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PREFACE

These are lecture notes for the courses “Tijdreeksen”, “Time Series” and “Financial
Time Series”. The material is more than can be treated in a one-semester course. See
next section for the exam requirements.

Parts marked by an asterisk “*” do not belong to the exam requirements.
Exercises marked by a single asterisk “*” are either hard or to be considered of

secondary importance. Exercises marked by a double asterisk “**” are questions to which
I do not know the solution.
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LITERATURE

The following list is a small selection of books on time series analysis. Azencott/Dacunha-
Castelle and Brockwell/Davis are close to the core material treated in these notes. The
first book by Brockwell/Davis is a standard book for graduate courses for statisticians.
Their second book is prettier, because it lacks the overload of formulas and computations
of the first, but is of a lower level.

Chatfield is less mathematical, but perhaps of interest from a data-analysis point
of view. Hannan and Deistler is tough reading, and on systems, which overlaps with
time series analysis, but is not focused on statistics. Hamilton is a standard work used
by econometricians; be aware, it has the existence results for ARMA processes wrong.
Brillinger’s book is old, but contains some material that is not covered in the later works.
Rosenblatt’s book is new, and also original in its choice of subjects. Harvey is a proponent
of using system theory and the Kalman filter for a statistical time series analysis. His
book is not very mathematical, and a good background to state space modelling.

Most books lack a treatment of developments of the last 10–15 years, such as
GARCH models, stochastic volatility models, or cointegration. Mills and Gourieroux
fill this gap to some extent. The first contains a lot of material, including examples fit-
ting models to economic time series, but little mathematics. The second appears to be
written for a more mathematical audience, but is not completely satisfying. For instance,
its discussion of existence and stationarity of GARCH processes is incomplete, and the
presentation is mathematically imprecise at many places. An alternative to these books
are several review papers on volatility models, such as Bollerslev et al., Ghysels et al.,
and Shepard. Besides introductory discussion, also inclusing empirical evidence, these
have extensive lists of references for further reading.

The book by Taniguchi and Kakizawa is unique in its emphasis on asymptotic theory,
including some results on local asymptotic normality. It is valuable as a resource.
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1
Introduction

1.1 Basic Definitions

In this course a stochastic time series is a doubly infinite sequence

. . . , X−2, X−1, X0, X1, X2, . . .

of random variables or random vectors. (Oddly enough a time series is a mathematical
sequence, not a series.) We refer to the index t of Xt as time and think of Xt as the
state or output of a stochastic system at time t, even though this is unimportant for the
mathematical theory that we develop. Unless stated otherwise, the variableXt is assumed
to be real-valued, but we shall also consider series of random vectors and complex-valued
variables. We write “the time series Xt” rather than using the more complete (Xt: t ∈ Z).
Instead of “time series” we may also use “process” or “stochastic process”.

Of course, the set of random variablesXt, and other variables that we may introduce,
are defined as measurable maps on some underlying probability space. We only make
this more formal if otherwise there could be confusion, and then denote this probability
space by (Ω,U ,P), with ω a typical element of Ω.

Time series theory is a mixture of probabilistic and statistical concepts. The proba-
bilistic part is to study and characterize probability distributions of sets of variables Xt

that will typically be dependent. The statistical problem is to characterize the probabil-
ity distribution of the time series given observations X1, . . . , Xn at times 1, 2, . . . , n. The
resulting stochastic model can be used in two ways:

- understanding the stochastic system;
- predicting the “future”, i.e. Xn+1, Xn+2, . . . ,.

In order to have any chance of success it is necessary to assume some a-priori structure
of the time series. Indeed, if the Xt could be completely arbitrary random variables,
then (X1, . . . , Xn) would constitute a single observation from a completely unknown
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distribution on Rn. Conclusions about this distribution would be impossible, let alone
about the distribution of the future values Xn+1, Xn+2, . . ..

A basic type of structure is stationarity. This comes in two forms.

1.1 Definition. The time series Xt is strictly stationary if the distribution (on R
h+1)

of the vector (Xt, Xt+1, . . . , Xt+h) is independent of t, for every h ∈ N.

1.2 Definition. The time series Xt is stationary (or more precisely second order sta-
tionary) if EXt and EXt+hXt exist and are finite and do not depend on t, for every
h ∈ N.

It is clear that a strictly stationary time series with finite second moments is also
stationary. For a stationary time series the auto-covariance and auto-correlation at lag
h ∈ Z are defined by

γX(h) = cov(Xt+h, Xt),

ρX(h) = ρ(Xt+h, Xt) =
γX(h)

γX(0)
.

The auto-covariance and auto-correlation are functions on Z that together with the mean
µ = EXt determine the first and second moments of the stationary time series. Note that
γX(0) = varXt is the variance of Xt and ρX(0) = 1.

1.3 Example (White noise). A doubly infinite sequence of independent, identically
distributed random variables Xt is a strictly stationary time series. Its auto-covariance
function is, with σ2 = varXt,

γX(h) =

{

σ2, if h = 0,
0, if h 6= 0.

Any time series Xt with mean zero and covariance function of this type is called a
white noise series. Thus any mean-zero i.i.d. sequence with finite variances is a white
noise series. The converse is not true: there exist white noise series’ that are not strictly
stationary.

The name “noise” should be intuitively clear. We shall see why it is called “white”
when discussing spectral theory of time series in Chapter 6.

White noise series are important building blocks to construct other series, but from
the point of view of time series analysis they are not so interesting. More interesting are
series where the random variables are dependent, so that, to a certain extent, the future
can be predicted from the past.

1.4 EXERCISE. Construct a white noise sequence that is not strictly stationary.

1.5 Example (Deterministic trigonometric series). Let A and B be given, uncorre-
lated random variables with mean zero and variance σ2, and let λ be a given number.
Then

Xt = A cos(tλ) +B sin(tλ)
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Figure 1.1. Realization of a Gaussian white noise series of length 250.

defines a stationary time series. Indeed, EXt = 0 and

γX(h) = cov(Xt+h, Xt)

= cos
(

(t+ h)λ
)

cos(tλ) varA+ sin
(

(t+ h)λ
)

sin(tλ) varB

= σ2 cos(hλ).

Even though A and B are random variables, this type of time series is called deterministic
in time series theory. Once A and B have been determined (at time −∞ say), the process
behaves as a deterministic trigonometric function. This type of time series is an important
building block to model cyclic events in a system, but it is not the typical example of a
statistical time series that we study in this course. Predicting the future is too easy in
this case.

1.6 Example (Moving average). Given a white noise series Zt with variance σ2 and
a number θ set

Xt = Zt + θZt−1.
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This is called a moving average of order 1. The series is stationary with EXt = 0 and

γX(h) = cov(Zt+h + θZt+h−1, Zt + θZt−1) =







(1 + θ2)σ2, if h = 0,
θσ2, if h = ±1,
0, otherwise.

Thus Xs and Xt are uncorrelated whenever s and t are two or more time instants apart.
We speak of short range dependence and say that the time series has short memory.

If the Zt are an i.i.d. sequence, then the moving average is strictly stationary.
A natural generalization are higher order moving averages of the form Xt = Zt +

θ1Zt−1 + · · · + θqZt−q.
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Figure 1.2. Realization of length 250 of the moving average series Xt = Zt − 0.5Zt−1 for Gaussian white
noise Zt.

1.7 EXERCISE. Prove that the series Xt in Example 1.6 are strictly stationary if Zt is
a strictly stationary sequence.

1.8 Example (Autoregression). Given a white noise series Zt with variance σ2 consider
the equations

Xt = θXt−1 + Zt, t ∈ Z.
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The white noise series Zt is defined on some probability space (Ω,U ,P) and we consider
the equation as “pointwise in ω”. This equation does not define Xt, but in general has
many solutions. Indeed, we can define the sequence Zt and the variable X0 in some
arbitrary way on the given probability space and next define the remaining variables
Xt for t ∈ Z \ {0} by the equation. However, suppose that we are only interested in
stationary solutions. Then there is either no solution or a unique solution, depending on
the value of θ, as we shall now prove.

Suppose first that |θ| < 1. By iteration we find that

Xt = θ(θXt−2 + Zt−1) + Zt = · · ·
= θkXt−k + θk−1Zt−k+1 + · · · + θZt−1 + Zt.

For a stationary sequence Xt we have that E(θkXt−k)2 = θ2kEX2
0 → 0 as k → ∞. This

suggests that a solution of the equation is given by the infinite series

Xt = Zt + θZt−1 + θ2Zt−2 + · · · =

∞
∑

j=0

θjZt−j.

We show below in Lemma 1.28 that the series on the right side converges almost surely,
so that the preceding display indeed defines some random variable Xt. This is a moving
average of infinite order. We can check directly, by substitution in the equation, that Xt

satisfies the auto-regressive relation. (For every ω for which the series converges; hence
only almost surely. We shall consider this to be good enough.)

If we are allowed to change expectations and infinite sums, then we see that

EXt =
∞
∑

j=0

θjEZt−j = 0,

γX(h) =

∞
∑

i=0

∞
∑

j=0

θiθjEZt+h−iZt−j =

∞
∑

j=0

θh+jθjσ2 =
θ|h|

1 − θ2
σ2.

We prove the validity of these formulas in Lemma 1.28. It follows that Xt is indeed a
stationary time series. In this case γX(h) 6= 0 for every h, so that every pair Xs and Xt

are dependent. However, because γX(h) → 0 at exponential speed as h→ ∞, this series
is still considered to be short-range dependent. Note that γX(h) oscillates if θ < 0 and
decreases monotonely if θ > 0.

For θ = 1 the situation is very different: no stationary solution exists. To see this
note that the equation obtained before by iteration now takes the form, for k = t,

Xt = X0 + Z1 + · · · + Zt.

This implies that var(Xt−X0) = tσ2 → ∞ as t→ ∞. However, by the triangle inequality
we have that

sd(Xt −X0) ≤ sdXt + sdX0 = 2 sdX0,

for a stationary sequence Xt. Hence no stationary solution exists. The situation for θ = 1
is characterized as explosive: the randomness increases significantly as t→ ∞ due to the
introduction of a new Zt for every t.
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The cases θ = −1 and |θ| > 1 are left as an exercise.
The auto-regressive time series of order one generalizes naturally to auto-regressive

series of the form Xt = φ1Xt−1 + · · ·φpXt−p + Zt. The existence of stationary solutions
Xt to this equation is discussed in Chapter 7.

1.9 EXERCISE. Consider the cases θ = −1 and |θ| > 1. Show that in the first case there
is no stationary solution and in the second case there is a unique stationary solution.
(For |θ| > 1 mimic the argument for |θ| < 1, but with time reversed: iterate Xt−1 =
(1/θ)Xt − Zt/θ.)

0 50 100 150 200 250
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Figure 1.3. Realization of length 250 of the stationary solution to the equation Xt = 0.5Xt−1+0.2Xt−2+Zt

for Zt Gaussian white noise.

1.10 Example (GARCH). A time series Xt is called a GARCH(1, 1) process if, for
given nonnegative constants α, θ and φ, and a given i.i.d. sequence Zt with mean zero
and unit variance, it satisfies a system of equations of the form

σ2
t = α+ φσ2

t−1 + θX2
t−1,

Xt = σtZt.
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Figure 1.4. Realization of a random walk Xt = Zt + · · · + Z0 of length 250 for Zt Gaussian white noise.

We shall see below that for 0 ≤ θ + φ < 1 there exists a unique stationary solution
(Xt, σt) to these equations and this has the further properties that σ2

t is a measurable
function of Xt−1, Xt−2, . . ., and that Zt is independent of these variables. The latter two
properties are usually also included explicitly in the requirements for a GARCH series.
They imply that

EXt = EσtEZt = 0,

EXsXt = E(Xsσt)EZt = 0, (s < t).

Therefore, a stationary GARCH process with θ + φ ∈ [0, 1) is a white noise process.
However, it is not an i.i.d. process, unless θ + φ = 0. Because Zt is independent of
Xt−1, Xt−2, . . ., and σt a measurable function of these variables,

E(Xt|Xt−1, Xt−2, . . .) = σtEZt = 0,

E(X2
t |Xt−1, Xt−2, . . .) = σ2

t EZ2
t = σ2

t .

The first equation shows that Xt is a “martingale difference series”. The second exhibits
σ2

t as the conditional variance of Xt given the past. By assumption σ2
t is dependent on

Xt−1 and hence the time series Xt is not i.i.d..
The abbreviation GARCH is for “generalized auto-regressive conditional het-

eroscedasticity”: the conditional variances are not i.i.d., and depend on the past through
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an auto-regressive scheme. Typically, the conditional variances σ2
t are not directly ob-

served, but must be inferred from the observed sequence Xt.
Because the conditional mean of Xt given the past is zero, a GARCH process will

fluctuate around the value 0. A large deviation |Xt−1| from 0 at time t− 1 will cause a
large conditional variance σ2

t = α + θX2
t−1 + φσ2

t−1 at time t, and then the deviation of
Xt = σtZt from 0 will tend to be large as well. Similarly, small deviations from 0 will tend
to be followed by other small deviations. Thus a GARCH process will alternate between
periods of big fluctuations and periods of small fluctuations. This is also expressed by
saying that a GARCH process exhibits volatility clustering, a process being “volatile”
if it fluctuates a lot. Volatility clustering is commonly observed in time series of stock
returns. The GARCH(1, 1) process has become a popular model for such time series.

The signs of the Xt are equal to the signs of the Zt and hence will be independent
over time.

Being a white noise process, a GARCH process can itself be used as input in an-
other scheme, such as an auto-regressive or a moving average series. There are many
generalizations of the GARCH process as introduced here. In a GARCH(p, q) process σ2

t

is allowed to depend on σ2
t−1, . . . , σ

2
t−p and X2

t−1, . . . , X
2
t−q. A GARCH (0, q) process is

also called an ARCH process. The rationale of using the squaresX2
t appears to be mostly

that these are nonnegative and simple; there are many variations using other functions.
As in the case of the auto-regressive relation, the two GARCH equations do not

define the time series Xt, but must be complemented with an initial value, for instance
σ2

0 if we are only interested in the process for t ≥ 0. Alternatively, we may “define” this
initial value implicitly by requiring that the series Xt be stationary. We shall now show
that a stationary solution exists, and is unique given the sequence Zt.

By iterating the GARCH relation we find that, for every n ≥ 0,

σ2
t = α+ (φ+ θZ2

t−1)σ
2
t−1 = α+ α

n
∑

j=1

(φ+ θZ2
t−1) · · · (φ + θZ2

t−j)

+ (φ+ θZ2
t−1) · · · (φ+ θZ2

t−n−1)σ
2
t−n−1.

The sequence
(

(φ+θZ2
t−1) · · · (φ+θZ2

t−n−1)
)∞

n=1
, which consists of nonnegative variables

with means (φ+ θ)n+1, converges in probability to zero if θ+φ < 1. If the time series σ2
t

is stationary, then the term on the far right converges to zero in probability as n → ∞.
Thus for a stationary solution (Xt, σt) we must have

(1.1) σ2
t = α+ α

∞
∑

j=1

(φ + θZ2
t−1) · · · (φ+ θZ2

t−j).

Because the series Zt is assumed i.i.d., the variable Zt is independent of σ2
t−1, σ

2
t−2, . . .

and also of Xt−1 = σt−1Zt−1, Xt−2 = σt−2Zt−2, . . .. In addition it follows that the
time series Xt = σtZt is strictly stationary, being a fixed measurable transformation of
(Zt, Zt−1, . . .) for every t.

The infinite sum in (1.1) converges in mean if θ + φ < 1 (Cf. Lemma 1.26). Given
the series Zt we can define a process Xt by first defining the conditional variance σ2

t by
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(1.1), and next setting Xt = σtZt. It can be verified by substitution that the process Xt

solves the GARCH relationship and hence a stationary solution to the GARCH equations
exists if φ+ θ < 1.

By iterating the auto-regressive relation σ2
t = φσ2

t−1 + Wt, with Wt = α + θX2
t−1,

in the same way as in Example 1.8, we also find that for the stationary solution σ2
t =

∑∞
j=0 φ

jWt−j . Hence σt is σ(Xt−1, Xt−2, . . .)-measurable.
An inspection of the preceding argument shows that a strictly stationary solution

exists under a weaker condition than φ+θ < 1. If the sequence (φ+θZ2
t−1) · · · (φ+θZ2

t−n)
converges to zero in in probability as n→ ∞ and Xt is a solution of the GARCH relation
such that σ2

t is bounded in probability as t→ −∞, then the same argument shows that
σ2

t must relate to the Zt as given. Furthermore, if the series on the right side of (1.1)
converges in probability, then Xt may be defined as before. It can be shown that this is
the case under the condition that E log(φ+ θZ2

t ) < 0. (See Exercise 1.14 or Chapter 8.)
For instance, for standard normal variables Zt and φ = 0 this reduces to θ < 2eγ ≈ 3.56.
On the other hand, the condition φ+ θ < 1 is necessary for the GARCH process to have
finite second moments.

1.11 EXERCISE. Let θ + φ ∈ [0, 1) and 1 − κθ2 − φ2 − 2θφ > 0, where κ = EZ4
t . Show

that the second and fourth (marginal) moments of a stationary GARCH process are
given by α/(1 − θ − φ) and κα2(1 + θ + φ)/(1 − κθ2 − φ2 − 2θφ)(1 − θ − φ). From this
compute the kurtosis of the GARCH process with standard normal Zt. [You can use
(1.1), but it is easier to use the GARCH relations.]

1.12 EXERCISE. Show that EX4
t = ∞ if 1 − κθ2 − φ2 − 2θφ = 0.

1.13 EXERCISE. Suppose that the process Xt is square-integrable and satisfies the
GARCH relation for an i.i.d. sequence Zt such that Zt is independent of Xt−1, Xt−2, . . .
and such that σ2

t = E(X2
t |Xt−1, Xt−2, . . .), for every t, and some α, φ, θ > 0. Show that

φ+ θ < 1. [Derive that EX2
t = α+ α

∑n
j=1(φ+ θ)j + (φ + θ)n+1EX2

t−n−1.]

1.14 EXERCISE. Let Zt be an i.i.d. sequence with E log(Z2
t ) < 0. Show that

∑∞
j=0 Z

2
t Z

2
t−1 · · ·Z2

t−j < ∞ almost surely. [By the law of large numbers there exists

for almost every realization of Zt a number N such that n−1
∑n

j=1 logZ2
j < c < 0 for

every n ≥ N . Show that this implies that
∑

n≥N Z2
t Z

2
t−1 · · ·Z2

t−j <∞ almost surely.]

1.15 Example (Stochastic volatility). A general approach to obtain a time series with
volatility clustering is to define Xt = σtZt for an i.i.d. sequence Zt and a process σt that
depends “positively on its past”. A GARCH model fits this scheme, but a simpler way
to achieve the same aim is to let σt depend only on its own past and independent noise.
Because σt is to have an interpretation as a scale parameter, we restrain it to be positive.
One way to combine these requirements is to set

ht = θht−1 +Wt,

σ2
t = eht ,

Xt = σtZt.



1.1: Basic Definitions 11

0 100 200 300 400 500

-5
0

5

Figure 1.5. Realization of the GARCH(1, 1) process with α = 0.1, φ = 0 and θ = 0.8 of length 500 for Zt

Gaussian white noise.

Here Wt is a white noise sequence, ht is a (stationary) solution to the auto-regressive
equation, and the process Zt is i.i.d. and independent of the process Wt. If θ > 0 and
σt−1 = eht−1/2 is large, then σt = eht/2 will tend to be large as well, and hence the
process Xt will exhibit volatility clustering.

The process ht will typically not be observed and for that reason is sometimes called
latent. A “stochastic volatility process” of this type is an example of a (nonlinear) state
space model, discussed in Chapter 9. Rather than defining σt by an auto-regression in
the exponent, we may choose a different scheme. For instance, an EGARCH(p, 0) model
postulates the relationship

log σt = α+

p
∑

j=1

φj log σt−j .

This is not a stochastic volatility model, because it does not include a random distur-
bance. The symmetric EGARCH (p, q) model repairs this by adding terms depending on
the past of the observed series Xt = σtZt, giving

log σt = α+

q
∑

j=1

θj |Zt−j | +
p
∑

j=1

φj log σt−j .
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In this sense GARCH processes and their variants are much related to stochastic volatility
models. In view of the recursive nature of the definitions of σt and Xt, they are perhaps
more complicated.

0 50 100 150 200 250

-1
0

-5
0

5

Figure 1.6. Realization of length 250 of the stochastic volatility model Xt = eht/2Zt for a standard
Gaussian i.i.d. process Zt and a stationary auto-regressive process ht = 0.8ht−1 + Wt for a standard Gaussian
i.i.d. process Wt.

1.2 Filters

Many time series in real life are not stationary. Rather than modelling a nonstationary
sequence, such a sequence is often transformed in one or more time series that are
(assumed to be) stationary. The statistical analysis next focuses on the transformed
series.

Two important deviations from stationarity are trend and seasonality. A trend is a
long term, steady increase or decrease in the general level of the time series. A seasonal
component is a cyclic change in the level, the cycle length being for instance a year or a
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week. Even though Example 1.5 shows that a perfectly cyclic series can be modelled as
a stationary series, it is often considered wise to remove such perfect cycles from a given
series before applying statistical techniques.

There are many ways in which a given time series can be transformed in a series
that is easier to analyse. Transforming individual variables Xt into variables f(Xt) by
a fixed function f (such as the logarithm) is a common technique as is detrending by
substracting a “best fitting polynomial in t” of some fixed degree. This is commonly
found by the method of least squares: given a nonstationary time series Xt we determine
constants β0, . . . , βp by minimizing

(β0, . . . , βp) 7→
n
∑

t=1

(

Xt − β0 − β1t− · · · − βpt
p
)2
.

Next the time series Xt −β0−β1t−· · ·−βpt
p, for the minimizing coefficients β0, . . . , βp,

is assumed to be stationary.
A standard transformation for financial time series is to (log) returns, given by

log
Xt

Xt−1
, or

Xt

Xt−1
− 1.

If Xt/Xt−1 is close to unity for all t, then these transformations are similar, as log x ≈
x − 1 for x ≈ 1. Because log(ect/ec(t−1)) = c, a log return can be intuitively interpreted
as the exponent of exponential growth. Many financial time series exhibit an exponential
trend.

A general method to transform a nonstationary sequence in a stationary one, advo-
cated with much success in a famous book by Box and Jenkins, is filtering.

1.16 Definition. The (linear) filter with filter coefficients ψj for j ∈ Z is the operation
that transforms a given time series Xt into the time series Yt =

∑

j∈Z
ψjXt−j .

A linear filter is a moving average of infinite order. In Lemma 1.28 we give conditions
for the infinite series to be well defined. All filters used in practice are finite filters:
only finitely many coefficients are nonzero. Important examples are the difference filter
∇Xt = Xt −Xt−1, its repetitions ∇kXt = ∇∇k−1Xt defined recursely for k = 2, 3, . . .,
and the seasonal difference filter ∇kXt = Xt −Xt−k.

1.17 Example (Polynomial trend). A linear trend model could take the form Xt =
at + Zt for a strictly stationary time series Zt. If a 6= 0, then the time series Xt is not
stationary in the mean. However, the differenced series ∇Xt = a+Zt−Zt−1 is stationary.

Thus differencing can be used to remove a linear trend. Similarly, a polynomial trend
can be removed by repeated differencing: a polynomial trend of degree k is removed by
applying ∇k.

1.18 EXERCISE. Check this for a series of the form Xt = at+ bt2 + Zt.

1.19 EXERCISE. Does a (repeated) seasonal filter also remove polynomial trend?
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Figure 1.7. Prices of Hewlett Packard on New York Stock Exchange and corresponding log returns.

1.20 Example (Random walk). A random walk is defined as the sequence of partial
sums Xt = Z1 +Z2 + · · ·+ Zt of an i.i.d. sequence Zt. A random walk is not stationary,
but the differenced series ∇Xt = Zt certainly is.

1.21 Example (Monthly cycle). If Xt is the value of a system in month t, then ∇12Xt

is the change in the system during the past year. For seasonable variables without trend
this series might be modelled as stationary. For series that contain both yearly seasonality
and trend, the series ∇k∇12Xt might be stationary.

1.22 Example (Weekly cycle). If Xt is the value of a system at day t, then Yt =
(1/7)

∑6
j=0Xt−j is the average value over the last week. This series might show trend,

but should not show seasonality due to day-of-the-week. We could study seasonality
by considering the time series Xt − Yt, which results from filtering the series Xt with
coefficients (ψ0, . . . , ψ6) = (6/7,−1/7, . . . ,−1/7).

1.23 Example (Exponential smoothing). An ad-hoc method for predicting the future
is to equate the future to the present or, more generally, to the average of the last k
observed values of a time series. When averaging past values it is natural to gives more
weight to the most recent values. Exponentially decreasing weights appear to have some
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Figure 1.8. Realization of the time series t + 0.05t2 + Xt for the stationary auto-regressive process Xt

satisfying Xt−0.8Xt−1 = Zt for Gaussian white noise Zt, and the same series after once and twice differencing.

popularity. This corresponds to predicting a future value of a time series Xt by the
weighted average

∑∞
j=0 θ

j/(1 − θ)Xt−j for some θ ∈ (0, 1).

1.24 EXERCISE. Show that the result of two filters with coefficients αj and βj applied
in turn (if well defined) is the filter with coefficients γj given by γk =

∑

j αjβk−j . This
is called the convolution of the two filters. Infer that filtering is commutative.

1.25 Definition. A filter with coefficients ψj is causal if ψj = 0 for every j < 0.

For a causal filter the variable Yt =
∑

j ψjXt−j depends only on the values
Xt, Xt−1, . . . of the original time series in the present and past, not the future. This is
important for prediction. Given Xt up to some time t, we can calculate Yt up to time t.
If Yt is stationary, we can use results for stationary time series to predict the future value
Yt+1. Next we predict the future value Xt+1 by Xt+1 = ψ−1

0 (Yt+1 −
∑

j>0 ψjXt+1−j).
In order to derive conditions that guarantee that an infinite filter is well defined, we

start with a lemma concerning series’ of random variables. Recall that a series
∑

t xt of
nonnegative numbers is always well defined (although possibly ∞), where the order of
summation is irrelevant. Furthermore, for general numbers xt the absolute convergence
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∑

t |xt| <∞ implies that
∑

t xt exists as a finite number, where the order of summation
is again irrelevant. We shall be concerned with series indexed by t ∈ N, t ∈ Z, t ∈ Z2, or
t contained in some other countable set T . It follows from the preceding that

∑

t∈T xt is
well defined as a limit as n → ∞ of partial sums

∑

t∈Tn
xt, for any increasing sequence

of finite subsets Tn ⊂ T with union T , if either every xt is nonnegative or
∑

t |xt| <∞.
For instance, in the case that the index set T is equal to Z, we can choose the sets
Tn = {t ∈ Z: |t| ≤ n}.

1.26 Lemma. Let (Xt: t ∈ T ) be an arbitrary countable set of random variables.
(i) If Xt ≥ 0 for every t, then E

∑

tXt =
∑

t EXt (possibly +∞);
(ii) If

∑

t E|Xt| < ∞, then the series
∑

tXt converges absolutely almost surely and
E
∑

t Xt =
∑

t EXt.

Proof. Suppose T = ∪jTj for an increasing sequence T1 ⊂ T2 ⊂ · · · of finite subsets of
T . Assertion (i) follows from the monotone convergence theorem applied to the variables
Yj =

∑

t∈Tj
Xt. The second part of assertion (ii) follows from the dominated convergence

theorem applied to the same variables Yj . These are dominated by
∑

t |Xt|, which is
integrable because its expectation can be computed as

∑

t E|Xt| by (i). The first assertion
of (ii) follows because E

∑

t |Xt| <∞.

The dominated convergence theorem in the proof of (ii) actually gives a better result,
namely: if

∑

t E|Xt| <∞, then

E
∣

∣

∣

∑

t∈T

Xt −
∑

t∈Tj

Xt

∣

∣

∣→ 0, if T1 ⊂ T2 ⊂ · · · ↑ T.

This is called the convergence in mean of the series
∑

tXt. The analogous convergence
of the second moment is called the convergence in second mean. Alternatively, we speak
of “convergence in quadratic mean” or “convergence in L1 or L2”.

1.27 EXERCISE. Suppose that E|Xn −X |p → 0 and E|X |p <∞ for some p ≥ 1. Show
that EXk

n → EXk for every 0 < k ≤ p.

1.28 Lemma. Let (Zt: t ∈ Z) be an arbitrary time series and let
∑

j |ψj | <∞.
(i) If supt E|Zt| <∞, then

∑

j ψjZt−j converges absolutely, almost surely and in mean.

(ii) If supt E|Zt|2 <∞, then
∑

j ψjZt−j converges in second mean as well.
(iii) If the series Zt is stationary, then so is the series Xt =

∑

j ψjZt−j and γX(h) =
∑

l

∑

j ψjψj+l−hγZ(l).

Proof. (i). Because
∑

t E|ψjZt−j | ≤ supt E|Zt|
∑

j |ψj | < ∞, it follows by (ii) of the
preceding lemma that the series

∑

j ψjZt is absolutely convergent, almost surely. The
convergence in mean follows as in the remark following the lemma.

(ii). By (i) the series is well defined almost surely, and
∑

j ψjZt−j−
∑

|j|≤k ψjZt−j =
∑

|j|>k ψjZt−j . By the triangle inequality we have

∣

∣

∣

∑

|j|>k

ψjZt−j

∣

∣

∣

2

≤
(

∑

|j|>k

|ψjZt−j|
)2

=
∑

|j|>k

∑

|i|>k

|ψj ||ψi||Zt−j ||Zt−i|.
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By the Cauchy-Schwarz inequality E|Zt−j||Zt−i| ≤
(

E|Zt−j|2|EZt−i|2
)1/2

, which is
bounded by supt E|Zt|2. Therefore, in view of (i) of the preceding lemma the expec-
tation of the left side of the preceding display is bounded above by

∑

|j|>k

∑

|i|>k

|ψj ||ψi| sup
t

E|Zt|2 =
(

∑

|j|>k

|ψj |
)2

sup
t

E|Zt|2.

This converges to zero as k → ∞.
(iii). By (i) the series

∑

j ψjZt−j converges in mean. Therefore, E
∑

j ψjZt−j =
∑

j ψjEZt, which is independent of t. Using arguments as before, we see that we can
also justify the interchange of the order of expectations (hidden in the covariance) and
double sums in

γX(h) = cov
(

∑

j

ψjXt+h−j,
∑

i

ψiXt−i

)

=
∑

j

∑

i

ψjψi cov(Zt+h−j , Zt−i) =
∑

j

∑

i

ψjψiγZ(h− j + i).

This can be written in the form given by the lemma by the change of variables (j, i) 7→
(j, l − h+ j).

1.29 EXERCISE. Suppose that the series Zt in (iii) is strictly stationary. Show that the
series Xt is strictly stationary whenever it is well defined.

* 1.30 EXERCISE. For a white noise series Zt, part (ii) of the preceding lemma can be im-
proved: Suppose that Zt is a white noise sequence and

∑

j ψ
2
j <∞. Show that

∑

j ψjZt−j

converges in second mean. (For this exercise you need some of the material of Chapter 2.)

1.3 Complex Random Variables

Even though no real-life time series is complex valued, the use of complex numbers is
notationally convenient to develop the mathematical theory. In this section we discuss
complex-valued random variables.

A complex random variable Z is a map from some probability space into the field
of complex numbers whose real and imaginary parts are random variables. For complex
random variables Z = X + iY , Z1 and Z2, we define

EZ = EX + iEY,

varZ = E|Z − EZ|2,
cov(Z1, Z2) = E(Z1 − EZ1)(Z2 − EZ2).
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Some simple properties are, for α, β ∈ C,

EαZ = αEZ, EZ = EZ,

varZ = E|Z|2 − |EZ|2 = varX + varY = cov(Z,Z),

var(αZ) = |α|2 varZ,

cov(αZ1, βZ2) = αβ cov(Z1, Z2),

cov(Z1, Z2) = cov(Z2, Z1) = EZ1Z2 − EZ1EZ2.

1.31 EXERCISE. Prove the preceding identities.

The definitions given for real time series apply equally well to complex time series.
Lemma 1.28 also extends to complex time series Zt, where in (iii) we must read γX(h) =
∑

l

∑

j ψjψj+l−hγZ(l).

1.32 EXERCISE. Show that the auto-covariance function of a complex stationary time
series Zt is conjugate symmetric: γZ(−h) = γZ(h) for every h ∈ Z.

1.4 Multivariate Time Series

In many applications the interest is in the time evolution of several variables jointly. This
can be modelled through vector-valued time series. The definition of a stationary time
series applies without changes to vector-valued series Xt = (Xt,1, . . . , Xt,d). Here the
mean EXt is understood to be the vector (EXt,1, . . . , Xt,d) of means of the coordinates
and the auto-covariance function is defined to be the matrix

γX(h) =
(

cov(Xt+h,i, Xt,j)
)

i,j=1,...,d
= E(Xt+h − EXt+h)(Xt − EXt)

T .

The auto-correlation at lag h is defined as

ρX(h) =
(

ρ(Xt+h,i, Xt,j)
)

i,j=1,...,d
=
( γX(h)i,j
√

γX(0)i,iγX(0)j,j

)

i,j=1,...,d
.

The study of properties of multivariate time series can often be reduced to the study of
univariate time series by taking linear combinations aTXt of the coordinates. The first
and second moments satisfy

EaTXt = aT EXt, γaT X(h) = aTγX(h)a.

1.33 EXERCISE. What is the relationship between γX(h) and γX(−h)?



2
Hilbert Spaces
and Prediction

In this chapter we first recall definitions and basic facts concerning Hilbert spaces. Next
we apply these to solve the prediction problem: finding the “best” predictor of Xn+1

based on observations X1, . . . , Xn.

2.1 Hilbert Spaces and Projections

Given a measure space (Ω,U , µ) define L2(Ω,U , µ) as the set of all measurable functions
f : Ω → C such that

∫

|f |2 dµ < ∞. (Alternatively, all measurable functions with values
in R with this property.) Here a complex-valued function is said to be measurable if both
its real and imaginary parts are measurable functions, and its integral is by definition
∫

f dµ =
∫

Re f dµ+ i
∫

Im f dµ, provided the two integrals on the right are defined and
finite. Define

〈f1, f2〉 =

∫

f1f2 dµ,

‖f‖ =

√

∫

|f |2 dµ,

d(f1, f2) = ‖f1 − f2‖ =

√

∫

|f1 − f2|2 dµ.

These define a semi-inner product, a semi-norm, and a semi-metric, respectively. The
first is a semi-inner product in view of the properties:

〈f1 + f2, f3〉 = 〈f1, f3〉 + 〈f2, f3〉,
〈αf1, βf2〉 = αβ〈f1, f2〉,

〈f2, f1〉 = 〈f1, f2〉,
〈f, f〉 ≥ 0, with equality iff f = 0, a.e..
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The second is a semi-norm because it has the properties:

‖f1 + f2‖ ≤ ‖f1‖ + ‖f2‖,
‖αf‖ = |α|‖f‖,
‖f‖ = 0 iff f = 0, a.e..

Here the first line, the triangle inequality is not immediate, but it can be proved with
the help of the Cauchy-Schwarz inequality, given below. The other properties are more
obvious. The third is a semi-distance, in view of the relations:

d(f1, f3) ≤ d(f1, f2) + d(f2, f3),

d(f1, f2) = d(f2, f1),

d(f1, f2) = 0 iff f1 = f2, a.e..

Immediate consequences of the definitions and the properties of the inner product
are

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + 〈f, g〉 + 〈g, f〉 + ‖g‖2,

‖f + g‖2 = ‖f‖2 + ‖g‖2, if 〈f, g〉 = 0.

The last equality is known as the Pythagorean rule. In the complex case this is true,
more generally, if Re〈f, g〉 = 0.

2.1 Lemma (Cauchy-Schwarz). Any pair f, g in L2(Ω,U , µ) satisfies
∣

∣〈f, g〉
∣

∣ ≤ ‖f‖‖g‖.

Proof. For real-valued functions this follows upon working out the inequality ‖f−λg‖2 ≥
0 for λ = 〈f, g〉/‖g‖2. In the complex case we write 〈f, g〉 =

∣

∣〈f, g〉
∣

∣eiθ for some θ ∈ R

and work out ‖f − λeiθg‖2 ≥ 0 for the same choice of λ.

Now the triangle inequality for the norm follows from the preceding decomposition
of ‖f + g‖2 and the Cauchy-Schwarz inequality, which, when combined, yield

‖f + g‖2 ≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2 =
(

‖f‖ + ‖g‖
)2
.

Another consequence of the Cauchy-Schwarz inequality is the continuity of the inner
product:

fn → f, gn → g implies that 〈fn, gn〉 → 〈f, g〉.

2.2 EXERCISE. Prove this.

2.3 EXERCISE. Prove that
∣

∣‖f‖ − ‖g‖
∣

∣ ≤ ‖f − g‖.

2.4 EXERCISE. Derive the parallellogram rule: ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2.

2.5 EXERCISE. Prove that ‖f + ig‖2 = ‖f‖2 + ‖g‖2 for every pair f, g of real functions
in L2(Ω,U , µ).
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2.6 EXERCISE. Let Ω = {1, 2, . . . , k}, U = 2Ω the power set of Ω and µ the counting
measure on Ω. Show that L2(Ω,U , µ) is exactly Ck (or Rk in the real case).

We attached the qualifier “semi” to the inner product, norm and distance defined
previously, because in every of the three cases, the last property involves a null set. For
instance ‖f‖ = 0 does not imply that f = 0, but only that f = 0 almost everywhere. If
we think of two functions that are equal almost everywere as the same “function”, then
we obtain a true inner product, norm and distance. We define L2(Ω,U , µ) as the set of
all equivalence classes in L2(Ω,U , µ) under the equivalence relation “f ≡ g if and only
if f = g almost everywhere”. It is a common abuse of terminology, which we adopt as
well, to refer to the equivalence classes as “functions”.

2.7 Proposition. The metric space L2(Ω,U , µ) is complete under the metric d.

We shall need this proposition only occasionally, and do not provide a proof. (See e.g.
Rudin, Theorem 3.11.) The proposition asserts that for every sequence fn of functions in
L2(Ω,U , µ) such that

∫

|fn − fm|2 dµ → as m,n→ ∞ (a Cauchy sequence), there exists
a function f ∈ L2(Ω,U , µ) such that

∫

|fn − f |2 dµ→ 0 as n→ ∞.
A Hilbert space is a general inner product space that is metrically complete. The

space L2(Ω,U , µ) is an example, and the only example we need. (In fact, this is not a
great loss of generality, because it can be proved that any Hilbert space is (isometrically)
isomorphic to a space L2(Ω,U , µ) for some (Ω,U , µ).)

2.8 Definition. Two elements f, g of L2(Ω,U , µ) are orthogonal if 〈f, g〉 = 0. This is
denoted f ⊥ g. Two subsets F ,G of L2(Ω,U , µ) are orthogonal if f ⊥ g for every f ∈ F
and g ∈ G. This is denoted F ⊥ G.

2.9 EXERCISE. If f ⊥ G for some subset G ⊂ L2(Ω,U ,P), show that f ⊥ linG, where
linG is the closure of the linear span of G.

2.10 Theorem (Projection theorem). Let L ⊂ L2(Ω,U , µ) be a closed linear subspace.
For every f ∈ L2(Ω,U , µ) there exists a unique element Πf ∈ L that minimizes ‖f − l‖2

over l ∈ L. This element is uniquely determined by the requirements Πf ∈ L and
f − Πf ⊥ L.

Proof. Let d = inf l∈L ‖f− l‖ be the “minimal” distance of f to L. This is finite, because
0 ∈ L. Let ln be a sequence in L such that ‖f − ln‖2 → d. By the parallellogram law

∥

∥(lm − f) + (f − ln)
∥

∥

2
= 2‖lm − f‖2 + 2‖f − ln‖2 −

∥

∥(lm − f) − (f − ln)
∥

∥

2

= 2‖lm − f‖2 + 2‖f − ln‖2 − 4
∥

∥

1
2 (lm + ln) − f

∥

∥

2
.

Because (lm + ln)/2 ∈ L, the last term on the right is bounded above by −4d2. The two
first terms on the far right both converge to 2d2 as m,n → ∞. We conclude that the
left side, which is ‖lm − ln‖2, is bounded above by 4d2 + o(1) − 4d2 and hence, being
nonnegative, converges to zero. Thus the sequence ln is Cauchy and has a limit l by the
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completeness of L2(Ω,U , µ). The limit is in L, because L is closed. By the continuity of
the norm ‖f − l‖ = lim ‖f − ln‖ = d. Thus the limit l qualifies as Πf .

If both Π1f and Π2f are candidates for Πf , then we can take the sequence
l1, l2, l3, . . . in the preceding argument equal to the sequence Π1f,Π2f,Π1f, . . .. It then
follows that this sequence is a Cauchy-sequence and hence converges to a limit. The
latter is possibly only if Π1f = Π2f .

Finally, we consider the orthogonality relation. For every real number a and l ∈ L,
we have

∥

∥f − (Πf + al)
∥

∥

2
= ‖f − Πf‖2 − 2aRe〈f − Πf, l〉 + a2‖l‖2.

By definition of Πf this is minimal as a function of a at the value a = 0, whence the
given parabola (in a) must have its bottom at zero, which is the case if and only if
Re〈f −Πf, l〉 = 0. A similar argument with ia instead of a shows that Im〈f −Πf, l〉 = 0
as well. Thus f − Πf ⊥ L.

Conversely, if 〈f −Πf, l〉 = 0 for every l ∈ L and Πf ∈ L, then Πf − l ∈ L for every
l ∈ L and by Pythagoras’ rule

‖f − l‖2 =
∥

∥(f − Πf) + (Πf − l)
∥

∥

2
= ‖f − Πf‖2 + ‖Πf − l‖2 ≥ ‖f − Πf‖2.

This proves that Πf minimizes l 7→ ‖f − l‖2 over l ∈ L.

The function Πf given in the preceding theorem is called the (orthogonal) projection
of f onto L. From the orthogonality characterization of Πf , we can see that the map
f 7→ Πf is linear and decreases norm:

Π(f + g) = Πf + Πg,

Π(αf) = αΠf,

‖Πf‖ ≤ ‖f‖.

A further important property relates to repeated projections. If ΠLf denotes the pro-
jection of f onto L, then

ΠL1ΠL2f = ΠL1f, if L1 ⊂ L2.

Thus, we can find a projection in steps, by projecting a projection onto a bigger space
a second time on the smaller space. This, again, is best proved using the orthogonality
relations.

2.11 EXERCISE. Prove the relations in the two preceding displays.

The projection ΠL1+L2 onto the sum L1 +L2 = {l1 + l2: li ∈ Li} of two closed linear
spaces is not necessarily the sum ΠL1 + ΠL2 of the projections. (It is also not true that
the sum of two closed linear subspaces is necessarily closed, so that ΠL1+L2 may not
even be well defined.) However, this is true if the spaces L1 and L2 are orthogonal:

ΠL1+L2f = ΠL1f + ΠL2f, if L1 ⊥ L2.
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2.12 EXERCISE.
(i) Show by counterexample that the condition L1 ⊥ L2 cannot be omitted.
(ii) Show that L1 + L2 is closed if L1 ⊥ L2 and both L1 and L2 are closed subspaces.
(iii) Show that L1 ⊥ L2 is sufficient in (i).

[Hint for (ii): It must be shown that if zn = xn + yn with xn ∈ L1, yn ∈ L2 for every n
and zn → z, then z = x + y for some x ∈ L1 and y ∈ L2. How can you find xn and yn

from zn?]

2.13 EXERCISE. Find the projection ΠLf for L the one-dimensional space {λl0:λ ∈ C}.

* 2.14 EXERCISE. Suppose that the set L has the form L = L1 + iL2 for two closed,
linear spaces L1, L2 of real functions. Show that the minimizer of l 7→ ‖f − l‖ over l ∈ L
for a real function f is the same as the minimizer of l 7→ ‖f− l‖ over L1. Does this imply
that f − Πf ⊥ L2? Why is the preceding projection theorem of no use?

2.2 Square-integrable Random Variables

For (Ω,U ,P) a probability space the space L2(Ω,U ,P) is exactly the set of all complex
(or real) random variables X with finite second moment E|X |2. The inner product is the
product expectation 〈X,Y 〉 = EXY , and the inner product between centered variables
is the covariance:

〈X − EX,Y − EY 〉 = cov(X,Y ).

The Cauchy-Schwarz inequality takes the form

|EXY |2 ≤ E|X |2E|Y |2.

When combined the preceding displays imply that
∣

∣cov(X,Y )
∣

∣

2 ≤ varX varY . Conver-
gence Xn → X relative to the norm means that E|Xn − X |2 → 0 and is referred to
as convergence in second mean. This implies the convergence in mean E|Xn −X | → 0,
because E|X | ≤

√

E|X |2 by the Cauchy-Schwarz inequality. The continuity of the inner
product gives that:

E|Xn −X |2 → 0,E|Yn − Y |2 → 0 implies cov(Xn, Yn) → cov(X,Y ).

2.15 EXERCISE. How can you apply this rule to prove equalities of the type
cov(

∑

αjXt−j ,
∑

βjYt−j) =
∑

i

∑

j αiβj cov(Xt−i, Yt−j), such as in Lemma 1.28?

2.16 EXERCISE. Show that sd(X+Y ) ≤ sd(X)+sd(Y ) for any pair of random variables
X and Y .
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2.2.1 Conditional Expectation

Let U0 ⊂ U be a sub σ-field of U . The collection L of all U0-measurable variables Y ∈
L2(Ω,U ,P) is a closed, linear subspace of L2(Ω,U ,P) (which can be identified with
L2(Ω,U0,P)). By the projection theorem every square-integrable random variable X
possesses a projection onto L. This particular projection is important enough to derive
a number of special properties.

2.17 Definition. The projection of X ∈ L2(Ω,U ,P) onto the the set of all U0-
measurable square-integrable random variables is called the conditional expectation of
X given U0. It is denoted by E(X | U0).

The name “conditional expectation” suggests that there exists another, more intu-
itive interpretation of this projection. An alternative definition of a conditional expecta-
tion is as follows.

2.18 Definition. The conditional expectation given U0 of a random variable X which
is either nonnegative or integrable is defined as a U0-measurable variable X ′ such that
EX1A = EX ′1A for every A ∈ U0.

It is clear from the definition that any other U0-measurable map X ′′ such that
X ′′ = X ′ almost surely is also a conditional expectation. Apart from this indeterminacy
on null sets, a conditional expectation as in the second definition can be shown to be
unique. Its existence can be proved using the Radon-Nikodym theorem. We shall not
give proofs of these facts here.

Because a variable X ∈ L2(Ω,U ,P) is automatically integrable, the second defi-
nition defines a conditional expectation for a larger class of variables. If E|X |2 < ∞,
so that both definitions apply, then they agree. To see this it suffices to show that a
projection E(X | U0) as in the first definition is the conditional expectation X ′ of the
second definition. Now E(X | U0) is U0-measurable by definition and satisfies the equal-
ity E

(

X − E(X | U0)
)

1A = 0 for every A ∈ U0, by the orthogonality relationship of a
projection. Thus X ′ = E(X | U0) satisfies the requirements of Definition 2.18.

Definition 2.18 does show that a conditional expectation has to do with expecta-
tions, but is not very intuitive. Some examples help to gain more insight in conditional
expectations.

2.19 Example (Ordinary expectation). The expectation EX of a random variable X
is a number, and as such can be viewed as a degenerate random variable. It is also the
conditional expectation relative to the trivial σ-field U0 = {∅,Ω}. More generally, we have
that E(X | U0) = EX if X and U0 are independent. In this case U0 gives “no information”
about X and hence the expectation given U0 is the “unconditional” expectation.

To see this note that E(EX)1F = EXE1F = EX1F for every measurable set F such
that X and F are independent.

2.20 Example. At the other extreme we have that E(X | U0) = X if X itself is U0-
measurable. This is immediate from the definition. “Given U0 we then know X exactly.”
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A measurable map Y : Ω → D with values in some measurable space (D,D) generates
a σ-field σ(Y ). The notation E(X |Y ) is an abbreviation of E(X |σ(Y )).

2.21 Example. Let (X,Y ): Ω → R × Rk be measurable and possess a density f(x, y)
relative to a σ-finite product measure µ×ν on R×Rk (for instance, the Lebesgue measure
on Rk+1). Then it is customary to define a conditional density of X given Y = y by

f(x| y) =
f(x, y)

∫

f(x, y) dµ(x)
.

This is well defined for every y for which the denominator is positive, i.e. for all y in a
set of measure one under the distribution of Y .

We now have that the conditional expection is given by the “usual formula”

E(X |Y ) =

∫

xf(x|Y ) dµ(x),

where we may define the right hand zero as zero if the expression is not well defined.
That this formula is the conditional expectation according to Definition 2.18 follows

by a number of applications of Fubini’s theorem. Note that, to begin with, it is a part of
the statement of Fubini’s theorem that the function on the right is a measurable function
of Y .

2.22 Lemma (Properties).
(i) EE(X | U0) = EX .
(ii) If Z is U0-measurable, then E(ZX | U0) = ZE(X | U0) a.s.. (Here require that X ∈

Lp(Ω,U ,P) and Z ∈ Lq(Ω,U ,P) for 1 ≤ p ≤ ∞ and p−1 + q−1 = 1.)
(iii) (linearity) E(αX + βY | U0) = αE(X | U0) + βE(Y | U0) a.s..
(iv) (positivity) If X ≥ 0 a.s., then E(X | U0) ≥ 0 a.s..
(v) (towering property) If U0 ⊂ U1 ⊂ U , then E

(

E(X | U1)| U0) = E(X | U0) a.s..

The conditional expectation E(X |Y ) given a random vector Y is by definition a
σ(Y )-measurable function. For most Y , this means that it is a measurable function g(Y )
of Y . (See the following lemma.) The value g(y) is often denoted by E(X |Y = y).

Warning. Unless P(Y = y) > 0 it is not right to give a meaning to E(X |Y = y) for
a fixed, single y, even though the interpretation as an expectation given “that we know
that Y = y” often makes this tempting. We may only think of a conditional expectation
as a function y 7→ E(X |Y = y) and this is only determined up to null sets.

2.23 Lemma. Let {Yα:α ∈ A} be random variables on Ω and let X be a σ(Yα:α ∈ A)-
measurable random variable.
(i) If A = {1, 2, . . . , k}, then there exists a measurable map g: Rk → R such that

X = g(Y1, . . . , Yk).
(ii) If |A| = ∞, then there exists a countable subset {αn}∞n=1 ⊂ A and a measurable

map g: R∞ → R such that X = g(Yα1 , Yα2 , . . .).

Proof. For the proof of (i), see e.g. Dudley Theorem 4.28.
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2.3 Linear Prediction

Suppose that we observe the values X1, . . . , Xn from a stationary, mean zero time series
Xt.

2.24 Definition. Suppose that EXt ≡ 0. The best linear predictor of Xn+1 is the linear
combination φ1Xn + φ2Xn−1 + · · · + φnX1 that minimizes E|Xn+1 − Y |2 over all linear
combinations Y of X1, . . . , Xn. The minimal value E|Xn+1 − φ1Xn − · · · − φnX1|2 is
called the square prediction error.

In the terminology of the preceding section, the best linear predictor of Xn+1 is the
projection of Xn+1 onto the linear subspace lin (X1, . . . , Xn) spanned by X1, . . . , Xn. A
common notation is ΠnXn+1, for Πn the projection onto lin (X1, . . . , Xn). Best linear
predictors of other random variables are defined similarly.

Warning. The coefficients φ1, . . . , φn in the formula ΠnXn+1 = φ1Xn + · · ·+φnX1

depend on n, even though we shall often suppress this dependence in the notation.
By Theorem 2.10 the best linear predictor can be found from the prediction equations

〈Xn+1 − φ1Xn − · · · − φnX1, Xt〉 = 0, t = 1, . . . , n.

For a stationary time series Xt this system can be written in the form

(2.1)









γX(0) γX(1) · · · γX(n− 1)
γX(1) γX(0) · · · γX(n− 2)

...
...

. . .
...

γX(n− 1) γX(n− 2) · · · γX(0)















φ1
...
φn






=







γX(1)
...

γX(n)






.

If the (n× n)-matrix on the left is nonsingular, then φ1, . . . , φn can be solved uniquely.
Otherwise there are more solutions for the vector (φ1, . . . , φn), but any solution will
give the best linear predictor ΠnXn+1 = φ1Xn + · · · + φnX1. The equations express
φ1, . . . , φn in the auto-covariance function γX . In practice, we do not know this function,
but estimate it from the data. (We consider this estimation problem later on.) Then we
use the corresponding estimates for φ1, . . . , φn to calculate the predictor.

The square prediction error can be expressed in the coefficients using Pythagoras’
rule, which gives, for a stationary time series Xt,

(2.2)
E|Xn+1 − ΠnXn+1|2 = E|Xn+1|2 − E|ΠnXn+1|2

= γX(0) − (φ1, . . . , φn)T Γn(φ1, . . . , φn),

for Γn the covariance matrix of the vector (X1, . . . , Xn), i.e. the matrix on the left left
side of (2.1).

Similar arguments apply to predicting Xn+h for h > 1. If we wish to predict the
future values at many time lags h = 1, 2, . . ., then solving a n-dimensional linear sys-
tem for every h separately can be computer-intensive, as n may be large. Several more
efficient, recursive algorithms use the predictions at earlier times to calculate the next
prediction. We omit a discussion.
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2.25 Example (Autoregression). Prediction is extremely simple for the stationary
auto-regressive time series satisfying Xt = φXt−1 +Zt for a white noise sequence Zt and
|φ| < 1. The best linear predictor of Xn+1 given X1, . . . , Xn is simply φXn (for n ≥ 1).
Thus we predict Xn+1 = φXn + Zn+1 by simply setting the unknown Zn+1 equal to its
mean, zero. The interpretation is that the Zt are external noise factors that are completely
unpredictable based on the past. The square prediction error E|Xn+1 − φXn|2 = EZ2

n+1

is equal to the variance of this noise variable.
The claim is not obvious, as is proved by the fact that it is wrong in the case that

|φ| > 1. To prove the claim we recall from Example 1.8 that the unique stationary solution
to the auto-regressive equation in the case that |φ| < 1 is given by Xt =

∑∞
j=0 φ

jZt−j.
Thus Xt depends only on Zs from the past and the present. Because Zt is a white noise
sequence, it follows that Xt is uncorrelated with the variables Zt+1, Zt+2, . . .. Therefore
〈Xn+1 − φXn, Xt〉 = 〈Zn+1, Xt〉 = 0 for t = 1, 2, . . . , n. This verifies the orthogonality
relationship; it is obvious that φXn is contained in the linear span of X1, . . . , Xn.

2.26 EXERCISE. There is a hidden use of the continuity of the inner product in the
preceding example. Can you see where?

2.27 Example (Deterministic trigonometric series). For the processXt = A cos(λt)+
B sin(λt), considered in Example 1.5, the best linear predictor of Xn+1 given X1, . . . , Xn

is given by 2(cosλ)Xn − Xn−1, for n ≥ 2. The prediction error is equal to 0! This
underscores that this type of time series is deterministic in character: if we know it at
two time instants, then we know the time series at all other time instants. The explanation
is that from the values of Xt at two time instants we can recover the values A and B.

These assertions follow by explicit calculations, solving the prediction equations. It
suffices to do this for n = 2: if X3 can be predicted without error by 2(cosλ)X2 −X1,
then, by stationarity, Xn+1 can be predicted without error by 2(cosλ)Xn −Xn−1.

2.28 EXERCISE.
(i) Prove the assertions in the preceding example.
(ii) Are the coefficients 2 cosλ,−1, 0, . . . , 0 in this example unique?

If a given time series Xt is not centered at 0, then it is natural to allow a constant
term in the predictor. Write 1 for the random variable that is equal to 1 almost surely.

2.29 Definition. The best linear predictor of Xn+1 based on X1, . . . , Xn is the projec-
tion of Xn+1 onto the linear space spanned by 1, X1, . . . , Xn.

If the time series Xt does have mean zero, then the introduction of the constant
term 1 does not help. Indeed, the relation EXt = 0 is equivalent to Xt ⊥ 1, which
implies both that 1 ⊥ lin (X1, . . . , Xn) and that the projection of Xn+1 onto lin 1 is
zero. By the orthogonality the projection of Xn+1 onto lin (1, X1, . . . , Xn) is the sum
of the projections of Xn+1 onto lin 1 and lin (X1, . . . , Xn), which is the projection on
lin (X1, . . . , Xn), the first projection being 0.
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By a similar argument we see that for a time series with mean µ = EXt possibly
nonzero,

(2.3) Πlin (1,X1,...,Xn)Xn+1 = µ+ Πlin (X1−µ,...,Xn−µ)(Xn+1 − µ).

Thus the recipe for prediction with uncentered time series is: substract the mean from
every Xt, calculate the projection for the centered time series Xt−µ, and finally add the
mean. Because the auto-covariance function γX gives the inner produts of the centered
process, the coefficients φ1, . . . , φn of Xn −µ, . . . , X1−µ are still given by the prediction
equations (2.1).

2.30 EXERCISE. Prove formula (2.3), noting that EXt = µ is equivalent to Xt −µ ⊥ 1.

2.4 Nonlinear Prediction

The method of linear prediction is commonly used in time series analysis. Its main
advantage is simplicity: the linear predictor depends on the mean and auto-covariance
function only, and in a simple fashion. On the other hand, if we allow general functions
f(X1, . . . , Xn) of the observations as predictors, then we might be able to decrease the
prediction error.

2.31 Definition. The best predictor of Xn+1 based on X1, . . . , Xn is the function

fn(X1, . . . , Xn) that minimizes E
∣

∣Xn+1 − f(X1, . . . , Xn)
∣

∣

2
over all measurable functions

f : Rn → R.

In view of the discussion in Section 2.2.1 the best predictor is the conditional ex-
pectation E(Xn+1|X1, . . . , Xn) of Xn+1 given the variables X1, . . . , Xn. Best predictors
of other variables are defined similarly as conditional expectations.

The difference between linear and nonlinear prediction can be substantial. In “clas-
sical” time series theory linear models with Gaussian errors were predominant and for
those models the two predictors coincide. Given nonlinear models, or non-Gaussian dis-
tributions, nonlinear prediction should be the method of choice, if feasible.

2.32 Example (GARCH). In the GARCH model of Example 1.10 the variable Xn+1 is
given as σn+1Zn+1, where σn+1 is a function of Xn, Xn−1, . . . and Zn+1 is independent
of these variables. It follows that the best predictor of Xn+1 given the infinite past
Xn, Xn−1, . . . is given by σn+1E(Zn+1|Xn, Xn−1, . . .) = 0. We can find the best predictor
given Xn, . . . , X1 by projecting this predictor further onto the space of all measurable
functions of Xn, . . . , X1. By the linearity of the projection we again find 0.

We conclude that a GARCH model does not allow a “true prediction” of the future,
if “true” refers to predicting the values of the time series itself.
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On the other hand, we can predict other quantities of interest. For instance, the
uncertainty of the value of Xn+1 is determined by the size of σn+1. If σn+1 is close to
zero, then we may expect Xn+1 to be close to zero, and conversely. Given the infinite
past Xn, Xn−1, . . . the variable σn+1 is known completely, but in the more realistic sit-
uation that we know only Xn, . . . , X1 some chance component will be left. (For large n
the difference between these two situations will be small.) The dependence of σn+1 on
Xn, Xn−1, . . . is given in Example 1.10 as σ2

n+1 =
∑∞

j=0 φ
j(α+ θX2

n−j) and is nonlinear.

For large n this is close to
∑n−1

j=0 φ
j(α + θX2

n−j), which is a function of X1, . . . , Xn.

By definition the best predictor σ̂2
n+1 based on 1, X1, . . . , Xn is the closest function and

hence it satisfies

E
∣

∣σ̂2
n+1 − σ2

n+1

∣

∣

2 ≤ E
∣

∣

∣

n−1
∑

j=0

φj(α+ θX2
n−j) − σ2

n+1

∣

∣

∣

2

= E
∣

∣

∣

∞
∑

j=n

φj(α+ θX2
n−j)

∣

∣

∣

2

.

For small φ and large n this will be small if the sequence Xn is sufficiently integrable.
Thus nonlinear prediction of σ2

n+1 is feasible.

2.5 Partial Auto-Correlation

For a given mean-zero stationary time series Xt the partial auto-correlation of lag h is
defined as the correlation between Xh − Πh−1Xh and X0 − Πh−1X0, where Πh is the
projection onto lin (X1, . . . , Xh). This is the “correlation between Xh and X0 with the
correlation due to the intermediate variables X1, . . . , Xh−1 removed”. We shall denote it
by

αX(h) = ρ
(

Xh − Πh−1Xh, X0 − Πh−1X0

)

.

For an uncentered stationary time series we set the partial auto-correlation by definition
equal to the partial auto-correlation of the centered seriesXt−EXt. A convenient method
to compute αX is given by the prediction equations combined with the following lemma:
αX(h) is the coefficient of X1 of the best linear predictor of Xh+1 based on X1, . . . , Xh.

2.33 Lemma. Suppose thatXt is a mean-zero stationary time series. If φ1Xh+φ2Xh−1+
· · · + φhX1 is the best linear predictor of Xh+1 based on X1, . . . , Xh, then αX(h) = φh.

Proof. Let ψ1Xh + · · ·+ψh−1X2 =: Π2,hX1 be the best linear predictor of X1 based on
X2, . . . , , Xh. The best linear predictor of Xh+1 based on X1, . . . , Xh can be decomposed
as

ΠhXh+1 = φ1Xh + · · · + φhX1

=
[

(φ1 + φhψ1)Xh + · · · + (φh−1 + φhψh−1)X2

]

+ φh

[

(X1 − Π2,hX1)
]

.

