
Espen Henriksen
September 18, 2008

A rough guide to recursive methods and
numerical dynamic programming

In its simplest form, the prototypical stochastic neoclassical growth model amounts
to maximize expected discounted additive separable utility over consumption
and leisure subject to the national income and product accounts, ie.

max
{ct,xt,nt}∞t=0

E0

∞∑
t=0

βtu (ct, 1− nt)

subject to

Product approach to output: yt = ztf (kt, nt) . (1)

Income approach to output: yt = rtkt + wtnt. (2)

Expenditure approach to output: yt = ct + xt. (3)

Law of motion for capital: kt+1 = (1− δ)kt + xt. (4)

Total factor productivity: zt = ρzt−1 + εt, εt ∼ N (0, σ2), (5)

where the exogenous stochastic process, specified in Equation (5), is computed,
in final samples, from {z̃t}Tt=0 where each z̃t is given by

ln z̃t = ln ỹt − α ln k̃t − (1− α) ln ñt.

1 Competitive equilibrium

A competitive equilibrium consists of quantities {ct, nt, xt}∞t=0 satisfying

1. Household optimization. They supply capital and labor, ie. choose quan-
tities {xt, nt, }∞t=0 given prices {rt, wt}∞t=0.

2. Firm optimization. They rent capital and hire labor, ie. choose quantities
{xt, nt, }∞t=0 given prices {rt, wt}∞t=0.

3. Market clearing. Prices, {rt, wt}∞t=0, are set such that supply equals de-
mand of capital and labor, {xt, nt, }∞t=0. By Walras’ law, since the markets
for capital and labor clear, the market for consumption goods will also
clear.

2 First welfare theorem

This model economy satisfies the first welfare theorem – that is any competitive
equilibrium is Pareto efficient. That implies that we can solve the centralized
planner’s problem instead of the decentralized problem. The social planner’s

1

problem is much easier to solve since we get rid of the prices and the individuals’
budget constraint and instead solve the optimization problem subject to the
resource constraint. We can then find the prices that support these equilibrium
allocations.

max
{ct,xt,nt}∞t=0

E0

∞∑
t=0

βtu (ct, 1− nt)

subject to

yt = ztf (kt, nt) . (6)

yt = ct + xt. (7)

kt+1 = (1− δ)kt + xt. (8)

zt = ρzt−1 + εt, εt ∼ N (0, σ2), (9)

k0 > 0, given. (10)

3 Simplifying the problem

For pedagogical purposes, let’s simplify the problem and for a while ignore the
labor-leisure choice and the stochastic process for total factor productivity. We
set zt equal to its unconditional mean z̄ for all t, and, in addition, we eliminate
yt and xt by combining Equations (6), (7) and (8). The problem simplifies to

max
{ct,xt}∞t=0

∞∑
t=0

βtu (ct)

subject to

ct + kt+1 = z̄f (kt) + (1− δ)kt.

k0 > 0, given.

4 The sequence problem, solving for allocations

The mathematical strategy is solve for a sequence of allocations by maximizing
a function (total utility) of an infinity of variables (consumption and capital at
each date) subject to technological constraints (production function and law of
motion for capital) from a given initial capital stock k0.

The Lagrangian equation for the problem is

L =
∞∑

t=0

βt {u (ct)− λt [ct + kt+1 − z̄f (kt)− (1− δ) kt]} ,

with transversality condition

lim
t→∞

βtλtkt+1 = 0.

Given standard assumptions on the functional forms of f and u, capital stock
converge monotonically to the level that, if sustained, maximizes consumption
per unit of time.

For the deterministic problem, it is quick and easy to solve the sequence
problem. However, if uncertainty is introduced the problem blows up and most
likely becomes impossible to solve.

2

5 The recursive problem, solving for functions

The mathematical strategy is to seek the optimal savings/investment function
directly and then to use this function to compute the optimal sequence of in-
vestments from any initial capital stock. This way of looking at the problem –
decide on the immediate action to take as a function of the current situation
– is called a recursive formulation. It exploits the observation that a decision
problem of the same structure recurs every period.

