
Dynare

Wouter J. Den Haan

University of Amsterdam

July 26, 2010



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Introduction

� What is the objective of perturbation?
� Peculiarities of Dynare
� Some examples



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Objective of 1st-order perturbation

� Obtain linear approximations to the policy functions that satisfy
the �rst-order conditions

� state variables: xt = [x1,t x2,t x3,t � � � xn,t]0

� result:
yt = ȳ+ (xt � x̄)0a

� a bar above a variable indicates steady state value



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Underlying theory

� Model:
Et [f (g(x))] = 0,

� f (x) is completely known
� g(x) is the unknown policy function.

� Perturbation: Solve sequentially for the coe¢ cients of the
Taylor expansion of g(x).

� More info:
� notes and slides on perturbation
� slides on Blanchard-Kahn conditions



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Neoclassical growth model

� xt = [kt�1, zt]

� yt = [ct, kt, zt]

� linearized solution:

ct = c̄+ ac,k(kt�1 � k̄) + ac,z(zt � z̄)
kt = k̄+ ak,k(kt�1 � k̄) + ak,z(zt � z̄)
zt = ρzt�1 + εt



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Linear in what variables?

� Dynare does not understand what ct is.

� could be level of consumption
� could be log of consumption
� could be rainfall in Scotland

� Dynare simply generates a linear solution in what you specify
as the variables

� More on this below



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Peculiarities of Dynare

� Variables known at beginning of period t must be dated t� 1.

� Thus,
� kt: the capital stock chosen in period t
� kt�1: the capital stock available at beginning of period t



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Peculiarities of Dynare

The solution

ct = c̄+ ac,k(kt�1 � k̄) + ac,z(zt � z̄)
kt = k̄+ ak,k(kt�1 � k̄) + ak,z(zt � z̄)

zt = ρzt�1 + εt

can of course be written (less conveniently) as

ct = c̄+ ac,k(kt�1 � k̄) + ac,z�1(zt�1 � z̄) + ac,zεt
kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,zεt

zt = ρzt�1 + εt

with ac,z�1 = ρac,z and ak,z�1 = ρak,z



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Peculiarities of Dynare

� Dynare gives the solution in the less convenient form:

ct = c̄+ ac,k(kt�1 � k̄) + ac,z�1(zt�1 � z̄) + ac,zεt
kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,zεt

zt = ρzt�1 + εt

� Since the Dynare solution satis�es

ac,z�1 = ρac,z and ak,z�1 = ρak,z

one could always rewrite the Dynare solution in the more
convenient form



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare program blocks

� Labeling block: indicate which symbols indicate what
� variables in "var"
� exogenous shocks in "varexo"
� parameters in "parameters"

� Parameter values block: Assign values to parameters



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare program blocks

� Model block: Between "model" and "end" write down the n
equations for n variables

� note that dynare has no conditional expectations but if an
equation has a (+1) variable, then Dynare knows there is a
conditional expectation



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare program blocks

� Initialization block: Dynare has to solve for the steady state.
This can be the most di¢ cult part (since it is a true non-linear
problem). So good initial conditions are important

� Random shock block: Indicate the standard deviation for the
exogenous innovation



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare program blocks

� Solution & Properties block:
� Solve the model with the command

� 1st-order: stoch_simul(order=1,nocorr,nomoments,IRF=0)
� 2nd-order: stoch_simul(order=2,nocorr,nomoments,IRF=0)

� Dynare can calculate IRFs and business cycle statistics. E.g.,
� stoch_simul(order=1,IRF=30),
� but I would suggest to program this yourself (see below)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Running Dynare

� In Matlab change the directory to the one in which you have
your *.mod �les

� In the Matlab command window type

dynare programname

� This will create and run several Matlab �les



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Model with productivity in levels (FOCs A)

Speci�cation of the problem

maxfct,ktg E∑∞
t=1 βt�1 c1�ν

t �1
1�ν

s.t.
ct + kt = ztkα

t�1 + (1� δ)kt�1
zt = (1� ρ) + ρzt�1 + εt

k0 given
Et[εt+1] = 0 & Et[ε2

t+1] = σ2



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Distribution of innovation

� 1st-order approximations:
� the distribution of εt does not matter, except that Et[εt+1] has
to be zero.