The two terms in square brackets are orthogonal, becauseX1−Π2,hX1 ⊥ lin (X2, . . . , Xh)
by the projection theorem. Therefore, the second term in square brackets is the projection
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of ΠhXh+1 onto the one-dimensional subspace lin (X1−Π2,hX1). It is also the projection
ofXh+1 onto this one-dimensional subspace, because lin (X1−Π2,hX1) ⊂ lin (X1, . . . , Xh)
and we can compute projections by first projecting onto a bigger subspace.

The projection of Xh+1 onto the one-dimensional subspace lin (X1−Π2,hX1) is easy
to compute directly. It is given by α(X1 − Π2,hX1) for α given by

α =
〈Xh+1, X1 − Π2,hX1〉

‖X1 − Π2,hX1‖2
=

〈Xh+1 − Π2,hXh+1, X1 − Π2,hX1〉
‖X1 − Π2,hX1‖2

.

Because the prediction problem is symmetric in time, as it depends on the auto-covariance
function only, ‖X1 − Π2,hX1‖ = ‖Xh+1 − Π2,hX1‖. Therefore, the right side is exactly
αX(h). In view of the preceding paragraph, we have α = φh and the lemma is proved.

2.34 Example (Autoregression). According to Example 2.25, for the stationary auto-
regressive process Xt = φXt−1 +Zt with |φ| < 1, the best linear predictor of Xn+1 based
on X1, . . . , Xn is φXn, for n ≥ 1. Thus the partial auto-correlations αX(h) of lags h > 1
are zero and αX(1) = φ. This is often viewed as the dual of the property that for the
moving average sequence of order 1, considered in Example 1.6, the auto-correlations of
lags h > 1 vanish.

In Chapter 7 we shall see that for higher order stationary auto-regressive processes
Xt = φ1Xt−1 + · · · + φpXt−p + Zt the partial auto-correlations of lags h > p are zero
under the (standard) assumption that the time series is “causal”.



3
Stochastic Convergence

This chapter provides a review of modes of convergence of sequences of stochastic vectors.
In particular, convergence in distribution and in probability. Many proofs are omitted,
but can be found in most standard probability books.

3.1 Basic theory

A random vector in Rk is a vector X = (X1, . . . , Xk) of real random variables. More
formally it is a Borel measurable map from some probability space in Rk. The distribution
function of X is the map x→ P(X ≤ x).

A sequence of random vectors Xn is said to converge in distribution to X if

P(Xn ≤ x) → P(X ≤ x),

for every x at which the distribution function x→ P(X ≤ x) is continuous. Alternative
names are weak convergence and convergence in law. As the last name suggests, the
convergence only depends on the induced laws of the vectors and not on the probability
spaces on which they are defined. Weak convergence is denoted by Xn  X ; if X has
distribution L or a distribution with a standard code such as N(0, 1), then also by
Xn  L or Xn  N(0, 1).

Let d(x, y) be any distance function on Rk that generates the usual topology. For
instance

d(x, y) = ‖x− y‖ =
(

k
∑

i=1

(xi − yi)
2
)1/2

.

A sequence of random variables Xn is said to converge in probability to X if for all ε > 0

P
(

d(Xn, X) > ε
)

→ 0.
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This is denoted by Xn
P→ X . In this notation convergence in probability is the same as

d(Xn, X) P→ 0.
As we shall see convergence in probability is stronger than convergence in distribu-

tion. Even stronger modes of convergence are almost sure convergence and convergence
in pth mean. The sequence Xn is said to converge almost surely to X if d(Xn, X) → 0
with probability one:

P
(

lim d(Xn, X) = 0
)

= 1.

This is denoted by Xn
as→ X . The sequence Xn is said to converge in pth mean to X if

Ed(Xn, X)p → 0.

This is denoted Xn
Lp→ X . We already encountered the special cases p = 1 or p = 2,

which are referred to as “convergence in mean” and “convergence in quadratic mean”.
Convergence in probability, almost surely, or in mean only make sense if each Xn

and X are defined on the same probability space. For convergence in distribution this is
not necessary.

The portmanteau lemma gives a number of equivalent descriptions of weak con-
vergence. Most of the characterizations are only useful in proofs. The last one also has
intuitive value.

3.1 Lemma (Portmanteau). For any random vectors Xn and X the following state-
ments are equivalent.
(i) P(Xn ≤ x) → P(X ≤ x) for all continuity points of x→ P(X ≤ x);
(ii) Ef(Xn) → Ef(X) for all bounded, continuous functions f ;
(iii) Ef(Xn) → Ef(X) for all bounded, Lipschitz† functions f ;
(iv) lim inf P(Xn ∈ G) ≥ P(X ∈ G) for every open set G;
(v) lim sup P(Xn ∈ F ) ≤ P(X ∈ F ) for every closed set F ;
(vi) P(Xn ∈ B) → P(X ∈ B) for all Borel sets B with P(X ∈ δB) = 0 where δB = B−B̊

is the boundary of B.

The continuous mapping theorem is a simple result, but is extremely useful. If the
sequence of random vector Xn converges to X and g is continuous, then g(Xn) converges
to g(X). This is true without further conditions for three of our four modes of stochastic
convergence.

3.2 Theorem (Continuous mapping). Let g: Rk → Rm be measurable and continuous
at every point of a set C such that P(X ∈ C) = 1.
(i) If Xn  X , then g(Xn) g(X);
(ii) If Xn

P→ X , then g(Xn) P→ g(X);
(iii) If Xn

as→ X , then g(Xn) as→ g(X).

Any random vector X is tight: for every ε > 0 there exists a constant M such that
P
(

‖X‖ > M
)

< ε. A set of random vectors {Xα:α ∈ A} is called uniformly tight if M

† A function is called Lipschitz if there exists a number L such that |f(x) − f(y)| ≤ Ld(x, y) for every x
and y. The least such number L is denoted ‖f‖Lip.
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can be chosen the same for every Xα: for every ε > 0 there exists a constant M such
that

sup
α

P
(

‖Xα‖ > M
)

< ε.

Thus there exists a compact set to which all Xα give probability almost one. Another
name for uniformly tight is bounded in probability. It is not hard to see that every weakly
converging sequence Xn is uniformly tight. More surprisingly, the converse of this state-
ment is almost true: according to Prohorov’s theorem every uniformly tight sequence
contains a weakly converging subsequence.

3.3 Theorem (Prohorov’s theorem). Let Xn be random vectors in Rk.
(i) If Xn  X for some X , then {Xn:n ∈ N} is uniformly tight;
(ii) If Xn is uniformly tight, then there is a subsequence with Xnj  X as j → ∞ for

some X .

3.4 Example. A sequence Xn of random variables with E|Xn| = O(1) is uniformly
tight. This follows since by Markov’s inequality: P

(

|Xn| > M
)

≤ E|Xn|/M . This can be
made arbitrarily small uniformly in n by choosing sufficiently large M.

The first absolute moment could of course be replaced by any other absolute mo-
ment.

Since the second moment is the sum of the variance and the square of the mean an
alternative sufficient condition for uniform tightness is: EXn = O(1) and varXn = O(1).

Consider some of the relationships between the three modes of convergence. Conver-
gence in distribution is weaker than convergence in probability, which is in turn weaker
than almost sure convergence and convergence in pth mean.

3.5 Theorem. Let Xn, X and Yn be random vectors. Then
(i) Xn

as→ X implies Xn
P→ X ;

(ii) Xn
Lp→ X implies Xn

P→ X ;
(iii) Xn

P→ X implies Xn  X ;
(iv) Xn

P→ c for a constant c if and only if Xn  c;
(v) if Xn  X and d(Xn, Yn) P→ 0, then Yn  X ;
(vi) if Xn  X and Yn

P→ c for a constant c, then (Xn, Yn) (X, c);
(vii) if Xn

P→ X and Yn
P→ Y , then (Xn, Yn) P→ (X,Y ).

Proof. (i). The sequence of sets An = ∪m≥n

{

d(Xm, X) > ε
}

is decreasing for every
ε > 0 and decreases to the empty set if Xn(ω) → X(ω) for every ω. If Xn

as→ X , then
P
(

d(Xn, X) > ε
)

≤ P(An) → 0.
(ii). This is an immediate consequence of Markov’s inequality, according to which

P
(

d(Xn, X) > ε
)

≤ ε−pEd(Xn, X)p for every ε > 0.
(v). For every bounded Lipschitz function f and every ε > 0 we have

∣

∣Ef(Xn) − Ef(Yn)
∣

∣ ≤ ε‖f‖LipE1
{

d(Xn, Yn) ≤ ε
}

+ 2‖f‖∞E1
{

d(Xn, Yn) > ε
}

.
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The second term on the right converges to zero as n → ∞. The first term can be made
arbitrarily small by choice of ε. Conclude that the sequences Ef(Xn) and Ef(Yn) have
the same limit. The result follows from the portmanteau lemma.

(iii). Since d(Xn, X) P→ 0 and trivially X  X it follows that Xn  X by (v).
(iv). The ‘only if’ part is a special case of (iii). For the converse let ball(c, ε) be the

open ball of radius ε around c. Then P
(

d(Xn, c) ≥ ε
)

= P
(

Xn ∈ ball(c, ε)c
)

. If Xn  c,

then the lim sup of the last probability is bounded by P
(

c ∈ ball(c, ε)c
)

= 0.

(vi). First note that d
(

(Xn, Yn), (Xn, c)
)

= d(Yn, c)
P→ 0. Thus according to (v) it

suffices to show that (Xn, c) (X, c). For every continuous, bounded function (x, y) →
f(x, y), the function x→ f(x, c) is continuous and bounded. Thus Ef(Xn, c) → Ef(X, c)
if Xn  X .

(vii). This follows from d
(

(x1, y1), (x2, y2)
)

≤ d(x1, x2) + d(y1, y2).

According to the last assertion of the lemma convergence in probability of a se-
quence of vectors Xn = (Xn,1, . . . , Xn,k) is equivalent to convergence of every one of
the sequences of components Xn,i separately. The analogous statement for convergence
in distribution is false: convergence in distribution of the sequence Xn is stronger than
convergence of every one of the sequences of components Xn,i. The point is that the dis-
tribution of the components Xn,i separately does not determine their joint distribution:
they might be independent or dependent in many ways. One speaks of joint convergence
in distribution versus marginal convergence.

The one before last assertion of the lemma has some useful consequences. If Xn  X
and Yn  c, then (Xn, Yn) (X, c). Consequently, by the continuous mapping theorem
g(Xn, Yn)  g(X, c) for every map g that is continuous at the set Rk × {c} where the
vector (X, c) takes its values. Thus for every g such that

lim
x→x0,y→c

g(x, y) = g(x0, c), every x0.

Some particular applications of this principle are known as Slutsky’s lemma.

3.6 Lemma (Slutsky). Let Xn, X and Yn be random vectors or variables. If Xn  X
and Yn  c for a constant c, then
(i) Xn + Yn  X + c;
(ii) YnXn  cX ;
(iii) Xn/Yn  X/c provided c 6= 0.

In (i) the “constant” c must be a vector of the same dimension as X , and in (ii) c is
probably initially understood to be a scalar. However, (ii) is also true if every Yn and c
are matrices (which can be identified with vectors, for instance by aligning rows, to give
a meaning to the convergence Yn  c), simply because matrix multiplication (y, x) → yx
is a continuous operation. Another true result in this case is that XnYn  Xc, if this
statement is well defined. Even (iii) is valid for matrices Yn and c and vectorsXn provided
c 6= 0 is understood as c being invertible and division is interpreted as (pre)multiplication
by the inverse, because taking an inverse is also continuous.
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3.7 Example. Let Tn and Sn be statistical estimators satisfying

√
n(Tn − θ) N(0, σ2), S2

n
P→ σ2,

for certain parameters θ and σ2 depending on the underlying distribution, for every
distribution in the model. Then θ = Tn ± Sn/

√
n ξα is a confidence interval for θ of

asymptotic level 1 − 2α.
This is a consequence of the fact that the sequence

√
n(Tn−θ)/Sn is asymptotically

standard normal distributed.

* 3.2 Convergence of Moments

By the portmanteau lemma, weak convergence Xn  X implies that Ef(Xn) → Ef(X)
for every continuous, bounded function f . The condition that f be bounded is not su-
perfluous: it is not difficult to find examples of a sequence Xn  X and an unbounded,
continuous function f for which the convergence fails. In particular, in general conver-
gence in distribution does not imply convergence EXp

n → EXp of moments. However, in
many situations such convergence occurs, but it requires more effort to prove it.

A sequence of random variables Yn is called asymptotically uniformly integrable if

lim
M→∞

lim sup
n→∞

E|Yn|1{|Yn| > M} = 0.

A simple sufficient condition for this is that for some p > 1 the sequence E|Yn|p is
bounded in n.

Uniform integrability is the missing link between convergence in distribution and
convergence of moments.

3.8 Theorem. Let f : Rk → R be measurable and continuous at every point in a set C.
Let Xn  X where X takes its values in C. Then Ef(Xn) → Ef(X) if and only if the
sequence of random variables f(Xn) is asymptotically uniformly integrable.

3.9 Example. Suppose Xn is a sequence of random variables such that Xn  X and
lim sup E|Xn|p <∞ for some p. Then all moments of order strictly less than p converge
also: EXk

n → EXk for every k < p.
By the preceding theorem, it suffices to prove that the sequenceXk

n is asymptotically
uniformly integrable. By Markov’s inequality

E|Xn|k1
{

|Xn|k ≥M
}

≤M1−p/k E|Xn|p.

The limsup, as n→ ∞ followed by M → ∞, of the right side is zero if k < p.
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3.3 Arrays

Consider an infinite array xn,l of numbers, indexed by (n, l) ∈ N × N, such that every
column has a limit, and the limits xl themselves converge to a limit along the columns.

x1,1 x1,2 x1,3 x1,4 . . .
x2,1 x2,2 x2,3 x2,4 . . .
x3,1 x3,2 x3,3 x3,4 . . .

...
...

...
... . . .

↓ ↓ ↓ ↓ . . .
x1 x2 x3 x4 . . . → x

Then we can find a “path” xn,ln , indexed by n ∈ N through the array along which
xn,ln → x as n→ ∞. (The point is to move to the right slowly in the array while going
down, i.e. ln → ∞.) A similar property is valid for sequences of random vectors, where
the convergence is taken as convergence in distribution.

3.10 Lemma. For n, l ∈ N let Xn,l be random vectors such that Xn,l  Xl as n → ∞
for every fixed l for random vectors such that Xl  X as l → ∞. Then there exists a
sequence ln → ∞ such Xn,ln  X as n→ ∞.

Proof. LetD = {d1, d2, . . .} be a countable set that is dense in Rk and that only contains
points at which the distribution functions of the limits X,X1, X2, . . . are continuous.
Then an arbitrary sequence of random variables Yn converges in distribution to one of
the variables Y ∈ {X,X1, X2, . . .} if and only if P(Yn ≤ di) → P(Y ≤ di) for every
di ∈ D. We can prove this using the monotonicity and right-continuity of distribution
functions. In turn P(Yn ≤ di) → P(Y ≤ di) as n→ ∞ for every di ∈ D if and only if

∞
∑

i=1

∣

∣P(Yn ≤ di) − P(Y ≤ di)
∣

∣2−i → 0.

Now define

pn,l =

∞
∑

i=1

∣

∣P(Xn,l ≤ di) − P(Xl ≤ di)
∣

∣

1

2i
,

pl =

∞
∑

i=1

∣

∣P(Xl ≤ di) − P(X ≤ di)
∣

∣2−i.

The assumptions entail that pn,l → 0 as n → ∞ for every fixed l, and that pl → 0 as
l → ∞. This implies that there exists a sequence ln → ∞ such that pn,ln → 0. By the
triangle inequality

∞
∑

i=1

∣

∣P(Xn,ln ≤ di) − P(X ≤ di)
∣

∣2−i ≤ pn,ln + pln → 0.

This implies that Xn,ln  X as n→ ∞.
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3.4 Stochastic o and O symbols

It is convenient to have short expressions for terms that converge in probability to zero
or are uniformly tight. The notation oP (1) (‘small “oh-P-one”’) is short for a sequence
of random vectors that converges to zero in probability. The expression OP (1) (‘big “oh-
P-one”’) denotes a sequence that is bounded in probability. More generally, for a given
sequence of random variables Rn

Xn = oP (Rn) means Xn = YnRn and Yn
P→ 0;

Xn = OP (Rn) means Xn = YnRn and Yn = OP (1).

This expresses that the sequence Xn converges in probability to zero or is bounded
in probability at ‘rate’ Rn. For deterministic sequences Xn and Rn the stochastic oh-
symbols reduce to the usual o and O from calculus.

There are many rules of calculus with o and O symbols, which will be applied
without comment. For instance,

oP (1) + oP (1) = oP (1)

oP (1) +OP (1) = OP (1)

OP (1)oP (1) = oP (1)
(

1 + oP (1)
)−1

= OP (1)

oP (Rn) = RnoP (1)

OP (Rn) = RnOP (1)

oP

(

OP (1)
)

= oP (1).

To see the validity of these “rules” it suffices to restate them in terms of explicitly
named vectors, where each oP (1) and OP (1) should be replaced by a different sequence
of vectors that converges to zero or is bounded in probability. In this manner the first
rule says: if Xn

P→ 0 and Yn
P→ 0, then Zn = Xn + Yn

P→ 0; this is an example of the
continuous mapping theorem. The third rule is short for: if Xn is bounded in probability
and Yn

P→ 0, then XnYn
P→ 0. If Xn would also converge in distribution, then this

would be statement (ii) of Slutsky’s lemma (with c = 0). But by Prohorov’s theorem Xn

converges in distribution “along subsequences” if it is bounded in probability, so that the
third rule can still be deduced from Slutsky’s lemma by “arguing along subsequences”.

Note that both rules are in fact implications and should be read from left to right,
even though they are stated with the help of the equality “=” sign. Similarly, while it is
true that oP (1) + oP (1) = 2oP (1), writing down this rule does not reflect understanding
of the oP -symbol.

Two more complicated rules are given by the following lemma.

3.11 Lemma. Let R be a function defined on a neighbourhood of 0 ∈ R
k such that

R(0) = 0. Let Xn be a sequence of random vectors that converges in probability to zero.
(i) if R(h) = o(‖h‖) as h→ 0 , then R(Xn) = oP (‖Xn‖);
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(ii) if R(h) = O(‖h‖) as h→ 0, then R(Xn) = OP (‖Xn‖).

Proof. Define g(h) as g(h) = R(h)/‖h‖ for h 6= 0 and g(0) = 0. Then R(Xn) =
g(Xn)‖Xn‖.

(i). Since the function g is continuous at zero by assumption, g(Xn) P→ g(0) = 0 by
the continuous mapping theorem.

(ii). By assumption there existM and δ > 0 such that
∣

∣g(h)
∣

∣ ≤M whenever ‖h‖ ≤ δ.

Thus P
(∣

∣g(Xn)
∣

∣ > M
)

≤ P
(

‖Xn‖ > δ
)

→ 0, and the sequence g(Xn) is tight.

It should be noted that the rule expressed by the lemma is not a simple plug-in rule.
For instance it is not true that R(h) = o(‖h‖) implies that R(Xn) = oP (‖Xn‖) for every
sequence of random vectors Xn.

3.5 Transforms

It is sometimes possible to show convergence in distribution of a sequence of random vec-
tors directly from the definition. In other cases ‘transforms’ of probability measures may
help. The basic idea is that it suffices to show characterization (ii) of the portmanteau
lemma for a small subset of functions f only.

The most important transform is the characteristic function

t→ EeitT X , t ∈ R
k.

Each of the functions x → eitT x is continuous and bounded. Thus by the portmanteau

lemma EeitT Xn → EeitT X for every t if Xn  X . By Lévy’s continuity theorem the
converse is also true: pointwise convergence of characteristic functions is equivalent to
weak convergence.

3.12 Theorem (Lévy’s continuity theorem). Let Xn and X be random vectors in

Rk. Then Xn  X if and only if EeitT Xn → EeitT X for every t ∈ Rk. Moreover, if

EeitT Xn converges pointwise to a function φ(t) that is continuous at zero, then φ is the
characteristic function of a random vector X and Xn  X .

The following lemma, which gives a variation on Lévy’s theorem, is less well known,
but will be useful in Chapter 4.

3.13 Lemma. Let Xn be a sequence of random variables such that E|Xn|2 = O(1) and
such that E(iXn + vt)eitXn → 0 as n → ∞, for every t ∈ R and some v > 0. Then
Xn  N(0, v).

Proof. By Markov’s inequality and the bound on the second moments, the sequence Xn

is uniformly tight. In view of Prohorov’s theorem it suffices to show that N(0, v) is the
only weak limit point.
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If Xn  X along some sequence of n, then by the boundedness of the second
moments and the continuity of the function x 7→ (ix+vt)eitx, we have E(iXn+vt)eitXn →
E(iX+ vt)eitX for every t ∈ R. (Cf. Theorem 3.8.) Combining this with the assumption,
we see that E(iX + vt)eitX = 0. By Fatou’s lemma EX2 ≤ lim inf EX2

n < ∞ and hence
we can differentiate the the characteristic function φ(t) = EeitX under the expectation to
find that φ′(t) = EiXeitX. We conclude that φ′(t) = −vtφ(t). This differential equation

possesses φ(t) = e−vt2/2 as the only solution within the class of characteristic functions.
Thus X is normally distributed with mean zero and variance v.

3.6 Cramér-Wold Device

The characteristic function t → EeitT X of a vector X is determined by the set of all

characteristic functions u→ Eeiu(tT X) of all linear combinations tTX of the components
of X . Therefore the continuity theorem implies that weak convergence of vectors is
equivalent to weak convergence of linear combinations:

Xn  X if and only if tTXn  tTX for all t ∈ R
k.

This is known as the Cramér-Wold device. It allows to reduce all higher dimensional
weak convergence problems to the one-dimensional case.

3.14 Example (Multivariate central limit theorem). Let Y, Y1, Y2, . . . be i.i.d. random
vectors in R

k with mean vector µ = EY and covariance matrix Σ = E(Y − µ)(Y − µ)T .
Then

1√
n

n
∑

i=1

(Yi − µ) =
√
n(Y n − µ) Nk(0,Σ).

(The sum is taken coordinatewise.) By the Cramér-Wold device the problem can be
reduced to finding the limit distribution of the sequences of real-variables

tT
( 1√

n

n
∑

i=1

(Yi − µ)
)

=
1√
n

n
∑

i=1

(tTYi − tTµ).

Since the random variables tTY1 − tTµ, tTY2 − tTµ, . . . are i.i.d. with zero mean and
variance tT Σt this sequence is asymptotically N1(0, t

T Σt) distributed by the univariate
central limit theorem. This is exactly the distribution of tTX if X possesses a Nk(0,Σ)
distribution.
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3.7 Delta-method

Let Tn be a sequence of random vectors with values in R
k and let φ: Rk → R

m be a
given function defined at least on the range of Tn and a neighbourhood of a vector θ.
We shall assume that, for given constants rn → ∞, the sequence rn(Tn − θ) converges in
distribution, and wish to derive a similar result concerning the sequence rn

(

φ(Tn)−φ(θ)
)

.
Recall that φ is differentiable at θ if there exists a linear map (matrix) φ′θ: R

k → Rm

such that

φ(θ + h) − φ(θ) = φ′θ(h) + o(‖h‖), h→ 0.

All the expressions in this equation are vectors of length m and ‖h‖ is the Euclidean
norm. The linear map h → φ′θ(h) is sometimes called a total derivative, as opposed to
partial derivatives. A sufficient condition for φ to be (totally) differentiable is that all
partial derivatives ∂φj(x)/∂xi exist for x in a neighbourhood of θ and are continuous
at θ. (Just existence of the partial derivatives is not enough.) In any case the total
derivative is found from the partial derivatives. If φ is differentiable, then it is partially
differentiable and the derivative map h→ φ′θ(h) is matrix multiplication by the matrix

φ′θ =







∂φ1

∂x1
(θ) · · · ∂φ1

∂xk
(θ)

...
...

∂φm

∂x1
(θ) · · · ∂φm

∂xk
(θ)






.

If the dependence of the derivative φ′θ on θ is continuous, then φ is called continuously
differentiable.

3.15 Theorem. Let φ: Rk → Rm be a measurable map defined on a subset of Rk and
differentiable at θ. Let Tn be random vectors taking their values in the domain of φ. If
rn(Tn − θ)  T for numbers rn → ∞, then rn

(

φ(Tn) − φ(θ)
)

 φ′θ(T ). Moreover, the

difference between rn
(

φ(Tn)−φ(θ)
)

and φ′θ
(

rn(Tn − θ)
)

converges to zero in probability.

Proof. Because rn → ∞, we have by Slutsky’s lemma Tn − θ = (1/rn)rn(Tn − θ)  
0T = 0 and hence Tn − θ converges to zero in probability. Define a function g by

g(0) = 0, g(h) =
φ(θ + h) − φ(θ) − φ′θ(h)

‖h‖ , if h 6= 0.

Then g is continuous at 0 by the differentiability of φ. Therefore, by the continuous
mapping theorem, g(Tn−θ) P→ 0 and hence, by Slutsky’s lemma and again the continuous
mapping theorem rn‖Tn − θ‖g(Tn − θ) P→ ‖T ‖0 = 0. Consequently,

rn
(

φ(Tn) − φ(θ) − φ′θ(Tn − θ)
)

= rn‖Tn − θ‖g(Tn − θ) P→ 0.

This yields the last statement of the theorem. Since matrix multiplication is continuous,
φ′θ
(

rn(Tn − θ)
)

 φ′θ(T ) by the continuous-mapping theorem. Finally, apply Slutsky’s

lemma to conclude that the sequence rn
(

φ(Tn) − φ(θ)
)

has the same weak limit.
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A common situation is that
√
n(Tn−θ) converges to a multivariate normal distribu-

tion Nk(µ,Σ). Then the conclusion of the theorem is that the sequence
√
n
(

φ(Tn)−φ(θ)
)

converges in law to the Nm

(

φ′θµ, φ
′
θΣ(φ′θ)

T
)

distribution.

3.8 Lindeberg Central Limit Theorem

In this section we state, for later reference, a central limit theorem for independent, but
not necessarily identically distributed random vectors.

3.16 Theorem (Lindeberg). For each n ∈ N let Yn,1, . . . , Yn,n be independent random
vectors with finite covariance matrices such that

1

n

n
∑

i=1

CovYn,i → Σ,

1

n

n
∑

i=1

E‖Yn,i‖21
{

‖Yn,i‖ > ε
√
n
}

→ 0, for every ε > 0.

Then the sequence n−1/2
∑n

i=1(Yn,i − EYn,i) converges in distribution to the normal
distribution with mean zero and covariance matrix Σ.

3.9 Minimum Contrast Estimators

Many estimators θ̂n of a parameter θ are defined as the point of minimum (or maximum)
of a given stochastic process θ 7→ Mn(θ). In this section we state basic theorems that
give the asymptotic behaviour of such minimum contrast estimators or M -estimators
θ̂n in the case that the contrast function Mn fluctuates around a deterministic, smooth
function.

Let Mn be a sequence of stochastic processes indexed by a subset Θ of Rd, defined on
given probability spaces, and let θ̂n be random vectors defined on the same probability
spaces with values in Θ such that Mn(θ̂n) ≤ Mn(θ) for every θ ∈ Θ. Typically it will be
true that Mn(θ) P→ M(θ) for each θ and a given deterministic function M . Then we may

expect that θ̂n
P→ θ0 for θ0 a point of minimum of the map θ → M(θ). The following

theorem gives a sufficient condition for this. It applies to the more general situation that
the “limit” function M is actually a random process.

For a sequence of random variables Xn we write Xn
P� 0 if Xn > 0 for every n and

1/Xn = OP (1).
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3.17 Theorem. Let Mn and Mn be stochastic processes indexed by a semi-metric space
Θ such that, for some θ0 ∈ Θ,

sup
θ∈Θ

∣

∣Mn(θ) −Mn(θ)
∣

∣

P→ 0,

inf
θ∈Θ:d(θ,θ0)>δ

Mn(θ) −Mn(θ0)
P� 0.

If θ̂n are random elements with values in Θ with Mn(θ̂n) ≥ Mn(θ0) − oP (1), then

d(θ̂n, θ0)
P→ 0.

Proof. By the uniform convergence to zero of Mn −Mn and the minimizing property of
θ̂n, we have Mn(θ̂n) = Mn(θ̂n)+oP (1) ≤ Mn(θ0)+oP (1) = Mn(θ0)+oP (1). Write Zn(δ)

for the left side of the second equation in the display of the theorem. Then d(θ̂n, θ0) > δ

implies that Mn(θ̂n) −Mn(θ0) ≥ Zn(δ). Combined with the preceding this implies that
Zn(δ) ≤ oP (1). By assumption the probability of this event tends to zero.

If the limit criterion function θ → M(θ) is smooth and takes its minimum at
the point θ0, then its first derivative must vanish at θ0, and the second derivative
V must be positive definite. Thus it possesses a parabolic approximation M(θ) =
M(θ0) + 1

2 (θ − θ0)
TV (θ − θ0) around θ0. The random criterion function Mn can be

thought of as the limiting criterion function plus the random perturbation Mn −M and
possesses approximation

Mn(θ) − Mn(θ0) ≈ 1
2 (θ − θ0)

TV (θ − θ0) +
[

(Mn −Mn)(θ) − (Mn −Mn)(θ0)
]

.

We shall assume that the term in square brackets possesses a linear approximation of the
form (θ − θ0)

TZn/
√
n. If we ignore all the remainder terms and minimize the quadratic

form

θ − θ0 7→ 1
2 (θ − θ0)

TV (θ − θ0) + (θ − θ0)
TZn/

√
n

over θ− θ0, then we find that the minimum is taken for θ− θ0 = −V −1Zn/
√
n. Thus we

expect that the M -estimator θ̂n satisfies
√
n(θ̂n−θ0) = −V −1Zn+oP (1). This derivation

is made rigorous in the following theorem.

3.18 Theorem. Let Mn be stochastic processes indexed by an open subset Θ of Eu-
clidean space and let M : Θ → R be a deterministic function. Assume that θ → M(θ)
is twice continuously differentiable at a point of minimum θ0 with nonsingular second-
derivative matrix V .‡ Suppose that

rn(Mn −M)(θ̃n) − rn(Mn −M)(θ0)

= (θ̃n − θ0)
′Zn + o∗P

(

‖θ̃n − θ0‖ + rn‖θ̃n − θ0‖2 + r−1
n

)

,

‡ It suffices that a two-term Taylor expansion is valid at θ0.
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for every random sequence θ̃n = θ0 + o∗P (1) and a uniformly tight sequence of random

vectors Zn. If the sequence θ̂n converges in outer probability to θ0 and satisfies Mn(θ̂n) ≤
infθ Mn(θ) + oP (r−2

n ) for every n, then

rn(θ̂n − θ0) = −V −1Zn + o∗P (1).

If it is known that the sequence rn(θ̂n−θ0) is uniformly tight, then the displayed condition
needs to be verified for sequences θ̃n = θ0 +O∗P (r−1

n ) only.

Proof. The stochastic differentiability condition of the theorem together with the two-
times differentiability of the map θ →M(θ) yields for every sequence h̃n = o∗P (1)

(3.1)
Mn(θ0 + h̃n) − Mn(θ0) = 1

2 h̃
′
nV h̃n + r−1

n h̃′nZn

+ o∗P
(

‖h̃n‖2 + r−1
n ‖h̃n‖ + r−2

n

)

.

For h̃n chosen equal to ĥn = θ̂n − θ0, the left side (and hence the right side) is at

most oP (r−2
n ) by the definition of θ̂n. In the right side the term h̃′nV h̃n can be bounded

below by c‖h̃n‖2 for a positive constant c, since the matrix V is strictly positive definite.
Conclude that

c‖ĥn‖2 + r−1
n ‖ĥn‖OP (1) + oP

(

‖ĥn‖2 + r−2
n

)

≤ oP (r−2
n ).

Complete the square to see that this implies that

(

c+ oP (1)
)

(

‖ĥn‖ −OP (r−1
n )
)2

≤ OP (r−2
n ).

This can be true only if ‖ĥn‖ = O∗P (r−1
n ).

For any sequence h̃n of the order O∗P (r−1
n ), the three parts of the remainder term

in (3.1) are of the order oP (r−2
n ). Apply this with the choices ĥn and −r−1

n V −1Zn to
conclude that

Mn(θ0 + ĥn) − Mn(θ0) = 1
2 ĥ
′
nV ĥn + r−1

n ĥ′nZn + o∗P (r−2
n ),

Mn(θ0 − r−1
n V −1Zn) − Mn(θ0) = − 1

2r
−2
n Z ′nV

−1Zn + o∗P (r−2
n ).

The left-hand side of the first equation is smaller than the second, up to an o∗P (r−2
n )-term.

Subtract the second equation from the first to find that

1
2 (ĥn + r−1

n V −1Zn)′V (ĥn + r−1
n V −1Zn) ≤ oP (r−2

n ).

Since V is strictly positive definite, this yields the first assertion of the theorem.
If it is known that the sequence θ̂n is rn-consistent, then the middle part of the

preceding proof is unnecessary and we can proceed to inserting ĥn and −r−1
n V −1Zn

in (3.1) immediately. The latter equation is then needed for sequences h̃n = O∗P (r−1
n )

only.
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Central Limit Theorem

The classical central limit theorem asserts that the mean of independent, identically
distributed random variables with finite variance is asymptotically normally distributed.
In this chapter we extend this to certain dependent and/or nonidentically distributed
sequences.

Given a stationary time series Xt let Xn be the average of the variables X1, . . . , Xn.
If µ and γX are the mean and auto-covariance function of the time series, then, by the
usual rules for expectation and variance,

EXn = µ,

var(
√
nXn) =

1

n

n
∑

s=1

n
∑

t=1

cov(Xs, Xt) =

n
∑

h=−n

(n− |h|
n

)

γX(h).(4.1)

In the expression for the variance every of the terms
(

n−|h|
)

/n is bounded by 1 and con-

verges to 1 as n→ ∞. If
∑
∣

∣γX(h)
∣

∣ <∞, then we can apply the dominated convergence

theorem and obtain that var(
√
nXn) →∑

h γX(h). In any case

(4.2) var
√
nXn ≤

∑

h

∣

∣γX(h)
∣

∣.

Hence absolute convergence of the series of auto-covariances implies that the sequence√
n(Xn − µ) is uniformly tight. The purpose of the chapter is to give conditions for

this sequence to be asymptotically normally distributed with mean zero and variance
∑

h γX(h).
Such conditions are of two broad types. One possibility is to assume a particular type

of dependence of the variables Xt, such as Markov or martingale properties. Second, we
might require that the time series is “not too far” from being a sequence of independent
variables. We present three sets of sufficient conditions of the second type. These have
in common that they all require that the elements Xt and Xt+h at large time lags h are
approximately independent. We start with the simplest case, that of finitely dependent
time series. Next we generalize this in two directions: to linear processes and to mixing
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time series. The term “mixing” is often used in a vague sense to refer to time series’ whose
elements at large time lags are approximately independent. For a central limit theorem
we then require that the time series is “sufficiently mixing” and this can be made precise
in several ways. In ergodic theory the term “mixing” is also used in a precise sense. We
briefly discuss the application to the law of large numbers.

* 4.1 EXERCISE. Suppose that the series v: =
∑

h γX(h) converges (not necessarily ab-
solutely). Show that var

√
nXn → v. [Write var

√
nXn as vn for vh =

∑

|j|<h γX(j) and

apply Cesaro’s lemma: if vn → v, then vn → v.]

4.1 Finite Dependence

A time series Xt is called m-dependent if the random vectors (. . . , Xt−1, Xt) and
(Xt+m+1, Xt+m+2, . . .) are independent for every t ∈ Z. In other words, “past” and
“future” are independent if m “present” variables are left out.

4.2 EXERCISE. Show that the moving average Xt = Zt + θZt−1 considered in Exam-
ple 1.6 is 1-dependent.

4.3 EXERCISE. Show that “0-dependent” is equivalent to “independent”.

4.4 Theorem. Let Xt be a strictly stationary, m-dependent time series with mean zero
and finite variance. Then the sequence

√
nXn converges in distribution to a normal

distribution with mean 0 and variance
∑m

h=−m γX(h).

Proof. Choose a (large) integer l and divide X1, . . . , Xn into r = bn/lc groups of size l
and a remainder group of size n− rl < l. Let A1,l, . . . , Ar,l and B1,l, . . . , Br,l be the sums
of the first l −m and last m of the variables Xi in the r groups. (Cf. Figure 4.1.) Then
both A1,l, . . . , Ar,l and B1,l, . . . , Br,l are sequences of independent identically distributed
random variables (but the two sequences may be dependent) and

(4.3)

n
∑

i=1

Xi =

r
∑

j=1

Aj,l +

r
∑

j=1

Bj,l +

n
∑

i=rl+1

Xi.

For fixed l and n→ ∞ (hence r → ∞) the classical central limit theorem applied to the
variables Aj,l yields

1√
n

r
∑

j=1

Aj,l =

√

r

n

1√
r

r
∑

j=1

Aj,l  
1√
l
N(0, varA1,l).
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Furthermore, by the triangle inequality, for fixed l as n→ ∞,

σ
( 1√

n

n
∑

i=rl+1

Xi

)

≤ l√
n
σ(X1) → 0.

Because the mean of the variables n−1/2
∑n

i=rl+1Xi is zero, this sequence converges to
zero in probability by Chebyshev’s inequality. We conclude by Slutsky’s lemma that, as
n→ ∞,

Sn,l: =
1√
n

r
∑

j=1

Aj,l +
1√
n

n
∑

i=rl+1

Xi  N
(

0,
1

l
varA1,l

)

.

This is true for every fixed l. If l → ∞, then

1

l
varA1,l =

1

l
var

l−m
∑

i=1

Xi =

l−m
∑

h=m−l

l −m− |h|
l

γX(h) → v: =

m
∑

h=−m

γX(h).

By Lemma 3.10 there exists a sequence ln → ∞ such that Sn,ln  N(0, v). Let rn =
bn/lnc be the corresponding sequence of values of rn, so that rn/n → 0. By the strict
stationarity of the series Xt each Bj,l is equal in distribution to X1 + · · ·+Xm and hence
is independent of (j, l). Hence varBj,l is independent of j and l and

E
( 1√

n

r
∑

j=1

Bj,ln

)2

=
r

n
varB1,ln → 0.

Thus the sequence of random variables in the left side converges to zero in probablity,
by Chebyshev’s inequality. In view of (4.3) another application of Slutsky’s lemma gives
the result.

1 l + 1 2l + 1 (r − 1)l + 1 rl + 1 n
. . . . . . . . . .

← l−m →← m →← l−m →← m → ← l −m →← m →
A1,l B1,l A2,l B2,l Ar,l Br,l

Figure 4.1. Blocking of observations in the proof of Theorem 4.4.

4.2 Linear Processes

In this section we extend the central limit theorem from finitely dependent time series
to linear processes. These are processes that can be represented as infinite moving aver-
ages. Given a sequence . . . , Z−1, Z0, Z1, Z2, . . . of independent and identically distributed
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variables with EZt = 0, a constant µ, and constants ψj with
∑

j |ψj | < ∞, we assume
that

(4.4) Xt = µ+

∞
∑

j=−∞

ψjZt−j .

This may seem special, but we shall see later that this includes, for instance, the rich
class of all ARMA-processes.

By (iii) of Lemma 1.28 the covariance function of a linear process is given by γX(h) =
σ2
∑

j ψjψj+h, where σ2 = varZt, and hence the asymptotic variance of
√
nXn is given

by

v: =
∑

h

γX(h) = σ2
∑

h

∑

j

ψjψj+h = σ2
(

∑

j

ψj

)2

.

4.5 Theorem. Suppose that (4.4) holds for an i.i.d. sequence Zt with mean zero and
finite variance and numbers ψj with

∑

j |ψj | < ∞. Then the sequence
√
n(Xn − µ)

converges in distribution to a normal distribution with mean zero and variance v.

Proof. We can assume without loss of generality that µ = 0. For a fixed (large) integer
m define the time series

Xm
t =

∑

|j|≤m

ψjZt−j =
∑

j

ψm
j Zt−j,

where ψm
j = ψj if |j| ≤ m and 0 otherwise. Then Xm

t is (2m+ 1)-dependent and strictly

stationary. By Theorem 4.4, the sequence
√
nXm

n converges in distribution to a normal
distribution with mean zero and variance

vm: =
∑

h

γXm(h) = σ2
∑

h

∑

j

ψm
j ψ

m
j+h = σ2

(

∑

|j|≤m

ψj

)2

.

The first equality follows from (iii) of Lemma 1.28. As m → ∞ this variance converges
to v. Because N(0, vm) N(0, v), Lemma 3.10 guarantees that there exists a sequence
mn → ∞ such that

√
nXmn

n  N(0, v).
In view of Slutsky’s lemma the proof will be complete once we have shown that√

n(Xn−Xmn
n ) P→ 0. This concerns the average Y mn

n of the differences Y m
t = Xt−Xm

t =
∑

|j|>m ψjZt−j . These satisfy

E
(√
nXn −√

nXmn
n

)2

= var
√
nY mn

n ≤
∑

h

∣

∣γY mn (h)
∣

∣ ≤ σ2
(

∑

|j|>mn

|ψj |
)2

.

The inequalities follow by (4.1) and Lemma 1.28(iii). The right side converges to zero as
mn → ∞.
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4.3 Strong Mixing

The α-mixing coefficients (or strong mixing coefficients) of a time series Xt are defined
by α(0) = 1

2 and for k ∈ N[

α(h) = 2 sup
t

sup
A∈σ(...,Xt−1,Xt)

B∈σ(Xt+h,Xt+h+1,...)

∣

∣P(A ∩B) − P(A)P(B)
∣

∣.

The eventsA andB in this display depend on elementsXt of the “past” and “future” that
are h time lags apart. Thus the α-mixing coefficients measure the extent by which events
A and B that are separated by h time instants fail to satisfy the equality P(A ∩ B) =
P(A)P(B), which is valid for independent events. If the series Xt is strictly stationary,
then the supremum over t is unnecessary, and the mixing coefficient α(h) can be defined
using the σ-fields σ(. . . , X−1, X0) and σ(Xh, Xh+1, . . .) only.

It is immediate from their definition that the coefficients α(1), α(2), . . . are decreas-
ing and nonnegative. Furthermore, if the time series is m-dependent, then α(h) = 0 for
h > m.

4.6 EXERCISE. Show that α(1) ≤ 1
2 ≡ α(0). [Apply the inequality of Cauchy-Schwarz

to P(A ∩B) − P(A)P(B) = cov(1A, 1B).]

If α(h) → 0 as h→ ∞, then the time series Xt is called α-mixing or strong mixing.
Then events connected to time sets that are far apart are “approximately independent”.
For a central limit theorem to hold, we also need that the convergence to 0 takes place
at a sufficient speed, dependent on the “sizes” of the variables Xt.

A precise formulation can best be given in terms of the inverse function of the mixing
coefficients. We can extend α to a function α: [0,∞) → [0, 1] by defining it to be constant
on the intervals [h, h+ 1) for integers h. This yields a monotone function that decreases
in steps from α(0) = 1

2 to 0 at infinity in the case that the time series is mixing. The
generalized inverse α−1: [0, 1] → [0,∞) is defined by

α−1(u) = inf
{

x ≥ 0:α(x) ≤ u
}

=
∞
∑

h=0

1u<α(h).

Similarly, the quantile function F−1
X of a random variable X is the generalized inverse of

the distribution function FX of X , and is given by

F−1
X (1 − u) = inf{x: 1 − FX(x) ≤ u}.

4.7 Theorem. If Xt is a strictly stationary time series with mean zero such that
∫ 1

0
α−1(u)F−1

|X0|
(1 − u)2 du < ∞, then the series v =

∑

h γX(h) converges absolutely

and
√
nXn  N(0, v).

At first sight the condition of the theorem is complicated. Finiteness of the integral
requires that the mixing coefficients converge to zero fast enough, but the rate at which

[ We denote by σ(Xt: t ∈ I) the σ-field generated by the set of random variables {Xt: t ∈ I}.
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this must happen is also dependent on the tails of the variablesXt. To make this concrete
we can derive finiteness of the integral under a combination of a mixing and a moment
condition. If cr: = E|X0|r < ∞ for some r > 2, then 1 − F|X0|(x) ≤ cr/xr by Markov’s

inequality and hence F−1
|X0|

(1 − u) ≤ c/u1/r. Then we obtain the bound

∫ 1

0

α−1(u)F−1
|X0|

(1 − u)2 du ≤
∞
∑

h=0

∫ 1

0

1u<α(h)
c2

u2/r
du =

c2r

r − 2

∞
∑

h=0

α(h)1−2/r .

Thus the moment condition E|Xt|r <∞ and the mixing condition
∑∞

h=0 α(h)1−2/r <∞
together are sufficient for the central limit theorem. This allows a trade-off between
moments and mixing: for larger values of r the moment condition is more restrictive, but
the mixing condition is weaker.

4.8 EXERCISE (Case r = ∞). Show that
∫ 1

0
α−1(u)F−1

|X0|
(1− u)2 du is bounded above

by ‖X0‖2
∞

∑∞
h=0 α(h). [Note that F−1

|X0|
(1 − U) is distributed as |X0| if U is uniformly

distributed and hence is bounded by ‖X0‖∞ almost surely.]

4.9 EXERCISE. Show that
∫ 1

0 α
−1(u)F−1

|X0|
(1 − u)2 du ≤ (m+ 1)EX2

0 if the time series

Xt is m-dependent. Recover Theorem 4.4 from Theorem 4.7.

4.10 EXERCISE. Show that
∫ 1

0 α
−1(u)F−1

|X0|
(1 − u)2 du <∞ implies that E|X0|2 <∞.

The key to the proof of Theorem 4.7 is a lemma that bounds covariances in terms
of mixing coefficients. Let ‖X‖p denote the Lp-norm of a random variable X , i.e.

‖X‖p =
(

E|X |p
)1/p

, 1 ≤ p <∞, ‖X‖∞ = inf{M : P(|X | ≤M) = 1}.

Recall Hölder’s inequality: for any pair of numbers p, q > 0 (possibly infinite) with
p−1 + q−1 = 1 and random variables X and Y

E|XY | ≤ ‖X‖p‖Y ‖q.

For p = q = 2 this is precisely the inequality of Cauchy-Schwarz. The other case that will
be of interest to us is the case p = 1, q = ∞, for which the inequality is easy to prove. By
repeated application the inequality can be extended to more than two random variables.
For instance, for any numbers p, q, r > 0 with p−1 + q−1 + r−1 = 1 and random variables
X , Y , and Z

E|XY Z| ≤ ‖X‖p‖Y ‖q‖Z‖r.

4.11 Lemma (Covariance bound). Let Xt be a time series with α-mixing coefficients
α(h) and let Y and Z be random variables that are measurable relative to σ(. . . , X−1, X0)
and σ(Xh, Xh+1, . . .), respectively, for a given h ≥ 0. Then, for any p, q, r > 0 such that
p−1 + q−1 + r−1 = 1,

∣

∣cov(Y, Z)
∣

∣ ≤ 2

∫ α(h)

0

F−1
|Y |(1 − u)F−1

|Z| (1 − u) du ≤ 2α(h)1/p‖Y ‖q‖Z‖r.
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Proof. By the definition of the mixing coefficients, we have, for every y, z > 0,

∣

∣cov(1Y +>y, 1Z+>z)
∣

∣ ≤ 1
2α(h).

The same inequality is valid with Y + and/or Z+ replaced by Y − and/or Z−. It follows
that

∣

∣cov(1Y +>y − 1Y −>y, 1Z+>z − 1Z−>z)
∣

∣ ≤ 2α(h).

Because
∣

∣cov(U, V )
∣

∣ ≤ 2(E|U |)‖V ‖∞ for any pair of random variables U, V (the simplest
Hölder inequality), we obtain that the covariance on the left side of the preceding display
is also bounded by 2

(

P(Y + > y) + P(Y − > y)
)

. Yet another bound for the covariance
is obtained by interchanging the roles of Y and Z. Combining the three inequalities, we
see that, for any y, z > 0,

∣

∣cov(1Y +>y − 1Y −>y, 1Z+>z − 1Z−>z)
∣

∣ ≤ 2α(h) ∧ 2P(|Y | > y) ∧ 2P(|Z| > z)

= 2

∫ α(h)

0

11−F|Y |(y)>u 11−F|Z|(z)>u du.

Next we write Y = Y + − Y − =
∫∞

0 (1Y +>y − 1Y −>y) dy and similarly for Z, to obtain,
by Fubini’s theorem,

∣

∣cov(Y, Z)
∣

∣ =
∣

∣

∣

∫ ∞

0

∫ ∞

0

cov(1Y +>y − 1Y −>y, 1Z+>z − 1Z−>z) dy dz
∣

∣

∣

≤ 2

∫ ∞

0

∫ ∞

0

∫ α(h)

0

1F|Y |(y)<1−u 1F|Z|(z)<1−u du dy dz.

Any pair of a distribution and a quantile function satisfies FX(x) < u if and only x <
F−1

X (u), for every x and u. We can conclude the proof of the first inequality of the lemma
by another application of Fubini’s theorem.

The second inequality follows upon noting that F−1
|Y |(1 − U) is distributed as |Y | if

U is uniformly distributed on [0, 1], and next applying Hölder’s inequality.

Proof of Theorem 4.7. As a consequence of Lemma 4.11 we find that

∑

h≥0

∣

∣γX(h)
∣

∣ ≤ 2
∑

h≥0

∫ α(h)

0

F−1
|X0|

(1 − u)2 du = 2

∫ 1

0

α−1(u)F−1
|X0|

(1 − u)2 du.

This already proves the first assertion of Theorem 4.7. Furthermore, in view of (4.2) and
the symmetry of the auto-covariance function,

(4.5) var
√
nXn ≤ 4

∫ 1

0

α−1(u)F−1
|X0|

(1 − u)2 du.

For a given M > 0 let XM
t = Xt1{|Xt| ≤M} and let YM

t = Xt−XM
t . Because XM

t

is a measurable transformation of Xt, it is immediate from the definition of the mixing
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coefficients that the series Y M
t is mixing with smaller mixing coefficients than the series

Xt. Therefore, in view of (4.5)

var
√
n(Xn −XM

n ) = var
√
nY M

n ≤ 4

∫ 1

0

α−1(u)F−1
|Y M

0 |
(1 − u)2 du.

Because Y M
0 = 0 whenever |X0| ≤ M , it follows that Y M

0  0 as M → ∞ and hence
F−1
|Y M

0 |
(u) → 0 for every u ∈ (0, 1). Furthermore, because |Y M

0 | ≤ |X0|, its quantile

function is bounded above by the quantile function of |X0|. By the dominated convergence
theorem the integral in the preceding display converges to zero as M → ∞, and hence
the variance in the left side converges to zero as M → ∞, uniformly in n. If we can show
that

√
n(XM

n − EXM
0 ) N(0, vM ) as n → ∞ for vM = limvar

√
nXM

n and every fixed
M , then it follows that

√
n(Xn − EX0)  N(0, v) for v = lim vM = limvar

√
nXn, by

Lemma 3.10, and the proof is complete.
Thus it suffices to prove the theorem for uniformly bounded variables Xt. Let M be

the uniform bound.
Fix some sequence mn → ∞ such that

√
nα(mn) → 0 and mn/

√
n → 0. Such

a sequence exists. To see this, first note that
√
nα(b√n/kc) → 0 as n → ∞, for ev-

ery fixed k. (See Problem 4.12). Thus by Lemma 3.10 there exists kn → ∞ such that√
nα(b√n/knc) → 0 as kn → ∞. Now set mn = b√n/knc. For simplicity write m for

mn. Also let it be silently understood that all summation indices are restricted to the
integers 1, 2, . . . , n, unless indicated otherwise.

Let Sn = n−1/2
∑n

t=1Xt and, for every given t, set Sn(t) = n−1/2
∑

|j−t|<mXj.

Because |eiλ − 1 − iλ| ≤ 1
2λ

2 for every λ ∈ R, we have

∣

∣

∣E
[ 1√

n

n
∑

t=1

Xte
iλSn

(

e−iλSn(t) − 1 + iλSn(t)
)]∣

∣

∣ ≤ λ2nM

2
√
n

n
∑

t=1

ES2
n(t)

=
λ2M

2
√
n

n
∑

t=1

∑

|i−t|<m

∑

|j−t|<m

γX(i− j)

≤ λ2M

2
√
n
m
∑

h

∣

∣γX(h)
∣

∣→ 0.

Furthermore, with An(t) and Bn(t) defined as n−1/2 times the sum of the Xj with
1 ≤ j ≤ t−m and t+m ≤ j ≤ n, respectively, we have Sn − Sn(t) = An(t) +Bn(t) and

∣

∣

∣
E
( 1√

n

n
∑

t=1

Xte
iλSne−iλSn(t)

)∣

∣

∣

≤ 1√
n

n
∑

t=1

∣

∣

∣cov
(

Xte
iλAn(t), eiλBn(t)

)

+ cov
(

Xt, e
iλAn(t)

)

EeiλBn(t)
∣

∣

∣

≤ 4
√
nMα(m) → 0,
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by the second inequality of Lemma 4.11, with p = 1 and q = r = ∞. Combining the
preceding pair of displays we see that

ESne
iλSn = E

1√
n

n
∑

t=1

Xte
iλSniλSn(t) + o(1) = iλE

(

eiλSn
1

n

∑∑

|s−t|<m

XsXt

)

+ o(1).

If we can show that n−1
∑∑

|s−t|<mXsXt converges in mean to v, then the right side

of the last display is asymptotically equivalent to iλEeiλSnv, and the theorem is proved
in view of Lemma 3.13.

In fact, we show that n−1
∑∑

|s−t|<mXsXt → v in second mean. First,

E
1

n

∑∑

|s−t|<m

XsXt =
∑

|h|<m

(n− |h|
n

)

γX(h) → v,

By the dominated convergence theorem, in view of (4.2). Second,

var
( 1

n

∑∑

|s−t|<m

XsXt

)

≤ 1

n2

∑∑

|s−t|<m

∑∑

|i−j|<m

∣

∣cov(XsXt, XiXj)
∣

∣.

The first double sum on the right can be split in the sums over the pairs (s, t) with s < t
and s ≥ t, respectively, and similarly for the second double sum relative to (i, j). By
symmetry the right side is bounded by

4

n2

∑∑

|s−t|<m
s≤t

∑∑

|i−j|<m
i≤j

∣

∣cov(XsXt, XiXj)
∣

∣

≤ 4

n2

n
∑

s=1

m
∑

t=0

n
∑

i=1

m
∑

j=0

∣

∣cov(XsXs+t, XiXi+j)
∣

∣

≤ 8

n2

n
∑

s=1

m
∑

t=0

n
∑

i=1

m
∑

j=0

∣

∣cov(XsXs+t, Xs+iXs+i+j)
∣

∣,

by the same argument, this time splitting the sums over s ≤ i and s > i and using
symmetry between s and i. If i ≥ t, then the covariance in the sum is bounded above by
2α(i− t)M4, by Lemma 4.11, because there are i− t time instants between XsXs+t and
Xs+iXs+i+j . If i < t, then we rewrite the absolute covariance as

∣

∣

∣cov(Xs, Xs+tXs+iXs+i+j) − cov(Xs, Xs+t)EXs+iXs+i+j

∣

∣

∣ ≤ 4α(i)M4.

Thus the four-fold sum is bounded above by

32

n2

n
∑

s=1

m
∑

t=0

n
∑

i=1

m
∑

j=0

(

α(i− t)M41i≥t + α(i)M41i<t

)

≤ 64M4m
2

n

∑

i≥0

α(i).

Because F−1
|X0|

is bounded away from zero in a neighbourhood of 0, finiteness of the

integral
∫ 1

0
α−1(u)F−1

|X0|
(1 − u)2 du implies that the series on the right converges. This

conclude the proof.
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* 4.12 EXERCISE. Suppose that α(h) is a decreasing sequence of nonnegative numbers
(h = 1, 2, . . .) with

∑

h α(h) < ∞. Show that hα(h) → 0 as h → ∞. [First derive, using
the monotonicity, that

∑

h 2hα(2h) <∞ and conclude from this that 2hα(2h) → 0. Next
use the monotonicity again “to fill the gaps”.]

* 4.4 Uniform Mixing

There are several other types of mixing coefficients. The φ-mixing coefficients or uniform
mixing coefficients of a strictly stationary time series Xt are defined by

φ(h) = sup
A∈σ(...,X−1,X0),P(A) 6=0

B∈σ(Xh,Xh+1,...)

∣

∣P(B|A) − P(B)
∣

∣,

φ̃(h) = sup
A∈σ(...,X−1,X0)

B∈σ(Xh,Xh+1,...),P(B) 6=0

∣

∣P(A|B) − P(A)
∣

∣.

It is immediate from the definitions that α(h) ≤ 2
(

φ(h) ∧ φ̃(h)
)

. Thus a φ-mixing time
series is always α-mixing. It appears that conditions in terms of φ-mixing are often much
more restrictive, even though there is no complete overlap.

4.13 Lemma (Covariance bound). Let Xt be a strictly stationary time series with
φ-mixing coefficients φ(h) and φ̃(h) and let Y and Z be random variables that are
measurable relative to σ(. . . , X−1, X0) and σ(Xh, Xh+1, . . .), respectively, for a given
h ≥ 0. Then, for any p, q > 0 with p−1 + q−1 = 1,

∣

∣cov(Y, Z)
∣

∣ ≤ 2φ(h)1/pφ̃(h)1/q‖Y ‖p‖Z‖q.

Proof. Let Q be the measure PY,Z −PY ⊗PZ on R2, and let |Q| be its absolute value.
Then

∣

∣cov(Y, Z)
∣

∣ =
∣

∣

∣

∫ ∫

yz dQ(y, z)
∣

∣

∣ ≤
(

∫ ∫

|y|p dQ(y, z)
)1/p(

∫ ∫

|z|q dQ(y, z)
)1/q

,

by Hölder’s inequality. It suffices to show that the first and second marginals of |Q| are
bounded above by the measures 2φ(h)PY and 2φ̃(h)PZ , respectively. By symmetry it
suffices to consider the first marginal.

By definition we have that

|Q|(C) = sup
D

(

∣

∣Q(C ∩D)
∣

∣+
∣

∣Q(C ∩Dc)
∣

∣

)

for the supremum taken over all Borel sets D in R
2. Equivalently, we can compute the

supremum over any algebra that generates the Borel sets. In particular, we can use the
algebra consisting of all finite unions of rectangles A×B. Conclude from this that

|Q|(C) = sup
∑

i

∑

j

∣

∣Q(C ∩ (Ai ×Bj)
∣

∣,
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for the supremum taken over all pairs of partitions R = ∪iAi and R = ∪jBj . It follows
that

|Q|(A× R) = sup
∑

i

∑

j

∣

∣Q
(

(A ∩Ai) ×Bj

)∣

∣

= sup
∑

i

∑

j

∣

∣PZ|Y (Bj |A ∩Ai) − PZ(Bj)
∣

∣PY (A ∩Ai).

If, for fixed i, B+
i consists of the union of all Bj such that PZ|Y (Bj |A∩Ai)−PZ(Bj) > 0

and B−i is the union of the remaining Bj , then the double sum can be rewritten

∑

i

(

∣

∣PZ|Y (B+
i |A ∩Ai) − PZ(B+

i )
∣

∣+
∣

∣PZ|Y (B−i |A ∩Ai) − PZ(B−i )
∣

∣

)

PY (A ∩Ai).

The sum between round brackets is bounded above by 2φ(h), by the definition of φ. Thus
the display is bounded above by 2φ(h)PY (A).

4.14 Theorem. If Xt is a strictly stationary time series with mean zero such that
E|Xt|p∨q < ∞ and

∑

h φ(h)1/pφ̃(h)1/q < ∞ for some p, q > 0 with p−1 + q−1 = 1,
then the series v =

∑

h γX(h) converges absolutely and
√
nXn  N(0, v).

Proof. For a given M > 0 let XM
t = Xt1{|Xt| ≤ M} and let YM

t = Xt − XM
t .

Because XM
t is a measurable transformation of Xt, it is immediate from the definition

of the mixing coefficients that Y M
t is mixing with smaller mixing coefficients than Xt.

Therefore, by (4.2) and Lemma 4.13,

var
√
n(Xn −XM

n ) ≤ 2
∑

h

φ(h)1/pφ̃(h)1/q‖YM
0 ‖p‖YM

0 ‖q.

As M → ∞, the right side converges to zero, and hence the left side converges to zero,
uniformly in n. This means that we can reduce the problem to the case of uniformly
bounded time series Xt, as in the proof of Theorem 4.7.

Because the α-mixing coefficients are bounded above by the φ-mixing coefficients,
we have that

∑

h α(h) < ∞. Therefore, the second part of the proof of Theorem 4.7
applies without changes.

4.5 Law of Large Numbers

The law of large numbers is concerned with the convergence of the sequence Xn rather
than the sequence

√
n(Xn − µ). By Slutsky’s lemma Xn → µ in probability if the

sequence
√
n(Xn − µ) is uniformly tight. Thus a central limit theorem implies a weak

law of large numbers. However, the latter is valid under much weaker conditions. The
weakening not only concerns moments, but also the dependence between the Xt.
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The strong law of large numbers for a strictly stationary time series is the central
result in ergodic theory. In this section we discuss the main facts and some examples. For a
nonstationary sequence or a triangular array an alternative is to apply mixing conditions.
For the weak law for second order stationary time series also see Example 6.30.

4.5.1 Ergodic Theorem

Given a strictly stationary sequence Xt defined on some probability space (Ω,U ,P), with
values in some measurable space (X ,A) the invariant σ-field, denoted Uinv, is the σ-field
consisting of all sets A such that A = (. . . , Xt−1, Xt, Xt+1, . . .)

−1(B) for all t and some
measurable set B ⊂ X∞. Here throughout this section the product space X∞ is equipped
with the product σ-field A∞.

