Econometrics - Lecture 4

Heteroskedasticity and Autocorrelation

Contents

- Violations of $V{\epsilon} = \sigma^2 I_N$
- Heteroskedasticity
- GLS Estimation
- Autocorrelation

Gauss-Markov Assumptions

Observation y_i is a linear function

$$y_i = x_i'\beta + \varepsilon_i$$

of observations x_{ik} , k = 1, ..., K, of the regressor variables and the error term ε_i

for
$$i = 1, ..., N$$
; $x_i' = (x_{i1}, ..., x_{iK})$; $X = (x_{ik})$

A1	$E\{\varepsilon_i\} = 0$ for all <i>i</i>
A2	all ε_i are independent of all x_i (exogeneous x_i)
A3	$V{\varepsilon_i} = \sigma^2$ for all <i>i</i> (homoskedasticity)
A4	Cov{ ε_i , ε_j } = 0 for all <i>i</i> and <i>j</i> with $i \neq j$ (no autocorrelation)

In matrix notation: $E\{\epsilon\} = 0, V\{\epsilon\} = \sigma^2 I_N$

OLS Estimator: Properties

Under assumptions (A1) and (A2):

1. The OLS estimator *b* is unbiased: $E\{b\} = \beta$

Under assumptions (A1), (A2), (A3) and (A4):

2. The variance of the OLS estimator is given by

 $V\{b\} = \sigma^2(\Sigma_i \; x_i \; x_i')^{-1} = \sigma^2(X' \; X)^{-1}$

3. The sampling variance s^2 of the error terms ε_i ,

 $s^2 = (N - K)^{-1} \Sigma_i e_i^2$ is unbiased for σ^2

4. The OLS estimator *b* is BLUE (best linear unbiased estimator)

Violations of V{ ϵ } = $\sigma^2 I_N$

Implications of the Gauss-Markov assumptions for ϵ :

$$V{\epsilon} = \sigma^2 I_{\rm N}$$

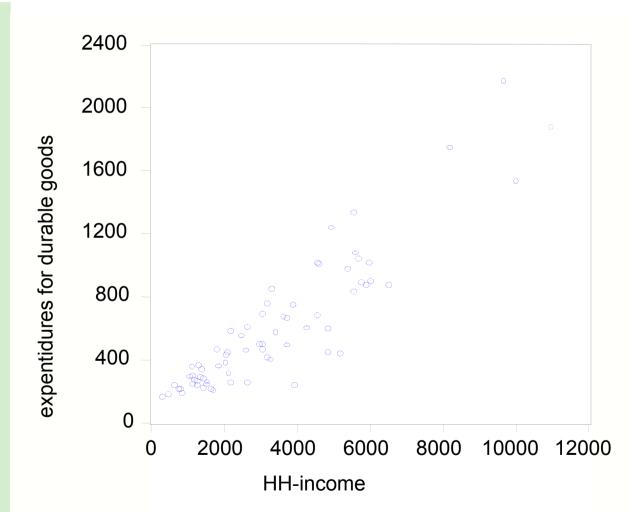
Violations:

- Heteroskedasticity: V{ ϵ } = diag(σ_1^2 , ..., σ_N^2) or V{ ϵ } = $\sigma^2 \Psi = \sigma^2 \text{diag}(h_1^2, ..., h_N^2)$
- Autocorrelation: $V{\epsilon_i, \epsilon_j} \neq 0$ for at least one pair $i \neq j$ or $V{\epsilon} = \sigma^2 \Psi$

with non-diagonal elements different from zero

Example: Household Income and Expenditures

70 households (HH): monthly HHincome and expenditures for durable goods



Dec 9, 2011

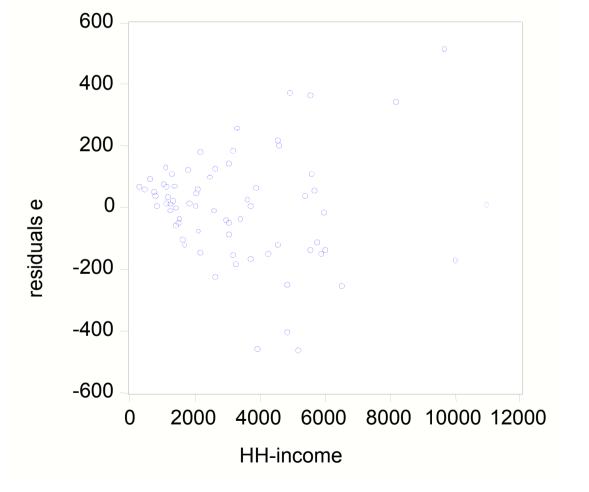
Household Income and Expenditures, cont'd