� 2nd-order approximations:
� σ matters (it a¤ects the mean)
� higher-order moments do not

� Also see notes and slides on perturbation theory



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Everything in levels: FOCs A

Model equations:

c�ν
t = Et

h
βc�ν

t+1(αzt+1kα�1
t + 1� δ)

i
ct + kt = ztkα

t�1 + (1� δ)kt�1

zt = (1� ρ) + ρzt�1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1-delta);
c+k=z*k(-1)^alpha+(1-delta)k(-1);
z=(1-rho)+rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Policy functions reported by Dynare

� δ = 0.025, ν = 2, α = 0.36, β = 0.99, and ρ = 0.95

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

!!!! You have to read output as

k z c
constant 37.989254 1.000000 2.754327
k(-1)-kss 0.976540 -0.000000 0.033561
z(-1)-zss 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� That is, explanatory variables are relative to steady state.
� (Note that steady state of e is zero by de�nition)
� If explanatory variables take on steady state values, then
choices are equal to the constant term, which of course is
simply equal to the corresponding steady state value



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Changing amount of uncertainty

Suppose σ = 0.1 instead of 0.007

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� Any change?



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Model with productivity in logs

Speci�cation of the problem

max
fct,ktg

E
∞

∑
t=1

βt�1 c1�ν
t � 1
1� ν

s.t.

ct + kt = exp(zt)kα
t�1 + (1� δ)kt�1

zt = ρzt�1 + εt

k0 given, Et[εt+1] = 0



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Variables in levels & prod. in logs - FOCs B

Model equations:

c�ν
t = Et

h
βc�ν

t+1(α exp(zt+1)kα�1
t + 1� δ)

i
ct + kt = exp(zt)kα

t�1 + (1� δ)kt�1
zt = ρzt�1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*exp(z(+1))*k^(alpha-1)+1-delta);
c+k=exp(z)*k(-1)^alpha+(1-delta)k(-1);
z=rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Policy functions reported by Dynare

� δ = 0.025, ν = 2, α = 0.36 and β = 0.99

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 0.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� What does z stand for here?



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Linear solution in what?

Dynare gives a linear system in what you specify the variables to be



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

All variables in logs - FOCs C

Model equations:

(exp(c̃t))
�ν =

= Et

h
β(exp(c̃t+1))

�ν(α exp(z̃t+1)(exp(k̃t))
α�1 + 1� δ)

i
exp(c̃t) + exp(k̃t) = exp(z̃t)(exp(k̃t�1))

α + (1� δ) exp(k̃t�1)

z̃t = ρz̃t�1 + εt

The variables c̃t and k̃t are the log of consumption and capital.



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

All variables in logs - FOCs C

Model equations (rewritten a bit)

exp(�νc̃t)

= Et
�
β exp(�νc̃t+1)(α exp(z̃t+1 + (α� 1)k̃t) + 1� δ)

�
exp(c̃t) + exp(k̃t) = exp(z̃t + αk̃t�1) + (1� δ) exp(k̃t�1)

z̃t = ρz̃t�1 + εt



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

All variables in logs - FOCs C

Dynare equations:

exp(-nu*lc)=beta*exp(-nu*lc(+1))*
(alpha*exp(lz(+1)+(alpha-1)*lk))+1-delta);
exp(lc)+exp(lk)
=exp(lz+alpha*lk(-1))+(1-delta)exp(lk(-1));
lz=rho*lz(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

All variables in logs - FOCs C

� This system gives policy functions that are linear in the
variables lc, i.e., ln(ct), lk,i.e., ln(kt), and lz, i.e., ln(zt),

