0 (t), t ≥ 0 is a scalar a.s. continuous

homogeneous process with independent increments. Also, condition A70 implies that (d)
s0κε(t), t ≥ 0 ⇒ s0κ0(t), t ≥ 0 as ε → 0. So, we can apply Lemma 4.5.4 to the processes
s0κε(t), t ≥ 0 and ξ(s)

ε (t), t ≥ 0. This yields the relation (e) (s0κε(t), ξ
(s)
ε (t)), t ≥ 0 ⇒

(s0κ0(t), ξ(s)
0 (t)), t ≥ 0 as ε → 0, where the processes s0κε(t), t ≥ 0 and ξ(s)

ε (t)), t ≥ 0 are
independent. Obviously (e) implies that (f) s0κε(t)+ξ(s)

ε (t), t ≥ 0⇒ s0κ0(t)+ξ(s)
0 (t), t ≥ 0

as ε → 0. Using (f) and taking into account arbitrariness of the choice of s0 ∈ �1 and
s ∈ �m, we get, by applying Lemma 1.2.1, that (g) for every t ≥ 0, the random variables
(κε(t), ξε(t)) ⇒ (κ0(t), ξ0(t)) as ε → 0, where the random variables κ0(t) and ξ0(t) are
independent. Since (κε(t), ξε(t)), t ≥ 0 is a process with independent increments, (g)
implies that (h) the processes (κε(t), ξε(t)), t ≥ 0 ⇒ (κ0(t), ξ0(t)), t ≥ 0 as ε → 0, where
the processes κ0(t), t ≥ 0 and ξ0(t), t ≥ 0 are independent.

So, condition A67 holds. Condition A69 implies condition U6, as it was pointed out
in (4.6.12). Also, condition K13 coincides with condition K11. So, Theorem 4.6.1 can be
applied to the accumulation processes ζε(ttε)/uε, t ≥ 0, which completes the proof. �

4.6.4. Centralised accumulation processes with embedded regeneration cycles.
Let us consider the centralised accumulation processes ζ′ε(t) = ζε(t) − cεt, t ≥ 0, where
cε = const ∈ �m. In order to formulate conditions for U-convergence of these processes,
let us introduce the following step embedded processes:

(κε(t), ξ
′
ε(t)) = (

[tnε]∑

k=1

κε,k/tε,
[tnε]∑

k=1

(ξε,k − cεκε,k)/uε), t ≥ 0.

We introduce the following weak convergence condition:

A71: (a) ζε(0)/uε
P−→ 0 as ε→ 0;

(b) ξ′ε(t), t ≥ 0 ⇒ ξ′0(t), t ≥ 0 as ε → 0, where ξ′0(t) = at + w(t), t ≥ 0 is a
m-dimensional Wiener process with drift a and covariance matrix Σ.

Let us also introduce the following analogue of condition K12:

K14: nεP{|cε|κε1 > δuε} → 0 as ε→ 0, δ > 0 for T > 0.
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The corresponding limiting process ζ′0(t) = ξ′0(ν0(t)), t ≥ 0, where ν0(t) = sup(s :
κ0(s) ≤ t), t ≥ 0. In this case, (a) the processes ξ′0(t), t ≥ 0 and ν0(t), t ≥ 0 are indepen-
dent. Obviously, (b) ν0(t), t ≥ 0, as well as ζ′0(t), t ≥ 0, are a.s. continuous processes.

Theorem 4.6.4. Let conditions T5, A70, A71, K13, and K14 hold. Then

ζ′ε(ttε)/uε, t ≥ 0
U−→ ζ′0(t), t ≥ 0 as ε→ 0.

Proof of Theorem 4.6.4. It is enough to refer to Theorems 4.6.2 and 4.6.3. �

4.6.5. Renewal and risk type accumulation processes. Consider the case when
the accumulation process ζε(t), t ≥ 0 is a step càdlàg process and κε,k, k = 1, 2, . . . are
successive inter-jump times for this process. For simplicity, we assume that ζε(0) = 0.

In this case, ζε(t) = ζε(τε,k−1) for t ∈ [τε,k−1, τε,k), k = 0, 1, . . ., where τε,0 = 0 and
τε,k = κε,1 + . . . + κε,k, k = 1, 2, . . . are the successive moments of jumps of the process
ζε(t), t ≥ 0. Also, ξε,k = ζε(τε,k) − ζε(τε,k−1) and ςε,k = supt∈[τε,k−1 ,τε,k) |ζε(t) − ζε(τε,k−1)| = 0
for k = 1, 2, . . ..

Since the random variables ςε,k = 0, the accumulation process can be represented
in the form ζε(t) =

∑
1≤k≤µε(t)−1 ξε,k, t ≥ 0, where µε(t) = min(n : τε,n > t) = max(n :

τε,n ≤ t) + 1, t ≥ 0. Actually, the process ζε(t), t ≥ 0 is a sum-process with renewal type
stopping. More precisely, it is a modification of the sum-process with renewal stopping
described in Subsection 4.5.1.

Since the random variables ςε,k = 0 for all k = 1, 2, . . ., conditions K11 and K12 can
be omitted, respectively, in the formulations of Theorems 4.6.1 and 4.6.2. Note also that,
in this case, Theorem 4.6.3 (if m = 1) is a slight modification of Theorem 4.5.5.

Situation is different if the centralisation is involved. In this case, the processes
ζε(t) − cεt, t ≥ 0 are not sum-process with renewal stopping of the type considered in
Sections 4.3 and 4.5.

The process cεt − ζε(t), t ≥ 0 can be considered as a multidimensional risk process.
Here cε should be interpreted as the premium rate. The process µε(t) − 1, t ≥ 0 counts
the number of claims in the interval [0, t], whereas the random variables ξε,k, k = 1, 2, . . .
should be interpreted as values of the claims.

4.6.6. Accumulation processes with improper renewal cycles. In applications to
non-recurrent Markov type processes, it can occur that the renewal moments τε,n are
improper random variables that take the value +∞ with positive probabilities. A gener-
alisation of the results presented above to this case can be found in Silvestrov (1972c,
1972d, 1972e, 1974).

4.6.7. Accumulation processes with embedded regeneration cycles in a scale-
location mode. For simplicity, we assume that m = 1. Consider a scale-location model
in which the corresponding accumulation process ζ(t), t ≥ 0 and the random variables
κk, k = 1, 2, . . . do not depend on the series parameter ε > 0.
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Obviously in this case, the random variables τk = κ1 + . . . + κk, ξk = ζ(τk) − ζ(τk−1)
and ςk = supt∈[τk−1 ,τk) |ζ(t) − ζ(τk−1)| for k ≥ 1 also do not depend on ε > 0, as well as the
random variables τ0 = κ0 = 0 and ξ0 = ζ(0).

Condition T5 takes in this case the following form:

T6: (κk, ξk, ςk), k = 1, 2, . . . is a sequence of i.i.d. random variables taking values in
[0,∞) ×�1 × [0,∞).

Let us first consider the case when the limiting process in condition A70 degenerates
to a non-random linear function. To simplify formulations, we restrict consideration to
the case where Eκ1 < ∞.

Bellow, 0 < tε → ∞ as ε→ 0. Denote Eξ1 = a, Eκ1 = d and c = a/d.

Theorem 4.6.5. Let (α) E|ξ1| < ∞, (β) Eκ1 < ∞, (γ) Eς1 < ∞. Then

ζ(ttε)
tε

, t ≥ 0
U−→ ct, t ≥ 0 as ε→ 0.

Let us denote Var ξ1 = b2 and f 2 = b2/d. Let also w(t), t ≥ 0 be a standard Wiener
process.

Theorem 4.6.6. Let (α) Eξ2
1 < ∞,Eξ1 = 0, (β) Eκ1 < ∞, (γ) Eς2

1 < ∞. Then

ζ(ttε)√
tε
, t ≥ 0

U−→ f w(t), t ≥ 0 as ε → 0.

Denote Var(ξ1 − cκ1) = g2 and h2 = g2/d.

Theorem 4.6.7. Let (α) Eξ2
1 < ∞, (β) Eκ2

1 < ∞, (γ) Eς2
1 < ∞. Then

ζ(ttε) − cttε√
tε

, t ≥ 0
U−→ hw(t), t ≥ 0 as ε→ 0.

Proof of Theorems 4.6.5, 4.6.6, and 4.6.7. Due to the weak law of large numbers, if Eκ1

< ∞, then

κε(t) =

[ttε]∑

k=1

κk

tε
, t ≥ 0⇒ dt, t ≥ 0. (4.6.13)

So, condition A70 holds with the limiting process κ0(t) = dt, t ≥ 0, and the functions
nε = tε. In this case, the process ν0(t) = d−1t, t ≥ 0.

Also, by the same weak law of large number, if E|ξ1| < ∞, then

ξε(t) =

[ttε]∑

k=1

ξk

tε
, t ≥ 0⇒ at, t ≥ 0. (4.6.14)
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Hence, condition A69 holds with the limiting process ξ0(t) = at, t ≥ 0 and the func-
tions nε = uε = tε.

Condition K11 also holds, since the condition Eς1 < ∞ implies that

tεP{ς1 > δtε} → 0 as ε→ 0, δ > 0. (4.6.15)

To complete the proof, we apply Theorem 4.6.3. The corresponding limiting process
ξ0(ν0(t)) = ad−1t = ct, t ≥ 0.

To prove Theorem 4.6.6, we need to replace (4.6.14) by a relation which is a variant
of the standard central limit theorem. Thus, if Eξ2

1 < ∞,Eξ1 = 0, then

ξε(t) =

[ttε]∑

k=1

ξk√
tε
, t ≥ 0⇒ bw(t), t ≥ 0. (4.6.16)

Therefore, condition A69 holds with the limiting process ξ0(t) = bw(t), t ≥ 0 and the
functions nε = tε, uε =

√
tε.

Condition K11 also holds, since the condition Eς2
1 < ∞ implies that

tεP{ς1 > δ
√

tε} → 0 as ε → 0, δ > 0. (4.6.17)

To complete the proof, it remains to apply Theorem 4.6.3. The corresponding limit-
ing process ξ0(ν0(t)) = bw(d−1t) = f w(t), t ≥ 0.

To prove Theorem 4.6.7, we can apply Theorem 4.6.4.
Due to the same central limit theorem, if Eξ2

1 < ∞ and Eκ2
1 < ∞, then E(ξ1−cκ1) = 0

and

ξε(t) =

[ttε]∑

k=1

ξk − cκk√
tε

, t ≥ 0⇒ gw(t), t ≥ 0. (4.6.18)

Therefore, condition A71 holds with the limiting process ξ0(t) = gw(t), t ≥ 0 and the
functions nε = tε, uε =

√
tε.

Condition K11 holds, as well as condition K12, since the condition Eκ2
1 < ∞ implies

that
tεP{|c|κ1 > δ

√
tε} → 0 as ε→ 0, δ > 0. (4.6.19)

To complete the proof, we apply Theorem 4.6.4. The corresponding limiting process
ξ0(ν0(t)) = gw(d−1t) = hw(t), t ≥ 0. �

Remark 4.6.1. It should be noted that the results of Theorems 4.6.5, 4.6.6, and 4.6.7
are valid in the case when (a) the limiting process in condition A70 degenerates to a
non-random linear function and also (b) the limiting process in condition A69 or A71
is either a non-random linear function or a Wiener process. These conditions actually
can be provided by assumptions weaker than the corresponding moment conditions used
in the theorems mentioned above. Also note that the moment conditions imposed on
the random variable ς1 can be weakened. These conditions can be replaced by relations
(4.6.15), (4.6.17), or (4.6.19).
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Let us now consider the case when the limiting process in condition A70 is a stable
process.

Let α ∈ (0, 1) and denote by κ(α)(t), t ≥ 0 a non-negative càdlàg homogeneous sta-
ble process with independent increments whose Laplace transform is E exp{−sκ(α)(t)} =

e−sαt, s, t ≥ 0. Let us also define the process ν(α)(t) = sup(s : κ(α)(s) ≤ t), t ≥ 0. As
is known, the stable process κ(α)(t), t ≥ 0 is a.s. strictly increasing and, therefore, the
process ν(α)(t), t ≥ 0 is a.s. continuous.

Denote nε = tαε /Γ(1−α)h(tε), where Γ(λ) =
∫ ∞

0 xλ−1e−xdx and h(x) is a slowly varying
function.

Theorem 4.6.8. Let (α) E|ξ1| < ∞, (β) P{κ1 > x} ∼ x−αh(x) as x → ∞, (γ) Eς1 < ∞.
Then

ζ(ttε)
nε

, t ≥ 0
U−→ aν(α)(t), t ≥ 0 as ε→ 0.

Denote Var ξ1 = b2 and introduce the process ζ0(t) = bw(ν(α)(t)), t ≥ 0, where the
processes w(t), t ≥ 0 and ν(α)(t), t ≥ 0 are independent.

Theorem 4.6.9. Let (α) Eξ2
1 < ∞,Eξ1 = 0, (β) P{κ1 > x} ∼ x−αh(x) as x → ∞,

(γ) Eς2
1 < ∞. Then

ζ(ttε)√
nε
, t ≥ 0

U−→ ζ0(t) = bw(ν(α)(t)), t ≥ 0 as ε → 0.

Proof of Theorems 4.6.8 and 4.6.9. As is known (see, for example, Feller (1971)) con-
dition (β) implies that

κε(t) =

[tnε]∑

k=1

κk

tε
, t ≥ 0⇒ κ(α)(t), t ≥ 0. (4.6.20)

So, condition A70 holds with the limiting process κ(α)(t), t ≥ 0.
Condition A69 holds, as was pointed out in the proofs of Theorems 4.6.5, 4.6.6, and

4.6.7. If E|ξ1| < ∞, then the corresponding limiting process ξ0(t) = at, t ≥ 0, and
the function uε = nε. If Eξ2

1 < ∞,Eξ1 = 0, then the corresponding limiting process
ξ0(t) = bw(t), t ≥ 0, and the function uε =

√
nε.

Condition K11 also holds either with the function uε = nε, if Eς1 < ∞, or with the
function uε =

√
nε, if Eς2

1 < ∞.
To complete the proof, we apply Theorem 4.6.3. The corresponding limiting process

is either aν(α)(t), t ≥ 0 or bw(ν(α)(t)), t ≥ 0, where the processes w(t), t ≥ 0 and ν(α)(t), t ≥
0 are independent. �
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4.7 Extremes with random sample size

In this section we derive a number of limit theorems for extremal processes constructed
from samples with a random sample size. Extremal processes of such type naturally
appear in various applications related to models with sample variables associated to
stochastic flows.

4.7.1. Extremal processes with random sample size indices. Let, for every ε > 0,
ρε,n, n = 1, 2, . . . be a sequence of real-valued random variables and µε a positive random
variable. Further, we need a non-random function nε > 0 of parameter ε such that
nε → ∞ as ε→ 0.

If we are interested in extremal processes with non-random sample size indices, then
we will deal with

ρε(t) = max
k≤1∨tnε

ρε,k, t ≥ 0.

Our interest lies in the relevant analogues of these processes when the sample size
indices are random as well. So, define

ζε(t) = max
k≤1∨tµε

ρε,k, t ≥ 0.

Let us denote by νε = µε/nε the normalised random sample size index. Then the
process ζε(t) = ρε(νε(t)), t ≥ 0 can be represented in the form of the composition of the
two processes ρε(t), t ≥ 0 and νε(t) = tνε, t ≥ 0.

The pre-limiting extremal processes ρε(t) and ζε(t) are defined on the interval [0,∞).
However, it is natural to study weak and J-convergence of these extremal processes on
the open interval (0,∞). The reason for this is the fact that, in some cases, extremal
processes ρε(t) may weakly converge on the interval (0,∞) to a monotone process ρ0(t)
but they do not weakly converge at the point 0. Moreover, we also admit the case when
the random variable ρ0(0) = lim0<t→∞ ρ0(t) can be improper (this limit exists with prob-
ability 1), that is, it takes the value −∞ with a positive probability.

Let us introduce the following weak convergence condition:

A72: (νε, ρε(t)), t ∈ U ⇒ (ν0, ρ0(t)), t ∈ U as ε → 0, where (a) ρ0(t), t > 0 is a nonde-
creasing càdlàg process, (b) ν0 is a non-negative random variable, (c) U is a set of
points everywhere dense in (0,∞) and containing 0.

Let us also assume that the following condition of J-compactness holds:

J26: limc→0 limε→0 P{∆J(ρε(·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

Note that it is assumed that 0 < ε → 0. However, under A72, condition J26 is
equivalent to J24, since the limiting process ρ0(t), t > 0 is a càdlàg process and, therefore,
the asymptotic relation in J26 automatically holds for ε = 0.

Also, recall the condition
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I4: ν0 > 0 with probability 1.

There is a question of why the max-component is not defined in a simpler way by
ρ′ε(t) = maxk≤tnε ρε,k, t ≥ 0, where the maximum over the empty set should be understood
as zero. As a matter of fact, the max-process ρε(t), t ≥ 0, introduced according to the
initial definition, is a monotone process. But the max-process ρ′ε(t), t ≥ 0 has some
side effect at zero. The process ρ′ε(t), t > 0 has step trajectories, is continuous from
the right, and can have jumps only at the points k/nε, k ≥ 1. All jump with k ≥ 2 are
positive and so the resulting process is a.s. non-decreasing on the interval [1/nε,∞).
However, on the interval [0, 1/nε), the process takes the value zero and the first jump can
be negative if the random variable ρε,1 takes a negative value. The obvious inequality (a)
|ρ′ε(t)−ρε(t)| ≤ |ρε,1|χ(t ≤ 1/nε) implies that (b) sup0≤t≤T |ρ′ε(νεt)−ρε(νεt)| ≤ |ρε,1|χ(Tνε ≤
1/nε). Since nε → ∞ as ε→ 0 and ν0 > 0 with probability 1 by condition I4, we have (c)
sup0≤t≤T |ρ′ε(νεt) − ρε(νεt)|

P−→ 0 as ε → 0 for T > 0. So, the extremal processes ζε(t) =

ρε(νεt), t > 0 and ζ′ε(t) = ρ′ε(νεt), t > 0 converge weakly or J-converge simultaneously
and have the limiting process.

Let us denote by V0 the set of t > 0 for which P{τknr/ν0 = t} = 0 for all k, n, r =

1, 2, . . ., where τknr, k = 1, 2, . . . are the successive moments of jumps of the process
ρ0(t), t ≥ r−1, with absolute values of the jumps lying in the interval [ 1

n ,
1

n−1 ). Obviously,
the set V0 is (0,∞) except for at most a countable set. Note that V0 is the set of point of
stochastic continuity of the process ρ0(tν0), t > 0.

The following theorems are direct corollaries of the translation Theorems 2.8.2 and
3.4.4. These theorems must be applied to the compositions ζε(t) = ρε(tνε), t ≥ 0, in the
case where the constant α = 0 and the slowly varying functions h(x) ≡ 1. Remark 2.8.3,
which describes a modification of conditions of these theorems in the case of the interval
(0,∞), must also be taken in account.

Theorem 4.7.1. Let conditions A72, J26, and I4 hold. Then

ζε(t) = ρε(tνε), t ∈ V0 ⇒ ζ0(t) = ρ0(tν0), t ∈ V0 as ε → 0.

Theorem 4.7.2. Let conditions A72, J26, and I4 hold. Then

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε → 0.

Note that, in Theorems 4.7.1 and 4.7.2, we do not impose any independence condi-
tions on the random variables ρε,k, k = 1, 2, . . ..