For the deterministic problem, this might seem like an unnecessarily hard
way to solve the problem. However, as we shall see, if uncertainty is introduced
the structure of the problem hardly changes and we can still solve it with relative
ease.

Our problem is still

max
{ct,kt+1}∞t=0

∞∑
t=0

βtu (ct)

subject to

ct + kt+1 = z̄f (kt) + (1− δ)kt.

k0 > 0, given.

Substituting in for ct we have the following problem

max
{kt+1}∞t=0

∞∑
t=0

βtu [z̄f (kt) + (1− δ) kt − kt+1] ,

or

max
{kt+1}∞t=0

∞∑
t=0

βtu (kt, kt+1) ,

both given
k0 > 0.

Starting from an arbitrary time t, the problem is

max
{ks+1}∞s=t

∞∑
s=t

βs−tu (ks, ks+1) . (11)

given

cs + ks+1 = z̄f (ks) + (1− δ)ks ∀s ≥ t (12)

kt > 0 given (13)

5.1 Value function

Let us define v(kt) as the indirect utility function, ie. function that attains
the value of the optimal program from period t and onwards given an initial
condition kt

v(kt) ≡ max
{ks+1}∞s=t

∞∑
s=t

βs−tu (ks, ks+1) .

3

Using the maximization-by-steps idea, we can write

v(kt) ≡ max
kt+1

{
u (kt, kt+1) + max

{ks+1}∞s=t+1

∞∑
s=t+1

βs−tu (ks, ks+1)

}

= max
kt+1

{
u (kt, kt+1) + β max

{ks+1}∞s=t+1

∞∑
s=t+1

βs−(t+1)u (ks, ks+1)

}
≡ max

kt+1
{u (kt, kt+1) + βv (kt+1)} .

= max
kt+1
{u (ct) + βv (kt+1)}

We have derived the Bellman equation

v(kt) = max
kt+1
{u (ct) + βv (kt+1)} , (14)

where
ct = z̄f (kt) + (1− δ)kt − kt+1. (15)

The Bellman equation captures a key element of most intertemporal decision,
which most of our decisions are, namely that they are a trade-off between in-
stantaneous utility u(ct) and discounted continuation utility βv (kt+1).

The only state variable of our recursive problem is kt. The variable kt

captures all relevant information for making a decision. Since kt depends on
past decision, we classify it as an endogenous state variable.

The only decision or control variable of our recursive problem is kt+1. Equiv-
alently, we could instead have defined ct or xt as our control/decision variable.

5.2 Recursive notation

We will call a problem stationary whenever the structure of the choice problem
that a decision maker faces is identical at every point in time, ie. only relative
time, not absolute time, is relevant. In order to make sure we are not using
notation that might indicate otherwise we write the Bellman equation using
recursive notation

v(k) = max
k′
{u (c) + βv (k′)} , (16)

where
c = z̄f (k) + (1− δ)k − k′. (17)

5.3 Properties of the decision rule

Given the true (but potentially unknown) value function v (·), we can study
the optimality conditions of the problem. The unique optimal time-invariant
decision rule is defined by the first-order condition of the maximization problem,
defined by the right-hand-side of the Bellman equation (16), with respect to the
control variable, in this case k′

∂u (c)
∂c

∂c

∂k′
+ β

∂v (k′)
∂k′

= 0,

4

and since ∂c/∂k′ = −1
∂u (c)

∂c
= β

∂v (k′)
∂k′

. (18)

Application of the envelope theorem, also known as the Benveniste and
Scheinkman (1979) condition, which generally holds off corners, amounts to
taking the derivative of the problem with respect to the endogenous state vari-
able, in this case k

∂v (k)
∂k

=
∂u (c)

∂c

∂c

∂k
.

