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This document describes a model involving both endogenous and exogenous
state variable. We first describe the theoretical model, before showing how the
perturbation method is implemented in DYNARE (MATLAB version).

1 A theoretical model

We consider an economy that consists of a large number of dynastic households and
a large number of firms. Firms are producing a homogeneous final product that can
be either consumed or invested by means of capital and labor services. Firms own
their capital stock and hire labor supplied by the households. Households own the
firms. In each and every period three perfectly competitive markets open — the
markets for consumption goods, labor services, and financial capital in the form
of firms’ shares. Household preferences are characterized by the lifetime utility
function:
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where0 < β? < 1 is a constant discount factor,ct is consumption in periodt, ht is
the fraction of total available time devoted to productive activity in periodt, θ > 0
andψ > 0. We assume that there exists a central planner that determines hours,
consumption and capital accumulation maximizing the household’s utility function
subject to the following budget constraint

ct + it = yt (2)

whereit is investment andyt is output. Investment is used to form physical capital,
which accumulates in the standard form as:

kt+1 = exp(bt)it + (1 − δ)kt with 0 < δ < 1 (3)

whereδ is the constant physical depreciation rate.bt is a shock affecting incorpo-
rated technological progress, which properties will be defined later.
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Output is produced by means of capital and labor services, relying on a constant
returns to scale technology represented by the following Cobb–Douglas production
function:

yt = exp(at)kαt h
1−α
t with 0 < α < 1 (4)

at represents a stochastic shock to technology or Solow residual. We assume that
the shocks to technology are distributed with zero mean, but display both persis-
tence across time and correlation in the current period. Let us consider the joint
process(at, bt) defined as(
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(5)

where|ρ+ τ | < 1 and|ρ− τ | < 1 for sake of stationarity and

E(εt) = 0,
E(νt) = 0,

E(εtεs) =
{
σ2
ε if t = s

0 if t 6= s
,

E(νtνs) =
{
σ2
ν if t = s

0 if t 6= s
,

E(εtνs) =
{
ϕσεσν if t = s
0 if t 6= s

.

2 Dynamic Equilibrium

The dynamic equilibrium of this economy follows from the first order conditions
for optimality:

ctθh
1+ψ
t = (1 − α)yt

βEt
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exp(bt+1)ct+1
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yt+1

kt+1
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)]
= 1

yt = exp(at)kαt h
1−α
t

kt+1 = exp(bt)(yt − ct) + (1 − δ)kt
at = ρat−1 + τbt−1 + εt

bt = τat−1 + ρbt−1 + νt

3 The DYNARE code

The dynare code is straightforward to write, as the equilibrium is written in the
natural way. The whole code is reported at the end of the section. Before that we
proceed step by step.
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Preamble The preamble consists of the some declarations to setup the number of
periods the model should be simulated, the endogenous and exogenous variables,
the parameters and assign values to these parameters.

1. periods 20100 ; specifies that the model will be simulated over 20100
periods in order to compute the moments of the simulated variables.

2. var y, c, k, h, a, b; specifies the endogenous variables in the model
since we have output (y ), consumption (c ), capital (k ), hours (h) and the two
shocks (a, b ).

3. varexo e, u ; specifies the exogenous variables in the model — namely
the innovations of the shocks, since we have the innovation of the non–
incorporated shock (e), and the innovation of the incorporated shock (u).

4. parameters list; specifies the list of parameters of the model. In the
case we are studying:

parameters beta, alpha, delta, theta, psi, rho, tau

beta discount factor
alpha capital elasticity in the production function
delta depreciation rate
theta disutility of labor parameter
psi labor supply elasticity
rho persistence
tau cross–persistence

5. Assignment of parameter values. This is done the standard way in MATLAB.
For example, we write

alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;

6. Note thatϕ, the conditional correlation of the shocks, is not, strickly speak-
ing, a parameter of the recursive equations and doesn’t need to be listed in
the parameters instruction. It may however be convenient to express it
as a parameter in the expression of the variance–covariance matrix of the
shocks (see below) and one may simply write:

phi = 0.1;
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Declaration of the model: This step is done in a straightforward way. It starts
with the instructionmodel; and ends withend; , in between all equilibrium
conditions are written exactly the way we write it “by hand”. However, there is a
simple rule that should be kept in mind when the model is written. Let us consider
a variablex:

• If x is decided in periodt then we simply writex.