Note also that it makes sense to formulate Theorems 4.7.1 and 4.7.2 separately since
Theorem 4.7.1 gives additional information about the set of weak convergence of the
corresponding extremal processes.

4.7.2. Extremal processes based on i.i.d. random variables. Let us now consider
the case when the following condition holds:
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T7: ρε,k, k = 1, 2, . . . is (for every ε > 0) a sequence of real-valued i.i.d. random
variables.

The following condition is standard in limit theorems for extremes:

S11: nεP{ρε,1 > w} → π3(w) as ε → 0 for all w ∈ R1 which are points of continuity of
the limiting function π3(w).

The function π3(w) satisfies a number of conditions: (a) π3(w) is a non-increasing
function acting from (−∞,∞) into [0,∞] and is continuous from the right (if π3(w) = ∞,
continuity from the right is interpreted as π3(x) ↑ ∞ as x ↓ w); (b) π3(−∞) = ∞ and
π3(∞) = 0.

As such, these conditions imply that the function e−π3(w) is a distribution function. If
we define υ = sup(u : π3(w) = ∞) ≥ −∞, then e−π3(w) takes positive values for w > υ
and e−π3(w) = 0 for w < υ.

As is known (see, for example, Loève (1955)), condition S10 holds if and only if the
random variables ρε(1) ⇒ ρ0(1) as ε → 0, where ρ0(1) is a random variable with the
distribution function e−π3(w).

Note that the classical extreme value theory deals with the scale-location model.
Here, the random variables ρε,n are represented in the form ρε,n = (ρn − aε)/bε, where
ρn, n = 1, 2, . . . are i.i.d. random variables and aε, bε are some non-random centralisation
and normalisation constants. In this case, the distribution function e−π3(w) belongs to
one of three families of the classical extremal distributions. See, for instance, books
by Galambos (1978), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987), and
Berman (1992).

This one-dimensional weak convergence result can be extended. Denote by D0 the
space of step functions on (0,∞) continuous from the right and with a finite number
of only positive jumps in every finite sub-interval of (0,∞). It is known (see, for ex-
ample, Serfozo (1982), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987), and
Berman (1992)) that S11 is necessary and sufficient for the following condition of weak
convergence to hold:

A73: ρε(t), t > 0 ⇒ ρ0(t), t > 0 as ε → 0, where ρ0(t), t > 0 is a non-decreasing càdlàg
process described below.

Denote Gε(u) = P{ρε,1 ≤ u}. The process ρε(t), t > 0 has the following finite-
dimensional distributions for 0 = t0 < t1 < . . . < tn, −∞ < u1 ≤ . . . un < ∞, n ≥ 1 and ε
such that t1nε ≥ 1:

P{ρε(t1) ≤ u1, . . . , ρε(tn) ≤ un} =

n∏

k=1

Gε(uk)[tknε]−[tk−1nε]. (4.7.1)
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It follows in an obvious way from relation (4.7.1) that the limiting process ρ0(t), t >
0, in condition A73, has the following finite-dimensional distributions for 0 = t0 < t1 <
. . . < tn, −∞ < u1 ≤ . . . un < ∞, n ≥ 1:

P{ρ0(t1) ≤ u1, . . . , ρ0(tn) ≤ un} =

n∏

k=1

e−π3(uk)(tk−tk−1). (4.7.2)

The limiting process ρ0(t), t > 0, in condition A73, is a called an extremal process.
Adjoining to the notation υ above, we let υ′ = inf(w : π3(w) = 0) ≤ ∞. Then the

distribution function e−π3(w) is concentrated on the interval [υ, υ′], ρ0(t)
a.s.−→ υ as t → 0,

and ρ0(t)
a.s.−→ υ′ as t → ∞.

Note that, in the case where υ = υ′, the extremal process degenerates, namely ρ0(t) =

υ, t > 0, with probability 1.
The extremal process ρ0(t), t > 0 is a stochastically continuous homogeneous Markov

jump process whose trajectories belong to the space D0 with probability 1. This process
has the following one-dimensional distribution function for s > 0,

P{ρ0(s) ≤ v} = e−sπ3(v), v ∈ �1, (4.7.3)

and the following transition probabilities for 0 < s < t < ∞,

P{ρ0(s + t) ≤ w | ρ0(s) = v} = χ(v ≤ w)e−tπ3(w), v,w ∈ �1. (4.7.4)

Let us denote by Υ the interval (υ, υ′) if π3(υ) = ∞,π3(υ′−0) = 0; the interval [υ, υ′)
if π3(υ) < ∞,π3(υ′ − 0) = 0; the interval (υ, υ′] if π3(υ) = ∞,π3(υ′ − 0) > 0; and the
interval [υ, υ′] if π3(υ) < ∞,π3(υ′ − 0) > 0.

As follows from the remarks above, (a) P{ρ0(t) ∈ Υ, t > 0} = 1. This is consistent
with formulas (4.7.3) and (4.7.4). It follows from these formulas that the distribution
function of the random variable ρ0(s) is concentrated on the interval Υ for every s > 0
and the transition probability given in (4.7.4) is a distribution function in w concentrated
on the interval Υ for every v ∈ Υ and 0 < s ≤ t < ∞.

A more refined representation of the extremal process is as follows. Let s > 0.
Denote by s < τ(s)

1 < τ(s)
2 < . . . successive moments of jumps of the process ρ0(t) in

the interval [s,∞). Write η(s)
n = ρ0(τ(s)

n ) for the heights at the moments of jumps and
κ(s)

n = τ(s)
n − τ(s)

n−1 for the inter-jump times. For convenience, we put τ(s)
0 = τ(s)

−1 = s. Then
the bivariate random sequence (κ(s)

n , η
(s)
n ), n = 0, 1, . . . is a homogeneous Markov chain

with the phase space [0,∞) × �1 and the transition probabilities

P{κ(s)
n+1 ≤ t, η(s)

n+1 ≤ w | κ(s)
n = t′, η(s)

n = v}
= (1 − e−π3(v)t)χ(v ≤ w)(1 − π3(w)/π3(v)).

(4.7.5)

It follows from (a) that (c) P{(κ(s)
n , η

(s)
n ) ∈ [0,∞) × Υ, n = 0, 1, . . .} = 1. This is

consistent with formulas (4.7.3) and (4.7.5). It follows from these formulas that, for ev-
ery s > 0, the two-dimensional distribution function of the random variable (κ(s)

0 , η
(s)
0 ) =
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(0, ρ0(s)) is concentrated on the set [0,∞) × Υ and the transition probability given in
(4.7.5) is a two-dimensional distribution function in (t,w) concentrated on the set [0,∞)×
Υ for every (t′, v) ∈ [0,∞) × Υ.

There are three cases when the expression in the right-hand side of (4.7.5) is not well
defined. The simplest way is to set this expression equal, for every t ≥ 0, to (d) 0 if
v > w, or (e) 1 if v ≤ w and π3(v) = π3(w) = ∞, or (f) 1 if v ≤ w and π3(v) = π3(w) = 0.

With this convention, (g) the expression in the right-hand side of (4.7.5) is always
a two-dimensional distribution function in (t,w). Note that any other admissible inter-
pretation (possessing property (g)) of this expression in uncertain situations would not
change the finite-dimensional distributions of the Markov chain (κ(s)

n , η
(s)
n ), n = 0, 1, . . ..

This follows from (c).
We refer to Serfozo (1982) and Resnick (1987) for the proof that condition S11,

without any additional assumptions, implies that

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε→ 0. (4.7.6)

Note that relation of J-convergence (4.7.6) follows also from the more general rela-
tion of J-convergence given for mixed sum-max processes in Theorem 4.8.2.

4.7.3. Extremes with random sample size based on i.i.d. random variables.
We now generalise the asymptotic results given in condition A73 and relation (4.7.6) to
extremal processes with random sample size indices.

Of course, we have to assume some condition concerning the asymptotic behaviour
of the random stopping indices. Such a minimal condition is A53, which states that the
random variables νε = µε/nε ⇒ ν0 as ε→ 0, where ν0 is an a.s. positive random variable.

Conditions A53 and A73 are sufficient to provide weak convergence of max-processes
with random stopping indices in the case when the max-process ρε(t), t ≥ 0 and the
random stopping index νε are independent. However, it is clear that in the case of depen-
dence, conditions A53 and A73 should be replaced by a stronger condition in terms of the
joint distribution of the random variable νε and the process ρε(t), t ≥ 0. The following
condition plays a key role in further considerations:

A74: (νε, ρε(t)), t > 0 ⇒ (ν0, ρ0(t)), t > 0 as ε → 0, where (a) ν0 is an a.s. non-negative
random variable, and (b) ρ0(t), t ≥ 0 is an extremal process described in (4.7.2) -
(4.7.5).

We also assume that the positivity condition I4 holds.
Denote by V0 the set of points t > 0 for which P{τ(sn)

k = tν0} = 0 for all k, n = 1, 2, . . .,
where sn = n−1. The set V0 contains no more than a countable number of points, since
it coincides with the set of atoms for the distribution functions of the random variables
τ(sn)

k /ν0, k, n = 1, 2, . . .. Therefore, the set V0 is (0,∞) except for at most a countable set.
The set V0 coincides with (0,∞) if the random variables τ(sn)

k /ν0, k, n = 1, 2, . . . have
continuous distributions. Since the random variables τ(sn)

k have continuous distribution
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functions, τ(sn)
k /ν0 also have continuous distribution functions if the random variables

τ(sn)
k and ν0 are independent, for every k, n = 1, 2, . . .. Hence, the set V0 = (0,∞) if

the process ρ0(t), t > 0 and the random variable ν0 are independent or, at any rate, the
random variables τ(sn)

k and ν0 are independent for every k, n = 1, 2, . . .. In the latter case,
the process ρ0(t), t > 0 and the random variable ν0 can be dependent.

Condition A74 implies condition A72. Also relation (4.7.6) implies that condition
J26 holds. So, by applying Theorems 4.7.1 and 4.7.2, one can formulate the following
two theorems. These theorems are given in Silvestrov and Teugels (1998a).

Theorem 4.7.3. Let conditions T7, A74, and I4 hold. Then

ζε(t) = ρε(tνε), t ∈ V0 ⇒ ζ0(t) = ρ0(tν0), t ∈ V0 as ε → 0.

Theorem 4.7.4. Let conditions T7, A74, and I4 hold. Then

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε → 0.

We remark that, in Theorems 4.7.3 and 4.7.4, the external max-processes and the ran-
dom stopping indices can be dependent in an arbitrary way. Only the condition of joint
weak convergence is required. No independence or asymptotic independence conditions
for these external max-processes and random stopping indices are involved.

4.7.4. Extremes with random sample size indices converging in probability. Let
us now consider a model with random sample size indices converging in probability.

It is natural to assume in this case that the random variables ρε,n, n ≥ 1 and µε are de-
fined on the same probability space for all ε > 0. We also assume that the independence
condition for the random variables ρε,n holds in the following stronger form:

T8: The sets of the random variables {ρε,n, ε > 0} are mutually independent for n ≥ 1.

Obviously, conditions T7 and T8 hold for the scale-location model. In this case, the
random variables ρε,n are represented in the form ρε,n = (ρn − aε)/bε, where ρn, n ≥ 1
are i.i.d. random variables and aε and bε are some non-random centralisation and nor-
malisation constants. It also holds for a more general model with the random variables
ρε,n = hε(ρn), n ≥ 1, where hε(·) are non-random measurable real-valued functions.

Let us recall condition P1 introduced in Subsection 4.2.5,

P1: νε = µε/nε
P−→ ν0 as ε → 0, where ν0 is a non-negative random variable.

The following lemma shows that the model with normalised stopping indices con-
verging in probability is a particular case of a model where the assumption of joint weak
convergence of external sum-processes and stopping indices is made.
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Lemma 4.7.1. Let conditions T7, T8, A73 (or S11) and P1 hold. Then condition A74
holds, moreover, (α) the limiting process ρ0(t), t > 0 and the limiting random variable
ν0 are independent; (β) ρ0(t), t ≥ 0 is a càdlàg extremal process which has the same
finite-dimensional distribution as the corresponding process in condition A73; (γ) ν0 is
a random variable which has the same distribution as the the corresponding random
variable in condition P1.

Proof of Lemma 4.7.1. Take some subsequence εn → 0 as n → ∞ and choose some
0 < t1 < . . . < tm < ∞ and υ < s1 ≤ . . . ≤ sm < ∞. Define

An = {max
k≤tlnεn

ρεn,k ≤ sl, l = 1, . . .m}, A = {ρ0(tl) ≤ sl, l = 1, . . .m}.

We are going first to prove that the sequence of events An, n = 0, 1, . . . is mixing in the
sense of Rényi (1958), that is, for any r ≥ 1,

lim
n→∞

P(An ∩ Ar) = P(A)P(Ar). (4.7.7)

Obviously, the event An = A+
nr ∩ A−nr, where

A−nr = {max
k≤tmnεr

ρεn,k ≤ s1}, A+
nr = { max

tmnεr<k≤tlnεn
ρεn,k ≤ sl, l = 1, . . .m}.

It follows from conditions A73 and T7 that

lim
n→∞

P(A−nr) = lim
n→∞

(P{ρεn,1 ≤ s1})[tmnεr ] = 1. (4.7.8)

Now, by taking into account that for n large enough, tmnεr < t1nεn , and using T7, T8,
A73, and (4.7.8), we get

lim
n→∞

P(An ∩ Ar) = lim
n→∞

P(A+
nr ∩ A−nr ∩ Ar)

= lim
n→∞

P(A+
nr)P(A−nr ∩ Ar) = lim

n→∞
P(A+

nr)P(Ar)

= lim
n→∞

P(A+
nr ∩ A−nr)P(Ar) = lim

n→∞
P(An)P(Ar) = P(A)P(Ar).

(4.7.9)

Since the sequence An, n = 1, 2 . . . is mixing, P(An ∩ B) → P(A)P(B) as n → ∞ for
an arbitrary random event B. We can choose this event to be Bz = {ν0 ≤ z}. Let also
Bz,n = {νεn ≤ z}. Condition P1 implies that P(Bz∆Bz,n) → 0 as n→ ∞ for any z which is
a point of continuity of the distribution function of ν0. Using these asymptotic relations
we finally get

lim
n→∞

P(An ∩ Bz,n) = lim
n→∞

P(An ∩ Bz) = P(A)P(Bz). (4.7.10)

Since the choice of the subsequence εn, the points 0 < t1 < . . . < tm < ∞, and
υ < s1 ≤ . . . ≤ sm < ∞ was arbitrary, relation (4.7.10) is equivalent to the statement
of the lemma. Note that, in the case where s1 ≤ υ, the asymptotic independence of the
events An and Bz,n is obvious since, in this case, P(An)→ 0 as n→ ∞. �
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The following theorems, due to Lemma 4.7.1, are direct corollaries of Theorems
4.7.3 and 4.7.4. Note that we use that the set V0 = (0,∞) in the case of independent
limiting external process and limiting stopping index.

Theorem 4.7.5. Let conditions T7, T8, A73 (or S11), P1, and I4 hold. Then condition
A74 holds with the process ρ0(t), t ≥ 0 and the random variable ν0 which are indepen-
dent, and

ζε(t) = ρε(tνε), t > 0⇒ ζ0(t) = ρ0(tν0), t > 0 as ε→ 0.

Theorem 4.7.6. Let conditions T7, T8, A73 (or S11), P1, and I4 hold. Then

ζε(t) = ρε(tνε), t > 0
J−→ ζ0(t) = ρ0(tν0), t > 0 as ε→ 0.

4.8 Mixed sum-max processes

In this section, we give general conditions for weak and J-convergence of mixed max-
sum processes. Such processes are constructed from a sequence of two-dimensional i.i.d.
random vectors. Note that no conditions are imposed on possible dependencies between
the components of these random vectors. The first component of this sequence is used
to construct a traditional real-valued sum-process of i.i.d. random variables. The second
one is used to construct an extremal max-process of i.i.d. random variables.

4.8.1. Weak convergence of mixed sum-max processes. Let, for every ε > 0,
(ξε,n, ρε,n), n = 1, 2, . . . be a sequence of random vectors taking values in �1 × �1. We
assume that the following condition holds:

T9: (ξε,n, ρε,n), k = 1, 2, . . . is (for every ε > 0) a sequence of i.i.d. random vectors.

Let the non-random functions 0 < nε → ∞ as ε→ 0. We introduce a mixed sum-max
process (ξε(t), ρε(t)), t ≥ 0, where

ξε(t) =
∑

k≤tnε

ξε,k, t ≥ 0,

and
ρε(t) = max

k≤1∨tnε
ρε,k, t ≥ 0.

Conditions that provide marginal weak convergence of the corresponding sum-proces-
ses and max-processes were formulated, respectively, in Subsections 4.2.2 and 4.7.2.
These are conditions S1 - S3 and S11. Let us now formulate conditions, which should
be added to these conditions, in order to imply joint weak convergence of the mixed
max-sum processes.

Let us introduce the following natural condition:



332 Chapter 4. Summary of applications

S12: (a) nεP{ξε,1 > v, ρε,1 > w} → π2,3(v,w) as ε → 0 for all v > 0,w > υ, which are
points of continuity of the limiting function π2,3(v,w).

(b) nεP{ξε,1 ≤ v, ρε,1 > w} → π2,3(v,w) as ε → 0 for all v < 0,w > υ, which are
points of continuity of the limiting function π2,3(v,w).

The function π2,3(v,w) satisfies a number of conditions: (a) π2,3(v,w) is non-negative,
non-increasing and right-continuous in every argument for v > 0,w > υ and such that
π2,3(v,∞) = π2,3(∞,w) = 0, v > 0,w > υ; (b) π2,3(v,w) is also non-negative, non-
decreasing in v < 0, and non-increasing in w > υ, as well as right-continuous in every
argument for v < 0,w > υ and such that π2,3(v,∞) = π2,3(−∞,w) = 0, v < 0,w > υ;
(c) it defines, for every for w > υ, a measure on the Borel σ-algebra of subsets of
(0,∞)) such that Π

(w)
2,3 ((v1, v2]) = π2,3(v1,w) − π2,3(v2,w) for 0 < v1 ≤ v2 < ∞; (d)

it also defines, for every for w > υ, a measure on the Borel σ-algebra of subsets of
(−∞, 0) such that Π

(w)
2,3((v1, v2]) = π2,3(v2,w) − π2,3(v1,w) for −∞ < v1 ≤ v2 < 0; (e)

the measure Π
(w)
2,3 (A) can be extended, in an obvious way, to the σ-algebra B̃1 (the Borel

σ-algebra of subsets of (−∞, 0)∪ (0,∞)), and it is a non-increasing and continuous from
the right function in w > υ for every A ∈ B̃1; (f) the following estimates are valid:
Π

(w1)
2,3 (A)−Π

(w2)
2,3 (A) ≤ (π3(w1)−π3(w2))∧Π2(A), in particular, Π

(w1)
2,3 (A) ≤ π3(w1)∧Π2(A),

for υ < w1 ≤ w2 < ∞ and A ∈ B̃1; (g) the function π3(w) possesses properties (a) –
(b) listed in connection with condition S11 (in Subsection 4.7.2); (h) the measure Π2(A)
possesses properties (a) – (f) listed in connection with conditions S1 – S3 (in Subsection
4.2.2).

Let denote Cπ3 the set of points w > υ that are points of continuity of the function
π3(w).