Residuals $e = y - \hat{y}$ from

 $\hat{Y} = 44.18 + 0.17 X$

X: monthly HH-income Y: expenditures for durable goods

the larger the income, the more scattered are the residuals



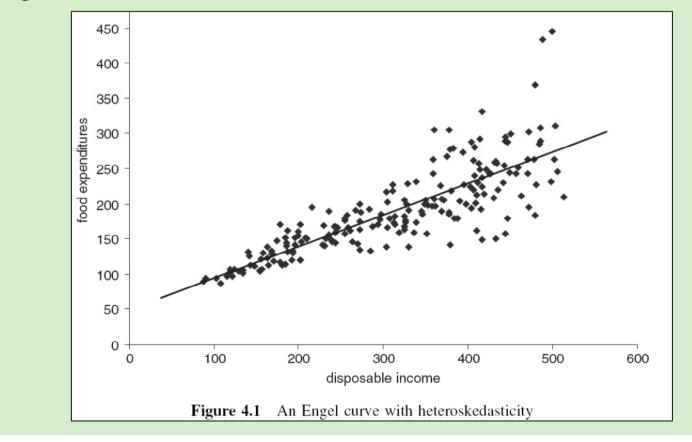
Typical Situations for Heteroskedasticity

Heteroskedasticity is typically observed

- In data from cross-sectional surveys, e.g., in households or regions
- Data with variance which depends of one or several explanatory variables, e.g., firm size
- Data from financial markets, e.g., exchange rates, stock returns

Example: Household Expenditures

With growing income increasing variation of expenditures; from Verbeek, Fig. 4.1



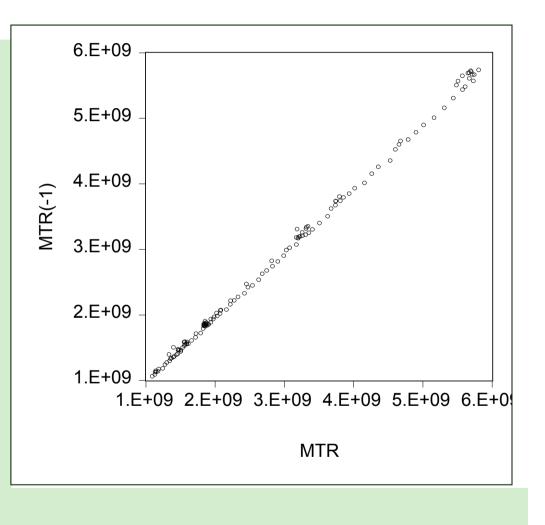
Autocorrelation of Economic Time-series

- Consumption in actual period is similar to that of the preceding period; the actual consumption "depends" on the consumption of the preceding period
- Consumption, production, investments, etc.: it is to be expected that successive observations of economic variables correlate positively
- Seasonal adjustment: application of smoothing and filtering algorithms induces correlation

Example: Imports

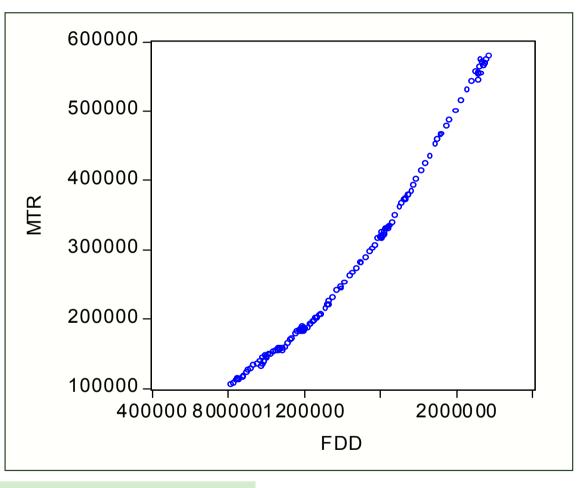
Scatter-diagram of by one period lagged imports [MTR(-1)] against actual imports [MTR]