• When the variable is decided int− 1, such as the capital stock in our simple
model, we writex(−1).

• Finally, when a variable is decided in the next period,t + 1, such as con-
sumption in the Euler equation, we writex(+1).

Hence the required code to declare our model in DYNARE will be:

model;
c* theta * hˆ(1+psi)=(1-alpha) * y;
k = beta * (((exp(b) * c)/(exp(b(+1)) * c(+1))) *

(exp(b(+1)) * alpha * y(+1)+(1-delta) * k));
y = exp(a) * (k(-1)ˆalpha) * (hˆ(1-alpha));
k = exp(b) * (y-c)+(1-delta) * k(-1);
a = rho * a(-1)+tau * b(-1) + e;
b = tau * a(-1)+rho * b(-1) + u;
end;

Assume now that we want to take a Taylor series expansion in logs rather than in
level, we just rewrite the model as

model;
exp(c) * theta * exp(h)ˆ(1+psi)=(1-alpha) * exp(y);
exp(k) = beta * (((exp(b) * exp(c))/(exp(b(+1)) * exp(c(+1))))

* (exp(b(+1)) * alpha * exp(y(+1))+(1-delta) * exp(k)));
exp(y) = exp(a) * (exp(k(-1))ˆalpha) * (exp(h)ˆ(1-alpha));
exp(k) = exp(b) * (exp(y)-exp(c))+(1-delta) * exp(k(-1));
a = rho * a(-1)+tau * b(-1) + e;
b = tau * a(-1)+rho * b(-1) + u;
end;

so that the level of consumption is actually given byexp(c).

Solving the model

1. Now we need to provide numerical initial conditions for the computation
of the deterministic steady state. This is done with the sequence between
initval; andend; . Each variable, endogenous or exogenous, should
be initialized. In our example, we give the exact values of the deterministic
equilibrium in absence of shocks. This takes the form
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initval;
y = 1.08068253095672;
c = 0.80359242014163;
h = 0.29175631001732;
k = 11.08360443260358;
a = 0;
b = 0;
e = 0;
u = 0;
end;

Alternatively, we could provide only approximated values. DYNARE would
then automatically compute the exact values.

2. We then specify the innovations and their matrix of variance–covariance.
This is done using theSigma e command. As the matrix is symmetrical,
one enters onlys the upper (or lower) triangular part:

Sigma_e = [ 0.000081, (phi * 0.009 * 0.009); ...
0.000081];

where the variance of both innovations is set to0.000081 and the corre-
lation between them is equal toϕ. Note that if an element is computed as
an expression, this expression must be put in parenthese. In theSigma e
command, the shock variables are ordered as in thevarexo declaration.

Alternatively, it is possible to use ashock; andend; block and declare
only the nonzero elements of the covariance matrix:

shocks;
var e = 0.009ˆ2;
var u = 0.009ˆ2;
var e,u = phi * 0.009 * 0.009;
end;

Note that in the current version of DYNARE, it isn’t possible to shut down
of shock by assigning it a zero variance. To shut down a shock the vari-
able must be removed from thevarexo and initval list, added to the
parameters list and assigned a value of zero.

3. The model is then solved and simulated using thestoch simul; com-
mand. By default, the coefficients of the approximated decision rules are
reported as well as the moments of the simulated variables and impulse re-
sponse functions for each exogenous shocks are ploted. In addition, the
following options are aavailable:
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• DRALG0 = [0,1] : Specify the algorithm used to compute the quadratic
approximation of the decision rules. [0] (default) uses a “pure” pertur-
bation method as in Schmitt-Grohe and Uribe [2002]; [1] moves the
point around which the Taylor approximation is computed toward the
mean of the distribution as in Collard and Juillard [2001].