Since ∂c/∂k = z̄∂f (k) /∂k + (1− δ)

∂v (k)
∂k

=
∂u (c)

∂c

(
z̄
∂f (k)

∂k
+ 1− δ

)
. (19)

Since we have a stationary, recursive problem, given Equation (20) we also
have

∂v (k′)
∂k′

=
∂u (c′)

∂c′

(
z̄
∂f (k′)

∂k′
+ 1− δ

)
. (20)

Combining Equations (18) and (7.4) and eliminating ∂v (k′) /∂k′, we have

1
β

∂u (c)
∂c

=
∂u (c′)

∂c′

(
z̄
∂f (k′)

∂k′
+ 1− δ

)
,

or equivalently

β
∂u (c′) /∂c′

∂u (c) /∂c

(
z̄
∂f (k′)

∂k′
+ 1− δ

)
= 1.

This is the intertemporal optimality condition, also known as the Euler equation.

5.4 Steady state

In steady state, k = k′ = k̄, c = c′ = c̄, etc. The Euler equation becomes

β

(
z̄
∂f
(
k̄
)

∂k̄
+ 1− δ

)
= 1,

from which we can solve for k̄ as a function of the structural parameters and z̄.

5.5 Contraction mapping theorem

In general, the function v (·) is unknown, but the Bellman equation can be used
to find it. In most of the cases we will deal with, the Bellman equation satisfies
a contraction mapping theorem, which implies that

1. There is a unique function v (·) which satisfies the Bellman equation.

2. If we begin with any initial guess for the function v, let’s call it v0(k) and
define

vn+1 (k) = max
c,k′

[u (c) + βvn (k′)]

subject to
c + k′ = f (k) + (1− δ) k

5

for n = 0, 1, 2, ... then limn→∞ vn+1 (k) = v (k)

In other words, if we iterate on the Bellman equation and for each iteration
update the guess for the function v, we will eventually converge to the true
function v.

The above two implications give us two alternative means of uncovering the
value function.

First, given implication 1 above, if we are fortunate enough to correctly guess
the value function v (·) then we can simply plug v(k′) into the right side and
then verify that v(k) solves the Bellman equation. This procedure only works
in a very few and very special cases.

Second, implication 2 above is useful for doing numerical work. One ap-
proach is to find an approximation to the value function and iterate. It is
almost like it begs to be programmed.

6 Discrete deterministic value function iteration

Numerical deterministic value function iteration amounts to two choices of nu-
merical methods: how to approximate the value function and how to optimize
the object inside the curly brackets:

v (k)︸︷︷︸
approximation

= max
k′

{
u (c) + β v (k′)︸ ︷︷ ︸

approximation

}
︸ ︷︷ ︸

optimization

With discrete deterministic value function iteration, the value function is
numerically approximated by a vector of discrete points, ie. both the state
variable k and the decision variable k′ can just take a set of discrete values.

Numerical optimization is then almost trivial and will simply amount to for
each k pick the k′ which gives the highest value for

{
u (c) + βv (k′)

}
6.1 Computational implementation

1. Initialize the algorithm

(a) Define the calibrated structural parameters of the model economy.

(b) Compute the steady state value of the capital stock k∗

(c) Set gk (number of grid points), k (lower bound of the state space), k̄
(upper bound of the state space), and ε (tolerance of error).
gk is determined weighting the tradeoff between speed and precision.

Pseudo-code:
α← .35
β ← .98
δ ← .025
σ ← 2
z̄ ← 5

k∗ ←
(1

β−(1−δ)

αz̄

) 1
α−1

6

k ← .95k∗

k̄ ← 1.05k∗

gk ← 101
ε← 10−8

Matlab implementation:

c l e a r a l l ;
c l o s e a l l ;
a lpha = . 3 5 ;
beta = . 9 8 ;
d e l t a = . 0 2 5 ;
sigma = 2 ;
zbar = 5 ;
k s ta r = ((1/ beta − 1 + de l t a)/ (alpha ∗ zbar)) ˆ (1/ (alpha −1)) ;
kmin = 0.95∗ ks ta r ;
kmax = 1.05∗ ks ta r ;
gk = 101 ;
e p s i l o n = 1E−8;

Note that the values assigned to the variables in this example are arbitrary.
In this example, they are not calibrated, but are simply added to illustrate
the algorithm.