It is useful to note that the properties (a) and (b) can initially be required only for
w ∈ Cπ3 . Obviously, (c) and (d) follow from (a) and (b). The properties and the estimates
in (e) and (f) can be obtained, for w ∈ Cπ3 and intervals (v1, v2] ⊂ (−∞, 0) ∪ (0,∞), by
the limiting transition in the corresponding estimates for the functions in the left-hand
side of the asymptotic relations in S12 (a) and (b), and then be extended, in an obvious
way, to sets from the σ-algebra B̃1.

Due to monotonicity of Π
(w)
2,3 (A) in w ∈ Cπ3 , (i) there exist limw′∈Cπ3 ,w<w′→w Π

(w′)
2,3 (A) =

Π
(w)
2,3 (A), for every A ∈ B̃1, and w > υ,w < Cπ3 and also for w = υ if υ > −∞,π3(υ) < ∞.

The estimates in (f) can be verified by similar limiting transition for any A ∈ B̃1, and
υ < w1 ≤ w2 < ∞,w1 < Cπ3 and also for υ = w1 ≤ w2 < ∞ if υ > −∞,π3(υ) <
∞. It follows from these estimates that convergence in (i) is uniform with respect to
A ∈ B̃1. This implies that Π

(w)
2,3 (A) is a measure, for every w > υ,w < Cπ3 and for

w = υ if υ > −∞,π3(υ) < ∞. These estimates also imply that Π
(w)
2,3(A), as a function

in w, is non-decreasing and right-continuous at any point w > υ,w < Cπ3 and w = υ if
υ > −∞,π3(υ) < ∞, for every A ∈ B̃1. Thus, Π

(w)
2,3 (A) defined in this way satisfies all

properties described in (e) – (h).
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For w > υ and for w = υ if υ > −∞,π3(υ) < ∞, we define a measure on the σ-algebra
B̃1 by the following formula:

Π̂
(w)
2,3 (A) = Π2(A) − Π

(w)
2,3 (A). (4.8.1)

This measure plays the role of the jump measure in the Lévy-Khintchine representa-
tion of infinitely divisible characteristic functions, for t ≥ 0,

φ(w)
2,3(t, z) = exp{tψ(w)

2,3(z)}, z ∈ �1, (4.8.2)

where
ψ(w)

2,3 (z) = ia(w)z − 1
2

b2z2 +

?

�1

(eizs − 1 − izs
1 + s2 )Π̂(w)

2,3 (ds), (4.8.3)

and
a(w) = a −

?

�1

s
1 + s2 Π

(w)
2,3(ds). (4.8.4)

We additionally define Π̂
(w)
2,3 (A) ≡ 0 and φ(w)

2,3(t, z) = exp{t(iaz − 1
2b2z2)}, for w < υ if

υ > −∞,π3(υ) < ∞.
It follows from (e) and (f) that a(w) is a right-continuous function, and, therefore, the

function φ(w)
2,3(t, z) is right-continuous in w for every z ∈ �1, t ≥ 0.

Recall also that the constants a, a(w), b and the measures Π2(A),Π(w)
2,3 (A) in (4.8.1),

(4.8.3), and (4.8.4) are determined by conditions S1 – S3 and S11 – S12.
Recall the space D0 of step functions on (0,∞) continuous from the right and with a

finite number of only positive jumps in every finite sub-interval of (0,∞).
Let us introduce a càdlàg homogeneous mixed Markov process (ξ0(t), ρ0(t)), t > 0,

whose trajectories belong to the space D(1)
(0,∞) × D0 with probability 1. and the transition

probabilities have the following hybrid characteristic-distribution form:

E
{
eiz(ξ0(t+s)−ξ0(s)) · χ(ρ0(t + s) ≤ w) | ξ0(s) = v′, ρ0(s) = w′

}

= χ(w′ ≤ w)e−tπ3(w)φ(w)
2,3(t, z).

(4.8.5)

It should be remarked that the second component, ρ0(t), t > 0, of this process is
an extremal process while the first one, ξ0(t), t > 0, is a càdlàg homogeneous process
with independent increments and the characteristics determined by the second compo-
nent. Note, however, that the corresponding Gaussian sub-component of ξ0(t), t > 0 is
independent of ρ0(t), t > 0.

As follows from the remarks in Subsection 4.7.2, (e) P{(ξ0(t), ρ0(t) ∈ �1×Υ, t > 0} =

1, where the interval Υ was defined in this subsection. This is consistent with formula
(4.8.5).

The following theorem is a particular case of the corresponding result given in Sil-
vestrov and Teugels (2001).
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Theorem 4.8.1. Let the conditions T9, S1 – S3, and S11 – S12 hold. Then

(ξε(t), ρε(t)), t > 0⇒ (ξ0(t), ρ0(t)), t > 0 as ε → 0.

Proof of Theorem 4.8.1. By the definition of the processes ξε(t) and ρε(t), for any 0 =

t0 < t1 < . . . tm < ∞, z1, . . . , zm ∈ �1, −∞ < w1 < . . . < wm < ∞, m ≥ 1 and ε such that
t1nε ≥ 1, we have

E exp{i
m∑

k=1

zkξε(tk)} ·
m∏

k=1

χ(ρε(tk) ≤ wk)

=

m∏

k=1

(E exp{izk,mξε,1} · χ(ρε,1 ≤ wk))[tknε]−[tk−1nε],

(4.8.6)

where zk,m = zk + . . . zm, k = 1, . . . ,m.
It follows from (4.8.6) that the statement of weak convergence given in Theorem

4.8.1 will be proved if we show that the following relation holds for every z ∈ �1 and
every w, which is a continuity point of π3(w):

(E exp{izξε,1} · χ(ρε,1 ≤ w))nε → e−π3(w)φ(w)
2,3(1, z) as ε→ 0. (4.8.7)

This relation is obvious in the case where w < υ, since, in this case, the expression
in the left-hand side of (4.8.7) tends to zero due to condition S11 and the expression in
the right-hand side of (4.8.7) is also equal to zero, as implied by the same condition.

If υ is a point of continuity of the function π3(w), then π3(υ) = ∞. In this case,
again the expression in the left-hand side of (4.8.7), taken for w = υ, tends to zero due
to condition S11 and the expression in the right-hand side of (4.8.7), taken for w = υ, is
also equal to zero.

So, the only case that needs to be considered is when w > υ. Obviously,

(E exp{izξε,1} · χ(ρε,1 ≤ w))nε

= (P{ρε,1 ≤ w})nε(E{exp{izξε,1} | ρε1 ≤ w})nε .
(4.8.8)

By condition S11 for any w > υ,w ∈ Cπ3 , we have

(P{ρε,1 ≤ w})nε → e−π3(w) as ε → 0. (4.8.9)

It follows from (4.8.8) and (4.8.9) that (4.8.7) will be proved if we show that, for
every z ∈ R1 end every w > υ,w ∈ Cπ3 ,

(E{exp{izξε,1} | ρε,1 ≤ w})nε → φ(w)
2,3 (1, z) as ε→ 0. (4.8.10)

For every ε > 0 and w > υ, define sequences of i.i.d. random variables ξ(w)
ε,n , n =

1, 2, . . . such that for v ∈ �1,

P{ξ(w)
ε,1 ≤ v} = P{ξε,1 ≤ v | ρε,1 ≤ w}. (4.8.11)
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Using these sequences we can define sum-processes

ξ(w)
ε (t) =

∑

k≤tnε

ξ(w)
ε,k , t ≥ 0. (4.8.12)

For a given w > υ, relation (4.8.10) is actually equivalent to

ξ(w)
ε (t), t ≥ 0⇒ ξ(w)

0 (t), t ≥ 0 as ε→ 0. (4.8.13)

It has been pointed out in Subsection 4.2.2 that conditions S1 – S3 are necessary
and sufficient for relation (4.8.13) to hold. Of course, all of these conditions should
be checked for the random variables ξ(w)

ε,1 , instead of the random variables ξε,1. These
conditions should also be checked for every point w > υ,w ∈ Cπ3 . Comparison of
formulas (4.2.1) and (4.8.2) shows that we need that the constants a, b and the measures
Π2(A) be replaced in these conditions by the constants a(w), b and the measures Π̂

(w)
2,3(A).

This will be done in separate steps.
(i) The asymptotic relations (a) and (b) in condition S1 have the same structure. Thus,

we give a proof of only one of them.
Note, first, that condition S11 implies that for all w > υ,

P{ρε,1 ≤ w} → 1 as ε→ 0. (4.8.14)

Using conditions S1 (a), S12, and relation (4.8.14) we have, for every w > υ,w ∈ Cπ3 ,
and v > 0, which are points of continuity of the limiting function (considered as a
function of v for a given w), that

nεP{ξ(w)
ε,1 > v} = nε

P{ξε,1 > v, ρε,1 ≤ w}
P{ρε,1 ≤ w}

= nε
P{ξε,1 > v} − P{ξε,1 > v, ρε,1 > w}

P{ρε,1 ≤ w}
→ π2(v) − π2,3(v,w) = Π̂

(w)
2,3 ((v,∞)) as ε→ 0.

(4.8.15)

(ii) Consider the asymptotic relation given in condition S2. Use conditions S1 – S2
and S11 – S12. For every w > υ,w ∈ Cπ3 , and vk > 0, points of continuity of the limiting
function (regarded as a function of vk for a given w) and such that 0 < vk → 0 as k → ∞,
we have

limε→0|nεEξε,1χ(|ξε,1| ≤ vk, ρε,1 > w)|
≤ limε→0nεE|ξε,1|χ(|ξε,1| ≤ vk, ρε,1 > w)

≤ limε→0vknεP{ρε,1 > w} = vkπ3(w) → 0 as k → ∞.
(4.8.16)
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We use (4.8.15) again, together with (4.8.16), to see that, for every appropriate w > υ
and v > 0,

lim
ε→0

nεEξε,1χ(|ξε,1| ≤ v, ρε,1 > w)

= lim
k→∞

lim
ε→0

nεEξε,1χ(vk < |ξε,1| ≤ v, ρε,1 > w)

= lim
k→∞

∫

vk<|s|≤v
sΠ(w)

2,3(ds) =

?

|s|≤v
sΠ(w)

2,3 (ds).

(4.8.17)

By (4.8.17) and condition S2, we get, for appropriate w > υ and v > 0, that

nεEξ
(w)
ε,1 χ(|ξ(w)

ε,1 | ≤ v)

= nε
Eξε,1χ(|ξε,1| ≤ v, ρε,1 ≤ w)

P{ρε,1 ≤ w}
= nε

Eξε,1χ(|ξε,1| ≤ v) − Eξε,1χ(|ξε,1| ≤ v, ρε,1 > w)
P{ρε,1 ≤ w}

→ a(w)(v) = a(v) −
?

|s|≤v
sΠ(w)

2,3 (ds) as ε→ 0.

(4.8.18)

Relation (4.8.18) enables us to calculate the corresponding constant a(w) in (4.8.4)
that replaces a in (4.2.2). Indeed,

a(w) = a(w)(v) −
?

|s|<v

s3

1 + s2 Π̂
(w)
2,3(ds) +

∫

|s|>v

s
1 + s2 Π̂

(w)
2,3(ds)

= a(v) −
?

|s|<v
sΠ(w)

2,3 (ds) −
?

|s|<v

s3

1 + s2 [Π2,3(ds) − Π
(w)
2,3 (ds)]

+

∫

|s|>v

s
1 + s2 [Π2,3(ds) − Π

(w)
2,3 (ds)]

= a −
?

|s|<v
sΠ(w)

2,3(ds) +

?

|s|<v

s3

1 + s2 Π
(w)
2,3(ds)

−
∫

|s|>v

s
1 + s2 Π

(w)
2,3(ds) = a −

?

�1

s
1 + s2 Π

(w)
2,3 (ds).

(4.8.19)

(iii) Finally, we must check condition S3 for the random variables ξ(w)
ε,1 . Note that

relation (4.8.18) implies, in an obvious way, that for w > υ and v > 0,

limε→0nε(Eξ
(w)
ε,1 χ(|ξ(w)

ε,1 | ≤ v))2 = 0. (4.8.20)

Let again w > υ,w ∈ Cπ3 and v > 0 a point of continuity of the limiting function,
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regarded as a function of v for a given w. Then, using conditions S3 and S11 – S12 we get

limε→0nεEξ2
ε,1χ(|ξε,1| ≤ v, ρε,1 > w)

≤ limε→0

√
nεEξ4

ε,1χ(|ξε,1| ≤ v) · √nεP{ρε,1 > w}

≤ limε→0

√
v2nεEξ2

ε,1χ(|ξε,1| ≤ v) · limε→0

√
nεP{ρε,1 > w}

≤
√

v2limε→0Eξ2
ε,1χ(|ξε,1| ≤ v) ·

√
π3(w) → 0 as 0 < v→ 0.

(4.8.21)

Using (4.8.14), (4.8.20), (4.8.21), and conditions S2 and S3 we get, for appropriate
w > υ and v > 0, that

lim
0<v→0

limε→0nε Var ξ(w)
ε,1 χ(|ξ(u)

ε,1| ≤ v)

= lim
0<v→0

limε→0nεE(ξ(w)
ε,1 )2χ(|ξ(w)

ε,1 | ≤ v)

= lim
0<v→0

limε→0(nε
Eξ2

ε,1χ(|ξε,1| ≤ v)

P{ρε,1 ≤ w} − nε
Eξ2

ε,1χ(|ξε,1| ≤ v, ρε,1 > w)

P{ρε,1 ≤ w} )

= lim
0<v→0

limε→0nεEξ2
ε,1χ(|ξε,1| ≤ v)

= lim
0<v→0

limε→0nε Var ξε,1χ(|ξε,1| ≤ v) = b2.

(4.8.22)

Note that the constant b does not depend on w > υ. Combining the above we com-
plete the proof. �

Remark 4.8.1. Conditions S1 – S3, and S11 – S12 are not only sufficient but also necessary
for the relation of weak convergence given in Theorem 4.8.1 to hold.

Let us just give a sketch of the proof. As far as conditions S1 – S3 are concerned,
the necessity statement is a part of the central criterion of convergence and the marginal
weak convergence of the sum-processes ξε(t), t > 0, which follows from the relation of
weak convergence given in Theorem 4.8.1. Condition S11 follows from marginal weak
convergence of the processes ρε(t), t > 0, which also follows from the relation of weak
convergence given in Theorem 4.8.1. This was mentioned in Subsection 4.7.2. Thus,
only condition S12 requires a proof in the necessity statement. By using condition S11
and relations (4.8.2) - (4.8.10), one can show that the relation of weak convergence given
in Theorem 4.8.1 implies relation (4.8.13) to hold. Then, by using S1 – S3 and apply-
ing the necessity statement in the central criterion of convergence to the sum-processes
ξ(w)
ε (t), t > 0, for w > υ one can prove that condition S12 holds.

4.8.2. Examples. The sum-process ξε(t), t ≥ 0 and the max-process ρε(t), t ≥ 0 are
asymptotically independent if and only if the function π2,3(v,w) ≡ 0 for w > υ, v , 0
in condition S12. In this case, a(w) ≡ a and the measure Π̂

(w)
2,3 (A) ≡ Π2(A) for all w ≥ υ.

Therefore, φ(w)
2,3 (t, z) = φ2(t, z).
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Let us also consider the special case when the sum- and max- variables coincide, i.e.
ξε,k ≡ ρε,k, k = 1, 2, . . .. In this case, conditions S11 - S12 are implied by condition S1.

Moreover, in this case, condition S1 (a) implies that π2(v) = π3(v) for v > 0. Also
υ = 0 as follows from the condition S1, which implies that nεP{ξε,1 > v} → ∞ as ε → 0
for any v < 0. Further, π2,3(v,w) = π2(v ∨ w) for v,w > 0, while π2,3(v,w) = 0 for
v < 0,w > 0.

Looking at the limiting processes, it is obvious that, in this case for ε such that
nεt ≥ 1, the random variable ρε(t) = ft(ξε(·)), where ft(x(·)) = maxs∈(0,t] ∆s(x(·)) and
∆s(x(·)) = x(s) − x(s − 0). So, ρε(t) is the maximal jump of the process ξε(s) in the
interval (0, t]. This functional is a.s. J-continuous with respect to measure generated by
the limiting process ξ0(s), s > 0 on Borel σ-algebra of the space D(1)

(0,∞) for every t > 0.
Therefore, ρ0(t) = ft(ξ0(·)), t > 0.

4.8.3. J-convergence of mixed sum-max processes. We now turn to J-convergence
of mixed sum-max processes. We will be dealing with the process γε(t) = (ξε(t), ρε(t)),
t > 0, which has the phase space �1 × �1 and whose trajectories, by the definition,
belong to the space D(1)

(0,∞) ×D0 with probability 1. It is a Markov process. We denote the
transition probabilities of this process by Pε((v,w), t, t + s, A).

The following theorem is a variant of the corresponding result given in Silvestrov
and Teugels (2001).

Theorem 4.8.2. Let the conditions T9, S1 – S3, and S11 – S12 hold. Then

γε(t), t > 0
J−→ γ0(t), t > 0 as ε→ 0.

Proof of Theorem 4.8.2. The weak convergence of the processes γε(t), t > 0 has been
proved in Theorem 4.8.1. So, Theorem 4.8.2 will follow if we can show that, for every
δ > 0 and 0 < T < T ′ < ∞,

lim
c→0

limε→0P{∆J(γε(·), c, T, T ′) ≥ δ} = 0. (4.8.23)

Note that the second component ρε(t), t > 0 is a non-decreasing process with proba-
bility 1. We use this property to reduce the phase space of the second component to the
interval [h,∞). This is an essential part in the proof of (4.8.23).

We choose (a) h > −∞ to be a point of continuity of the function π3(w) if υ = −∞,
and (b) h = υ if υ > −∞.

Introduce the truncated random variables ρ̂(h)
ε,k = ρε,k ∨ h, k = 1, 2, . . ., and the corre-

sponding max-processes

ρ̂(h)
ε (t) = max

k≤1∨tnε
ρ̂(h)
ε,k = ρε(t) ∨ h, t ≥ 0. (4.8.24)

The bivariate process γ̂(h)
ε (t) = (ξε(t), ρ̂

(h)
ε (t)), t > 0 has the phase space�1×[h,∞) and

its trajectories belong to the space D(1)
(0,∞)×D0 with probability 1. It is a Markov processes
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which has, for (v,w) ∈ �1× [h,∞), the same transition probabilities, Pε((v,w), t, t+ s, A),
as the process γε(t), t > 0.

Note that Theorem 4.8.1 can be applied to the max-sum processes γ̂(h)
ε (t), t > 0. All

conditions of Theorem 4.8.1 are satisfied.
The only difference is that, in the case under consideration, the corresponding limit-

ing functions π2(v), π3(w) and π2,3(v,w) in conditions S1 – S3 and S11 – S12 should be
changed. We introduce new functions indexed with an upper index (h) as follows: (c)
π(h)

2 (v) = π2(v) for v , 0; (d) π(h)
3 (w) = π3(w) for w ≥ h, and π(h)

3 (w) = ∞ for w < h;
(e) π(h)

2,3(v,w) = π2,3(v,w) for w ≥ h, v , 0, and π(h)
2,3(v,w) = π2(v) for w < h, v , 0. The

corresponding changes should also be introduced in the constants a and b.
Note that only in the case (a), the changes are actually made, whereas in the case (b),

the new functions coincide with the old ones.
According to Theorem 4.8.1, the following relation holds:

γ̂(h)
ε (t), t > 0⇒ γ̂(h)

0 (t), t ≥ 0 as ε→ 0. (4.8.25)

This relation also follows directly from the statement of Theorem 4.8.1, since ac-
cording to (4.8.24), the random vector γ̂(h)

ε (t) is a continuous function of the random
vector γε(t) for every t > 0 and h ∈ �1.