� Programmers often do not make clear that a variable is a log.
That is, they would simply use c, k, and z in the dynare
equations above instead of lc, lk, and lz



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

All variables in logs - FOCs C

Dynare equations (with di¤erent notation):

exp(-nu*c)=beta*exp(-nu*c(+1))*
(alpha*exp(z(+1)+(alpha-1)*k))+1-delta);
exp(c)+exp(k)=exp(z+alpha*k(-1))+(1-delta)exp(k(-1));
z=rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

POLICY AND TRANSITION FUNCTIONS for foc B

k z c
constant 37.989254 0.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

POLICY AND TRANSITION FUNCTIONS for foc C

k z c
constant 3.637303 0.000000 1.013173
k(-1) 0.976540 0.000000 0.462887
z(-1) 0.068372 0.950000 0.334554
e 0.071970 1.000000 0.352162



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

These are not the same solutions
Suppose that k0 = 49.3860 & zt = 0 8t

0 5 10 15 20
44.5

45

45.5

46

46.5

47

47.5

48

48.5

49

49.5

linear

log­linear



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Example with analytical solution

� If δ = ν = 1 then we know the analytical solution. It is

kt = αβ exp(zt)ka
t�1

ct = (1� αβ) exp(zt)ka
t�1

or

ln kt = ln(αβ) + α ln kt�1 + zt

ln ct = ln(1� αβ) + α ln kt�1 + zt

� That is, the policy rules are linear in the logs



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solutions I

Dynare equations (with consumption and capital in logs):

exp(-c)
=beta*exp(-c(+1))*(alpha*exp(z(+1)+(alpha-1)*k)));
exp(c)+exp(k)=exp(z+alpha*k(-1));
z=rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solutions I

� Dynare solution (α = 0.36 and β = 0.99)

k z c
constant -1.612037 0.000000 -1.021009
k(-1) 0.359999 -0.000000 0.360000
z(-1) 0.949998 0.950000 0.950000
e 0.999998 1.000000 1.000000

� Note that c, k, and z are logs
� Check yourself that this is correct



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solutions II

Dynare equations (with consumption and capital in levels):

1/c=beta*(1/c(+1))*(alpha*exp(z(+1))*k^(alpha-1));
c+k=exp(z)*k(-1)^alpha;
z=rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solutions II

� Dynare solution (α = 0.36 and β = 0.99)

k z c
constant 0.199482 0.000000 0.360231
k(-1) 0.360000 0.000000 0.650101
z(-1) 0.189507 0.950000 0.342219
e 0.199482 1.000000 0.360231

� Note that c and k indicate levels and z logs
� This is not the same !!!



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Substitute out consumption- FOCs D

Model equations:

�
zt exp(αk̃t�1) + (1� δ) exp(k̃t�1)� exp(k̃t)

��ν

=

Et

(
β

 �
zt+1 exp(αk̃t) + (1� δ) exp(k̃t)� exp(k̃t+1)

��ν�
(αzt+1 exp((α� 1)k̃t) + 1� δ)

!)

zt = (1� ρ) + ρzt�1 + εt



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solution

Dynare equations (with capital in logs):

(z*exp(alpha*lk(-1)+(1-delta)*exp(lk(-1))-exp(lk))^(-nu)
=beta*(z(+1)*exp(alpha*lk+(1-delta)*exp(lk)-exp(lk(+1))^(-nu)
*(alpha*exp(z(+1)+(alpha-1)*lk))+(1-delta));

z=1-rho+rho*z(-1)+e;



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Dynare solution

� Dynare solution (α = 0.36 and β = 0.99)

lk z
constant 3.637303 0.000000
lk(-1) 0.976540 0.000000
z(-1) 0.068372 0.950000
e 0.071970 1.000000

� Given this law of motion for ln(kt) you can solve ct using the
non-linear equation

ct = exp(zt) exp(α � ln kt�1)+ (1� δ) exp(ln kt�1)� exp(ln kt)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Do it yourself!