Our notation in the definition of the invariant σ-field is awkward, if not unclear,
because we look at two-sided infinite series. The triple Xt−1, Xt, Xt+1 in the definition of
A is meant to be centered at a fixed position in Z. We can write this down more precisely
using the forward shift function S:X∞ → X∞ defined by S(x)i = xi+1. The two-sided
sequence (. . . , Xt−1, Xt, Xt+1, . . .) defines a map X : Ω → X∞. With this notation the
invariant sets A are the sets such that A = {StX ∈ B} for all t and some measurable
set B ⊂ X∞. The strict stationarity of the sequence X is identical to the invariance of
its induced law PX on X∞ under the shift S.

The inverse imagesX−1(B) of measurable sets B ⊂ X∞ with B = SB are clearly in-
variant. Conversely, it can be shown that, up to null sets, all invariant sets take this form.
(See Exercise 4.16.) The symmetric events are special examples of invariant sets. They
are the events that depend symmetrically on the variables Xt. For instance, ∩tX

−1
t (B)

for some measurable set B ⊂ X .

* 4.15 EXERCISE. Call a set B ⊂ X∞ invariant under the shift S:X∞ → X∞ if B = SB.
Call it almost invariant relative to a measure PX if PX(B4SB) = 0. Show that a set B
is almost invariant if and only if there exists an invariant set B̃ such that PX(B4B̃) = 0.
[Try B̃ = ∩tS

tB.]

* 4.16 EXERCISE. Define the invariant σ-field Binv on X∞ as the collection of measurable
sets that are invariant under the shift operation, and let Binv be its completion under

the measure PX . Show that X−1(Binv) ⊂ Uinv ⊂ X−1(Binv), where the long bar on the
right denotes completion relative to P. [Note that {X ∈ B} = {X ∈ SB} implies that
PX(B 4 SB) = 0. Use the preceding exercise to replace B by an invariant set B̃.]

4.17 Theorem (Birkhoff). If Xt is a strictly stationary time series with E|Xt| < ∞,
then Xn → E(X0| Uinv) almost surely and in mean.

Proof. For a given α ∈ R define a set B =
{

x ∈ R∞: lim supn→∞ xn > α
}

. Because

xn+1 =
x1

n+ 1
+

n

n+ 1

1

n

n+1
∑

t=2

xt,
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a point x is contained in B if and only if lim supn−1
∑n+1

t=2 xt > α. Equivalently, x ∈ B if
and only if Sx ∈ B. Thus the set B is invariant under the shift operation S: R∞ → R∞.
We conclude from this that the variable lim supn→∞Xn is measurable relative to the
invariant σ-field.

Fix some measurable set B ⊂ R∞. For every invariant set A ∈ Uinv there exists a
measurable set C ⊂ R∞ such that A = {StX ∈ C} for every t. By the strict stationarity
of X ,

P
(

{StX ∈ B} ∩A
)

= P(StX ∈ B,StX ∈ C) = P(X ∈ B,X ∈ C) = P
(

{X ∈ B} ∩A
)

.

This shows that P(StX ∈ B| Uinv) = P(X ∈ B| Uinv) almost surely. We conclude that
the conditional laws of StX and X given the invariant σ-field are identical.

In particular, the conditional means E(Xt| Uinv) = E(X1| Uinv) are identical for
every t, almost surely. It also follows that a time series Zt of the type Zt = (Xt, R)
for R: Ω → R a fixed Uinv-measurable variable (for instance with values in R = R2) is
strictly stationary, the conditional law B 7→ P(X ∈ B|R) = E

(

P(X ∈ B| Uinv)|R
)

of
its first marginal (on X∞) being strictly stationary by the preceding paragraph, and the
second marginal (on R∞) being independent of t.

For the almost sure convergence of the sequence Xn it suffices to show that, for
every ε > 0, the event

A =
{

lim sup
n→∞

Xn > E(X1| Uinv) + ε
}

and a corresponding event for the lower tail have probably zero. By the preced-
ing the event A is contained in the invariant σ-field. Furthermore, the time se-
ries Yt =

(

Xt − E(X1| Uinv) − ε
)

1A, being a fixed transformation of the time se-

ries Zt =
(

Xt,E(X1| Uinv), 1A

)

, is strictly stationary. We can write A = ∪nAn for

An = ∪n
t=1{Y t > 0}. Then EY11An → EY11A by the dominated convergence theo-

rem, in view of the assumption that Xt is integrable. If we can show that EY11An ≥ 0
for every n, then we can conclude that

0 ≤ EY11A = E
(

X1 − E(X1| Uinv)
)

1A − εP(A) = −εP(A),

because A ∈ Uinv. This implies that P(A) = 0, concluding the proof of almost sure
convergence.

The L1-convergence can next be proved by a truncation argument. We can first show,
more generally, but by an identical argument, that n−1

∑n
t=1 f(Xt) → E

(

f(X0)| Uinv

)

almost surely, for every measurable function f :X → R with E|f(Xt)| < ∞. We can
apply this to the functions f(x) = x1|x|≤M for given M .

We complete the proof by showing that EY11An ≥ 0 for every strictly stationary
time series Yt and every fixed n, and An = ∪n

t=1{Y t > 0}. For every 2 ≤ j ≤ n,

Y1 + · · · + Yj ≤ Y1 + max(Y2, Y2 + Y3, · · · , Y2 + · · · + Yn+1).

If we add the number 0 in the maximum on the right, then this is also true for j = 1.
We can rewrite the resulting n inequalities as the single inequality

Y1 ≥ max(Y1, Y1 + Y2, . . . , Y1 + · · · + Yn) − max(0, Y2, Y2 + Y3, · · · , Y2 + · · · + Yn+1).



4.5: Law of Large Numbers 57

The event An is precisely the event that the first of the two maxima on the right is
positive. Thus on this event the inequality remains true if we add also a zero to the first
maximum. It follows that EY11An is bounded below by

E
(

max(0, Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yn)−max(0, Y2, Y2 + Y3, · · · , Y2 + · · ·+ Yn+1)
)

1An .

Off the event An the first maximum is zero, whereas the second maximum is always
nonnegative. Thus the expression does not increase if we cancel the indicator 1An . The
resulting expression is identically zero by the strict stationarity of the series Yt.

Thus a strong law is valid for every integrable strictly stationary sequence, with-
out any further conditions on possible dependence of the variables. However, the limit
E(X0| Uinv) in the preceding theorem will often be a true random variable. Only if the
invariant σ-field is trivial, we can be sure that the limit is degenerate. Here “trivial” may
be taken to mean that the invariant σ-field consists of sets of probability 0 or 1 only. If
this is the case, then the time series Xt is called ergodic.

* 4.18 EXERCISE. Suppose that Xt is strictly stationary. Show that Xt is ergodic if and
only if every sequence Yt = f(. . . , Xt−1, Xt, Xt+1, . . .) for a measurable map f that is
integrable satisfies the law of large numbers Y n → EY1 almost surely. [Given an invariant
set A = (. . . , X−1, X0, X1, . . .)

−1(B) consider Yt = 1B(. . . , Xt−1, Xt, Xt+1, . . .). Then
Y n = 1A.]

Checking that the invariant σ-field is trivial may be a nontrivial operation. There
are other concepts that imply ergodicity and may be easier to verify. A time series Xt is
called mixing if, for any measurable sets A and B, as h→ ∞,

P
(

(. . . , Xh−1, Xh, Xh+1, . . .) ∈ A, (. . . , X−1, X0, X1, . . .) ∈ B
)

→ P
(

(. . . , Xh−1, Xh, Xh+1, . . .) ∈ A
)

P
(

(. . . , X−1, X0, X1, . . .) ∈ B
)

.

Every mixing time series is ergodic. This follows because if we take A = B equal to an
invariant set, the preceding display reads PX(A) → PX(A)PX(A), for PX the law of
the infinite series Xt, and hence PX(A) is 0 or 1.

The present type of mixing is related to the mixing concepts used to obtain central
limit theorems, and is weaker.

4.19 Theorem. Any strictly stationary α-mixing time series is mixing.

Proof. For t-dimensional cylinder sets A and B in X∞ (i.e. sets that depend on finitely
many coordinates only) the mixing condition becomes

P
(

(Xh, . . . Xt+h) ∈ A, (X0, . . . , Xt) ∈ B
)

→ P
(

(Xh, . . . Xt+h) ∈ A
)

P
(

(X0, . . . , Xt) ∈ B
)

.

For h > t the absolute value of the difference of the two sides of the display is bounded
by α(h− t) and hence converges to zero as h→ ∞, for each fixed t.
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Thus the mixing condition is satisfied by the collection of all cylinder sets. This
collection is intersection-stable, i.e. a π-system, and generates the product σ-field on
X∞. The proof is complete if we can show that the collections of sets A and B for which
the mixing condition holds, for a given set B or A, is a σ-field. By the π-λ theorem it
suffices to show that these collections of sets are a λ-system.

The mixing property can be written as PX(S−hA ∩ B) − PX(A)PX(B) → 0, as
h→ ∞. Because S is a bijection we have S−h(A2 −A1) = S−hA2 −S−hA1. If A1 ⊂ A2,
then

PX
(

S−h(A2 −A1) ∩B
)

= PX
(

S−hA2 ∩B
)

− PX
(

S−hA1 ∩B
)

,

PX(A2 −A1)P
X(B) = PX(A2)P

X(B) − PX(A1)P
X(B).

If, for a given set B, the sets A1 and A2 satisfy the mixing condition, then the right
hand sides are asymptotically the same, as h→ ∞, and hence so are the left sides. Thus
A2 − A1 satisfies the mixing condition. If An ↑ A, then S−hAn ↑ S−hA as n → ∞ and
hence

PX(S−hAn ∩B) − PX(An)PX(B) → PX(S−hA ∩B) − PX(A)PX(B).

The absolute difference of left and right sides is bounded above by 2|PX(An)−PX(A)|.
Hence the convergence in the display is uniform in h. If every of the sets An satisfies the
mixing condition, for a given set B, then so does A. Thus the collection of all sets A that
satisfies the condition, for a given B, is a λ-system.

We can prove similarly, but more easily, that the collection of all sets B is also a
λ-system.

4.20 Theorem. Any strictly stationary time series Xt with trivial tail σ-field is mixing.

Proof. The tail σ-field is defined as ∩h∈Zσ(Xh, Xh+1, . . .).
As in the proof of the preceding theorem we need to verify the mixing condition

only for finite cylinder sets A and B. We can write
∣

∣

∣E1Xh,...,Xt+h∈A

(

1X0,...,Xt∈B − P(X0, . . . , Xt ∈ B)
)

∣

∣

∣

=
∣

∣

∣E1Xh,...,Xt+h∈A

(

P(X0, . . . , Xt ∈ B|Xh, Xh+1, . . .) − P(X0, . . . , Xt ∈ B)
)

∣

∣

∣

≤ E
∣

∣

∣P(X0, . . . , Xt ∈ B|Xh, Xh+1, . . .) − P(X0, . . . , Xt ∈ B)
)

∣

∣

∣.

For every integrable variable Y the sequence E(Y |Xh, Xh+1, . . .) converges in L1 to the
conditional expectation of Y given the tail σ-field, as h → ∞. Because the tail σ-field
is trivial, in the present case this is EY . Thus the right side of the preceding display
converges to zero as h→ ∞.

* 4.21 EXERCISE. Show that a strictly stationary time series Xt is ergodic if and only
if n−1

∑n
h=1 P

X(S−hA ∩ B) → PX(A)PX(B), as n → ∞, for every measurable subsets
A and B of X∞. [Use the ergodic theorem on the stationary time series Yt = 1StX∈A to
see that n−1

∑

1X∈S−tA1B → PX(A)1B for the proof in one direction.]



4.5: Law of Large Numbers 59

* 4.22 EXERCISE. Show that a strictly stationary time series Xt is ergodic if and only
if the one-sided time series X0, X1, X2, . . . is ergodic, in the sense that the “one-sided
invariant σ-field”, consisting of all sets A such that A = (Xt, Xt+1, . . .)

−1(B) for some
measurable set B and every t ≥ 0, is trivial. [Use the preceding exercise.]

The preceding theorems can be used as starting points to construct ergodic se-
quences. For instance, every i.i.d. sequence is ergodic by the preceding theorems, be-
cause its tail σ-field is trivial by Kolmogorov’s 0-1 law, or because it is α-mixing. To
construct more examples we can combine the theorems with the following stability prop-
erty. From a given ergodic sequence Xt we construct a process Yt by transforming the
vector (. . . , Xt−1, Xt, Xt+1, . . .) with a given map f from the product space X∞ into
some measurable space (Y,B). As before, the Xt in (. . . , Xt−1, Xt, Xt+1, . . .) is meant to
be at a fixed 0th position in Z, so that the different variables Yt are obtained by sliding
the function f along the sequence (. . . , Xt−1, Xt, Xt+1, . . .).

4.23 Lemma. The sequence Yt = f(. . . , Xt−1, Xt, Xt+1, . . .) obtained by application of
a measurable map f :X∞ → Y to an ergodic sequence Xt is ergodic.

Proof. Define f :X∞ → Y∞ by f(x) =
(

· · · , f(S−1x), f(x), f(Sx), · · ·
)

, for S the forward

shift on X∞. Then Y = f(X) and S′f(x) = f(Sx) if S′ is the forward shift on Y∞. If
A = {(S′)tY ∈ B} is invariant for the series Yt, then A = {f(StX) ∈ B} = {StX ∈
f
−1

(B)} for every t, and hence A is also invariant for the series Xt.

4.24 EXERCISE. Let Zt be an i.i.d. sequence of integrable variables and let Xt =
∑

j ψjZt−j for a sequence ψj such that
∑

j |ψj | < ∞. Show that Xt satisfies the law
of large numbers (with degenerate limit).

4.25 EXERCISE. Show that the GARCH(1, 1) process defined in Example 1.10 is er-
godic.

4.26 Example. Every stationary irreducible Markov chain on a countable state space
is ergodic. Conversely, a stationary reducible Markov chain on a countable state space
whose initial (or marginal) law is positive everywhere is nonergodic.

To prove the ergodicity note that a stationary irreducible Markov chain is (pos-
itively) recurrent (e.g. Durrett, p266). If A is an invariant set of the form A =
(X0, X1, . . .)

−1(B), then A ∈ σ(Xh, Xh−1, . . .) for all h and hence

1A = P(A|Xh, Xh−1, . . .) = P
(

(Xh+1, Xh+2, . . .) ∈ B|Xh, Xh−1, . . .
)

= P
(

(Xh+1, Xh+2, . . .) ∈ B|Xh

)

.

We can write the right side as g(Xh) for the function g(x) = P(A|X−1 = x
)

. By
recurrence, for almost every ω in the underlying probability space, the right side runs
infinitely often through every of the numbers g(x) with x in the state space. Because
the left side is 0 or 1 for a fixed ω, the function g and hence 1A must be constant. Thus
every invariant set of this type is trivial, showing the ergodicity of the one-sided sequence
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X0, X1, . . .. It can be shown that one-sided and two-sided ergodicity are the same. (Cf.
Exercise 4.22.)

Conversely, if the Markov chain is reducible, then the state space can be split into
two sets X1 and X2 such that the chain will remain in X1 or X2 once it enters there. If the
initial distribution puts positive mass everywhere, then each of the two possibilities occurs
with positive probability. The sets Ai = {X0 ∈ Xi} are then invariant and nontrivial and
hence the chain is not ergodic.

It can also be shown that a stationary irreducible Markov chain is mixing if and only
if it is aperiodic. (See e.g. Durrett, p310.) Furthermore, the tail σ-field of any irreducible
stationary aperiodic Markov chain is trivial. (See e.g. Durrett, p279.)

Ergodicity is a powerful, but somewhat complicated concept. If we are only inter-
ested in a law of large numbers for a given sequence, then it may be advantageous to
use more elementary tools. For instance, the means Xn of any stationary time series Xt

converge in L2 to a random variable; this limit is degenerate if and only if the spectral
mass of the series Xt at zero is zero. See Example 6.30.

4.5.2 Mixing

In the preceding section it was seen that an α-mixing, strictly stationary time series is
ergodic and hence satisfies the law of large numbers if it is integrable. In this section we
extend the law of large numbers to possibly nonstationary α-mixing time series.

The key is the bound on the tails of the distribution of the sample mean given in
the following lemma.

4.27 Lemma. For any mean zero time series Xt with α-mixing numbers α(h), every
x > 0 and every h ∈ N, with Qt = F−1

|Xt|
,

P(Xn ≥ 2x) ≤ 2

nx2

∫ 1

0

(

α−1(u) ∧ h
) 1

n

n
∑

t=1

Q2
t (1 − u) du+

2

x

∫ α(h)

0

1

n

n
∑

t=1

Qt(1 − u) du.

Proof. The quantile function of the variable |Xt|/(xn) is equal to u 7→ F−1
|Xt|

(u)/(nx).

Therefore, by a rescaling argument we can see that it suffices to bound the probability
P
(
∑n

t=1Xt ≥ 2
)

by the right side of the lemma, but with the factors 2/(nx2) and 2/x
replaced by 2 and the factor n−1 in front of

∑

Q2
t and

∑

Qt dropped. For ease of notation
set S0 = 0 and Sn =

∑n
t=1Xt.

Define the function g: R → R to be 0 on the interval (−∞, 0], to be x 7→ 1
2x

2 on
[0, 1], to be x 7→ 1 − 1

2 (x − 2)2 on [1, 2], and to be 1 on [2,∞). Then g is continuously
differentiable with uniformly Lipschitz derivative. By Taylor’s theorem it follows that
∣

∣g(x) − g(y) − g′(x)(x − y)
∣

∣ ≤ 1
2 |x − y|2 for every x, y ∈ R. Because 1[2,∞) ≤ g and

St − St−1 = Xt,

P(Sn ≥ 2) ≤ Eg(Sn) =

n
∑

t=1

E
(

g(St) − g(St−1)
)

≤
n
∑

t=1

E
∣

∣g′(St−1)Xt

∣

∣+ 1
2

n
∑

t=1

EX2
t .
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The last term on the right can be written 1
2

∑n
t=1

∫ 1

0
Q2

t (1 − u) du, which is bounded by
∑n

t=1

∫ α(0)

0 Q2
t (1 − u) du, because α(0) = 1

2 and u 7→ Qt(1 − u) is decreasing.
For i ≥ 1 the variable g′(St−i)−g′(St−i−1) is measurable relative to σ(Xs: s ≤ t− i)

and is bounded in absolute value by |Xt−i|. Therefore, Lemma 4.11 yields the inequality

∣

∣E
(

g′(St−i) − g′(St−i−1)
)

Xt

∣

∣ ≤ 2

∫ α(i)

0

Qt−i(1 − u)Qt(1 − u) du.

For t ≤ h we can write g′(St−1) =
∑t−1

i=1

(

g′(St−i) − g(St−i−1)
)

. Substituting this in the
left side of the following display and applying the preceding display, we find that

h
∑

t=1

E
∣

∣g′(St−1)Xt

∣

∣ ≤ 2
h
∑

t=1

t−1
∑

i=1

∫ α(i)

0

Qt−i(1 − u)Qt(1 − u) du.

For t > h we can write g′(St−1) = g′(St−h) +
∑h−1

i=1

(

g′(St−i) − g(St−i−1)
)

. By a similar
argument, this time also using that the function |g′| is uniformly bounded by 1, we find

n
∑

t=h+1

E
∣

∣g′(St−1)Xt

∣

∣ ≤ 2

∫ α(h)

0

Qt(1− u) du+ 2

n
∑

t=h+1

h−1
∑

i=1

∫ α(i)

0

Qt−i(1− u)Qt(1− u) du.

Combining the preceding displays we obtain that P(Sn ≥ 2) is bounded above by

2

∫ α(h)

0

Qt(1 − u) du+ 2

n
∑

t=1

t∧h−1
∑

i=1

∫ α(i)

0

Qt−i(1 − u)Qt(1 − u) du+ 1
2

n
∑

t=1

EX2
t .

In the second term we can bound 2Qt−i(1− u)Qt(1− u) by Q2
t−i(1− u)+Q2

t (1− u) and

next change the order of summation to
∑h−1

i=1

∑n
t=i+1. Because

∑n
t=i+1(Q

2
t−i + Q2

t ) ≤
2
∑n

t=1Q
2
t this term is bounded by 2

∑h−1
i=1

∫ α(i)

0

∑n
t=1Q

2
t (1 − u) du. Together with the

third term on the right this gives rise to by the first sum on the right of the lemma, as
∑h−1

i=0 1u≤α(i) = α−1(u) ∧ h.

4.28 Theorem. For each n let the time series (Xn,t: t ∈ Z) be mixing with mixing
coefficients αn(h). If supn αn(h) → 0 as h → ∞ and (Xn,t: t ∈ Z, n ∈ N) is uniformly
integrable, then the sequence Xn − EXn converges to zero in probability.

Proof. By the assumption of uniform integrability n−1
∑n

t=1 E|Xn,t|1|Xn,t|>M → 0 as
M → ∞ uniformly in n. Therefore we can assume without loss of generality that Xn,t is
bounded in absolute value by a constant M . We can also assume that it is centered at
mean zero.

Then the quantile function of |Xn,t| is bounded by M and the preceding lemma
yields the bound

P(|Xn| ≥ 2ε) ≤ 4hM2

nε2
+

4M

x
sup

n
αn(h).

This converges to zero as n→ ∞ followed by h→ ∞.
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* 4.29 EXERCISE. Relax the conditions in the preceding theorem to, for every ε > 0:

n−1
n
∑

t=1

E|Xn,t|1|Xn,t|>εn∧F−1
|Xn,t|

(1−αn(h)) → 0.

[Hint: truncate at the level nεn and note that EX1X>M =
∫ 1

0
Q(1− u)1Q(1−u)>M du for

Q(u) = F−1
X (u).]

* 4.5.3 Subadditive Ergodic Theorem

The subadditive theorem of Kingman can be considered an extension of the ergodic the-
orem, which gives the almost sure convergence of more general functions of a strictly
stationary sequence than the consecutive means. Given a strictly stationary time se-
ries Xt with values in some measurable space (X ,A) and defined on some probability
space (Ω,U ,P), write X for the induced map (. . . , X−1, X0, X1, . . .): Ω → X∞, and let
S:X∞ → X∞ be the forward shift function, all as before. A family (Tn:n ∈ N) of maps
Tn:X∞ → R is called subadditive if, for every m,n ∈ N,

Tm+n(X) ≤ Tm(X) + Tn(SmX).

4.30 Theorem (Kingman). If X is strictly stationary with invariant σ-field Uinv and
the maps (Tn:n ∈ N) are subadditive with finite means ETn(X), then Tn(X)/n → γ: =
infn n

−1E
(

Tn(X)| Uinv

)

almost surely. Furthermore, the limit γ satisfies Eγ > −∞ if and
only if infn ETn(X)/n > −∞ and in that case the convergence Tn(X) → γ takes also
place in mean.

Because the maps Tn(X) =
∑n

t=1Xt are subadditive, the “ordinary” ergodic theo-
rem by Birkhoff is a special case of Kingman’s theorem. If the time series Xt is ergodic,
then the limit γ in Kingman’s theorem is equal to γ = infn n

−1ETn(X).

4.31 EXERCISE. Show that the normalized means n−1ETn(X) of a subadditive map
are decreasing in n.

4.32 EXERCISE. Let Xt be a time series with values in the collection of (d×d) matrices.
Show that Tn(X) = log ‖X−1 · · ·X−n‖ defines subadditive maps.

4.33 EXERCISE. Show that Kingman’s theorem remains true if the forward shift oper-
ator in the definition of subadditivity is replaced by the backward shift operator.
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4.6 Martingale Differences

The partial sums
∑n

t=1Xt of an i.i.d. sequence grow by increments Xt that are indepen-
dent from the “past”. The classical central limit theorem shows that this induces asymp-
totic normality provided the increments are centered and not too big (finite variance
suffices). The mixing central limit theorem relax the independence to near independence
of variables at large time lags, which are conditions involving the whole distribution.
The martingale central limit theorem given in this section imposes conditions on the
conditional first and second moments of the increments given the past, without directly
involving other aspects of the distribution. The first moments given the past are assumed
zero; the second moments given the past must not be too big.

A filtration Ft is a nondecreasing collection of σ-fields · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · ·.
The σ-field Ft is to be thought of as the “events that are known” at time t. Often it will
be the σ-field generated by variables Xt, Xt−1, Xt−2, . . .. The corresponding filtration is
called the natural filtration of the time series Xt, or the filtration generated by this series.
A martingale difference series relative to a given filtration is a time series Xt such that,
for every t,
(i) Xt is Ft-measurable;
(ii) E(Xt| Ft−1) = 0.
The second requirement implicitly includes the assumption that E|Xt| <∞, so that the
conditional expectation is well defined; the identity is understood to be in the almost-sure
sense.

4.34 EXERCISE. Show that a martingale difference series with finite variances is a white
noise series.

4.35 Theorem. Let Xt be a martingale difference series relative to the filtration
Ft such that n−1

∑n
t=1 E(X2

t | Ft−1)
P→ v for a positive constant v, and such that

n−1
∑n

t=1 E
(

X2
t 1{|Xt| > ε

√
n}| Ft−1

)

P→ 0 for every ε > 0. Then
√
nXn  N(0, v).

4.36 Corollary. Let Xt be a strictly stationary, ergodic martingale difference series
relative to its natural filtration with mean zero and v = EX2

t <∞. Show that
√
nXn  

N(0, v).

Proof. By strict stationarity there exists a measurable function g: R∞ → R∞ such that
E(Xt|Xt−1, Xt−2, . . .) = g(Xt−1, Xt−2, . . .) almost surely, for every t. The ergodicity of
the series Xt is inherited by the series Yt = g(Xt−1, Xt−2, . . .) and hence Y n → EY1 =
EX2

1 almost surely. By a similar argument the averages n−1
∑n

t=1 E
(

X2
t 1|Xt|>M | Ft−1

)

converge almost surely to their expectation, for every fixed M . This expectation can
be made arbitrarily small by choosing M large. The sequence n−1

∑n
t=1 E

(

X2
t 1{|Xt| >

ε
√
n}| Ft−1

)

is bounded by this sequence eventually, for any M , and hence converges
almost surely to zero.
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* 4.7 Projections

Let Xt be a centered time series and F0 = σ(X0, X−1, . . .). For a suitably mixing time
series the covariance E

(

XnE(Xj | F0)
)

between Xn and the best prediction of Xj at time
0 should be small as n → ∞. The following theorem gives a precise and remarkably
simple sufficient condition for the central limit theorem in terms of these quantities.

4.37 Theorem. let Xt be a strictly stationary, mean zero, ergodic time series with
∑

h

∣

∣γX(h)
∣

∣ <∞ and, as n→ ∞,

∞
∑

j=0

∣

∣E
(

XnE(Xj | F0)
)∣

∣→ 0.

Then
√
nXn  N(0, v), for v =

∑

h γX(h).

Proof. For a fixed integer m define a time series

Yt,m =

t+m
∑

j=t

(

E(Xj| Ft) − E(Xj | Ft−1)
)

.

Then Yt,m is a strictly stationary martingale difference series. By the ergodicity of the
series Xt, for fixed m as n→ ∞,

1

n

n
∑

t=1

E(Y 2
t,m| Ft−1) → EY 2

0,m =: vm,

almost surely and in mean. The number vm is finite, because the series Xt is square-
integrable by assumption. By the martingale central limit theorem, Theorem 4.35, we
conclude that

√
nY n,m  N(0, vm) as n→ ∞, for every fixed m.

Because Xt = E(Xt| Ft) we can write

n
∑

t=1

(Yt,m −Xt) =
n
∑

t=1

t+m
∑

j=t+1

E(Xj| Ft) −
n
∑

t=1

t+m
∑

j=t

E(Xj | Ft−1)

=
n+m
∑

j=n+1

E(Xj| Fn) −
m
∑

j=1

E(Xj| F0) −
n
∑

t=1

E(Xt+m| Ft−1).

Write the right side as Zn,m −Z0,m −Rn,m. Then the time series Zt,m is stationary with

EZ2
0,m =

m
∑

i=1

m
∑

j=1

E
(

E(Xi| F0)E(Xj | F0)
)

≤ m2EX2
0 .
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The right side divided by n converges to zero as n→ ∞, for every fixed m. Furthermore,

ER2
n,m =

n
∑

s=1

n
∑

t=1

E
(

E(Xs+m| Fs−1)E(Xt+m| Ft−1)
)

≤ 2
∑∑

1≤s≤t≤n

E
(

E(Xs+m| Fs−1)Xt+m

)

≤ 2n
∞
∑

h=1

∣

∣EE(Xm+1| F0)Xh+m

∣

∣ = 2n
∞
∑

h=m+1

∣

∣EXm+1E(Xh| F0)
∣

∣.

The right side divided by n converges to zero as m→ ∞. Combining the three preceding
displays we see that the sequence

√
n(Y n,m−Xn) = (Zn,m−Z0,m−Rn,m)/

√
n converges

to zero in second mean as n→ ∞ followed by m→ ∞.
Because Yt,m is a martingale difference series, the variables Yt,m are uncorrelated

and hence

var
√
nY n,m = EY 2

0,m = vm.

Because, as usual, var
√
nXn → v as n→ ∞, combination with the preceding paragraph

shows that vm → v as m → ∞. Consequently, by Lemma 3.10 there exists mn → ∞
such that

√
nYn,mn  N(0, v) and

√
n(Yn,mn −Xn)  0. This implies the theorem in

view of Slutsky’s lemma.

4.38 Example. We can use the preceding theorem for an alternative proof of the α-
mixing central limit theorem, Theorem 4.7. The absolute convergence of the series
∑

h γX(h) can be verified under the condition of Theorem 4.7 as in the first lines of
the proof of that theorem. We concentrate on the verification of the displayed condition
of the preceding theorem. Set Yn = E(Xn| F0) and

1 − Un = F|Yn|

(

|Yn|−
)

+ V∆F|Yn|

(

|Yn|
)

,

where ∆F denotes the jump sizes of a cumulative distribution function and V is a uniform
variable independent of the other variables. The latter definition is an extended form of
the probability integral transformation, allowing for jumps in the distribution function.
The variable Un is uniformly distributed and F−1

|Yn|
(1−Un) = |Yn| almost surely. Because

Yn is F0-measurable the covariance inequality, Lemma 4.11, gives

∣

∣E
(

E(Xn| F0)Xj

)∣

∣ ≤ 2

∫ αj

0

F−1
|Yn|

(1 − u)F−1
|Xj |

(1 − u) du

= 2EYn sign(Yn)F−1
|Xj |

(1 − Un)1Un<αj

= 2EXn sign(Yn)F−1
|Xj |

(1 − Un)1Un<αj

≤ 2E|Xn|F−1
|Xj |

(1 − Un)1Un<αj

≤ 4

∫ 1

0

F−1
|Xn|

(1 − u)G−1(1 − u) du
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by a second application of Lemma 4.11, with α = 1 and G the distribution function of the
random variable F−1

|Xj |
(1 − Un)1Un<αj . The corresponding quantile function G−1(1 − u)

vanishes off [0, αj ] and is bounded above by the quantile function of |Xj |. Therefore, the
expression is further bounded by

∫ αj

0 F−1
|X0|

(1 − u)2 du. We finish by summing up over j.



5
Nonparametric Estimation
of Mean and Covariance

Suppose we observe the values X1, . . . , Xn from the stationary time series Xt with mean
µX = EXt, covariance function γX(h), and correlation function ρX(h). If nothing is
known about the distribution of the time series, besides that it is stationary, then “ob-
vious” estimators for these parameters are

µ̂n = Xn =
1

n

n
∑

t=1

Xt,

γ̂n(h) =
1

n

n−h
∑

t=1

(Xt+h −Xn)(Xt −Xn), (0 ≤ h < n),

ρ̂n(h) =
γ̂n(h)

γ̂n(0)
.

These estimators are called nonparametric, because they are not motivated by a sta-
tistical model that restricts the distribution of the time series. The advantage is that
they work for (almost) every stationary time series. However, given a statistical model,
it might be possible to find better estimators for µX , γX and ρX . We shall see examples
of this when discussing ARMA-processes in a later chapter.

* 5.1 EXERCISE. The factor 1/n in the definition of γ̂n(h) is sometimes replaced by
1/(n − h), because there are n − h terms in the sum. Show that with the present def-
inition of γ̂n the corresponding estimate

(

γ̂n(s − t)
)

s,t=1,...,h
for the covariance matrix

of (X1, . . . , Xh) is nonnegative-definite. Show by example that this is not true if we use
1/(n− h). [Write the matrix as QQT for a suitable (n× (2n)) matrix Q.]

The time series Xt is called Gaussian if the joint distribution of any finite number
of the variables Xt is multivariate-normal. In that case Xn is normally distributed. The
distributions of γ̂n(h) and ρ̂n(h) are complicated, even under normality. Distributional
statements considering these estimators are therefore usually asymptotic in nature, as
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Figure 5.1. Realization of the sample auto-correlation function (n = 250) of the stationary time series
satisfying Xt+1 = 0.5Xt + Zt for standard normal white noise Zt.

n → ∞. In this chapter we discuss conditions under which each of the three estimators
are asymptotically normally distributed. This knowledge can be used to set approximate
confidence intervals.

5.1 Sample Mean

The asymptotic normality of the sample mean is the subject of Chapter 4. The statistical
significance of the central limit theorem is that the sample mean is an asymptotically
consistent estimator of the true mean µX , and converges at the rate 1/

√
n. The central

limit theorem can be used in a preciser way to derive an asymptotic confidence interval
for µX . This requires an estimate of the (asymptotic) variance of the sample mean, which
we discuss in this section.

An approximate confidence interval for µX based on the sample mean typically takes
the form

(

Xn − σ̂n√
n

1.96, Xn +
σ̂n√
n

1.96
)

.
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If
√
n(Xn − µX)/σ̂n  N(0, 1) as n → ∞, then the confidence level of this interval

converges to 95%. The problem is to find suitable estimators σ̂n.
If the sequence

√
n(Xn−µX) is asymptotically normal, as it is under the conditions

of the preceding chapter, the procedure works if the σ̂n are consistent estimators of the
(asymptotic) variance of Xn. Unlike in the case of independent, identically distributed
variables, the variance of the sample mean depends on characteristics of the joint dis-
tribution of (X1, . . . , Xn), rather than only on the marginal distributions. (See (4.1).)
The limiting variance

∑

h γX(h) depends even on the joint distribution of the infinite
sequence (X1, X2, . . .). With a sufficient number of observations it is possible to estimate
the auto-covariances γX(h) at smaller lags h, but, without further information, this is
not true for larger lags h ≈ n (let alone h ≥ n), unless we make special assumptions.
Setting a confidence interval is therefore much harder than in the case of independent,
identically distributed variables.

If a reliable model is available, expressed in a vector of parameters, then the problem
can be solved by a model-based estimator. We express the variance of the sample mean
in these parameters, and next plug in estimates for these parameters. If there are not too
many parameters in the model this should be feasible. (Methods to estimate parameters
are discussed in later chapters.)

5.2 EXERCISE.
(i) Calculate the asymptotic variance of the sample mean for the moving average Xt =

Zt + θZt−1.
(ii) Same question for the stationary solution of Xt = φXt−1 + Zt, where |φ| < 1.

However, the use of a model-based estimator is at odds with the theme of this chap-
ter: nonparametric estimation. It is possible to estimate the variance nonparametrically
provided the time series is sufficiently mixing. We discuss several methods.

A commonly used method is the method of batched means. The total set of ob-
servations is split into r blocks [X1, . . . , Xl], [Xl+1, . . . , X2l], . . . , [X(r−1)l+1, . . . , Xrl] of l
observations. (Assume that n = rl for simplicity; drop a last batch of fewer than l ob-
servations.) If Y1, . . . , Yr are the sample means of the r blocks, then Y r = Xn and hence
varY r = varXn. The hope is that we can ignore the dependence between Y1, . . . , Yr and
can simply estimate the variance var(

√
rY r) by the sample variance S2

r,Y of Y1, . . . , Yr.
If l is “large enough” and the orginal series Xt is sufficiently mixing, then this actually
works, to some extent.

Presumably, the method of batched means uses disjoint blocks of Xt in order to
achieve the approximate independence of the block means Y1, . . . , Yr used for its mo-
tivation. In general the block means are still dependent. This does not cause much
(additional) bias in the estimate of the variance, but it may have an effect on the
precision. It turns out that it is better to use all blocks of l consecutive Xt, even
though these may be more dependent. Thus in our second method we consider all
blocks [X1, . . . , Xl], [X2, . . . , Xl+1], . . . , [Xn−l+1, . . . , Xn] of l consecutive observations.
We let Z1, Z2, . . . , Zn−l+1 be the sample means of the n − l + 1 blocks, so that
l varZi = var(

√
lXl) ≈ var(

√
nXn), if l is large. This suggests to estimate the vari-

ance of
√
nXn by lS2

n−l+1,Z . The following theorem shows that this method works under
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some conditions, provided that l is chosen dependent on n with ln → ∞ at a not too fast
rate. Because in the theorem l depends on n, so do the block means, and we denote them
by Zn,1, . . . , Zn,n−ln+1. The theorem considers both the sample variance of the block
means,

S2
n,Z =

1

n− ln + 1

n−ln+1
∑

i=1

(Zn,i − Zn−ln+1)
2,

and the centered empirical distribution function of the block means,

Fn(x) =
1

n− ln + 1

n−ln+1
∑

i=1

1
{
√

ln(Zn,i −Xn) ≤ x
}

.

5.3 Theorem. Suppose that the time series Xt is strictly stationary and α-mixing with
mixing coefficients satisfying

∑

h α(h) < ∞. Let ln → ∞ such that ln/n → 0. Further-
more, suppose that

√
n(Xn −µX) N(0, v), for some number v. Then, for every x, the

sequence Fn(x) converges in probability to Φ(x/
√
v). Furthermore, if v =

∑

h γX(h) and
∑

h

∣

∣γX(h)
∣

∣ <∞, then the variance lnS
2
n,Z of Fn converges in probabity to v.

Proof. Let Gn be the distribution function obtained by replacing the average Xn in the
definition of Fn by µX . These functions are related through Fn(x) = Gn

(

x+
√
ln(Xn −

µX)
)

. The sequence
√
ln(Xn − µX) converges in probabity to zero, by the assumptions

that the sequence
√
n(Xn − µX) converges weakly and that ln/n → 0. In view of the

monotonicity of the functions Fn and Gn it suffices to show that Gn(x) P→ Φ(x/
√
v) for

every x.
Fix some x and define Yt = 1

{√
ln(Zn,t − µX) ≤ x

}

. Then the time series Yt is

strictly stationary and Gn(x) = Y n−ln+1. By assumption

EY n−ln+1 = P
(
√

ln(X ln − µX) ≤ x
)

→ Φ(x/
√
v).

Because the variable Yt depends only on the variables Xs with t ≤ s < t+ ln, the series
Yt is α-mixing with mixing coefficients bounded above by α(h− ln) for h > ln. Therefore,
by (4.2) followed by Lemma 4.11 (with q = r = ∞),

varY n−ln+1 ≤ 1

n− ln + 1

∑

h

∣

∣γY (h)
∣

∣ ≤ 4

n− ln + 1

(

∑

h≥ln

α(h− ln) + ln
1
2

)

.

This converges to zero as n→ ∞. Thus Gn(x) = Y n−ln+1 → Φ(x/
√
v) in probability by

Chebyshev’s inequality, and the first assertion of the theorem is proved.
To prove the convergence of the variance of Fn, we first note that the variances of

Fn and Gn are the same. Because Gn  N(0, v), Theorem 3.8 shows that the variance
of Gn converges to v if and only

∫

|x|≥M x2 dGn(x) P→ 0 as n→ ∞ followed by M → ∞.

Now

E

∫

|x|≥M

x2 dGn(x) = E
1

n− ln + 1

n−ln+1
∑

i=1

∣

∣

√

ln(Zn,i − µX)
∣

∣

2
1
{
√

ln|Zn,i − µX | ≥M
}

= E
∣

∣

√

ln(X ln − µX)
∣

∣

2
1
{
√

ln|X ln − µX | ≥M
}

.
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By assumption
√
ln(X ln −µX) N(0, v), while E

∣

∣

√
ln(X ln −µX)

∣

∣

2 → v by (4.1). Thus
we can apply Theorem 3.8 in the other direction to conclude that the right side of the
display converges to zero as n→ ∞ followed by M → ∞.

The usefulness of the estimate Fn goes beyond its variance. because the sequence
Fn tends to the same limit distribution as the sequence

√
n(Xn−µX), we can think of it

as an estimator of the distribution of the latter variable. In particular, we could use the
quantiles of Fn as estimators of the quantiles of

√
n(Xn − µX) and use these to replace

the normal quantiles and σ̂n in the construction of a confidence interval. This gives the
interval

[

Xn − F−1
n (0.975)√

n
,Xn − F−1

n (0.025)√
n

]

.

The preceding theorem shows that this interval has asymptotic confidence level 95% for
covering µX .

Another, related method is the blockwise bootstrap. Assume that n = lr for simplic-
ity. Given the same blocks [X1, . . . , Xl], [X2, . . . , Xl+1], . . . , [Xn−l+1, . . . , Xn], we choose
r = n/l blocks at random with replacement and put the r blocks in a row, in any order,
but preserving the order of the Xt within the r blocks. We denote the row of n = rl vari-
ables obtained in this way by X∗1 , X

∗
2 , . . . , X

∗
n and let X∗n be their average. The bootstrap

estimate of the distribution of
√
n(Xn − µX) is by definition the conditional distribu-

tion of
√
n(X∗n −Xn) given X1, . . . , Xn. The corresponding estimate of the variance of√

n(Xn − µX) is the variance of this conditional distribution.
Another, but equivalent, description of the bootstrap procedure is to choose a ran-

dom sample with replacement from the block averages Zn,1, . . . , Zn,n−ln+1. If this sample
is denoted by Z∗1 , . . . , Z

∗
r , then the average X∗n is also the average Z∗r . It follows that the

bootstrap estimate of the variance of Xn is the conditional variance of the mean of a
random sample of size r from the block averages given the values Zn,1, . . . , Zn,n−ln+1 of
these averages. This is simply (n/r)S2

n−ln+1,Z , as before.
Other aspects of the bootstrap estimators of the distribution, for instance quantiles,

are hard to calculate explicitly. In practice we perform computer simulation to obtain
an approximation of the bootstrap estimate. By repeating the sampling procedure a
large number of times (with the same values of X1, . . . , Xn), and taking the empirical
distribution over the realizations, we can, in principle obtain arbitrary precision.

All three methods discussed previously are based on forming blocks of a certain
length l. The proper choice of the block length is crucial for their succes: the preceding
theorem shows that (one of) the estimators will be consistent provided ln → ∞ such that
ln/n → 0. Additional calculations show that, under general conditions, the variances of
the variance estimators are minimal if ln is proportional to n1/3.]

5.4 EXERCISE. Extend the preceding theorem to the method of batched means. Show
that the variance estimator is consistent.

] See Künsch (1989), Annals of Statistics 17, p1217–1241.
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5.2 Sample Auto Covariances

Replacing a given time series Xt by the centered time series Xt − µX does not change
the auto-covariance function. Therefore, for the study of the asymptotic properties of
the sample auto covariance function γ̂n(h), it is not a loss of generality to assume that
µX = 0. The sample auto-covariance function can be written as

γ̂n(h) =
1

n

n−h
∑

t=1

Xt+hXt −Xn

( 1

n

n−h
∑

t=1

Xt

)

−
( 1

n

n
∑

t=h+1

Xt

)

Xn + (Xn)2.

Under the conditions of Chapter 4 and the assumption µX = 0, the sample mean Xn

is of the order OP (1/
√
n) and hence the last term on the right is of the order OP (1/n).

For fixed h the second and third term are almost equivalent to (Xn)2 and are also of the
order OP (1/n). Thus, under the assumption that µX = 0,

γ̂n(h) =
1

n

n−h
∑

t=1

Xt+hXt +OP

( 1

n

)

.

It follows from this and Slutsky’s lemma that the asymptotic behaviour of the sequence√
n
(

γ̂n(h) − γX(h)
)

depends only on n−1
∑n−h

t=1 Xt+hXt. Here a change of n by n − h
(or n − h by n) is asymptotically negligible, so that, for simplicity of notation, we can
equivalently study the averages

γ̂∗n(h) =
1

n

n
∑

t=1

Xt+hXt.

These are unbiased estimators of EXt+hXt = γX(h), under the condition that µX = 0.
Their asymptotic distribution can be derived by applying a central limit theorem to the
averages Y n of the variables Yt = Xt+hXt.

If the time series Xt is mixing with mixing coefficients α(k), then the time series Yt

is mixing with mixing coefficients bounded above by α(k − h) for k > h ≥ 0. Because
the conditions for a central limit theorem depend only on the speed at which the mixing
coefficients converge to zero, this means that in most cases the mixing coefficients of
Xt and Yt are equivalent. By the Cauchy-Schwarz inequality the series Yt has finite
moments of order k if the series Xt has finite moments of order 2k. This means that the
mixing central limit theorems for the sample mean apply without further difficulties to
proving the asymptotic normality of the sample auto-covariance function. The asymptotic
variance takes the form

∑

g γY (g) and in general depends on fourth order moments of
the type EXt+g+hXt+gXt+hXt as well as on the auto-covariance function of the series
Xt. In its generality, its precise form is not of much interest.

5.5 Theorem. IfXt is a strictly stationary, mixing time series with α-mixing coefficients

such that
∫ 1

0
α−1(u)F−1

|XhX0|
(1 − u)2 du < ∞, then the sequence

√
n
(

γ̂n(h) − γX(h)
)

converges in distribution to a normal distribution.
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Another approach to central limit theorems is special to linear processes, of the form

(5.1) Xt = µ+

∞
∑

j=−∞

ψjZt−j .

Here we assume that . . . , Z−1, Z0, Z1, Z2, . . . is a sequence of independent and identically
distributed variables with EZt = 0, and that the constants ψj satisfy

∑

j |ψj | <∞. The
sample auto-covariance function of a linear process is also asymptotically normal, but
the proof of this requires additional work. This work is worth while mainly because the
limit variance takes a simple form in this case.

Under (5.1) with µ = 0, the auto-covariance function of the series Yt = Xt+hXt can
be calculated as

γY (g) = cov
(

Xt+g+hXt+g, Xt+hXt

)

=
∑

i

∑

j

∑

k

∑

l

ψt−iψt+h−jψt+g−kψt+g+h−l cov(ZiZj , ZkZl).

Here cov(ZiZj , ZkZl) is zero whenever one of the indices i, j, k, l occurs only once. For
instance EZ1Z2Z10Z2 = EZ1EZ

2
2EZ10 = 0. It also vanishes if i = j 6= k = l. The

covariance is nonzero only if all four indices are the same, or if the indices occur in the
pairs i = k 6= j = l or i = l 6= j = k. Thus the preceding display can be rewritten as

cov(Z2
1 , Z

2
1 )
∑

i

ψt−iψt+h−iψt+g−iψt+g+h−i

+ cov(Z1Z2, Z1Z2)
∑∑

i6=j

ψt−iψt+h−jψt+g−iψt+g+h−j

+ cov(Z1Z2, Z2Z1)
∑∑

i6=j

ψt−iψt+h−jψt+g−jψt+g+h−i

=
(

EZ4
1 − 3(EZ2

1)2
)

∑

i

ψiψi+hψi+gψi+g+h + γX(g)2 + γX(g + h)γX(g − h).

In the last step we use Lemma 1.28(iii) twice, after first adding in the diagonal terms
i = j into the double sums. Since cov(Z1Z2, Z1Z2) = (EZ2

1)2, these diagonal terms
account for −2 of the −3 times the sum in the first term. The variance of γ̂∗n(h) = Y n

converges to the sum over g of this expression. With κ4(Z) = EZ4
1/(EZ

2
1 )2−3, the fourth

cumulant (equal to the kurtosis minus 3) of Zt, this sum can be written as

Vh,h = κ4(Z)γX(h)2 +
∑

g

γX(g)2 +
∑

g

γX(g + h)γX(g − h).

5.6 Theorem. Suppose that (5.1) holds for an i.i.d. sequence Zt with mean zero and
EZ4

t <∞ and numbers ψj with
∑

j |ψj | <∞. Then
√
n
(

γ̂n(h) − γX(h)
)

 N(0, Vh,h).

Proof. As explained in the discussion preceding the statement of the theorem, it suffices
to show that the sequence

√
n
(

γ̂∗n(h) − γX(h)
)

has the given asymptotic distribution in
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the case that µ = 0. Define Yt = Xt+hXt and, for fixed m ∈ N,

Y m
t =

∑

|j|≤m

ψjZt+h−j

∑

|j|≤m

ψjZt−j = Xm
t+hX

m
t .

The time series Y m
t is (2m+ h+ 1)-dependent and strictly stationary. By Theorem 4.4

the sequence
√
n(Y m

n − EY m
n ) is asymptotically normal with mean zero and variance

σ2
m =

∑

g

γYm(g) = κ4(Z)γXm(h)2 +
∑

g

γXm(g)2 +
∑

g

γXm(g + h)γXm(g − h),

where the second equality follows from the calculations preceding the theorem. For every
g, as m→ ∞,

γXm(g) = EZ2
1

∑

j:|j|≤m,|j+g|≤m

ψjψj+g → EZ2
1

∑

j

ψjψj+g = γX(g).

Furthermore, the numbers on the left are bounded above by EZ2
1

∑

j |ψjψj+g|, and

∑

g

(

∑

j

|ψjψj+g |
)2

=
∑

g

∑

i

∑

k

|ψiψkψi+gψk+g| ≤ sup
j

|ψj |
(

∑

j

|ψj |
)3

<∞.

Therefore, by the dominated convergence theorem
∑

g γXm(g)2 →∑

g γX(g)2 asm→ ∞.
By a similar argument, we obtain the corresponding property for the third term in the
expression defining σ2

m, whence σ2
m → Vh,h as m→ ∞.

We conclude by Lemma 3.10 that there exists a sequence mn → ∞ such that√
n(Y mn

n −EY mn
n ) N(0, Vh,h). The proof of the theorem is complete once we also have

shown that the difference between the sequences
√
n(Yn − EYn) and

√
n(Y mn

n − EY mn
n )

converges to zero in probability.
Both sequences are centered at mean zero. In view of Chebyshev’s inequality it

suffices to show that n var(Yn − Y mn
n ) → 0. We can write

Yt − Y m
t = Xt+hXt −Xm

t+hX
m
t =

∑

i

∑

j

ψm
t−i,t+h−jZiZj,

where ψm
i,j = ψiψj if |i| > m or |j| > m and is 0 otherwise. The variables Yn − Y m

n are
the averages of these double sums and hence

√
n times their variance can be found as

n
∑

g=−n

(n− |g|
n

)

γY−Y m(g)

=
n
∑

g=−n

(n− |g|
n

)

∑

i

∑

j

∑

k

∑

l

ψm
t−i,t+h−jψ

m
t+g−k,t+g+h−l cov(ZiZj, ZkZl).
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Most terms in this five-fold sum are zero and by similar arguments as before the whole
expression can be bounded in absolute value by

cov(Z2
1 , Z

2
1)
∑

g

∑

i

|ψm
i,i+hψ

m
g,g+h|+(EZ2

1 )2
∑

g

∑

i

∑

j

|ψm
i,jψ

m
i+g,j+g |

+ (EZ2
1)2
∑

g

∑

i

∑

j

|ψm
i,j+hψ

m
j+g,i+g+h|.

We have that ψm
i,j → 0 as m→ ∞ for every fixed (i, j), |ψm

i,j | ≤ |ψiψj |, and supi |ψi| <∞.
By the dominated convergence theorem the double and triple sums converge to zero as
well.

By similar arguments we can also prove the joint asymptotic normality of the sample
auto-covariances for a number of lags h simultaneously. By the Cramér-Wold device a
sequence of k-dimensional random vectors Xn converges in distribution to a random
vector X if and only if aTXn  aTX for every a ∈ Rk. A linear combination of sample
auto-covariances can be written as an average, as before. These averages can be shown to
be asymptotically normal by the same methods, with only the notation becoming more
complex.

5.7 Theorem. Under the conditions of either Theorem 5.5 or 5.6, for every h ∈ N and
some (h+ 1) × (h+ 1)-matrix V ,

√
n













γ̂n(0)
...

γ̂n(h)






−







γX(0)
...

γX(h)












 Nh+1(0, V ).

For a linear process Xt the matrix V has (g, h)-element

Vg,h = κ4(Z)γX(g)γX(h) +
∑

k

γX(k + g)γX(k + h) +
∑

k

γX(k − g)γX(k + h).

5.3 Sample Auto Correlations

The asymptotic distribution of the auto-correlations ρ̂n(h) can be obtained from the
asymptotic distribution of the auto-covariance function by the Delta-method (Theo-
rem 3.15). We can write

ρ̂n(h) =
γ̂n(h)

γ̂n(0)
= φ

(

γ̂n(0), γ̂n(h)
)

,
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for φ the function φ(u, v) = v/u. This function has gradient (−v/u2, 1/u). By the Delta-
method,

√
n
(

ρ̂n(h) − ρX(h)
)

= − γX(h)

γX(0)2
√
n
(

γ̂n(0) − γX(0)
)

+
1

γX(0)

√
n
(

γ̂n(h) − γX(h)
)

+ oP (1).

The limit distribution of the right side is the distribution of the random variable
−γX(h)/γX(0)2Y0 + 1/γX(0)Yh for Y a random vector with the Nh+1(0, V )-distribution
given in Theorem 5.7. The joint limit distribution of a vector of auto-correlations is the
joint distribution of the corresponding linear combinations of the Yh. By linearity this is
a Gaussian distribution; its mean is zero and its covariance matrix can be expressed in
the matrix V by linear algebra.

5.8 Theorem. Under the conditions of either Theorem 5.5 or 5.6, for every h ∈ N and
some h× h-matrix W ,

√
n













ρ̂n(1)
...

ρ̂n(h)






−







ρX(1)
...

ρX(h)












 Nh(0,W ),

For a linear process Xt the matrix W has (g, h)-element

Wg,h =
∑

k

[

ρX(k + g)ρX(k + h) + ρX(k − g)ρX(k + h) + 2ρX(g)ρX(h)ρX(k)2

− 2ρX(g)ρX(k)ρX(k + h) − 2ρX(h)ρX(k)ρX(k + g)
]

.

The expression for the asymptotic covariance matrix W of the auto-correlation co-
efficients in the case of a linear process is known as Bartlett’s formula. An interesting
fact is that W depends on the auto-correlation function ρX only, although the asymp-
totic covariance matrix V of the sample auto-covariance coefficients depends also on the
second and fourth moments of Z1. We discuss two interesting examples of this formula.

5.9 Example (Iid sequence). For ψ0 = 1 and ψj = 0 for j 6= 0, the linear process Xt

given by (5.1) is equal to the i.i.d. sequence µ+Zt. Then ρX(h) = 0 for every h 6= 0 and
the matrixW given by Bartlett’s formula reduces to the identity matrix. This means that
for large n the sample auto-correlations ρ̂n(1), . . . , ρ̂n(h) are approximately independent
normal variables with mean zero and variance 1/n.

This can be used to test whether a given sequence of random variables is indepen-
dent. If the variables are independent and identically distributed, then approximately
95 % of the computed auto-correlations should be in the interval [−1.96/

√
n, 1.96/

√
n].

This is often verified graphically, from a plot of the auto-correlation function, on which
the given interval is indicated by two horizontal lines. Note that, just as we should expect
that 95 % of the sample auto-correlations are inside the two bands in the plot, we should
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also expect that 5 % of them are not! A more formal test would be to compare the sum of
the squared sample auto-correlations to the appropriate chisquare table. The Ljung-Box
statistic is defined by

k
∑

h=1

n(n+ 2)

n− h
ρ̂n(h)2.

By the preceding theorem, for fixed k, this sequence of statistics tends to the χ2 dis-
tribution with k degrees of freedom, as n → ∞. (The coefficients n(n + 2)/(n − h)
are motivated by a calculation of moments for finite n and are thought to improve the
chisquare approximation, but are asymptotically equivalent to n.)

The more auto-correlations we use in a procedure of this type, the more information
we extract from the data and hence the better the result. However, the tests are based
on the asymptotic distribution of the sample auto-correlations and this was derived
under the assumption that the lag h is fixed and n → ∞. We should expect that the
convergence to normality is slower for sample auto-correlations ρ̂n(h) of larger lags h,
since there are fewer terms in the sums defining them. Thus in practice we should not
use sample auto-correlations of lags that are large relative to n.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 5.2. Realization of the sample auto-correlation function of a Gaussian white noise series of length
250.
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5.10 Example (Moving average). For a moving averageXt = Zt+θ1Zt−1+· · ·+θqZt−q

of order q, the auto-correlations ρX(h) of lags h > q vanish. By the preceding theorem
the sequence

√
nρ̂n(h) converges for h > q in distribution to a normal distribution with

variance

Wh,h =
∑

k

ρX(k)2 = 1 + 2ρX(1)2 + · · · + 2ρX(q)2, h > q.

This can be used to test whether a moving average of a given order q is an appropriate
model for a given observed time series. A plot of the auto-correlation function shows
nonzero auto-correlations for lags 1, . . . , q, and zero values for lags h > q. In practice we
plot the sample auto-correlation function. Just as in the preceding example, we should ex-
pect that some sample auto-correlations of lags h > q are significantly different from zero,
due to the estimation error. The asymptotic variances Wh,h are bigger than 1 and hence
we should take the confidence bands a bit wider than the intervals [−1.96/

√
n, 1.96/

√
n]

as in the preceding example. A proper interpretation is more complicated, because the
sample auto-correlations are not asymptotically independent.
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Figure 5.3. Realization (n = 250) of the sample auto-correlation function of the moving average process
Xt = 0.5Zt + 0.2Zt−1 + 0.5Zt−2 for a Gaussian white noise series Zt.

5.11 EXERCISE. Verify the formula for Wh,h in the preceding example.
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5.12 EXERCISE. Find W1,1 as a function of θ for the process Xt = Zt + θZt−1.

5.13 EXERCISE. Verify Bartlett’s formula.

5.4 Sample Partial Auto Correlations

By Lemma 2.33 and the prediction equations the partial auto-correlation αX(h) is the
solution φh of the system of equations







γX(0) γX(1) · · · γX(h− 1)
...

...
...

γX(h− 1) γX(h− 2) · · · γX(0)













φ1
...
φh






=







γX(1)
...

γX(h)






.

A nonparametric estimator α̂n(h) of αX(h) is obtained by replacing the auto-covariance
function in this linear system by the sample auto-covariance function γ̂n. This yields
estimators φ̂1, . . . , φ̂h of the prediction coefficients satisfying







γ̂n(0) γ̂n(1) · · · γ̂n(h− 1)
...

...
...

γ̂n(h− 1) γ̂n(h− 2) · · · γ̂n(0)













φ̂1
...
φ̂h






=







γ̂n(1)
...

γ̂n(h)






.

Then we define a nonparametric estimator for αX(h) by α̂n(h) = φ̂h.

If we write these two systems of equations as Γφ = γ and Γ̂φ̂ = γ̂, respectively, then
we obtain that

φ̂− φ = Γ̂−1γ̂ − Γ−1γ = Γ̂−1(γ̂ − γ) − Γ̂−1(Γ̂ − Γ)Γ−1γ.

The sequences
√
n(γ̂ − γ) and

√
n(Γ̂ − Γ) are jointly asymptotically normal by Theo-

rem 5.7. With the help of Slutsky’s lemma we readily obtain the asymptotic normality of
the sequence

√
n(φ̂−φ) and hence of the sequence

√
n
(

α̂n(h)−αX(h)
)

. The asymptotic
covariance matrix appears to be complicated, in general; we shall not derive it.

5.14 Example (Auto regression). For the stationary solution to Xt = φXt−1 +Zt and
|φ| < 1, the partial auto-correlations of lags h ≥ 2 vanish, by Example 2.34. We shall
see later that in this case the sequence

√
nα̂n(h) is asymptotically standard normally

distributed, for every h ≥ 2.
This result extends to the “causal” solution of the pth order auto-regressive scheme

Xt = φ1Xt−1 + · · ·+φpXt−p +Zt and the auto-correlations of lags h > p. (The meaning
of “causal” is explained in Chapter 7.) This property can be used to find an appropriate
order p when fitting an auto-regressive model to a given time series. The order is chosen
such that “most” of the sample auto-correlations of lags bigger than p are within the band
[−1.96/

√
n, 1.96/

√
n]. A proper interpretation of “most” requires that the dependence

of the α̂n(h) is taken into consideration.
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Figure 5.4. Realization (n = 250) of the partial auto-correlation function of the stationary solution to
Xt = 0.5Xt−1 + 0.2Xt−1 + Zt for a Gaussian white noise series.
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Spectral Theory

Let Xt be a stationary, possibly complex, time series with auto-covariance function γX .
If the series

∑

h |γX(h)| is convergent, then the series

(6.1) fX(λ) =
1

2π

∑

h∈Z

γX(h)e−ihλ,

is absolutely convergent, uniformly in λ ∈ R. This function is called the spectral density
of the time series Xt. Because it is periodic with period 2π it suffices to consider it on
an interval of length 2π, which we shall take to be (−π, π]. In the present context the
values λ in this interval are often referred to as frequencies, for reasons that will become
clear. By the uniform convergence, we can exchange the order of sum and integral when
computing

∫ π

−π e
ihλ fX(λ) dλ and we find that, for every h ∈ Z,

γX(h) =

∫ π

−π

eihλ fX(λ) dλ.

Thus the spectral density fX determines the auto-covariance function, just as the auto-
covariance function determines the spectral density.

6.1 EXERCISE. Prove this inversion formula, after first verifying that
∫ π

−π
eihλ dλ = 0

for integers h 6= 0 and
∫ π

−π
eihλ dλ = 2π for h = 0.