The limiting process γ̂(h)
0 (t), t > 0 is completely similar to the process described in

Theorem 4.8.1 with the following modification. Its characteristic π(h)
2,3(v,w) is defined

above in (d) - (e). Moreover, it is easily can be shown that the process γ̂(h)
0 (t), t > 0, can

be constructed from the process γ0(t), t > 0 by simply truncating the second component
of this process, that is, γ̂(h)

0 (t) = (ξ0(t), ρ̂(h)
0 (t)), t > 0, where ρ̂(h)

0 (t) = ρ0(t) ∨ h, t > 0.
Note that in the case (a), the truncation does takes place as opposed to the case (b),

where the process ρ̂(h)
0 (t) ≡ ρ0(t), t > 0.

Let us now use the following inequality that holds for any δ > 0 and 0 < T ′ < T ′′ < ∞:

P{∆J(γε(·), c, T, T ′) ≥ 2δ}
≤ P{∆J(γ̂(h)

ε (·), c, T, T ′) ≥ δ} + P{ sup
T≤t≤T ′

|ρ̂(h)
ε (t) − ρε(t)| ≥ δ}. (4.8.26)

Obviously,
P{ sup

T≤t≤T ′
|ρ̂(h)
ε (t) − ρε(t)| ≥ δ} ≤ P{ρε(T ) ≤ h − δ}. (4.8.27)

In the case (a), one can always choose δ/2 ≤ δh ≤ δ in such a way that the point
h− δh is also a point of continuity of the function π3(w). In the case (b), the point υ− δh

is automatically such a point. In both cases, for ε such that nεT ≥ 1, we have

P{ρε(T ) ≤ h − δ} = (P{ρε,1 ≤ h − δh})[nεT ] → e−π3(h−δh)T as ε→ 0. (4.8.28)

In the case (a), for every 0 < T < ∞
lim

h→−∞
limε→0P{ρε(T ) ≤ h − δh} = lim

h→−∞
e−π3(h−δh)T = 0. (4.8.29)
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Inequalities (4.8.27) and relations (4.8.28) and (4.8.29) imply that in the case (a), for
every δ > 0 and 0 < T < T ′ < ∞,

lim
h→−∞

limε→0P{ sup
T≤t≤T ′

|ρ̂(h)
ε (t) − ρε(t)| ≥ δ} = 0. (4.8.30)

In the case (b), the limiting expression in the left-hand side of (4.8.28) is equal to
zero. Thus, the additional limit transition given in (4.8.29) is not required. This shows
that inequality (4.8.27) and relation (4.8.28) imply that, in the case (b), for every δ > 0
and 0 < T < T ′ < ∞,

limε→0P{ sup
T≤t≤T ′

|ρ̂(h)
ε (t) − ρε(t)| ≥ δ} = 0. (4.8.31)

Relations (4.8.26), (4.8.30), and (4.8.31) imply that relation (4.8.23) will follow if
we show that, for every h chosen according (a) or (b), and δ > 0, 0 < T < T ′ < ∞,

lim
c→0

limε→0P{∆J(γ̂(h)
ε (·), c, T, T ′) ≥ δ} = 0. (4.8.32)

Define

αε(h, c, T, T ′, δ) = sup
−∞<v<∞,w≥h

sup
T≤t≤t+s≤t+c≤T ′

Pε((v,w), t, t + s, S δ((v,w))),

where S δ((v,w)) = {(v′,w′) : (|v − v′|2 + |w − w′|2)1/2 > δ}.
We showed in (4.8.25) that the processes γ̂(h)

ε (t), t > 0 weakly converge. As is
known (see, for example, Skorokhod (1958) or Gikhman and Skorokhod (1971)), re-
lation (4.8.32) follows in this case from the following relation that should be proved for
every δ > 0 and 0 < T < T ′ < ∞:

lim
c→0

limε→0 αε(h, c, T, T ′, δ) = 0. (4.8.33)

We now use the fact that the process ρε(t), t > 0 is non-decreasing and that ξε(t), t > 0
is a càdlàg process with independent increments. We get the following estimate:

αε(h, c, T, T ′, 2δ)
≤ sup

T≤t≤t+s≤t+c≤T ′
P{|ξε(t + s) − ξε(t)| > δ}

+ sup
w≥h

sup
T≤t≤t+s≤t+c≤T ′

P{ρε(t + s) − ρε(t) > δ|ρε(t) = w}
≤ sup

T≤t≤t+s≤t+c≤T ′
([nε(t + s)] − [nεt])(P{|ξε,1| > δ}

+ |Eξε,1χ(|ξε,1| ≤ δ)| + Var ξε,1χ(|ξε,1| ≤ δ))

+ sup
w≥h

sup
T≤t≤t+s≤t+c≤T ′

(1 − (P{ρε,1 ≤ w + δ})[nε(t+s)]−[nε t])

≤ cnε(P{|ξε,1| > δ} + |Eξε,1χ(|ξε,1| ≤ δ)|
+ Var ξε,1χ(|ξε,1| ≤ δ)) + 1 − (P{ρε,1 ≤ h + δ})nεc.

(4.8.34)
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We are now in a position to use the truncation of the phase space described above,
and conditions S1 –S3 and S11.

Choose h according (a) or (b), and then δ/2 ≤ δh ≤ δ in such a way that the point
h + δh is also a point of continuity of the function π3(w). In both cases, the quantity

π3(h + δh) < ∞. (4.8.35)

Conditions S1 –S3 and S11, applied to (4.8.34), and (4.8.35) yield

lim
c→0

limε→0αε(h, c, T, T ′, 2δ)

≤ lim
c→0

c · limε→0nε(P{|ξε,1| > δ} + |Eξε,1χ(|ξε,1| ≤ δ)|
+ Var ξε,1χ(|ξε,1| ≤ δ)) + lim

c→0
limε→0(1 − (P{ρε,1 ≤ h + δh})nεc)

= lim
c→0

(1 − e−π3(h+δh)c) = 0.

(4.8.36)

The proof is completed. �

Remark 4.8.2. Theorem 4.8.2 yields J-convergence of the mixed sum-max processes
γε(t), t > 0 on the open interval (0,∞). At the same time, conditions S1 – S3 imply that

the first component of these processes ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε → 0. This means

that these processes satisfy condition O13.

4.8.4. Transformed mixed sum-max processes. Let f (t, x) be a continuous function
defined on [0,∞) × �2 and taking values in �1. The transformed stochastic process
f (t, γε(t)), t > 0 has trajectories that belong to the space D(1)

(0,∞) with probability 1.
Theorems 1.6.12 and 4.8.2 imply J-convergence of the transformed processes

f (t, γε(t)), t > 0
J−→ f (t, γ0(t)), t > 0 as ε→ 0. (4.8.37)

Below, several examples illustrate (4.8.37). We can apply this relation to a number
of processes that represent modifications of the original mixed sum-max processes.

As the first example, take

ρε(t) − ξε(t), t > 0
J−→ ρ0(t) − ξ0(t), t > 0 as ε→ 0. (4.8.38)

Other examples would be

ρε(t)
a + |ξε(t)| , t > 0

J−→ ρ0(t)
a + |ξ0(t)| , t > 0 as ε→ 0 (4.8.39)

and
ρε(t)

at + |ξε(t)| , t > 0
J−→ ρ0(t)

at + |ξ0(t)| , t > 0 as ε→ 0. (4.8.40)
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Here a > 0 is a regularisation parameter that prevents the denominator in the last two
relations to take the value zero.

Relations (4.8.38)-(4.8.40) establish weak convergence of the functionals that de-
scribe deviations of max- and sum-processes.

Since the process γ0(t), t > 0 and the transformed process f (t, γ0(t)), t > 0 are
stochastically continuous, (4.8.37) implies that for any 0 < T1 < T2 < ∞,

sup
t∈[T1,T2]

f (t, γε(t))⇒ sup
t∈[T1,T2]

f (t, γ0(t)) as ε→ 0. (4.8.41)

This relation, if applied to the modified processes (4.8.38) – (4.8.40), establishes
weak convergence of the functional that describes the maximal deviations given by the
corresponding processes.

4.8.5. Mixed sum-max processes with random stopping indices. Theorems 4.8.1
and 4.8.2 can be generalised to a model with random stopping indices.

Let us assume the following weak convergence condition:

A75: (νε, γε(t)), t > 0 ⇒ (ν0, γ0(t)), t > 0 as ε → 0, where (a) ν0 is an a.s. non-negative
random variable, and (b) γ0(t) = (ξ0(t), ρ0(t), t ≥ 0 is a càdlàg homogeneous
Markov process described in (4.8.5).

As above, we also assume that condition I4 holds.
The following theorem generalises Theorems 4.2.4 and 4.7.4. It is a direct corollary

of the translation Theorem 3.4.4 that must be applied to the compositions γε(tνε), t > 0,
in the case where the constant α = 0 and the slowly varying functions h(x) ≡ 1. Remark
2.8.3 that describes a modification of the conditions for the case of the interval (0,∞)
must also be used. Conditions A75 and I4, together with Theorem 4.8.2, imply that
conditions of Theorem 3.4.4 hold.

Theorem 4.8.3. Let conditions T9, A75, and I4 hold. Then

ζε(t) = γε(tνε), t > 0
J−→ ζ0(t) = γ0(tν0), t > 0 as ε→ 0.

Note that the external mixed sum-max processes and the random stopping indices
can be dependent in an arbitrary way in Theorem 4.8.3. The only condition of joint
weak convergence is required. No independence or asymptotic independence conditions
for external sum-max processes and random stopping indices are needed.

Let us impose the following condition:

T10: The sets of random vectors {(ξε,n, ρε,n), ε > 0} are mutually independent for n ≥ 1.

Also, the following lemma can be useful in the case when the normalised stopping
indices converge in probability. We give it without a proof, since its proof is analogous
to those of Lemmas 4.2.1 and 4.7.1.
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Lemma 4.8.1. Let conditions T9, T10, S1 – S3, S11 – S12, and P1 hold. Then condition
A75 holds, moreover,(α) the limiting process γ0(t), t > 0 and the limiting random vari-
able ν0 are independent; (β) γ0(t), t ≥ 0 is a càdlàg homogeneous Markov process which
has the same finite-dimensional distribution as the corresponding process described in
(4.8.5); (γ) ν0 is a random variable which has the same distribution as the the corre-
sponding random variable in condition P1.

The following theorem follows from Theorem 4.8.3 and Lemma 4.8.1.

Theorem 4.8.4. Let conditions T9, T10, S1 – S3, S11 – S12, P1, and I4 hold. Then
condition A75 holds with the process γ0(t), t ≥ 0 and the random variable ν0 which are
independent, and

ζε(t) = γε(tνε), t > 0
J−→ ζ0(t) = γ0(tν0), t > 0 as ε→ 0.

In conclusion, we would like to refer to some works concerning studies of joint
asymptotic behaviour of maxima and sums of i.i.d. random variables. Conditions for
their quotients to tend to 1 were studied by Arov and Bobrov (1960), O’Brien (1980),
Maller and Resnick (1984), and Pruitt (1987). Related results can also be found in Dar-
ling (1952), Smirnov (1952), and Aebi, Embrechts and Mikosch (1992). Joint asymp-
totic distributions of maxima and sums of i.i.d. random variables were studied for the
scale-location model by Breiman (1965), Chow and Teugels (1979), Resnick (1986),
and Haas (1992). Related results can also be found in Lamperty (1964), Anderson and
Turkman (1991), Kesten and Maller (1994), Hsing Tailen (1995), Ho Hwai-Chung and
Hsing Tailen (1996), and the book edited by Hahn, Mason and Weiner (1991).

4.9 Max-processes with renewal stopping

In this section, we study weak and J-convergence limit theorems for the so-called max-
processes with renewal stopping. These processes give another example of the gener-
alised exceeding processes.

4.9.1. Max-processes with renewal stopping. Let, for every ε > 0, (κε,n, ρε,n),
n = 1, 2, . . . be a sequence of random variables taking values in [0,∞) × �1. Further, let
nε > 0 be a non-random function of parameter ε such that nε →∞ as ε→ 0.

We first introduce a mixed sum-max process with non-random stopping index,

βε(t) = (κε(t), ρε(t)) = (
∑

k≤tnε

κε,k, max
k≤1∨tnε

ρε,k), t ≥ 0.

In this case, the following process is usually referred to as a renewal process:

νε(t) = sup(s : κε(s) ≤ t), t > 0,
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and
ζε(t) = ρε(νε(t)), t > 0

is called a max-process with renewal stopping.
The max-processes with renewal stopping ζε(t), t ≥ 0 is another example of the

generalised exceeding processes considered in Sections 4.3 and 4.4. In this case, the
process βε(t) = (κε(t), ρε(t), t ≥ 0 replaces the process αε(t) = (κε(t), ξε(t)), t ≥ 0 in the
definition of the generalised exceeding process.

Theorems formulated in Sections 4.3 – 4.4 can be directly translated to max-processes
with renewal stopping. However, the extremal process ρε(t), t ≥ 0 may not weakly con-
verge at the point 0. So, it is necessary to apply those variants of these theorems, which
relate to the case when the external processes do not converge at the point 0. These
modifications are given in Subsections 4.3.8 and 4.4.2.

Condition A58 takes in this case the following form:

A76: (κε(t), ρε(t)), t ∈ V × U ⇒ (κ0(t), ρ0(t)), t ∈ V × U as ε → 0, where: (a) V and U
are subsets of (0,∞), dense in this interval, (b) κ0(t), t ≥ 0 is a non-negative and
non-decreasing càdlàg process, (c) ρ0(t), t > 0 is a non-decreasing càdlàg process.

Note that, by the definition, κε(t), t > 0 is a non-negative and non-decreasing càdlàg
process for all ε > 0. The relation of weak convergence given in condition A76 imply
in this case that the limiting càdlàg process κ0(t), t > 0 is a.s. non-negative and non-
decreasing. Note that the process κε(t) is actually defined on the interval [0,∞). Since
the càdlàg process κ0(t), t > 0 is a.s. non-negative and non-decreasing, there exists a
proper random variable κ(0) such that κ0(t)

a.s.−→ κ(0) as 0 < t → 0. So, we can assume
that the process κ0(t) is also defined on the interval [0,∞). Finally, this process can be
replaced, in condition A76, by some stochastically equivalent càdlàg modification.

Since the limiting process κ0(t), t ≥ 0 is a non-negative process, condition I6 holds.
However, condition A76 does not require weak convergence of the processes κε(t), t ≥

0 at the point 0. So, despite that κε(0) = 0 with probability 1 for every ε > 0, it is not
guaranteed that the random variable κ0(0) = 0 with probability 1. Since this assumption
usually holds max-processes with renewal stopping based on i.i.d. random variables, we
adopt the following condition:

I23: κ0(0) = 0 with probability1.

Note that this condition implies that condition I13 used in Subsection 4.3.8 holds.
Consider first the case when the limiting stopping renewal process ν0(t), t ≥ 0 is an

a.s. continuous process.
Condition K̄5 introduced in Subsection 4.3.1 remains with no change. This condition

permits to avoid considering the case when the random variables νε(t) can be improper.
So, we have that (a) the random variable νε(t) is finite with probability 1 for every t ≥ 0.
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Condition I9 introduced in Subsection 4.3.1 also stays the same. Recall that this con-
dition requires for κ0(t), t ≥ 0 to be an a.s. strictly increasing càdlàg process. Condition
I9 implies that (b) ν0(t), t ≥ 0 is an a.s. continuous process.

Condition I9 and I23 imply that (c) ν0(0) = 0 with probability 1 and also that (d)
ν0(t) > 0 with probability 1 for every t > 0.

Condition J24 takes in this case the following form:

J27: limc→0 limε→0 P{∆J(βε(·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

Note that it is assumed that 0 < ε → 0. However, under A76 condition J27 is
equivalent to J24, since the limiting process β0(t), t > 0 is a càdlàg process and, therefore,
the asymptotic relation in J27 automatically holds for ε = 0.

Let us restate here Theorem 4.3.11 applying this theorem to max-processes with
renewal stopping and taking into account the remarks made in Subsection 4.3.8.

Theorem 4.9.1. Let conditions K̄5, A76, J27, I9, and I23 hold for the max-processes
βε(t), t ≥ 0. Then

ζε(t), t > 0
J−→ ζ0(t), t > 0 as ε → 0.

We now consider the case when the limiting renewal process ν0(t), t ≥ 0 is a step
càdlàg process.

In this case, the random variables τεn, n = 0, 1, . . . should be defined in the same
way as in Subsection 4.4.1, i.e., as successive moments of positive jumps of the process
κε(t), t ≥ 0, for ε > 0 and ε = 0.

Conditions I16, K̄7, K̄8, and A76 remain with no changes. These conditions should
be required to hold.

Since κε(t), t ≥ 0 is a non-negative and non-decreasing process for ε > 0 and ε = 0,
condition I17 holds. By Remark 4.4.2, conditions I17, I23, and N2 imply that R1 holds.
Conditions I16 and I23 also imply that ν0(0) > 0 with probability 1, that is, condition I14
holds.

Theorem 4.4.4, applied to the max-processes with renewal stopping, takes in this
case the following form.

Theorem 4.9.2. Let conditions I16, K̄7, K̄8, A76, J27, N2, and I23 hold for the max-
processes βε(t), t ≥ 0. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

4.9.2. Max-processes with renewal stopping based on i.i.d. random variables.
Let, for every ε > 0, (κε,n, ρε,n), n = 1, 2, . . . be a sequence of random vectors taking
values in [0,∞) × �1. We assume that the following condition holds:

T11: (κε,n, ρε,n), k = 1, 2, . . . is (for every ε > 0) a sequence of i.i.d. random vectors.
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The conditions that imply weak convergence of mixed sum-max processes were
given in Section 4.8. These are conditions S1 – S3 and S11 – S12.

Since the random variables κε,n are non-negative, these conditions can be transformed
in the following way. Conditions S1 – S3 can be replaced by conditions S4 – S5. Condi-
tion S11 does not require any change. Condition S12 should be modified as follows:

S13: nεP{κε,1 > u, ρε,1 > w} → π1,3(u,w) as ε→ 0 for all u > 0,w > υ, which are points
of continuity of the limiting function π1,3(u,w).

Here, properties of the limiting function are: (a) the function π1,3(u,w) is non-
negative, non-increasing, and right-continuous in every argument for u > 0,w > υ such
that π2,3(v,∞) = π2,3(∞,w) = 0 for v > 0,w > υ; (b) it defines, for every w > υ, a mea-
sure on the σ-algebra of subsets of B+

1 such that Π
(w)
1,3 ((u1, u2]) = π1,3(u1,w) − π1,3(u2,w)

for 0 < u1 ≤ u2 < ∞; (c) Π
(w)
1,3(A) is a non-increasing and continuous from the right

function in w > υ for every A ∈ B+
1 ; (d) the following estimates are valid: Π

(w1)
1,3 (A) −

Π
(w2)
1,3 (A) ≤ (π3(w1) − π3(w2)) ∧ Π1(A), in particular, Π

(w1)
1,3 (A) ≤ π3(w1) ∧ Π1(A), for

υ < w1 ≤ w2 < ∞ and A ∈ B+
1 ; (e) the function π3(w) possesses properties (a) – (b)

listed in connection with condition S11 (in Subsection 4.7.2); (f) the measure Π1(A) pos-
sesses properties (a) – (d) listed in connection with conditions S4 – S5 (in Subsection
4.5.2).