2. Given the bounds of the state space, set the grid points {k1, k2, . . . , kgk
}.

Default is equidistanced grid points. The value function will be approxi-
mated as a (gk × 1)-dimensional vector v.

Pseudo-code
for i = 1 to gk do

ki ← k + k̄−k
gk−1 (i− 1)

end for

Matlab implementation:

f o r i = 1 : gk
k (i) = kmin + (kmax − kmin) / (gk − 1) ∗ (i − 1) ;

end

An alternative Matlab implementation:

k = l i n s p a c e (kmin , kmax , gk) ;

3. Construct consumption and welfare matrices. Compute a (gk × gk) di-
mensional consumption matrix c with the value of consumption for all the
(gk × gk) combinations of k and k′. Then compute a (gk × gk)-dimensional
welfare matrix u with the utility of consumption for all the (gk × gk) com-
binations of k and k′.

Pseudo-code:
for i = 1 to gk do

for j = 1 to gk do
ci,j ← z̄ (ki)

α + (1− δ)ki − k′j
if ci,j < 0 then

ci,j ← 0

7

end if
end for

end for
for i = 1 to gk do

for j = 1 to gk do
if σ = 1 then

u (ci,j)← ln (ci,j)
else

u (ci,j)← (ci,j)
1−σ−1

1−σ
end if

end for
end for

Matlab implementation:
f o r i = 1 : gk

f o r j = 1 : gk
c (i , j) = zbar ∗k (i)ˆ alpha + (1−de l t a)∗k (i) − k (j) ;
i f c (i , j) < 0

c (i , j) = 0 ;
end

end
end
c l e a r i j

f o r i = 1 : gk
f o r j = 1 : gk

i f sigma == 1
u(i , j) = log (c (i , j)) ;

e l s e
u(i , j) = (c (i , j)ˆ(1− sigma) − 1)/(1− sigma) ;

end
end

end
c l e a r i j

4. Set an initial value of v0 =
{
v0

i

}gk

i=1
. A trivial initial condition is v0 = 0.

Also initialize Tv

Pseudo-code:
for i = 1 to gk do

vi ← 0
Tvi ← 0

end for

Matlab implementation:
v = ze ro s (gk , 1) ;
Tv = ze ro s (gk , 1) ;

5. Update the value function and obtain Tv. More specifically, do the fol-
lowing steps for each of i = 1, . . . , gk.

(a) Solve the following problem

dk
i = argmax

k′∈{kj}
gk
j=1

{u (ki, k
′) + βv (k′)}

8

For later use, also store dg
i ← argmaxj∈{1,...,gk} {u (ki, kj) + βv (kj)}

(b) Once di is obtained, use it to update value function. Specifically:

Tvi = u
(
ki, d

k
i

)
+ βv

(
dk

i

)
After implementing the procedure above for i = 1, . . . , gk, we have con-
structed a new (discretized) approximation for the value function as Tv =
{Tvi}gk

i=1.

6. Compare {vi}gk

i=1 and {Tvi}gk

i=1 and compute the distance w. One way to
define the error is to use maximum distance, as follows:

w = max
i
|vi − Tvi|

If w > ε, the error is not small enough. Update the value function using:
v = Tv and go back to Step 5.

Pseudo-code:
while w > ε do

for i = 1 to gk do
dk

i ← argmaxk′∈{kj}
gk
j=1
{u (ki, k

′) + βv (k′)}
dg

i ← argmaxj∈{1,...,gk} {u (ki, kj) + βv (kj)}
Tvi ← u

(
ki, d

k
i

)
+ βv

(
dk

i

)
end for
w = maxi |vi − Tvi|
v = Tv

end while

Matlab implementation:
whi le w > ep s i l o n

f o r i = 1 : gk
[y , j] = max(u(i , :) + beta ∗v ’) ;
dk (i) = k (j) ;
dg (i) = j ;
Tv(i) = u(i , dg (i)) + beta ∗v (dg (i)) ;

end
w = max(abs (Tv − v)) ;
v = Tv ;

end

7. If w < ε, then we find our optimal value function. The value function
is approximated by the vector v = {vi}gk

i=1. The optimal decision rule is
approximated by the vector dk =

{
dk

i

}gk

i=1
.