� Try to do as much yourself as possible



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

What (not) to do your self

� Policy functions:
� can be quite tricky so let Dynare do it.

� IRFs, business cycle statistics, etc:
� easy to program yourself
� you know exactly what you are getting



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Why do things yourself?

� Dynare linearizes everything
� Suppose you have an RBC in log of capital

� Add the following equation to introduce investment

exp(it) = exp(kt)� (1� δ) exp(kt�1)

� Dynare will approximate this linear equation.



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Why do things yourself?

� Now suppose you have an approximation in levels
� Add the following equation to introduce output

yt = ztkα
t h1�α

t

� Dynare will take a �rst-order condition of this equation to get a
�rst-order approximation for yt

� But you already have solutions for kt and ht



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Why do things yourself?

� Getting the policy rules requires a bit of programming
� Thus, it makes sense to use Dynare for this
� But the more you program yourself, the better you understand
the results

� Try, therefore, to program the simpler things, like IRFs,
simulated time paths, and business cycle statistics yourself, that
is, simply use

� stoch_simul(order=1,nocorr,nomoments,IRF=0)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Tricks

� Incorporating Dynare in other Matlab programs
� Reading parameter values in *.mod �le from external �le
� Reading Dynare policy functions as they appear on the screen
� How to get good initial conditions (to solve for steady state)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Keeping variables in memory

� Dynare clears all variables out of memory
� To overrule this, use

dynare program.mod noclearall



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Saving solution to a �le

� Replace the �le "disp_dr.m" with the provided �le
� I made two changes:

� The original Dynare �le only writes a coe¢ cient to the screen
if it exceeds 10-6 in absolute value. I eliminated this condition

� I save the policy functions, exactly the way Dynare now writes
them to the screen

To load the policy rules into the matrix "decision" simply type

load dynarerocks



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Saving solution to a �le

� Note that Dynare also saves policy functions, but for
second-order this is not what you see on the screen



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Saving solution to a �le

� Note that Dynare also saves policy functions, but for
second-order this is not what you see on the screen



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Loops

� This trick allows you to run the same dynare program for
di¤erent parameter values

� Suppose your Dynare program has the command

nu=3;

� You would like to run the program twice; once for nu=3, and
once for nu=5.



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Loops

1 In your Matlab program, loop over the di¤erent values of nu. In
each iteration, �rst save the current value of nu (and the
associated name) to the �le wouterrocks with

"save parameter�le nu

and then run Dynare

2 In your Dynare program �le, replace the command "nu = 3"
with

load parameter�le

set_param_value(�nu�,nu);



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Using loop to get good initial conditions

With a loop you can update the initial conditions used to solve for
steady state

1 Use parameters to de�nite initial conditions

2 Solve model for simpler case

3 Gradually change parameter

4 You can even gradually change models using weighting
coe¢ cients

5 Alternative: (also) use di¤erent algorithm to solve for steady
state

1 solve_algo=1,2, or 3
2 solve for coe¢ cients instead of variables



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Simple model with endogenous labor

c�ν
t = Et

h
βc�ν

t+1(α exp(zt+1) (kt/ht+1)
α�1 + 1� δ)

i
ct + kt = exp(zt)kα

t�1h1�α
t�1 + (1� δ)kt�1

c�ν
t (1� α) exp(zt)(kt�1/ht)

α = hκ
t

zt = ρzt�1 + εt



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Simple model with endogenous labor