For w > υ and for w = υ if υ > −∞,π3(υ) < ∞, we define a measure on the σ-algebra
B+

1 by the following formula:

Π̂
(w)
1,3 (A) = Π1(A) − Π

(w)
1,3 (A). (4.9.1)

This measure plays the role of the jump measure in the Lévy-Khintchine representa-
tion of infinitely divisible characteristic functions, for t ≥ 0,

φ(w)
1,3(t, y) = exp{tψ(w)

1,3(y)}, y ∈ �1, (4.9.2)

where
ψ(w)

1,3 (y) = id(w)y +

∫ ∞

0
(eiys − 1 − iys

1 + s2 )Π̂(w)
1,3 (ds), (4.9.3)

and
d(w) = d −

∫ ∞

0

s
1 + s2 Π

(w)
1,3 (ds). (4.9.4)

We additionally define Π̂
(w)
1,3 (A) ≡ 0 and φ(w)

1,3(t, y) = eitdy for w < υ if υ > −∞,π3(υ) <
∞.

It follows from (c) and (d) that d(w) is a right-continuous function, and, therefore, the
function φ(w)

1,3(t, y) is right-continuous in w for every y ∈ �1, t ≥ 0.
Also recall that the constants d, d(w) and the measures Π1(A),Π(w)

1,3 (A) in (4.9.1),
(4.9.3), and (4.9.4) are determined by conditions S4 – S5 and S11, S13.
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Let us also introduce a càdlàg homogeneous mixed Markov process (κ0(t), ρ0(t)),
t > 0, such that its trajectories belong to the space D(1)

(0,∞) ×D0 with probability 1 and the
transition probabilities have the following hybrid characteristic-distribution form:

E
{
eiy(κ0(t+s)−κ0(s)) · χ(ρ0(t + s) ≤ w) | ξ0(s) = u′, ρ0(s) = w′

}

= χ(w′ ≤ w)e−tπ3(w)φ(w)
1,3 (t, y).

(4.9.5)

It is worth remarking that the second component, ρ0(t), t > 0, of this limiting process
is an extremal process, while the first one, κ0(t), t > 0, is a càdlàg non-negative homo-
geneous process with independent increments and the characteristics determined by the
second component.

As follows from the remarks in Subsection 4.7.2, P{(κ0(t), ρ0(t) ∈ [0,∞)×Υ, t > 0} =

1, where the interval Υ was defined in this subsection. This is consistent with formula
(4.9.5).

As it follows from Theorem 4.8.1, conditions S4 – S5 and S11, S13 imply the follow-
ing condition:

A77: (κε(t), ρε(t)), t > 0 ⇒ (κ0(t), ρ0(t)), t > 0 as ε → 0, where (κ0(t), ρ0(t)), t > 0 is a
càdlàg homogeneous Markov process described in (4.9.5).

Also, by Theorem 4.8.2, the same conditions S4 – S5 and S11, S13, without any
additional assumptions, also imply that

(κε(t), ρε(t)), t > 0
J−→ (κ0(t), ρ0(t)), t > 0 as ε→ 0. (4.9.6)

Let us first consider the case when condition I21, introduced in Subsection 4.5.4,
holds. This condition imply condition I9. Therefore, the process ν0(t), t ≥ 0 is an a.s.
continuous process.

It is obvious in this case that κ0(0) = κ0(0 + 0) = 0 with probability 1, i.e., condition
I23 holds. So, ν0(0) = 0 with probability 1 and ν0(t) > 0 with probability 1 for every
t > 0.

The next two theorems are from Silvestrov and Teugels (2001).

Theorem 4.9.3. Let conditions T11, S4, S5, S11, S13, and I21 hold. Then

ζε(t) = ρε(νε(t)), t > 0
J−→ ζ0(t) = ρ0(ν0(t)), t > 0 as ε→ 0.

Proof of Theorem 4.9.3. Condition A77 implies that condition A76 holds. Also, the re-
lation of J-convergence (4.9.6) implies that condition J27 holds. Conditions S4 – S5 and
I21 also imply that P{κε,1 > 0} > 0 for all ε small enough. Without loss of generality,

one can assume that this holds for all ε ≥ 0 and, therefore, κε(t)
P−→ ∞ as t → ∞, i.e.,

condition K̄5 holds. Also, condition I21 implies that condition I9 holds. Finally, as was
pointed out above, condition I23 also holds. Therefore, Theorem 4.9.1 can be used and
this gives the statement of Theorem 4.9.3. �
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Let Y0 be the set of points of stochastic continuity of the limiting process ζ0(t) =

ρ0(ν0(t)), t > 0. This set is (0,∞) except for at most countable set. It follows from
Lemma 1.6.5 that the processes ζε(t), t ≥ 0 weakly converge on the set Y0.

The structure of the set Y0 needs a special study, as well as the question whether
condition I21 implies that Y0 = [0,∞) or not.

Let us also consider the case when condition I22 holds, i.e., the limiting renewal
stopping process ν0(t), t ≥ 0 is a step càdlàg process.

Theorem 4.9.4. Let conditions T11, S4 – S6, S11, S13, and I22 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorems 4.9.4. We use Theorem 4.9.2. Condition A77 implies that condition
A76 holds. Also, the relation of J-convergence (4.9.6) implies that condition J27 holds.
The step processes κε(t), t ≥ 0 have the structure described in the proof of Lemma 4.5.3.
It is readily seen that relations (d) - (l) given in this proof imply that conditions I16, K̄7,
K̄8 hold (at least for all ε small enough) and that also condition N2 holds. Therefore,
Theorem 4.9.2 can be applied and this yields the statement of the Theorem 4.9.4. �

Let Y0 be the set of all points of stochastic continuity of the process ζ0(t), t > 0.
Recall that the set V0, which is the set of points of stochastic continuity of the process
ν0(t), t > 0 coincides with (0,∞) except for at most a countable set. Actually, this set
was described in Subsection 4.5.3. Obviously, the process ζ0(t) = ξ0(ν0(t)), t > 0 is
stochastically continuous at points of the set V0, i.e., V0 ⊆ Y0. It follows from Lemma
1.6.5 that the processes ζε(t), t > 0 weakly converge on the set Y0.

The structure of the set Y0 needs a special study. In particular, it would be interest-
ing to verify whether Y0 = V0 if condition I22 holds and the external limiting process
ρ0(t), t ≥ 0 does not degenerate to a constant.

4.9.3. Extremes for regenerative processes. One of natural applications of the
results concerning max-processes with renewal stopping relates to extremes for regen-
erative processes. Let, for every ε > 0, ηε(t), t ≥ 0 be a real-valued regenerative càdlàg
process with regenerative moments 0 = τε,0 ≤ τε,1 ≤ . . ..

We are interested in limit theorems for the extremal processes

%ε(t) = sup
s≤tnε

ηε(s), t > 0.

Let us introduce some functionals which play an essential role in further consider-
ation. First of all, κε,k = τε,k − τε,k−1 is the time between two successive regenerations,
κε(t) = τε,[tnε] =

∑
k≤tnε κε,k is the moment of the last regeneration before the moment tnε,

and νε(t) = sup(s : κε(s) ≤ t). By the definition, nενε(t) − 1 is the number of regener-
ations in the interval [0, tnε]. Further, ρε,k = supτε,k−1≤s<τε,k ηε(s) is the maximum of the
process ηε(t) in the corresponding regeneration period, and ρε(t) = maxk≤tnε ρε,k is the
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maximum of the process ηε(t) on the interval [0, κε(t)). Finally, ςε(t) = supκε(t)≤s≤tnε ηε(s)
is the maximum of the process ηε(t) on the interval [κε(t), tnε]. Here k = 0, 1, . . . and
t > 0.

Note that (κε,k, ρε,k), k ≥ 1 is a sequence of i.i.d. random vectors, since ηε(t), t ≥ 0 is
a regenerative process.

Applications of results about renewal type extremal processes to the processes %ε(t), t >
0 are based on the following representation:

%ε(t) = max( max
k≤nενε(t)−1

ρε,k, ςε(t)), t > 0. (4.9.7)

From this representation, it follows that the extremal process %ε(t), t > 0 can be
approximated from below and above by two max-processes with renewal type stopping,

ζ′ε(t) ≤ %ε(t) ≤ ζε(t) for t > 0, (4.9.8)

where
ζε(t) = max

k≤nενε(t)
ρε,k, ζ

′
ε(t) = max

k≤nενε(t)−1
ρε,k, t > 0. (4.9.9)

By the definition, ζε(t) = ρε(νε(t)), t > 0 and ζ′ε(t) = ρε(νε(t) − 1/nε), t > 0.
The process ζε(t), t > 0 is a max-process with renewal stopping. Such processes

were considered in Subsections 4.9.1. and 4.9.2. In the theorem formulated below, we
impose conditions on the distributions of the random vectors (κε,1, ρε,1). We identify
these random vectors with the ones defined in Subsection 4.9.2 and the corresponding
limiting process with those in Theorem 4.9.3.

The process ζ′ε(t) is, however, a slight modification of a renewal type extremal pro-
cess with the internal stopping process νε(t) replaced by the process νε(t) − 1/nε. Under
the conditions of Theorem 4.9.5 formulated below, both approximation processes, as we
shall see, converge weakly to the same limiting process and so do the extremal processes
%ε(t), t > 0.

Let Y0 be the set of points of stochastic continuity of the process ζ0(t) = ρ0(ν0(t),
t > 0.

Theorem 4.9.5. Let conditions S4, S5, S11, S13, and I21 hold. Then

%ε(t), t ∈ Y0 ⇒ %0(t) = ρ0(ν0(t)), t ∈ Y0 as ε→ 0. (4.9.10)

Proof of Theorem 4.9.5. Theorem 4.9.3 implies that

ζε(t) = ρε(νε(t)), t > 0
J−→ ζ0(t) = ρ0(ν0(t)), t > 0 as ε→ 0. (4.9.11)

A similar relation can be obtained for the processes ζ′ε(t) = ρε(νε(t) − 1/nε), t > 0.
Indeed, as was pointed out in the proof of Theorem 4.9.3, condition A77 and I21 imply
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that condition A76, which is a variant of condition A58, and condition K̄5 hold. Also,
relation (4.9.11) implies that condition J27, which a version of condition J24, holds.

In this case, (a) νε(0)
P−→ ν0(0) = 0 as ε → 0. Note also that (ν0(s), ρ0(t)), t > 0 is a

stochastically continuous process in this case. So, it follows from (a) and Lemma 4.3.1
that

(νε(s), ρε(t)), (s, t) ∈ [0,∞) × (0,∞)
⇒ (ν0(s), ρ0(t)), (s, t) ∈ [0,∞) × (0,∞) as ε→ 0.

(4.9.12)

It is obvious that the process νε(t), t > 0 can be replaced by the process νε(t)−1/nε, t >
0, in (4.9.12).

As was pointed out in the proofs of Theorems 4.3.10 and 4.3.11, conditions A58, K̄5,
and J24 imply that condition F6 holds for the processes ρε(t), t ≥ 0, which replace, in
this case, the processes ξε(t), t ≥ 0, and the processes νε(t), t ≥ 0. Obviously, condition
F6 holds also for the processes ρε(t), t ≥ 0 and the processes νε(t) − 1/nε, t ≥ 0, with the
same set W ′′

0 .
Relation of weak convergence (4.9.11) was obtained by applying Theorem 3.4.3 to

the compositions ζε(t) = ρε(νε(t)), t > 0. But it follows from the remarks made above
that Theorem 3.4.3 can also be applied to the compositions ζ′ε(t) = ρε(νε(t)−1/nε), t > 0.
So, the following relation holds:

ζ′ε(t) = ρε(νε(t) − 1/nε), t > 0
J−→ ζ0(t) = ρ0(ν0(t)), t > 0 as ε → 0. (4.9.13)

Relations (4.9.11) and (4.9.13) imply weak convergence of the processes ζε(t) and
ζ′ε(t) on the set Y0, i.e.,

ζε(t), t ∈ Y0 ⇒ ζ0(t), t ∈ Y0 as ε→ 0. (4.9.14)

and
ζ′ε(t), t ∈ Y0 ⇒ ζ0(t), t ∈ Y0 as ε→ 0. (4.9.15)

Inequality (4.9.8), relations (4.9.14) and (4.9.15), and Lemma 1.2.6 imply the asymp-
totic relation given in Theorem 4.9.5. �

The question about the J-convergence of the processes %ε(t), t > 0 is more compli-
cated. The procedure used to prove relations (4.9.14) and (4.9.15) also allows to prove
that

(ζε(t), ζ′ε(t)), t ∈ Y0 ⇒ (ζ0(t), ζ0(t)), t ∈ Y0 as ε→ 0. (4.9.16)

From (4.9.16), it follows that, for t ∈ Y0,

0 ≤ max(%ε(t) − ζ′ε(t), ζε(t) − %ε(t)) ≤ ζε(t) − ζ′ε(t)
P−→ 0 as ε→ 0. (4.9.17)
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However, (4.9.11), (4.9.13), and (4.9.17) do not necessarily guarantee J-convergence
of the processes %ε(t), t > 0.

For example, consider a regenerative process with regeneration moments τε,k =

k/nε, k = 0, 1, . . . and ηε(t) = ξk · (t − (k − 1)/nε), for (k − 1)/nε ≤ t < k/nε, k = 1, 2, . . ..
Here, ξk, k ≥ 1 is a sequence of i.i.d. random variables with the distribution function
G(u) = χ[1,∞)(u)(1 − 1/u).

Conditions S4 – S5 and S11, S13 hold. The process κ0(t) = ν0(t) = t, t > 0, and
ρ0(t), t > 0 is an extremal process with the function π3(u) = u−1.

In this case, the processes ζ′ε(t) = maxk≤[tnε] ξk/nε. Let us take some δ > 0. It
is not difficult to show that lim

ε→0 P{sup0≤t≤T ∆t(ζ′ε(·)) > δ} > 0 for T > 0. For any
point tε,δ where the process ζ′ε(t) has a jump greater than or equal to δ, there exist points
tε,δ − 1/nε ≤ t′ < t < t′′ ≤ tε,δ such that %ε(t)− %ε(t′) ≥ δ/2 and %ε(t′′)− %ε(t) ≥ δ/2. This
implies that the processes %ε(t), t > 0 can not be compact in the topology J.

In connection with Theorem 4.9.5, we would like to mentioned that some related re-
sults concerning exceedances of ergodic regenerative processes with discrete time can be
found in papers of Serfozo (1980), Rootzén (1988), and Leadbetter and Rootzén (1988).
For the case of asymptotically independent external processes and internal stopping pro-
cesses, Theorem 4.9.5 was proved in Silvestrov and Teugels (1998a).

4.10 Shock processes

In this section we consider the class of so-called shock processes. This class of processes
is also an example of generalised exceeding processes considered in Sections 4.3 and 4.4.

4.10.1. General shock processes. Let, for every ε > 0, (ξε,n, ρε,n), n = 1, 2, . . . be a
sequence of random vectors taking values in �1 × [0,∞). In what follows, we let nε > 0
be a non-random function such that nε →∞ as ε→ 0.

We introduce a mixed sum-max process,

γε(t) = (ξε(t), ρε(t)) = (
∑

k≤tnε

ξε,k, max
k≤1∨tnε

ρε,k), t ≥ 0.

Let us now introduce a max-renewal process,

νε(t) = sup(s : ρε(s) ≤ t), t ≥ 0,

and a process which can be called a shock process,

ζε(t) = ξε(νε(t)), t ≥ 0.

Shock processes give another example of generalised exceeding processes. However,
in this case the sum-process ξε(t), t ≥ 0 plays the role of an external process, while the
max-process ρε(t), t ≥ 0 is used to construct the internal stopping process νε(t), t ≥ 0.
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Therefore, the basic process (κε(t), ξε(t)), t ≥ 0 should be replaced in this case by the
process (ρε(t), ξε(t)), t ≥ 0. In order to keep notations consistent with those introduced
in Section 4.8, we exchange components of this process and use the notation γε(t) =

(ξε(t), ρε(t)), t ≥ 0.
Let us note that the assumption that the random variables ρε,n, n = 1, 2, . . . are non-

negative, is not important. Indeed, if these random variables are real-valued, they can
be replaced by the non-negative random variables ρ+

ε,n = max(ρε,n, 0), n = 1, 2, . . .. Ob-
viously, the process ρ+

ε (t) = maxk≤1∨tnε ρ
+
ε,k = max(ρε(t), 0), t ≥ 0. But the process

νε(t) = sup(s : ρε(s) ≤ t) = sup(s : ρ+
ε (s) ≤ t), t ≥ 0.

By the definition, the max-process ρε(t), t > 0 is a non-decreasing process. Moreover,
it is a step càdlàg process with only positive jumps. Let s > 0 and s = τ(s)

ε,0 < τ(s)
ε,1 <

τ(s)
ε,2 < . . . be a sequence of successive moments of positive jumps of this process on

the interval [s,∞). This sequence is a.s. strictly monotone. Then ρε(s) = ρε(τ
(s)
ε,0) <

ρε(τ
(s)
ε,1) < ρε(τ

(s)
ε,n) < . . . is a sequence of values of this process at the successive moments

of positive jumps. This sequence is also a.s. strictly monotone. It follows from the
definition of these sequences that ρε(t) = ρε(τ

(s)
ε,k−1) for t ∈ [τ(s)

εk−1, τ
(s)
εk ), k ≥ 1.

In Subsection 4.10.2, we consider the basic case when the shock processes are con-
structed from a sequences of i.i.d. random variables. Let us adjust the conditions to this
situation. In particular, we restrict the consideration to the case when the corresponding
limiting extremal process is an a.s. step càdlàg process with only positive jumps.

The weak convergence condition A56 takes, in this case, the following form:

A78: (ξε(t), ρε(t)), t ∈ U × V ⇒ (ξ0(t), ρ0(t)), t ∈ U × V as ε → 0, where (a) U is a
subset of [0,∞) that is dense in this interval and contains the point 0, (b) V is a
subset of (0,∞), dense in this interval, (c) ξ0(t), t ≥ 0 is an a.s. càdlàg process,
(d) ρ0(t), t > 0 is an a.s. step càdlàg process with only positive jumps and a finite
number of jumps in any finite sub-interval of the interval (0,∞).

The assumption (d) in this condition means that, for every s > 0, (a) s = τ(s)
0,0 < τ

(s)
0,1 <

τ(s)
0,2 < . . . is an a.s. strictly monotone sequence of successive moments of positive jumps

of the process ρ0(t), t ∈ [s,∞), (b) ρ0(s) = ρ0(τ(s)
0,0) < ρ0(τ(s)

0,1) < ρ0(τ(s)
0,n) < . . . is an

a.s. strictly monotone sequence of values of this process at the successive moments of
positive jumps, (c) ρ0(t) = ρ0(τ(s)

0,k−1) for t ∈ [τ(s)
0k−1, τ

(s)
0k ), k ≥ 1.

The process ρε(t), t ≥ 0 should replace the process κε(t), t ≥ 0 in conditions I18, K̄9,
K̄10. These conditions should be required to hold.

Condition J24 takes, in this case, the following form:

J28: limc→0 limε→0 P{∆J(γε(·), c, T ′, T ′′) > δ} = 0, δ > 0, 0 < T ′ < T ′′ < ∞.