Given dk we can compute the optimal decision rule for consumption dc =
{dc

i}
gk

i=1.

Pseudo code:
for i = 1 to gk do

dc
i ← z̄ (ki)

α + (1− δ)ki − dk
i

end for

Matlab implementation:

9

f o r i = 1 : gk
dc (i) = zbar ∗k (i)ˆ alpha + (1−de l t a)∗k (i) − dk (i) ;

end

6.2 Simulate the model

If we want to simulate the model for T periods from any given initial capital
stock ks ∈ {kj}gk

j=1, the easiest is to use the grid-representation of the optimal
decision rule for next-period capital; dg.

Pseudo code:
Require: {ks, i}, dg

Ensure: {k̂t}T+1
t=1 , {ĉt}Tt=1

for t = 1 to T do
j ← dg

i

k̂t+1 ← k(j)
ĉt ← f(k̂t) + (1− δ)k̂ − k̂t+1

i← j
end for

7 Reintroducing uncertainty

An AR(1) process like the one specifying the exogenous law of motion for zt+1

in Equation (5) is an example of a continuous process which has the Markov
property. Loosely speaking, having the Markov property means that the prob-
ability distribution of the current state is conditionally independent of the path
of past states – ie. no memory beyond the present. A discrete two-state Markov
chain is an example of a simpler process with the Markov property.

We take the problem from Equations ..., but let zs be stochastic:

max
{ks+1}∞s=t

Et

∞∑
s=t

βs−tu (cs) . (21)

subject to

cs + ks+1 = zsf (ks) + (1− δ)ks ∀s ≥ t (22)

kt > 0 given. (23)

where zs can attain two values zH (high productivity) and zL (low productivity).
zt follows a two-state Markov chain with Pr (zs+1 = zH | zs = zH) = p and
Pr (zs+1 = zL | zs = zL) = q.

Denoting the Markov transition matrix Π, we have

Π =
(

p 1− p
1− q q

)
.

7.1 The sequence problem, solving for allocations

Introduction of a very simple exogenous stochastic process – the entire problem
“blows up”.

10

7.2 The recursive problem, solving for functions

Introduction of exogenous uncertainty hardly changes the problem

v(kt, zt) = max
kt+1

{
u (ct) + βEzt+1|zt

v (kt+1, zt+1)
}

,

where
ct = ztf (kt) + (1− δ)kt − kt+1.

Our recursive problem has now two state variables: kt and zt. Together these
two variables capture all relevant information for making a decision. Since zt

does not depend on past decision, we classify it as an exogenous state variable.
kt is still an endogenous state variable.

The only decision or control variable of our recursive problem is still kt+1

(or equivalently ct or xt).

7.3 Recursive notation

v(k, z) = max
k′

{
u (c) + βEz′|z [v (k′, z′)]

}
,

where
c = zf (k) + (1− δ)k − k′.

7.4 Properties of the decision rule

As before, we can take the first order condition with respect to the control vari-
able (in this case k′)

∂u (c)
∂c

· (−1) + βEz′|z

[
∂v (k′, z′)

∂k′

]
= 0,

and the envelope condition with respect to the endogenous state variable (in this
case k)

∂v (k, z)
∂k

=
∂u (c)

∂c

(
z
∂f (k)

∂k
+ 1− δ

)
.

Updating the latter, combining these two equations and eliminating ∂v (k′, z′) /∂k′,
we have

1
β

∂u (c)
∂c

= Ez′|z

[
∂u (c′)

∂c′

(
z′

∂f (k′, z′)
∂k′

+ 1− δ

)]
,

or equivalently

βEz′|z

[
∂u (c′) /∂c′

∂u (c) /∂c

(
z′

∂f (k′, z′)
∂k′

+ 1− δ

)]
= 1.