In mathematical analysis the series fX is called a Fourier series and the numbers
γX(h) are called the Fourier coefficients of fX . (The factor 1/(2π) is sometimes omitted
or replaced by another number, and the Fourier series is often defined as fX(−λ) rather
than fX(λ), but this is inessential.) A main topic of Fourier analysis is to derive condi-
tions under which a Fourier series converges, in an appropriate sense, and to investigate
whether the inversion formula is valid. We have just answered these questions under the
assumption that

∑

h

∣

∣γX(h)
∣

∣ <∞. This condition is more restrictive than necessary, but
is sufficient for most of our purposes.
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6.1 Spectral Measures

The requirement that the series
∑

h γX(h) is absolutely convergent means roughly that
γX(h) → 0 as h → ±∞ at a “sufficiently fast” rate. In statistical terms it means that
variables Xt that are widely separated in time must be approximately uncorrelated.
This is not true for every time series, and consequently not every time series possesses a
spectral density. However, every stationary time series does have a “spectral measure”,
by the following theorem.

6.2 Theorem (Herglotz). For every stationary time series Xt there exists a unique
finite measure FX on (−π, π] such that

γX(h) =

∫

(−π,π]

eihλ dFX(λ), h ∈ Z.

Proof. Define Fn as the measure on [−π, π] with Lebesgue density equal to

fn(λ) =
1

2π

n
∑

h=−n

γX(h)
(

1 − |h|
n

)

e−ihλ.

It is not immediately clear that this is a real-valued, nonnegative function, but this
follows from the fact that

0 ≤ 1

2πn
var
(

n
∑

t=1

Xte
−itλ

)

=
1

2πn

n
∑

s=1

n
∑

t=1

cov(Xs, Xt)e
i(t−s)λ = fn(λ).

It is clear from the definition of fn that the numbers γX(h)
(

1 − |h|/n
)

are the Fourier
coefficients of fn for |h| ≤ n (and the remaining Fourier coefficients of fn are zero). Thus,
by the inversion formula,

γX(h)
(

1 − |h|
n

)

=

∫ π

−π

eihλ fn(λ) dλ =

∫ π

−π

eihλ dFn(λ), |h| ≤ n.

Setting h = 0 in this equation, we see that Fn[−π, π] = γX(0) for every n. Thus, apart
from multiplication by the constant γX(0), the Fn are probability distributions. Because
the interval [−π, π] is compact, the sequence Fn is uniformly tight. By Prohorov’s theorem
there exists a subsequence Fn′ that converges weakly to a distribution F on [−π, π].
Because λ 7→ eihλ is a continuous function, it follows by the portmanteau lemma that

∫

[−π,π]

eihλ dF (λ) = lim
n′→∞

∫

[−π,π]

eihλ dFn(λ) = γX(h),

by the preceding display. If F puts a positive mass at −π, we can move this to the point
π without affecting this identity, since e−ihπ = eihπ for every h ∈ Z. The resulting F
satisfies the requirements for FX .

That this F is unique can be proved using the fact that the linear span of the
functions λ 7→ eihλ is uniformly dense in the set of continuous, periodic functions (the
Césaro sums of the Fourier series of a continuous, periodic function converge uniformly),
which, in turn, are dense in L1(F ). We omit the details of this step, which is standard
Fourier analysis.
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The measure FX is called the spectral measure of the time series Xt. If the spectral
measure FX admits a density fX relative to the Lebesgue measure, then the latter is
called the spectral density. A sufficient condition for this is that the series

∑

γX(h) is ab-
solutely convergent. Then the spectral density is the Fourier series (6.1) with coefficients
γX(h) introduced previously.†

6.3 EXERCISE. Show that the spectral density of a real-valued time series with
∑

h

∣

∣γX(h)
∣

∣ <∞ is symmetric about zero.

* 6.4 EXERCISE. Show that the spectral measure of a real-valued time series is symmetric
about zero, apart from a possible point mass at π. [Hint: Use the uniqueness of a spectral
measure.]

6.5 Example (White noise). The covariance function of a white noise sequence Xt is
0 for h 6= 0. Thus the Fourier series defining the spectral density has only one term and
reduces to

fX(λ) =
1

2π
γX(0).

The spectral measure is the uniform measure with total mass γX(0). Hence “a white
noise series contains all possible frequencies in an equal amount”.

6.6 Example (Deterministic trigonometric series). LetXt = A cos(λt)+B sin(λt) for
mean-zero, uncorrelated variables A and B of variance σ2, and λ ∈ (0, π). By Example 1.5
the covariance function is given by

γX(h) = σ2 cos(hλ) = σ2 1
2 (eiλh + e−iλh).

It follows that the spectral measure FX is the discrete 2-point measure with FX{λ} =
FX{−λ} = σ2/2.

Because the time series is real, the point mass at −λ does not really count: because
the spectral measure of a real time series is symmetric, the point −λ must be there
because λ is there. The form of the spectral measure and the fact that the time series in
this example is a trigonometric series of frequency λ, are good motivation for referring
to the values λ as “frequencies”.

6.7 EXERCISE.
(i) Show that the spectral measure of the sum Xt + Yt of two uncorrelated time series

is the sum of the spectral measures of Xt and Yt.
(ii) Construct a time series with spectral measure equal to a symmetric discrete measure

on the points ±λ1,±λ2, . . . ,±λk with 0 < λ1 < · · · < λk < π.
(iii) Construct a time series with spectral measure the 1-point measure with FX{0} = σ2.

† This condition is not necessary; if the series λ 7→ ΣhγX (h)e−ihλ converges in L2(FX ), then this series
is a version of the spectral density.
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(iv) Same question, but now with FX{π} = σ2.

* 6.8 EXERCISE. Show that every finite measure on (−π, π] is the spectral measure of
some stationary time series.

The spectrum of a time series is an important theoretical concept, but it is also an
important practical tool to gain insight in periodicities in the data. Inference using the
spectrum is called spectral analysis or analysis in the frequency domain as opposed to
“ordinary” analysis, which is in the time domain. However, we should not have too great
expectations of the insight offered by the spectrum. In some situations a spectral analysis
leads to clear cut results, but in other situations the interpretation of the spectrum is
complicated, or even unclear, due to the fact that all possible frequencies are present to
some extent.

The idea of a spectral analysis is to view the consecutive values

. . . , X−1, X0, X1, X2, . . .

of a time series as a random function, from Z ⊂ R to R, and to write this as a weighted
sum (or integral) of trigonometric functions t 7→ cosλt or t 7→ sinλt of different frequen-
cies λ. In simple cases finitely many frequencies suffice, whereas in other situations all
frequencies λ ∈ (−π, π] are needed to give a full description, and the “weighted sum”
becomes an integral. Two extreme examples are provided by a deterministic trigonomet-
ric series (which incorporates a single frequency) and a white noise series (which has
all frequencies in equal amounts). The spectral measure gives the weights of the differ-
ent frequencies in the sum. Physicists would call a time series a signal and refer to the
spectrum as the weights at which the frequencies are present in the given signal.

We shall derive the spectral decomposition, the theoretical basis for this interpreta-
tion, in Section 6.3. Another method to gain insight in the interpretation of a spectrum is
to consider the transformation of a spectrum by filtering. The term “filtering” stems from
the field of signal processing, where a filter takes the form of an electronic device that
filters out certain frequencies from a given electric current. For us, a filter will remain an
infinite moving average as defined in Chapter 1. For a given filter with filter coefficients
ψj the function ψ(λ) =

∑

j ψje
−ijλ is called the transfer function of the filter.

6.9 Theorem. Let Xt be a stationary time series with spectral measure FX and let
∑

j |ψj | <∞. Then Yt =
∑

j ψjXt−j has spectral measure FY given by

dFY (λ) =
∣

∣ψ(λ)
∣

∣

2
dFX(λ).

Proof. According to Lemma 1.28(iii) (if necessary extended to complex-valued filters),
the series Yt is stationary with auto-covariance function

γY (h) =
∑

k

∑

l

ψkψlγX(h− k + l) =
∑

k

∑

l

ψkψl

∫

ei(h−k+l)λ dFX(λ).

By the dominated convergence theorem we are allowed to change the order of (double)

summation and integration. Next we can rewrite the right side as
∫ ∣

∣ψ(λ)
∣

∣

2
eihλ dFX(λ).
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This proves the theorem, in view of Theorem 6.2 and the uniqueness of the spectral
measure.

6.10 Example (Moving average). A white noise process Zt has a constant spectral
density σ2/(2π). By the preceding theorem the moving average Xt = Zt + θZt−1 has
spectral density

fX(λ) = |1 + θe−iλ|2 σ
2

2π
= (1 + 2θ cosλ+ θ2)

σ2

2π
.

If θ > 0, then the small frequencies dominate, whereas the bigger frequencies are more
important if θ < 0. This suggests that the sample paths of this time series will be more
wiggly if θ < 0. However, in both cases all frequencies are present in the signal.
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Figure 6.1. Spectral density of the moving average Xt = Zt + .5Zt−1. (Vertical scale in decibels.)

6.11 Example. The process Xt = Aeiλt for a mean zero variable A and λ ∈ (−π, π] has
covariance function

γX(h) = cov(Aeiλ(t+h), Aeiλt) = eihλE|A|2.
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The corresponding spectral measure is the 1-point measure FX with FX{λ} = E|A|2.
Therefore, the filtered series Yt =

∑

j ψjXt−j has spectral measure the 1-point measure

with FY {λ} =
∣

∣ψ(λ)
∣

∣
2E|A|2. By direct calculation we find that

Yt =
∑

j

ψjAe
iλ(t−j) = Aeiλtψ(λ) = ψ(λ)Xt.

This suggests an interpretation for the term “transfer function”. Filtering a “pure signal”
Aeitλ of a single frequency apparently yields another signal of the same single frequency,
but the amplitude of the signal changes by multiplication with the factor ψ(λ). If ψ(λ) =
0, then the frequency is “not transmitted”, whereas values of

∣

∣ψ(λ)
∣

∣ bigger or smaller
than 1 mean that the frequency λ is amplified or weakened.

6.12 EXERCISE. Find the spectral measure of Xt = Aeiλt for λ not necessarily belong-
ing to (−π, π].

To give a further interpretation to the spectral measure consider a band pass filter.
This is a filter with transfer function of the form

ψ(λ) =

{

0, if |λ− λ0| > δ,
1, if |λ− λ0| ≤ δ,

for a fixed frequency λ0 and fixed band width 2δ. According to Example 6.11 this filter
“kills” all the signals Aeiλt of frequencies λ outside the interval [λ0 − δ, λ0 + δ] and
transmits all signals Aeitλ for λ inside this range unchanged. The spectral density of the
filtered signal Yt =

∑

j ψjXt−j relates to the spectral density of the original signal Xt

(if there exists one) as

fY (λ) =
∣

∣ψ(λ)
∣

∣

2
fX(λ) =

{

0, if |λ− λ0| > δ,
fX(λ), if |λ− λ0| ≤ δ.

Now think ofXt as a signal composed of many frequencies. The band pass filter transmits
only the subsignals of frequencies in the interval [λ0 − δ, λ0 + δ]. This explains that the
spectral density of the filtered sequence Yt vanishes outside this interval. For small δ > 0,

varYt = γY (0) =

∫ π

−π

fY (λ) dλ =

∫ λ0+δ

λ0−δ

fX(λ) dλ ≈ 2δfX(λ0).

We interprete this as saying that fX(λ0) is proportional to the variance of the subsignals
in Xt of frequency λ0. The total variance varXt = γX(0) =

∫ π

−π
fX(λ) dλ in the signal

Xt is the total area under the spectral density. This can be viewed as the sum of the
variances of the subsignals of frequencies λ, the area under fX between λ0− δ and λ0 + δ
being the variance of the subsignals of frequencies in this interval.

A band pass filter is a theoretical filter: in practice it is not possible to filter out
an exact range of frequencies. Only smooth transfer functions can be implemented on a
computer, and only the ones corresponding to finite filters (the ones with only finitely
many nonzero filter coefficients ψj).
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The filter coefficients ψj relate to the transfer function ψ(λ) in the same way as
the auto-covariances γX(h) relate to the spectral density fX(h), apart from a factor 2π.
Thus, to find the filter coefficients of a given transfer function ψ, it suffices to apply the
Fourier inversion formula

ψj =
1

2π

∫ π

−π

eijλψ(λ) dλ.

6.13 EXERCISE. Find the filter coefficients of a band pass filter.

6.14 Example (Low frequency and trend). An apparent trend in observed data
X1, . . . , Xn could be modelled as a real trend in a nonstationary time series, but could
alternatively be viewed as the beginning of a long cycle. In practice, where we get to
see only a finite stretch of a time series, low frequency cycles and slowly moving trends
cannot be discriminated. It was seen in Chapter 1 that differencing Yt = Xt −Xt−1 of
a time series Xt removes a linear trend, and repeated differencing removes higher order
polynomial trends. In view of the preceding observation the differencing filter should
remove, to a certain extent, low frequencies.

The differencing filter has transfer function

ψ(λ) = 1 − e−iλ = 2ie−iλ/2 sin
λ

2
.

The absolute value
∣

∣ψ(λ)
∣

∣ of this transfer function increases from 0 at 0 to its maximum
value at π. Thus, indeed, it filters away low frequencies, albeit only with partial success.
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Figure 6.2. Absolute value of the transfer function of the difference filter.
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6.15 Example (Averaging). The averaging filter Yt = (2M + 1)−1
∑M

j=−M Xt−j has
transfer function

ψ(λ) =
1

2M + 1

M
∑

j=−M

e−ijλ =
sin
(

(M + 1
2 )λ
)

(2M + 1) sin(1
2λ)

.

(The expression on the right is defined by continuity, as 1, at λ = 0.) This function
is proportional to the Dirichlet kernel, which is the function obtained by replacing the
factor 2M + 1 by 2π. From a picture of this kernel we conclude that averaging removes
high frequencies to a certain extent (and in an uneven manner depending on M), but
retains low frequencies.
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Figure 6.3. Dirichlet kernel of order M = 10.

6.16 EXERCISE. Express the variance of Yt in the preceding example in ψ and the
spectral density of the time series Xt (assuming that there is one). What happens if
M → ∞? Which conclusion can you draw? Does this remain true if the series Xt does
not have a spectral density?

6.17 EXERCISE. Find the transfer function of the filter Yt = Xt − Xt−12. Interprete
the result.
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Instead of in terms of frequencies we can also think in terms of periods. A series
of the form t 7→ eiλt repeats itself after 2π/λ instants of time. Therefore, the period is
defined as

period =
2π

frequency
.

Most monthly time series (one observation per month) have a period effect of 12 months.
If so, this will be visible as a peak in the spectrum at the frequency 2π/12 = π/6.‡ Often
the 12-month cycle is not completely regular. This may produce additional (but smaller)
peaks at the harmonic frequencies 2π/6, 3π/6, . . ., or π/12, π/18, . . ..

It is surprising at first that the highest possible frequency is π, the so-called Nyquist
frequency. This is caused by the fact that the series is measured only at discrete time
points. Very high fluctuations fall completely between the measurements and hence can-
not be observed. The Nyquist frequency π corresponds to a period of 2π/π = 2 time
instants and this is clearly the smallest period that is observable. For time series that
are observed in continuous time a spectrum is defined to contain all frequencies in R.

* 6.2 Nonsummable filters

If given filter coefficients ψj satisfy
∑

j |ψj | <∞, then the series ψ(λ) =
∑

j ψje
−ijλ con-

verges uniformly on (−π, π], and the coefficients can be recovered from the transfer func-
tion ψ by the Fourier inversion formula ψj = (2π)−1

∫ π

−π
eijλψ(π) dλ. (See Problem 6.1.)

Unfortunately, not all filters have summable coefficients. An example is the band pass
filter considered previously. In fact, if a sequence of filter coefficients is summable, then
the corresponding transfer function must be continuous, and λ 7→ ψ(λ) = 1[λ0−δ,λ0+δ](λ)

is not. Nevertheless, the series
∑

j ψje
−ijλ is well defined for the band pass filter and

has the function 1[λ0−δ,λ0+δ](λ) as its limit in a certain sense. To handle examples such
as this it is worthwhile to generalize Theorem 6.9 (and Lemma 1.28) a little.

6.18 Theorem. Let Xt be a stationary time series with spectral measure FX , defined on
the probability space (Ω,U ,P). Then the series ψ(λ) =

∑

j ψje
−iλj converges in L2(FX)

if and only if Yt =
∑

j ψjXt−j converges in L2(Ω,U ,P) for some t (and then for every
t ∈ Z) and in that case

dFY (λ) =
∣

∣ψ(λ)
∣

∣

2
dFX(λ).

Proof. For 0 ≤ m ≤ n let ψm,n
j be equal to ψj for m ≤ |j| ≤ n and be 0 otherwise, and

define Y m,n
t as the series Xt filtered by the coefficients ψm,n

j . Then certainly
∑

j |ψm,n
j | <

∞ for every fixed pair (m,n) and hence we can apply Lemma 1.28 and Theorem 6.9 to

‡ That this is a complicated number is an inconvenient consequence of our convention to define the spectrum
on the interval (−π, π]. This can be repaired. For instance, the Splus package produces spectral plots with the
frequencies rescaled to the interval (− 1

2 , 1
2 ]. Then a 12-month period gives a peak at 1/12.
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the series Y m,n
t . This yields

E
∣

∣

∣

∑

m≤|j|≤n

ψjXt−j

∣

∣

∣

2

= E|Y m,n
t |2 = γY m,n(0)

=

∫

(−π,π]

dFY m,n =

∫

(−π,π]

∣

∣

∣

∑

m≤|j|≤n

ψje
−iλj

∣

∣

∣

2

dFX(λ).

The left side converges to zero for m,n→ ∞ if and only if the partial sums of the series
Yt =

∑

j ψjXt−j form a Cauchy sequence in L2(Ω,U ,P). The right side converges to zero

if and only if the partial sums of the sequence
∑

j ψje
−iλj form a Cauchy sequence in

L2(FX). The first assertion of the theorem now follows, because both spaces are complete.
To prove the second assertion, we first note that, by Theorem 6.9,

cov
(

∑

|j|≤n

ψjXt+h−j,
∑

|j|≤n

ψjXt−j

)

= γY 0,n(h) =

∫

(−π,π]

∣

∣

∣

∑

|j|≤n

ψje
−iλj

∣

∣

∣

2

eihλ dFX(λ).

We now take limits of the left and right sides as n → ∞ to find that γY (h) =
∫

(−π,π]

∣

∣ψ(λ)
∣

∣
2 eihλ dFX(λ), for every h.

6.19 Example. If the filter coefficients satisfy
∑

j |ψj |2 < ∞ (which is weaker than

absolute convergence), then the series
∑

j ψje
−ijλ converges in L2(λ) for λ the Lebesgue

measure on (−π, π]. This is a central fact in Fourier theory and follows from

∫ π

−π

∣

∣

∣

∑

m≤|j|≤n

ψje
−ijλ

∣

∣

∣

2

dλ =
∑

m≤|k|≤n

∑

m≤|l|≤n

ψkψl

∫ π

−π

ei(l−k)λ dλ =
∑

m≤|j|≤n

|ψj |2.

Consequently, the series also converges in L2(FX) for every spectral measure FX that
possesses a bounded density.

Thus, in many cases a sequence of square-summable coefficients defines a valid filter.
A particular example is a band pass filter, for which |ψj | = O(1/|j|) as j → ±∞.

* 6.3 Spectral Decomposition

In the preceding section we interpreted the mass FX(I) that the spectral distribution
gives to an interval I as the size of the contribution of the components of frequencies
λ ∈ I to the signal t 7→ Xt. In this section we give a precise mathematical meaning to
this idea. We show that a given stationary time series Xt can be written as a randomly
weighted sum of single frequency signals eiλt.
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This decomposition is simple in the case of a discrete spectral measure. For given
uncorrelated mean zero random variables Z1, . . . , Zk and numbers λ1, . . . , λk ∈ (−π, π]
the process

Xt =
k
∑

j=1

Zje
iλjt

possesses as spectral measure FX the discrete measure with point masses of sizes
FX{λj} = E|Zj|2 at the frequencies λ1, . . . , λk (and no other mass). The series Xt is
the sum of uncorrelated, single-frequency signals of stochastic amplitudes |Zj |. This is
called the spectral decomposition of the series Xt. We prove below that this construc-
tion can be reversed: given a mean zero, stationary time series Xt with discrete spectral
measure as given, there exist mean zero uncorrelated random variables Z1, . . . , Zk with
variances FX{λj} such that the decomposition is valid.

This justifies the interpretation of the spectrum given in the preceding section. The
possibility of the decomposition is surprising in that the spectral measure only involves
the auto-covariance function of a time series, whereas the spectral decomposition is a
decomposition of the sample paths of the time series: if the series Xt is defined on a
given probability space (Ω,U ,P), then so are the random variables Zj and the preceding
spectral decomposition may be understood as being valid for (almost) every ω ∈ Ω. This
can be true, of course, only if the variables Z1, . . . , Zk also have other properties besides
the ones described. The spectral theorem below does not give any information about
these further properties. For instance, even though uncorrelated, the Zj need not be
independent. This restricts the usefulness of the spectral decomposition, but we could
not expect more. The spectrum only involves the second moment properties of the time
series, and thus leaves most of the distribution of the series undescribed. An important
exception to this rule is if the series Xt is Gaussian. Then the first and second moments,
and hence the mean and the spectral distribution, completely describe the distribution
of the series Xt.

The spectral decomposition is not restricted to time series’ with discrete spectral
measures. However, in general, the spectral decomposition involves a continuum of fre-
quencies and the sum becomes an integral

Xt =

∫

(−π,π]

eiλt dZ(λ).

A technical complication is that such an integral, relative to a “random measure” Z, is
not defined in ordinary measure theory. We must first give it a meaning.

6.20 Definition. A random measure with orthogonal increments Z is a collection
{Z(B):B ∈ B} of mean zero, complex random variables Z(B) indexed by the Borel
sets B in (−π, π] defined on some probability space (Ω,U ,P) such that, for some finite
Borel measure µ on (−π, π],

cov
(

Z(B1), Z(B2)
)

= µ(B1 ∩B2), every B1, B2 ∈ B.

This definition does not appear to include a basic requirement of a measure: that the
measure of a countable union of disjoint sets is the sum of the measures of the individual
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sets. However, we leave it as an exercise to show that this is implied by the covariance
property.

6.21 EXERCISE. Let Z be a random measure with orthogonal increments. Show that
Z(∪jBj) =

∑

j Z(Bj) in mean square, whenever B1, B2, . . . is a sequence of pairwise
disjoint Borel sets.

6.22 EXERCISE. Let Z be a random measure with orthogonal increments and define
Zλ = Z(−π, λ]. Show that (Zλ:λ ∈ (−π, π]) is a stochastic process with uncorrelated
increments: for λ1 < λ2 ≤ λ3 < λ4 the variables Zλ4−Zλ3 and Zλ2−Zλ1 are uncorrelated.
This explains the phrase “with orthogonal increments”.

* 6.23 EXERCISE. Suppose that Zλ is a mean zero stochastic process with finite second
moments and uncorrelated increments. Show that this process corresponds to a random
measure with orthogonal increments as in the preceding exercise. [This asks you to
reconstruct the random measure Z from the weights Zλ = Z(−π, λ] it gives to cells,
similarly as an ordinary measure can be reconstructed from its distribution function.]

Next we define an “integral”
∫

f dZ for given functions f : (−π, π] → C. For an
indicator function f = 1B of a Borel set B, we define, in analogy with an ordinary
integral,

∫

1B dZ = Z(B). Because we wish the integral to be linear, we are lead to the
definition

∫

∑

j

αj1Bj dZ =
∑

j

αjZ(Bj),

for every finite collections of complex numbers αj and Borel sets Bj . This determines
the integral for many, but not all functions f . We extend its domain by continuity:
we require that

∫

fn dZ →
∫

f dZ whenever fn → f in L2(µ). The following lemma
shows that these definitions and requirements can be consistently made, and serves as a
definition of

∫

f dZ.

6.24 Lemma. For every random measure with orthogonal increments Z there exists a
unique map, denoted f 7→

∫

f dZ, from L2(µ) into L2(Ω,U ,P) with the properties
(i)
∫

1B dZ = Z(B);
(ii)

∫

(αf + βg) dZ = α
∫

f dZ + β
∫

g dZ;

(iii) E
∣

∣

∫

f dZ
∣

∣

2
=
∫

|f |2 dµ.
In other words, the map f 7→

∫

f dZ is a linear isometry such that 1B 7→ Z(B).

Proof. By the defining property of Z, for any complex numbers αi and Borel sets Bi,

E
∣

∣

∣

k
∑

i=1

αiZ(Bi)
∣

∣

∣

2

=
∑

i

∑

j

αiαj cov
(

Z(Bi), Z(Bj)
)

=

∫

∣

∣

∣

k
∑

j=1

αi1Bi

∣

∣

∣

2

dµ.

For f a simple function of the form f =
∑

i αi1Bi , we define
∫

f dZ as
∑

i αiZ(Bi).
This is well defined, for, if f also has the representation f =

∑

j βj1Dj , then
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∑

i αiZ(Bi) =
∑

j βjZ(Dj) almost surely. This follows by applying the preceding identity
to
∑

i αiZ(Bi) −
∑

j βjZ(Dj).

The “integral”
∫

f dZ that is now defined on the domain of all simple functions f
trivially satisfies (i) and (ii), while (iii) is exactly the identity in the preceding display.
The proof is complete upon showing that the map f 7→

∫

f dZ can be extended from
the domain of simple functions to the domain L2(µ), meanwhile retaining the properties
(i)–(iii).

We extend the map by continuity. For every f ∈ L2(µ) there exists a sequence of
simple functions fn such that

∫

|fn − f |2 dµ → 0. We define
∫

f dµ as the limit of the
sequence

∫

fn dZ. This is well defined. First, the limit exists, because, by the linearity of
the integral and the identity,

E
∣

∣

∣

∫

fn dµ−
∫

fm dµ|2 =

∫

|fn − fm|2 dµ,

since fn − fm is a simple function. Because fn is a Cauchy sequence in L2(µ), the right
side converges to zero as m,n → ∞. We conclude that

∫

fn dZ is a Cauchy sequence
in L2(Ω,U ,P) and hence it has a limit by the completeness of this space. Second, the
definition of

∫

f dZ does not depend on the particular sequence fn → f we use. This
follows, because given another sequence of simple functions gn → f , we have

∫

|fn −
gn|2 dµ → 0 and hence E

∣

∣

∫

fn dZ −
∫

gn dZ
∣

∣

2 → 0.
We conclude the proof by noting that the properties (i)–(iii) are retained under

taking limits.

6.25 EXERCISE. Show that a linear isometry Φ: H1 → H2 between two Hilbert spaces
H1 and H2 retains inner products, i.e. 〈Φ(f1),Φ(f2)〉2 = 〈f1, f2〉1. Conclude that
cov
(∫

f dZ,
∫

g dZ
)

=
∫

fg dµ.

We are now ready to derive the spectral decomposition for a general stationary time
series Xt. Let L2(Xt: t ∈ Z) be the closed, linear span of the elements of the time series
in L2(Ω,U ,P) (i.e. the closure of the linear span of the set {Xt: t ∈ Z}).

6.26 Theorem. For any mean zero stationary time series Xt with spectral distribution
FX there exists a random measure Z with orthogonal increments relative to the measure
FX such that

{

Z(B):B ∈ B
}

⊂ L2(Xt: t ∈ Z) and such that Xt =
∫

eiλt dZ(λ) almost
surely for every t ∈ Z.

Proof. By the definition of the spectral measure FX we have, for every finite collections
of complex numbers αj and integers tj ,

E
∣

∣

∣

∑

αjXtj

∣

∣

∣

2

=
∑

i

∑

j

αiαjγX(ti − tj) =

∫

∣

∣

∣

∑

αje
itjλ
∣

∣

∣

2

dFX(λ).

Now define a map Φ:L2(FX) → L2(Xt: t ∈ Z) as follows. For f of the form f =
∑

j αje
itjλ define Φ(f) =

∑

αjXtj . By the preceding identity this is well defined.



94 6: Spectral Theory

(Check!) Furthermore, Φ is a linear isometry. By the same arguments as in the pre-
ceding lemma, it can be extended to a linear isometry on the closure of the space of
all functions

∑

j αje
itjλ. By Féjer’s theorem from Fourier theory, this closure contains

at least all Lipschitz periodic functions. By measure theory this collection is dense in
L2(FX). Thus the closure is all of L2(FX). In particular, it contains all indicator func-
tions 1B of Borel sets B. Define Z(B) = Φ(1B). Because Φ is a linear isometry, it retains
inner products and hence

cov
(

Z(B1), Z(B2)
)

=
〈

Φ(1B1),Φ(1B2)
〉

=

∫

1B11B2 dFX .

This shows that Z is a random measure with orthogonal increments. By definition

∫

∑

j

αj1Bj dZ =
∑

j

αjZ(Bj) =
∑

αjΦ(1Bj ) = Φ
(

∑

j

αj1Bj

)

.

Thus
∫

f dZ = Φ(f) for every simple function f . Both sides of this identity are linear
isometries when seen as functions of f ∈ L2(FX). Hence the identity extends to all f ∈
L2(FX). In particular, we obtain

∫

eitλ dZ(λ) = Φ(eitλ) = Xt on choosing f(λ) = eitλ.

Thus we have managed to give a precise mathematical formulation to the spectral
decomposition

Xt =

∫

(−π,π]

eitλ dZ(λ)

of a mean zero stationary time series Xt. The definition may seem a bit involved. An
insightful interpretation is obtained by approximation through Riemann sums. Given a
partition −π = λ0,k < λ1,k < · · · < λk,k = π and a fixed time t ∈ Z, consider the
function λ 7→ fk(λ) that is piecewise constant, and takes the value eitλj,k on the interval
(λj−1,k , λj,k]. If the partitions are chosen such that the mesh width of the partitions
converges to zero as k → ∞, then

∣

∣fk(λ) − eitλ
∣

∣ converges to zero, uniformly in λ ∈
(−π, π], by the uniform continuity of the function λ 7→ eitλ, and hence fk(λ) → eitλ

in L2(FX). Because the stochastic integral f 7→
∫

f dZ is linear, we have
∫

fk dZ =
∑

j e
itλj,kZ(λj−1,kλj,k] and because it is an isometry, we find

E
∣

∣

∣Xt −
k
∑

j=1

eitλj,kZ(λj−1,k, λj,k]
∣

∣

∣

2

=

∫

∣

∣eitλ − fk(λ)
∣

∣

2
dFX(λ) → 0.

Because the intervals (λj−1,k, λj,k] are pairwise disjoint, the random variables Zj : =
Z(λj−1,k, λj,k] are uncorrelated, by the defining property of an orthogonal random mea-
sure. Thus the time seriesXt can be approximated by a time series of the form

∑

j Zje
itλj ,

as in the introduction of this section. The spectral measure FX(λj−1,k, λj,k] of the interval
(λj−1,k , λj,k] is the variance of the random weight Zj in this decomposition.
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6.27 Example. If the spectral measure FX is discrete with support points λ1, . . . , λk,
then the integral on the right in the preceding display (with λj,k = λj) is identically
zero. In that case Xt =

∑

j Zje
iλj t almost surely for every t.

6.28 Example. If the time series Xt is Gaussian, then all variables in the linear span
of the Xt are normally distributed (possibly degenerate) and hence all variables in
L2(Xt: t ∈ Z) are normally distributed. In that case the variables Z(B) obtained from the
random measure Z of the spectral decomposition of Xt are jointly normally distributed.
The zero correlation of two variables Z(B1) and Z(B2) for disjoint sets B1 and B2 now
implies independence of these variables.

Theorem 6.9 shows how a spectral measure changes under filtering. There is a cor-
responding result for the spectral decomposition.

6.29 Theorem. Let Xt be a mean zero, stationary time series with spectral measure
FX and associated random measure ZX , defined on some probability space (Ω,U ,P). If
ψ(λ) =

∑

j ψje
−iλj converges in L2(FX), then Yt =

∑

j ψjXt−j converges in L2(Ω,U ,P)
and has spectral measure FY and associated random measure ZY such that, for every
f ∈ L2(FY ),

∫

f dZY =

∫

fψ dZX .

Proof. The series Yt converges by Theorem 6.9, and the spectral measure FY has density
∣

∣ψ(λ)
∣

∣

2
relative to FX . By definition,
∫

eitλ dZY (λ) = Yt =
∑

j

ψj

∫

ei(t−j)λ dZX(λ) =

∫

eitλψ(λ) dZX (λ),

where in the last step changing the order of integration and summation is justified by the
convergence of the series

∑

j ψje
i(t−j)λ in L2(FX) and the continuity of the stochastic

integral f 7→
∫

f dZX . We conclude that the identity of the theorem is satisfied for every
f of the form f(λ) = eitλ. Both sides of the identity are linear in f and isometries on
the domain f ∈ L2(FY ). Because the linear span of the functions λ 7→ eitλ for t ∈ Z is
dense in L2(FY ), the identity extends to all of L2(FY ), by linearity and continuity.

6.30 Example (Law of large numbers). An interesting application of the spectral
decomposition is the following law of large numbers. If Xt is a mean zero, stationary
time series with associated random measure ZX , then Xn

P→ ZX{0} as n → ∞. In
particular, if FX{0} = 0, then Xn

P→ 0.
To see this, we write

Xn =
1

n

n
∑

t=1

∫

eitλ dZX(λ) =

∫

eiλ(1 − eiλn)

n(1 − eiλ)
dZX(λ).

Here the integrand must be read as 1 if λ = 0. For all other λ ∈ (−π, π] the integrand
converges to zero as n→ ∞. It is bounded by 1 for every λ. Hence the integrand converges
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in second mean to 1{0} in L2(FX) (and every other L2(µ)-space for a finite measure µ).

By the continuity of the integral f 7→
∫

f dZX , we find that Xn converges in L2(Ω,U ,P)
to
∫

1{0} dZX = ZX{0}.

* 6.4 Multivariate Spectra

If spectral analysis of univariate time series’ is hard, spectral analysis of multivariate
time series is an art. It concerns not only “frequencies present in a single signal”, but
also “dependencies between signals at given frequencies”.

This difficulty concerns the interpretation only: the mathematical theory does not
pose new challenges. The covariance function γX of a vector-valued times series Xt is
matrix-valued. If the series

∑

h∈Z

∥

∥γX(h)
∥

∥ is convergent, then the spectral density of the
series Xt can be defined by exactly the same formula as before:

fX(λ) =
1

2π

∑

h∈Z

γX(h)e−ihλ.

The summation is now understood to be entry-wise, and hence λ 7→ fX(λ) maps the
interval (−π, π] into the set of (d × d)-matrices, for d the dimension of the series Xt.
Because the covariance function of the univariate series aTXt is given by γaT X = aTγXa,
it follows that, for every a ∈ Ck,

aT fX(λ)a = faT X(λ).

In particular, the matrix fX(λ) is nonnegative-definite, for every λ. From the identity
γX(−h)T = γX(h) it can also be ascertained that it is Hermitian. The diagonal elements
are nonnegative, but the off-diagonal elements of fX(λ) are complex valued, in general.

As in the case of univariate time series, not every vector-valued time series possesses
a spectral density, but every such series does possess a spectral distribution. This “dis-
tribution” is a matrix-valued, complex measure. A complex Borel measure on (−π, π] is
a map B 7→ F (B) on the Borel sets that can be written as F = F1 −F2 + i(F3 −F4) for
finite Borel measures F1, F2, F3, F4. If the complex part F3 −F4 is identically zero, then
F is a signed measure. The spectral measure FX of a d-dimensional time series Xt is a
(d × d) matrix whose d2 entries are complex Borel measures on (−π, π]. The diagonal
elements are precisely the spectral measures of the coordinate time series’ and hence
are ordinary measures, but the off-diagonal measures are typically signed or complex
measures. The measure FX is Hermitian in the sense that FX(B) = FX(B) for every
Borel set B.

6.31 Theorem (Herglotz). For every stationary vector-valued time series Xt there
exists a unique Hermitian-matrix-valued complex measure FX on (−π, π] such that

γX(h) =

∫

(−π,π]

eihλ dFX(λ), h ∈ Z.
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Proof. For every a ∈ Cd the time series aTXt is univariate and possesses a spectral
measure FaT X . By Theorem 6.2, for every h ∈ Z,

aTγX(h)a = γaT X(h) =

∫

(−π,π]

eihλ dFaT X(λ).

We can express any entry of the matrix γX(h) as a linear combination of the the quadratic
form on the left side, evaluated for different vectors a. One possibility is to write, with
ei the ith unit vector in Cd,

2 Re γX(h)i,j = eT
i γX(h)ei + eT

j γX(h)ej − (ei − ej)
T γX(h)(ei − ej),

2 ImγX(h)i,j = eT
i γX(h)ei − eT

j γX(h)ej − i(ei − iej)
T γX(h)(ei + iej).

By expressing the right-hand sides in the spectral matrices FaT X , by using the first
display, we obtain representations γX(h)i,j =

∫

eihλ dFi,j for complex-valued measures
Fi,j , for every (i, j). The matrix-valued complex measure F = (Fi,j) can be chosen
Hermitian-valued.

If F is an Hermitian-matrix-valued complex measure with the representing property,
then aTFa must be the spectral measure of the time series aTXt and hence is uniquely
determined. This determines F .

Consider in particular a bivariate time series, written as (Xt, Yt) for univariate times
series Xt and Yt. The spectral density of (Xt, Yt), if it exists, is a (2 × 2)-matrix valued
function. The diagonal elements are the spectral densities fX and fY of the univariate
series Xt and Yt. The off-diagonal elements are complex conjugates and thus define one
function, say fXY for the (1, 2)-element of the matrix. The following derived functions
are often plotted:

Re fXY , co-spectrum,

Im fXY , quadrature,

|fXY |2
fXfY

, coherency,

|fXY |, amplitude,

arg fXY , phase.

It requires some experience to read the plots of these functions appropriately. The co-
herency is perhaps the easiest to interprete: it is the “correlation between the series’ X
and Y at the frequency λ”.



7
ARIMA Processes

For many years ARIMA processes were the work horses of time series analysis, “time
series analysis” being almost identical to fitting an appropriate ARIMA process. This
important class of time series models are defined through linear relations between the
observations and noise factors.

7.1 Backshift Calculus

To simplify notation we define the backshift operator B through

BXt = Xt−1, BkXt = Xt−k.

This is viewed as operating on a complete time series Xt, transforming this into a new
series by a time shift. Even though we use the word “operator” we shall use B only as
a notational device. In particular, BYt = Yt−1 for any other time series Yt.

[

For a given polynomial ψ(z) =
∑

j ψjz
j we also abbreviate

ψ(B)Xt =
∑

j

ψjXt−j.

If the series on the right is well defined, then we even use this notation for infinite Laurent
series

∑∞
j=−∞ ψjz

j . Then ψ(B)Xt is simply a short-hand notation for the (infinite) linear
filters that we encountered before. By Lemma 1.28 the time series ψ(B)Xt is certainly
well defined if

∑

j |ψj | <∞ and supt E|Xt| <∞, in which case the series converges both
almost surely and in mean.

[ Be aware of the dangers of this notation. For instance, if Yt = X−t, then BYt = Yt−1 = X−(t−1) .
This is the intended meaning. We could also argue that BYt = BX−t = X−t−1. This is something else. Such
inconsistencies can be avoided by defining B as a true operator, for instance a linear operator acting on the
linear span of a given time series, possibly depending on the time series.
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If
∑

j |ψj | < ∞, then the Laurent series
∑

j ψjz
j converges absolutely on the unit

circle
{

z ∈ C: |z| = 1
}

in the complex plane and hence defines a function ψ(z). Given
two of such series (or functions) ψ1(z) =

∑

j ψ1,jz
j and ψ2(z) =

∑

j ψ2,jz
j, the product

ψ(z) = ψ1(z)ψ2(z) is a well-defined function on (at least) the unit circle. By changing
the summation indices this can be written as

ψ(z) = ψ1(z)ψ2(z) =
∑

j

ψjz
j, ψk =

∑

j

ψ1,jψ2,k−j .

The coefficients ψj are called the convolutions of the coefficients ψ1,j and ψ2,j . Under
the condition that

∑

j |ψi,j | < ∞, the Laurent series
∑

k ψkz
k converges absolutely at

least on the unit circle. In fact
∑

k |ψk| <∞.

7.1 EXERCISE. Show that
∑

k |ψk| ≤
∑

j |ψ1,j |
∑

j |ψ2,j |.

Having defined the function ψ(z) and verified that it has an absolutely convergent
Laurent series representation on the unit circle, we can now also define the time series
ψ(B)Xt. The following lemma shows that the convolution formula remains valid if z is
replaced by B, at least when applied to stationary time series.

7.2 Lemma. If both
∑

j |ψ1,j | < ∞ and
∑

j |ψ2,j| < ∞, then, for every time series Xt

with supt E|Xt| <∞,

ψ(B)Xt = ψ1(B)
[

ψ2(B)Xt

]

, a.s..

Proof. The right side is to be read as ψ1(B)Yt for Yt = ψ2(B)Xt. The variable Yt is
well defined almost surely by Lemma 1.28, because

∑

j |ψ2,j | <∞ and supt E|Xt| <∞.
Furthermore,

sup
t

E|Yt| = sup
t

E
∣

∣

∣

∑

j

ψ2,jXt−j

∣

∣

∣ ≤
∑

j

|ψ2,j | sup
t

E|Xt| <∞.

Thus the time series ψ1(B)Yt is also well defined by Lemma 1.28. Now

E
∑

i

∑

j

|ψ1,i||ψ2,j ||Xt−i−j | ≤ sup
t

E|Xt|
∑

i

|ψ1,i|
∑

j

|ψ2,j | <∞.

This implies that the double series
∑

i

∑

j ψ1,iψ2,jXt−i−j converges absolutely, almost
surely, and hence unconditionally. The latter means that we may sum the terms in an
arbitrary order. In particular, by the change of variables (i, j) 7→ (i = l, i+ j = k),

∑

i

ψ1,i

(

∑

j

ψ2,jXt−i−j

)

=
∑

k

(

∑

l

ψ1,lψ2,k−l

)

Xt−k, a.s..

This is the assertion of the lemma, with ψ1(B)
[

ψ2(B)Xt

]

on the left side.

The lemma implies that the “operators” ψ1(B) and ψ2(B) commute, and in a sense
asserts that the “product” ψ1(B)ψ2(B)Xt is associative. Thus from now on we may omit
the square brackets in ψ1(B)

[

ψ2(B)Xt

]

.
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7.3 EXERCISE. Verify that the lemma remains valid for any sequences ψ1 and ψ2 with
∑

j |ψi,j | < ∞ and every process Xt such that
∑

i

∑

j |ψ1,i||ψ2,j ||Xt−i−j | < ∞ almost
surely. In particular, conclude that ψ1(B)ψ2(B)Xt = (ψ1ψ2)(B)Xt for any polynomials
ψ1 and ψ2 and every time series Xt.

7.2 ARMA Processes

Linear regression models attempt to explain a variable by the sum of a linear function of
explanatory variables and a noise variable. ARMA processes are a time series version of
linear regression, where the explanatory variables are the past values of the time series
itself and the added noise is a moving average process.

7.4 Definition. A time series Xt is an ARMA(p, q)-process if there exist polynomials φ
and θ of degrees p and q, respectively, and a white noise series Zt such that φ(B)Xt =
θ(B)Zt.

The equation φ(B)Xt = θ(B)Zt is to be understood as “pointwise almost surely”
on the underlying probability space: the random variables Xt and Zt are defined on a
probability space (Ω,U ,P) and satisfy φ(B)Xt(ω) = θ(B)Zt(ω) for almost every ω ∈ Ω.

The polynomials are often] written in the forms φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p

and θ(z) = 1 + θ1z + · · · + θqz
q. Then the equation φ(B)Xt = θ(B)Zt takes the form

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + Zt + θ1Zt−1 + · · · + θqZt−q.

In other words: the value of the time series Xt at time t is the sum of a linear regression
on its own past and of a moving average. An ARMA(p, 0)-process is also called an auto-
regressive process and denoted AR(p); an ARMA(0, q)-process is also called a moving
average process and denoted MA(q). Thus an auto-regressive process is a solution Xt to
the equation φ(B)Xt = Zt, and a moving average process is explicitly given by Xt =
θ(B)Zt.

7.5 EXERCISE. Why is it not a loss of generality to assume φ0 = θ0 = 1?

We next investigate for which pairs of polynomials φ and θ there exists a corre-
sponding stationary ARMA-process. For given polynomials φ and θ there are always
many time series Xt and Zt satisfying the ARMA equation, but there need not be a
stationary series Xt. If there exists a stationary solution, then we are also interested in
knowing whether this is uniquely determined by the pair (φ, θ) and/or the white noise
series Zt, and in what way it depends on the series Zt.

] A notable exception is the Splus package. Its makers appear to have overdone the cleverness of including
minus-signs in the coefficients of φ and have included them in the coefficients of θ also.
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7.6 Example. The polynomial φ(z) = 1 − φz leads to the auto-regressive equation
Xt = φXt−1 + Zt. In Example 1.8 we have seen that a stationary solution exists if and
only if |φ| 6= 1.

7.7 EXERCISE. Let arbitrary polynomials φ and θ, a white noise sequence Zt and vari-
ables X1, . . . , Xp be given. Show that there exists a time series Xt that satisfies the
equation φ(B)Xt = θ(B)Zt and coincides with the given X1, . . . , Xp at times 1, . . . , p.
What does this imply about existence of solutions if only the Zt and the polynomials φ
and θ are given?

In the following theorem we shall see that a stationary solution to the ARMA-
equation exists if the polynomial z 7→ φ(z) has no roots on the unit circle

{

z ∈ C: |z| = 1
}

.
To prove this, we need some facts from complex analysis. The function

ψ(z) =
θ(z)

φ(z)

is well defined and analytic on the region
{

z ∈ C:φ(z) 6= 0
}

. If φ has no roots on the

unit circle
{

z: |z| = 1
}

, then since it has at most p different roots, there is an annulus
{

z: r < |z| < R
}

with r < 1 < R on which it has no roots. On this annulus ψ is an
analytic function, and it has a Laurent series representation

ψ(z) =

∞
∑

j=−∞

ψjz
j.

This series is uniformly and absolutely convergent on every compact subset of the annu-
lus, and the coefficients ψj are uniquely determined by the values of ψ on the annulus.
In particular, because the unit circle is inside the annulus, we obtain that

∑

j |ψj | <∞.
Then we know that ψ(B)Zt is a well defined, stationary time series. By the following

theorem it is the unique stationary solution to the ARMA-equation. (Here by “solution”
we mean a time series that solves the equation up to null sets, and the uniqueness is also
up to null sets.)

7.8 Theorem. Let φ and θ be polynomials such that φ has no roots on the complex
unit circle, and let Zt be a white noise process. Define ψ = θ/φ. Then Xt = ψ(B)Zt

is the unique stationary solution to the equation φ(B)Xt = θ(B)Zt. It is also the only
solution that is bounded in L1.

Proof. By the rules of calculus justified by Lemma 7.2, φ(B)ψ(B)Zt = θ(B)Zt, because
φ(z)ψ(z) = θ(z) on an annulus around the unit circle,

∑

j |phij| and
∑

j |ψj | are finite
and the time series Zt is bounded in absolute mean. This proves that ψ(B)Zt is a solution
to the ARMA-equation. It is stationary by Lemma 1.28.

Let Xt be an arbitrary solution to the ARMA equation that is bounded in L1,
for instance a stationary solution. The function φ̃(z) = 1/φ(z) is analytic on an an-
nulus around the unit circle and hence possesses a unique Laurent series representa-
tion φ̃(z) =

∑

j φ̃jz
j . Because

∑

j |φ̃j | < ∞, the infinite series φ̃(B)Yt is well defined
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for every stationary time series Yt by Lemma 1.28. By the calculus of Lemma 7.2
φ̃(B)φ(B)Xt = Xt almost surely, because φ̃(z)φ(z) = 1, the filter coefficients are
summable and the time series Xt is bounded in absolute mean. Therefore, the equation
φ(B)Xt = θ(B)Zt implies, after multiplying by φ̃(B), that Xt = φ̃(B)θ(B)Zt = ψ(B)Zt,
again by the calculus of Lemma 7.2, because φ̃(z)θ(z) = ψ(z). This proves that ψ(B)Zt

is the unique stationary solution to the ARMA-equation.

7.9 EXERCISE. It is certainly not true that ψ(B)Zt is the only solution to the ARMA-
equation. Can you trace where exactly in the preceding proof we use the required sta-
tionarity of the solution? Would you agree that the “calculus” of Lemma 7.2 is perhaps
more subtle than it appeared to be at first?

Thus the condition that φ has no roots on the unit circle is sufficient for the existence
of a stationary solution. It is almost necessary. The only point is that it is really the
quotient θ/φ that counts, not the function φ on its own. If φ has a zero on the unit circle
of the same or smaller multiplicity as θ, then this quotient is still a nice function. Once
this possibility is excluded, there can be no stationary solution if φ(z) = 0 for some z
with |z| = 1.

7.10 Theorem. Let φ and θ be polynomials such that φ has a root on the unit circle
that is not a root of θ, and let Zt be a white noise process. Then there exists no stationary
solution Xt to the equation φ(B)Xt = θ(B)Zt.

Proof. Suppose that the contrary is true and let Xt be a stationary solution. Then Xt

has a spectral distribution FX , and hence so does the time series φ(B)Xt = θ(B)Zt. By
Theorem 6.9 and Example 6.5 we must have

∣

∣φ(e−iλ)
∣

∣

2
dFX(λ) =

∣

∣θ(e−iλ)
∣

∣

2 σ2

2π
dλ.

Now suppose that φ(e−iλ0 ) = 0 and θ(e−iλ0) 6= 0 for some λ0 ∈ (−π, π]. The preceding
display is just an equation between densities of measures and should not be interpreted as
being valid for every λ, so we cannot immediately conclude that there is a contradiction.
By differentiability of φ and continuity of θ there exist positive numbers A and B and a
neighbourhood of λ0 on which both

∣

∣φ(e−iλ)
∣

∣ ≤ A|λ−λ0| and
∣

∣θ(e−iλ)
∣

∣ ≥ B. Combining
this with the preceding display, we see that, for all sufficiently small ε > 0,

∫ λ0+ε

λ0−ε

A2|λ− λ0|2 dFX(λ) ≥
∫ λ0+ε

λ0−ε

B2 σ
2

2π
dλ.

The left side is bounded above by A2ε2FX(λ0 − ε, λ0 + ε), whereas the right side is equal
to B2σ2ε/π. This shows that FX(λ0 − ε, λ0 + ε) → ∞ as ε→ 0 and contradicts the fact
that FX is a finite measure.

7.11 Example. The AR(1)-equation Xt = φXt−1 + Zt corresponds to the polynomial
φ(z) = 1 − φz. This has root φ−1. Therefore a stationary solution exists if and only if
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|φ−1| 6= 1. In the latter case, the Laurent series expansion of ψ(z) = 1/(1 − φz) around
the unit circle is given by ψ(z) =

∑∞
j=0 φ

jzj for |φ| < 1 and is given by −∑∞j=1 φ
−jz−j

for |φ| > 1. Consequently, the unique stationary solutions in these cases are given by

Xt =

{

∑∞
j=0 φ

jZt−j, if |φ| < 1,

−∑∞j=1
1
φjZt+j, if |φ| > 1.

This is in agreement, of course, with Example 1.8.

7.12 EXERCISE. Investigate the existence of stationary solutions to:
(i) Xt = 1

2Xt−1 + 1
2Xt−2 + Zt;

(ii) Xt = 1
2Xt−1 + 1

4Xt−2 + Zt + 1
2Zt−1 + 1

4Zt−2.

Warning. Some authors require by definition that an ARMA process be stationary.
Many authors occasionally forget to say explicitly that they are concerned with a sta-
tionary ARMA process. Some authors mistakenly believe that stationarity requires that
φ has no roots inside the unit circle and may fail to recognize that the ARMA equation
does not define a process without some sort of initialization.

If given time series’ Xt and Zt satisfy the ARMA-equation φ(B)Xt = θ(B)Zt, then
they also satisfy r(B)φ(B)Xt = r(B)θ(B)Zt, for any polynomial r. From observed data
Xt it is impossible to determine whether (φ, θ) or (rφ, rθ) are the “right” polynomials.
To avoid this problem of indeterminacy, we assume from now on that the ARMA-model
is always written in its simplest form. This is when φ and θ do not have common factors
(are relatively prime in the algebraic sense), or equivalently, when φ and θ do not have
common (complex) roots. Then, in view of the preceding theorems, a stationary solution
Xt to the ARMA-equation exists if and only if φ has no roots on the unit circle, and this
is uniquely given by

Xt = ψ(B)Zt =
∑

j

ψjZt−j , ψ =
θ

φ
.

7.13 Definition. An ARMA-process Xt is called causal if, in the preceding representa-
tion, the filter is causal: i.e. ψj = 0 for every j < 0.

Thus a causal ARMA-process Xt depends on present and past values Zt, Zt−1, . . .
of the noise sequence only. Intuitively, this is a desirable situation, if time is really time
and Zt is really attached to time t. We come back to this in Section 7.6.

A mathematically equivalent definition of causality is that the function ψ(z) is an-
alytic in a neighbourhood of the unit disc

{

z ∈ C: |z| ≤ 1
}

. This follows, because the
Laurent series

∑∞
j=−∞ ψjz

j is analytic inside the unit disc if and only if the negative
powers of z do not occur. Still another description of causality is that all roots of φ are
outside the unit circle, because only then is the function ψ = θ/φ analytic on the unit
disc.

The proof of Theorem 7.8 does not use that Zt is a white noise process, but only
that the series Zt is bounded in L1. Therefore, the same arguments can be used to invert
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the ARMA-equation in the other direction. If θ has no roots on the unit circle and Xt is
stationary, then φ(B)Xt = θ(B)Zt implies that

Zt = π(B)Xt =
∑

j

πjXt−j, π =
φ

θ
.

7.14 Definition. An ARMA-process Xt is called invertible if, in the preceding repre-
sentation, the filter is causal: i.e. πj = 0 for every j < 0.

Equivalent mathematical definitions are that π(z) is an analytic function on the unit
disc or that θ has all its roots outside the unit circle. In the definition of invertibility we
implicitly assume that θ has no roots on the unit circle. The general situation is more
technical and is discussed in the next section.

* 7.3 Invertibility

In this section we discuss the proper definition of invertibility in the case that θ has
roots on the unit circle. The intended meaning of “invertibility” is that every Zt can be
written as a linear function of the Xs that are prior or simultaneous to t. Two reasonable
ways to make this precise are:
(i) Zt =

∑∞
j=0 πjXt−j for a sequence πj such that

∑∞
j=0 |πj | <∞.

(ii) Zt is contained in the closed linear span of Xt, Xt−1, Xt−2, . . . in L2(Ω,U ,P).
In both cases we require that Xt depends linearly on the prior Xs, but the second
requirement is weaker. It turns out that if Xt is an ARMA process relative to Zt and
(i) holds, then the polynomial θ cannot have roots on the unit circle. In that case the
definition of invertibility given in the preceding section is appropriate (and equivalent to
(i)). However, the requirement (ii) does not exclude the possibility that θ has zeros on
the unit circle. An ARMA process is invertible in the sense of (ii) as soon as θ does not
have roots inside the unit circle.

7.15 Lemma. Let Xt be a stationary ARMA process satisfying φ(B)Xt = θ(B)Zt for
polynomials φ and θ that are relatively prime.
(i) Then Zt =

∑∞
j=0 πjXt−j for a sequence πj such that

∑∞
j=0 |πj | < ∞ if and only if

θ has no roots on or inside the unit circle.
(ii) If θ has no roots inside the unit circle, then Zt is contained in the closed linear span

of Xt, Xt−1, Xt−2, . . ..

Proof. (i). If θ has no roots on or inside the unit circle, then the ARMA process is
invertible by the arguments given previously. We must argue the other direction. If Zt

has the given given reprentation, then consideration of the spectral measures gives

σ2

2π
dλ = dFZ(λ) =

∣

∣π(e−iλ)
∣

∣

2
dFX(λ) =

∣

∣π(e−iλ)
∣

∣

2

∣

∣θ(e−iλ)
∣

∣

2

∣

∣φ(e−iλ)
∣

∣

2

σ2

2π
dλ.
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Hence
∣

∣π(e−iλ)θ(e−iλ)
∣

∣ =
∣

∣φ(e−iλ)
∣

∣ Lebesgue almost everywhere. If
∑

j |πj | < ∞, then

the function λ 7→ π(e−iλ) is continuous, as are the functions φ and θ, and hence this
equality must hold for every λ. Since φ(z) has no roots on the unit circle, nor can θ(z).

(ii). Suppose that ζ−1 is a zero of θ, so that |ζ| ≤ 1 and θ(z) = (1 − ζz)θ1(z)
for a polynomial θ1 of degree q − 1. Define Yt = φ(B)Xt and Vt = θ1(B)Zt, whence
Yt = Vt − ζVt−1. It follows that

k−1
∑

j=0

ζjYt−j =

k−1
∑

j=0

ζj(Vt−j − ζVt−j−1) = Vt − ζkVt−k.

If |ζ| < 1, then the right side converges to Vt in quadratic mean as k → ∞ and hence
it follows that Vt is contained in the closed linear span of Yt, Yt−1, . . ., which is clearly
contained in the closed linear span of Xt, Xt−1, . . ., because Yt = φ(B)Xt. If q = 1, then
Vt and Zt are equal up to a constant and the proof is complete. If q > 1, then we repeat
the argument with θ1 instead of θ and Vt in the place of Yt and we shall be finished after
finitely many recursions.

If |ζ| = 1, then the right side of the preceding display still converges to Vt as k → ∞,
but only in the weak sense that E(Vt − ζkVt−k)W → EVtW for every square integrable
variable W . This implies that Vt is in the weak closure of lin (Yt, Yt−1, . . .), but this is
equal to the strong closure by an application of the Hahn-Banach theorem. Thus we
arrive at the same conclusion.

To see the weak convergence, note first that the projection of W onto the closed lin-
ear span of {Zt: t ∈ Z} is given by

∑

j ψjZj for some sequence ψj with
∑

j |ψj |2 <
∞. Because Vt−k ∈ lin (Zs: s ≤ t − k), we have |EVt−kW | = |∑j ψjEVt−kZj | ≤
∑

j≤t−k |ψj | sdV0 sdZ0 → 0 as k → ∞.

7.16 Example. The moving average Xt = Zt − Zt−1 is invertible in the sense of (ii),
but not in the sense of (i). The moving average Xt = Zt − 1.01Zt−1 is not invertible.

Thus Xt = Zt − Zt−1 implies that Zt ∈ lin (Xt, Xt−1, . . .). An unexpected phe-
nomenon is that it is also true that Zt is contained in lin (Xt+1, Xt+2, . . .). This follows
by time reversal: define Ut = X−t+1 and Wt = −Z−t and apply the preceding to the
processes Ut = Wt −Wt−1. Thus it appears that the “opposite” of invertibility is true as
well!

7.17 EXERCISE. Suppose that Xt = θ(B)Zt for a polynomial θ of degree q that has
all its roots on the unit circle. Show that Zt ∈ lin (Xt+q, Xt+q+1, . . .). [As in (ii) of the

preceding proof, it follows that Vt = ζ−k(Vt+k −
∑k−1

j=0 ζ
jXt+k+j). Here the first term on

the right side converges weakly to zero as k → ∞.]
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7.4 Prediction

As to be expected from their definitions, causality and invertibility are important for cal-
culating predictions for ARMA processes. For a causal and invertible stationary ARMA
process Xt satisfying φ(B)Xt = θ(B)Zt we have

Xt ∈ lin (Zt, Zt−1, . . .), (causality),

Zt ∈ lin (Xt, Xt−1, . . .), (invertibility).

Here lin , the closed linear span, is the operation of first forming all (finite) linear combi-
nations and next taking the metric closure in L2(Ω,U ,P) of this linear span. Since Zt is
a white noise process, the variable Zt+1 is orthogonal to the linear span of Zt, Zt−1, . . ..
By the continuity of the inner product it is then also orthogonal to the closed linear
span of Zt, Zt−1, . . . and hence, under causality, it is orthogonal to Xs for every s ≤ t.
This shows that the variable Zt+1 is totally (linearly) unpredictable at time t given the
observations X1, . . . , Xt. This is often interpreted in the sense that the variable Zt is an
“external noise variable” that is generated at time t independently of the history of the
system before time t.

7.18 EXERCISE. The preceding argument gives that Zt+1 is uncorrelated with the sys-
tem variables Xt, Xt−1, . . . of the past. Show that if the variables Zt are independent,
then Zt+1 is independent of the system up to time t, not just uncorrelated.

This general discussion readily gives the structure of the best linear predictor for
causal auto-regressive stationary processes. Suppose that

Xt+1 = φ1Xt + · · · + φpXt+1−p + Zt+1.

If t ≥ p, then Xt, . . . , Xt−p+1 are perfectly predictable based on the past variables
X1, . . . , Xt; by themselves. If the series is causal, then Zt+1 is totally unpredictable
(in the sense that its best prediction is zero), in view of the preceding discussion. Since
a best linear predictor is a projection and projections are linear maps, the best linear
predictor of Xt+1 based on X1, . . . , Xt is given by

ΠtXt+1 = φ1X1 + · · · + φpXt+1−p, (t ≥ p).

We should be able to obtain this result also from the prediction equations (2.1) and
the explicit form of the auto-covariance function, but that calculation would be more
complicated.

7.19 EXERCISE. Find a formula for the best linear predictor of Xt+2 based on
X1, . . . , Xt, if t− p ≥ 1.

For moving average and general ARMA processes the situation is more complicated.
Here a similar argument works only for computing the best linear predictor Π−∞,tXt+1
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based on the infinite past Xt, Xt−1, . . . down to time −∞. Assume that Xt is a causal
and invertible stationary ARMA process satisfying

Xt+1 = φ1Xt + · · · + φpXt+1−p + Zt+1 + θ1Zt + · · · + θqZt+1−q.

By causality the variable Zt+1 is completely unpredictable. By invertibility the variable
Zs is perfectly predictable based onXs, Xs−1, . . . and hence is perfectly predictable based
on Xt, Xt−1, . . . for every s ≤ t. Therefore,

Π−∞,tXt+1 = φ1Xt + · · · + φpXt+1−p + θ1Zt + · · · + θqZt+1−q.