1 Solve for c, k, h using

1 = β(α (k/h)α�1 + 1� δ)
c+ k = kαh1�α + (1� δ)k
c�ν(1� α)(k/h)α = φhκ

φ = 1

2 Or solve for c, k, φ using

1 = β(α (k/h)α�1 + 1� δ)
c+ k = kαh1�α + (1� δ)k
c�ν(1� α)(k/h)α = φhκ

h = 0.3



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Impulse Response functions

De�nition: The e¤ect of a one-standard-deviation shock

� Take as given k0, z0, and time series for εt, fεtgT
t=1

� Let fktgT
t=1 be the corresponding solutions



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Impulse Response functions

� Consider the time series ε�t such that

ε�t = εt for t 6= τ
ε�t = εt + σ for t = τ

� Let fk�t gT
t=1 be the corresponding solutions

� Impulse response functions are calculated as

IRFk
j = k�τ+j � kτ+j for j � 0



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

IRFs for linear systems

� Value of kτ�1 and values of original shock fεtgT
t=τ irrelevant for

IRFs
� Thus, make your life easy by setting

� τ = 1
� k0(= kτ�1) = k̄
� ετ+j = 0 for j � 0Take as given k0, z0, and time series for εt,
fεtgT

t=1

� If k is in logs then subtract k̄ and you have the IRF
� If k is in levels calculate (kτ+j � k̄)/k̄ or ln(kτ+j/k̄)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Impulse Response functions

1st-order case: Dynare gives you

kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,εεt

� Start at k0 = k̄ and z0 = z̄ (= 0)
� Let ε1 = σε and εt = 0 for t > 1
� Calculate time path for zt

� Calculate time path for kt

� Calculate time path for other variables
� Calculate % change (subtract steady-state value if variables are
in logs)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Impulse Response functions

2nd-order case:

� One could repeat procedure described in last slide
� But with a non-linear law of motion results do depend on initial
value of k, realizations of shocks in the original series, and
whether ε�τ = ετ + σ or ε�τ = ετ � σ

� For example, IRF can be di¤erent when initial capital stock is
low than when it is high



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

How to calculate a simulated data set
Dynare gives you

kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,εεt

� Start at k0 = k̄ and z0 = z̄ (= 0)
� Use a random number generator to get a series for εt for t = 1
to t = T

� Calculate time path for zt

� Calculate time path for kt

� Calculate time path for other variables
� Discard an initial set of values
� Note that procedure is the same for �rst and second-order
solutions



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Simulate higher-order & pruning

� �rst-order solutions are by construction stationary
� simulation cannot be problematic

� simulation of higher-order can be problematic
� simulation of 2nd-order will be problematic for large shocks
� trick proposed: Pruning
� pruning:

� is a trick to ensure stability
� it uses a distorted numerical approximation



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Pruning

� k(n)(k�1, z): the nth-order perturbation solution for k as a
function of k�1 and z.

� k(n)t : the value of kt generated with k(n)(�).



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Pruning

� For n > 1, the regular perturbation solution k(n) can be written
as

k(n)t � kss

=

a(n) + a(n)k

�
k(n)t�1 � kss

�
+ a(n)z (zt � zss)

+ k̃(n)(k(n)t�1, zt)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Pruning

� With pruning one would simulate two series

k(1)t � kss = a(1)k

�
k(1)t � kss

�
+ a(1)z (zt � zss)

k̂(n)t � kss =

a(n) + a(n)k

�
k̂(n)t�1 � kss

�
+ a(n)z (zt � zss)

+k̃(n)(k(1)t�1, zt)

� k(1)t is stationary as long as BK conditions are satis�ed

� k̃(n)(k(1)t�1, zt) is then also stationary

�
���a(n)1

��� < 1 then ensures that k̂(n)t is stationary



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Pruning

� The pruned simulated series, k̂(n)t is NOT a function of the

corresponding state variables k̂(n)t and zt



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Practical

� Dynare expects �les to be in a regular path like e:n... and
cannot deal with subdirectories like //few.eur.nl/.../...

� The solution is to put your *.mod �les on a memory stick


	Introduction
	Do it yourself
	Tricks
	IRFs & Simulations
	Pruning
	Practical