It follows from the definition of the sum-processes ξε(t), t ≥ 0 that the random vari-
able ξε(0) = 0 with probability 1 for every ε > 0. Due to condition A78, we also have
ξ0(0) = 0 with probability 1.
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Condition O13 takes, in this case, the following form:

O15: lim0<c→0 limε→0 P{sup0≤t≤c |ξε(t)| > δ} = 0, δ > 0.

Note that it is assumed that 0 < ε → 0. However, under A78, condition J28 is
equivalent to J24 and condition O15 is equivalent to O13. Indeed, the limiting processes
γ0(t), t > 0 and ξ0(t), t ≥ 0 are càdlàg processes and, therefore, the asymptotic relations
in J28 and O15 automatically hold for ε = 0.

The process ρε(t), t ≥ 0 should replace the process κε(t), t ≥ 0 in conditions N3, R3
and R4. These conditions should be required to hold. Moreover, since ρε(t), t ≥ 0 is a
non-negative process for every ε ≥ 0, condition I17 holds in this case. Conditions I17
and R4 imply that condition R3 holds.

Remarks made above let us reformulate Theorem 4.4.6 in the following form.

Theorem 4.10.1. Let conditions I18, K̄9, K̄10, A78, J28, O15, N3, and R4 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

4.10.2. Shock processes based on i.i.d. random variables. Let, for every ε > 0,
(ξε,n, ρε,n), n = 1, 2, . . . be a sequence of random vectors taking values in �1 × [0,∞).

We assume that condition T9 is satisfied. This means that (ξε,n, ρε,n), k = 1, 2, . . . is a
sequence of i.i.d. random vectors.

We also assume that conditions S1 – S3 and S11 – S12 hold. According to Theorem
4.8.1, these conditions imply the following relation of weak convergence:

γε(t) = (ξε(t), ρε(t)), t > 0⇒ γ0(t) = (ξ0(t), ρ0(t)), t > 0 as ε→ 0, (4.10.1)

where the process (ξ0(t), ρ0(t)), t > 0 is described in Theorem 4.8.1.
Note that, in this case, the random variable ξε(0) = 0 with probability 1 for every

ε > 0. Also, since ξ0(t), t > 0 is a homogeneous càdlàg process with independent

increments, the random variables ξ0(t)
P1−→ 0 as 0 < t → 0. Thus, we can always define

ξ0(0) = 0 and replace relation (4.10.1) by the following condition:

A79: (ξε(t), ρε(s)), (t, s) ∈ [0,∞) × (0,∞)⇒ (ξ0(t), ρ0(t)), (t, s) ∈ [0,∞) × (0,∞) as ε→
0, where the process (ξ0(t), ρ0(t)), t > 0 is described in Theorem 4.8.1.

As was shown in Theorem 4.8.2, conditions S1 – S3 and S11 – S12 imply also that

γε(t), t > 0
J−→ γ0(t), t > 0 as ε→ 0. (4.10.2)

Relation (4.10.2) implies that the condition of J-compactness J28 holds.
Conditions S1 - S3 imply also that

ξε(t), t ≥ 0
J−→ ξ0(t), t ≥ 0 as ε→ 0. (4.10.3)
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By Remark 4.8.2, relation (4.10.3) implies that condition O15 holds.
Denote Gε(u) = P{ρε,1 ≤ u}. This distribution function is concentrated on the interval

[0,∞), i.e., Gε(u) = 0 for u < 0.
To avoid the case when νε(t), t ≥ 0 is an improper process, we assume that the

following condition holds:

I24: 1 −Gε(v) > 0 for v ≥ 0 and every ε > 0.

Under condition I24, the random variable νε(t) < ∞with probability 1 for every t ≥ 0
and ε > 0.

Let us define, for every ε ≥ 0, the random variables κ(s)
ε,n = τ(s)

ε,n − τ(s)
ε,n−1, n = 0, 1, . . ..

Here τε,−1 = s and, therefore, κε,0 = 0. For ε > 0, the sequence of random variables
(κ(s)
ε,n, ρε(τ

(s)
ε,n)), n = 0, 1, . . . is a homogeneous Markov chain with the phase space [0,∞)×

[0,∞), the initial distribution

P{κ(s)
ε,0 ≤ t, ρε(τ

(s)
ε,0) ≤ v} = χ(0 ≤ t)Gε(v)[snε], (4.10.4)

and the transition probabilities

P{κ(s)
ε,n+1 ≤ t, ρε(τ

(s)
ε,n+1) ≤ w | κ(s)

ε,n = t′, ρε(τ(s)
ε,n) = v}

= (1 −Gε(v)[tnε])χ(v ≤ w)(1 − (1 −Gε(w))/(1 −Gε(v))).
(4.10.5)

The corresponding limiting sequence (κ(s)
0,n, ρ0(τ(s)

0,n)), n = 0, 1, . . . is also a homoge-
neous Markov chain with the phase space [0,∞) × [0,∞), the initial distribution

P{κ(s)
0,0 ≤ t, ρ0(τ(s)

0,0) ≤ v} = χ(0 ≤ t)e−π3(v)s, (4.10.6)

and the transition probabilities

P{κ(s)
0,n+1 ≤ t, ρ0(τ(s)

0,n+1) ≤ w | κ(s)
0,n = t′, ρ0(τ(s)

0,n) = v}
= (1 − e−π3(v)t)χ(v ≤ w)(1 − π3(w)/π3(v)).

(4.10.7)

Note that, because the random variables ρε,k, k ≥ 1 are non-negative for every ε > 0,
the functional υ = sup(w : π3(w) = ∞) ≥ 0.

As follows from the remarks given in Subsection 4.7.2, (a) P{(κ(s)
0,n, ρ0(τ(s)

0,n)) ∈ [0,∞)×
Υ, n = 0, 1, . . .} = 1, where the interval Υ was defined in this subsection. This is consis-
tent with formulas (4.10.6) and (4.10.7). It follows from these formulas that, for every
s > 0, the two-dimensional distribution function of the random variable (κ(s)

0,n, ρ0(τ(s)
0,n)) =

(0, ρ0(s)) is concentrated on the set [0,∞) × Υ and the transition probability given in
(4.10.7) is a two-dimensional distribution function in (t,w) concentrated on the set [0,∞)×
Υ for every (t′, v) ∈ [0,∞) × Υ.

So, we need to use formula (4.10.7) only if (b) (t′, v), (t,w) ∈ [0,∞)×Υ. In this case,
the expression in the right-hand side of (4.10.7) is well defined.
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The way to deal with this formula when the expression in the right-hand side of
(4.10.7) is not well-defined is described in Subsection 4.7.2.

To avoid the case when ν0(t), t ≥ 0 is an improper process, we assume that the
following condition holds:

I25: π3(w) > 0 for w ≥ 0.

Under condition I25, the random variable ν0(t) < ∞ with probability 1 for every
t ≥ 0.

Note also that, under condition I26, the interval Υ is either (υ,∞), if π3(υ) = ∞, or
[υ,∞), if π3(υ) < ∞.

Conditions I24 and I25 imply that conditions I18, K̄9, and K̄10 formulated in Sub-
section 4.4.3 hold.

In order to simplify the consideration, we assume that the following two conditions
hold:

S14: nε(1 −Gε(υ))→ π3(υ) as ε→ 0,

and

I26: π3(w) is a continuous function for w > υ.

Note that is the case where π3(υ) = ∞, condition S14 is implied by condition S11.

Theorem 4.10.2. Let conditions T9, S1 – S3, S11, S12, S14, and I24 – I26 hold. Then

ζε(t), t ≥ 0
J−→ ζ0(t), t ≥ 0 as ε → 0.

Proof of Theorem 4.10.2. The only conditions N3 and R4 need to be proved.
Take an arbitrary s > 0. Note that the limiting distribution function e−π3(v)s is continu-

ous on the interval [υ,∞), due to condition I26. At the point υ, this distribution function
is either continuous, if π3(υ) = ∞, or has the jump e−π3(υ)s, if π3(υ) < ∞. However,
conditions S11, S14, and I26 imply that

Gε(v)[snε] → e−π3(v)s as ε → 0, v ≥ 0. (4.10.8)

It follows from relation (4.10.8) that

P{ρε(τ(s)
ε,0) ∈ Υ} → 0 as ε→ 0. (4.10.9)

Due to monotonicity of the random sequence ρε(τ
(s)
ε,n), n = 0, 1, . . ., (c) a relation

similar to (4.10.9) also holds for the random variables ρε(τ
(s)
ε,n) for every n = 0, 1, . . ..

Also, conditions S11, S14, and I26 imply that, for all v,w ∈ Υ,

χ(v ≤ w)(1 − (1 −Gε(w))/(1 −Gε(v)))
→ χ(v ≤ w)(1 − π3(w)/π3(v))) as ε→ 0.

(4.10.10)
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Take an arbitrary w ∈ Υ. Relation (4.10.10) can be supplemented with the following
facts. Firstly, by condition S14, (d) we have that relation (4.10.10) also holds for u = υ.
Secondly, by the definition, (e) the functions χ(v ≤ w)(1 − (1 − Gε(w))/(1 − Gε(v))) and
χ(v ≤ w)(1−π3(w)/π3(v))) are non-negative and no-increasing in v on the interval [υ,∞).
Thirdly, by condition I26, (f) the function χ(v ≤ w)(1 − π3(w)/π3(v))) is continuous on
the interval [υ,∞).

Taking into account (d) – (f) and using relations (4.10.8), (4.10.9), and (4.10.10) we
can get, in an obvious way, that for any w0,w1 ∈ Υ,

lim
ε→0

P{ρε(τ(s)
ε,0) ≤ w0, ρε(τ

(s)
ε,1) ≤ w1}

= lim
ε→0

∫

[0,w0]
χ(v ≤ w1)

Gε(w1) −Gε(v)
1 −Gε(v)

dvGε(v)[snε]

= lim
ε→0

∫

Υ∩[0,w0]
χ(v ≤ w1)

Gε(w1) −Gε(v)
1 −Gε(v)

dvGε(v)[snε]

+ lim
ε→0

∫

Υ∩[0,w0]
χ(v ≤ w1)

Gε(w1) −Gε(v)
1 −Gε(v)

dvGε(v)[snε]

=

∫

Υ∩[0,w0]
χ(v ≤ w1)

π3(v) − π3(w1)
π3(v)

dv exp−π3(v)s

=

∫

[0,w0]
χ(v ≤ w1)

π3(v) − π3(w1)
π3(v)

dv exp−π3(v)s

= P{ρ0(τ(s)
0,0) ≤ w0, ρ0(τ(s)

0,1) ≤ w1}.

(4.10.11)

Note that, by (4.10.9) and (c), the expression in the left-hand side of (4.10.11) tends
to 0 if at least one of the points w0, w1 does not belong to the interval Υ. So, relation
(4.10.11) imply that (g) the random vectors (ρε(τ

(s)
ε,0), ρε(τ

(s)
ε,1)) weakly converge as ε → 0.

By continuing the asymptotic calculations given in (4.10.8) – (4.10.11) in an obvious
iterative way, it can be shown that

ρε(τ(s)
ε,n), n = 0, 1, . . .⇒ ρ0(τ(s)

0,n), n = 0, 1, . . . as ε→ 0. (4.10.12)

Due to (4.10.12), conditions N3 and R4 follow from formulas (4.10.7) and (4.10.6),
and conditions I25, I26. The first one is that (h) the sequence of random variables
ρ0(τ(s)

0,n), n = 0, 1, . . . is strictly increasing with probability 1. The second one is that
(i) P{0 < ρ0(τ(s)

0,0) ≤ t} = e−π3(t)s − e−π3(0)s → 0 as 0 < t → 0. �

It is useful to note that the finite-dimensional distributions of the stopping process
ν0(t) = sup(s : ρ0(s) ≤ t), t ≥ 0 have, in this case, the following form,

P{ν0(tk) ≥ sk, k = 1, . . . , n} = P{ρ0(sk) ≤ tk, k = 1, . . . , n}

=

n∏

k=1

exp{−π3(tk)(sk − sk−1)}, (4.10.13)
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for 0 = t0 ≤ t1 ≤ . . . ≤ tn, 0 = s0 ≤ s1 ≤ . . . ≤ sn, n ≥ 1.
In particular, the random variable ν0(t) has an exponential distribution with parameter

π3(t), for t ≥ 0.
4.10.3. Examples. Let us consider the scale-location model in which the random

vectors (ξk, ρk), k ≥ 1 do not depend on the series parameter ε > 0. We assume that the
following condition holds:

T12: (ξk, ρk), k = 1, 2, . . . is a sequence of i.i.d. random variables taking values in
�1 × [0,∞).

Let us consider the case when the limiting process ξ0(t), t > 0, in condition A79, is
a non-random linear function or a standard Wiener process, while ρ0(t), t > 0 is a stable
extremal process.

Let α ∈ (0, 1) and denote by ρ(α)(t), t > 0, the extremal process described in Sub-
section 4.7.2 with the function π3(w) = ∞ for w ≤ 0 and w−α/Γ(1 − α) for w > 0.
Let also ν(α)(t) = sup(s : ρ(α)(s) ≤ t), t ≥ 0. Bellow, 0 < tε → ∞ as ε → 0 and
nε = tαε /Γ(1 − α)h(tε), where h(x) is a slowly varying function.

Let Eξ1 = a, Var ξ1 = b2, and w(t), t ≥ 0 be a standard Wiener process independent
of the process ν(α)(t), t ≥ 0.

Theorem 4.10.3. Let (α) E|ξ1| < ∞, (β) P{ρ1 > x} ∼ x−αh(x) as x→ ∞. Then

ζ(ttε)
nε

, t ≥ 0
J−→ aν(α)(t), t ≥ 0 as ε→ 0.

Theorem 4.10.4. Let (α) Eξ2
1 < ∞,Eξ1 = 0, (β) P{ρ1 > x} ∼ x−αh(x) as x→ ∞. Then

ζ(ttε)√
nε
, t ≥ 0

J−→ bw(ν(α)(t)), t ≥ 0 as ε→ 0.

Proof of Theorems 4.10.3 and 4.10.4. Let us first prove Theorem 4.10.3. In this case,
we use the normalisation functions nε, tε as defined above, and the random variables
ξε,k = ξk/nε, k ≥ 1 and ρε,k = ρk/tε, k ≥ 1.

Condition (β) implies that

nεP{ρ1 > wtε} → w−α/Γ(1 − α) as ε→ 0, w > 0. (4.10.14)

Since the random variable ρ1 is non-negative, relation (4.10.14) implies that condi-
tion S11 holds for the random variables ρε,1 = ρ1/tε with the function π3(w) described
above.

Obviously, condition (β) implies that condition I24 holds. Also, conditions I25 and
I26 hold. This follows from the explicit formula for π3(w) given above.

Condition S13 is implied by condition S11, since in this case υ = 0 and π3(0) = ∞.
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Also, the condition E|ξ1| < ∞ implies that

nεP{|ξ1| > vnε} → 0 as ε→ 0, v > 0. (4.10.15)

Relation (4.10.15) implies that condition S1 holds for the random variables ξε,1 =

ξ1/nε with the function π2(v) = 0 for v , 0. Note that, in this case, conditions S2 and S3
hold with the limiting constants a and 0, respectively.

Relation (4.10.15) also implies that

nεP{|ξ1| > vnε, ρ1 > wtε} → 0 as ε→ 0, v,w > 0. (4.10.16)

Hence, condition S12 also holds with the function π2,3(v,w) = 0 for v , 0,w > 0.
By applying Theorem 4.8.1, we get now that condition A79 holds and the corre-

sponding limiting process is (ξ0(t), ρ0(t)) = (at, ρ(α)(t)), t > 0.
Now we can complete the proof of Theorem 4.10.3 by applying Theorem 4.10.2.
The proof of Theorem 4.10.4 is analogous. In this case, we use nε as defined above,

and the random variables ξε,k = ξk/
√

nε, k ≥ 1 and ρε,k = ρk/tε, k ≥ 1.
The condition Eξ2

1 < ∞,Eξ1 = 0 implies that

nεP{|ξ1| > v
√

nε} → 0 as ε→ 0, v > 0. (4.10.17)

Relation (4.10.17) implies that condition S1 holds for the random variables ξε,1 =

ξ1/
√

nε with the function π2(v) = 0 for v , 0. Note that, in this case, conditions S2 and
S3 hold with the limiting constants 0 and b2, respectively.

Relation (4.10.17) also implies that

nεP{|ξ1| > v
√

nε, ρ1 > wtε} → 0 as ε→ 0, v,w > 0. (4.10.18)

Hence, condition S12 also holds with the function π2,3(v,w) = 0 for v , 0,w > 0.
By applying Theorem 4.8.1, we get now that condition A79 holds and the corre-

sponding limiting process is (ξ0(t), ρ0(t)) = (bw(t), ρ(α)(t)), t > 0, where the processes
w(t), t > 0 and ρ(α)(t), t > 0 are independent.

Now we can complete the proof of Theorem 4.10.4 by applying Theorem 4.10.2. �

It should be noted that the corresponding limiting processes in Theorems 4.10.3 and
4.10.4 are stochastically continuous. So, the set of weak convergence in both cases is
the interval [0,∞).

4.10.4. References Theorem 4.2.1, which gives conditions of weak convergence
for general sum-processes with random stopping, and Theorem 4.2.3, which specify
Theorem 4.2.1 for sum-processes with random stopping based on i.i.d. random variables,
are direct corollaries of the limit theorems from Silvestrov (1971b, 1972a, 1972e). As
far as conditions of J-convergence are concerned, the corresponding results, given in
Theorem 4.2.2 and 4.2.4, are direct corollaries of the corresponding limit theorems from



4.10. Shock processes 359

Silvestrov (1972b, 1972e). Conditions of J-convergence for general sum-processes with
random stopping, similar to those given in Theorem 4.2.2, can also be derived from the
results of Whitt (1973, 1980). In the case of scale-location model, the related results can
be also found in Durret and Resnik (1977).

Theorems 4.2.3 and 4.2.4 give the most general and natural condition of weak and
J-convergence of such sums in the case of arbitrary dependent external sum-processes
based on i.i.d. random variables and random stopping indices. These theorems cover
many results related to random sums, in particular, to a model with independent exter-
nal sum-processes and stopping indices as well as to a model with normalised random
indices converging in probability. References to the works related to these two models
are given in the bibliographical remarks. The latter case originates from classical works
of Anscombe (1952) and Rényi (1957, 1958, 1960). Theorems 4.2.5 and 4.2.6 give a
general triangular array version of the corresponding results. Lemma 4.2.1 is a gener-
alisation to the triangular array mode of the well known result of Rényi (1958, 1960).
Theorems 4.2.7 and 4.2.8 are from Silvestrov (1971b, 1972a, 1972b, 1972e). These the-
orems imply Theorems 4.2.9, 4.2.10, 4.2.11, and 4.2.12 as direct corollaries. The latter
four theorems can also be considered as corollaries of the results of Billigsley (1968),
since in this case the limiting external process is continuous.

Theorems 4.3.1, 4.3.2, and 4.3.4, which give general conditions for weak and J-con-
vergence of generalised exceeding times, and Lemma 4.3.1 are from Silvestrov (1972e,
1974). Theorems 4.3.3, 4.3.5, 4.3.6, and 4.3.7, as well as Lemma 4.3.2, are new re-
sults. Note also that the result analogous to those given in Theorems 4.3.6 and 4.3.7 but
obtained by using another method (see, remarks in Subsection 4.3.11) can be found in
Silvestrov (1974, 2000a). Theorems 4.4.1 and 4.4.2 may be considered in the context
of the results on J-convergence of step càdlàg processes given in different variants in
many works. Bibliographical remarks contain additional comments and references to
the works on limit theorems for generalised exceeding processes and other renewal type
processes.

