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Introduction

� What is the objective of perturbation?
� Peculiarities of Dynare
� Some examples
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Objective of 1st-order perturbation

� Obtain linear approximations to the policy functions that satisfy
the �rst-order conditions

� state variables: xt = [x1,t x2,t x3,t � � � xn,t]0

� result:
yt = ȳ+ (xt � x̄)0a

� a bar above a variable indicates steady state value
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Underlying theory

� Model:
Et [f (g(x))] = 0,

� f (x) is completely known
� g(x) is the unknown policy function.

� Perturbation: Solve sequentially for the coe¢ cients of the
Taylor expansion of g(x).

� More info:
� notes and slides on perturbation
� slides on Blanchard-Kahn conditions
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Neoclassical growth model

� xt = [kt�1, zt]

� yt = [ct, kt, zt]

� linearized solution:

ct = c̄+ ac,k(kt�1 � k̄) + ac,z(zt � z̄)
kt = k̄+ ak,k(kt�1 � k̄) + ak,z(zt � z̄)
zt = ρzt�1 + εt
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Linear in what variables?

� Dynare does not understand what ct is.

� could be level of consumption
� could be log of consumption
� could be rainfall in Scotland

� Dynare simply generates a linear solution in what you specify
as the variables

� More on this below
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Peculiarities of Dynare

� Variables known at beginning of period t must be dated t� 1.

� Thus,
� kt: the capital stock chosen in period t
� kt�1: the capital stock available at beginning of period t
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Peculiarities of Dynare

The solution

ct = c̄+ ac,k(kt�1 � k̄) + ac,z(zt � z̄)
kt = k̄+ ak,k(kt�1 � k̄) + ak,z(zt � z̄)

zt = ρzt�1 + εt

can of course be written (less conveniently) as

ct = c̄+ ac,k(kt�1 � k̄) + ac,z�1(zt�1 � z̄) + ac,zεt
kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,zεt

zt = ρzt�1 + εt

with ac,z�1 = ρac,z and ak,z�1 = ρak,z
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Peculiarities of Dynare

� Dynare gives the solution in the less convenient form:

ct = c̄+ ac,k(kt�1 � k̄) + ac,z�1(zt�1 � z̄) + ac,zεt
kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,zεt

zt = ρzt�1 + εt

� Since the Dynare solution satis�es

ac,z�1 = ρac,z and ak,z�1 = ρak,z

one could always rewrite the Dynare solution in the more
convenient form
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Dynare program blocks

� Labeling block: indicate which symbols indicate what
� variables in "var"
� exogenous shocks in "varexo"
� parameters in "parameters"

� Parameter values block: Assign values to parameters
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Dynare program blocks

� Model block: Between "model" and "end" write down the n
equations for n variables

� note that dynare has no conditional expectations but if an
equation has a (+1) variable, then Dynare knows there is a
conditional expectation
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Dynare program blocks

� Initialization block: Dynare has to solve for the steady state.
This can be the most di¢ cult part (since it is a true non-linear
problem). So good initial conditions are important

� Random shock block: Indicate the standard deviation for the
exogenous innovation
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Dynare program blocks

� Solution & Properties block:
� Solve the model with the command

� 1st-order: stoch_simul(order=1,nocorr,nomoments,IRF=0)
� 2nd-order: stoch_simul(order=2,nocorr,nomoments,IRF=0)

� Dynare can calculate IRFs and business cycle statistics. E.g.,
� stoch_simul(order=1,IRF=30),
� but I would suggest to program this yourself (see below)
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Running Dynare

� In Matlab change the directory to the one in which you have
your *.mod �les

� In the Matlab command window type

dynare programname

� This will create and run several Matlab �les
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Model with productivity in levels (FOCs A)

Speci�cation of the problem

maxfct,ktg E∑∞
t=1 βt�1 c1�ν

t �1
1�ν

s.t.
ct + kt = ztkα

t�1 + (1� δ)kt�1
zt = (1� ρ) + ρzt�1 + εt

k0 given
Et[εt+1] = 0 & Et[ε2

t+1] = σ2
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Distribution of innovation

� 1st-order approximations:
� the distribution of εt does not matter, except that Et[εt+1] has
to be zero.