The practical importance of this formula is small, because we never observe the com-
plete past. However, if we observe a long series X1, . . . , Xt, then the “distant past”
X0, X−1, . . . will not give much additional information over the “recent past” Xt, . . . , X1,
and Π−∞,tXt+1 and ΠtXt+1 will be close.

* 7.20 EXERCISE. Suppose that φ and θ do not have zeros on or inside the unit circle.
Show that E|Π−∞,tXt+1 − ΠtXt+1|2 → 0 as t → ∞. [Express Zt as Zt =

∑∞
j=0 πjXt−j;

show that |πj | decreases exponentially fast. The difference |Π−∞,tXt+1 − ΠtXt+1| is
bounded above by

∑q
j=1 |θj ||Zt+1−j − ΠtZt+1−j |.]

We conclude by remarking that for causal stationary auto-regressive processes
the square prediction error E|Xt+1 − ΠtXt+1|2 is equal to EZ2

t+1; for general station-
ary ARMA-processes this is approximately true for large t; in both cases E|Xt+1 −
Π−∞,tXt+1|2 = EZ2

t+1.

7.5 Auto Correlation and Spectrum

In this section we discuss several methods to express the auto-covariance function of a
stationary ARMA-process in its parameters and obtain an expression for the spectral
density.

The latter is immediate from the representation Xt = ψ(B)Zt and Theorem 6.9.

7.21 Theorem. The stationary ARMA process satisfying φ(B)Xt = θ(B)Zt possesses
a spectral density given by

fX(λ) =

∣

∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2
σ2

2π
.

Finding a simple expression for the auto-covariance function is harder, except for the
special case of moving average processes, for which the auto-covariances can be expressed
in the parameters θ1, . . . , θq by a direct computation (cf. Example 1.6 and Lemma 1.28).
The auto-covariances of a general stationary ARMA process can be solved from a system
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Figure 7.1. Spectral density of the AR series satisfying Xt−1.5Xt−1 +0.9Xt−2−0.2Xt−3 +0.1Xt−9 = Zt.
(Vertical axis in decibels, i.e. it gives the logarithm of the spectrum.)

of equations. In view of Lemma 1.28(iii), the equation φ(B)Xt = θ(B)Zt leads to the
identities, with φ(z) =

∑

j φ̃jz
j and θ(z) =

∑

j θjz
j,

∑

l

(

∑

j

φ̃j φ̃j+l−h

)

γX(l) = σ2
∑

j

θjθj+h, h ∈ Z.

In principle this system of equations can be solved for the values γX(l).
An alternative method to compute the auto-covariance function is to write Xt =

ψ(B)Zt for ψ = θ/φ, whence, by Lemma 1.28(iii),

γX(h) = σ2
∑

j

ψjψj+h.

This requires the computation of the coefficients ψj , which can be expressed in the
coefficients of φ and θ by comparing coefficients in the power series equation φ(z)ψ(z) =
θ(z).

7.22 Example. For the AR(1) series Xt = φXt−1 + Zt with |φ| < 1 we obtain ψ(z) =
(1−φz)−1 =

∑∞
j=0 φ

jzj. Therefore, γX(h) = σ2
∑∞

j=0 φ
jφj+h = σ2φh/(1−φ2) for h ≥ 0.
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7.23 EXERCISE. Find γX(h) for the stationary ARMA(1, 1) series Xt = φXt−1 +Zt +
θZt−1 with |φ| < 1.

* 7.24 EXERCISE. Show that the auto-covariance function of a stationary ARMA process
decreases exponentially. Give an estimate of the constant in the exponent in terms of the
distance of the zeros of φ to the unit circle.

A third method to express the auto-covariance function in the coefficients of the
polynomials φ and θ uses the spectral representation

γX(h) =

∫ π

−π

eihλfX(λ) dλ =
σ2

2πi

∫

|z|=1

zh−1 θ(z)θ(z
−1)

φ(z)φ(z−1)
dz.

The second integral is a contour integral along the positively oriented unit circle in the
complex plane. We have assumed that the coefficients of the polynomials φ and θ are
real, so that φ(z)φ(z−1) = φ(z)φ(z) = |φ(z)|2 for every z in the unit circle, and similarly
for θ. The next step is to evaluate the contour integral with the help of the residue
theorem from complex function theory. The poles of the integrand are contained in the
set consisting of the zeros vi and their inverses v−1

i of φ and possibly the point 0. The
auto-covariance function can be written as a function of the residues at these points.

7.25 Example (ARMA(1, 1)). Consider the stationary ARMA(1, 1) series Xt =
φXt−1+Zt+θZt−1 with 0 < |φ| < 1. The corresponding function φ(z)φ(z−1) has zeros of
multiplicity 1 at the points φ−1 and φ. Both points yield a pole of first order for the inte-
grand in the contour integral. The number φ−1 is outside the unit circle, so we only need
to compute the residue at the second point. The function θ(z−1)/φ(z−1) = (z+θ)/(z−φ)
is analytic in a neighbourhood of 0 and hence does not contribute other poles, but the
term zh−1 may contribute a pole at 0. For h ≥ 1 the integrand has poles at φ and φ−1

only and hence

γX(h) = σ2 res
z=φ

zh−1 (1 + θz)(1 + θz−1)

(1 − φz)(1 − φz−1)
= σ2φh (1 + θφ)(1 + θ/φ)

1 − φ2
.

For h = 0 the integrand has an additional pole at z = 0 and the integral evaluates to
the sum of the residues at the two poles at z = 0 and z = φ. The first residue is equal to
−θ/φ. Thus

γX(0) = σ2
( (1 + θφ)(1 + θ/φ)

1 − φ2
− θ

φ

)

.

The values of γX(h) for h < 0 follow by symmetry.

7.26 EXERCISE. Find the auto-covariance function for a MA(q) process by using the
residue theorem. (This is not easier than the direct derivation, but perhaps instructive.)

We do not present an additional method to compute the partial auto-correlation
function of an ARMA process. However, we make the important observation that for
a causal AR(p) process the partial auto-correlations αX(h) of lags h > p vanish. This
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follows by combining Lemma 2.33 and the expression for the best linear predictor found
in the preceding section.

7.6 Existence of Causal and Invertible Solutions

In practice we never observe the white noise process Zt in the definition of an ARMA
process. The Zt are “hidden variables” whose existence is hypothesized to explain the
observed seriesXt. From this point of view our earlier question of existence of a stationary
solution to the ARMA equation is perhaps not the right question, as it took the sequence
Zt as given. In this section we turn this question around and consider an ARMA(p, q)
process Xt as given. Then we shall see that there are at least 2p+q white noise processes
Zt such that φ(B)Xt = θ(B)Zt for certain polynomials φ and θ of degrees p and q,
respectively. (These polynomials depend on the choice of Zt and hence are not necessarily
the ones that are initially given.) Thus the white noise process Zt is far from being
uniquely determined by the observed series Xt. On the other hand, among the multitude
of solutions, only one choice yields a representation of Xt as a stationary ARMA process
that is both causal and invertible.

7.27 Theorem. For every stationary ARMA processXt satisfying φ(B)Xt = θ(B)Zt for
polynomials φ and θ such that θ has no roots on the unit circle, there exist polynomials
φ∗ and θ∗ of the same or smaller degrees as φ and θ that have all roots outside the unit
disc and a white noise process Z∗t such that φ∗(B)Xt = θ∗(B)Zt almost surely for every
t ∈ Z.

Proof. The existence of the stationary ARMA process Xt and our implicit assumption
that φ and θ are relatively prime imply that φ has no roots on the unit circle. Thus
all roots of φ and θ are either inside or outside the unit circle. We shall show that we
can move the roots inside the unit circle to roots outside the unit circle by a filtering
procedure. Suppose that

φ(z) = −φp(z − v1) · · · (z − vp), θ(z) = θq(z − w1) · · · (z − wq).

Consider any zero zi of φ or θ. If |zi| < 1, then we replace the term (z − zi) in the
above products by the term (1− ziz); otherwise we keep (z− zi). For zi = 0, this means
that we drop the term z − zi and the degree of the polynomial decreases; otherwise, the
degree remains the same. We apply this procedure to all zeros vi and wi and denote the
resulting polynomials by φ∗ and θ∗. Because 0 < |zi| < 1 implies that |z−1

i | > 1, the
polynomials φ∗ and θ∗ have all zeros outside the unit circle. We have that

θ(z)

φ(z)
=
θ∗(z)

φ∗(z)
κ(z), κ(z) =

∏

i:|vi|<1

1 − viz

z − vi

∏

i:|wi|<1

z − wi

1 − wiz
.

Because Xt = (θ/φ)(B)Zt and we want that Xt = (θ∗/φ∗)(B)Z∗t , we define the process
Z∗t by Z∗t = κ(B)Zt. This is to be understood in the sense that we expand κ(z) in its
Laurent series κ(z) =

∑

j κjz
j and apply the corresponding linear filter to Zt.
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By construction we now have that φ∗(B)Xt = θ∗(B)Zt. If |z| = 1, then |1 − ziz| =
|z − zi|. In view of the definition of κ this implies that

∣

∣κ(z)
∣

∣ = 1 for every z on the unit
circle and hence the spectral density of Z∗t satisfies

fZ∗(λ) =
∣

∣κ(e−iλ)
∣

∣

2
fZ(λ) = 1 · σ

2

2π
.

This shows that Z∗t is a white noise process, as desired.

As are many results in time series analysis, the preceding theorem is a result on
second moments only. Even if Zt is an i.i.d. sequence, then the theorem does not guarantee
that Z∗t is an i.i.d. sequence as well. Only first and second moments are preserved by the
filtering procedure in the proof, in general. Nevertheless, the theorem is often interpreted
as implying that not much is lost by assuming a-priori that φ and θ have all their roots
outside the unit circle.

7.28 EXERCISE. Suppose that the time series Zt is Gaussian. Show that the series Z∗t
constructed in the preceding proof is Gaussian and hence i.i.d..

* 7.7 Stability

Let φ and θ be polynomials, with φ having no roots on the unit circle. Given initial
values X1, . . . , Xp and a process Zt, we can recursively define a solution to the ARMA
equation φ(B)Xt = θ(B)Zt by

(7.1)
Xt = φ1Xt−1 + · · · + φpXt−p + θ(B)Zt, t > p,

Xt−p = φ−1
p

(

Xt − φ1Xt−1 − · · · − φp−1Xt−p+1 − θ(B)Zt

)

, t− p < 1.

In view of Theorem 7.8 the resulting process Xt can only be bounded in L2 if the
initial values X1, . . . , Xp are chosen randomly according to the stationary distribution.
In particular, the process Xt obtained from deterministic initial values must necessarily
be unbounded (on the full time scale t ∈ Z).

In this section we show that in the causal situation, when φ has no zeros on the unit
disc, the process Xt tends to stationarity as t→ ∞, given arbitrary initial values. Hence
in this case the unboundedness occurs as t → −∞. This is another reason to prefer the
case that φ has no roots on the unit disc: in this case the effect of initializing the process
wears off as time goes by.

Let Zt be a given white noise process and let (X1, . . . , Xp) and (X̃1, . . . , X̃p) be
two possible sets of initial values, consisting of random variables defined on the same
probability space.
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7.29 Theorem. Let φ and θ be polynomials such that φ has no roots on the unit disc.
Let Xt and X̃t be the ARMA processes as in defined (7.1) with initial values (X1, . . . , Xp)

and (X̃1, . . . , X̃p), respectively. Then Xt − X̃t → 0 almost surely as t→ ∞.

7.30 Corollary. Let φ and θ be polynomials such that φ has no roots on the unit disc.
If Xt is an ARMA process with arbitrary initial values, then the vector (Xt, . . . , Xt+k)
converges in distribution to the distribution of the stationary solution to the ARMA
equation, as t→ ∞, for every fixed k.

Proofs. For the corollary we take (X̃1, . . . , X̃p) equal to the values of the stationary
solution. Then we can conclude that the difference betweenXt and the stationary solution
converges almost surely to zero and hence the difference between the distributions tends
to zero.

For the proof of the theorem we write the ARMA relationship in the “state space
form”, for t > p,









Xt

Xt−1

...
Xt−p+1









=









φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0

















Xt−1

Xt−2

...
Xt−p









+









θ(B)Zt

0
...
0









.

Denote this system by Yt = ΦYt−1 +Bt. By some algebra it can be shown that

det(Φ − zI) = (−1)pzpφ(z−1), z 6= 0.

Thus the assumption that φ has no roots on the unit disc implies that the eigenvalues
of Φ are all inside the unit circle. In other words, the spectral radius of Φ, the maximum
of the moduli of the eigenvalues, is strictly less than 1. Because the sequence ‖Φn‖1/n

converges to the spectral radius as n→ ∞, we can conclude that ‖Φn‖1/n is strictly less
than 1 for all sufficiently large n, and hence ‖Φn‖ → 0 as n→ ∞.

If Ỹt relates to X̃t as Yt relates to Xt, then Yt − Ỹt = Φt−p(Yp − Ỹp) → 0 almost
surely as t→ ∞.

7.31 EXERCISE. Suppose that φ(z) has no zeros on the unit circle and at least one
zero inside the unit circle. Show that there exist initial values (X1, . . . , Xp) such that the

resulting process Xt is not bounded in probability as t → ∞. [Let X̃t be the stationary
solution and let Xt be the solution given initial values (X1, . . . , Xp). Then, with notation

as in the preceding proof, Yt − Ỹt = Φt−p(Yp − Ỹp). Choose an appropriate deterministic

vector for Yp − Ỹp.]
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7.8 ARIMA Processes

In Chapter 1 differencing is introduced as a method to transform a nonstationary time
series in a stationary one. This method is particularly attractive in combination with
ARMA modelling: in the notation of the present chapter the differencing filters can be
written as

∇Xt = (1 −B)Xt, ∇dXt = (1 −B)dXt, ∇kXt = (1 −Bk)Xt.

Thus the differencing filters ∇, ∇d and ∇k correspond to applying φ(B) for the polynomi-
als φ(z) = 1−z, φ(z) = (1−z)d and φ(z) = (1−zk), respectively. These polynomials have
in common that all their roots are on the complex unit circle. Thus they were “forbidden”
polynomials in our preceding discussion of ARMA processes. In fact, by Theorem 7.10,
for the three given polynomials φ the series Yt = φ(B)Xt cannot be a stationary ARMA
process if Xt is already a stationary ARMA process relative to polynomials without zeros
on the unit circle.

On the other hand, Yt = φ(B)Xt can well be a stationary ARMA process if Xt is a
non-stationary time series. Thus we can use polynomials φ with roots on the unit circle
to extend the domain of ARMA modelling to nonstationary time series.

7.32 Definition. A time series Xt is an ARIMA(p, d, q) process if ∇dXt is a stationary
ARMA(p, q) process.

In other words, the time series Xt is an ARIMA(p, d, q) process if there exist poly-
nomials φ and θ of degrees p and q and a white noise series Zt such that the time
series ∇dXt is stationary and φ(B)∇dXt = θ(B)Zt almost surely. The additional “I”
in ARIMA is for “integrated”. If we view taking differences ∇d as differentiating, then
the definition requires that a derivative of Xt is a stationary ARMA process, whence Xt

itself is an “integrated ARMA process”.
The following definition goes a step further.

7.33 Definition. A time series Xt is a SARIMA(p, d, q)(P,D,Q, per) process if there
exist polynomials φ, θ, Φ and Θ of degrees p, q, P and Q and a white noise series
Zt such that the time series ∇D

per∇dXt is stationary and Φ(Bper)φ(B)∇D
per∇dXt =

Θ(Bper)θ(B)Zt almost surely.

The “S” in SARIMA is short for “seasonal”. The idea of a seasonal model is that
we might only want to use certain powers Bper of the backshift operator in our model,
because the series is thought to have a certain period. Including the terms Φ(Bper) and
Θ(Bper) does not make the model more general (as these terms could be subsumed in
φ(B) and θ(B)), but reflects our a-priori idea that certain coefficients in the polynomials
are zero. This a-priori knowledge will be important when estimating the coefficients from
an observed time series.

Modelling an observed time series by an ARIMA, or SARIMA, model has become
popular through an influential book by Box and Jenkins. The unified filtering paradigm
of a “Box-Jenkins analysis” is indeed attractive. The popularity is probably also due to
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the compelling manner in which Box and Jenkins explain the reader how he or she must
set up the analysis, going through a fixed number of steps. They thus provide the data-
analyst with a clear algorithm to carry out an analysis that is intrinsically difficult. It is
obvious that the results of such an analysis will not always be good, but an alternative
is less obvious.

7.34 EXERCISE. Plot the spectral densities of the following time series:
(i) Xt = Zt + 0.9Zt−1;
(ii) Xt = Zt − 0.9Zt−1;
(iii) Xt − 0.7Xt−1 = Zt;
(iv) Xt + 0.7Xt−1 = Zt;
(v) Xt − 1.5Xt−1 + 0.9Xt−2 − 0.2Xt−3 + 0.1Xt−9 = Zt.

7.35 EXERCISE. Simulate a series of length 200 according to the model Xt−1.3Xt−1+
0.7Xt−2 = Zt + 0.7Zt−1. Plot the sample auto-correlation and sample partial auto-
correlation functions.

* 7.9 VARMA Processes

A VARMA process is a vector-valued ARMA process. Given matrices Φj and Θj and a
white noise sequence Zt of dimension d, a VARMA(p, q) process satisfies the relationship

Xt = Φ1Xt−1 + Φ2Xt−2 + · · · + ΦpXt−p + Zt + Θ1Zt−1 + · · · + ΘqZt−q.

The theory for VARMA process closely resembles the theory for ARMA processes. The
role of the polynomials φ and θ is taken over by the matrix-valued polynomials

Φ(z) = 1 − Φ1z − Φ2z
2 − · · · − Φpz

p,

Θ(z) = 1 + Θ1z + Θ2z
2 + · · · + Θqz

q.

These identities and sums are to be interpreted entry-wise and hence define (d × d)-
matrices with entries that are polynomials in z ∈ C.

Instead of looking at zeros of polynomials we must now look at the values of z for
which the matrices Φ(z) and Θ(z) are singular. Equivalently, we must look at the zeros
of the complex functions z 7→ det Φ(z) and z 7→ det Θ(z). Apart from this difference, the
conditions for existence of a stationary solution, causality and invertibility are the same.

7.36 Theorem. If the matrix-valued polynomial Φ(z) is invertible for every z in the
unit circle, then there exists a unique stationary solution Xt to the VARMA equations.
If the matrix-valued polynomial Φ(z) is invertible for every z on the unit disc, then this
can be written in the form Xt =

∑∞
j=0 ΨjZt−j for matrices Ψj with

∑∞
j=0 ‖Ψj‖ < ∞.

If, moreover, the polynomial Θ(z) is invertible for every z on the unit disc, then we also
have that Zt =

∑∞
j=0 ΠjZt−j for matrices Πj with

∑∞
j=0 ‖Πj‖ <∞.
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The norm ‖ · ‖ in the preceding may be any matrix norm. The proof of this theorem
is the same as the proofs of the corresponding results in the one-dimensional case, in
view of the following observations.

A series of the type
∑∞

j=−∞ΨjZt−j for matrices Ψj with
∑∞

j=0 ‖Ψj‖ < ∞ and a
vector-valued process Zt with supt E‖Zt‖ < ∞ converges almost surely and in mean.
Furthermore, the analogue of Lemma 7.2 is true.

The functions z 7→ detΦ(z) and z 7→ detΘ(z) are polynomials. Hence if they are
nonzero on the unit circle, then they are nonzero on an open annulus containing the unit
circle, and the matrices Φ(z) and Θ(z) are invertible for every z in this annulus. Cramer’s
rule, which expresses the solution of a system of linear equations in determinants, shows
that the entries of the inverse matrices Φ(z)−1 and Θ(z)−1 are quotients of polynomials.
The denominators are the determinants detΦ(z) and detΘ(z) and hence are nonzero in
a neighbourhood of the unit circle. These matrices may thus be expanded in Laurent
series’

Φ(z)−1 =
(

∞
∑

j=−∞

(Ψj)k,lz
j
)

k,l=1,...,d
=

∞
∑

j=−∞

Ψjz
j ,

where the Ψj are matrices such that
∑∞

j=−∞ ‖Ψj‖ <∞, and similarly for Θ(z)−1.
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GARCH Processes

White noise processes are basic building blocks for time series models, but can also be
of interest on their own. A sequence of i.i.d. variables is an example of a white noise
sequence, but is not of great interest as a time series. On the other hand, many financial
time series appear to be realizations of white noise series, but are not well described
by i.i.d. sequences. This is possible because the white noise property only concerns the
second moments of the process, so that the variables of a white noise process may possess
many types of dependence. GARCH processes are a class of white noise sequences that
have been found useful for modelling certain financial time series.

Figure 8.1 shows a realization of a GARCH process. The striking feature are the
“bursts of activity”, which alternate with quiet periods of the series. Here the frequency
of the movements of the series is constant over time, but their amplitude changes, alter-
nating between “volatile” periods (large amplitude) and quiet periods. This phenomenon
is referred to as volatility clustering. A look at the auto-correlation function of the real-
ization, Figure 8.2, shows that the alternations are not reflected in the second moments
of the series: the series can be modelled as white noise, at least in the sense that the
correlations are zero.

Recall that a white noise series is any stationary time series whose auto-covariances
at nonzero lags vanish. We shall speak of a heteroscedastic white noise if the auto-
covariances at nonzero lags vanish, but the variances are possibly time-dependent. A
related concept is that of a martingale difference series. Recall that a filtration Ft is a
nondecreasing collection of σ-fields · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · ·. A martingale difference
series relative to the filtration Ft is a time series Xt such that Xt is Ft-measurable
and E(Xt| Ft−1) = 0 almost surely for every t. The latter includes the assumption that
E|Xt| <∞, so that the conditional expectation is well defined.

Any martingale difference series Xt with finite second moments is a (possibly het-
eroscedastic) white noise series. Indeed, the equality E(Xt| Ft−1) = 0 is equivalent to
Xt being orthogonal to all random variables Y ∈ Ft−1, and this includes the variables
Xs ∈ Fs ⊂ Ft−1, for every s < t, so that EXtXs = 0 for every s < t. Conversely, not
every white noise is a martingale difference series (relative to a natural filtration). This
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Figure 8.1. Realization of length 500 of the stationary Garch(1, 1) process with α = 0.15, φ1 = 0.4, θ1 = 0.4
and standard normal variables Zt.

is because E(X |Y ) = 0 implies that X is orthogonal to all measurable functions of Y ,
not orthogonal just to linear functions.

8.1 EXERCISE. If Xt is a martingale difference series, show that E(Xt+kXt+l| Ft) = 0
almost surely for every k 6= l > 0. Thus “future variables are uncorrelated given the
present”. Find a white noise series which lacks this property.

A martingale difference sequence has zero first moment given the past. A natural step
for further modelling is to postulate a specific form of the conditional second moment.
GARCH models are examples, and in that sense are again concerned only with first
and second moments of the time series, albeit conditional moments. They turn out to
capture many features of observed time series, in particular those in finance, that are not
captured by ARMA processes. Besides volatility clustering thes “stylized facts” include
leptokurtic (i.e. heavy) tailed marginal distributions and nonzero auto-correlations for
the process X2

t of squares.
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Figure 8.2. Sample auto-covariance function of the time series in Figure 8.1.

8.1 Linear GARCH

There are many types of GARCH processes, of which we discuss a selection in the
following sections. Linear GARCH processes were the earliest GARCH processes to be
studied, and may be viewed as the GARCH processes.

8.2 Definition. A GARCH (p, q) process is a martingale difference sequenceXt, relative
to a given filtration Ft, whose conditional variances σ2

t = E(X2
t | Ft−1) satisfy, for every

t ∈ Z and given constants α, φ1, . . . , φp, θ1, . . . , θq,

(8.1) σ2
t = α+ φ1σ

2
t−1 + · · · + φpσ

2
t−p + θ1X

2
t−1 + · · · + θqX

2
t−q, a.s..

With the usual convention that φ(z) = 1−φ1z−· · ·−φpz
p and θ(z) = θ1z+· · ·+θqz

q,
the equation for the conditional variance σ2

t = var(Xt| Ft−1) can be abbreviated to

φ(B)σ2
t = α+ θ(B)X2

t .

Note that the polynomial θ is assumed to have zero intercept. If the coefficients φ1, . . . , φp

all vanish, then σ2
t is modelled as a linear function of X2

t−1, . . . , X
2
t−q. This is called an

ARCH (q) model, from “auto-regressive conditional heteroscedastic”. The additional G
of GARCH is for the nondescript “generalized”.

If σt > 0, as we shall assume, then we can define Zt = Xt/σt. The martingale
difference property of Xt = σtZt and the definition of σ2

t as the conditional variance
imply

(8.2) E(Zt| Ft−1) = 0, E(Z2
t | Ft−1) = 1.
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Conversely, given an adapted process Zt satisfying this display (a “scaled martingale
difference process”) and a process σt that is Ft−1-measurable we can define a process Xt

by Xt = σtZt. Then σt is the conditional variance of Xt and the process Xt is a GARCH
process if (8.1) is valid. It is then often added as an assumption that the variables
Zt are i.i.d. and that Zt is independent of Ft−1. This is equivalent to assuming that
the conditional law of the variables Zt = Xt/σt given Ft−1 is a given distribution, for
instance a standard normal distribution. In order to satisfy (8.2) this distribution must
have a finite second moment, but this is not strictly necessary for all of the following.
The “conditional variances” in Definition 8.2 may be understood in the general sense
that does not require that the variances EX2

t are finite.
If we substitute σ2

t = X2
t −Wt in (8.1), then we find after rearranging the terms,

(8.3)
X2

t = α+ (φ1 + θ1)X
2
t−1 + · · · + (φr + θr)X

2
t−r

+Wt − φ1Wt−1 − · · · − φpWt−p,

where r = p ∨ q and the sequences φ1, . . . , φp or θ1, . . . , θq are padded with zeros to
increase their lengths to r, if necessary. We can abbreviate this to

(φ − θ)(B)X2
t = α+ φ(B)Wt, Wt = X2

t − E(X2
t | Ft−1).

This is the characterizing equation for an ARMA(r, r) process X2
t relative to the noise

process Wt. The variable Wt = X2
t − σ2

t is the prediction error when predicting X2
t by

its conditional expectation σ2
t = E(X2

t | Ft−1) and hence Wt is orthogonal to Ft−1. Thus
Wt is a martingale difference series and a-fortiori a white noise sequence if its second
moments exist and are independent of t. Under this conditions the time series of squares
X2

t is an ARMA process in the sense of Definition 7.4. A warning against applying
the results on ARMA processes unthinkingly to the process X2

t , for instance to infer
results on existence given certain parameter values, is that Wt is defined itself in terms
of the process Xt and therefore does not have a simple interpretation as a noise process
that drives the process X2

t . This limits the importance of equation (8.3), although it is
can useful to compute the auto-covariance function of the process of squares. (See e.g.
Example 8.7.)

* 8.3 EXERCISE. Suppose that Xt and Wt are martingale diffference series’ relative to a
given filtration such that φ(B)X2

t = θ(B)Wt for polynomials φ and θ of degrees p and
q. Show that Xt is a GARCH process. Does strict stationarity of the time series X2

t or
Wt imply strict stationarity of the time series Xt?

8.4 EXERCISE. Write σ2
t as the solution to an ARMA(p ∨ q, q− 1) equation by substi-

tuting X2
t = σ2

t +Wt in (8.3).

Alternatively, we can substitute Xt = σtZt in the GARCH relation (8.1) and obtain

(8.4) σ2
t = α+ (φ1 + θ1Z

2
t−1)σ

2
t−1 + · · · + (φr + θrZ

2
t−r)σ

2
t−r.

This exhibits the process σ2
t as an auto-regressive process “with random coefficients

and deterministic innovations”. This relation is useful to construct GARCH processes.
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In the following theorem we consider given a martingale difference sequence Zt as in
(8.2), defined on a fixed probability space. Next we construct a GARCH process such
that Xt = σtZt by first defining the process of squares σ2

t in terms of the Zt. If the
coefficients α, φj , θj are nonnegative we obtain a stationary solution if the polynomial
1 −∑r

j=1(φj + θj)z
j possesses no zeros on the unit disc. Under the condition that the

coefficients are nonnegative, the second is equivalent to
∑

j(φj + θj) < 1.

8.5 EXERCISE. If p1, . . . , pr are nonnegative real numbers, then the polynomial p(z) =
1 −∑r

j=1 pjz
j possesses no roots on the unit disc if and only if p(1) > 0. [Use that

p(0) = 1 > 0; furthermore, use the triangle inequality.]

8.6 Theorem. Let α > 0, let φ1, . . . , φp, θ1, . . . , θq be nonnegative numbers, and let Zt

be a martingale difference sequence satisfying (8.2) relative to an arbitrary filtration Ft.
(i) There exists a stationary GARCH process Xt such that Xt = σtZt, where σ2

t =
E(X2

t | Ft−1), if and only if
∑

j(φj + θj) < 1.
(ii) This process is unique among the GARCH processes Xt with Xt = σtZt that are

bounded in L2.
(iii) This process satisfies σ(Xt, Xt−1, . . .) = σ(Zt, Zt−1, . . .) for every t, and σ2

t =
E(X2

t | Ft−1) is σ(Xt−1, Xt−2, . . .)-measurable.

Proof. Assume first that
∑

j(φj + θj) < 1. Furthermore, assume that there ex-
ists a GARCH process Xt that is bounded in L2. Then the conditional variance
σ2

t = E(X2
t | Ft−1) is bounded in L1 and satisfies, by (8.4),











σ2
t

σ2
t−1

...
σ2

t−r+1











=









φ1 + θ1Z
2
t−1 · · · φr−1 + θr−1Z

2
t−2 φr + θrZ

2
t−r

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0



















σ2
t−1

σ2
t−2

...
σ2

t−r











+









α
0
...
0









.

Write this system as Yt = AtYt−1 +b and set A = EAt. With some effort it can be shown
that

det(A− zI) = (−1)r
(

zr −
r
∑

j=1

(φj + θj)z
r−j
)

.

If
∑

j(φj + θj) < 1, then the polynomial on the right has all its roots inside the unit
circle. (See Exercise 8.5.) Equivalently, the spectral radius (the maximum of the moduli
of the eigenvalues) of the operator A is strictly smaller than 1. This implies that ‖An‖
is smaller than 1 for all sufficiently large n and hence

∑∞
n=0 ‖An‖ <∞.

Iterating the equation Yt = AtYt−1 + b we find that

(8.5) Yt = b+Atb+AtAt−1b+ · · · +AtAt−1 · · ·At−n+1b+AtAt−1 · · ·At−nYt−n−1.

Because Zt = Xt/σt is Ft-measurable and E(Z2
t | Ft−1) = 1 for every t, we have that

EZ2
t1 · · ·Z2

tk
= 1, for every t1 < t2 < · · · < tk. By some matrix algebra it can be seen

that this implies that

EAtAt−1 · · ·At−n = An+1 → 0, n→ ∞.
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Because the matrices At possess nonnegative entries, this implies that the sequence
AtAt−1 · · ·At−n converges to zero in probability. If the process Xt is bounded in L2,
then, in view of its definition, the process Yt is bounded in L1. We conclude that
AtAt−1 · · ·At−nYt−n−1 → 0 in probability as n → ∞. Combining this with the ex-
pression for Yt in (8.5), we see that

(8.6) Yt = b+

∞
∑

j=1

AtAt−1 · · ·At−j+1b.

This implies that EYt =
∑∞

j=0 A
jb, whence EYt and hence EX2

t are independent of t.
Because the matrices At are measurable functions of (Zt−1, Zt−2, . . .), the variable

Yt is a measurable transformation of these variables as well, and hence the variable
Xt = σtZt is a measurable transformation of (Zt, Zt−1, . . .).

The process Wt = X2
t − σ2

t is bounded in L1 and satisfies the ARMA relation (φ−
θ)(B)X2

t = α+φ(B)Wt as in (8.3). Because φ has no roots on the unit disc, this relation
is invertible, whence Wt = (1/φ)(B)

(

(φ−θ)(B)X2
t −α

)

is a measurable transformation of
X2

t , X
2
t−1, . . .. We conclude that σ2

t = Wt+X
2
t and hence Zt = Xt/σt are σ(Xt, Xt−1, . . .)-

measurable. Since σ2
t is σ(Zt−1, Zt−2, . . .)-measurable by the preceding paragraph, it

follows that it is σ(Xt−1, Xt−2, . . .)-measurable.
We have proved that any GARCH process Xt that is bounded in L2 defines a condi-

tional variance process σ2
t and corresponding process Yt that satisfies (8.6). Furthermore,

we have proved (iii) for this process.
We next construct a GARCH process Xt by reversing the definitions, still assuming

that
∑

j(φj + θj) < 1. We define matrices At in terms of the process Zt as before. The
series on the right of (8.6) converges in L1 and hence defines a process Yt. Simple algebra
shows that this satisfies Yt = AtYt−1 +b for every t. All coordinates of Yt are nonnegative
and σ(Zt−1, Zt−2, . . .)-measurable.

Given the processes (Zt, Yt) we define processes (Xt, σt) by

σt =
√

Yt,1, Xt = σtZt.

Because σt is σ(Zt−1, Zt−2, . . .) ⊂ Ft−1-measurable, we have that E(Xt| Ft−1) =
σtE(Zt| Ft−1) = 0 and E(X2

t | Ft−1) = σ2
t E(Z2

t | Ft−1) = σ2
t . That σ2

t satisfies (8.1) is
a consequence of the relations Yt = AtYt−1 + Bt, whose first line expresses σ2

t into σ2
t−1

and Yt−1,2, . . . , Yt−1,r, and whose other lines permit to reexpress the variable Yt−1,k for
k > 1 as σ2

t−k by recursive use of the relations Yt,k = Yt−1,k−1, and the definitions
Yt−k,1 = σ2

t−k.
This concludes the proof that there exists a stationary solution as soon as

∑

j(θj +
θj) < 1. Finally, we show that this inequality is necessary. If Xt is a stationary solution,
then Yt in (8.5) is integrable. Taking the expectation of left and right of this equation
for t = 0 and remembering that all terms are nonnegative, we see that

∑n
j=0 A

jb ≤ EY0,
for every n. This implies that Anb → 0 as n → ∞, or, equivalently Ane1 → 0, where ei
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is the ith unit vector. In view of the definition of A we see, recursively, that

Aner = An−1(φr + θr)e1 → 0,

Aner−1 = An−1
(

(φr−1 + θr−1)e1 + er

)

→ 0,

...

Ane2 = An−1
(

(φ2 + θ2)e1 + e3
)

→ 0.

Therefore, the sequence An converges to zero. This can only happen if none of its eigen-
values is on or outside the unit disc. Equivalently, it is necessary that the polynomial
1 −∑r

j=1(φj + θj)z
j possesses no roots on or inside the unit disc.

Volatility clustering is one of the stylized facts of financial time series, and it is
captured by GARCH processes: large absolute values of a GARCH series at times t −
1, . . . , t − q lead, through the GARCH equation, to a large conditional variance σ2

t at
time t, and hence the value Xt = σtZt of the time series at time t tends to be large.

A second stylized fact are the leptokurtic tails of the marginal distribution of a
typical financial time series. A distribution on R is called leptokurtic if it has fat tails,
for instance fatter than normal tails. A quantitative measure of “fatness” of the tails
of the distribution of a random variable X is the kurtosis defined as κ4(X) = E(X −
EX)4/(varX)2. It is equal to 3 for a normally distributed variable. If Xt = σtZt, where
σt is Ft−1-measurable and Zt is independent of Ft−1 with mean zero and variance 1,
then

EX4
t = Eσ4

t EZ4
t = κ4(Zt)E

(

E(X2
t | Ft−1)

)2 ≥ κ4(Zt)
(

EE(X2
t | Ft−1)

)2
= κ4(Zt)(EX

2
t )2.

Dividing the left and right sides by (EX2
t )2, we see that κ4(Xt) ≥ κ4(Zt). The difference

can be substantial if the variance of the random variable E(X2
t | Ft−1) is large. In fact,

taking the difference of the left and right sides of the preceding display yields

κ4(Xt) = κ4(Zt)
(

1 +
varE(X2

t | Ft−1)

(EX2
t )2

)

.

It follows that the GARCH structure is also able to capture some of the observed lep-
tokurtosis of financial time series.

If we use a Gaussian process Zt, then the kurtosis of the observed series Xt is always
bigger than 3. It has been observed that this usually does not go far enough in explaining
“excess kurtosis” over the normal distribution. The use of one of Student’s t-distributions
can often improve the fit of a GARCH process substantially.

A third stylized fact observed in financial time series are positive auto-correlations
for the sequence of squaresX2

t . The auto-correlation function of the squares of a GARCH
series will exist under appropriate additional conditions on the coefficients and the driving
noise process Zt. The ARMA relation (8.3) for the square process X2

t may be used to
compute this function, using formulas for the auto-correlation function of an ARMA
process. Here we must not forget that the process Wt in (8.3) is defined through Xt and
hence its variance depends on the parameters in the GARCH relation.
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8.7 Example (GARCH(1, 1)). The conditional variances of a GARCH(1,1) process
satisfy σ2

t = α + φσ2
t−1 + θX2

t−1. If we assume the process Xt to be stationary, then
Eσ2

t = EX2
t is independent of t. Taking the expectation across the GARCH equation

and rearranging then immediately gives

Eσ2
t = EX2

t =
α

1 − φ− θ
.

To compute the auto-correlation function of the time series of squares X2
t , we employ

(8.3), which reveals this process as an ARMA(1,1) process with the auto-regressive and
moving average polynomials given as 1−(φ+θ)z and 1−φz, respectively. The calculations
in Example 7.25 yield that

γX2(h) = τ2(φ+ θ)h (1 − φ(φ + θ))(1 − φ/(φ+ θ))

1 − (φ+ θ)2
, h > 0,

γX2(0) = τ2
( (1 − φ(φ + θ))(1 − φ/(φ+ θ))

1 − (φ+ θ)2
+

φ

φ+ θ

)

.

Here τ2 is the variance of the process Wt = X2
t − E(X2

t | Ft−1), which is also dependent
on the parameters θ and φ. By squaring the GARCH equation we find

σ4
t = α2 + φ2σ4

t−1 + θ2X4
t−1 + 2αφσ2

t−1 + 2αθX2
t−1 + 2φθσ2

t−1X
2
t−1.

If Zt is independent of Ft−1, then Eσ2
tX

2
t = Eσ4

t and EX4
t = κ4(Zt)Eσ

4
t . If we assume,

moreover, that the moments exists and are independent of t, then we can take the
expectation across the preceding display and rearrange to find that

Eσ4
t (1 − φ2 − 2φθ − κ4(Z)θ2) = α2 + (2αφ+ 2αθ)Eσ2

t .

Together with the formulas obtained previously, this gives the variance of Wt = X2
t −

E(X2
t | Ft−1), since EWt = 0 and EW 2

t = EX4
t − Eσ4

t , by the Pythagorean identity for
projections.

8.8 EXERCISE. Find the auto-covariance function of the process σ2
t for a GARCH(1, 1)

process.

8.9 EXERCISE. Find an expression for the kurtosis of the marginal distribution in a sta-
tionary GARCH(1, 1) process as in the preceding example. Can this be made arbitrarily
large?

The condition that
∑

j(φj + θj) < 1 is necessary for existence of a GARCH process
with bounded second moments, but stronger than necessary if we are interested in a
strictly stationary solution to the GARCH equations with possibly infinite second mo-
ments. We can see this from the proof of Theorem 8.6, where the GARCH process is
defined from the series in (8.6). If this series converges in an almost sure sense, then a
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strictly stationary GARCH process exists. The series involves products of random ma-
trices At; its convergence depends on the value of their top Lyapounov exponent, defined
by

γ = inf
n∈N

1

n
E log ‖A−1A−2 · · ·A−n‖.

Here ‖ · ‖ may be any matrix norm (all matrix norms being equivalent). If the process
Zt is ergodic, for instance i.i.d., then we can apply Kingman’s subergodic theorem (e.g.
Dudley (1987, Theorem 10.7.1)) to the process log ‖A−1A−2 · · ·A−n‖ to see that

1

n
log ‖A−1A−2 · · ·A−n‖ → γ, a.s..

This implies that the sequence of matrices A−1A−2 · · ·A−n converges to zero almost
surely as soon as γ < 0. The convergence is then exponentially fast and the series in
(8.6) will converge.

Thus sufficient conditions for the existence of strictly stationary solutions to the
GARCH equations can be given in terms of the top Lyapounov exponent of the random
matrices At. This exponent is in general difficult to compute explicitly, but it can easily
be estimated numerically for a given sequence Zt.

To obtain conditions that are both sufficient and necessary the preceding proof must
be adapted somewhat. The following theorem is in terms of the top Lyapounov exponent
of the matrices

(8.7) At =































φ1 + θ1Z
2
t−1 φ2 · · · φp−1 φp θ2 · · · θq−1 θq

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0

Z2
t−1 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 · · · 1 0































.

These matrices have the advantage of being independent and identically distributed if
the process Zt is i.i.d.. They are motivated by the equation obtained by substituting
Xt−1 = σt−1Zt−1 in the GARCH equation (8.1), leaving Xt−2, . . . , Xt−q untouched:

σ2
t = α+ (φ1 + θ1Z

2
t−1)σ

2
t−1 + φ2σ

2
t−1 + · · · + φpσ

2
t−p + θ2X

2
t−2 + · · · + θqX

2
t−q.

This equation gives rise to the system of equations Yt = AtYt−1 + b for the random
vectors Yt = (σ2

t , . . . , σ
2
t−p+1, X

2
t−1, . . . , X

2
t−q+1)

T and the vector b equal to α times the
first unit vector.
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8.10 Theorem. Let α > 0, let φ1, . . . , φp, θ1, . . . , θq be nonnegative numbers, and let
Zt be an i.i.d. sequence with mean zero and unit variance. There exists a strictly
stationary GARCH process Xt such that Xt = σtZt, where σ2

t = E(X2
t | Ft−1) and

Ft = σ(Zt, Zt−1, . . .), if and only if the top Lyapounov coefficient of the random matrices
At given by (8.7) is strictly negative. For this process σ(Xt, Xt−1, . . .) = σ(Zt, Zt−1, . . .).

Proof. Let b = αe1, where ei is the ith unit vector in Rp+q−1. If γ′ is strictly larger than
the top Lyapounov exponent γ, then ‖AtAt−1 · · ·At−n+1‖ < eγ′n, eventually as n→ ∞,
almost surely, and hence, eventually,

∥

∥AtAt−1 · · ·At−n+1b
∥

∥ < eγ′n‖b‖.

If γ < 0, then we may choose γ′ < 0, and hence
∑

n ‖AtAt−1 · · ·At−n+1b‖ < ∞ almost
surely. Then the series on the right side of (8.6), but with the matrix At defined as in
(8.7), converges almost surely and defines a process Yt. We can then define processes σt

and Xt by setting σt =
√

Yt,1 and Xt = σtZt. That these processes satisfy the GARCH
relation follows from the relations Yt = AtYt−1 +b, as in the proof of Theorem 8.6. Being
a fixed measurable transformation of (Zt, Zt−1, . . .) for each t, the process (σt, Xt) is
strictly stationary.

By construction the variable Xt is σ(Zt, Zt−1, . . .)-measurable for every t. To see
that, conversely, Zt is σ(Xt, Xt−1, . . .)-measurable, we apply a similar argument as in
the proof of Theorem 8.6, based on inverting the relation (φ− θ)(B)X2

t = α+ φ(B)Wt,
for Wt = X2

t − σ2
t . Presently, the series’ X2

t and Wt are not necessarily integrable,
but Lemma 8.11 below still allows to conclude that Wt is σ(X2

t , X
2
t−1, . . .)-measurable,

provided that the polynomial φ has no zeros on the unit disc.
The matrix B obtained by replacing the variables Zt−1 and the numbers θj in the

matrix At by zero is bounded above by At in a coordinatewise sense. By the nonnegativity
of the entries this implies that Bn ≤ A0A−1 · · ·A−n+1 and hence Bn → 0. This can
happen only if all eigenvalues of B are inside the unit circle. Indeed, if z is an eigenvalue
of B with |z| ≥ 1 and c 6= 0 a corresponding eigenvector, then Bnc = znc does not
converge to zero. Now

det(B − zI) = (−1)p+q−1
(

zp+q−1 −
p+q−1
∑

j=1

φjz
p+q−1−j

)

.

Thus z is a zero of φ if and only if z−1 is an eigenvalue of B. We conclude that φ has no
zeros on the unit disc.

Finally, we show the necessity of the top Lyapounov exponent being negative. If
there exists a strictly stationary solution to the GARCH equations, then, by (8.5) and the
nonnegativity of the coefficients,

∑n
j=1 A0A−1 · · ·A−n+1b ≤ Y0 for every n, and hence

A0A−1 · · ·A−n+1b → 0 as n → ∞, almost surely. By the form of b this is equivalent
to A0A−1 · · ·A−n+1e1 → 0. Using the structure of the matrices At we next see that
A0A−1 · · ·A−n+1 → 0 in probability as n → ∞, by an argument similar as in the
proof of Theorem 8.6. Because the matrices At are independent and the event where
A0A−1 · · ·A−n+1 → 0 is a tail event, this event must have probability one. It can be



126 8: GARCH Processes

shown that this is possible only if the top Lyapounov exponent of the matrices At is
negative.†

8.11 Lemma. Let φ be a polynomial without roots on the unit disc and let Xt be
a time series that is bounded in probability. If Zt = φ(B)Xt for every t, then Xt is
σ(Zt, Zt−1, . . .)-measurable.

Proof. Because φ(0) 6= 0 by assumption, we can assume without loss of generality
that φ possesses intercept 1. If φ is of degree 0, then Xt = Zt for every t and the
assertion is certainly true. We next proceed by induction on the degree of φ. If φ is of
degree p ≥ 1, then we can write it as φ(z) = (1 − φz)φp−1(z) for a polynomial φp−1

of degree p − 1 and a complex number φ with |φ| < 1. The series Yt = (1 − φB)Xt is
bounded in probability and φp−1(B)Yt = Zt, whence Yt is σ(Zt, Zt−1, . . .)-measurable,
by the induction hypothesis. By iterating the relation Xt = φXt−1 + Yt, we find that
Xt = φnXt−n +

∑n−1
j=0 φ

jYt−j . Because the sequence Xt is uniformly tight and φn → 0,
the sequence φnXt−n converges to zero in probability. Hence Xt is the limit in probability
of a sequence that is σ(Yt, Yt−1, . . .)-measurable and hence is σ(Zt, Zt−1, . . .)-measurable.
This implies the result.

** 8.12 EXERCISE. In the preceding lemma the function ψ(z) = 1/φ(z) possesses a power
series representation ψ(z) =

∑∞
j=0 ψjz

j on a neighbourhood of the unit disc. Is it true

under the conditions of the lemma that Xt =
∑∞

j=0 ψjZt−j , where the series converges
(at least) in probability?

8.13 Example. For the GARCH(1, 1) process the random matrices At given by (8.7)
reduce to the random variables φ1 + θ1Z

2
t−1. The top Lyapounov exponent of these

random (1 × 1) matrices is equal to E log(φ1 + θ1Z
2
t ). This number can be written as

an integral relative to the distribution of Zt, but in general is not easy to compute
analytically.

The proofs of the preceding theorems provide a recipe for generating a GARCH
process starting from initial values. Given a centered and scaled i.i.d. process Zt and an
arbitrary random vector Y0 of dimension p + q − 1, we define a process Yt through the
recursions Yt = AtYt−1 + b, with the matrices At given in (8.7) and the vector b equal to
α times the first unit vector. Next we set σt =

√

Yt,1 and Xt = σtZt for t ≥ 1. Because
the stationary solution to the GARCH equation is unique, the initial vector Y0 must
be simulated from a “stationary distribution” in order to obtain a stationary GARCH
process. However, the effect of a “nonstationary” initialization wears off as t → ∞ and
the process will approach stationarity, provided the coefficients in the GARCH equation
are such that a stationary solution exists. This is true both for L2-stationarity and strict
stationarity, under the appropriate conditions on the coefficients.

† See Bougerol (), Lemma ?.
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8.14 Theorem. Let α > 0, let φ1, . . . , φp, θ1, . . . , θq be nonnegative numbers, and let
Zt be an i.i.d. process with mean zero and unit variance such that Zt is independent of
Ft−1 for every t ∈ Z.
(i) If

∑

j(φj + θj) < 1, then the difference Xt − X̃t of any two solutions Xt = σtZt and

X̃t = σ̃tZt of the GARCH equations that are square-integrable converges to zero in
L2 as t→ ∞.

(ii) If the top Lyapounov exponent of the matrices At in (8.7) is negative, then the
difference Xt − X̃t of any two solutions Xt = σtZt and X̃t = σ̃tZt of the GARCH
equations converges to zero in probability as t→ ∞.

Proof. From the two given GARCH processes Xt and X̃t define processes Yt and Ỹt as
indicated preceding the statement of Theorem 8.10. These processes satisfy (8.5) for the
matrices At given in (8.7). Choosing n = t− 1 and taking differences we see that

Yt − Ỹt = AtAt−1 · · ·A1(Y0 − Ỹ0).

If the top Lyapounov exponent of the matrices At is negative, then the norm of the
right side can be bounded, almost surely for sufficiently large t, by by eγ′t‖Y0 − Ỹ0‖ for
some number γ′ < 0. This follows from the subergodic theorem, as before (even though
this time the matrix product grows on its left side). This converges to zero as t → ∞,
implying that σt − σ̃t → 0 almost surely as t→ ∞. This in turn implies (ii).

Under the condition of (i), the spectral radius of the matrix A = EAt is strictly
smaller than 1 and hence ‖An‖ → 0. By the nonnegativity of the entries of the matrices
At the absolute values of the coordinates of the vectors Yt− Ỹt are bounded above by the
coordinates of the vector AtAt−1 · · ·A1Z0, for Z0 the vector obtained by replacing the
coordinates of Y0 − Ỹ0 by their absolute values. By the independence of the matrices At

and vector Z0, the expectation of AtAt−1 · · ·A1Z0 is bounded by AtEZ0, which converges
to zero. Because σ2

t = Yt,1 and Xt = σtZt, this implies that, as t→ ∞,

E|X2
t − X̃2

t | = E|σ2
t − σ̃2

t |Z2
t = E|σ2

t − σ̃2
t | → 0.

For the stationary solution Xt the sequence (X2
t ) is uniformly integrable, because the

variables X2
t possess a fixed marginal distribution with finite second moment. By the

preceding display this is then also true for X̃t, and hence also for a general X̃t. The
sequence Xt − X̃t is then uniformly square-integrable as well. Combining this with the
fact that Xt − X̃t → 0 in probability, we see that Xt − X̃t converges to zero in second
mean.

The preceding theorem may seem at odds with a common interpretation of a sta-
tionary and stability condition as a condition for “persistence”. The condition for L2-
stationarity of a GARCH process is stronger than the condition for strict stationarity,
so that it appears as if we have found two different conditions for persistence. Whenever
a strictly stationary solution exists, the influence of initial values wears off as time goes
to infinity, and hence the initial values are not persistent. This is true independently of
the validity of the condition

∑

j(φj + θj) < 1 for L2-stationarity. However, the latter
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condition, if it holds, does ensure that the process approaches stationarity in the stronger
L2-sense.

The condition
∑

j(φj+θj) < 1 is necessary for the strictly stationary solution to have
finite second moments. By an appropriate initialization we can ensure that a GARCH
process has finite second moments for every t, even if this condition fails. (It will then
not be stationary.) However, in this case the variances EX2

t must diverge to infinity as
t → ∞. This follows by a Fatou type argument, because the process will approach the
strictly stationary solution and this has infinite variance.

8.15 EXERCISE. Suppose that the time series X̃t is strictly stationary with infinite
second moments and Xt − X̃t → 0 in probability as t→ ∞. Show that EX2

t → ∞.

We can make this more concrete by considering the prediction formula for the con-
ditional variance process σ2

t . For the GARCH(1, 1) process we prove below that

(8.8) E(X2
t+h| Ft) = E(σ2

t+h| Ft) = (φ1 + θ1)
h−1σ2

t+1 + α

h−2
∑

j=0

(φ1 + θ1)
j .

For φ1 + θ1 < 1 the first term on the far right converges to zero as h → ∞, indicating
that information at the present time t does not help to predict the conditional variance
process in the “infinite future”. On the other hand, if φ1 + θ1 ≥ 1 and α > 0 then both
terms on the far right side contribute positively as h → ∞. If φ1 + θ1 = 1, then the
relative contribution of the term (φ1 + θ1)

h−1σ2
t tends to zero as h → ∞, whereas if

φ1 +θ1 > 1 the contributions are of the same order. In the last case the value σ2
t appears

to be particularly “persistent”.
The case that

∑

j(φi + θj) = 1 is often viewed as having particular interest and is
referred to as integrated GARCH or IGARCH. Many financial time series yield GARCH
fits that are close to IGARCH.

A GARCH process, being a martingale difference, does not allow nontrivial predic-
tions of its mean values. However, it is of interest to predict the conditional variances
σ2

t , or equivalently the process of squares X2
t . Predictions based on the infinite past Ft

can be obtained using the auto-regressive representation from the proof of Theorem 8.10.
Let At be the matrix given in (8.7) and let Yt = (σ2

t , . . . , σ
2
t−p+1, X

2
t−1, . . . , X

2
t−q+1)

T , so
that Yt = AtYt−1 + b for every t. The vector Yt−1 is Ft−2-measurable, and the matrix
At depends on Zt−1 only, with A = E(At| Ft−2) independent of t. It follows that

E(Yt| Ft−2) = E(At| Ft−2)Yt−1 + b = AYt−1 + b.

By iterating this equation we find that, for h > 1,

E(Yt| Ft−h) = Ah−1Yt−h+1 +

h−2
∑

j=0

Ajb.

In the case of a GARCH(1, 1) process the vector Yt is equal to σ2
t and the matrix A

reduces to the number φ1 + θ1, whence we obtain the equation (8.8). For a general
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GARCH(p, q) process the process σ2
t is the first coordinate of Yt, and the prediction

equation takes a more involved form, but is still explicitly given in the preceding display.
If
∑

j(φj + θj) < 1, then the spectral radius of the matrix A is strictly smaller than 1,
and both terms on the right converge to zero at an exponential rate, as h → ∞. In this
case the potential of predicting the conditional variance process is limited to the very
near future.

8.16 EXERCISE. Suppose that
∑

j(φj + θj) < 1 and let Xt be a stationary Garch

process. Show that E(X2
t+h| Ft) → EX2

t as h→ ∞.

* 8.2 Linear GARCH with Leverage and Power GARCH

Fluctuations of foreign exchange rates tend to be symmetric, in view of the two-sided
nature of the foreign exchange market. However, it is an empirical finding that for asset
prices the current returns and future volatility are negatively correlated. For instance, a
crash in the stock market will be followed by large volatility.

A linear GARCH model is not able to capture this type of asymmetric relationship,
because it models the volatility as a function of the squares of the past returns. One
attempt to allow for asymmetry is to replace the GARCH equation (8.1) by

σ2
t = α+ φ1σ

2
t−1 + · · · + φpσ

2
t−p + θ1(|Xt−1| + γ1Xt−1)

2 + · · · + θq(|Xt−q| + γqXt−q)
2.

This reduces to the ordinary GARCH equation if the leverage coefficients γi are set
equal to zero. If these coefficients are negative, then a positive deviation of the process
Xt contributes to lower volatility in the near future, and conversely.

A power GARCH model is obtained by replacing the squares in the preceding display
by other powers.

* 8.3 Exponential GARCH

The exponential GARCH or EGARCH model is significantly different from the GARCH
models described so far. It retains the basic set-up of a process of the form Xt = σtZt

for a martingale difference sequence Zt satisfying (8.2) and an Ft−1-adapted process σt,
but replaces the GARCH equation by

log σ2
t = α+φ1 log σ2

t−1+· · ·+φp log σ2
t−p+θ1(|Zt−1|+γ1Zt−1)+· · ·+θq(|Zt−q|+γqZt−q).

Through the presence of both the variables Zt and their absolute values and the trans-
formation to the logarithmic scale this can also capture the leverage effect. An advantage
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Figure 8.3. The function x 7→ (|x|+ γx)2 for γ = −0.2.

of modelling the logarithm of the volatility is that the parameters of the model need not
be restricted to be positive.

Because the EGARCH model specifies the log volatility directly in terms of the noise
process Zt and its own past, its definition is less recursive than the ordinary GARCH
definition, and easier to handle. In particular, for fixed and identical leverage coefficients
γi = γ the EGARCH equation describes the log volatility process log σ2

t as a regular
ARMA process driven by the noise process |Zt| + γZt, and we may use the theory for
ARMA processes to study its properties. In particular, if the roots of the polynomial
φ(z) = 1 − φ1z − · · · − φpz

p are outside the unit circle, then there exists a stationary
solution log σ2

t that is measurable relative to the σ-field generated by the process Zt−1.
If the process Zt is strictly stationary, then so is the stationary solution log σ2

t and so is
the EGARCH process Xt = σtZt.

* 8.4 GARCH in Mean

A GARCH process by its definition is a white noise process, and thus it could be a
useful candidate to drive another process. For instance, an observed process Yt could be
assumed to satisfy the ARMA equation

φ(B)Yt = θ(B)Xt,

for Xt a GARCH process, relative to other polynomials φ and θ (which are unrelated to
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φ and θ). One then says that Yt is “ARMA in the mean” and “GARCH in the variance”,
or that Yt is an ARMA-GARCH series. Results on ARMA processes that hold for any
driving white noise process will clearly also hold in the present case, where the white
noise process is a GARCH process.

8.17 EXERCISE. Let Xt be a stationary GARCH process relative to polynomials φ and
θ and let the time series Yt be the unique stationary solution to the equation φ(B)Yt =
θ(B)Xt, for φ and θ polynomials that have all their roots outside the unit disc. Let Ft be
the filtration generated by Yt. Show that var(Yt| Ft−1) = var(Xt|Xt−1, Xt−2, . . .) almost
surely.

It has been found useful to go a step further and let also the conditional variance of
the driving GARCH process appear in the mean model for the process Yt. Thus given a
GARCH process Xt with conditional variance process σ2

t = var(Xt| Ft−1) it is assumed
that Yt = f(σt, Xt) for a fixed function f . The function f is assumed known up to a
number of parameters. For instance,

φ(B)Yt = ψσt + θ(B)Xt,

φ(B)Yt = ψσ2
t + θ(B)Xt,

φ(B)Yt = ψ log σ2
t + θ(B)Xt.

These models are known as GARCH-in-mean, or GARCH-M models.
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State Space Models

A causal, stationary AR(1) process with i.i.d. innovations Zt is a Markov process: the
conditional distribution of the “future value” Xt+1 = φXt +Zt+1 given the “past values”
X1, . . . , Xt depends on the “present value” Xt only. Specifically, the conditional density
of Xt+1 is given by

pXt+1|X1,...,Xt
(x) = pZ(x − φXt).

(The assumption of causality ensures that Zt+1 is independent of X1, . . . , Xt.) The
Markov structure has an obvious practical interpretation and suggests a recursive al-
gorithm to compute predictions. It also allows a simple factorization of the likelihood
function. For instance, the likelihood for the causal AR(1) process in the previous para-
graph can be written

pX1,...,Xn(X1, . . . , Xn) =

n
∏

t=2

pZ(Xt − φXt−1)pX1(X1).

It would be of interest to have a similar property for more general time series.
Some non-Markovian time series can be forced into Markov form by incorporating

enough past information into a “present state”. For instance, an AR(p) process with
p ≥ 2 is not Markov, because Xt+1 depends on p variables in the past. We can remedy

this by defining a “present state” to consist of the vector ~Xt: = (Xt, . . . , Xt−p+1): the

process ~Xt is Markov. In general, to induce Markov structure we must define a state
in such a way that it incorporates all relevant information for transition to the next
state. This is of interest mostly if this is possible using “states” that are of not too high
complexity.

A hidden Markov model consists of a Markov chain, but rather than the state at time
t we observe a transformation of it, up to noise which is independent of the Markov chain.
A related structure is the state space model. Given an “initial state” X0, “disturbances”
V1,W1, V2, . . . and functions ft and gt, processes Xt and Yt are defined recursively by

(9.1)
Xt = ft(Xt−1, Vt),

Yt = gt(Xt,Wt).
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We refer to Xt as the “state” at time t and to Yt as the “output”. The state process Xt

can be viewed as primary and evolving in the background, describing the consecutive
states of a system in time. At each time t the system is “measured”, producing an output
Yt. If the sequence X0, V1, V2, . . . consists of independent variables, then the state process
Xt is a Markov chain. If the variables X0, V1,W1, V2,W2, V3, . . . are independent, then
for every t given the state Xt the output Yt is conditionally independent of the states
X0, X1, . . . and outputs Y1, . . . , Yt−1. Under this condition the state space model becomes
a hidden Markov model.

9.1 EXERCISE. Formulate the claims and statements in the preceding two sentences
precisely, and give proofs.

Typically, the state process Xt is not observed, but instead at time t we only observe
the output Yt. For this reason the process Yt is also referred to as the “measurement pro-
cess”. The second equation in the display (9.1) is called the “measurement equation”,
while the first is the “state equation”. Inference might be directed at estimating param-
eters attached to the functions ft or gt, to the distribution of the errors or to the initial
state, and/or on predicting or reconstructing the states Xt from the observed outputs
Y1, . . . , Yn. Predicting or reconstructing the state sequence is referred to as “filtering” or
“smoothing”.

For linear functions ft and gt and vector-valued states and outputs the state space
model takes the form

(9.2)
Xt = FtXt−1 + Vt,

Yt = GtXt +Wt.

The matrices Ft and Gt are often postulated to be independent of t. In this linear
state space model the analysis usually concerns linear predictions, and then a common
assumption is that the vectorsX0, V1,W1, V2, . . . are uncorrelated. If Ft is independent of
t and the vectors Vt form a white noise process, then the series Xt is a VAR(1) process.