Theorems 4.5.5 – 4.5.7, which give general conditions for weak and J-convergence
of sum-processes with renewal stopping based on i.i.d. random variables, are from Sil-
vestrov (1972e, 1974). Note that the proofs given here are new. The proofs given in
Silvestrov (1974) are based on the use of Markov property of stopping moments (see
remarks in Subsection 4.5.6). References to numerous works related to this model are
given in the bibliographical remarks.

Theorems 4.6.1 and 4.6.2, which give conditions for U-convergence of general accu-
mulation processes are from Silvestrov (1971c, 1972c, 1972d) as well as Theorems 4.6.3
and 4.6.4, which cover the case of accumulation processes with embedded regeneration
cycles. Theorems 4.6.5, 4.6.6, 4.6.7, 4.6.8, and 4.6.9, which specify Theorems 4.6.3
and 4.6.4 in the case of scale-location models, are direct corollaries of these theorems.
Results similar to Theorems 4.6.5, 4.6.6, 4.6.7 can also be found in Borovkov (1967a)
and Serfozo (1975).
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Theorems 4.7.1 and 4.7.2, which give conditions for weak and J-convergence of
general max-processes with random stopping are direct corollaries of the general limit
theorems from Silvestrov (1971b, 1972a, 1972b, 1972e). Theorems 4.7.3 and 4.7.4 are
from Silvestrov and Teugels (1998a), as well as Theorems 4.7.5 and 4.7.6. The latter
two theorems give a general triangular array version of the results that have been given
in a variety of different forms by Berman (1962), Barndorff-Nielsen (1964), Mogyoródi
(1967), Sen (1972), and Galambos (1973, 1978, 1992).

Theorems 4.8.1 and 4.8.2, which give general conditions for weak and J-convergence
of mixed sum-max processes based on i.i.d. random variables are from Silvestrov and
Teugels (2001). Some preceding results can be found in Breiman (1965), Chow and
Teugels (1979), and Resnick (1986), Haas (1992), Silvestrov and Teugels (1998a). The-
orems 4.8.3 and 4.8.4 are new. Additional references are given in Subsection 4.8.5 and
the bibliographical remarks.

Theorems 4.9.1 and 4.9.2, which give conditions for weak and J-convergence of
general max-processes with renewal stopping are new results. Theorems 4.9.3 – 4.9.4,
which specify the results of theorems listed above for max-processes with renewal stop-
ping based on i.i.d. random variables are from Silvestrov and Teugels (2001). The case
of asymptotically independent external processes and internal stopping processes was
considered in Silvestrov and Teugels (1998a).

Theorem 4.10.1, which gives conditions for weak and J-convergence of general
shock processes, is a new result. Theorems 4.10.2 and 4.10.4 that specify the result
of the theorems listed above for shock processes based on i.i.d. random variables are
also new results. Results analogous to those in Theorem 4.10.3 can be found in the
preceding works by Shanthrikumar and Sumita (1983), Gut and Hüsler (1999), and Gut
(2001). Additional references are given in the bibliographical remarks.



Bibliographical remarks

This book is devoted to a study of weak limit theorems for randomly stopped stochastic
processes and functional limit theorems for compositions of stochastic processes. Below,
we give short bibliographical remarks concerned the works related to the subject of the
book. Although we mainly study general limit theorems for arbitrary dependent external
processes and internal stopping moments or processes, the remarks also cover works
on limit theorems for random sums with independent summands and random indices,
renewal models, and other models with random stopping. At the same time, they do
not include works related to other types of asymptotic results beyond the framework of
weak convergence. In particular, we do not mention results on the rate of convergence,
moment convergence, large deviation asymptotics, etc. We also give references to works
dealing with various applications of randomly stopped processes if they contain results
related to limit theorems. The bibliography covers more than 750 works. It would
probably have double size without the restrictions mentioned above.

Chapter 1. In this chapter, we give a survey of results concerning functional limit
theorems for càdlàg processes.

A general framework for the development of the theory have been created by the
classical works of Khintchine (1933), Lévy (1937, 1948), Gnedenko and Kolmogorov
(1949), Doob (1953), and Loève (1955).

As far as functional limit theorems is concerned, the papers of Kolmogorov (1931,
1933), Erdös and Kac (1946a, 1946b), Doob (1949), Donsker (1951, 1952), Gikhman
(1953), Prokhorov (1953), and Kolmogorov and Prokhorov (1954) are considered to be
the precursors to the theory. In particular, Donsker (1951) gave the first functional limit
theorem called by him, an invariance principle. This theorem establishes weak con-
vergence of U-continuous functionals defined on sum-processes constructed from i.i.d.
random variables to the same functionals defined on the limiting Wiener process. Kol-
mogorov and Prokhorov (1954) connected the invariance principle with theorems about
weak convergence of measures in the functional metric space of continuous functions.

Prokhorov (1956) has completed the general theory of weak convergence of mea-
sures in metric spaces and gave general conditions for convergence of continuous stochas-
tic processes in the uniform U-topology. Prokhorov’s basic results concerning weak con-
vergence in metric spaces are formulated in Theorems 1.3.4 and 1.3.5. The basic result,
also due to Prokhorov, concerning convergence of continuous stochastic processes in
the U-topology is given in Theorem 1.6.4. It is formulated in the extended form given
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by Skorokhod (1956) for the case where the limiting process is continuous but the pre-
limiting processes are allowed to be discontinuous càdlàg processes.

Skorokhod (1955a, 1955b, 1956) has invented the main topology in the space D
of càdlàg functions, the J-topology, and gave conditions for J-convergence of càdlàg
processes. Skorokhod’s original conditions for J-convergence of càdlàg functions are
given in Theorem 1.4.3 and the main result concerning J-convergence of càdlàg pro-
cesses is formulated in Theorem 1.6.2. Skorokhod’s original approach was based on his
representation Theorem 1.3.6 and the method of a single probability space, presented
in Theorems 1.6.14 and 1.6.15. Kolmogorov (1956) has shown that the space D can
be equipped with an appropriate metric that makes the J-convergence equivalent to the
convergence in this metric. The metric dJ , which makes D a Polish space, was con-
structed by Billingsley (1968). These results permitted to consider limit theorems for
càdlàg processes in the framework of the general theory of weak convergence of mea-
sures in metric spaces. This approach was used in the books of Parthasarathy (1967) and
Billingsley (1968). One can find historical remarks concerning the early period of the
development of the theory in the recent paper of Billingsley and Wishura (2000).

In the paper of Skorokhod (1956), some other topologies, called J2, M1, and M-
topologies, were also defined. These topologies are not so widely used since, in most
cases, càdlàg processes converge in the J-topology. Nevertheless, they are useful in
some special cases. For example, the M-topology is often applied to extremal processes.
The book of Whitt (2002) gives a detailed account of the corresponding results. Related
references also include Puhalskii and Whitt (1997) and O’Brien (2000).

The original theory of functional theorems was developed in the case when the
stochastic processes are defined on a finite interval. An extension of functional limit
theorems to stochastic processes that are defined on the interval [0,∞) is needed in limit
theorems for randomly stopped stochastic processes. This is due to the possibility for the
random stopping moments to be stochastically unbounded random variables. This exten-
sion of the theory was given by Stone (1963) and Lindvall (1973). Relevant references
also include Whitt (1970), Borovkov (1972b), and Grigelionis (1973).

To complete the picture, we would also like to mention some other directions of
development of the general theory of functional limit theorems. For example, LeCam
(1957), Varadarajan (1958, 1961), and Dudley (1966) have generalised the main results
on weak convergence from metric spaces to spaces of a more general type. Borovkov
(1972a, 1976, 1984) has developed a version of the theory based on his methods of
individual functionals. Stroock and Varadhan (1969a, 1969b, 1979) have developed
martingale methods that cover large classes of martingale type stochastic processes. The
general theory originated from this method is given in Liptser and Shiryaev (1986), and
Jacod and Shiryaev (1987).

A complete theory can be found in the books of Skorokhod (1961, 1964), Gikhman
and Skorokhod (1965, 1971), Parthasarathy (1967), Billingsley (1968, 1999), Pollard
(1984), Ethier and Kurtz (1986), Liptser and Shiryaev (1986), Jacod and Shiryaev (1987),



Bibliographical remarks 363

Davidson (1994), Borovkov, Mogul’skij and Sakhanenko (1995), and Whitt (2002).
These books also contain bibliographies of works in the area as well as recent survey
papers of Bloznelis and Paulauskas (2000), and Mishura (2000).

Chapter 2. The first works in the area were related to the classical model of random
sums, i.e., sums of random variables with a random index (the number of summands).
In this regard, we mention the works of Doeblin (1938), Wald (1945), Robbins (1948),
Kolmogorov and Prokhorov (1949), and Anscombe (1952). Three lines of results have
been developed in these studies.

The first direction in this area is related to the model of stochastic processes stopped
at random moments that are independent of the external process. Here, the main role
is played by various conditions that imply weak convergence of the external processes
and weak convergence of the properly normalised random stopping moments. The lim-
iting random variable is, naturally, the limiting external process stopped at the limiting
stopping moment that is independent of this process. Most of the results are related to
random sums, i.e., sums of random variables with a random number of summands. As
a rule, the conditions contain assumptions on independence or weak independence of
the summands. The methods used in these studies are chiefly based on characteristic
functions. The results resemble a generalisation of the classical results concerning sums
of independent random variables.

Conditions for weak convergence of random sums and randomly stopped sum-proces-
ses were studied in the works of Robbins (1948), Gnedenko (1964, 1967, 1972, 1983),
Nagaev (1968), Gnedenko and Fahim (1969), Mamatov and Nematov (1971), Szász
(1971a, 1971b, 1972a, 1972b, 1972c, 1975), Szász and Frayer (1971), Rychlik and Szy-
nal (1972, 1973, 1975), Szynal (1972, 1976), Banis (1973), Pechinkin (1973), Rosin-
ski (1975, 1976a, 1976b), Kruglov (1976, 1989, 1991, 1995, 1996, 1998), Rychlik
(1976), Belov and Pechinkin (1979), Jozwiak (1980), Lin Zhengyan, Lu Chuanrong
and Lu Chuanlai (1980), Grishchenko (1982), von Chossy and Rappl (1983), Shan-
thrikumar and Sumita (1984), Kubacki (1985), Kubacki and Szynal (1985b), Nagaev
and Asadullin (1985), Azlarov, Aripov and Dzhamirzaev (1986), Finkelstein and Tucker
(1989), Korolev (1989, 1993, 1994, 1995b, 1997a, 1997b, 1997c), Jankovič (1990),
Kruglov and Korolev (1990), Niki Naoto, Nakagawa Shigekazu and Inoue Hideyuki
(1990), Finkelstein, Tucker, and Veeh (1991, 1994), Klebanov and Melamed (1991),
Umarov (1992), Fotopoulos and Wang (1993), Korolev and Kruglov (1993, 1998), Kra-
jka and Rychlik (1993), Finkelstein, Kruglov, and Tucker (1994), Kossova (1994), Ab-
dullaev (1995), Zhang Bo (1995a, 1995b, 1998), Gnedenko and Korolev (1996), Kle-
banov and Rachev (1996), Vellaisamy and Chaudhuri (1996), Griffin (1997), Kalash-
nikov (1997), Su Chun and Wang Yue Bao (1997), Cacoullos, Papadatos, and Pap-
athanasiou (1998), Kozubowski and Panorska (1998), Liang Qiong and Zhang Chun
Yong (1998), Kruglov and Zhang Bo (2001a, 2001b), Rychlik and Walczyński (2001a),
and Bening and Korolev (2002).
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Another type of models is presented by extremes with random sample size indices
that are independent of the sample. Here, we refer to the works of Berman (1962,
1992), Thomas (1972), Galambos (1973, 1975, 1978, 1992, 1994), B. Gnedenko and
D. Gnedenko (1982), Baumann (1991), and Beirlant and Teugels (1992). Asymptotics
for maxima of random sums were studied by Rybko (1988), Kruglov and Rybko (1989),
Azlarov, Dzhamirzaev, and Mamurov (1991), Kruglov (1996), Kruglov and Zhang Bo
(1996), and Kowalski and Rychlik (1998). Asymptotic distributions for point type pro-
cesses with independent thinning have been studied by Rényi (1955), Belyaev (1963),
Kovalenko (1965), Gnedenko and Fraier (1969), Kennedy (1970), Iglehart (1974), and
Wang Xiaoming (1999).

For limit theorems on general sequences of random variables and randomly stopped
stochastic processes with independent random indexes, we would like to refer to the
works of Dobrushin (1955), Szász (1971a), Thomas (1972), Kallenberg (1975), Grandell
(1976), Kubacki and Szynal (1985a), Korolev (1993, 1995a, 1992, 1994), Korolev and
Kossova (1995), Zhang Bo (1995b), Steinsaltz (1999) and Gajowiak and Rychlik (2000).

The books of Kruglov and Korolev (1990), Gnedenko and Korolev (1996), and Ben-
ing and Korolev (2002) contain an extended presentation of results related to this model,
and bibliographies of works in the area.

The second direction of studies is related to the model of stochastic processes stopped
at random moments that are asymptotically independent of the external processes. Vari-
ous conditions that imply marginal weak convergence of external processes and internal
stopping processes are used. The asymptotic independence of these processes, as a rule,
is provided firstly, by Rényi type mixing conditions on external processes and, secondly,
by conditions on convergence of the stopping moments in probability. Again, most of
the works are related to studies of the model of random sums. These studies originate
in the papers of Doeblin (1938), Robbins (1948), and Anscombe (1952), where all the
authors considered the case with normalised random stopping indices that converge in
probability to a constant. An extension to the general case with normalised random stop-
ping indices that converge in probability to a positive random variable was first obtained
by Rényi (1957, 1958, 1960, 1963), whose works gave rise to a series of papers related
to this model.

The model of random sums were studied in the papers of Révész, (1958, 1959), Mo-
gyoródi (1961, 1962, 1964, 1965, 1966, 1967b, 1971a), Billingsley (1962), Blum, Hun-
son and Rosenblatt (1963), Wittenberg (1964), Richter (1965a, 1965b, 1965c), Teicher
(1965), Guiasu (1967a, 1967b, 1971), Sreehari (1968, 1970), Gleser (1969), Prakasa
(1969), Csörgo and Fischler (1970, 1973), Fernandez (1970, 1971), Kembleton (1970a),
M. Csörgo and S. Csörgo (1973), Jagers (1973), S. Csörgo (1974a), Fischer (1977),
Horváth (1984a), Prakasa and Sreehari (1984), Gut (1985), Baumann (1991), Haas
(1992), Fotopoulos and Wang (1993), Rybko (1994), Adler (1997), Kowalski and Rych-
lik (1998), and Gajowwiak and Rychlik (2000).

Limit theorems for extremes with a random sample size were studied in the pa-
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pers of Berman (1962), Barndorff-Nielsen (1964), Mogyoródi (1967a), Pickands (1971),
Sen (1972), Galambos (1973, 1978, 1992), Matsunawa and Ikeda (1976), Gut (1985),
Barakat (1987), Barakat and El-Shandidy (1990), Haas (1992), Zhang Guo Sheng (1993),
Silvestrov and Teugels (1998a, 1998b), and Zhang Jian (1998).

The case of general sequences and processes was studied in Doeblin (1938), Ans-
combe (1952), Guiasu (1963, 1965, 1967a, 1967b, 1971), Richter (1965a, 1965b), Gles-
er (1969), Durret and Resnik (1977), Aldous (1978a), Csörgo and Rychlik (1980, 1981),
Hall and Heyde (1980), and Kubacki and Szynal (1986).

Asymptotics of various statistics with a random sample size were studied in the pa-
pers of Anscombe (1952), Robbins (1959), Chow and Robbins (1965), Starr (1966),
Zacks (1966, 1971), Mogyoródi (1967c), Nades (1967), Pyke (1968), Simons (1968),
Gleser (1969), Khan (1969), Sproule (1969), M. Csörgo and S. Csörgo (1970), Kemble-
ton (1970a), Koul (1970), M. Csörgo (1973), S. Csörgo (1974b), Nikitin (1974), Deo
(1975), Silvestrov, Mirzahmedov, and Tursunov (1976, 1983), Tursunov (1976), Ahmad
(1980), Csenki (1981), Csörgo and Révész (1981), Ghosh and Mukhopadhyay (1981),
Sen and Ghosh (1981), Horváth (1985), Hebda-Grabowska (1987), Ghosh, Mukhopad-
hyay, and Sen (1997), Aras, Jammalamadaka and Zhou (1989), Basu and Bhattacharya
(1990, 1992), Baumann (1991), Glynn (1992), Glynn and Whitt (1992), Haas (1992),
Csörgo and Horváth (1993), Fotopoulos and Wang (1993), Dmitrienko and Govindara-
julu (2000), and Scheffler and Becker-Kern (2000).

The third direction of studies is related to the general limit theorems for randomly
stopped càdlàg stochastic processes and compositions of stochastic processes. Usually,
one makes no assumptions about independence or asymptotic independence of external
processes and internal stopping moments or processes. Here, the basic condition is the
joint weak convergence of external processes and stopping moments. The limiting ran-
dom variable is, naturally, the limiting external process stopped at the limiting stopping
moment that can depend on the external process. In the process setting, the limiting pro-
cess is the composition of the limiting external process and the limiting non-decreasing
internal stopping process that can be dependent in an arbitrary way. The results pre-
sented in Chapters 2 and 3 are concerned with this third direction. For this reason, we
will be more specific about the results.

The first general result in which the condition of the joint weak convergence of ex-
ternal and internal stopping processes was involved in the case of non-constant limiting
stopping processes was given in Billigsley (1968). There, the author deals with the case
when both the external and the internal limiting processes are continuous. These results
were extended in Iglehart and Kennedy (1970), Silvestrov (1971c, 1972b, 1972e), and
Whitt (1973, 1980).

General conditions for weak convergence of randomly stopped càdlàg processes, in
the general situation when the limiting external process could be a discontinuous càdlàg
process, were obtained in Silvestrov (1971b, 1972a). These conditions are formulated
in Theorems 2.3.1 and 2.3.3. The results formulated in these theorems constitute the
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main results of Chapter 2 as well as and new results from Silvestrov (2002a, 2002b)
formulated in Theorems 2.4.1 and 2.4.2.

Other theorems in Chapter 2 extend these results to the case of weak convergence of
scalar and vector compositions of càdlàg processes and to the model with random nor-
malisation, etc. Most of these results are from Silvestrov (1971b, 1972a, 1972b, 1972e,
1973a, 1974). The main results here are contained in Theorem 2.6.1 from Silvestrov
(1972a, 1972e) and Theorem 2.7.5 from Silvestrov (1974). The latter theorem gives
convenient conditions for weak convergence of càdlàg processes on a set dense in the in-
terval [0,∞). Some results related to the case when the limiting stopping process is not
only continuous but also strictly monotonic can be derived from Whitt (1973, 1980). Ad-
ditional results can also be found in Anisimov (1977, 1988), Durret and Resnik (1977),
and Silvestrov (1979a). Theorems 2.6.4 and 2.6.5 and Lemma 2.6.4, which are based
on new weakened continuity conditions, are new results from Silvestrov (2002a, 2002b).
Some additional comments are also given in the last section of Chapter 2.