� 2nd-order approximations:
� σ matters (it a¤ects the mean)
� higher-order moments do not

� Also see notes and slides on perturbation theory
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Everything in levels: FOCs A

Model equations:

c�ν
t = Et

h
βc�ν

t+1(αzt+1kα�1
t + 1� δ)

i
ct + kt = ztkα

t�1 + (1� δ)kt�1

zt = (1� ρ) + ρzt�1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1-delta);
c+k=z*k(-1)^alpha+(1-delta)k(-1);
z=(1-rho)+rho*z(-1)+e;
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Policy functions reported by Dynare

� δ = 0.025, ν = 2, α = 0.36, β = 0.99, and ρ = 0.95

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968
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!!!! You have to read output as

k z c
constant 37.989254 1.000000 2.754327
k(-1)-kss 0.976540 -0.000000 0.033561
z(-1)-zss 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� That is, explanatory variables are relative to steady state.
� (Note that steady state of e is zero by de�nition)
� If explanatory variables take on steady state values, then
choices are equal to the constant term, which of course is
simply equal to the corresponding steady state value
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Changing amount of uncertainty

Suppose σ = 0.1 instead of 0.007

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� Any change?
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Model with productivity in logs

Speci�cation of the problem

max
fct,ktg

E
∞

∑
t=1

βt�1 c1�ν
t � 1
1� ν

s.t.

ct + kt = exp(zt)kα
t�1 + (1� δ)kt�1

zt = ρzt�1 + εt

k0 given, Et[εt+1] = 0
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Variables in levels & prod. in logs - FOCs B

Model equations:

c�ν
t = Et

h
βc�ν

t+1(α exp(zt+1)kα�1
t + 1� δ)

i
ct + kt = exp(zt)kα

t�1 + (1� δ)kt�1
zt = ρzt�1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*exp(z(+1))*k^(alpha-1)+1-delta);
c+k=exp(z)*k(-1)^alpha+(1-delta)k(-1);
z=rho*z(-1)+e;
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Policy functions reported by Dynare

� δ = 0.025, ν = 2, α = 0.36 and β = 0.99

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 0.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

� What does z stand for here?
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Linear solution in what?

Dynare gives a linear system in what you specify the variables to be
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All variables in logs - FOCs C

Model equations:

(exp(c̃t))
�ν =

= Et

h
β(exp(c̃t+1))

�ν(α exp(z̃t+1)(exp(k̃t))
α�1 + 1� δ)

i
exp(c̃t) + exp(k̃t) = exp(z̃t)(exp(k̃t�1))

α + (1� δ) exp(k̃t�1)

z̃t = ρz̃t�1 + εt

The variables c̃t and k̃t are the log of consumption and capital.
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All variables in logs - FOCs C

Model equations (rewritten a bit)

exp(�νc̃t)

= Et
�
β exp(�νc̃t+1)(α exp(z̃t+1 + (α� 1)k̃t) + 1� δ)

�
exp(c̃t) + exp(k̃t) = exp(z̃t + αk̃t�1) + (1� δ) exp(k̃t�1)

z̃t = ρz̃t�1 + εt
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All variables in logs - FOCs C

Dynare equations:

exp(-nu*lc)=beta*exp(-nu*lc(+1))*
(alpha*exp(lz(+1)+(alpha-1)*lk))+1-delta);
exp(lc)+exp(lk)
=exp(lz+alpha*lk(-1))+(1-delta)exp(lk(-1));
lz=rho*lz(-1)+e;
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All variables in logs - FOCs C

� This system gives policy functions that are linear in the
variables lc, i.e., ln(ct), lk,i.e., ln(kt), and lz, i.e., ln(zt),