Because state space models are easy to handle, it is of interest to represent a given
observable time series Yt as the output of a state space model. This entails finding a
state space, a state process Xt, and a corresponding state space model with the given
series Yt as output. It is particularly attractive to find a linear state space model. Such a
state space representation is definitely not unique. An important issue in systems theory
is to find a (linear) state space representation of minimum dimension.

9.2 Example (State space representation ARMA). Let Yt be a stationary, causal
ARMA(r+ 1, r) process satisfying φ(B)Yt = θ(B)Zt for an i.i.d. process Zt. (The choice
p = q + 1 can always be achieved by padding the set of coefficients of the polynomials
φ or θ with zeros.) Then the AR(p) process Xt = (1/φ)(B)Zt is related to Yt through
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Yt = θ(B)Xt. Thus

Yt = ( θ0, . . . , θr )





Xt
...

Xt−r



 ,









Xt

Xt−1

...
Xt−r









=









φ1 φ2 · · · φr φr+1

1 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0

















Xt−1

Xt−2

...
Xt−r−1









+









Zt

0
...
0









.

This is a linear state space representation (9.2) with state vector (Xt, . . . , Xt−r), and
matrices Ft and Gt, that are independent of t. Under causality the innovations Vt =
(Zt, 0, . . . , 0) are orthogonal to the past Xt and Yt; the innovations Wt as in (9.2) are
defined to be zero. The state vectors are typically unobserved, except when θ is of degree
zero. (If the ARMA process is invertible and the coefficients of θ are known, then they
can be reconstructed from the infinite past through the relation Xt = (1/θ)(B)Yt.)

In the present representation the state-dimension of the ARMA(p, q) process is r +
1 = max(p, q + 1). By using a more complicated noise process it is possible to represent
an ARMA(p, q) process in dimension max(p, q), but this difference appears not to be
very important.‡

9.3 Example (State space representation ARIMA). Consider a time series Zt whose
differences Yt = ∇Zt satisfy the linear state space model (9.2) for a state sequence Xt.
Writing Zt = Yt + Zt−1 = GtXt +Wt + Zt−1, we obtain that

(

Xt

Zt−1

)

=

(

Ft 0
Gt−1 1

)(

Xt−1

Zt−2

)

+

(

Vt

Wt−1

)

Zt = (Gt 1 )

(

Xt

Zt−1

)

+Wt.

We conclude that the time series Zt possesses a linear state space representation, with
states of one dimension higher than the states of the original series.

A drawback of the preceding representation is that the error vectors (Vt,Wt−1,Wt)
are not necessarily uncorrelated if the error vectors (Vt,Wt) in the system with outputs
Yt have this property. In the case that Zt is an ARIMA(p, 1, q) process, we may use the
state representation of the preceding example for the ARMA(p, q) process Yt, which has
errors Wt = 0, and this disadvantage does not arise. Alternatively, we can avoid this
problem by using another state space representation. For instance, we can write

(

Xt

Zt

)

=

(

Ft 0
GtFt 1

)(

Xt−1

Zt−1

)

+

(

Vt

GtVt +Wt

)

Zt = ( 0 1 )

(

Xt

Zt

)

.

‡ See e.g. Brockwell and Davis, p469–471.



9: State Space Models 135

This illustrates that there may be multiple possibilities to represent a time series as the
output of a (linear) state space model.

The preceding can be extended to general ARIMA(p, d, q) models. If Yt = (1−B)dZt,

then Zt = Yt −
∑d

j=1

(

d
j

)

(−1)jZt−j . If the process Yt can be represented as the output
of a state space model with state vectors Xt, then Zt can be represented as the output
of a state space model with the extended states (Xt, Zt−1, . . . , Zt−d), or, alternatively,
(Xt, Zt, . . . , Zt−d+1).

9.4 Example (Stochastic linear trend). A time series with a linear trend could be
modelled as Yt = α + βt +Wt for constants α and β, and a stationary process Wt (for
instance an ARMA process). This restricts the nonstationary part of the time series to
a deterministic component, which may be unrealistic. An alternative is the stochastic
linear trend model described by

(

At

Bt

)

=

(

1 1
0 1

)(

At−1

Bt−1

)

+ Vt

Yt = At +Wt.

The stochastic processes (At, Bt) and noise processes (Vt,Wt) are unobserved. This state
space model contains the deterministic linear trend model as the degenerate case where
Vt ≡ 0, so that Bt ≡ B0 and At ≡ A0 +B0t.

The state equations imply that ∇At = Bt−1 + Vt,1 and ∇Bt = Vt,2, for Vt =
(Vt,1, Vt,2)

T . Taking differences on the output equation Yt = At +Wt twice, we find that

∇2Yt = ∇Bt−1 + ∇Vt,1 + ∇2Wt = Vt,2 + ∇Vt,1 + ∇2Wt.

If the process (Vt,Wt) is a white noise process, then the auto-correlation function of
the process on the right vanishes for lags bigger than 2 (the polynomial ∇2 = (1 − B)2

being of degree 2). Thus the right side is an MA(2) process, whence the process Yt is an
ARIMA(0,2,2) process.

9.5 Example (Structural models). Besides a trend we may suspect that a given time
series shows a seasonal effect. One possible parametrization of a deterministic seasonal
effect with S seasons is the function

(9.3) t 7→
bS/2c
∑

s=1

γs cos(λst) + δs sin(λst), λs =
2πs

S
, s = 1, . . . , bS/2c.

By appropriate choice of the parameters γs and δs this function is able to adapt to
any periodic function on the integers with period S. We could add this deterministic
function to a given time series model in order to account for seasonality. Again it may
not be realistic to require the seasonality a-priori to be deterministic. An alternative is
to replace the fixed function s 7→ (γs, δs) by the time series defined by

(

γs,t

δs,t

)

=

(

cosλs sinλs

sinλs − cosλs

)(

γs,t−1

δs,t−1

)

+ Vs,t.
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An observed time series may next have the form

Yt = ( 1 1 . . . 1 )









γ1,t

γ2,t

...
γs,t









+ Zt.

Together these equations again constitute a linear state space model. If Vt = 0, then this
reduces to the deterministic trend model. (Cf. Exercise 9.6.)

A model with both a stochastic linear trend and a stochastic seasonal component is
known as a “structural model”.

9.6 EXERCISE. Consider the state space model with state equations γt = γt−1 cosλ +
δt−1 sinλ+Vt,1 and δt = γt−1 sinλ− δt−1 cosλ+Vt,2 and output equation Yt = γt +Wt.
What does this model reduce to if Vt ≡ 0?

9.7 EXERCISE.
(i) Show that the function (of t ∈ Z) in (9.3) is periodic with period S.
(ii) Show that any periodic function f : Z → R with period S can be written in the form

(9.3).
[For (ii) it suffices to show that the any vector

(

f(1), . . . , f(S)
)

can be represented as a

linear combination of the vectors
(

cosλs, . . . , cos(Sλs)
)

and
(

sinλs, . . . , sin(Sλs)
)

.]

The showpiece of state space modelling is the Kalman filter. This is an algorithm
to compute linear predictions (for linear state space models), under the assumption that
the parameters of the system are known. Because the formulas for the predictors, which
are functions of the parameters and the outputs, can in turn be used to set up estimating
equations for the parameters, the Kalman filter is also important for statistical analysis.
We start discussing parameter estimation in Chapter 10.

The variables Xt and Yt in a state space model will typically be random vectors. For
two random vectorsX and Y of dimensions m and n the covariance or “cross-covariance”
is the (m×n) matrix Cov(X,Y ) = E(X−EX)(Y −EY )T . The random vectors X and Y
are called “uncorrelated” if Cov(X,Y ) = 0, or equivalently if cov(Xi, Yj) = 0 for every
pair (i, j). The linear span of a set of vectors is defined as the linear span of all their
coordinates. Thus this is a space of (univariate) random variables, rather than random
vectors! We shall also understand a projection operator Π, which is a map on the space
of random variables, to act coordinatewise on vectors: if X is a vector, then ΠX is the
vector consisting of the projections of the coordinates of X . As a vector-valued operator
a projection Π is still linear, in that Π(FX + Y ) = FΠX + ΠY , for any matrix F and
random vectors X and Y .
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9.1 Kalman Filtering

The Kalman filter is a recursive algorithm to compute best linear predictions of the states
X1, X2, . . . given observations Y1, Y2, . . . in the linear state space model (9.2). The core
algorithm allows to compute predictions ΠtXt of the states Xt given observed outputs
Y1, . . . , Yt. Here by “predictions” we mean Hilbert space projections, but given the time
values involved “reconstructions” would perhaps be more appropriate. “Filtering” is the
preferred term in systems theory. Given the reconstructions ΠtXt, it is easy to compute
predictions of future states and future outputs. A next step is “Kalman smoothing”,
which is the name for the reconstruction (through projections) of the full state sequence
X1, . . . , Xn given the outputs Y1, . . . , Yn.

In the simplest situation the vectors X0, V1,W1, V2,W2, . . . are assumed uncorre-
lated. We shall first derive the filter under the more general assumption that the vectors
X0, (V1,W1), (V2,W2), . . . are uncorrelated, and in Section 9.2.3 we further relax this con-
dition. The matrices Ft and Gt as well as the covariance matrices of the noise variables
(Vt,Wt) are assumed known.

By applying (9.2) recursively, we see that the vector Xt is contained in the linear
span of the variables X0, V1, . . . , Vt. It is immediate from (9.2) that the vector Yt is
contained in the linear span of Xt and Wt. These facts are true for every t ∈ N. It follows
that under our conditions the noise variables Vt and Wt are uncorrelated with all vectors
Xs and Ys with s < t.

Let H0 be a given closed linear subspace of L2(Ω,U ,P) that contains the constants,
and for t ≥ 0 let Πt be the orthogonal projection onto the spaceHt = H0+lin (Y1, . . . , Yt).
The space H0 may be viewed as our “knowledge” at time 0; it may be H0 = lin {1}. We
assume that the noise vectors V1,W1, V2, . . . are orthogonal to H0. Combined with the
preceding this shows that the vector (Vt,Wt) is orthogonal to the space Ht−1, for every
t ≥ 1.

The Kalman filter consists of the recursions

· · · →





Πt−1Xt−1

Cov(Πt−1Xt−1)
Cov(Xt−1)





(1)

→





Πt−1Xt

Cov(Πt−1Xt)
Cov(Xt)





(2)

→





ΠtXt

Cov(ΠtXt)
Cov(Xt)



→ · · ·

Thus the Kalman filter alternates between “updating the current state”, step (1), and
“updating the prediction space”, step (2).

Step (1) is simple. Because Vt ⊥ H0, Y1, . . . , Yt−1 by assumption, we have Πt−1Vt =
0. Applying Πt to the state equation Xt = FtXt−1 + Vt we find that, by the linearity of
a projection,

Πt−1Xt = Ft(Πt−1Xt−1),

Cov(Πt−1Xt) = Ft Cov(Πt−1Xt−1)F
T
t ,

Cov(Xt) = Ft Cov(Xt−1)F
T
t + Cov(Vt).

This gives a complete description of step (1) of the algorithm.
Step (2) is more involved, but also comes down to simple matrix computations. The

vector W̃t = Yt−Πt−1Yt is known as the innovation at time t, because it is the part of Yt

that is not explainable at time t−1. It is orthogonal toHt−1, and together with this space
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spans Ht. It follows that Ht can be orthogonally decomposed as Ht = Ht−1 + lin W̃t

and hence the projection onto Ht is the sum of the projections onto the spaces Ht−1 and
lin W̃t. At the beginning of step (2) the vector W̃t is known, because we can write, using
the measurement equation and the fact that Πt−1Wt = 0,

(9.4) W̃t = Yt − Πt−1Yt = Yt −GtΠt−1Xt = Gt(Xt − Πt−1Xt) +Wt.

The middle expression is easy to compute from the current values at the beginning of
step (2). Applying this to projecting the variable Xt, we find

(9.5) ΠtXt = Πt−1Xt + ΛtW̃t, Λt = Cov(Xt, W̃t)Cov(W̃t)
−1.

The matrix Λt is chosen such that ΛtW̃t is the projection of Xt onto lin W̃t. Because
Wt ⊥ Xt−1 the state equation equation yields Cov(Xt,Wt) = Cov(Vt,Wt). By the or-
thogonality property of projections Cov(Xt, Xt − Πt−1Xt) = Cov(Xt − Πt−1Xt). Com-
bining this and the identity W̃t = Gt(Xt − Πt−1Xt) +Wt from (9.4), we compute

(9.6)

Cov(Xt, W̃t) = Cov(Xt − Πt−1Xt)G
T
t + Cov(Vt,Wt),

Cov(W̃t) = Gt Cov(Xt − Πt−1Xt)G
T
t +Gt Cov(Vt,Wt)

+ Cov(Wt, Vt)G
T
t + Cov(Wt),

Cov(Xt − Πt−1Xt) = Cov(Xt) − Cov(Πt−1Xt).

The matrix Cov(Xt − Πt−1Xt) is the prediction error matrix at time t− 1 and the last
equation follows by Pythagoras’ rule. To complete the recursion of step (2) we compute
from (9.5)

(9.7) Cov(ΠtXt) = Cov(Πt−1Xt) + Λt Cov(W̃t)Λ
T
t .

Equations (9.5)–(9.7) give a complete description of step (2) of the Kalman recursion.
The Kalman algorithm must be initialized in one of its two steps, for instance by

providing Π0X1 and its covariance matrix, so that the recursion can start with a step
of type (2). It is here where the choice of H0 plays a role. Choosing H0 = lin (1) gives
predictions using Y1, . . . , Yt as well as an intercept and requires that we know Π0X1 =
EX1. It may also be desired that Πt−1Xt is the projection onto lin (1, Yt−1, Yt−2, . . .) for
a stationary extension of Yt into the past. Then we set Π0X1 equal to the projection of
X1 onto H0 = lin (1, Y0, Y−1, . . .).

9.2 Future States and Outputs

Predictions of future values of the state variable follow easily from ΠtXt, because
ΠtXt+h = Ft+hΠtXt+h−1 for any h ≥ 1. Given the predicted states, future outputs
can be predicted from the measurement equation by ΠtYt+h = Gt+hΠtXt+h.
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* 9.2.1 Missing Observations

A considerable attraction of the Kalman filter algorithm is the ease by which missing
observations can be accomodated. This can be achieved by simply filling in the missing
data points by “external” variables that are independent of the system. Suppose that
(Xt, Yt) follows the linear state space model (9.2) and that we observe a subset (Yt)t∈T

of the variables Y1, . . . , Yn. We define a new set of matrices G∗t and noise variables W ∗t
by

G∗t = Gt, W ∗t = Wt, t ∈ T,

G∗t = 0, W ∗t = W t, t /∈ T,

for random vectorsW t that are independent of the vectors that are already in the system.
The choice W t = 0 is permitted. Next we set

Xt = FtXt−1 + Vt,

Y ∗t = G∗tXt +W ∗t .

The variables (Xt, Y
∗
t ) follow a state space model with the same state vectors Xt. For

t ∈ T the outputs Y ∗t = Yt are identical to the outputs in the original system, while
for t /∈ T the output is Y ∗t = W t, which is pure noise by assumption. Because the noise
variablesW t cannot contribute to the prediction of the hidden statesXt, best predictions
of states based on the observed outputs (Yt)t∈T or based on Y ∗1 , . . . , Y

∗
n are identical.

We can compute the best predictions based on Y ∗1 , . . . , Y
∗
n by the Kalman recursions,

but with the matrices G∗t and Cov(W ∗t ) substituted for Gt and Cov(Wt). Because the
Y ∗t with t /∈ T will not appear in the projection formula, we can just as well set their
“observed values” equal to zero in the computations.

* 9.2.2 Kalman Smoothing

Besides in predicting future states or outputs we may be interested in reconstructing the
complete state sequenceX0, X1, . . . , Xn from the outputs Y1, . . . , Yn. The computation of
ΠnXn is known as the filtering problem, and is step (2) of our description of the Kalman
filter. The computation of PnXt for t = 0, 1, . . . , n−1 is known as the smoothing problem.
For a given t it can be achieved through the recursions, with W̃n as given in (9.4),




ΠnXt

Cov(Xt, W̃n)
Cov(Xt, Xn − Πn−1Xn)



→





Πn+1Xt

Cov(Xt, W̃n+1)
Cov(Xt, Xn+1 − ΠnXn+1)



 , n = t, t+ 1, . . . .

The initial value at n = t of the recursions and the covariance matrices Cov(W̃n) of the
innovations W̃n are given by (9.6)–(9.7), and hence can be assumed known.

Because Hn+1 is the sum of the orthogonal spaces Hn and lin W̃n+1, we have, as in
(9.5),

Πn+1Xt = ΠnXt + Λt,n+1W̃n+1, Λt,n+1 = Cov(Xt, W̃n+1)Cov(W̃n+1)
−1.

The recursion for the first coordinate ΠnXt follows from this and the recursions
for the second and third coordinates, the covariance matrices Cov(Xt, W̃n+1) and
Cov(Xt, Xn+1 − ΠnXn+1).
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Using in turn the state equation and equation (9.5), we find

Cov(Xt, Xn+1 − ΠnXn+1) = Cov
(

Xt, Fn+1(Xn − ΠnXn) + Vn+1

)

= Cov
(

Xt, Fn+1(Xn − Πn−1Xn + ΛnW̃n)
)

.

This readily gives the recursion for the third component, the matrix Λn being known
from (9.5)–(9.6). Next using equation (9.4), we find

Cov(Xt, W̃n+1) = Cov(Xt, Xn+1 − ΠnXn+1)G
T
n+1.

* 9.2.3 Lagged Correlations

In the preceding we have assumed that the vectors X0, (V1,W1), (V2,W2), . . . are uncor-
related. An alternative assumption is that the vectors X0, V1, (W1, V2), (W2, V3), . . . are
uncorrelated. (The awkward pairing of Wt and Vt+1 can be avoided by writing the state
equation as Xt = FtXt−1 + Vt−1 and next making the assumption as before.) Under
this condition the Kalman filter takes a slightly different form, where for economy of
computation it can be useful to combine the steps (1) and (2).

Both possibilities are covered by the assumptions that
- the vectors X0, V1, V2, . . . are orthogonal.
- the vectors W1,W2, . . . are orthogonal.
- the vectors Vs and Wt are orthogonal for all (s, t) except possibly s = t or s = t+1.
- all vectors are orthogonal to H0.

Under these assumptions step (2) of the Kalman filter remains valid as described. Step
(1) must be adapted, because it is no longer true that Πt−1Vt = 0.

Because Vt ⊥ Ht−2, we can compute Πt−1Vt from the innovation decomposition
Ht−1 = Ht−2 + lin W̃t−1, as Πt−1Vt = Kt−1W̃t−1 for the matrix

Kt−1 = Cov(Vt,Wt−1)Cov(W̃t−1)
−1.

Note here that Cov(Vt, W̃t−1) = Cov(Vt,Wt−1), in view of (9.4). We replace the calcula-
tions for step (1) by

Πt−1Xt = Ft(Πt−1Xt−1) +KtW̃t−1,

Cov(Πt−1Xt) = Ft Cov(Πt−1Xt−1)F
T
t +Kt Cov(W̃t−1)K

T
t ,

Cov(Xt) = Ft Cov(Xt−1)F
T
t + Cov(Vt).

This gives a complete description of step (1) of the algorithm, under the assumption that
the vector W̃t−1, and its covariance matrix are kept in memory after the preceding step
(2).

The smoothing algorithm goes through as stated except for the recursion for the
matrices Cov(Xt, Xn − Πn−1Xn). Because ΠnVn+1 may be nonzero, this becomes

Cov(Xt, Xn+1 − ΠnXn+1) = Cov
(

Xt, Xn − Πn−1Xn)FT
n+1 + Cov(Xt, W̃n)ΛT

nF
T
n+1

+ Cov(Xt, W̃n)KT
n .
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* 9.3 Nonlinear Filtering

The simplicity of the Kalman filter results both from the simplicity of the linear state
space model and the fact that it concerns linear predictions. Together these lead to update
formulas expressed in the form of matrix algebra. The principle of recursive predictions
can be applied more generally to compute nonlinear predictions in nonlinear state space
models, provided the conditional densities of the variables in the system are available
and certain integrals involving these densities can be evaluated, analytically, numerically,
or by stochastic simulation.

Somewhat abusing notation we write a conditional density of a variable X given an-
other variable Y as p(x| y), and a marginal density of X as p(x). Consider the nonlinear
state space model (9.1), where we assume that the vectorsX0, V1,W1, V2, . . . are indepen-
dent. Then the outputs Y1, . . . , Yn are conditionally independent given the state sequence
X0, X1, . . . , Xn, and the conditional law of a single output Yt given the state sequence
depends on Xt only. In principle the (conditional) densities p(x0), p(x1|x0), p(x2|x1), . . .
and the conditional densities p(yt|xt) of the outputs are available from the form of the
functions ft and gt and the distributions of the noise variables (Vt,Wt). Under the as-
sumption of independent noise vectors the system is a hidden Markov model, and the
joint density of states up till time n+ 1 and outputs up till time n can be expressed in
these densities as

(9.8) p(x0)p(x1|x0) · · · p(xn+1|xn)p(y1|x1)p(y2|x2) · · · p(yn|xn).

The marginal density of the outputs is obtained by integrating this function relative to
(x0, . . . , xn+1). The conditional density of the state sequence (X0, . . . , Xn+1) given the
outputs is proportional to the function in the display, the norming constant being the
marginal density of the outputs. In principle, this allows the computation of all condi-
tional expectations E(Xt|Y1, . . . , Yn), the (nonlinear) “predictions” of the state. However,
because this approach expresses these predictions as a quotient of n+ 1-dimensional in-
tegrals, and n may be large, this is unattractive unless the integrals can be evaluated
easily.

An alternative for finding predictions is a recursive scheme for calculating conditional
densities, of the form

· · · → p(xt−1| yt−1, . . . , y1)
(1)→p(xt| yt−1, . . . , y1)

(2)→p(xt| yt, . . . , y1) → · · · .

This is completely analogous to the updates of the linear Kalman filter: the recursions
alternate between “updating the state”, (1), and “updating the prediction space”, (2).

Step (1) can be summarized by the formula

p(xt| yt−1, . . . , y1) =

∫

p(xt|xt−1, yt−1, . . . , y1)p(xt−1| yt−1, . . . , y1) dµt−1(xt−1)

=

∫

p(xt|xt−1)p(xt−1| yt−1, . . . , y1) dµt−1(xt−1).

The second equality follows from the conditional independence of the vectors Xt and
Yt−1, . . . , Y1 given Xt−1. This is a consequence of the form of Xt = ft(Xt−1, Vt)
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and the independence of Vt and the vectors Xt−1, Yt−1, . . . , Y1 (which are functions of
X0, V1, . . . , Vt−1,W1, . . . ,Wt−1).

To obtain a recursion for step (2) we apply Bayes formula to the conditional density
of the pair (Xt, Yt) given Yt−1, . . . , Y1 to obtain

p(xt| yt, . . . , y1) =
p(yt|xt, yt−1, . . . , y1)p(xt| yt−1, . . . , y1)

∫

p(yt|xt, yt−1, . . . , y1)p(xt| yt−1, . . . , y1) dµt(xt)

=
p(yt|xt)p(xt| yt−1, . . . , y1)

p(yt| yt−1, . . . , y1)
.

The second equation is a consequence of the fact that Yt = gt(Xt,Wt) is conditionally
independent of Yt−1, . . . , Y1 given Xt. The conditional density p(yt| yt−1, . . . , y1) in the
denominator is a nuisance, because it will rarely be available explicitly, but acts only as
a norming constant.

The preceding formulas are useful only if the integrals can be evaluated. If analytical
evaluation is impossible, then perhaps numerical methods or stochastic simulation could
be of help.

If stochastic simulation is the method of choice, then it may be attractive to apply
Markov Chain Monte Carlo for direct evaluation of the joint law, without recursions. The
idea is to simulate a sample from the conditional density p(x0, . . . , xn+1| y1, . . . , yn) of the
states given the outputs. The biggest challenge is the dimensionality of this conditional
density. The Gibbs sampler overcomes this by simulating recursively from the marginal
conditional densities p(xt|x−t, y1, . . . , yn) of the single variables Xt given the outputs
Y1, . . . , Yn and the vectors X−t = (X0, . . . , Xt−1, Xt+1, . . . , Xn+1) of remaining states.
We refer to the literature for general discussion of the Gibbs sampler, but shall show
that these marginal distributions are relatively easy to obtain for the general state space
model (9.1).

Under independence of the vectors X0, V1,W1, V2, . . . the joint density of states and
outputs takes the hidden Markov form (9.8). The conditional density of Xt given the
other vectors is proportional to this expression viewed as function of xt only. Only three
terms of the product depend on xt and hence we find

p(xt|x−t, y1, . . . , yn) � p(xt|xt−1)p(xt+1|xt)p(yt|xt).

The norming constant is a function of the conditioning variables x−t, y1, . . . , yn only and
can be recovered from the fact that the left side is a probability density as a function
of xt. A closer look will reveal that it is equal to p(yt|xt−1, xt+1)p(xt+1|xt−1). However,
many simulation methods, in particular the popular Metropolis-Hastings algorithm, can
be implemented without an explicit expression for the proportionality constant. The
forms of the three densities on the right side should follow from the specification of the
system.

The assumption that the variables X0, V1,W2, V2, . . . are independent may be too
restrictive, although it is natural to try and construct the state variables so that it is
satisfied. Somewhat more complicated formulas can be obtained under more general
assumptions. Assumptions that are in the spirit of the preceding derivations in this
chapter are:
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(i) the vectors X0, X1, X2, . . . form a Markov chain.
(ii) the vectors Y1, . . . , Yn are conditionally independent given X0, X1, . . . , Xn+1.
(iii) for each t ∈ {1, . . . , n} the vector Yt is conditionally independent of the vector

(X0, . . . , Xt−2, Xt+2, . . . , Xn+1) given (Xt−1, Xt, Xt+1).
The first assumption is true if the vectors X0, V1, V2, . . . are independent. The second
and third assumptions are certainly satisfied if all noise vectors X0, V1,W1, V2,W2, V3, . . .
are independent. The exercises below give more general sufficient conditions for (i)–(iii)
in terms of the noise variables.

In comparison to the hidden Markov situation considered previously not much
changes. The joint density of states and outputs can be written in a product form similar
to (9.8), the difference being that each conditional density p(yt|xt) must be replaced by
p(yt|xt−1, xt, xt+1). The variable xt then occurs in five terms of the product and hence
we obtain

p(xt|x−t, y1, . . . ,yn) � p(xt+1|xt)p(xt|xt−1)×
× p(yt−1|xt−2, xt−1, xt)p(yt|xt−1, xt, xt+1)p(yt+1|xt, xt+1, xt+2).

This formula is general enough to cover the case of the ARV model discussed in the next
section.

9.8 EXERCISE. Suppose that X0, V1,W1, V2,W2, V3, . . . are independent, and define
states Xt and outputs Yt by (9.1). Show that (i)–(iii) hold, where in (iii) the vector
Yt is even conditionally independent of (Xs: s 6= t) given Xt.

9.9 EXERCISE. Suppose that X0, V1, V2, . . . , Z1, Z2, . . . are independent, and define
states Xt and outputs Yt through (9.2) with Wt = ht(Vt, Vt+1, Zt) for measurable func-
tions ht. Show that (i)–(iii) hold. [Under (9.2) there exists a measurable bijection be-
tween the vectors (X0, V1, . . . , Vt) and (X0, X1, . . . , Xn), and also between the vectors
(Xt, Xt−1, Xt+1) and (Xt, Vt, Vt+1). Thus conditioning on (X0, X1, . . . , Xn+1) is the same
as conditioning on (X0, V1, . . . , Vn+1) or on (X0, V1, . . . , Vn, Xt−1, Xt, Xt+1).]

* 9.10 EXERCISE. Show that the condition in the preceding exercise that Wt =
ht(Vt, Vt+1, Zt) for Zt independent of the other variables is equivalent to the conditional
independence of Wt and X0, V1, . . . , Vn,Ws: s 6= t given Vt, Vt+1.

9.4 Stochastic Volatility Models

The term “volatility”, which we have used at multiple occasions to describe the “mov-
ability” of a time series, appears to have its origins in the theory of option pricing. The
Black-Scholes model for pricing an option on a given asset with price St is based on a
diffusion equation of the type

dSt = µtSt dt+ σtSt dBt.
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Here Bt is a Brownian motion process and µt and σt are stochastic processes, which
are usually assumed to be adapted to the filtration generated by the process St. In the
original Black-Scholes model the process σt is assumed constant, and the constant is
known as the “volatility” of the process St.

The Black-Scholes diffusion equation can also be written in the form

log
St

S0
=

∫ t

0

(µs − 1
2σ

2
s) ds+

∫ t

0

σs dBs.

If µ and σ are deterministic processes this shows that the log returns logSt/St−1 over
the intervals (t− 1, t] are independent, normally distributed variables (t = 1, 2, . . .) with

means
∫ t

t−1(µs − 1
2σ

2
s) ds and variances

∫ t

t−1 σ
2
s ds. In other words, if these means and

variances are denoted by µt and σ2
t , then the variables

Zt =
log St/St−1 − µt

σt

are an i.i.d. sample from the standard normal distribution. The standard deviation σt

can be viewed as an “average volatility” over the interval (t − 1, t]. If the processes µt

and σt are not deterministic, then the process Zt is not necessarily Gaussian. However,
if the unit of time is small, so that the intervals (t − 1, t] correspond to short time
intervals in real time, then it is still believable that the variables Zt are approximately
normally distributed. In that case it is also believable that the processes µt and σt are
approximately constant and hence these processes can replace the averages µt and σt.
Usually, one even assumes that the process µt is constant in time. For simplicity of
notation we shall take µt to be zero in the following, leading to a model of the form

logSt/St−1 = σtZt,

for standard normal variables Zt and a “volatility” process σt. The choice µt = µt− 1
2σ

2
t =

0 corresponds to modelling under the “risk-free” martingale measure, but is made here
only for convenience.

There is ample empirical evidence that models with constant volatility do not fit
observed financial time series. In particular, this has been documented through a compar-
ison of the option prices predicted by the Black-Scholes formula to the observed prices on
the option market. Because the Black-Scholes price of an option on a given asset depends
only on the volatility parameter of the asset price process, a single parameter volatility
model would allow to calculate this parameter from the observed price of an option on
this asset, by inversion of the Black-Scholes formula. Given a range of options written on
a given asset, but with different maturities and/or different strike prices, this inversion
process usually leads to a range of “implied volatilities”, all connected to the same asset
price process. These implied volatilities usually vary with the maturity and strike price.

This discrepancy could be taken as proof of the failure of the reasoning behind the
Black-Scholes formula, but the more common explanation is that “volatility” is a random
process itself. One possible model for this process is a diffusion equation of the type

dσt = λtσt dt+ γtσt dWt,
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where Wt is another Brownian motion process. This leads to a “stochastic volatility
model in continuous time”. Many different parametric forms for the processes λt and
γt are suggested in the literature. One particular choice is to assume that log σt is an
Ornstein-Uhlenbeck process, i.e. it satisfies

d log σt = λ(ξ − log σt) dt+ γ dWt.

(An application of Itô’s formula show that this corresponds to the choices λt = 1
2γ

2 +
λ(ξ − log σt) and γt = γ.) The Brownian motions Bt and Wt are often assumed to be
dependent, with quadratic variation 〈B,W 〉t = δt for some parameter δ ≤ 0.

A diffusion equation is a stochastic differential equation in continuous time, and does
not fit well into our basic set-up, which considers the time variable t to be integer-valued.
One approach would be to use continuous time models, but assume that the continuous
time processes are observed only at a grid of time points. In view of the importance
of the option-pricing paradigm in finance it has been also useful to give a definition of
“volatility” directly through discrete time models. These models are usually motivated
by an analogy with the continuous time set-up. “Stochastic volatility models” in discrete
time are specifically meant to parallel continuous time diffusion models.

The most popular stochastic volatility model in discrete time is the auto-regressive
random variance model or ARV model. A discrete time analogue of the Ornstein-
Uhlenbeck type volatility process σt is the specification

(9.9) log σt = α+ φ log σt−1 + Vt−1.

For |φ| < 1 and a white noise process Vt this auto-regressive equation possesses a causal
stationary solution log σt. We select this solution in the following. The observed log
return process Xt is modelled as

(9.10) Xt = σtZt,

where it is assumed that the time series (Vt, Zt) is i.i.d.. The latter implies that Zt is inde-
pendent of Vt−1, Zt−1, Vt−2, Zt−2, . . . and hence ofXt−1, Xt−2, . . ., but allows dependence
between Vt and Zt. The volatility process σt is not observed.

A dependence between Vt and Zt allows for a leverage effect, one of the “stylized
facts” of financial time series. In particular, if Vt and Zt are negatively correlated, then
a small return Xt, which is indicative of a small value of Zt, suggests a large value of
Vt, and hence a large value of the log volatility logσt+1 at the next time instant. (Note
that the time index t−1 of Vt−1 in the auto-regressive equation (9.9) is unusual, because
in other situations we would have written Vt. It is meant to support the idea that σt is
determined at time t− 1.)

An ARV stochastic volatility process is a nonlinear state space model. It induces a
linear state space model for the log volatilities and log absolute log returns of the form

log σt = (α φ )

(

1
log σt−1

)

+ Vt−1

log |Xt| = log σt + log |Zt|.
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In order to take the logarithm of the observed series Xt it was necessary to take the
absolute value |Xt| first. Usually this is not a serious loss of information, because the
sign of Xt is equal to the sign of Zt, and this is a Bernoulli 1

2 series if Zt is symmetrically
distributed.

The linear state space form allows the application of the Kalman filter to compute
best linear projections of the unobserved log volatilities log σt based on the observed log
absolute log returns log |Xt|. Although this approach is computationally attractive, a
disadvantage is that the best predictions of the volatilities σt based on the log returns
Xt may be much better than the exponentials of the best linear predictions of the log
volatilities log σt based on the log returns. Forcing the model in linear form is not entirely
natural here. However, the computation of best nonlinear predictions is involved. Markov
Chain Monte Carlo methods are perhaps the most promising technique, but are highly
computer-intensive.

An ARV process Xt is a martingale difference series relative to its natural filtration
Ft = σ(Xt, Xt−1, . . .). To see this we first note that by causality σt ∈ σ(Vt−1, Vt−2, . . .),
whence Ft is contained in the filtration Gt = σ(Vs, Zs: s ≤ t). The process Xt is actually
already a martingale difference relative to this bigger filtration, because by the assumed
independence of Zt from Gt−1

E(Xt| Gt−1) = σtE(Zt| Gt−1) = 0.

A fortiori the process Xt is a martingale difference series relative to the filtration Ft.
There is no correspondingly simple expression for the conditional variance process

E(X2
t | Ft−1) of an ARV series. By the same argument

E(X2
t | Gt−1) = σ2

t EZ2
t .

If EZ2
t = 1 it follows that E(X2

t | Ft−1) = E(σ2
t | Ft−1), but this is intractable for further

evaluation. In particular, the process σ2
t is not the conditional variance process, unlike

in the situation of a GARCH process. Correspondingly, in the present context, in which
σt is considered the “volatility”, the volatility and conditional variance processes do not
coincide.

9.11 EXERCISE. One definition of a volatility process σt of a time series Xt is a process
σt such that Xt/σt is an i.i.d. standard normal series. Suppose that Xt = σ̃tZt is a
GARCH process with conditional variance process σ̃2

t and driven by an i.i.d. process Zt.
If Zt is standard normal, show that σ̃t qualifies as a volatility process. [Trivial.] If Zt

is a tp-process show that there exists a process S2
t with a chisquare distribution with p

degrees of freedom such that
√
p σ̃t/St qualifies as a volatility process.

9.12 EXERCISE. In the ARV model is σt measurable relative to the σ-field generated
by Xt−1, Xt−2, . . .? Compare with GARCH models.

In view of the analogy with continuous time diffusion processes the assumption that
the variables (Vt, Zt) in (9.9)–(9.10) are normally distributed could be natural. This
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assumption certainly helps to compute moments of the series. The stationary solution
log σt of the auto-regressive equation (9.9) is given by (for |φ| < 1)

log σt =

∞
∑

j=0

φj(Vt−1−j + α) =

∞
∑

j=0

φjVt−1−j +
α

1 − φ
.

If the time series Vt is i.i.d. Gaussian with mean zero and variance σ2, then it follows that
the variable log σt is normally distributed with mean α/(1−φ) and variance σ2/(1−φ2).
The Laplace transform E exp(aZ) of a standard normal variable Z is given by exp(1

2a
2).

Therefore, under the normality assumption on the process Vt it is straightforward to
compute that, for p > 0,

E|Xt|p = Eep log σtE|Zt|p = exp
(

1
2

σ2p2

1 − φ2
+

αp

1 − φ

)

E|Zt|p.

Consequently, the kurtosis of the variables Xt can be computed to be

κ4(X) = e4σ2/(1−φ2)κ4(Z).

If follows that the time series Xt possesses a larger kurtosis than the series Zt. This is
true even for φ = 0, but the effect is more pronounced for values of φ that are close
to 1, which are commonly found in practice. Thus the ARV model is able to explain
leptokurtic tails of an observed time series.

Under the assumption that the variables (Vt, Zt) are i.i.d. and bivariate normally
distributed, it is also possible to compute the auto-correlation function of the squared
series X2

t explicitly. If δ = ρ(Vt, Zt) is the correlation between the variables Vt and
Zt, then the vectors (log σt, log σt+h, Zt) possess a three-dimensional normal distribution
with covariance matrix





β2 β2φh 0
β2φh β2 φh−1δσ

0 φh−1δσ 1



 , β2 =
σ2

1 − φ2
.

Some calculations show that the auto-correlation function of the square process is given
by

ρX2(h) =
(1 + 4δ2σ2φ2h−2)e4σ2φh/(1−φ2) − 1

3e4σ2/(1−φ2) − 1
, h > 0.

The auto-correlation is positive at positive lags and decreases exponentially fast to zero,
with a rate depending on the proximity of φ to 1. For values of φ close to 1, the decrease
is relatively slow.

9.13 EXERCISE. Derive the formula for the auto-correlation function.

9.14 EXERCISE. Suppose that the variables Vt and Zt are independent for every t, in
addition to independence of the vectors (Vt, Zt), and assume that the variables Vt (but
not necessarily the variables Zt) are normally distributed. Show that

ρX2(h) =
e4σ2φh/(1−φ2) − 1

κ4(Z)e4σ2/(1−φ2) − 1
, h > 0.
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[Factorize Eσ2
t+hσ

2
tZ

2
t+hZ

2
t as Eσ2

t+hσ
2
t EZ2

t+hZ
2
t .]

The choice of the logarithmic function in the auto-regressive equation (9.9) has some
arbitrariness, and other possibilities, such as a power function, have been explored.



10
Moment and
Least Squares Estimators

Suppose that we observe realizations X1, . . . , Xn from a time series Xt whose distri-
bution is (partly) described by a parameter θ ∈ Rd. For instance, an ARMA process
with the parameter (φ1, . . . , φp, θ1, . . . , θq, σ

2), or a GARCH process with parameter
(α, φ1, . . . , φp, θ1, . . . , θq), both ranging over a subset of Rp+q+1. In this chapter we dis-
cuss two methods of estimation of the parameters, based on the observationsX1, . . . , Xn:
the “method of moments” and the “least squares method”.

When applied in the standard form to auto-regressive processes, the two methods
are essentially the same, but for other models the two methods may yield quite different
estimators. Depending on the moments used and the underlying model, least squares
estimators can be more efficient, although sometimes they are not usable at all. The
“generalized method of moments” tries to bridge the efficiency gap, by increasing the
number of moments employed.

Moment and least squares estimators are popular in time series analysis, but in gen-
eral they are less efficient than maximum likelihood and Bayes estimators. The difference
in efficiency depends on the model and the true distribution of the time series. Maxi-
mum likelihood estimation using a Gaussian model can be viewed as an extension of the
method of least squares. We discuss the method of maximum likelihood in Chapter 12.

10.1 Yule-Walker Estimators

Suppose that the time series Xt − µ is a stationary auto-regressive process of known
order p and with unknown parameters φ1, . . . , φp and σ2. The mean µ = EXt of the
series may also be unknown, but we assume that it is estimated by Xn and concentrate
attention on estimating the remaining parameters.

From Chapter 7 we know that the parameters of an auto-regressive process are not
uniquely determined by the series Xt, but can be replaced by others if the white noise
process is changed appropriately as well. We shall aim at estimating the parameter under
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the assumption that the series is causal. This is equivalent to requiring that all roots of
the polynomial φ(z) = 1 − φ1z − · · · − φpz

p are outside the unit circle.
Under causality the best linear predictor of Xp+1 based on 1, Xp, . . . , X1 is given by

ΠpXp+1 = µ+ φ1(Xp − µ) + · · ·+ φp(X1 − µ). (See Section 7.4.) Alternatively, the best
linear predictor can be obtained by solving the general prediction equations (2.1). This
shows that the parameters φ1, . . . , φp satisfy









γX(0) γX(1) · · · γX(p− 1)
γX(1) γX(0) · · · γX(p− 2)

...
...

...
γX(p− 1) γX(p− 2) · · · γX(0)

















φ1

φ2
...
φp









=









γX(1)
γX(2)

...
γX(p)









.

We abbreviate this system of equations by Γp
~φp = ~γp. These equations, which are known

as the Yule-Walker equations, express the parameters into second moments of the obser-
vations. The Yule-Walker estimators are defined by replacing the true auto-covariances
γX(h) by their sample versions γ̂n(h) and next solving for φ1, . . . , φp. This leads to the
estimators

~̂φp: =











φ̂1

φ̂2
...
φ̂p











=









γ̂n(0) γ̂n(1) · · · γ̂n(p− 1)
γ̂n(1) γ̂n(0) · · · γ̂n(p− 2)

...
...

...
γ̂n(p− 1) γ̂n(p− 2) · · · γ̂n(0)









−1







γ̂n(1)
γ̂n(2)

...
γ̂n(p)









=: Γ̂−1
p γ̂p.

The parameter σ2 is by definition the variance of Zp+1, which is the prediction error
Xp+1−ΠpXp+1 when predicting Xp+1 by the preceding observations, under the assump-
tion that the time series is causal. By the orthogonality of the prediction error and the
predictor ΠpXp+1 and Pythagoras’ rule,

(10.1) σ2 = E(Xp+1 − µ)2 − E(ΠpXp+1 − µ)2 = γX(0) − ~φT
p Γp

~φp.

We define an estimator σ̂2 by replacing all unknowns by their moment estimators, i.e.

σ2 = γ̂n(0) − ~̂φ
T

p Γ̂p
~̂φp.

10.1 EXERCISE. An alternative method to derive the Yule-Walker equations is to work
out the equations cov

(

φ(B)(Xt − µ), Xt−k − µ
)

= cov
(

Zt,
∑

j≥0 ψjZt−j−k

)

for k =
0, . . . , p. Check this. Do you need causality? What if the time series would not be causal?

10.2 EXERCISE. Show that the matrix Γp is invertible for every p. [Suggestion: write
αT Γpα in terms of the spectral density.]

Another reasonable method to find estimators is to start from the fact that the true
values of φ1, . . . , φp minimize the expectation

(β1, . . . , βp) 7→ E
(

Xt − µ− β1(Xt−1 − µ) − · · · − βp(Xt−p − µ)
)2
.
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The least squares estimators are defined by replacing this criterion function by an “em-
pirical” (i.e. observable) version of it and next minimizing this. Let φ̂1, . . . , φ̂p minimize
the function

(β1, . . . , βp) 7→
1

n

n
∑

t=p+1

(

Xt −Xn − β1(Xt−1 −Xn) − · · · − βp(Xt−p −Xn)
)2
.

The minimum value itself is a reasonable estimator of the minimum value of the expec-
tation of this criterion function, which is EZ2

t = σ2. The least squares estimators φ̂j

obtained in this way are not identical to the Yule-Walker estimators, but the difference
is small. To see this, we rewrite the least squares estimators as the solution of a system
of equations. The approach is the same as for the “ordinary” least squares estimators
in the linear regression model. The criterion function that we wish to minimize is the
square of the norm ‖Yn −Dn

~βp‖ for ~βp = (β1, . . . , βp)
T the vector of parameters and Yn

and Dn the vector and matrix given by

Yn =









Xn −Xn

Xn−1 −Xn

...
Xp+1 −Xn









, Dn =









Xn−1 −Xn Xn−2 −Xn · · · Xn−p −Xn

Xn−2 −Xn Xn−3 −Xn · · · Xn−p−1 −Xn

...
...

...
Xp −Xn Xp−1 −Xn · · · X1 −Xn









.

The value ~̂φp that minimizing the norm β 7→ ‖Yn−Dn
~βp‖ is the vector ~βp such thatDn

~βp

is the projection of the vector Yn onto the range of the matrix Dn. By the projection
theorem, Theorem 2.10, this is characterized by the relationship that the residuul Yn −
Dn

~βp is orthogonal to the range of Dn. Algebraically this orthogonality can be expressed

as DT
n (Yn − Dn

~βp) = 0, are relationship that can be solved for βp to yield that the
minimizing vector is given by

~̂φp =
( 1

n
DT

nDn

)−1 1

n
DT

n ( ~Xn −Xn).

At closer inspection this vector is nearly identical to the Yule-Walker estimators. Indeed,
for every s, t,

( 1

n
DT

nDn

)

s,t
=

1

n

n
∑

j=p+1

(Xj−s −Xn)(Xj−t −Xn) ≈ γ̂n(s− t),

( 1

n
DT

n ( ~Xn −Xn)
)

t
=

1

n

n
∑

j=p+1

(Xj−t −Xn)(Xj −Xn) ≈ γ̂n(t).

Asymptotically the difference between the Yule-Walker and least squares estimators is
negligible. They possess the same (normal) limit distribution.
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10.3 Theorem. Let (Xt −µ) be a causal AR(p) process relative to an i.i.d. sequence Zt

with finite fourth moments. Then both the Yule-Walker and the least squares estimators
satisfy, with Γp the covariance matrix of (X1, . . . , Xp),

√
n(~̂φp − ~φp) N(0, σ2Γ−1

p ).

Proof. We can assume without loss of generality that µ = 0. The AR equations
φ(B)Xt = Zt for t = n, n− 1, . . . , p+ 1 can be written in the matrix form









Xn

Xn−1

...
Xp+1









=









Xn−1 Xn−2 · · · Xn−p

Xn−2 Xn−3 · · · Xn−p−1

...
...

...
Xp Xp−1 · · · X1

















φ1

φ2
...
φp









+









Zn

Zn−1

...
Zp+1









= Dn
~φp + ~̃Zn,

for ~̃Zn the vector with coordinates Zt +Xn

∑

φi, and Dn the “design matrix” as before.

We can solve ~φp from this as

~φp = (DT
nDn)−1DT

n ( ~Xn − ~̃Zn).

Combining this with the analogous representation of the least squares estimators φ̂j we
find

√
n(~̂φp − ~φp) =

( 1

n
DT

nDn

)−1 1√
n
DT

n

(

~Zn −~1Xn(1 −
∑

i

φi)
)

.

Because Xt is an auto-regressive process, it possesses a representation Xt =
∑

j ψjZt−j

for a sequence ψj with
∑

j |ψj | <∞. Therefore, the results of Chapter 7 apply and show

that n−1DT
nDn

P→ Γp. (In view of Problem 10.2 this also shows that the matrix DT
nDn

is invertible, as was assumed implicitly in the preceding.)
In view of Slutsky’s lemma it now suffices to show that

1√
n
DT

n
~Zn  N(0, σ2Γp),

1√
n
DT

n 1Xn
P→ 0.

A typical coordinate of the last vector is (t = 1, . . . , p)

1√
n

n
∑

j=p+1

(Xj−t −Xn)Xn =
1√
n

n
∑

j=p+1

Xj−tXn − n− p√
n
X

2

n.

In view of Theorem 4.5 and the assumption that µ = 0, the sequence
√
nXn converges

in distribution and hence both terms on the right side are of the order OP (1/
√
n).

A typical coordinate of the first vector is (t = 1, . . . , p)

1√
n

n
∑

j=p+1

(Xj−t −Xn)Zj =

√

n− p

n

1√
n− p

n−p
∑

j=1

Yj +OP (1/
√
n),
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for Yj = Xp−t+jZp+j . By causality of the series Xt we have Zp+j ⊥ Xp−s+j for s > 0
and hence EYj = EXp−s+jEZp+j = 0 for every j. The same type of arguments as in
Chapter 5 will give us the asymptotic normality of the sequence

√
nY n, with asymptotic

variance
∞
∑

g=−∞

γY (g) =

∞
∑

g=−∞

EXp−t+gZp+gXp−tZp.

In this series all terms with g > 0 vanish because, by the assumption of causality and the
fact that Zt is an i.i.d. sequence, Zp+g is independent of (Xp−t+g, Xp−t, Zp). All terms
with g < 0 vanish by symmetry. Thus the series is equal to γY (0) = EX2

p−tZ
2
p = γX(0)σ2,

which is the diagonal element of σ2Γp. This concludes the proof of the convergence in

distribution of all marginals of n−1/2DT
n
~Zn. The joint convergence is proved in a similar

way, using the Cramér-Wold device.
This concludes the proof of the asymptotic normality of the least squares estima-

tors. The Yule-Walker estimators can be proved to be asymptotically equivalent to the
least squares estimators, in that the difference is of the order oP (1/

√
n). Next we apply

Slutsky’s lemma.

10.4 EXERCISE. Show that the time series Yt in the preceding proof is strictly station-
ary.

* 10.5 EXERCISE. Give a precise proof of the asymptotic normality of
√
nY n as defined

in the preceding proof.

10.1.1 Order Selection

In the preceding derivation of the least squares and Yule-Walker estimators the order p
of the AR process is assumed known a-priori. Theorem 10.3 is false if Xt − µ were in
reality an AR (p0) process of order p0 > p. In that case φ̂1, . . . φ̂p are estimators of the
coefficients of the best linear predictor based on p observations, but need not converge
to the p0 coefficients φ1, . . . , φp0 . On the other hand, Theorem 10.3 remains valid if the
series Xt is an auto-regressive process of “true” order p0 strictly smaller than the order
p used to define the estimators. This follows because for p0 ≤ p an AR(p0) process
is also an AR(p) process, albeit that φp0+1, . . . , φp are zero. Theorem 10.3 shows that

“overfitting” (choosing too big an order) does not cause great harm: if φ̂
(p)
1 , . . . , φ̂

(p)
j are

the Yule-Walker estimators when fitting an AR(p) model and the observations are an
AR(p0) process with p0 ≤ p, then

√
nφ̂

(p)
j  N

(

0, σ2(Γ−1
p )j,j

)

, j = p0 + 1, . . . , p.

It is recomforting that the estimators of the “unnecessary” coefficients φp0+1, . . . , φp

converge to zero at rate 1/
√
n. However, there is also a price to be paid by overfitting.
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By Theorem 10.3, if fitting an AR(p)-model, then the estimators of the first p0 coefficients
satisfy

√
n













φ̂
(p)
1
...

φ̂
(p)
p0






−







φ1
...
φp0












 N

(

0, σ2(Γ−1
p )s,t=1,...,p0

)

.

The covariance matrix in the right side, the (p0 × p0) upper principal submatrix of the
(p×p) matrix Γ−1

p , is not equal to Γ−1
p0

, which would have been the asymptotic covariance
matrix if we had fitted an AR model of the “correct” order p0. In fact, it is bigger in
that

(Γ−1
p )s,t=1,...,p0 − Γ−1

p0
≥ 0.

(Here we write A ≥ 0 for a matrix A if A is positive definite.) In particular, the diagonal
elements of these matrices, which are the differences of the asymptotic variances of the

estimators φ
(p)
j and the estimators φ

(p0)
j , are nonnegative. Thus overfitting leads to more

uncertainty in the estimators of both φ1, . . . , φp0 and φp0+1, . . . , φp. Fitting an auto-
regressive process of very high order p increases the chance of having the model fit well
to the data, but generally will result in poor estimates of the coefficients, which render
the final outcome less useful.

* 10.6 EXERCISE. Prove the assertion that the given matrix is nonnegative definite.

In practice we do not know the correct order to use. A suitable order is often
determined by a preliminary data-analysis, such as an inspection of the plot of the
sample partial auto-correlation function. More formal methods are discussed within the
general context of maximum likelihood estimation in Chapter 12.

10.7 Example. If we fit an AR(1) process to observations of an AR(1) series, then the

asymptotic covariance of
√
n(φ̂1 − φ1) is equal to σ2Γ−1

1 = σ2/γX(0). If to this same

process we fit an AR(2) process, then we obtain estimators (φ̂
(2)
1 , φ̂

(2)
2 ) (not related to

the earlier φ̂1) such that
√
n(φ̂

(2)
1 − φ1, φ̂

(2)
2 − φ2) has asymptotic covariance matrix

σ2Γ−1
2 = σ2

(

γX(0) γX(1)
γX(1) γX(0)

)−1

=
σ2

γ2
X(0) − γ2

X(1)

(

γX(0) −γX(1)
−γX(1) γX(0)

)

.

Thus the asymptotic variance of the sequence
√
n(φ̂

(2)
1 − φ1) is equal to

σ2γX(0)

γ2
X(0) − γ2

X(1)
=

σ2

γX(0)

1

1 − φ2
1

.

(Note that φ1 = γX(1)/γX(0).) Thus overfitting by one degree leads to a loss in efficiency
of 1 − φ2

1. This is particularly harmful if the true value of |φ1| is close to 1, i.e. the time
series is close to being a (nonstationary) random walk.
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10.1.2 Partial Auto-Correlations

Recall that the partial auto-correlation coefficient αX(h) of a centered time series Xt is
the coefficient of X1 in the formula β1Xh + · · · + βhX1 for the best linear predictor of
Xh+1 based on X1, . . . , Xh. In particular, for the causal AR(p) process satisfying Xt =
φ1Xt−1 + · · · + φpXt−p + Zt we have αX(p) = φp and αX(h) = 0 for h > p. The sample
partial auto-correlation coefficient is defined in Section 5.4 as the Yule-Walker estimator
φ̂h when fitting an AR(h) model. This connection provides an alternative method to
derive the limit distribution in the special situation of auto-regressive processes. The
simplicity of the result makes it worth the effort.

10.8 Corollary. Let Xt − µ be a causal stationary AR(p) process relative to an i.i.d.
sequence Zt with finite fourth moments. Then, for every h > p,

√
n α̂n(h) N(0, 1).

Proof. For h > p the time series Xt − µ is also an AR(h) process and hence we can

apply Theorem 10.3 to find that the Yule-Walker estimators φ̂
(h)
1 , . . . , φ̂

(h)
h when fitting

an AR(h) model satisfy
√
n(φ̂h − φh) N

(

0, σ2(Γ−1
h )h,h

)

.

The left side is exactly
√
n α̂n(h). We show that the variance of the normal distribution

on the right side is unity. By Cramér’s rule the (h, h)-element of the matrix Γ−1
h can be

found as det Γh−1/ det Γh. By the prediction equations we have for h ≥ p









γX(0) γX(1) · · · γX(h− 1)
γX(1) γX(0) · · · γX(h− 2)

...
...

...
γX(h− 1) γX(h− 2) · · · γX(0)



























φ1
...
φp

0
...
0



















=









γX(1)
γX(2)

...
γX(h)









.

This expresses the vector on the right as a linear combination of the first p columns of the
matrix Γh on the left. We can use this to rewrite det Γh+1 (by a “sweeping” operation)
in the form

∣

∣

∣

∣

∣

∣

∣

∣

γX(0) γX(1) · · · γX(h)
γX(1) γX(0) · · · γX(h− 1)

...
...

...
γX(h) γX(h− 1) · · · γX(0)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

γX(0) − φ1γX(1) − · · · − φpγX(p) 0 · · · 0
γX(1) γX(0) · · · γX(h− 1)

...
...

...
γX(h) γX(h− 1) · · · γX(0)

∣

∣

∣

∣

∣

∣

∣

∣

.

The (1, 1)-element in the last determinant is equal to σ2 by (10.1). Thus this determinant
is equal to σ2 det Γh and the theorem follows.
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This corollary is used often when choosing the order p if fitting an auto-regressive
model to a given observed time series. The true partial auto-correlation coefficients of
lags higher than the true order p are all zero. When we estimate these coefficients by the
sample auto-correlation coefficients, then we should expect that the estimates are inside
a band of the type (−2/

√
n, 2

√
n). Thus we should not choose the order equal to p if

α̂n(p+ k) is outside this band for too many k ≥ 1. Here we should expect a fraction of 5
% of the α̂n(p+ k) for which we perform this “test” to be outside the band in any case.

To turn this procedure in a more formal statistical test we must also take the depen-
dence between the different α̂n(p+ k) into account, but this appears to be complicated.

* 10.9 EXERCISE. Find the asymptotic limit distribution of the sequence
(

α̂n(h), α̂n(h+

1)
)

for h > p, e.g. in the case that p = 0 and h = 1.

* 10.1.3 Indirect Estimation

The parameters φ1, . . . , φp of a causal auto-regressive process are exactly the coefficients
of the one-step ahead linear predictor using p variables from the past. This makes appli-
cation of the least squares method to obtain estimators for these parameters particularly
straightforward. For an arbitrary stationary time series the best linear predictor of Xp+1

given 1, X1, . . . , Xp is the linear combination µ + φ1(Xp − µ) + · · · + φ1(X1 − µ) whose
coefficients satisfy the prediction equations (2.1). The Yule-Walker estimators are the
solutions to these equations after replacing the true auto-covariances by the sample
auto-covariances. It follows that the Yule-Walker estimators can be considered estima-
tors for the prediction coefficients (using p variables from the past) for any stationary
time series. The case of auto-regressive processes is special only in that these prediction
coefficients are exactly the parameters of the model.

Furthermore, it remains true that the Yule-Walker estimators are
√
n-consistent

and asymptotically normal. This does not follow from Theorem 10.3, because this uses
the auto-regressive structure explicitly, but it can be inferred from the asymptotic nor-
mality of the auto-covariances, given in Theorem 5.7. (The argument is the same as
used in Section 5.4. The asymptotic covariance matrix will be different from the one in
Theorem 10.3, and more complicated.)

If the prediction coefficients (using a fixed number of past variables) are not the
parameters of main interest, then these remarks may seem little useful. However, if the
parameter of interest θ is of dimension d, then we may hope that there exists a one-to-
one relationship between θ and the prediction coefficients φ1, . . . , φp if we choose p = d.
(More generally, we can apply this to a subvector of θ and a matching number of φj ’s.)
Then we can first estimate φ1, . . . , φd by the Yule-Walker estimators and next employ
the relationshiop between φ1, . . . , φp to infer an estimate of θ. If the inverse map giving
θ as a function of φ1, . . . , φd is differentiable, then it follows by the Delta-method that
the resulting estimator for θ is

√
n-consistent and asymptotically normal, and hence we

obtain good estimators.
If the relationship between θ and (φ1, . . . , φd) is complicated, then this idea may be

hard to implement. One way out of this problem is to determine the prediction coefficients
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φ1, . . . , φd for a grid of values of θ, possibly through simulation. The value on the grid
that yields the Yule-Walker estimators is the estimator for θ we are looking for.

10.10 EXERCISE. Indicate how you could obtain (approximate) values for φ1, . . . , φp

given θ using computer simulation, for instance for a stochastic volatility model.

10.2 Moment Estimators

The Yule-Walker estimators can be viewed as arising from a comparison of sample auto-
covariances to true auto-covariances and therefore are examples of moment estimators.
Moment estimators are defined in general by matching sample moments and population
moments. Population moments of a time series Xt are true expectations of functions of
the variables Xt, for instance,

EθXt, EθX
2
t , EθXt+hXt, EθX

2
t+hX

2
t .

In every case, the subscript θ indicates the dependence on the unknown parameter θ:
in principle, every of these moments is a function of θ. The principle of the method
of moments is to estimate θ by that value θ̂n for which the corresponding population
moments coincide with a corresponding sample moment, for instance,

1

n

n
∑

t=1

Xt,
1

n

n
∑

t=1

X2
t ,

1

n

n
∑

t=1

Xt+hXt,
1

n

n
∑

t=1

X2
t+hX

2
t .

From Chapter 5 we know that these sample moments converge, as n → ∞, to the true
moments, and hence it is believable that the sequence of moment estimators θ̂n also
converges to the true parameter, under some conditions.

Rather than true moments it is often convenient to define moment estimators
through derived moments such as an auto-covariance at a fixed lag, or an auto-correlation,
which are both functions of moments of degree smaller than 2. These derived moments
are then matched by the corresponding sample quantities.

The choice of moments to be used is crucial for the existence and consistency of the
moment estimators, and also for their efficiency.

For existence we shall generally need to match as many moments as there are pa-
rameters in the model. If not, then we should expect that a moment estimator is not
uniquely defined if we use fewer moments, and we should expect to find no solution to
the moment equations if we try and match too many moments. Because in general the
moments are highly nonlinear functions of the parameters, it is hard to make this state-
ment precise, as it is hard to characterize solutions of systems of nonlinear equations
in general. This is illustrated already in the case of moving average processes, where a
characterization of the existence of solutions requires effort, and where conditions and
restrictions are needed to ensure their uniqueness. (Cf. Section 10.2.1.)



158 10: Moment and Least Squares Estimators

To ensure consistency and improve efficiency it is necessary to use moments that
can be estimated well from the data. Auto-covariances at high lags, or moments of high
degree should generally be avoided. Besides on the quality of the initial estimates of the
population moments, the efficiency of the moment estimators also depends on the inverse
map giving the parameter as a function of the moments. To see this we may formalize
the method of moments through the scheme

φ(θ) = Eθf(Xt, . . . , Xt+h),

φ(θ̂n) =
1

n

n
∑

t=1

f(Xt, . . . , Xt+h).