We would also like to mention the results on limit theorems for random sums with de-
pendent summands and random indices obtained in Kruglov (1996), Kowalski and Rych-
lik (1998), Gajowwiak and Rychlik (2000), Rychlik and Walczyński (2001b), Kruglov
and Zhang Bo (1996, 2001b), Jiang Tao, Su Chun, and Tang Qi He (2001), and Zhang
Bo (2002), where an alternative approach based on approximation of such sums by the
associated random sums with independent summands and random indices is used.

Chapter 3. When discussing conditions for J-convergence of compositions of càdlàg
processes, four cases should be considered: (a) both the limiting external and inter-
nal stopping processes are continuous; (b) the limiting external process is continuous;
(c) the limiting internal stopping process is continuous; (d) both the limiting external
process and the internal stopping processes can be discontinuous.

The simplest case (a) was considered in Billigsley (1968). The main result of Bil-
ligsley is given in Theorem 3.2.1. This result was extended in various directions in
Iglehart and Kennedy (1970), and Silvestrov (1971b, 1972a, 1972e, 1974), Whitt (1973,
1980, 2002), and Serfozo (1973). Case (b) was considered in Whitt (1973, 1980) and
Silvestrov (1974). Theorem 3.3.2 is a new result.

Case (c), where the limiting stopping process is continuous, is important for many
applications. For example, this is often the case for the model with renewal type stopping
processes. Conditions for J-convergence of compositions of càdlàg processes for this
case was given in Silvestrov (1972b, 1972e, 1973a). These results are formulated in
Theorem 3.4.1. The improved version given in Theorem 3.4.2 is from Silvestrov (1974).
Under the additional condition that the limiting stopping process is not only continuous
but also strictly monotone, case (c) was also considered in Whitt (1973, 1980). Theorem
3.4.3, which generalises Theorem 3.4.2, is a new result from Silvestrov (2002a, 2002b).

The most general and difficult case is that in (d), where both the limiting external
and stopping processes can be discontinuous. General conditions for J-compactness and
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J-convergence of compositions of càdlàg processes were obtained in Silvestrov (1974).
These results are formulated in Theorems 3.6.1, 3.6.2, 3.8.1, and 3.8.2, which make
the main results of Chapter 3. The first two theorems cover the case of scalar compo-
sitions of càdlàg processes; the last two theorems cover the more complicated case of
vector compositions. We refer to the survey of Silvestrov (2000b) which contains ad-
ditional bibliographical remarks concerning the results related to general conditions for
J-convergence of compositions of càdlàg processes. Theorems 3.6.4 and 3.8.6, which
generalises theorems mentioned above, are new results from Silvestrov (2002a, 2002b).

We would also like to mention some related works in the area. Conditions for con-
vergence of compositions of càdlàg processes in Skorokhod’s topologies J2, M1, and
M-topologies, which supplement the main topologies U and J, were studied in Whitt
(1973, 1980, 2002), Pomarede (1976), and Anisimov (1977, 1988). Conditions for J-
convergence of compositions of step processes were given in Kennedy (1972) and Whitt
(1973, 1980, 2002). The results in Iglehart and Whitt (1970), Silvestrov (1972e, 1974),
Whitt (1973, 1980), and Serfozo (1973) are related to the model with non-random lim-
iting stopping processes. This model leads to J-convergence theorems for compositions
with non-random centering as well as to the so-called inverse theorems in which conver-
gence of external processes is derived from J-convergence of the compositions. Also,
works on thinnings of random measures and point processes that can be considered as
a special class of compositions of monotone processes should also be referred to. They
include the papers of Mogyoródi (1971b, 1972a, 1972b), Szantai (1971a, 1971b), Råde
(1972a, 1972b), Zakusilo (1972a, 1972b), Jagers (1974), Jagers and Lindvall (1974),
Tomko (1974), Kallenberg (1975) and Serfozo (1976, 1984a, 1984b), Lindvall (1978),
Gasanenko (1980), Böker and Serfozo (1983). We would also like to mention the works
of Silvestrov (1972e, 1973b) and Mishura (1978), where some results of the theory were
extended to randomly stopped random fields and compositions of random fields. Inter-
nal stopping processes are usually monotone and, in some cases, are step or point type
processes. In this context, the functional limit theorems were studied for monotone pro-
cesses in Vervaat (1972), Whitt (1973, 1980, 2002), Silvestrov (1974), Walk (1975), Ser-
fozo (1976), Jacod, Memin, and Metevier (1983), and Jacod and Shiryaev (1987), and,
for point processes and random measures, in Kallenberg (1973, 1975), Jagers (1974),
Serfoso (1976), and Resnick (1986, 1987).

The above grouping of works into three directions is relative. Many works placed in
the first two groups, especially those dealing with functional limit theorems, can also be
classified as belonging to the third group. For example, some of these works are Billings-
ley (1962), Iglehart (1974), Aldous (1978a), M. Csörgo and S. Csörgo (1970), Sreehari
(1968), Mirzahmedov, Silvestrov and Tursunov (1976), Tursunov (1976), Rychlik and
Szynal (1975), Prakasa and Sreehari (1984), Csörgo and Horváth (1993), and Silvestrov
and Teugels (1998a, 1998b).

The book Silvestrov (1974) is devoted to general limit theorems for randomly stopped
stochastic processes and compositions of càdlàg processes in topologies U and J. We
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also refer to the books Csörgo and Révész (1981), Anisimov (1988), Gut (1988), Csörgo
and Horváth (1993), Rahimov (1995), Bening and Korolev (2002) and Whitt (2002),
which also contain results on limit theorems for randomly stopped random processes
and compositions of stochastic processes. We would also like to refer to Silvestrov
(2002a), which is a preliminary report version of the current book.

Chapter 4. Natural areas of applications and examples of general distributional and
functional limit theorems covered in Chapters 2 and 3 include various concrete models
of randomly stopped càdlàg processes and compositions of càdlàg processes in which
some specific structural assumptions about internal stopping processes are used when
proving the limit theorems.

The first class of such models is represented by sum-processes with random stop-
ping (random sums), max-processes with random stopping (extremes with random sam-
ple size), and related models that originate in the classical works of Anscombe (1952)
and Rényi (1957, 1958, 1960). An essential part of distributional and functional limit
theorems for random sums, extremes with random sample size relates to models with
independent external processes and stopping moments converging in probability. Works
related to limit theorems for these models have been cited above and we do not repeat
these references. Here we would like to note that many of these results can be obtained
by directly applying the general limit theorems given in Chapters 2 and 3. General
limit theorems for random sums and extremes with random sample size include many of
the preceding results in this area. These are, respectively, Theorems 4.2.2, 4.2.4, 4.7.2,
which are direct corollaries of the limit theorems from Silvestrov (1971b, 1972a, 1972e),
and Theorem 4.7.4 from Silvestrov and Teugels (1998a).

The second such class includes randomly stopped processes and compositions of
stochastic processes of Markov or martingale type processes with Markov type stopping.
Weak convergence and functional limit theorems have been studied for these type of
processes in the works of Silvestrov (1972e, 1974, 1977), McLeich (1974, 1978), Anisi-
mov (1975, 1977, 1988), Gikhman and Skorokhod (1975), Rychlik and Szynal (1975),
Rootzén (1977, 1980), Aldous (1978b), Gänssler, Strobel, and Stute (1978), Gänssler
and Häusler (1979), Rychlik (1979), Helland (1980, 1982), Beska, Klopotowski, and
Slominski (1982), Butzer and Schulz (1983, 1984a, 1984b), Kubacki and Szynal (1983,
1986), Prakasa and Sreehari (1984), Kubacki (1987), and Rahimov (1987, 1995). Con-
ditions for J-compactness of càdlàg processes based on stopping times were given in
Aldous (1978b, 1989), Jacod, Memin and Metevier (1983), Sørensen (1983), Nikunen
(1984), Joffe and Metevier (1986), and Jacod and Shiryaev (1987).

The third special and important class of models constitutes randomly stopped pro-
cesses and compositions of stochastic processes with exceeding and renewal type stop-
ping internal processes. One can find a more detailed bibliographical remarks on works
related to the composition of stochastic processes with renewal type stopping in Silve-
strov (2000a). Here, we give a shortened version of these remarks.
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Functional limit theorems for renewal type processes based on general càdlàg pro-
cesses can be found in Skorokhod (1956), Iglehart and Kennedy (1970), Iglehart and
Whitt (1971), Whitt (1971a, 1972, 1973, 1980, 2002), Borovkov (1972a, 1972b, 1976),
Silvestrov (1972e, 1974, 2000a), Vervaat (1972), Iglehart (1973), Anisimov (1974b,
1975, 1977, 1988), Resnick (1974), Serfozo (1976), Goldie (1977), M. Csörgo, S.
Csörgo, Horváth and Revesz (1982), Csörgo, Horváth, and Steinebach (1987), Char-
lot and Merad (1989), Doss and Gill (1992), Puhalskii (1994), and Puhalskii and Whitt
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(1977), Oprişan (1977), Popescu (1977), Arsenishvili and Ezhov (1978), Athreya, Mc-
Donald, and Ney (1978), Athreya and Ney (1978), Korolyuk and Turbin (1978, 1983),
Kaplan and Silvestrov (1979), Shurenkov and Eleı̆ko (1979), Silvestrov and Tursunov
(1979), Eleı̆ko (1980, 1990a, 1990b, 1998), Tomko (1981), Hordijk and Schassberger
(1982), V. S. Korolyuk and V. V. Korolyuk (1983, 1999), Kravets (1985), Malinovskij
(1985, 1986, 1988), Radian (1985), Korolyuk (1986, 1990), Korolyuk and Svishchuk
(1986, 1989a, 1989b, 1991, 1992, 2000), Grigorescu and Popescu (1987), V. S. Ko-
rolyuk, Svishchuk, and V. V. Korolyuk (1987), Anisimov and Aliev (1989), Didkovskiǐ
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The results in Borovkov (1967a, 1967b, 1969), Miller (1971), Silvestrov (1971c,
1972c, 1972d, 1972e, 1980a, 1980b, 1983a, 1990, 1991), Milyoshina (1975), Serfozo
(1975), Lindberger (1978), Steinebach (1978), Kaplan and Silvestrov (1979, 1980), and
Glynn and Whitt (1986, 1987, 1988, 1993, 2002) are related to limit theorems for accu-
mulation processes with random embedded cycles.

We would also like to mention the works of Serfozo (1980), Shanthrikumar and
Sumita (1983), Sumita and Shanthikumur (1985), Anderson (1987, 1988), Gut (1990,
2001), Silvestrov and Teugels (1998a, 2001), Gut and Hüsler (1999), and Mallor and
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81–92.

[117] Chow, Y. S. and Hsiung, A. C. (1976) Limiting behavior of max j≤n S j/ j−α and first pas-
sage time in random walk with positive drift. Bull. Inst. Math. Acad. Sinica 4 35–44.

[118] Chow, Y. S. and Robbins, H. (1965) On the asymptotic theorem of fixed-width sequential
confidence intervals for the mean. Ann. Math. Statist. 36 457–462.

[119] Chung, Kai Lai (1960) Markov Chains with Stationary Transition Probabilities. Springer-
Verlag, Berlin.

[120] Ciucu, G. and Theodorescu, R. (1960) Chains with Complete Connections. Editura Acad.
Rep. Pop. Romı̂ne, Bucharest.

[121] Cogburn, R. (1972) The central limit theory for Markov processes. In: Proceedings of the
61-th Berkeley Symposium on Mathematical Statistics and Probability, Berlekey, Califor-
nia. Univ. California Press, 485–512.

[122] Cogburn, R. (1991) On the central limit theorem for Markov chains in random environ-
ments. Ann. Probab. 19 587–604.

[123] Cramér, H. (1955) Collective Risk Theory. Skandia Jubilee Volume. Stockholm.

[124] Csenki, A. (1981) A theorem on the departure of randomly indexed U-statistics from
normality with an application in fixed-width sequential interval estimation. Sankhya, Ser.
A 43 84–99.

[125] Csenki, A. (2000) Asymptotics for renewal-reward processes with retrospective reward
structure. Oper. Res. Lett. 26 No. 5 201–209.

[126] Csörgo, M. (1973) Glivenko-Cantelli type theorems for distance functions based on the
modified empirical distribution function of M. Kac and for the empirical process with ran-
dom sample size in general. In: Probability and Information Theory, II. Proceed. of Inter.
Sympos. McMaster Univ. Lecture Notes in Mathematics 296, Springer-Verlag, Berlin,
149–164.

[127] Csörgo, M. and Csörgo, S. (1970) An invariance principle for the empirical process with
random simple size. Bull. Amer. Math. Soc. 76 706–710.

[128] Csörgo, M. and Csörgo, S. (1973) On weak convergence of randomly selected partial
sums. Acta Math. Sci. 34 53–60.



Bibliography 381
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[496] Mogyoródi, J. (1964) On a consequence of a mixing theorem of A. Rényi. Publications
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[497] Mogyoródi, J. (1965) On the law of large numbers for the sum of random number of
independent random variables. Ann. Univ. Scient. Budapest. Ser. math. 8 33–38.
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[535] Ouhbi, B. and Limnios, N. (1999b) Non-parametric estimation of failure rate for semi-
Markov systems. In: Semi-Markov Models and Applications / Ed. by J. Janssen and N.
Limnios. Kluwer, Dordrecht, 207–218.

[536] Ouhbi, B. and Limnios, N. (1999c) Non-parametric estimation for semi-Markov pro-
cesses based on its hazard rate. Statist. Inf. Stoch. Proc. 2 151–173.

[537] Pakshirajan, R. P. and Mohan, N. R. (1978) Some functional limit theorems for multidi-
mensional random walks. Z. Wahrsch. Verw. Gebiete 41 263–271.

[538] Parthasarathy, K. R. (1967) Probability Measures on Metric Spaces. Academic Press,
New York.

[539] Pechinkin, A. V. (1973) On convergence of random sums of random variables to the
normal law. Teor. Veroyatn. Primen. 18 380–382 (English translation in Theory Probab.
Appl. 18 366–367).

[540] Pickands, J. III (1971) The two-dimensional Poisson process and extremal processes.
J. Appl. Probab. 8 745–756.
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[683] Siraždinov, S. H. and Formanov, Š. K. (1979) Limit Theorems for Sums of Random Vectors
Connected in a Markov Chain. Fan, Tashkent.

[684] Skorokhod, A. V. (1955a) On transition from a sequence of sums of independent random
variables to a homogeneous random process with independent increments. Dokl. Akad.
Nauk SSSR 104 364–367.

[685] Skorokhod, A. V. (1955b) On a class of limit theorems for Markov processes. Dokl. Akad.
Nauk SSSR 106 781–784.

[686] Skorokhod, A. V. (1956) Limit theorems for stochastic processes. Teor. Veroyatn. Primen.
1 289–319 (English translation in Theory Probab. Appl. 1 261–290).

[687] Skorokhod, A. V. (1957) Limit theorems for processes with independent increments. Teor.
Veroyatn. Primen. 2 145–177 (English translation in Theory Probab. Appl. 2 138–171).

[688] Skorokhod, A. V. (1958) Limit theorems for Markov processes. Teor. Veroyatn. Primen. 3
217–264 (English translation in Theory Probab. Appl. 3 202–246).

[689] Skorokhod, A. V. (1961) Studies in the Theory of Random Processes. Izdatel’stvo
Kievskogo Universiteta, Kiev. (English translation by Addison-Wesley, Reading, Mass.
1965).

[690] Skorokhod, A. V. (1964) Random Processes with Independent Increments Nauka,
Moskva. (English translation by Nat. Lending Library for Sci. and Tech., Boston Spa,
1971).

[691] Skorokhod, A. V. and Slobodenyuk, N. P. (1970) Limit Theorems for Random Walks,
Naukova Dumka, Kiev.

[692] Smirnov, N. V. (1952) Limit distributions for the terms of a variational series. Trans. Amer.
Math. Soc. 11 82–143.

[693] Smith, W. L. (1955) Regenerative stochastic processes. Proc. Royal Soc. London. Ser. A
232 6–31.

[694] Smith, W. L. (1958) Renewal theory and its ramifications. J. Royal Stat. Society. Ser. B
20 243–302.

[695] Solov’ev, A. D. (1971) Asymptotical behaviour of the first occurrence time of a rare event
in a regenerative process. Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 79–89.

[696] Solov’ev, A. D. (1983) Analytical methods for computing and estimating reliability. In:
Problems of Mathematical Theory of Reliability / Ed. by E. Yu. Barzilovich et al. Radio
i Svyaz’, Moskva, 9–112.

[697] Soltani, A. R. and Khorshidian, K. (1998) Reward processes for semi-Markov processes:
Asymptotic behaviour. J. Appl. Probab. 35 833–842.

[698] Sørensen, M. (1983) On maximum likelihood estimation in randomly stopped diffusion-
type processes. Inter. Statist. Rev. 51 93–110.

[699] Sparre Andersen, E. (1957) On the collective theory of risk in the case of contagion be-
tween the claims. In: Transactions of the XVth International Congress of Actuaries. Vol.
II, New York, 1957, 219–229



Bibliography 415

[700] Sproule, R. N. (1969) A Sequential Fixed-width Confidence Interval for the Mean of
U-statistic. Ph. D. Thesis. University of North Carolina.

[701] Sreehari, M. (1968) An invariance principle for random partial sums. Sankhya Ser. A 30
432–442.

[702] Sreehari, M. (1970) On a class of limit distributions for normalized sums of independent
random variables. Theory Probab. Appl. 15 269–290.

[703] Starr, N. (1966) The performance of a sequential procedure for the fixed width interval
estimation of the mean. Ann. Math. Statist. 37 36–50.

[704] Statulyavichus, V. A. (1969a) Limit theorems for sums of random variables, connected
into a Markov chain. I. Litov. Mat. Sbornik 9 345–362.

[705] Statulyavichus, V. A. (1969b) Limit theorems for sums of random variables, connected
into a Markov chain. II. Litov. Mat. Sbornik 9 635–672.

[706] Statulyavichus, V. A. (1969c) Limit theorems for sums of random variables, connected
into a Markov chain. III. Litov. Mat. Sbornik 10 161–169.

[707] Stefanov, V. T. (1999) Markov renewal processes and exponential families. In: Semi-
Markov Models and Applications / Ed. by J. Janssen and N. Limnios. Kluwer, Dordrecht,
167–186.

[708] Steichen, J. L. (2001) A functional central limit theorem for Markov additive processes
with an application to the closed Lu-Kumar network. Stoch. Models 17 459–489.

[709] Steinebach, J. (1978) A strong law of Erdoes-Renyi type for cumulative processes in
renewal theory. J. Appl. Probab. 15 96–111.

[710] Steinebach, J. (1987) Almost sure convergence of delayed renewal processes. J. Lond.
Math. Soc. Ser. II. 36 569–576.

[711] Steinebach, J. (1988) Invariance principles for renewal processes when only moments of
low order exist. J. Multivar. Anal. 26, No. 2, 169–183.

[712] Steinebach, J. (1991) Strong laws for small increments of renewal processes. Ann. Probab.
19 1768–1776.

[713] Steinebach, J. and Eastwood, V. R. (1996) Extreme value asymptotics for multivariate
renewal processes. J. Multivar. Anal. 56 No. 2, 284–302.

[714] Steinsaltz, D. (1999) Random time changes for sock-sorting and other stochastic process
limit theorems. Electron. J. Probab. 4 Paper No. 14, 25 pages.
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of càdlàg functions, 24, 34
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