� Programmers often do not make clear that a variable is a log.
That is, they would simply use c, k, and z in the dynare
equations above instead of lc, lk, and lz
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All variables in logs - FOCs C

Dynare equations (with di¤erent notation):

exp(-nu*c)=beta*exp(-nu*c(+1))*
(alpha*exp(z(+1)+(alpha-1)*k))+1-delta);
exp(c)+exp(k)=exp(z+alpha*k(-1))+(1-delta)exp(k(-1));
z=rho*z(-1)+e;
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POLICY AND TRANSITION FUNCTIONS for foc B

k z c
constant 37.989254 0.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

POLICY AND TRANSITION FUNCTIONS for foc C

k z c
constant 3.637303 0.000000 1.013173
k(-1) 0.976540 0.000000 0.462887
z(-1) 0.068372 0.950000 0.334554
e 0.071970 1.000000 0.352162
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These are not the same solutions
Suppose that k0 = 49.3860 & zt = 0 8t
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Example with analytical solution

� If δ = ν = 1 then we know the analytical solution. It is

kt = αβ exp(zt)ka
t�1

ct = (1� αβ) exp(zt)ka
t�1

or

ln kt = ln(αβ) + α ln kt�1 + zt

ln ct = ln(1� αβ) + α ln kt�1 + zt

� That is, the policy rules are linear in the logs
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Dynare solutions I

Dynare equations (with consumption and capital in logs):

exp(-c)
=beta*exp(-c(+1))*(alpha*exp(z(+1)+(alpha-1)*k)));
exp(c)+exp(k)=exp(z+alpha*k(-1));
z=rho*z(-1)+e;
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Dynare solutions I

� Dynare solution (α = 0.36 and β = 0.99)

k z c
constant -1.612037 0.000000 -1.021009
k(-1) 0.359999 -0.000000 0.360000
z(-1) 0.949998 0.950000 0.950000
e 0.999998 1.000000 1.000000

� Note that c, k, and z are logs
� Check yourself that this is correct
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Dynare solutions II

Dynare equations (with consumption and capital in levels):

1/c=beta*(1/c(+1))*(alpha*exp(z(+1))*k^(alpha-1));
c+k=exp(z)*k(-1)^alpha;
z=rho*z(-1)+e;
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Dynare solutions II

� Dynare solution (α = 0.36 and β = 0.99)

k z c
constant 0.199482 0.000000 0.360231
k(-1) 0.360000 0.000000 0.650101
z(-1) 0.189507 0.950000 0.342219
e 0.199482 1.000000 0.360231

� Note that c and k indicate levels and z logs
� This is not the same !!!
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Substitute out consumption- FOCs D

Model equations:

�
zt exp(αk̃t�1) + (1� δ) exp(k̃t�1)� exp(k̃t)

��ν

=

Et

(
β

 �
zt+1 exp(αk̃t) + (1� δ) exp(k̃t)� exp(k̃t+1)

��ν�
(αzt+1 exp((α� 1)k̃t) + 1� δ)

!)

zt = (1� ρ) + ρzt�1 + εt
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Dynare solution

Dynare equations (with capital in logs):

(z*exp(alpha*lk(-1)+(1-delta)*exp(lk(-1))-exp(lk))^(-nu)
=beta*(z(+1)*exp(alpha*lk+(1-delta)*exp(lk)-exp(lk(+1))^(-nu)
*(alpha*exp(z(+1)+(alpha-1)*lk))+(1-delta));

z=1-rho+rho*z(-1)+e;
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Dynare solution

� Dynare solution (α = 0.36 and β = 0.99)

lk z
constant 3.637303 0.000000
lk(-1) 0.976540 0.000000
z(-1) 0.068372 0.950000
e 0.071970 1.000000

� Given this law of motion for ln(kt) you can solve ct using the
non-linear equation

ct = exp(zt) exp(α � ln kt�1)+ (1� δ) exp(ln kt�1)� exp(ln kt)



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Do it yourself!