Here f : Rh+1 → Rd is a given map, which defines the moments used. (For definiteness we
allow it to depend on the joint distribution of at most h+ 1 consecutive observations.)
We assume that the time series t 7→ f(Xt, . . . , Xt+h) is strictly stationary, so that the
mean values φ(θ) in the first line do not depend on t, and for simplicity of notation we
assume that we observe X1, . . . , Xn+h, so that the right side of the second line is indeed
an observable quantity. We shall assume that the map φ: Θ → Rd is one-to-one, so that
the second line uniquely defines the estimator θ̂n as the inverse

θ̂n = φ−1
(

f̂n

)

, f̂n =
1

n

n
∑

t=1

f(Xt, . . . , Xt+h).

We shall generally construct f̂n such that it converges in probability to its mean φ(θ)

as n → ∞. If this is the case and φ−1 is continuous at φ(θ), then we have that θ̂n →
φ−1φ(θ) = θ, in probability as n→ ∞, and hence the moment estimator is asymptotically
consistent.

Many sample moments converge at
√
n-rate, with a normal limit distribution. This

allows to refine the consistency result, in view of the Delta-method, given by Theo-
rem 3.15. If φ−1 is differentiable at φ(θ) and

√
n
(

f̂n − φ(θ)
)

converges in distribution to
a normal distribution with mean zero and covariance matrix Σθ, then

√
n(θ̂n − θ) N

(

0, φ′θ
−1Σθ(φ

′
θ
−1)T

)

.

Here φ′θ
−1 is the derivative of φ−1 at φ(θ), which is the inverse of the derivative of φ

at θ, assumed to be nonsingular. We conclude that, under these conditions, the moment
estimators are

√
n-consistent with a normal limit distribution, a desirable property.

A closer look concerns the size of the asymptotic covariance matrix φ′θ
−1Σθ(φ

′
θ
−1)T .

Clearly, it depends both on the accuracy by which the chosen moments can be estimated
from the data (through the matrix Σθ) and the “smoothness” of the inverse φ−1. If the

inverse map has a “large” derivative, then extracting the moment estimator θ̂n from the
sample moments f̂n magnifies the error of f̂n as an estimate of φ(θ), and the moment
estimator will be relatively inefficient. Unfortunately, it is hard to see how a particular
implementation of the method of moments works out without doing (part of) the algebra
leading to the asymptotic covariance matrix. Furthermore, the outcome may depend on
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the true value of the parameter, a given moment estimator being relatively efficient for
some parameter values, but (very) inefficient for others.

Moment estimators are measurable functions of the sample moments f̂n and hence
cannot be better than the “best” estimator based on f̂n. In most cases summarizing the
data through the sample moments f̂n incurs a loss of information. Only if the sample
moments are sufficient (in the statistical sense), moment estimators can be fully efficient
for estimating the parameters. This is an exceptional situation. The loss of information
can be controlled somewhat by working with the right type of moments, but is usually
unavoidable through the restriction of using only as many moments as there are param-
eters. The reduction of a sample of size n to a “sample” of empirical moments of size d
usually entails a loss of information.

This observation motivates the generalized method of moments. The idea is to reduce
the sample to more “empirical moments” than there are parameters. Given a function
f : Rh+1 → Re for e > d with corresponding mean function φ(θ) = Eθf(Xt, . . . , Xt+h),

there is no hope, in general, to solve an estimator θ̂n from the system of equations
φ(θ) = f̂n, because these are e > d equations in d unknowns. The generalized method

of moments overcomes this by defining θ̂n as the minimizer of the quadratic form, for a
given (possibly random) matrix V̂n,

(10.2) θ 7→
(

φ(θ) − f̂n

)T
V̂n

(

φ(θ) − f̂n

)

.

Thus a generalized moment estimator tries to solve the system of equations φ(θ) = f̂n

as well as possible, where the discrepancy is measured through a certain quadratic form.
The matrix V̂n weighs the influence of the different components of f̂n on the estimator θ̂n,
and is typically chosen dependent on the data to increase the efficiency of the generalized
moment estimator. We assume that V̂n is symmetric and positive-definite.

As n → ∞ the estimator f̂n typically converges to its expectation under the true
parameter, which we shall denote by θ0 for clarity. If we replace f̂n in the criterion
function by its expectation φ(θ0), then we can reduce the resulting quadratic form to
zero by choosing θ equal to θ0. This is clearly the minimal value of the quadratic form,
and the choice θ = θ0 will be unique as soon as the map φ is one-to-one. This suggests
that the generalized moment estimator θ̂n is asymptotically consistent. As for ordinary
moment estimators, a rigorous justification of the consistency must take into account the
properties of the function φ.

The distributional limit properties of a generalized moment estimator can be un-
derstood by linearizing the function φ around the true parameter. Insertion of the first
order Taylor expansion φ(θ) = φ(θ0) + φ′θ0

(θ − θ0) into the quadratic form yields the
approximate criterion

θ 7→
(

f̂n − φ(θ0) − φ′θ0
(θ − θ0)

)T
V̂n

(

f̂n − φ(θ0) − φ′θ0
(θ − θ0)

)

=
1

n

(

Zn − φ′θ0

√
n(θ − θ0)

)T
V̂n

(

Zn − φ′θ0

√
n(θ − θ0)

)

,

for Zn =
√
n
(

f̂n − φ(θ0)
)

. The sequence Zn is typically asymptotically normally dis-
tributed, with mean zero. Minimization of this approximate criterion over h =

√
n(θ−θ0)
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is equivalent to minimizing the quadratic form h 7→ (Zn −φ′θ0
h)V̂n(Zn −φ′θ0

h), or equiv-

alently minimizing the norm of the vector Zn − φ′θ0
h over h in the Hilbert space Rd

with inner product defined by 〈x, y〉 = xT V̂ny. This comes down to projecting the vector
Zn onto the range of the linear map φ′θ0

and hence by the projection theorem, Theo-

rem 2.10, the minimizer ĥ =
√
n(θ̂ − θ0) is characterized by the orthogonality of the

vector Zn − φ′θ0
ĥ to the range of φ′θ0

. The algebraic expression of this orthogonality is

that (φ′θ0
)T (Zn − φ′θ0

ĥ) = 0, which can be rewritten in the form

√
n(θ̂n − θ0) =

(

(φ′θ0
)T V̂nφ

′
θ0

)−1
(φ′θ0

)T V̂nZn.

This readily gives the asymptotic normality of the sequence
√
n(θ̂n−θ0), with mean zero

and a somewhat complicated covariance matrix depending on φ′θ0
, V̂n and the asymptotic

covariance matrix of Zn.
The best nonrandom weight matrices V̂n, in terms of minimizing the asymptotic co-

variance of
√
n(θ̂n−θ), is the inverse of the covariance matrix of Zn. (Cf. Problem 10.11.)

For our present situation this suggests to choose the matrix V̂n to be consistent for the
inverse of the asymptotic covariance matrix of the sequence Zn =

√
n
(

f̂n −φ(θ0)
)

. With
this choice and the asymptotic covariance matrix denoted by Σθ0 , we may expect that

√
n(θ̂n − θ0) N

(

0,
(

(φ′θ0
)T Σ−1

θ0
φ′θ0

)−1
)

.

The argument shows that the generalized moment estimator can be viewed as a weighted
least squares estimators for regressing

√
n
(

f̂n−φ(θ0)
)

onto φ′θ0
. With the optimal weight-

ing matrix it is the best such estimator. If we use more initial moments to define f̂n and
hence φ(θ), then we add “observations” and corresponding rows to the design matrix φ′θ0

,
but keep the same parameter

√
n(θ − θ0). This suggests that the asymptotic efficiency

of the optimally weigthed generalized moment estimator increases if we use a longer
vector of initial moments f̂n. In particular, the optimally weigthed generalized moment
estimator is more efficient than an ordinary moment estimator based on a subset of d of
the initial moments. Thus, the generalized method of moments achieves the aim of using
more information contained in the observations.

10.11 EXERCISE. Let Σ be a symmetric, positive-definite matrix and A a given ma-
trix. Show that the matrix (ATV A)−1ATV ΣA(ATV A)−1 is minimized over nonnegative-
definite matrices V (where we say that V ≤ W if W − V is nonnegative definite) for
V = Σ−1. [The given matrix is the covariance matrix of βA = (ATV A)−1ATV Z for
Z a random vector with the normal distribution with covariance matrix Σ. Show that
Cov(βA − βΣ−1 , βΣ−1) = 0.]

These arguments are based on asymptotic approximations. They are reasonably
accurate for values of n that are large relative to the values of d and e, but should not be
applied if d or e are large. In particular, it is illegal to push the preceding argument to
its extreme and infer that is necessarily right to use as many initial moments as possible.
Increasing the dimension of the vector f̂n indefinitely may contribute more “variability”
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to the criterion (and hence to the estimator) without increasing the information much,
depending on the accuracy of the estimator V̂n.

The implementation of the (generalized) method of moments requires that the ex-
pectations φ(θ) = Eθf(Xt, . . . , Xt+h) are available as functions of θ. In some models,
such as AR or MA models, this causes no difficulty, but already in ARMA models the
required analytical computations become complicated. Sometimes it is easy to simulate
realizations of a time series, but hard to compute explicit formulas for moments. In this
case the values φ(θ) may be estimated stochastically for a grid of values of θ by sim-
ulating realizations of the given time series, taking in turn each of the grid points as
the “true” parameter, and next computing the empirical moment for the simulated time
series. If the grid is sufficiently dense and the simulations are sufficiently long, then the
grid point for which the simulated empirical moment matches the empirical moment of
the data is close to the moment estimator. Taking it to be the moment estimator is called
the simulated method of moments.

In the following theorem we make the preceding informal derivation of the asymp-
totics of generalized moment estimators rigorous. The theorem is a corollary of Theo-
rems 3.17 and 3.18 on the asymptotics of general minimum contrast estimators. Con-
sider generalized moment estimators as previously, defined as the point of minimum of
a quadratic form of the type (10.2). In most cases the function φ(θ) will be the expected

value of the random vectors f̂n under the parameter θ, but this is not necessary. The
following theorem is applicable as soon as φ(θ) gives a correct “centering” to ensure that

the sequenc
√
n
(

f̂n − φ(θ)
)

converges to a limit distribution, and hence may also apply
to nonstationary time series.

10.12 Theorem. Let V̂n be random matrices such that V̂n
P→ V0 for some matrix V0.

Assume that φ: Θ ⊂ Rd → Re is differentiable at an inner point θ0 of Θ with derivative
φ′θ0

such that the matrix (φ′θ0
)TV0φ

′
θ0

is nonsingular and satisfies, for every δ > 0,

inf
θ:‖θ−θ0‖>δ

(

φ(θ) − φ(θ0)
)T
V0

(

φ(θ) − φ(θ0)
)

> 0.

Assume either that V0 is invertible or that the set {φ(θ): θ ∈ Θ} is bounded. Fi-

nally, suppose that the sequence of random vectors Zn =
√
n
(

f̂n − φ(θ0)
)

is uniformly

tight. If θ̂n are random vectors that minimize the criterion (10.2), then
√
n(θ̂n − θ0) =

−((φ′θ0
)TV0φ

′
θ0

)−1V0Zn + oP (1).

Proof. We first prove that θ̂n
P→ θ0 using Theorem 3.17, with the criterion functions

Mn(θ) =
∥

∥V̂ 1/2
n

(

f̂n − φ(θ)
)∥

∥,

Mn(θ) =
∥

∥V̂ 1/2
n

(

φ(θ) − φ(θ0)
)∥

∥.

The squares of these functions are the criterion in (10.2) and the quadratic form in
the display of the theorem, but with V0 replaced by V̂n, respectively. By the triangle

inequality |Mn(θ) − Mn(θ)| ≤
∥

∥V̂
1/2
n

(

f̂n − φ(θ0)
)∥

∥ → 0 in probability, uniformly in
θ. Thus the first condition of Theorem 3.17 is satisfied. The second condition, that
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inf{Mn(θ): ‖θ − θ0‖ > δ} is stochastically bounded away from zero for every δ > 0, is
satisfied by assumption in the case that V̂n = V0 is fixed. Because V̂n

P→ V0, where V0

is invertible or the set {φ(θ): ‖θ − θ0‖ > δ} is bounded, it is also satisfied in the general

case, in view of Exercise 10.13. This concludes the proof of consistency of θ̂n.
For the proof of asymptotic normality we use Theorem 3.18 with the criterion func-

tions Mn and Mn redefined as the squares of the functions Mn and Mn as used in
the consistency proof (so that Mn(θ) is the criterion function in (10.2)) and with the
centering function M defined by

M(θ) =
(

φ(θ) − φ(θ0)
)T
V0

(

φ(θ) − φ(θ0)
)

.

It follows that, for any random sequence θ̃n
P→ θ0,

n(Mn −Mn)(θ̃n) − n(Mn −Mn)(θ0)

=
(

Zn −√
n
(

φ(θ̃n) − φ(θ0)
))T

V̂n

(

Zn −√
n
(

φ(θ̃n) − φ(θ0)
))

−√
n
(

φ(θ̃n) − φ(θ0)
)T
V̂n

√
n
(

φ(θ̃n) − φ(θ0)
)

− ZT
n V̂nZn,

= −2
√
n
(

φ(θ̃n) − φ(θ0)
)T
V̂nZn,

= −2(θ̃n − θ0)
T (φ′θ0

)T V̂nZn + oP (θ̃n − θ0),

by the differentiability of φ at θ0. Together with the convergence of V̂n to V0, the differen-
tiability of φ also gives that Mn(θ̃n)−M(θ̃n) = oP

(

‖θ̃n−θ0‖2
)

for any sequence θ̃n
P→ θ0.

Therefore, we may replace Mn by M in the left side of the preceding display, if we add an
oP

(

‖θ̃n − θ0‖2
)

-term on the right. By a third application of the differentiability of φ, the
functionM permits the two-term Taylor expansionM(θ) = (θ−θ0)TW (θ−θ0)+o(θ−θ0)2,
for W = (φ′θ0

)TV0φ
′
θ0

. Thus the conditions of Theorem 3.18 are satisfied and the proof
of asymptotic normality is complete.

10.13 EXERCISE. Let Vn be a sequence of nonnegative-definite matrices such that Vn →
V for a matrix V such that inf{xTV x:x ∈ C} > 0 for some set C. Show that:
(i) If V is invertible, then lim inf inf{xTVnx:x ∈ C} > 0.
(ii) If C is bounded, then lim inf inf{xTVnx:x ∈ C} > 0.
(iii) The assertion of (i)-(ii) may fail without some additional assumption.
[Suppose that xT

nVnxn → 0. If V is invertible, then it follows that xn → 0. If the
sequence xn is bounded, then xT

nV xn − xT
nVnxn → 0. As counterexample let Vn be the

matrices with eigenvectors propertional to (n, 1) and (−1, n) and eigenvalues 1 and 0,
let C = {x: |x1| > δ} and let xn = δ(−1, n).]

10.2.1 Moving Average Processes

Suppose that Xt−µ =
∑q

j=0 θjZt−j is a moving average process of order q. For simplicity
of notation assume that 1 = θ0 and define θj = 0 for j < 0 or j > q. Then the auto-
covariance function of Xt can be written in the form

γX(h) = σ2
∑

j

θjθj+h.
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Given observations X1, . . . , Xn we can estimate γX(h) by the sample auto-covariance
function and next obtain estimators for σ2, θ1, . . . , θq by solving from the system of
equations

γ̂n(h) = σ̂2
∑

j

θ̂j θ̂j+h, h = 0, 1, . . . , q.

A solution of this system, which has q + 1 equations with q + 1 unknowns, does not
necessarily exist, or may be nonunique. It cannot be derived in closed form, but must be
determined numerically by an iterative method. Thus applying the method of moments
for moving average processes is considerably more involved than for auto-regressive pro-
cesses. The real drawback of this method is, however, that the moment estimators are less
efficient than the least squares estimators that we discuss later in this chapter. Moment
estimators are therefore at best only used as starting points for numerical procedures to
compute other estimators.

10.14 Example (MA(1)). For the moving average processXt = Zt+θZt−1 the moment
equations are

γX(0) = σ2(1 + θ2), γX(1) = θσ2.

Replacing γX by γ̂n and solving for σ2 and θ yields the moment estimators

θ̂n =
1 ±

√

1 − 4ρ̂2
n(1)

2ρ̂n(1)
, σ̂2 =

γ̂n(1)

θ̂n

.

We obtain a real solution for θ̂n only if |ρ̂n(1)| ≤ 1/2. Because the true auto-correlation
ρX(1) is contained in the interval [−1/2, 1/2], it is reasonable to truncate the sample auto-
correlation ρ̂n(1) to this interval and then we always have some solution. If |ρ̂n(1)| < 1/2,

then there are two solutions for θ̂n, corresponding to the ± sign. This situation will
happen with probability tending to one if the true auto-correlation ρX(1) is strictly

contained in the interval (−1/2, 1/2). From the two solutions, one solution has |θ̂n| < 1

and corresponds to an invertible moving average process; the other solution has |θ̂n| > 1.
The existence of multiple solutions was to be expected in view of Theorem 7.27.

Assume that the true value |θ| < 1, so that ρX(1) ∈ (−1/2, 1/2) and

θ =
1 −

√

1 − 4ρ2
X(1)

2ρX(1)
.

Of course, we use the estimator θ̂n defined by the minus sign. Then θ̂n−θ can be written
as φ

(

ρ̂n(1)
)

− φ
(

ρX(1)
)

for the function φ given by

φ(ρ) =
1 −

√

1 − 4ρ2

2ρ
.

This function is differentiable on the interval (−1/2, 1/2). By the Delta-method the

limit distribution of the sequence
√
n(θ̂n − θ) is the same as the limit distribution of
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the sequence φ′
(

ρX(1)
)√
n
(

ρ̂n(1) − ρX(1)
)

. Using Theorem 5.8 we obtain, after a long
calculation, that

√
n(θ̂n − θ) N

(

0,
1 + θ2 + 4θ4 + θ6 + θ8

(1 − θ2)2

)

.

Thus, to a certain extent, the method of moments works: the moment estimator θ̂n

converges at a rate of 1/
√
n to the true parameter. However, the asymptotic variance

is large, in particular for θ ≈ 1. We shall see later that there exist estimators with
asymptotic variance 1 − θ2, which is smaller for every θ, and is particularly small for
θ ≈ 1.

10.15 EXERCISE. Derive the formula for the asymptotic variance, or at least convince
yourself that you know how to get it.

The asymptotic behaviour of the moment estimators for moving averages of order
higher than 1 can be analysed, as in the preceding example, by the Delta-method as well.
Define φ: Rq+1 → Rq+1 by

φ









σ2

θ1
...
θq









= σ2











∑

j θ
2
j

∑

j θjθj+1

...
∑

j θjθj+q











.

Then the moment estimators and true parameters satisfy









σ̂2

θ̂1
...
θ̂q









= φ−1









γ̂n(0)
γ̂X(1)

...
γ̂n(q)









,









σ2

θ1
...
θq









= φ−1









γX(0)
γX(1)

...
γX(q)









.

The joint limit distribution of the sequences
√
n
(

γ̂n(h) − γX(h)
)

is known from Theo-

rem 5.7. Therefore, the limit distribution of the moment estimators σ̂2, θ̂1, . . . , θ̂q follows
by the Delta-method, provided the map φ−1 is differentiable at

(

γX(0), . . . , γX(q)
)

.
Practical and theoretical complications arise from the fact that the moment equa-

tions may have zero or multiple solutions, as illustrated in the preceding example. This
difficulty disappears if we insist on an invertible representation of the moving average
process, i.e. require that the polynomial 1 + θ1z+ · · ·+ θqz

q has no roots in the complex
unit disc. This follows by the following lemma, whose proof also contains an algorithm
to compute the moment estimators numerically.

10.16 Lemma. Let Θ ⊂ Rq be the set of all vectors (θ1, . . . , θq) such that all roots of
1+θ1z+ · · ·+θqz

q are outside the unit circle. Then the map φ: R+×Θ is one-to-one and
continuously differentiable. Furthermore, the map φ−1 is differentiable at every point
φ(σ2, θ1, . . . , θq) for which the roots of 1 + θ1z + · · · + θqz

q are distinct.
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* Proof. Abbreviate γh = γX(h). The system of equations σ2
∑

j θjθj+h = γh for h =
0, . . . , q implies that

q
∑

h=−q

γhz
h = σ2

∑

h

∑

j

θjθj+hz
h = σ2θ(z−1)θ(z).

For any h ≥ 0 the function zh + z−h can be expressed as a polynomial of degree h in
w = z + z−1. For instance, z2 + z−2 = w2 − 2 and z3 + z−3 = w3 − 3w. The case
of general h can be treated by induction, upon noting that by rearranging Newton’s
binomial formula

zh+1 + z−h−1 − wh+1 = −
(

h+ 1

(h+ 1)/2

)

−
∑

j 6=0

(

h+ 1

(h+ 1 − j)/2

)

(zj + z−j).

Thus the left side of the preceding display can be written in the form

γ0 +
∑

h=1

γj(z
j + z−j) = a0 + a1w + · · · + aqw

q ,

for certain coefficients (a0, . . . , aq). Let w1, . . . , wq be the zeros of the polynomial on
the right, and for each j let ηj and η−1

j be the solutions of the quadratic equation

z + z−1 = wj . Choose |ηj | ≥ 1. Then we can rewrite the right side of the preceding
display as

aq

q
∏

j=1

(z + z−1 − wj) = aq(z − ηj)(ηj − z−1)η−1
j .

On comparing this to the first display of the proof, we see that η1, . . . , ηq are the zeros
of the polynomial θ(z). This allows us to construct a map

(γ0, . . . , γq) 7→ (a0, . . . , aq) 7→ (w1, . . . , wq, aq) 7→ (η1, . . . , ηq, aq) 7→ (θ1, . . . , θq, σ
2).

If restricted to the range of φ this is exactly the map φ−1. It is not hard to see that the
first and last step in this decomposition of φ−1 are analytic functions. The two middle
steps concern mapping coefficients of polynomials into their zeros.

For α = (α0, . . . , αq) ∈ Cq+1 let pα(w) = α0 + α1w + · · · + αqw
q. By the implicit

function theorem for functions of several complex variables we can show the following.
If for some α the polynomial pα has a root of order 1 at a point wα, then there exists
neighbourhoods Uα and Vα of α and wα such that for every β ∈ Uα the polynomial pβ

has exactly one zero wβ ∈ Vα and the map β 7→ wβ is analytic on Uα. Thus, under the
assumption that all roots are or multiplicity one, the roots can be viewed as analytic
functions of the coefficients. If θ has distinct roots, then η1, . . . , ηq are of multiplicity one
and hence so are w1, . . . , wq. In that case the map is analytic.
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* 10.2.2 Moment Estimators for ARMA Processes

If Xt − µ is a stationary ARMA process satisfying φ(B)(Xt − µ) = θ(B)Zt, then

cov
(

φ(B)(Xt − µ), Xt−k

)

= E
(

θ(B)Zt

)

Xt−k.

If Xt − µ is a causal, stationary ARMA process, then the right side vanishes for k > q.
Working out the left side, we obtain the eqations

γX(k) − φ1γX(k − 1) − · · · − φpγX(k − p) = 0, k > q.

For k = q + 1, . . . , q + p this leads to the system









γX(q) γX(q − 1) · · · γX(q − p+ 1)
γX(q + 1) γX(q) · · · γX(q − p+ 2)

...
...

...
γX(q + p− 1) γX(q + p− 2) · · · γX(q)

















φ1

φ2
...
φp









=









γX(q + 1)
γX(q + 2)

...
γX(q + p)









.

These are the Yule-Walker equations for general stationary ARMA processes and may
be used to obtain estimators φ̂1, . . . , φ̂p of the auto-regressive parameters in the same
way as for auto-regressive processes: we replace γX by γ̂n and solve for φ1, . . . , φp.

Next we apply the method of moments for moving averages to the time se-
ries Yt = θ(B)Zt to obtain estimators for the parameters σ2, θ1, . . . , θq. Because also
Yt = φ(B)(Xt − µ) we can estimate the covariance function γY from

γY (h) =
∑

i

∑

j

φ̃iφ̃jγX(h+ i− j), if φ(z) =
∑

j

φ̃jz
j.

Let γ̂Y (h) be the estimators obtained by replacing the unknown parameters φ̃j and
γX(h) by their moment estimators and sample moments, respectively. Next we solve

σ̂2, θ̂1, . . . , θ̂q from the system of equations

γ̂Y (h) = σ̂2
∑

j

θ̂j θ̂j+h, h = 0, 1, . . . , q.

As is explained in the preceding section, if Xt − µ is invertible, then the solution is
unique, with probability tending to one, if the coefficients θ1, . . . , θq are restricted to give
an invertible stationary ARMA process.

The resulting estimators (σ̂2, θ̂1, . . . , θ̂q, φ̂1, . . . , φ̂p) can be written as a function of
(

γ̂n(0), . . . , γ̂n(q + p)
)

. The true values of the parameters can be written as the same

function of the vector
(

γX(0), . . . , γX(q + p)
)

. In principle, under some conditions, the
limit distribution of the estimators can be obtained by the Delta-method.
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10.2.3 Stochastic Volatility Models

In the stochastic volatility model discussed in Section 9.4 an observation Xt is de-
fined as Xt = σtZt for log σt a stationary auto-regressive process satisfying log σt =
α + φ log σt−1 + σVt−1, and (Vt, Zt) an i.i.d. sequence of bivariate normal vectors with
mean zero, unit variances and correlation δ. Thus the model is parameterized by four
parameters α, φ, σ, δ.

The series Xt is a white noise series and hence we cannot use the auto-covariances
γX(h) at lags h 6= 0 to construct moment estimators. Instead, we might use higher
marginal moments or auto-covariances of powers of the series. In particular, it is com-
puted in Section 9.4 that

E|Xt| = exp
(

1
2

σ2

1 − φ2
+

α

1 − φ

)

√

2

π
,

E|Xt|2 = exp
(

1
2

4σ2

1 − φ2
+

2α

1 − φ

)

,

E|Xt|3 = exp
(

1
2

9σ2

1 − φ2
+

3α

1 − φ

)

2

√

2

π
,

EX4
t = exp

( 8σ2

1 − φ2
+

4α

1 − φ

)

3,

ρX2(1) =
(1 + 4δ2σ2)e4σ2φ/(1−φ2) − 1

3e4σ2/(1−φ2) − 1
,

ρX2(2) =
(1 + 4δ2σ2φ2)e4σ2φ2/(1−φ2) − 1

3e4σ2/(1−φ2) − 1
,

ρX2(3) =
(1 + 4δ2σ2φ4)e4σ2φ3/(1−φ2) − 1

3e4σ2/(1−φ2) − 1
.

We can use a selection of these moments to define moment estimators, or use some or
all of them to define generalized moments estimators. Because the functions on the right
side are complicated, this requires some effort, but it is feasible.[

10.3 Least Squares Estimators

For auto-regressive processes the method of least squares is directly suggested by the
structural equation defining the model, but it can also be derived from the prediction
problem. The second point of view is deeper and can be applied to general time series.

A least squares estimator is based on comparing the predicted value of an observa-
tion Xt based on the preceding observations to the actually observed value Xt. Such a
prediction Πt−1Xt will generally depend on the underlying parameter θ of the model,

[ See Taylor (1986).
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which we shall make visible in the notation by writing it as Πt−1Xt(θ). The index t−1 of
Πt−1 indicates that Πt−1Xt(θ) is a function of X1, . . . , Xt−1 (and the parameter) only.
By convention we define Π0X1 = 0. A weighted least squares estimator, with inverse
weights wt(θ), is defined as the minimizer, if it exists, of the function

(10.3) θ 7→
n
∑

t=1

(

Xt − Πt−1Xt(θ)
)2

wt(θ)
.

This expression depends only on the observations X1, . . . , Xn and the unknown param-
eter θ and hence is an “observable criterion function”. The idea is that using the “true”
parameter should yield the “best” predictions. The weights wt(θ) could be chosen equal
to one, but are generally chosen to increase the efficiency of the resulting estimator.

This least squares principle is intuitively reasonable for any sense of prediction,
in particular both for linear and nonlinear prediction. For nonlinear prediction we set
Πt−1Xt(θ) equal to the conditional expectation Eθ(Xt|X1, . . . , Xt−1), an expression that
may or may not be easy to derive analytically.

For linear prediction, if we assume that the the time series Xt is centered at mean
zero, we set Πt−1Xt(θ) equal to the linear combination β1Xt−1 + · · · + βt−1X1 that
minimizes

(β1, . . . , βt−1) 7→ Eθ

(

Xt − (β1Xt−1 + · · · + βt−1X1)
)2
, β1, . . . , βt ∈ R.

In Chapter 2 the coefficients of the best linear predictor are expressed in the auto-
covariance function γX by the prediction equations (2.1). Thus the coefficients βt de-
pend on the parameter θ of the underlying model through the auto-covariance function.
Hence the least squares estimators using linear predictors can also be viewed as moment
estimators.

The difference Xt − Πt−1Xt(θ) between the true value and its prediction is called
innovation. Its second moment

vt−1(θ) = Eθ

(

Xt − Πt−1Xt(θ)
)2

is called the (square) prediction error at time t− 1. The weights wt(θ) are often chosen
equal to the prediction errors vt−1(θ) in order to ensure that the terms of the sum of
squares contribute “equal” amounts of information.

For both linear and nonlinear predictors the innovations X1 − Π0X1(θ), X2 −
Π1X2(θ), . . . , Xn − Πn−1Xn(θ) are uncorrelated random variables. This orthogonality
suggests that the terms of the sum contribute “additive information” to the criterion,
which should be good. It also shows that there is usually no need to replace the sum
of squares by a more general quadratic form, which would be the standard approach in
ordinary least squares estimation.

Whether the sum of squares indeed possesses a (unique) point of minimum θ̂ and
whether this constitutes a good estimator of the parameter θ depends on the statistical
model for the time series. Moreover, this model determines the feasibility of computing
the point of minimum given the data. Auto-regressive and GARCH processes provide a
positive and a negative example.
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10.17 Example (AR). A mean-zero causal, stationary, auto-regressive process of order
p is modelled through the parameter θ = (σ2, φ1, . . . , φp). For t ≥ p the best linear
predictor is given by Πt−1Xt = φ1Xt−1 + · · ·φpXt−p and the prediction error is vt−1 =
EZ2

t = σ2. For t < p the formulas are more complicated, but could be obtained in
principle.

The weighted sum of squares with weights wt = vt−1 reduces to

p
∑

t=1

(

Xt − Πt−1Xt(φ1, . . . , φp)
)2

vt−1(σ2, φ1, . . . , φp)
+

n
∑

t=p+1

(

Xt − φ1Xt−1 − · · · − φpXt−p

)2

σ2
.

Because the first term, consisting of p of the n terms of the sum of squares, possesses a
complicated form, it is often dropped from the sum of squares. Then we obtain exactly
the sum of squares considered in Section 10.1, but with Xn replaced by 0 and divided by
σ2. For large n the difference between the sums of squares and hence between the two
types of least squares estimators should be negligible.

Another popular strategy to simplify the sum of squares is to act as if the “ob-
servations” X0, X−1, . . . , X−p+1 are available and to redefine Πt−1Xt for t = 1, . . . , p
accordingly. This is equivalent to dropping the first term and letting the sum in the
second term start at t = 1 rather than at t = p+1. To implement the estimator we must
now choose numerical values for the missing observations X0, X−1, . . . , X−p+1; zero is a
common choice.

The least squares estimators for φ1, . . . , φp, being (almost) identical to the Yule-
Walker estimators, are

√
n-consistent and asymptotically normal. However, the least

squares criterion does not lead to a useful estimator for σ2: minimization over σ2 leads
to σ2 = ∞ and this is obviously not a good estimator. A more honest conclusion is that
the least squares criterion as posed originally fails for auto-regressive processes, since
minimization over the full parameter θ = (σ2, φ1, . . . , φp) leads to a zero sum of squares
for σ2 = ∞ and arbitrary (finite) values of the remaining parameters. The method of
least squares works only for the subparameter (φ1, . . . , φp) if we first drop σ2 from the
sum of squares.

10.18 Example (GARCH). A GARCH process is a martingale difference series and
hence the one-step predictions Πt−1Xt(θ) are identically zero. Consequently, the weighted
least squares sum, with weights equal to the prediction errors, reduces to

n
∑

t=1

X2
t

vt−1(θ)
.

Minimizing this criterion over θ is equivalent to maximizing the prediction errors vt−1(θ).
It is intuitively clear that this does not lead to reasonable estimators.

One alternative is to apply the least squares method to the squared series X2
t . This

satisfies an ARMA equation in view of (8.3). (Note however that the innovations in that
equation are also dependent on the parameter.)

The best fix of the least squares method is to augment the least squares criterion to
the Gaussian likelihood, as discussed in Chapter 12.
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So far the discussion in this section has assumed implicitly that the mean value
µ = EXt of the time series is zero. If this is not the case, then we apply the preceding
discussion to the time series Xt − µ instead of to Xt, assuming first that µ is known.
Then the parameter µ will show up in the least squares criterion. To define estimators we
can either replace the unknown value µ by the sample mean Xn and minimize the sum
of squares with respect to the remaining parameters, or perform a joint minimization
over all parameters.

Least squares estimators can rarely be written in closed form, the case of stationary
auto-regressive processes being an exception, but iterative algorithms for the approxi-
mate calculation are implemented in many computer packages. Newton-type algorithms
provide one possibility. The best linear predictions Πt−1Xt are often computed recur-
sively in t (for a grid of values θ), for instance with the help of a state space representation
of the time series and the Kalman filter. We do not discuss this numerical aspect, but
remark that even with modern day computing power, the use of a carefully designed
algorithm is advisable.

The method of least squares is closely related to Gaussian likelihood, as discussed in
Chapter 12. Gaussian likelihood is perhaps more fundamental than the method of least
squares. For this reason we restrict further discussion of the method of least squares to
ARMA processes.

10.3.1 ARMA Processes

The method of least squares works well for estimating the regression and moving average
parameters (φ1, . . . , φp, θ1, . . . , θq) of ARMA processes, if we perform the minimization
for a fixed value of the parameter σ2. In general, if some parameter, such as σ2 for
ARMA processes, enters the covariance function as a multiplicative factor, then the best
linear predictor ΠtXt+1 is free from this parameter, by the prediction equations (2.1). On
the other hand, the prediction error vt+1 = γX(0) − (β1, . . . , βt)Γt(β1, . . . , βt)

T (where
β1, . . . , βt are the coefficients of the best linear predictor) contains such a parameter as
a multiplicative factor. It follows that the inverse of the parameter will enter the least
squares criterion as a multiplicative factor. Thus on the one hand the least squares meth-
ods does not yield an estimator for this parameter; on the other hand, we can just omit
the parameter and minimize the criterion over the remaining parameters. In particular,
in the case of ARMA processes the least squares estimators for (φ1, . . . , φp, θ1, . . . , θq)
are defined as the minimizers of, for ṽt = σ−2vt,

n
∑

t=1

(

Xt − Πt−1Xt(φ1, . . . , φp, θ1, . . . , θq)
)2

ṽt−1(φ1, . . . , φp, θ1, . . . , θq)
.

This is a complicated function of the parameters. However, for a fixed value of
(φ1, . . . , φp, θ1, . . . , θq) it can be computed using the state space representation of an
ARMA process and the Kalman filter.

10.19 Theorem. Let Xt be a causal and invertible stationary ARMA(p, q) process rela-
tive to an i.i.d. sequence Zt with finite fourth moments. Then the least squares estimators
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satisfy

√
n

((

~̂φp

~̂θq

)

−
(

~φp

~θq

)

)

 N(0, σ2J−1
~φp,~θq

),

where J~φp,~θq
is the covariance matrix of (U−1, . . . , U−p, V−1, . . . , V−q) for stationary auto-

regressive processes Ut and Vt satisfying φ(B)Ut = θ(B)Vt = Zt.

Proof. The proof of this theorem is long and technical. See e.g. Brockwell and
Davis (1991), pages 375–396, Theorem 10.8.2.

10.20 Example (MA(1)). The least squares estimator θ̂n for θ in the moving average
process Xt = Zt +θZt−1 with |θ| < 1 possesses asymptotic variance equal to σ2/ varV−1,
where Vt is the stationary solution to the equation θ(B)Vt = Zt. Note that Vt is an auto-
regressive process of order 1, not a moving average!

As we have seen before the process Vt possesses the representation Vt =
∑∞

j=0 θ
jZt−j

and hence varVt = σ2/(1 − θ2) for every t.

Thus the sequence
√
n(θ̂n−θ) is asymptotically normally distributed with mean zero

and variance equal to 1− θ2. This should be compared to the asymptotic distribution of
the moment estimator, obtained in Example 10.14.

10.21 EXERCISE. Find the asymptotic covariance matrix of the sequence
√
n(φ̂n −

φ, θ̂n − θ) for (φ̂n, θ̂n) the least squares estimators for the stationary, causal, invertible
ARMA process satisfying Xt = φXt−1 + Zt + θZt−1.
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Spectral Estimation

In this chapter we study nonparametric estimators of the spectral density and spectral
distribution of a stationary time series. As in Chapter 5 “nonparametric” means that no
a-priori structure of the series is assumed, apart from stationarity.

If a well-fitting model is available, then an alternative to the methods of this chapter
is to use spectral estimators suited to this model. For instance, the spectral density of
a stationary ARMA process can be expressed in the parameters σ2, φ1, . . . φp, θ1, . . . , θq

of the model. It is natural to use the formula given in Section 7.5 for estimating the
spectrum, by simply plugging in estimators for the parameters. If the ARMA model is
appropriate, this should lead to better estimators than the nonparametric estimators
discussed in this chapter. We do not further discuss this type of estimator.

Let the observations X1, . . . , Xn be the values at times 1, . . . , n of a stationary time
series Xt, and let γ̂n be their sample auto-covariance function. In view of the definition
of the spectral density fX(λ), a natural estimator is

(11.1) f̂n,r(λ) =
1

2π

∑

|h|<r

γ̂n(h)e−ihλ.

Whereas fX(λ) is defined as an infinite series, the estimator f̂n,r is truncated at its rth
term. Because the estimators γ̂n(h) are defined only for |h| < n and there is no hope of
estimating the auto-covariances γX(h) for lags |h| ≥ n, we must choose r ≤ n. Because
the estimators γ̂n(h) are unreliable for |h| ≈ n, it may be wise to choose r much smaller
than n. We shall see that a good choice of r depends on the smoothness of the spectral
density and also on which aspect of the spectrum is of interest. For estimating fX(λ)
at a point, values of r such as nα for some α ∈ (0, 1) may be appropriate, whereas for
estimating the spectral distribution function (i.e. areas under fX) the choice r = n works
well.

In any case, since the covariances of lags |h| ≥ n can never be estimated from
the data, nonparametric estimation of the spectrum is hopeless, unless one is willing to
assume that expressions such as

∑

|h|≥n

∣

∣γX(h)
∣

∣ are small. In Section 11.3 ahead we relate

this tail series to the smoothness of the function λ 7→ fX(λ). If the spectral density fX
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is smooth, then the auto-covariance function decreases fast to zero, and nonparametric
estimation is feasible.

11.1 Finite Fourier Transform

The finite Fourier transform is a useful tool in spectral analysis, both for theory and
practice. The practical use comes from the fact that it can be computed very efficiently
by a clever algorithm, the Fast Fourier Transform (FFT).]

The finite Fourier transform of an arbitrary sequence x1, . . . , xn of complex numbers
is defined as the function λ 7→ dx(λ) given by

dx(λ) =
1√
n

n
∑

t=1

xte
−iλt, λ ∈ (−π, π].

In other words, the function
√

n/2π dx(λ) is the Fourier series corresponding to the
coefficients . . . , 0, 0, x1, x2, . . . , xn, 0, 0, . . .. The inversion formula (or a short calculation)
shows that

xt =

√
n

2π

∫ π

−π

eitλdx(λ) dλ, t = 1, 2, . . . , n.

Thus there is a one-to-one relationship between the numbers x1, . . . , xn and the function
dx; we may view the function dx as “encoding” the numbers x1, . . . , xn.

Encoding n numbers by a function on the interval (−π, π] is rather inefficient. At
closer inspection the numbers x1, . . . , xn can also be recovered from the values of dx on
the grid

. . . ,−4π

n
,−2π

n
, 0,

2π

n
,
4π

n
, . . . ⊂ (−π, π].

These n points are called the natural frequencies at time n.

11.1 Lemma. If dx is the finite Fourier transform of x1, . . . , xn ∈ C, then

xt =
1√
n

∑

j

dx(λj)e
itλj , t = 1, 2, . . . , n,

where the sum is computed over the natural frequencies λj ∈ (−π, π] at time n.

Proof. For every of the natural frequencies λj define a vector

ej =
1√
n

(eiλj , ei2λj , . . . , einλj ).

It is straightforward to check that the n vectors ej form an orthonormal set in Cn and
hence a basis. Thus the vector x = (x1, . . . , xn) can be written as x =

∑

j〈x, ej〉ej . Now
〈x, ej〉 = dx(λj) and the lemma follows.

] See e.g. Brockwell and Davis, Chapter 10 for a discussion.
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The proof of the preceding lemma shows how the numbers dx(λj) can be interpreted.
View the coordinates of the vector x = (x1, . . . , xn) as the values of a signal at the time
instants 1, 2, . . . , n. Similarly, view the coordinates of the vector ej as the values of the
pure trigonometric signal t 7→ n−1/2eitλj at these time instants. By the preceding lemma
the signal x can be written as a linear combination of the signals ej . The value

∣

∣dx(λj)
∣

∣

is the weight of signal ej , and hence of frequency λj , in x.

11.2 EXERCISE. How is the weight of frequency 0 expressed in (x1, . . . , xn)?

11.3 EXERCISE. Show that d(µ,µ,...,µ)(λj) = 0 for every natural frequency λj and every
µ ∈ C. Conclude that dx−1xn

(λj) = dx(λj).

11.2 Periodogram

The periodogram of a sequence of observations X1, . . . , Xn is defined as the function
λ 7→ In(λ) given by

In(λ) =
1

2π

∣

∣dX(λ)
∣

∣

2
=

1

2πn

∣

∣

∣

n
∑

t=1

Xte
−itλ

∣

∣

∣

2

.

We write In,X if the dependence on X1, . . . , Xn needs to be stressed.
In view of the interpretation of the finite Fourier transform in the preceding section

In(λ) is the square of the weight of frequency λ in the signal X1, . . . , Xn. The spectral
density fX(λ) can be interpreted as the variance of the component of frequency λ in
the time series Xt. Thus In(λ) appears to be a reasonable estimator of the spectral
density. This is true to a certain extent, but not quite true. While we shall show that the
expected value of In(λ) converges to fX(λ), we shall also show that there are much better
estimators than the periodogram. Because these will be derived from the periodogram,
it is still of interest to study its properties.

By evaluating the square in its definition and rearranging the resulting double sum,
the periodogram can be rewritten in the form (if x1, . . . , xn are real)

(11.2) In(λ) =
1

2π

∑

|h|<n

( 1

n

n−|h|
∑

t=1

Xt+|h|Xt

)

e−ihλ.

For natural frequencies λj 6= 0 we have that dX−1µ(λj) = 0 for every µ, in particular for
µ = Xn. This implies that In,X(λj) = In,X−Xn

(λj) and hence

(11.3) In(λj) =
1

2π

∑

|h|<n

γ̂n(h)e−ihλ, λj ∈ 2π

n
Z − {0}.
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This is exactly the estimator f̂n,n(λ) given in (11.1). As noted before, we should expect
this estimator to be unreliable as an estimator of fX(λ), because of the imprecision of
the estimators γ̂n(h) for lags |h| close to n.

Assuming that the time series Xt is stationary, we can compute the mean of the
periodogram, for λ 6= 0, as

EIn(λ) =
1

2π
E
∣

∣dX(λ)
∣

∣

2
=

1

2π
var dX(λ) +

1

2π

∣

∣EdX(λ)
∣

∣

2

=
1

2πn

n
∑

s=1

n
∑

t=1

cov(Xs, Xt)e
iλ(s−t) +

1

2πn

∣

∣

∣

n
∑

t=1

EXte
−iλt

∣

∣

∣

2

=
1

2π

∑

|h|<n

(

1 − |h|
n

)

γX(h)e−iλh +
µ2

2πn

∣

∣

∣

∣

1 − e−iλn

1 − e−iλ

∣

∣

∣

∣

2

.

The second term on the far right is of the order O(1/n) for every λ 6= 0 and even vanishes
for every natural frequency λj 6= 0. Under the condition that

∑

h

∣

∣γX(h)
∣

∣ <∞, the first
term converges to fX(λ) as n→ ∞, by the dominated convergence theorem. We conclude
that the periodogram is asymptotically unbiased for estimating the spectral density in
that EIn(λ) → fX(λ). This is a good property.

However, the periodogram is not a consistent estimator for fX(λ): the following
theorem shows that In(λ) is asymptotically exponentially distributed with mean fX(λ),
whence we do not have that In(λ) P→ fX(λ). Using the periodogram as an estimator
of fX(λ) is, for n → ∞, equivalent to estimating fX(λ) based on one observation with
an exponential distribution. This is disappointing, because we should hope that after
observing the time series Xt long enough, we would be able to estimate its spectral
density with arbitrary precision. The periodogram does not fulfill this hope, as it keeps
fluctuating around the target value fX(λ). Apparently, it does not effectively use the
information available in the observations X1, . . . , Xn.

11.4 Theorem. Let Xt =
∑

ψjZt−j for an i.i.d. sequence Zt with mean zero and finite
second moment and coefficients ψj with

∑

j |ψj | <∞. Then for any values 0 < µ1 < · · · <
µk < π the variables In(µ1), . . . , In(µk) are asymptotically distributed as independent
exponential variables with means fX(µ1), . . . , fX(µk), respectively.

Proof. First consider the case that Xt = Zt for every t. Then the spectral density fX(λ)
is the function fZ(λ) = σ2/2π, for σ2 the variance of the white noise sequence. We can
write

dZ(λ) =
1√
n

n
∑

t=1

Zt cos(λt) − i
1√
n

n
∑

t=1

Zt sin(λt) =:An(λ) − iBn(λ).
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By straightforward calculus we find that, for any λ, µ ∈ (0, π),

cov
(

An(λ), An(µ)
)

=
σ2

n

n
∑

t=1

cos(λt) cos(µt) →
{

σ2/2 if λ = µ,
0 if λ 6= µ,

cov
(

Bn(λ), Bn(µ)
)

=
σ2

n

n
∑

t=1

sin(λt) sin(µt) →
{

σ2/2 if λ = µ,
0 if λ 6= µ,

cov
(

An(λ), Bn(µ)
)

=
σ2

n

n
∑

t=1

cos(λt) sin(µt) → 0.

By the Lindeberg central limit theorem, Theorem 3.16, we now find that the se-
quence of vectors

(

An(λ), Bn(λ), An(µ), Bn(µ)
)

converges in distribution to a vector

(G1, G2, G3, G4) with the N4

(

0, (σ2/2)I
)

distribution. Consequently, by the continuous
mapping theorem,

(

In(λ), In(µ)
)

=
1

2π

(

A2
n(λ) +B2

n(λ), A2
n(µ) +B2

n(µ)
)

 

1

2π
(G2

1 +G2
2, G

2
3 +G2

4).

The vector on the right is distributed as σ2/(4π) times a vector of two independent χ2
2

variables. Because the chisquare distribution with two degrees of freedom is identical to
the standard exponential distribution with parameter 1/2, this is the same as a vector
of two independent exponential variables with means σ2/(2π).

This concludes the proof in the special case that Xt = Zt and for two frequencies λ
and µ. The case of k different frequencies µ1, . . . , µk can be treated in exactly the same
way, but is notationally more involved.

Now consider the case of a general time series of the form Xt =
∑

j ψjZt−j . Then

fX(λ) =
∣

∣ψ(λ)
∣

∣
2fZ(λ), for ψ(λ) =

∑

ψje
−ijλ the transfer function of the linear filter.

We shall prove the theorem by showing that the periodograms In,X and In,Z satisfy a
similar relation, approximately. Indeed, rearranging sums we find

dX(λ) =
1√
n

n
∑

t=1

(

∑

j

ψjZt−j

)

e−itλ =
∑

j

ψje
−ijλ

( 1√
n

n−j
∑

s=1−j

Zse
−isλ

)

.

If we replace the sum
∑n−j

s=1−j in the right side by the sum
∑n

s=1, then the right side
of the display becomes ψ(λ)dZ(λ). These two sums differ by 2(|j| ∧ n) terms, every of
the terms Zse

−iλt having mean zero and variance bounded by σ2, and the terms being
independent. Thus

E
∣

∣

∣

1√
n

n−j
∑

s=1−j

Zse
−isλ − dZ(λ)

∣

∣

∣

2

≤ 2
|j| ∧ n
n

σ2.

In view of the inequality E|X | ≤
(

EX2
)1/2

, we can drop the square on the left side if we
take a root on the right side. Next combining the two preceding displays and applying
the triangle inequality, we find

E
∣

∣dX(λ) − ψ(λ)dZ (λ)
∣

∣ ≤
∑

j

|ψj |
(

2
|j| ∧ n
n

)1/2

σ.
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The jth term of the series is bounded by |ψj |
(

2|j|/n
)1/2

σ and hence converges to zero

as n → ∞, for every fixed j; it is also dominated by |ψj |
√

2σ. Therefore, the right side
of preceding display converges to zero as n→ ∞.

By Markov’s and Slutsky’s lemmas it follows that dX(λ) has the same limit distri-
bution as ψ(λ)dZ (λ). By the continuous mapping theorem In,X(λ) has the same limit

distribution as
∣

∣ψ(λ)
∣

∣

2
In,Z(λ). This is true for every fixed λ, but also for finite sets

of λ jointly. The proof is finished, because the variables
∣

∣ψ(λ)
∣

∣

2
In,Z(λ) are distributed

as independent exponential variables with means
∣

∣ψ(λ)
∣

∣

2
fZ(λ), by the first part of the

proof.

A remarkable aspect of the preceding theorem is that the periodogram values In(λ)
at different frequencies are asymptotically independent. This is well visible already for
finite values of n in plots of the periodogram, which typically have a wild and peaky
appearance. The theorem says that for large n such a plot should be similar to a plot
of independent exponentially distributed variables Eλ with means fX(λ) (on the y-axis)
versus λ (on the x-axis).
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Figure 11.1. Periodogram of a realization of the moving average Xt = 0.5Zt + 0.2Zt−1 + 0.5Zt−2 for a
Gaussian white noise series. (Vertical scale in decibel, i.e. 10 log.)

The following theorem shows that we even have independence of the periodogram
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values at natural frequencies that converge to the same value.

11.5 Theorem. LetXt =
∑

ψjZt−j for an i.i.d. sequence Zt with finite second moments
and coefficients ψj with

∑

j |ψj | < ∞. Let λn = (2π/n)jn for jn ∈ Z be a sequence
of natural frequencies such that λn → λ ∈ (0, π). Then for any k ∈ Z the variables
In(λn−k2π/n), In

(

λn−(k−1)2π/n
)

, . . . , In(λn +k2π/n) are asymptotically distributed
as independent exponential variables with mean fX(λ).

Proof. The second part of the proof of Theorem 11.4 is valid uniformly in λ and hence
applies to sequences of frequencies λn. For instance, the continuity of ψ(λ) and the proof
shows that

∣

∣dX(µn) − ψ(µn)dZ(µn)
∣

∣
P→ 0 for any sequence µn. It suffices to extend the

first part of the proof, which concerns the special case that Xt = Zt.
Here we apply the same method as in the proof of Theorem 11.4. The limits of

the covariances are as before, where in the present case we use the fact that we are
considering natural frequencies only. For instance,

cov
(

An

(

k
2π

n

)

, Bn

(

l
2π

n

))

=
σ2

2

n
∑

t=1

cos
(

kt
2π

n

)

sin
(

lt
2π

n

)

= 0,

for every integers k, l such that (k + l)/n and (k − l)/n are not contained in Z. An
application of the Lindeberg central limit theorem concludes the proof.

The sequences of frequencies λn + j(2π/n) considered in the preceding theorem all
converge to the same value λ. That Theorem 11.4 remains valid (it does) if we replace
the fixed frequencies µj in this theorem by sequences µj,n → µj is not very surprising.
More surprising is the asymptotic independence of the periodograms In(µn,j) at different
frequencies µn,j even if every sequence µn,j converges to the same frequency λ. As the
proof of the preceding theorem shows, this depends crucially on using natural frequencies
µn,j .

The remarkable independence of the periodogram at frequencies that are very close
together is a further explanation of the peaky appearance of the periodogram In(λ) as
a function of λ. It is clear that this function is not a good estimator of the spectral
density. However, the independence suggests ways of improving our estimator for fX(λ).
The values In(λn − k2π/n), In

(

λn − (k− 1)2π/n
)

, . . . , In(λn + k2π/n) can be viewed as
a sample of independent estimators of fX(λ), for any k. Rather than one exponentially
distributed veriable, we therefore have many exponentially distributed variables, all with
the same (asymptotic) mean. We exploit this in the next section.

In practice the periodogram may have one or a few extremely high peaks that
completely dominate its graph. This indicates an important cyclic component in the time
series at those frequencies. Cyclic components of smaller amplitude at other frequencies
may be hidden. It is practical wisdom that in such a case a fruitful spectral analysis at
other frequencies requires that the peak frequencies are first removed from the signal (by
a filter with the appropriate transfer function). We next estimate the spectrum of the
new time series and, if desired, transform this back to obtain the spectrum of the original
series, using the formula given in Theorem 6.9. Because a spectrum without high peaks
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is similar to the uniform spectrum of a white noise series, this procedure is known as
prewhitening of the data.

11.3 Estimating a Spectral Density

Given λ ∈ (0, π) and n, let λn be the natural frequency closest to λ. Then λn → λ as
n → ∞ and Theorem 11.5 shows that for any k ∈ Z the variables In(λn + j2π/n) for
j = −k, . . . , k are asymptotically distributed as independent exponential variables with
mean fX(λ). This suggests to estimate fX(λ) by the average

(11.4) f̂k(λ) =
1

2k + 1

∑

|j|≤k

In

(

λn +
2π

n
j
)

.

As a consequence of Theorem 11.5, the variables (2k + 1)f̂k(λ) are asymptotically dis-
tributed according the gamma distribution with shape parameter 2k + 1 and mean
(2k + 1)fX(λ). This suggests a confidence interval for fX(λ) of the form, with χ2

k,α

the upper α-quantile of the chisquare distribution with k degrees of freedom,
(

(4k + 2)f̂k(λ)

χ2
4k+2,α

,
(4k + 2)f̂k(λ)

χ2
4k+2,1−α

)

.

11.6 EXERCISE. Show that, for every fixed k, this interval is asymptotically of level
1 − 2α.

Instead of a simple average we may prefer a weighted average. For given weights Wj

such that
∑

j Wj = 1, we use

(11.5) f̂k(λ) =
∑

j

WjIn

(

λn +
2π

n
j
)

.

This allows to give greater weight to frequencies λn + (2π/n)j that are closer to λ. A
disadvantage is that the asymptotic distribution is relatively complicated: it is a weighted
sum of independent exponential variables. Because tabulating these types of distributions
is complicated, one often approximates it by a scaled chisquare distribution, where the
scaling and the degrees of freedom are chosen to match the first two moments: the
estimator c−1f̂k(λ) is approximately χ2

ν distributed for c and ν solving the equations

asymptotic mean of f̂k(λ) = fX(λ) = cν,

asymptotic variance of f̂k(λ) =
∑

j

W 2
j f

2
X(λ) = c22ν.

This yields c proportional to fX(λ) and ν independent of fX(λ), and thus confidence
intervals based on this approximation can be derived as before. Rather than using the
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Figure 11.2. Smoothed periodogram of a realization of the moving average Xt = 0.5Zt +0.2Zt−1 +0.5Zt−2

for a Gaussian white noise series. (Vertical scale in decibel, i.e. 10 log.)

approximation, we could of course determine the desired quantiles by computer simula-
tion.

Because the periodogram is continuous as a function of λ, a discrete average (over
natural frequencies) can be closely approximated by a continuous average of the form

(11.6) f̂W (λ) =

∫

W (ω)In,X−1X(λ− ω) dω.

Here the weight function W is to satisfy
∫

W (ω) dω = 1 and would typically concentrate
its mass around zero, so that the average is computed over In,X−1X(ω) for ω ≈ λ. We use

the periodogram of the centered series X− 1X, because the average involves nonnatural
frequencies. In view of (11.3) this estimator can be written in the form

f̂W (λ) =

∫

W (ω)
1

2π

∑

|h|<n

γ̂n(h)e−i(λ−ω)h dω,

=
1

2π

∑

|h|<n

w(h)γ̂n(h)e−iλh,
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where w(h) =
∫

eiωhW (ω) dω are the Fourier coefficients of the weight function. Thus
we have arrived at a generalization of the estimator (11.1). If we choose w(h) = 1 for
|h| < r and w(h) = 0 otherwise, then the preceding display exactly gives (11.1). The more
general form can be motivated by the same reasoning: the role of the coefficients w(h) is
to diminish the influence of the relatively unrealiable estimators γ̂n(h) (for h ≈ n), when
plugging in these sample estimators for the true auto-covariances in the expression for
the spectral density. Thus, the weights w(h) are typically chosen to decrease in absolute
value from

∣

∣w(0)
∣

∣ = 1 to
∣

∣w(n)
∣

∣ = 0 if h increases from 0 to n.
The function W is known as the spectral window; its Fourier coefficients w(h) are

known as the lag window, tapering function or convergence factors. The last name comes
from Fourier analysis, where convergence factors were introduced to improve the ap-
proximation properties of a Fourier series: it was noted that for suitably chosen weights
w(h) the partial sums

∑

|h|<n w(h)γX(h)e−ihλ could be much closer to the full series
∑

h γX(h)e−ihλ than the same partial sums with w ≡ 1. In our statistical context this is
even more so the case, because we introduce additional approximation error by replacing
the coefficients γX(h) by the estimators γ̂n(h).

11.7 Example. The tapering function

w(h) =

{

0 if |h| ≤ r,
1 if |h| > r,

corresponds to the Dirichlet kernel

W (λ) =
1

2π

∑

|h|≤r

eihλ =
1

2π

sin(r + 1
2 )λ

sin 1
2λ

.

Therefore, the estimator (11.1) should be compared to the estimators (11.5) and (11.6)
with weights Wj chosen according to the Dirichlet kernel.

11.8 Example. The uniform kernel

W (λ) =

{

r/(2π) if |λ| ≤ π/r,
0 if |λ| > π/r,

corresponds to the weight function w(h) = r sin(πh)/(πh). These choices of spectral and
lag windows correspond to the estimator (11.4).

All estimators for the spectral density considered so far can be viewed as smoothed
periodograms: the value f̂(λ) of the estimator at λ is an average or weighted average of
values In(µ) for µ in a neighbourhood of λ. Thus “irregularities” in the periodogram
are “smoothed out”. The amount of smoothing is crucial for the accuracy of the estima-
tors. This amount, called the bandwidth, is determined by the parameter k in (11.4), the
weights Wj in (11.5), the kernel W in (11.6), and, more hidden, by the parameter r in
(11.1). For instance, a large value of k in (11.4) or a kernel W with a large variance in
(11.6) result in a large amount of smoothing (large bandwidth). Oversmoothing, choos-
ing a bandwidth that is too large, results in spectral estimators that are too flat and
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therefore inaccurate, whereas undersmoothing, choosing too small a bandwidth, yields
spectral estimators that share the bad properties of the periodogram. In practice an “op-
timal” bandwidth is often determined by plotting the spectral estimators for a number of
different bandwidths and next choosing the one that looks “reasonable”. An alternative
is to use one of several methods of “data-driven” choices of bandwidths, such as cross
validation or penalization. We omit a discussion.

Theoretical analysis of the choice of the bandwidth is almost exclusively asymp-
totical in nature. Given a number of observations tending to infinity, the “optimal”
bandwidth decreases to zero. A main concern of an asymptotic analysis is to determine
the rate at which the bandwidth should decrease as the number of observations tends
to infinity. The key concept is the bias-variance trade-off. Because the periodogram is
more or less unbiased, little smoothing gives an estimator with small bias. However, as
we have seen, the estimator will have a large variance. Much smoothing has the opposite
effects. Because accurate estimation requires that both bias and variance are small, we
need an intermediate value of the bandwidth.

We shall quantify this bias-variance trade-off for estimators of the type (11.1), where
we consider r as the bandwidth parameter. As our objective we take to minimize the
mean integrated square error

2πE

∫ π

−π

∣

∣f̂n,r(λ) − fX(λ)
∣

∣

2
dλ.

The integrated square error is a global measure of the discrepancy between f̂n,r and
fX . Because we are interested in fX as a function, it is more relevant than the distance
∣

∣f̂n,r(λ) − fX(λ)
∣

∣ for any fixed λ.
We shall use Parseval’s identity, which says that the space L2(−π, π] is isometric to

the space `2.

11.9 Lemma (Parseval’s identity). Let f : (−π, π] → C be a measurable function such
that

∫

|f |2(λ) dλ <∞. Then its Fourier coefficients fj =
∫ π

−π
eijλf(λ) dλ satisfy

∫ π

−π

∣

∣f(λ)
∣

∣

2
dλ =

1

2π

∞
∑

j=−∞

|fj |2.

11.10 EXERCISE. Prove this identity. Also show that for a pair of square-integrable,
measurable functions f, g: (−π, π] → C we have

∫

f(λ)g(λ) dλ =
∑

j fjgj .

The function f̂n,r − fX possesses the Fourier coefficients γ̂n(h) − γX(h) for |h| < r
and −γX(h) for |h| ≥ r. Thus, Parseval’s identity yields that the preceding display is
equal to

E
∑

|h|<r

∣

∣γ̂n(h) − γX(h)
∣

∣

2
+
∑

|h|≥r

∣

∣γX(h)
∣

∣

2

In a rough sense the two terms in this formula are the “variance” and the “bias” term. A
large value of r clearly decreases the second, bias term, but increases the first, variance
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term. This variance term can itself be split into a bias and variance term and we can
reexpress the mean integrated square error as

∑

|h|<r

var γ̂n(h) +
∑

|h|<r

∣

∣Eγ̂n(h) − γX(h)
∣

∣

2
+
∑

|h|≥r

∣

∣γX(h)
∣

∣

2
.