7.5 Discrete stochastic value function iteration

Numerical stochastic value function iteration amounts to three choices of nu-
merical methods: how to approximate the value function, how to integrate in

11

order to compute the expectation, and how to optimize the object inside the
curly brackets:

v (k, z)︸ ︷︷ ︸
approximation

= max
k′

{
u (c) + β Ez′|z

[
v (k′, z′)︸ ︷︷ ︸

approximation

]
︸ ︷︷ ︸

integration

}

︸ ︷︷ ︸
optimization

With discrete stochastic value function iteration, the value function is numer-
ically approximated by a vector of discrete points, ie. both the state variables
k and z and the decision variable k′ can only take a set of discrete values.

Both numerical integration and numerical optimization are then almost triv-
ial. Integration will simply amount to weighting discrete events by discrete
probabilities and optimization is simply for each combination (k, z) to pick the
k′ which gives the highest value for the expression within the curly brackets.

8 Reintroducing labor-leisure choice

max
{kt+1,nt}∞t=s

Es

∞∑
t=s

βt−su (ct, 1− nt) . (24)

subject to

ct + kt+1 = ztf (kt, nt) + (1− δ)kt ∀t ≥ s (25)

ks > 0 given. (26)

where zt follows a two-state Markov chain with Pr (zt+1 = zH | zt = zH) = p
and Pr (zt+1 = zL | zt = zL) = q.

8.1 The recursive problem, solving for functions

Again, the problem is hardly changed

v(kt, zt) = max
kt+1,nt

{
u (ct, 1− nt) + βEzt+1|zt

v (kt+1, zt+1)
}

,

where
ct = ztf (kt, nt) + (1− δ)kt − kt+1.

Our recursive problem has still two state variables: kt and zt. No additional
variables are necessary to capture all relevant information for making a decision.
However, we have now two decision or control variables: kt+1 and nt.

8.2 Recursive notation

v(k, z) = max
k′,n

{
u (c, 1− n) + βEz′|zv (k′, z′)

}
,

where
c = zf (k, n) + (1− δ)k − k′.

12

8.3 Properties of the decision rule

As before, we can take the first order condition with respect to the control
variables k′

∂u (c, 1− n)
∂c

· (−1) + βEz′|z

[
∂v (k′, z′)

∂k′

]
= 0, (27)

and n,
∂u (c, 1− n)

∂c

∂c

∂n
+

∂u (c, 1− n)
∂n

= 0, (28)

and the envelope condition with respect to the endogenous state variable k

∂v (k, z)
∂k

=
∂u (c)

∂c

(
z
∂f (k)

∂k
+ 1− δ

)
. (29)

Equation (28) is our intratemporal optimality condition. Reorganizing it
gives us

∂u (c, 1− n) /∂n

∂u (c, 1− n) /∂c
= z

∂f (k, n)
∂n

Updating Equation (29), combining it with Equation (27) and eliminating ∂v (k′, z′) /∂k′,
gives us (as before) the intertemporal optimality condition

βEz′|z

[
∂u (c′) /∂c′

∂u (c) /∂c

(
z′

∂f (k′, n′)
∂k′

+ 1− δ

)]
= 1.

8.4 Discrete stochastic value function iteration

Again everything follows through almost exactly as in the deterministic case
without labor-leisure choice... to be continued ...

13

9 Piecewise-linear interpolation of the value fn

As we saw in the previous section, numerical deterministic value function iter-
ation amounts to two choices of numerical methods: how to approximate the
value function and how to optimize the sum of instantaneous return (utility)
and the discounted continuation value.

In this case, the value function is numerically approximated by piecewise
linear interpolation, ie. whereas we will still evaluate the function at a set of
discreet notes for k, the decision variable k′ can now take any value within the
permissable range.

For the numerical optimization part, we need a routine that ... a continuous,
but not continuously differentiable function. A natural choice is golden section
search.

9.1 Computational implementation

1. Initialize the algorithm

(a) Define the calibrated structural parameters of the model economy.

(b) Compute the steady state value of the capital stock k∗

(c) Set gk (number of grid points), k (lower bound of the state space), k̄
(upper bound of the state space), and ε (tolerance of error).
gk is determined weighting the tradeoff between speed and precision.