• AR = Integer Order of autocorrelation coefficients to compute and to
print (default = 5)

• NOCORR Doesn’t print the correlation matrix (default = PRINT)

• DROP = Integer Number of points dropped at the beginning of simula-
tion before computing the summary statistics (default = 100)

• IRF = Integer Number of periods on which to compute the IRFs (de-
fault = 40)

• NOFUNCTIONS Doesn’t print the coefficients of the approximated
solution

• LINEAR Indicates that the original model is linear

• NOMOMENTS Doesn’t print moments of the endogenous variables

• ORDER = [1,2] Order of Taylor approximation (default = 2)

• REPLIC = Integer Number of simulated series used to compute the
IRFs (default = 1, if order = 1, and 50 otherwise)

The simulated trajectories are returned in MATLAB vectors named as the
variables (be careful not to use MATLAB reserved names such as INV for
your variables . . . ). Note that the specification of the variance–covariance
matrix of the shocks is enough to compute a second order approximation of
the policy function. In addition, for the simulation and the computation of
moments, DYNARE assumes that the shocks follow a normal distribution.

In our example, we use simply

stoch_simul;

If one wants to use the algorithm in Collard and Juillard [2001] and to drop
200 initial values instead of 100, one would write

simul_stoch(dr_algo=1,drop=200);
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DYNARE CODE FOR THE MODEL IN LEVEL

Here is the model file for the model in level. The last instructions are regular
MATLAB commands for graphics. It can be found in fileexample1.mod .

periods 20100;

var y, c, k, a, h, b;
varexo e,u;

parameters beta, rho, beta, alpha, delta, theta, psi, tau;

alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;
phi = 0.1;

model;
c* theta * hˆ(1+psi)=(1-alpha) * y;
k = beta * (((exp(b) * c)/(exp(b(+1)) * c(+1)))

* (exp(b(+1)) * alpha * y(+1)+(1-delta) * k));
y = exp(a) * (k(-1)ˆalpha) * (hˆ(1-alpha));
k = exp(b) * (y-c)+(1-delta) * k(-1);
a = rho * a(-1)+tau * b(-1) + e;
b = tau * a(-1)+rho * b(-1) + u;
end;

initval;
y = 1.08068253095672;
c = 0.80359242014163;
h = 0.29175631001732;
k = 11.08360443260358;
a = 0;
b = 0;
e = 0;
u = 0;
end;

Sigma_e = [ 0.000081, phi * 0.009 * 0.009; 0.000081 ];
stoch_simul;
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DYNARE CODE FOR THE MODEL IN LOGS

Here is the model file for the model in logs. In this case,initval only con-
tains guessed values andsteady is used to compute and display the exact value
of the deterministic equilibrium. The shocks are supposed to be uncorrelated.
Also, Collard & Juillard (2001) algorithm is used. The model file can be found
in example2.mod .

periods 20100;

var y, c, k, a, h, b;
varexo e,u;

parameters beta, rho, beta, alpha, delta, theta, psi, tau;

alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;

model;
exp(c) * theta * exp(h)ˆ(1+psi)=(1-alpha) * exp(y);
exp(k) = beta * (((exp(b) * exp(c))/(exp(b(+1)) * exp(c(+1))))

* (exp(b(+1)) * alpha * exp(y(+1))+(1-delta) * exp(k)));
exp(y) = exp(a) * (exp(k(-1))ˆalpha) * (exp(h)ˆ(1-alpha));
exp(k) = exp(b) * (exp(y)-exp(c))+(1-delta) * exp(k(-1));
a = rho * a(-1)+tau * b(-1) + e;
b = tau * a(-1)+rho * b(-1) + u;
end;

initval;
y = 0.1;
c = -0.2;
h = -1.2;
k = 2.4;
a = 0;
b = 0;
e = 0;
u = 0;
end;
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steady;

shocks;
var e = 0.009ˆ2;
var u = 0.009ˆ2;
end;

stoch_simul(dr_algo=1,drop=200);
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