Assume for simplicity that EXt = 0 and that Xt =
∑

j ψjZt−j for an absolutely converg-
ing series

∑

ψj and i.i.d. sequence Zt with finite fourth moments. Furthermore, assume

that we use the estimator γ̂n(h) = n−1
∑n−h

t=1 Xt+hXt rather than the true sample auto-
covariance function. (The results for the general case are similar, but the calculations
will be even more involved than they already are. Note that the difference between the
present estimator and the usual one is approximately X and

∑

|h|<r E(X)4 = O(r/n2).

This is negligible in the following.) Then the calculations in Chapter 5 show that the
preceding display is equal to

∑

|h|<r

1

n2

∑

|g|≤n−|h|

(

n− |h| − |g|
)

[

κ4σ
4
∑

i

ψiψi+hψi+gψi+g+h + γ2
X(g)

+ γX(g + h)γX(g − h)
]

+
∑

|h|<r

( |h|
n
γX(h)

)2

+
∑

|h|≥r

γ2
X(h)

≤ |κ4|σ4

n

∑

h

∑

g

∑

i

|ψiψi+hψi+gψi+g+h| +
2r

n

∑

g

γ2
X(g)

+
1

n

∑

h

∑

g

∣

∣γX(g + h)γX(g − h)
∣

∣+
r2

n2

∑

h

γ2
X(h) +

∑

|h|≥r

γ2
X(h).

To ensure that the last term on the right converges to zero as n → ∞ we must choose
r = rn → ∞. Then the second term on the right converges to zero if and only if rn/n→ 0.
The first and third term are of the order O(1/n), and the fourth term is of the order
O(r2n/n

2). Under the requirements rn → ∞ and rn/n → 0 these terms are dominated
by the other terms, and the whole expression is of the order

rn
n

+
∑

|h|≥rn

γ2
X(h).

A first conclusion is that the sequence of estimators f̂n,rn is asymptotically consistent
for estimating fX relative to the L2-distance whenever rn → ∞ and rn/n → 0. A wide
range of sequences rn satisfies these constraints. For an optimal choice we must make
assumptions regarding the rate at which the bias term

∑

|h|≥r γ
2
X(h) converges to zero

as r → ∞. For any constant m we have that

rn
n

+
∑

|h|≥rn

γX(h)2 ≤ rn
n

+
1

r2m
n

∑

h

γ2
X(h)h2m.

Suppose that the series on the far right converges; this means roughly that the auto-
covariances γX(h) decrease faster than |h|−m−1/2 as |h| → ∞. Then we can make a
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bias-variance trade-off by balancing the terms rn/n and 1/r2m
n . These terms are of equal

order for rn = n1/(2m+1); for this choice of rn we find that

E

∫ π

−π

∣

∣f̂n,rn(λ) − fX(λ)
∣

∣

2
dλ = O

(

n−2m/(2m+1)
)

.

Large values of m yield the fastest rates of convergence. The rate n−m/(2m+1) is always
slower than n−1/2, the rate obtained when using parametric spectral estimators, but
approaches this rate as m→ ∞.

Unfortunately, in practice we do not know γX(h) and therefore cannot check whether
the preceding derivation is valid. So-called cross-validation techniques may be used to
determine a suitable constant m from the data.

The condition that
∑

h γ
2
X(h)h2m < ∞ can be interpreted in terms of the smooth-

ness of the spectral density. By differentiating the series fX(λ) = (2π)−1
∑

h γX(h)e−ihλ

repeatedly we obtain that the mth derivative of fX is given by

f
(m)
X (λ) =

1

2π

∑

h

γX(h)(−ih)me−ihλ.

This shows that the numbers γX(h)(−ih)m are the Fourier coefficients of f
(m)
X . Conse-

quently, by Parseval’s identity

∑

h

γ2
X(h)h2m =

∫ π

−π

f
(m)
X (λ)2 dλ.

Thus the left side is finite if and only if the mth derivative of fX exists and is square-
integrable. We say that fX is m-smooth. For time series with an m-smooth spectral
density, one can estimate the spectral density with an integrated square error of order
O(n−2m/(2m+1)). This rate is uniform over the set of all time series with spectral densities

such that
∫

f
(m)
X (λ)2 dλ is uniformly bounded.

This conclusion is similar to the conclusion in the problem of estimating a density
given a random sample from this density, where alsom-smooth densities can be estimated
with an integrated square error of order O(n−2m/(2m+1)). The smoothing methods dis-
cussed previously (the estimator (11.6) in particular) are also related to the method of
kernel smoothing for density estimation. It is interesting that historically the method of
smoothing was first applied to the problem of estimating a spectral density. Here kernel
smoothing of the periodogram was a natural extension of taking simple averages as in
(11.4), which itself is motivated by the independence property of the periodogram. The
method of kernel smoothing for the problem of density estimation based on a random
sample from this density was invented later, even though this problem by itself appears
to be simpler.
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* 11.4 Estimating a Spectral Distribution

In the preceding section it is seen that nonparametric estimation of a spectral density
requires smoothing and yields rates of convergence n−α for values of α < 1/2. In contrast,
a spectral distribution function can be estimated at the “usual” rate of convergence
n−1/2 and natural estimators are asymptotically normally distributed. We assume Xt is
a stationary time series with spectral density fX .

The spectral distribution function FX(λ0) =
∫ λ0

−π
fX(λ) can be written in the form

∫ π

−π

a(λ)fX(λ) dλ

for a the indicator function of the interval (−π, λ0]. We shall consider estimation of a
general functional of this type by the estimator

In(a): =

∫ π

−π

a(λ)In(λ) dλ.

11.11 Theorem. Suppose that Xt =
∑

j ψjZt−j for an i.i.d. sequence Zt with finite
fourth cumulant κ4 and constants ψj such that

∑

j |ψj | < ∞. Moreover, assume that
∑

h |h|γ2
X(h) <∞. Then, for any symmetric function a such that

∫ π

−π
a2(λ) dλ <∞,

√
n
(

In(a) −
∫

afX dλ
)

 N
(

0, κ4

(

∫

afX dλ
)2

+ 4π

∫

a2f2
X dλ

)

.

Proof. We can expand a(λ) in its Fourier series a(λ) =
∑

j aje
−ijλ (say). By Parseval’s

identity
∫

afX dλ =
∑

h

γX(h)ah.

Similarly, by (11.2) and Parseval’s identity

In(a) =

∫

aIn dλ =
∑

|h|<n

γ̂∗n(h)ah.

First suppose that ah = 0 for |h| > m and some m. Then
∫

aIn dλ is a linear combination
of
(

γ̂n(0), . . . , γ̂n(m)
)

. By Theorem 5.7, as n→ ∞,

√
n
(

∑

h

γ̂n(h)ah −
∑

h

γX(h)ah

)

 

∑

h

ahZh,

where (Z−m, . . . , Z0, Z1, . . . , Zm) is a mean zero normally distributed random vector such
that (Z0, . . . , Zm) has covariance matrix V as in Theorem 5.7 and Z−h = Zh for every
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h. Thus
∑

h ahZh is normally distributed with mean zero and variance

(11.7)

∑

g

∑

h

Vg,hagah = κ4

(

∑

g

agγX(g)
)2

+
∑

g

∑

h

(

∑

k

γX(k + h)γX(k + g)

+
∑

k

γX(k + h)γX(k − g)
)

agah

= κ4

(

∫

afX dλ
)2

+ 4π

∫

a2f2
X dλ.

The last equality follows after a short calculation, using that ah = a−h. (Note that we
have used the expression for Vg,h given in Theorem 5.7 also for negative g or h, which is
correct, because both cov(Zg, Zh) and the expression in Theorem 5.7 remain the same if
g or h is replaced by −g or −h.)

This concludes the proof in the case that ah = 0 for |h| > m, for some m. The
general case is treated with the help of Lemma 3.10. Set am =

∑

|j|≤m aje
−iλj and apply

the preceding argument to Xn,m: =
√
n
∫

am(In − fX) dλ) to see that Xn,m  N(0, σ2
m)

as n→ ∞, for every fixed m. The asymptotic variance σ2
m is the expression given in the

theorem with am instead of a. If m → ∞, then σ2
m converges to the expression in the

theorem, by the dominated convergence theorem, because a is squared-integrable and
fX is uniformly bounded. Therefore, by Lemma 3.10 it suffices to show that for every
mn → ∞

(11.8)
√
n

∫

(a− amn)(In − fX) dλ P→ 0.

Set b = a−amn . The variance of the random variable in (11.8) is the same as the variance
of
∫

(a− amn)In dλ, and can be computed as, in view of Parseval’s identity,

var
(

√
n

2π

∑

|h|<n

γ̂n(h)bh

)

=
n

4π2

∑

|g|<n

∑

|h|<n

cov
(

γ̂n(g), γ̂n(h)
)

bgbh

=
n

4π2

∑

|g|<n

∑

|h|<n

1

n2

n−|g|
∑

s=1

n−|h|
∑

t=1

cov(Xs+gXs, Xt+hXt)bgbh.

Using the same approach as in Section 5.2, we can rewrite this as

1

4π2n

∑

|g|<n

∑

|h|<n

n−|g|
∑

s=1

n−|h|
∑

t=1

(

κ4σ
4
∑

i

ψi+gψiψt−s+h+iψt−s+i

+ γX(t− s+ h− g)γX(t− s) + γX(t− s− g)γX(t− s+ h)
)

bgbh.
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The absolute value of this expression can be bounded above by

1

4π2

∑

g

∑

h

∑

k

(

∑

i

|ψi+gψiψk+h+iψk+i||κ4|σ4 +
∣

∣γX(k + h− g)γX(k)
∣

∣

+
∣

∣γX(k − g)γX(k + h)
∣

∣

)

|bgbh|

=
1

4π2

(

|k4|
(

∫

bf
X
dλ
)2

+ 4πb2
∫

f2

X
dλ

)

,

by the same calculation as in (11.7), where we define

b =
∑

h

|bh|e−iλh, f
X

(λ) =
∑

h

∑

i

|ψiψi+h|σ2e−iλh, f
X

(λ) =
∑

h

∣

∣γX(h)
∣

∣e−iλh.

Under our assumptions f
X

and f
X

are bounded functions. It follows that var
∫

bnIn dλ→
0 if

∫

b2n dλ→ 0. This is true in particular for bn = a− amn .
Next the mean of the left side of (11.8) can be computed as

√
n
(

∑

|h|<n

Eγ̂n(h)bh −
∫

b fX dλ
)

=
√
n
(

∑

|h|<n

n− |h|
n

γX(h)bh −
∑

h

γX(h)bh

)

= −
∑

h

n ∧ |h|√
n

γX(h)bh.

By the Cauchy-Schwarz inequality this is bounded in absolute value by the square root
of

∑

h

|bh|2
∑

h

(n ∧ |h|)2
n

γ2
X(h) ≤

∑

h

|bh|2
∑

h

|h|γ2
X(h).

Under our assumptions this converges to zero as
∫

b2 dλ→ 0.

The preceding theorem is restricted to symmetric functions a, but can easily be
extended to general functions, because by the symmetry of the spectral density

∫

a(λ)fX(λ) dλ =

∫

a(λ) + a(−λ)
2

fX(λ) dλ.

11.12 EXERCISE. Show that for a possibly nonsymmetric function a the theorem is
valid, but with asymptotic variance

κ4

(

∫

afX dλ
)2

+ 2π

∫ π

−π

a2f2
X dλ+ 2π

∫ π

−π

a(λ)a(−λ)f2
X(λ) dλ.

11.13 Example. To obtain the limit distribution of the estimator for the spectral dis-
tribution function at the point λ0 ∈ [0, π], we apply the theorem with the symmetric
function a =

(

1(−π,λ0] + 1(−λ0,π]

)

. The asymptotic variance is equal to κ4FX(λ0)
2 +

4π
∫ λ0

λ0
f2

X dλ+ 2π
∫ π

λ0
f2

X dλ for λ0 ∈ [0, π].
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11.14 Example. The choice a(λ) = cos(hλ) yields the estimator (for 0 ≤ h < n)

∫

cos(hλ)In(λ) dλ = Re

∫

eihλIn(λ) dλ =
1

n

n−h
∑

t=1

Xt+hXt

of the auto-covariance function γX(h) in the case that EXt = 0. Thus the preceding
theorem contains Theorem 5.7 as a special case. The present theorem shows how the
asymptotic covariance of the sample auto-covariance function can be expressed in the
spectral density.

11.15 EXERCISE. Show that the sequence of bivariate random vectors
√
n
(∫

a(In −
fX) dλ,

∫

b(In−fX) dλ
)

converges in distribution to a bivariate Gaussian vector (Ga, Gb)
with mean zero and EGaGb = κ4

∫

afX dλ
∫

bfX dλ+ 4π
∫

abf2
X dλ.

11.16 EXERCISE. Plot the periodogram of a white noise series of length 200. Does this
look like a plot of 200 independent exponential variables?

11.17 EXERCISE. Estimate the spectral density of the simulated time series given in
the file ~sda/Cursusdata/sim2by a smoothed periodogram. Compare this to the estimate
obtained assuming that sim2 is an AR(3) series.

11.18 EXERCISE. Estimate the spectral density of the Wölfer sunspot numbers (the
object sunspots in Splus) by
(i) a smoothed periodogram;
(ii) the spectral density of an appropriate AR-model.
Note: the mean is nonzero.



12
Maximum Likelihood

The method of maximum likelihood is one of the unifying principles of statistics, and
applies equally well to models for replicated experiments as to time series models. Given
observations X1, . . . , Xn with a joint probability density (x1, . . . , xn) 7→ pn,θ(x1, . . . , xn)
that depends on a parameter θ, the likelihood function is the stochastic process

θ 7→ pn,θ(X1, . . . , Xn).

The maximum likelihood estimator for θ, if it exists, is the value of θ that maximizes the
likelihood function.

The likelihood function corresponding to i.i.d. observations X1, . . . , Xn is the prod-
uct of the likelihood functions of the individual observations, which makes likelihood
inference relatively easy in this case. For time series models the likelihood function may
be a more complicated function of the observations and the parameter. This complicates
both the practical implementation of likelihood inference and their theoretical analysis,
but in “most” situations the final results are not that different from the more famil-
iar i.i.d. case. In particular, maximum likelihood estimators are typically

√
n-consistent

and possess a normal limit distribution, with mean zero and covariance the inverse of a
certain Fisher information matrix.

In this chapter we study the maximum likelihood estimator, and some approxima-
tions. We also consider the effect of model misspecification: using the likelihood for a
model that does not contain the “true” distribution of the data. Such misspecification
of the model may be unintended, but is sometimes the result of a conscious choice. For
instance, the likelihood under the assumption that X1, . . . , Xn is part of a stationary
Gaussian time series Xt is popular for inference, even if one may not believe that the
time series is Gaussian. The corresponding maximum likelihood estimator is closely re-
lated to the least squares estimators and turns out to perform well also for a wide range
of non-Gaussian time series. Another example is to postulate that the innovations in
a GARCH model are Gaussian, even though we may not believe strongly in this as-
sumption. The resulting estimators again work well also for non-Gaussian innovations.
A misspecified likelihood is also referred to as a quasi likelihood and the resulting es-
timators as quasi likelihood estimators. A misspecified maximum likelihood estimator
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also falls in the class of M-estimators, which are defined as the maximizers of a given
stochastic process, sometimes called a contrast function.

12.1 General Likelihood

A convenient representation of a likelihood is obtained by repeated conditioning. To
alleviate the notation we abuse notation by writing p(y|x) for a conditional density of
a variable Y given that another variable X takes the value x, and denote the marginal
density of X by p(x). Thus we write the likelihood corresponding to the observations
X1, . . . , Xn as θ 7→ pθ(x1, . . . , xn), and this can be decomposed as

(12.1) θ 7→ pθ(x1, . . . , xn) = pθ(x1)pθ(x2|x1) · · · pθ(xn|xn−1, . . . , x1).

Clearly we must select appropriate versions of the (conditional) densities, but we shall
not worry about technical details in this section.

The decomposition resembles the factorization of the likelihood of an i.i.d. sample of
observations, but an important difference is that the n terms on the right may all be of a
different form. Even if the time series Xt is strictly stationary, each further term entails
conditioning on a bigger past and hence is potentially of a different character than the
earlier terms. However, in many examples the “present” Xt is nearly independent of the
“distant past” (Xs: s � t) given the “near past” (Xs: s < t, s ≈ t). Then the likelihood
does not change much if the conditioning in each term is limited to a fixed number of
variables in the past, and most of the terms of the product will take almost a common
form. Alternatively, we may augment the conditioning in each term to include the full
“infinite past”, yielding the pseudo likelihood

(12.2) θ 7→ pθ(x1|x0, x−1, . . .)pθ(x2|x1, x0, . . .) · · · pθ(xn|xn−1, xn−2, . . .).

If the time series Xt is strictly stationary, then the tth term pt(xt|xt−1, xt−2, . . .) in
this product is a fixed measurable function, independent of t, applied to the vector
(xt, xt−1, . . .). In particular, the terms of the product form a strictly stationary time
series, which will be ergodic if the original time series Xt is ergodic. This is almost as
good as the i.i.d. terms obtained in the case of an i.i.d. time series.

The pseudo likelihood (12.2) cannot be used in practice, because the “negative”
variables X0, X−1, . . . are not observed. However, the preceding discussion suggests that
the maximum pseudo likelihood estimator, defined as the maximizer of the pseudo like-
lihood, may behave the same as the true maximum likelihood estimator. Moreover, if it
is true that the past observations X0, X−1, . . . do not play an important role in defining
the pseudo likelihood, then we could also replace them by arbitrary values, for instance
zero, and hence obtain an observable criterion function.

12.1 Example (Markov time series). If the time series Xt is Markov, then the con-
ditioning in each term pθ(xt|xt−1, . . . , x1) or pθ(xt|xt−1, xt−2, . . .) can be restricted to
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a single variable, the variable xt−1. In this case the likelihood and the pseudo likeli-
hood differ only in their first terms, which are pθ(x1) and pθ(x1|x0), respectively. This
difference should be negligible if n is large.

Similarly, if the time series is Markov of order p, i.e. p(xt|xt−1, xt−2, . . .) depends
only on xt, xt−1, . . . , xt−p, then the two likelihoods differ only in p terms. This should be
negligible if n is large relative to p.

A causal auto-regressive time series defined relative to an i.i.d. white noise series is an
example of this situation. Maximum likelihood estimators for auto-regressive processes
are commonly defined by using the pseudo likelihood with X0, . . . , X−p+1 set equal to
zero. Alternatively, we simply drop the first p terms of the likelihood, and work with the
approximate likelihood

(σ, φ1, . . . , φp) 7→
n
∏

t=p+1

pZ,σ

(

Xt − φ1Xt−1 − · · · − φpXt−p

)

,

for pZ,σ the density of the innovations. This can also be considered a conditional likeli-
hood given the observations X1, . . . , Xp. The difference of this likelihood with the true
likelihood is precisely the marginal density of the vector (X1, . . . , Xp), which is compli-
cated in general, but should have a noticable effect on the maximum likelihood estimator
only if p is large relative to n.

12.2 Example (GARCH). A strictly stationary GARCH process Xt relative to an
i.i.d. series Zt can be written as Xt = σtZt, for σ2

t = E(X2
t | Ft−1) and Ft the filtration

generated by Xt, Xt−1, . . .. From Theorem 8.10 it is known that the filtration Ft is also
the natural filtration of the process Zt and hence the variable Zt is independent of
σ2

t , which is measurable relative to Ft−1. It follows that the conditional distribution of
Xt = σtZt given Xt−1, Xt−2, . . . is obtained by first calculating σ2

t from Xt−1, Xt−2, . . .
and next multiplying σt by an independent variable Zt. If pZ is the marginal density of
the variables Zt, then the pseudo likelihood (12.2) takes the form

(12.3)
n
∏

t=1

1

σt
pZ

(Xt

σt

)

.

The parameters α, φ1, . . . φp, θ1, . . . , θq are hidden in the process σt, through the GARCH
relation (8.1). Formula (12.3) is not the true likelihood, because it depends on the un-
observable variables X0, X−1, . . . through the σt.

For an ARCH(q) process the conditional variances σ2
t depend only on the variables

Xt−1, . . . , Xt−q, in the simple form

σ2
t = α+ θ1X

2
t−1 + · · · + θqX

2
t−q.

In this case the true likelihood and the pseudolikelihood differ only in the first q of the n
terms. This difference should be negligible. For practical purposes, if n is large relative
to q, we could either drop those first q terms, giving a conditional likelihood, or act as if
the unobserved variables X2

0 , . . . , X
2
−q+1 are zero.
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For general GARCH processes the difference between the likelihoods is more sub-
stantial, because the conditional variance σ2

t depends on X2
t1 , . . . , X

2
t−q as well as on

the previous σ2
s , causing a dependence on the full past X2

s with s < t of the process
of squares. However, the dependenceof σ2

t on lagged variables X2
s decreases exponen-

tially fast as s → ∞, at least in the case of a second order stationary GARCH series.
That the variables X2

s with s ≤ 0 do not play an important role in the definition of the
(pseudo) likelihood is also suggested by Theorem 8.14, which shows that a GARCH se-
ries defined from arbitrary starting values converges to (strict) stationarity as t grows to
infinity (provided that a strictly stationary GARCH process exists). This suggests that
we might again use the pseudo likelihood with the unobserved variables X2

s replaced by
zero. (The stability assertion of Theorem 8.14 certainly does not quarantee that this will
work, as it says nothing about the likelihood function.)

A practical implementation is to define σ2
0 , . . . , σ

2
−p+1 and X2

0 , . . . , X
2
−q+1 to be

zero, and next compute σ2
1 , σ

2
2 , . . . recursively, using the GARCH relation (8.1) and the

observed values X1, . . . , Xn. By Theorem 8.14 these zero starting values cannot be the
true values of the series if the series is strictly stationary, but any other initialization
should yield approximately the same likelihood. Given σ2

1 , σ
2
2 , . . . and X1, . . . , Xn we can

use (12.3) as a contrast function.

12.1.1 Consistency

To gain insight in the asymptotic properties of maximum likelihood estimators, we adopt
the working hypothesis that these have the same asymptotic properties as the corre-
sponding maximum pseudo likelihood estimators. Furthermore, we assume that the time
series Xt is strictly stationary and ergodic. These conditions are certainly too stringent,
but they simplify the arguments. The conclusions typically apply to any time series that
“approaches stationarity” as t→ ∞ and for which averages converge to constants.

Abbreviate xt, xt−1, . . . to ~xt. The maximum pseudo likelihood estimator maximizes
the function

(12.4) θ 7→Mn(θ) =
1

n

n
∑

t=1

log pθ(Xt| ~Xt−1).

If the variables log pθ(Xt| ~Xt−1) are integrable, as we assume, then, by the ergodic the-
orem, Theorem 4.17, the averages Mn(θ) converges to their expectation

M(θ) = Eθ0 log pθ(X1| ~X0).

The expectation is taken under the “true” parameter θ0 governing the distribution of
the time series Xt. The difference of the expected values M(θ0) and M(θ) can also be
written as

M(θ0) −M(θ) = Eθ0

∫

(

log
pθ0(x1| ~X0)

pθ(x1| ~X0)

)

pθ0(x1| ~X0) dµ(x1).
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The integral inside the expectation is the Kullback-Leibler divergence between the (condi-
tional) measures with densities pθ(·| ~x0) and pθ0(·| ~x0). It is well known that the Kullback-
Leibler divergence between two probability measures is nonnegative and is zero if and
only if the two measures are the same. Thus M(θ) ≤M(θ0) for every θ with equality if
and only if the two conditional measures are the same for almost every ~x0. Under the
reasonable assumption that each value of θ indexes a different underlying distribution of
the time series Xt (“identifiability of θ”), we conclude that the map θ 7→M(θ) possesses
a unique absolute maximum at θ = θ0.

The convergence of the criterion functions Mn to M , and the definitions of θ̂n and
θ0 as the points of maxima of these functions suggest that θ̂n converges to θ0. In other
words, we expect the maximum likelihood estimators to be consistent for the “true”
value θ0. This argument can be made mathematically rigorous, for instance by imposing
additional conditions that guarantee the uniform convergence of Mn to M . See e.g.
Theorem 3.17.

12.1.2 Asymptotic Normality

If it is true that θ̂n → θ0, then the question poses itself to characterize the rate of
convergence at which the difference θ̂n − θ0 converges to zero and to find a possible limit
distribution for this rescaled difference. For this we assume that the parameter set Θ is a
subset of R

d. Under smootness conditions on the contrast function θ 7→ Mn(θ) we shall

establish the asymptotic normality of the sequence
√
n(θ̂n − θ0).

We assume that the gradient Ṁn(θ) and second derivative matrix M̈n(θ) of the map

θ 7→Mn(θ) exist and are continuous. Because θ̂n is a point of maximum of Mn, it satisfies

the stationary equation Ṁn(θ̂n) = 0, if θ̂n is an inner point of the parameter set. Because

we assume consistency of θ̂n, this is the case with probability tending to 1 if θ0 is an
inner point, as we shall assume. By Taylor’s theorem there exists a point θ̃n on the line
segment between θ0 and θ̂n such that

0 = Ṁn(θ̂n) = Ṁn(θ0) + M̈n(θ̃n)(θ̂n − θ).

By simple algebra this can be rewritten as

√
n(θ̂n − θ0) = −

(

M̈n(θ̃n)
)−1√

nṀn(θ0).

The matrices M̈n(θ) = n−1
∑n

i=1∂
2/∂θ2 log pq(Xt| ~Xt−1) are averages and hence the

ergodic theorem guarantees their convergence in probability to a fixed matrix under
reasonable conditions. Because θ̃n

P→ θ0 if θ0 is the true parameter, it is a reasonable
assumption that the matrices M̈n(θ̃n) and M̈n(θ0) possess the same limit. If we can also
show that the sequence

√
nṀn(θ0) converges in distribution, then we can conclude that

the sequence
√
n(θ̂n − θ0) converges in distribution, by Slutsky’s lemma.

The convergence of the sequence
√
nṀn(θ0) can be established by the martin-

gale central limit theorem, Theorem 4.35. To see this, first differentiate the identify
∫

pθ(x1| ~x0) dµ(x1) = 1 twice to verify that
∫

ṗθ(x1| ~x0) dµ(x1) =

∫

p̈θ(x1| ~x0) dµ(x1) = 0.
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The function `θ(xt| ~xt−1) = log pθ(xt| ~xt−1) possesses partial derivatives relative to θ
given by ˙̀

θ = ṗθ/pθ and ῭
θ = p̈θ/pθ − ˙̀

θ
˙̀T
θ . Combination with the preceding display

yields conditional versions of the usual identities “expectation of score function is zero”
and “expectation of observed information is minus the Fisher information”, showing that

Eθ

(

˙̀
θ(X1| ~X0)| ~X0

)

= 0,

Covθ

(

῭
θ(X1| ~X0)| ~X0

)

= −Eθ

(

˙̀
θ
˙̀T
θ (X1| ~X0)| ~X0

)

= −Eθ

(

˙̀
θ(X1| ~X0)| ~X0

)

.

The first identity shows that the sequence
√
nṀn(θ) = n−1/2

∑n
t=1

˙̀
θ(Xt| ~Xt−1) is a mar-

tingale under the true measure specified by the parameter θ. Under reasonable conditions
the martingale central limit theorem yields that the sequence

√
nṀn(θ) is asymptotically

normal with mean zero and covariance matrix

Iθ = Covθ

(

˙̀
θ(X1| ~X0)

)

.

By the second identity EθM̈n(θ) = −Iθ and hence we may expect that M̈n(θ) P→ − Iθ,
by the ergodic theorem. Combining this with Slutsky’s lemma as indicated before, we
find that, under true parameter θ0,

√
n(θ̂n − θ0) N(0, I−1

θ0
).

The matrix Iθ is known as the Fisher information matrix. Typically, it can also be found
through the limits

In,θ =
1

n
Eθ

∂

∂θ
log pθ(X1, . . . , Xn)

∂

∂θ
log pθ(X1, . . . , Xn)T → Iθ ,

− 1

n

∂2

∂θ2
log pθ(X1, . . . , Xn)|θ=θ̂n

→ Iθ .

The expression on the left in the second line is the second derivative matrix of the
likelihood surface at the maximum likelihood estimator, and is known as the observed
information. It gives an estimate for the inverse of the asymptotic covariance matrix of
the sequence

√
n(θ̂n−θ). Thus a large observed information indicates that the maximum

likelihood estimator has small asymptotic covariance.
The first of the preceding display connects the matrix Iθ to the definition of the

Fisher information for arbitrary observations, which appears in the Cramér-Rao bound
for the variance of unbiased estimators. According to the Cramér-Rao theorem, the
covariance matrix of any unbiased estimator Tn of θ satisfies

Covθ

(√
n(Tn − θ)

)

≥ (nIn,θ)
−1.

The preceding informal derivation suggests that the asymptotic covariance matrix of the
sequence

√
n(θ̂n − θ) is equal to I−1

θ . We interprete this as saying that the maximum
likelihood estimator is asymptotically of minimal variance, or asymptotically efficient.

It is possible to give a rigorous proof of the asymptotic normality of the maximum
likelihood estimator, and also of a precise formulation of its asymptotic efficiency. See ??
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12.3 EXERCISE. Compute the conditional maximum likelihood estimator for (θ, σ2) in
a stationary, causal AR(1) model Xt = θXt−1 +Zt with Gaussian innovations Zt. What
is its limit distribution? Calculate the Fisher information matrix Iθ.

12.4 EXERCISE. Find the pair of (conditional) likelihood equations Ṁn(α, θ) = 0 for
estimating the parameters (α, θ) in an ARCH(1) model. Verify the martingale property
of nṀn(α, θ).

12.2 Misspecification

Specification of a correct statistical model for a given time series is generally difficult, and
it is typically hard to decide which of two given reasonable models is the better one. This
observation is often taken as motivation for modelling a time series as a Gaussian series,
Gaussianity being considered as good as any other specification and Gaussian likelihoods
being relatively easy to handle. Meanwhile the validity of the Gaussian assumption may
not really be accepted. It is therefore important, in time series analysis even more than in
statistics for replicated experiments, to consider the behaviour of estimation procedures
under misspecification of a model.

Consider an estimator θ̂n defined as the point of maximum of a likelihood function
of a model that possibly does not contain the true density of the observations. It is again
easier to consider the pseudo likelihood (12.2) than the true likelihood. The misspecified
maximum pseudo likelihood estimator is still the point of maximum of the map θ 7→
Mn(θ) defined in (12.4). For the asymptotic analysis of θ̂n we again apply the ergodic
theorem to see that Mn(θ) → M(θ) almost surely, for M(θ) the expectation of Mn(θ),
defined by

M(θ) = E`θ(X1| ~X0).

The difference with the foregoing is that presently the expectation is taken under the
true model for the series Xt, which may or may not be representable through one of
the parameters θ. However, the same reasoning suggests that θ̂n converges in probability
to a value θ0 that maximizes the map θ 7→ M(θ). Without further specification of the
model and the true distribution of the time series, there is little more we can say about
this maximizing value than that it gives conditional densities pθ0(·| ~x0) that are, on the
average, closest to the true conditional densities p(·| ~x0) of the time series in terms of the
Kullback-Leibler divergence.

Having ascertained that the sequence θ̂n ought to converge to a limit, most of the
subsequent arguments to establish asymptotic normality of the sequence

√
n(θ̂n − θ0) go

through, also under misspecification, provided that

(12.5) E
(

˙̀
θ0(X1| ~X0)| ~X0

)

= 0, a.s..

In that case the sequence
√
nṀn(θ0) is still a martingale, and may be expected to be

asymptotically normal by the martingale central limit theorem. By the assumed ergod-
icity of the series Xt the sequence M̈n(θ0) will still converge to a fixed matrix, and the
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same may be expected to be true for the sequence of second derivatives M̈n(θ̃n) evaluated

at a point between θ̂n and θ0. A difference is that the asymptotic covariance matrix Σθ0

of the sequence
√
nṀn(θ0) and the limit Rθ0 of the sequence M̈n(θ0) may no longer be

each other’s negatives. The conclusion will therefore take the more complicated form
√
n(θ̂n − θ0) N

(

0, R−1
θ0

Σθ0(R
−1
θ0

)T
)

.

The asymptotic covariance of the normal limit distribution is referred to as the sandwich
formula.

Thus under (12.5) we may expect that the sequence θ̂n will converge rapidly to a
limit θ0. Then “fitting the wrong model” will be useful as long as the density pθ0 is
sufficiently close to the true distribution of the time series.

Condition (12.5) is odd, and it appears that it is not always satisfied. It is certainly
satisfied if the point of maximum θ0 of the map θ 7→ M(θ) is such that for every ~x0 it
is also a point of maximum of the map, with p the true conditional density of the time
series,

θ 7→
∫

log pθ(x1| ~x0) p(x1| ~x0) dµ(x1).

This is not necessarily the case, as the points of maxima of the functions in the display
may be different for different values of ~x0. The point θ0 is by definition the point of
maximum of the average of these functions over ~x0, weighted by the distribution of ~X0.
Failure of (12.5) does not necessarily mean that the sequence

√
n(θ̂n − θ0) is not asymp-

totically normally distributed, but it does mean that we cannot apply the martingale
central limit theorem, as in the preceding argument.

In the next section we discuss a major example of possible misspecification: esti-
mating a parameter by Gaussian maximum likelihood. The following example concerns
GARCH processes, and illustrates that some misspecifications are harmless, whereas
others may cause trouble.

12.5 Example (GARCH). As found in Example 12.2, the pseudo likelihood for a
GARCH(p, q) process takes the form

n
∏

t=1

1

σt(θ)
pZ

( Xt

σt(θ)

)

,

where pZ is the density of the innovations and θ = (α, φ1, . . . , φp, θ1, . . . , θq). In Chapter 8
it was noted that a t-density pZ may be appropriate to explain the observed leptokurtic
tails of financial time series. However, the Gaussian density pZ(z) = exp(− 1

2z
2)/

√
2π is

more popular for likelihood based inference for GARCH processes. The corresponding
log pseudo likelihood is up to additive and multiplicative constants equal to

θ 7→ − 1

n

n
∑

t=1

log σ2
t (θ) − 1

n

n
∑

t=1

X2
t

σ2
t (θ)

.

The expectation of this criterion function can be written as

M(θ) = −E
(

log σ2
1(θ) +

E(X2
1 | F0)

σ2
1(θ)

)

.
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Both expectations on the right side are taken relative to the true distribution of the time
series. The sequence θ̂n may be expected to converge to the point of maximum of the
map θ 7→M(θ).

Suppose that the GARCH equation (8.1) for the conditional variances is correctly
specified, even though the true density of the innovations may not be standard normal.
In other words, E(X2

1 | F0) = σ2
1(θ0) for the true parameter θ0 and hence

M(θ) = −E
(

log σ2
1(θ) +

σ2
1(θ0)

σ2
1(θ)

)

.

For every fixed σ2
0 , the map σ2 7→ log σ2 + σ2

0/σ
2 assumes its minimal value on the

domain (0,∞) at σ2 = σ2
0 . It follows that the map θ 7→M(θ) is maximized at θ = θ0 no

matter the distribution of ~X0 that determines the expectation that defines M(θ).
We conclude that the use of the Gaussian density for pZ will lead to consistent

estimators θ̂n for the coefficients of the GARCH equation as long as the conditional
variance model is correctly specified. In particular, the true density pZ of the innovations
need not be Gaussian. As shown in the preceding arguments, this pleasant fact is the
result of the fact that the likelihood based on choosing the normal density for pZ depends
on the observations Xt only through a linear function of the squares X2

t . For another
choice of density pZ , such as a t-density, this is not true, and we cannot hope to be
guarded against misspecification in that case.

The maximizing parameter θ0 in this model can be seen to yield a conditional density
pθ0(·|x0, x−1, . . .) that is closest to the true conditional density p(·|x0, x−1, . . .) relative
to the Kullback-Leibler divergence, for any given values x0, x−1, . . .. This implies that
equation (12.5) is satisfied in this case, and hence we expect the sequence

√
n(θ̂n − θ0)

to be asymptotically normal, with asymptotic variance given by the sandwich formula.

12.3 Gaussian Likelihood

A Gaussian time series is a time series Xt such that the joint distribution of every finite
subvector (Xt1 , . . . , Xtn) of the series possesses a multivariate normal distribution. In
particular, the vector (X1, . . . , Xn) is multivariate normally distributed, and hence its
distribution is completely specified by a mean vector µn ∈ R

n and an (n×n) covariance
matrix Γn. If the time series Xt is covariance stationary, then the matrix Γn has entries
(Γn)s,t = γX(s − t), for γX the auto-covariance function of Xt. We assume that both
the mean µn and the covariance function γX can be expressed in a parameter θ of fixed
dimension, so that we can write µn = µn(θ) and Γn = Γn(θ).

The likelihood function under the assumption that Xt is a Gaussian time series is
the multivariate normal density viewed as function of the parameter and takes the form

(12.6) θ 7→ 1

(2π)n/2

1
√

det Γn(θ)
e−

1
2 ( ~Xn−µn(θ))T Γn(θ)−1( ~Xn−µn(θ)).
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We refer to this function as the Gaussian likelihood, and to its point of maximum θ̂n,
if it exists, as the maximum Gaussian likelihood estimator. The Gaussian likelihood and
the corresponding estimator are commonly used, also in the case that the time series Xt

is non-Gaussian.
Maximum Gaussian likelihood is closely related to the method of least squares,

described in Section 10.3. We can see this using the likelihood factorization (12.1).
For a Gaussian process the conditional densities pθ(xt|Xt−1, . . . , X1) are univariate
normal densities with means Eθ(Xt|Xt−1, . . . , X1) and variances vt−1(θ) equal to
the prediction errors. (Cf. Exercise 12.6.) Furthermore, the best nonlinear predictor
Eθ(Xt|Xt−1, . . . , X1) is automatically a linear combination of the predicting variables
and hence coincides with the best linear predictor Πt−1Xt(θ). This shows that the fac-
torization (12.1) reduces to

n
∏

t=1

1
√

vt−1(θ)
φ
(Xt − Πt−1Xt(θ)

√

vt−1(θ)

)

.

Maximizing this relatively to θ is equivalent to maximizing its logarithm, which can be
written in the form

(12.7) θ 7→ −n
2

log(2π) − 1

2

n
∑

t=1

log vt−1(θ) −
1

2

n
∑

t=1

(

Xt − Πt−1Xt(θ)
)2

vt−1(θ)
.

This function differs in form from the least squares criterion function (10.3) only in the
presence of the function θ 7→ − 1

2

∑n
t=1 log vt−1(θ). In situations where this function is

almost constant least squares and Gaussian maximum likelihood estimators are almost
the same.

12.6 EXERCISE. Suppose that the vector (X1, . . . , Xt) possesses a multivariate nor-
mal distribution. Show that the conditional distribution of Xt given (X1, . . . , Xt−1)
is normal with mean E(Xt|X1, . . . , Xt−1) and variance var(Xt|X1, . . . , Xt−1). [Write
Xt = (Xt − Y ) + Y for Y = E(Xt|X1, . . . , Xt−1), prove that Y is a linear function of
X1, . . . , Xt−1, and conclude that the vector (Xt − Y, Y ) is bivariate normal with corre-
lation zero. Conclude that Xt − Y and Y are independent.]

12.7 Example (Auto regression). For causal stationary auto-regressive processes of
order p and t > p the best linear predictor of Xt is equal to φ1Xt−1 + · · ·+φpXt−p. Thus
the innovations Xt − Πt−1Xt are equal to the noise input Zt, and the prediction errors
vt are equal to σ2 = EZ2

t+1 for t ≥ p. Thus the function θ 7→ − 1
2

∑n
t=1 log vt−1(θ) in the

formula for the Gaussian likelihood is approximately equal to − 1
2n logσ2, if n is much

bigger than p. The log Gaussian likelihood is approximately equal to

−n
2

log(2π) − 1

2
n log σ2 − 1

2

n
∑

t=p+1

(

Xt − φ1Xt−1 − · · · − φpXt−p

)2

σ2
.

For a fixed σ2 maximization relative to φ1, . . . , φp is equivalent to minimization of the
sum of squares and hence gives identical results as the method of least squares discussed
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in Sections 10.1 and 10.3. Maximization relative to σ2 gives (almost) the Yule-Walker
estimator discussed in Section 10.1.

12.8 Example (ARMA). In ARMA models the parameter σ2 enters as a multiplicative
factor in the covariance function (cf. Section 10.3). This implies that the log Gaussian
likelihood function can be written in the form, with θ = (φ1, . . . , φp, θ1, . . . , θq),

−n
2

log(2π) − n

2
log σ2 − 1

2

n
∑

t=1

log ṽt−1(θ) −
1

2

n
∑

t=1

(

Xt − Πt−1Xt(θ)
)2

σ2ṽt−1(θ)
.

Differentiating this with respect to σ2 we see that for every fixed θ, the Gaussian likeli-
hood is maximized relative to σ2 by

σ̂2(θ) =
1

n

n
∑

t=1

(

Xt − Πt−1Xt(θ)
)2

ṽt−1(θ)
.

Substituting this expression in the log Gaussian likelihood, we see that the maximum
Gaussian likelihood estimator of θ maximizes the function

θ 7→ −n
2

log(2π) − n

2
log σ2(θ) − 1

2

n
∑

t=1

log ṽt−1(θ) −
n

2
.

The latter function is called the profile likelihood for θ, and the process of eliminating the
parameter σ2 is referred to as concentrating out this parameter. We can drop the con-
stant terms in the profile likelihood and conclude that the maximum Gaussian likelihood
estimator θ̂ for θ minimizes

(12.8) θ 7→ log
1

n

n
∑

t=1

(

Xt − Πt−1Xt(θ)
)2

ṽt−1(θ)
+

1

2

n
∑

t=1

log ṽt−1(θ).

The maximum Gaussian likelihood estimator for σ2 is σ̂2(θ̂).
For causal, invertible stationary ARMA processes the innovations Xt − Πt−1Xt

are for large t approximately equal to Zt, whence ṽt−1(θ) ≈ EZ2
t /σ

2 = 1. (Cf. the
discussion in Section 7.4. In fact, it can be shown that |ṽt−1 − 1| ≤ ct for some 0 <
c < 1 and sufficiently large t.) This suggests that the criterion function (12.8) does
not change much if we drop its second term and retain only the sum of squares. The
corresponding approximate maximum Gaussian likelihood estimator is precisely the least
squares estimator, discussed in Section 10.3.

12.9 Example (GARCH). The distribution of a GARCH process Xt = σtZt depends
on the distribution of the innovations Zt, but is rarely (or never?) Gaussian. Nevertheless
we may try and apply the method of Gaussian likelihood.

Because a GARCH series is a white noise series, the linear one-step ahead predictors
are identically zero, and the prediction variances are equal to the variances v2

t−1 = EX2
t

of the process. For a stationary GARCH process these are constant and can be expressed
in the parameters of the GARCH process. For instance, for the GARCH(1, 1) process
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we have that EX2
t = α/(1 − φ − θ). Because the predictions are zero, the Gaussian

likelihood depends on the parameters of the model only through the prediction variances
v2

t−1 = EX2
t . It follows that the likelihood is constant on sets of constant prediction

variance and hence can at best yield good estimators for functions of this variance. The
GARCH parameters cannot be recovered from this. For instance, we cannot estimate the
parameter (α, φ, θ) of a GARCH (1, 1) process from a criterion function that depends on
these parameters only through α/(1 − φ− θ).

We conclude that the method of Gaussian likelihood is useless for GARCH processes.
(We note that the Gaussian likelihood is similar in form to the likelihood obtained
by assuming that the innovations Zt are Gaussian (cf. Example 12.2), but with the
conditional variances σ2

t in the latter replaced by their expectations.)

In the preceding examples we have seen that for AR and ARMA processes the
Gaussian maximum likelihood estimators are, asymptotically as n → ∞, close to the
least squares estimators. The following theorem shows that the asymptotic behaviour
of these estimators is identical to that of the least squares estimators, which is given in
Theorem 10.19.

12.10 Theorem. Let Xt be a causal, invertible stationary ARMA(p, q) process relative
to an i.i.d. sequence Zt. Then the Gaussian maximum likelihood estimator satisfies

√
n

((

~̂φp

~̂θq

)

−
(

~φp

~θq

)

)

 N(0, σ2J−1
~φp,~θq

),

where J~φp,~θq
is the covariance matrix of (U−1, . . . , U−p, V−1, . . . , V−q) for stationary auto-

regressive processes Ut and Vt satisfying φ(B)Ut = θ(B)Vt = Zt.

Proof. The proof is long and technical. See Brockwell and Davis (1991), pages 375–396,
Theorem 10.8.2.

The theorem does not assume that the time series Xt itself is Gaussian; it uses
the Gaussianity only as a working hypothesis to define maximum likelihood estimators.
Apparently, using “the wrong likelihood” still leads to reasonable estimators. This is
plausible, because Gaussian maximum likelihood estimators are asymptotically equiva-
lent to least squares estimators and the method of least squares can be motivated without
reference to Gaussianity. Alternatively, it can be explained from a consideration of the
Kullback-Leibler divergence, as in Section 12.2.

On the other hand, in the case that the series Xt is not Gaussian the true maximum
likelihood estimators (if the true model, i.e. the true distribution of the noise factors Zt

is known) are likely to perform better than the least squares estimators. In this respect
time series analysis is not different from the situation for replicated experiments. An
important difference is that in practice non-Gaussianity may be difficult to detect, other
plausible distributions difficult to motivate, and other likelihoods may yield computa-
tional problems. The Gaussian distribution is therefore frequently adopted as a working
hypothesis.
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12.3.1 Whittle Estimators

Because the Gaussian likelihood function of a mean zero time series depends on the
autocovariance function only, it can be helpful to write it in terms of the spectral density.
The covariance matrix of a vector (X1, . . . , Xn) belonging to a stationary time series Xt

with spectral density fX can be written as Γn(fX), for

Γn(f) =
(

∫ π

−π

ei(s−t)f(λ) dλ
)

s,t=1,...,n
.

Thus if the time series Xt has spectral density fθ under the parameter θ and mean zero,
then the log Gaussian likelihood can be written in the form

−n
2

log(2π) − 1

2
log det Γn(fθ) −

1

2
~XT

n Γn(fθ)
−1 ~Xn.

Maximizing this expression over θ is equivalent to maximizing the Gaussian likelihood
as discussed previously, but gives a different perspective. For instance, to fit an ARMA
process we would maximize this expression over all “rational spectral densities” of the

form σ2
∣

∣θ(e−iλ)
∣

∣

2
/
∣

∣φ(e−iλ)
∣

∣

2
.

The true advantage of writing the likelihood in spectral notation is that it suggests
a convenient approximation. The Whittle approximation is defined as

−n
2

log(2π) − n

4π

∫ π

−π

log fθ(λ) dλ − n

4π

∫ π

−π

In(λ)

fθ(λ)
dλ,

where In(λ) is the periodogram of the time series Xt, as defined in Section 11.2. This ap-
proximation results from the following approximations, for a sufficiently regular function
f ,

Γn(f)−1 ≈ Γn

( 1

f

) 1

4π2
,

1

n
log det Γn(f) ≈ log(2π) +

1

2π

∫ π

−π

log f(λ) dλ,

combined with the identity

1

n
~XT

n Γn(f) ~Xn = 2π

∫

In(λ)f(λ) dλ.

The approximations are made precise in Lemma ?, whereas the identity follows by some
algebra.

12.11 EXERCISE. Verify the identity in the preceding display.

The Whittle approximation is both more convenient for numerical manipulation and
more readily amenable to theoretical analysis. The point of maximum θ̂n of the Whittle
approximation, if it exists, is known as the Whittle estimator. Conceptually, this again
comes down to a search in the class of spectral densities fθ defined through the model.



202 12: Maximum Likelihood

12.12 Example (Auto-regressive process). For an auto-regressive time series of fixed
order the Whittle estimators are identical to the Yule-Walker estimators, which are also
(almost) identical to the maximum Gaussian likelihood estimators. This can be seen as
follows.

The Whittle estimators are defined by maximizing the Whittle approximation over

all spectral densities of the form fθ(λ) = σ2/
∣

∣φ(e−iλ)
∣

∣

2
, for φ the auto-regressive poly-

nomial φ(z) = 1− φ1z− · · · − φpz
p. By the Kolmogorov-Szegö formula (See ?), or direct

computation,
∫

log fθ(λ) dλ = 2π log(σ2/2π) is independent of the parameters φ1, . . . , φp.
Thus the stationary equations for maximizing the Whittle approximation with respect
to the parameters take the form

0 =
∂

∂φk

∫

In(λ)

σ2fθ(λ)
dλ =

∂

∂φk

∫

φ(eiλ)φ(e−iλ)In(λ) dλ

=

∫

[

−eiλkφ(e−iλ) − φ(eiλ)e−iλk
]

In(λ) dλ

= −2 Re

∫

[

eiλk − φ1e
−iλ(k−1) − · · · − φpe

iλ(k−p)
]

In(λ) dλ

= −2 Re
[

γ̂∗n(k) − φ1γ̂
∗
n(k − 1) − · · · − φpγ̂

∗
n(k − p)

]

,

because γ̂∗n(h) = n−1
∑n−h

t=1 Xt+hXt are the Fourier coefficients of the function In for
0 ≤ h < n, by (11.2). Thus the stationary equations are the Yule-Walker equations,
apart from the fact that the observations have been centered at mean zero, rather than
Xn.

12.13 EXERCISE. Derive the Whittle estimator for σ2 for an autoregressive process.

If we write In(f) for
∫

In(λ)f(λ) dλ, then a Whittle estimator is a point of minimum
of the map

θ 7→Mn(θ) =

∫ π

−π

log fθ(λ) dλ + In

( 1

fθ

)

.

In Section 11.4 it is shown that the sequence
√
n
(

In(f) −
∫

ffX dλ
)

is asymptotically
normally distributed with mean zero and some variance σ2(f), under some conditions.
This implies that the sequence Mn(θ) converges for every fixed θ in probability to

M(θ) =

∫

log fθ(λ) dλ +

∫

fX

fθ
dλ.

By reasoning as in Section 12.1 we expect that the Whittle estimators θ̂n will be asymp-
totically consistent for the parameter θ0 that minimizes the function θ 7→M(θ).

If the true spectral density fX takes the form fθ0 for some parameter θ0, then this

parameter is the minimizing value. Indeed, by the inequality − logx+(x−1) ≥
(√
x−1

)2
,

valid for every x ≥ 0,

M(θ) −M(θ0) =

∫

(

log
fθ

fθ0

(λ) +
fθ0

fθ
− 1
)

dλ ≥
∫

(

√

fθ0

fθ
(λ) − 1

)2

dλ.
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This shows that the function θ 7→ M(θ) possesses a minimum value at θ = θ0, and this
point of minimum is unique as soon as the parameter θ is identifiable from the spectral
density.

To derive the form of the limit distribution of the Whittle estimators we replace
Ṁ(θ) by its linear approximation, as in Section 12.1, and obtain that

√
n(θ̂n − θ0) = −

(

M̈n(θ̃n)
)−1√

nṀn(θ0).

Denoting the gradient and second order derivative matrix of the function θ 7→ log fθ(λ)
by ˙̀

θ(λ) and ῭
θ(λ), we can write

√
nṀn(θ) =

∫

˙̀
θ(λ) dλ − In

( ˙̀
θ

fθ

)

,

M̈n(θ) =

∫

῭
θ(λ) dλ + In

( ˙̀
θ
˙̀T
θ − ῭

θ

fθ

)

.

By the results of Section 11.4 the sequence
√
nṀn(θ0) converges in distribution to a

normal distribution with mean zero and variance σ2( ˙̀
θ0/fθ0), under some conditions.

Furthermore, the sequence M̈n(θ0) converges in probability to
∫

˙̀
θ0

˙̀T
θ0

(λ) dλ =: Jθ0 . If
both are satisfied, then we obtain that

√
n(θ̂n − θ0) N

(

0, J−1
θ0
σ2( ˙̀

θ0/fθ0)J
−1
θ0

)

.

The asymptotic covariance is of the “sandwich form”, but reduces to a simpler expres-
sion in the case that the time series Xt is Gaussian, and the Whittle likelihood is an
approximation for the correctly specified likelihood. In this case,

σ2(f) = 4π

∫

ffT (λ)f2
X(λ) dλ.

It follows that in the case, and with fX = fθ0 , the asymptotic covariance of the sequence√
nṀn(θ0) reduces to 4πJθ0 , and the sandwich covariance reduces to 4πJ−1

θ0
.

12.14 Example (ARMA). The log spectral density of a stationary, causal, invertible
ARMA(p, q) process with parameter vector θ = (σ2, φ1, . . . , φp, θ1, . . . , θq) can be written
in the form

log fθ(λ) = log σ2 − log(2π) + log θ(eiλ) + log θ(e−iλ) − logφ(eiλ) − logφ(e−iλ).

Straightforward differentiation shows that the gradient of this function is equal to

˙̀
θ(λ) =







σ−2

eiλk

φ(eiλ)
+ e−iλk

φ(e−iλ)

eiλl

θ(eiλ)
+ e−iλl

θ(e−iλ)









204 12: Maximum Likelihood

Here the second and third lines of the vector on the right are abbreviations of vectors of
length p and q, respectively, obtained by letting k and l range over the values 1, . . . , p
and 1, . . . , q, respectively. The matrix Jθ =

∫

˙̀
θ
˙̀T
θ (λ) dλ takes the form

Jθ =





2π
σ4 0 0
0 AR MAAR
0 MAART MA



 ,

where AR, MA, and MAAR are matrices of dimensions (p × p), (q × q) and (p × q),
respectively, which are described in more detail in the following. The zeros must be
replicated to fulfil the dimension requirements, and result from calculations of the type,
for k ≥ 1,

∫

eiλk

φ(eiλ)
dλ =

1

i

∫

|z|=1

zk−1

φ(z)
dz = 0,

by Cauchy’s theorem, because the function z 7→ zk−1/φ(z) is analytic on a neighbourhood
of the unit disc, by the assumption of causility of the ARMA process.

Using the identity (f + f)(g+ g) = 2 Re(fg+ fg) we can compute the (k, l)-element
of the matrix MA as

2 Re

∫

[ eiλk

θ(eiλ)

eiλl

θ(eiλ)
+

eiλk

θ(eiλ)

e−iλl

θ(e−iλ)

]

dλ

= 2 Re
(

0 +

∫

eiλ(k−l)

|θ(eiλ)|2 dλ
)

= 2γV (k − l)2π,

where Vt is a stationary auto-regressive process satisfying θ(B)Vt = Zt for a white noise
process Zt of unit variance. The matrix AR can be expressed similarly as the covariance
matrix of p consecutive elements of an auto-regressive process Ut satisfying φ(B)Ut = Zt.
The (k, l)-element of the matrix MAAR can be written in the form

2 Re

∫

[ eiλk

φ(eiλ)

eiλl

θ(eiλ)
+

eiλk

φ(eiλ)

e−iλl

θ(e−iλ)

]

dλ = 2 Re
(

0 + 2π

∫

fUV (λ)eiλ(k−l) dλ
)

.

Here fUV (λ) = 1/
(

2πφ(eiλ)θ(e−iλ)
)

is the cross spectral density of the auto-regressive
processes Ut and Vt defined previously (using the same white noise process Zt)(?). Hence
the integral on the far left is equal to 2π times the complex conjugate of the cross
covariance γUV (k − l).

Taking this all together we see that the matrix resulting from deleting the first row
and first column from the matrix Jθ/(4π) results in the matrix J~φp,~θq

that occurs in The-

orem 12.10. Thus the Whittle estimators and maximum Gaussian likelihood estimators
have asymptotically identical behaviour.

The Whittle estimator for σ2 is asymptotically independent of the estimators of the
remaing parameters.
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12.3.2 Gaussian Time Series

In this section we study the behaviour of the maximum likelihood estimators for general
Gaussian time series in more detail. Thus θ̂n is the point of maximum of (12.6) (or

equivalently (12.7)), and we study the properties of the sequence
√
n(θ̂n − θ) under the

assumption that the true density of (X1, . . . , Xn) possesses the form (12.6), for some θ.
For simplicity we assume that the time series is centered at mean zero, so that the model
is completely parametrized by the covariance matrix Γn(θ). Equivalently, it is determined
by the spectral density fθ, which is related to the covariance matrix by

(

Γn(θ)
)

s,t
=

∫ π

−π

ei(s−t)λ fθ(λ) dλ.

It is easier to express conditions and results in terms of the spectral density fθ, which is
fixed, than in terms of the sequence of matrices Γn(θ). The asymptotic Fisher information
for θ is defined as

Iθ =
1

4π

∫ π

−π

∂ log fθ

∂θ
(λ)
(∂ log fθ

∂θ
(λ)
)T

dλ.

12.15 Theorem. Suppose that Xt is a Gaussian time series with zero mean and spectral
density fθ such that the map θ 7→ fθ is one-to-one and the map (θ, λ) 7→ fθ(λ) is
three times continuously differentiable and strictly positive. Suppose that θ ranges over
a bounded, open subset of Rd. Then the maximum likelihood estimator θ̂n based on
X1, . . . , Xn satisfies

√
n(θ̂n − θ) N(0, I−1

θ ).

Proof. See Azencott and Dacunha-Castelle (1984), Chapitre XIII.

The theorem is similar in form to the theorem for maximum likelihood estimators
based on replicated experiments. If pn,θ is the density of ~Xn = (X1, . . . , Xn) (given in
(12.6)), then it can be shown under the conditions of the theorem that

In,θ: =
1

n
Eθ

∂

∂θ
log pn,θ( ~Xn)

( ∂

∂θ
log pn,θ( ~Xn)

)T

→ Iθ.

The left side of this display is the true Fisher information for θ based on ~Xn, and this
explains the name asymptotic Fisher information for Iθ. With this in mind the analogy
with the situation for replicated experiments is perfect.

12.4 Model Selection

In the preceding sections and chapters we have studied estimators for the parameters of
ARMA or GARCH processes assuming that the orders p and q are known a-priori. In
practice reasonable values of p and q can be chosen from plots of the auto-correlation
and the partial auto-correlation functions, followed by diagnostic checking after fitting a
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particular model. Alternatively (or in addition) we can estimate appropriate values of p
and q and the corresponding parameters simultaneously from the data. The maximum
likelihood method must then be augmented by penalization.

The value of the likelihood (12.1) depends on the dimension the parameter θ. If
models of different dimension are available, then we can make the dependence explicit
by denoting the log likelihood as, with d the dimension of the model,

Λn(θ, d) =

n
∑

t=1

log pθ,d(Xt|Xt−1, . . . , X1).

A first idea to select a reasonable dimension is to maximize the function Λn jointly over
(θ, d). This rarely works. The models of interest are typically nested in that a model of
dimension d is a submodel of a model of dimension d+1. The maximum over (θ, d) is then
taken for the largest possible dimension. To counter this preference for large dimension
we can introduce a penalty function. Instead of Λn we maximize

(θ, d) 7→ Λn(θ, d) − φn(d),

where φn is a fixed function that takes large values for large values of its argument.
Maximizing this function jointly over (θ, d) must strike a balance between maximizing
Λn, which leads to big values of d, and minimizing φn, which leads to small values of d.
The choice of penalty function is crucial for this balance to yield good results.

Several penalty functions are in use, each of them motivated by certain consider-
ations. There is no general agreement as to which penalty function works best, partly
because there are several reasonable criteria for “best”. Three examples for models of
dimension d are

AIC(d) = d,

AICC(d) =
nd

n− d− 1
,

BIC(d) = 1
2d logn.

The abbreviations are for Akaike’s Information Criterion, Akaike’s information corrected
criterion, and Bayesian Information Criterion respectively.

It seems reasonable to choose a penalty function such that as n → ∞ the value d̂n

that maximizes the penalized likelihood converges to the true value (in probability or
almost surely). By the following theorem penalties such that φn(d) → ∞ faster than
loglogn achieve this aim in the case of ARMA processes. Here an ARMA(p, q) process is
understood to be exactly of orders p and q, i.e. the leading coefficients of the polynomials
φ and θ of degrees p and q are nonzero.

12.16 Theorem. Let Xt be a Gaussian causal, invertible stationary ARMA(p0, q0) pro-

cess and let (θ̂, p̂, q̂) maximize the penalized likelihood over ∪p+q≤d0(Θp,q, p, q), where
for each (p, q) the set Θp,q is a compact subset of R

p+q+1 consisting of parameters of a
causal, invertible stationary ARMA(p, q) process and d0 ≥ p0+q0 is fixed. If φn(d)/n→ 0
and lim inf φn(d)/ loglogn is sufficiently large for every d ≤ d0, then p̂→ p0 and q̂ → q0
almost surely.

Proof. See Azencott and Dacunha-Castelle (1984), Chapitre XIV.
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The condition on the penalty is met by the BIC penalty, but not by Akaike’s penalty
function. It is observed in practice that the use of Akaike’s criterion overestimates the
order of the model. The AICC criterion, which puts slightly bigger penalty on big models,
is an attempt to correct this.

However, choosing a model of the correct order is perhaps not the most relevant
criterion for “good” estimation. A different criterion is the distance of the estimated
model, specified by a pair of a dimension d̂ and a corresponding parameter θ̂, to the
true law of the observations. Depending on the distance used, an “incorrect” estimate
d̂ together with a good estimate θ̂ of that dimension may well yield a model that is
closer than the estimated model of the correct (higher) dimension. This paradox arises
because fitting a model of higher dimension requires the estimation of more parameters,
which may result in poorer estimators of all parameters. (Cf. Section 10.1.1.) For ARMA
processes the AIC criterion performs well in this respect.

The AIC criterion is based on the Kullback-Leibler distance.

12.17 EXERCISE. Repeatedly simulate a MA(1) process with θ = .8 for n = 50 or
n = 100.
(i) Compare the quality of the moment estimator and the maximum likleihood estima-

tor.
(ii) Are the sampling distributions of the estimators approximately normal?

12.18 EXERCISE. Find best fitting AR and ARMA models for the Wölfer sunspot
numbers (object sunspots in Splus).