Pseudo-code:
α← .35
β ← .98
δ ← .025
σ ← 2
z̄ ← 5

k∗ ←
(1

β−(1−δ)

αγ

) 1
α−1

k ← .95k∗

k̄ ← 1.05k∗

gk ← 11
ε← 10−8

Note that the values assigned to the variables in this example are arbitrary.
In this example, they are not calibrated, but are simply added to illustrate
the algorithm.

2. Given the bounds of the state space, set the knots {ki}gk

i=1. Default is to
set equidistance grid points. Given the knots, the value function, which
is approximated using piecewise-linear interpolation, can be stored as an
array of length gk. Let’s denote the value function as {vi}gk

i=1

3. (a) Initialize the algorithm to evaluate d given the piecewise-linear inter-
polation defined by {ki, vi}gk

i=1

Pseudo-code:

14

Require: d and {ki, vi}gk

i=1

Ensure: y
for i = 1 to gk − 1 do

if d ≥ ki and d < ki+1 then
y = vi + (d− ki)

vi+1−vi

ki+1−ki

break loops
end if

end for

(b) Initialize the algorithm to evaluate u(k, k′) + v(k′) given k′ = d

Pseudo-code:
Require: k, d and {ki, vi}gk

i=1

Ensure: v(k | k′ = d)
v(x)← evaluate the interpolation at d given {ki, vi}gk

i=1

if σ = 1 then
v(k | k′ = d)← ln [z̄ (k)α + (1− δ)k − d] + v(d)

else
v(k | k′ = d)← [z̄(k)α+(1−δ)k−d]1−σ−1

1−σ + v(d)
end if

(c) Initialize Golden-section search algorithm, for given k, to find

d = argmax
k′∈[k,k̄]

{u (k, k′) + βv (k′)} .

Start of pseudo:
Require: k and {ki, vi}gk

i=1

Ensure: d
. . .

4. Set an initial value of v0 =
{
v0

i

}gk

i=1
. A trivial initial condition is v0 = 0.

Also initialize Tv

Pseudo-code:
for i = 1 to gk do

vi ← 0
Tvi ← 0

end for

5. Update the value function and obtain Tv. More specifically, do the fol-
lowing steps for each knot in the state space {ki}gk

i=1.

(a) Solve the following problem

dk
i = argmax

k′∈[k,k̄]

{u (ki, k
′) + βv (k′)}

using golden section search.

(b) Once dk
i is obtained, use it to update value function. Specifically:

Tvi = u
(
ki, d

k
i

)
+ βv

(
dk

i

)
15

After implementing the procedure above for i = 1, . . . , gk, we have con-
structed a new piece-wise linear interpolation for the value function as
Tv = {Tvi}gk

i=1.

6. Compare {vi}gk

i=1 and {Tvi}gk

i=1 and compute the distance w. One way to
define the error is to use maximum distance, as follows:

w = max
i
|vi − Tvi|

If w > ε, the error is not small enough. Update the value function using:
v = Tv and go back to Step 5.

7. If w < ε, then we find our optimal value function. The value function
is approximated by the vector v = {vi}gk

i=1. The optimal decision rule is
approximated by the vector dk =

{
dk

i

}gk

i=1
.

Given dk we can compute the optimal decision rule for consumption dc =
{dc

i}
gk

i=1.

16

	Competitive equilibrium
	First welfare theorem
	Simplifying the problem
	The sequence problem, solving for allocations
	The recursive problem, solving for functions
	Value function
	Recursive notation
	Properties of the decision rule
	Steady state
	Contraction mapping theorem

	Discrete deterministic value function iteration
	Computational implementation
	Simulate the model

	Reintroducing uncertainty
	The sequence problem, solving for allocations
	The recursive problem, solving for functions
	Recursive notation
	Properties of the decision rule
	Discrete stochastic value function iteration

	Reintroducing labor-leisure choice
	The recursive problem, solving for functions
	Recursive notation
	Properties of the decision rule
	Discrete stochastic value function iteration

	Piecewise-linear interpolation of the value fn
	Computational implementation