� Try to do as much yourself as possible
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What (not) to do your self

� Policy functions:
� can be quite tricky so let Dynare do it.

� IRFs, business cycle statistics, etc:
� easy to program yourself
� you know exactly what you are getting
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Why do things yourself?

� Dynare linearizes everything
� Suppose you have an RBC in log of capital

� Add the following equation to introduce investment

exp(it) = exp(kt)� (1� δ) exp(kt�1)

� Dynare will approximate this linear equation.
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Why do things yourself?

� Now suppose you have an approximation in levels
� Add the following equation to introduce output

yt = ztkα
t h1�α

t

� Dynare will take a �rst-order condition of this equation to get a
�rst-order approximation for yt

� But you already have solutions for kt and ht



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Why do things yourself?

� Getting the policy rules requires a bit of programming
� Thus, it makes sense to use Dynare for this
� But the more you program yourself, the better you understand
the results

� Try, therefore, to program the simpler things, like IRFs,
simulated time paths, and business cycle statistics yourself, that
is, simply use

� stoch_simul(order=1,nocorr,nomoments,IRF=0)
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Tricks

� Incorporating Dynare in other Matlab programs
� Reading parameter values in *.mod �le from external �le
� Reading Dynare policy functions as they appear on the screen
� How to get good initial conditions (to solve for steady state)
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Keeping variables in memory

� Dynare clears all variables out of memory
� To overrule this, use

dynare program.mod noclearall
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Saving solution to a �le

� Replace the �le "disp_dr.m" with the provided �le
� I made two changes:

� The original Dynare �le only writes a coe¢ cient to the screen
if it exceeds 10-6 in absolute value. I eliminated this condition

� I save the policy functions, exactly the way Dynare now writes
them to the screen

To load the policy rules into the matrix "decision" simply type

load dynarerocks
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Saving solution to a �le

� Note that Dynare also saves policy functions, but for
second-order this is not what you see on the screen



Introduction Do it yourself Tricks IRFs & Simulations Pruning Practical

Saving solution to a �le

� Note that Dynare also saves policy functions, but for
second-order this is not what you see on the screen
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Loops

� This trick allows you to run the same dynare program for
di¤erent parameter values

� Suppose your Dynare program has the command

nu=3;

� You would like to run the program twice; once for nu=3, and
once for nu=5.
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Loops

1 In your Matlab program, loop over the di¤erent values of nu. In
each iteration, �rst save the current value of nu (and the
associated name) to the �le wouterrocks with

"save parameter�le nu

and then run Dynare

2 In your Dynare program �le, replace the command "nu = 3"
with

load parameter�le

set_param_value(�nu�,nu);
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Using loop to get good initial conditions

With a loop you can update the initial conditions used to solve for
steady state

1 Use parameters to de�nite initial conditions

2 Solve model for simpler case

3 Gradually change parameter

4 You can even gradually change models using weighting
coe¢ cients

5 Alternative: (also) use di¤erent algorithm to solve for steady
state

1 solve_algo=1,2, or 3
2 solve for coe¢ cients instead of variables
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Simple model with endogenous labor

c�ν
t = Et

h
βc�ν

t+1(α exp(zt+1) (kt/ht+1)
α�1 + 1� δ)

i
ct + kt = exp(zt)kα

t�1h1�α
t�1 + (1� δ)kt�1

c�ν
t (1� α) exp(zt)(kt�1/ht)

α = hκ
t

zt = ρzt�1 + εt
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Simple model with endogenous labor

1 Solve for c, k, h using

1 = β(α (k/h)α�1 + 1� δ)
c+ k = kαh1�α + (1� δ)k
c�ν(1� α)(k/h)α = φhκ

φ = 1

2 Or solve for c, k, φ using

1 = β(α (k/h)α�1 + 1� δ)
c+ k = kαh1�α + (1� δ)k
c�ν(1� α)(k/h)α = φhκ

h = 0.3
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Impulse Response functions

De�nition: The e¤ect of a one-standard-deviation shock

� Take as given k0, z0, and time series for εt, fεtgT
t=1

� Let fktgT
t=1 be the corresponding solutions
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Impulse Response functions

� Consider the time series ε�t such that

ε�t = εt for t 6= τ
ε�t = εt + σ for t = τ

� Let fk�t gT
t=1 be the corresponding solutions

� Impulse response functions are calculated as

IRFk
j = k�τ+j � kτ+j for j � 0
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IRFs for linear systems

� Value of kτ�1 and values of original shock fεtgT
t=τ irrelevant for

IRFs
� Thus, make your life easy by setting

� τ = 1
� k0(= kτ�1) = k̄
� ετ+j = 0 for j � 0Take as given k0, z0, and time series for εt,
fεtgT

t=1

� If k is in logs then subtract k̄ and you have the IRF
� If k is in levels calculate (kτ+j � k̄)/k̄ or ln(kτ+j/k̄)
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Impulse Response functions

1st-order case: Dynare gives you

kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,εεt

� Start at k0 = k̄ and z0 = z̄ (= 0)
� Let ε1 = σε and εt = 0 for t > 1
� Calculate time path for zt

� Calculate time path for kt

� Calculate time path for other variables
� Calculate % change (subtract steady-state value if variables are
in logs)
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Impulse Response functions

2nd-order case:

� One could repeat procedure described in last slide
� But with a non-linear law of motion results do depend on initial
value of k, realizations of shocks in the original series, and
whether ε�τ = ετ + σ or ε�τ = ετ � σ

� For example, IRF can be di¤erent when initial capital stock is
low than when it is high
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How to calculate a simulated data set
Dynare gives you

kt = k̄+ ak,k(kt�1 � k̄) + ak,z�1(zt�1 � z̄) + ak,εεt

� Start at k0 = k̄ and z0 = z̄ (= 0)
� Use a random number generator to get a series for εt for t = 1
to t = T

� Calculate time path for zt

� Calculate time path for kt

� Calculate time path for other variables
� Discard an initial set of values
� Note that procedure is the same for �rst and second-order
solutions
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Simulate higher-order & pruning

� �rst-order solutions are by construction stationary
� simulation cannot be problematic

� simulation of higher-order can be problematic
� simulation of 2nd-order will be problematic for large shocks
� trick proposed: Pruning
� pruning:

� is a trick to ensure stability
� it uses a distorted numerical approximation
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Pruning

� k(n)(k�1, z): the nth-order perturbation solution for k as a
function of k�1 and z.

� k(n)t : the value of kt generated with k(n)(�).
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Pruning

� For n > 1, the regular perturbation solution k(n) can be written
as

k(n)t � kss

=

a(n) + a(n)k

�
k(n)t�1 � kss

�
+ a(n)z (zt � zss)

+ k̃(n)(k(n)t�1, zt)
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Pruning

� With pruning one would simulate two series

k(1)t � kss = a(1)k

�
k(1)t � kss

�
+ a(1)z (zt � zss)

k̂(n)t � kss =

a(n) + a(n)k

�
k̂(n)t�1 � kss

�
+ a(n)z (zt � zss)

+k̃(n)(k(1)t�1, zt)

� k(1)t is stationary as long as BK conditions are satis�ed

� k̃(n)(k(1)t�1, zt) is then also stationary

�
���a(n)1

��� < 1 then ensures that k̂(n)t is stationary
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Pruning

� The pruned simulated series, k̂(n)t is NOT a function of the

corresponding state variables k̂(n)t and zt
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Practical

� Dynare expects �les to be in a regular path like e:n... and
cannot deal with subdirectories like //few.eur.nl/.../...

� The solution is to put your *.mod �les on a memory stick
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