Correlation coefficient between MTR und MTR(-1): 0.9994



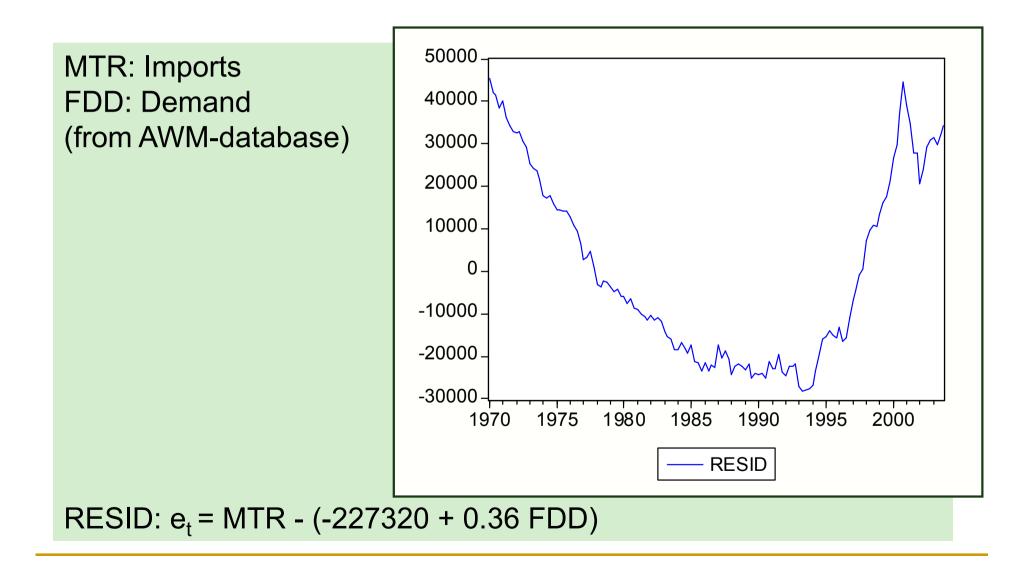
Example: Import Function

MTR: Imports FDD: Demand (from AWM-database)



Import function: MTR = -227320 + 0.36 FDD R² = 0.977, t_{FFD} = 74.8

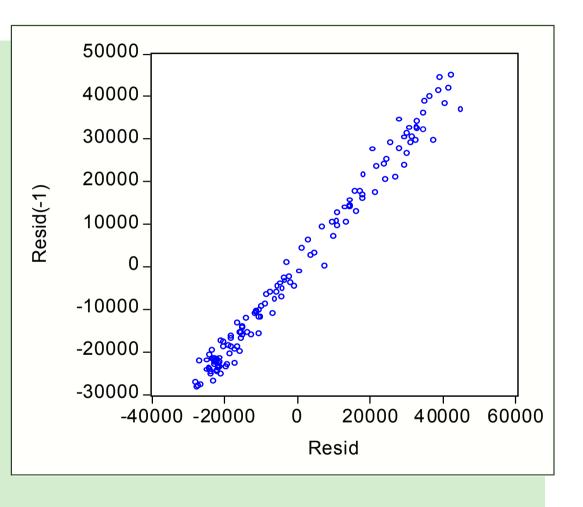
Import Function, cont'd



Import Function, cont'd

Scatter-diagram of by one period lagged residuals [Resid(-1)] against actual residuals [Resid]

Serial correlation!



Typical Situations for Autocorrelation

Autocorrelation is typically observed if

- a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
- the functional form of a regressor is incorrectly specified
- the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Warning! Omission of a relevant regressor with trend implies autocorrelation of the error terms; in econometric analyses autocorrelation of the error terms is always possible!
- Autocorrelation of the error terms indicates deficiencies of the model specification
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Import Functions

Regression of imports (MTR) on demand (FDD) MTR = $-2.27 \times 10^9 + 0.357$ FDD, $t_{FDD} = 74.9$, R² = 0.977 Autocorrelation (order 1) of residuals: $Corr(e_t, e_{t-1}) = 0.993$ Import function with trend (T) $MTR = -4.45 \times 10^9 + 0.653 FDD - 0.030 \times 10^9 T$ $t_{\text{FDD}} = 45.8, t_{\text{T}} = -21.0, R^2 = 0.995$ Multicollinearity? Corr(FDD, T) = 0.987! Import function with lagged imports as regressor $MTR = -0.124 \times 10^9 + 0.020 FDD + 0.956 MTR_{-1}$ t_{FDD} = 2.89, $t_{\text{MTR}(-1)}$ = 50.1, R² = 0.999

Consequences of V{ ϵ } $\neq \sigma^2 I_N$

OLS estimators b for β

- are unbiased
- are consistent
- have the covariance-matrix

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator $s^2 = e'e/(N-K)$ for σ^2 is biased

Consequences of V{ ϵ } $\neq \sigma^2 I_N$ for Applications

- OLS estimators *b* for β are still unbiased
- Routinely computed standard errors are biased; the bias can be positive or negative
- t- and F-tests may be misleading

Remedies

- Alternative estimators
- Corrected standard errors
- Modification of the model
- Tests for identification of
- heteroskedasticity
- autocorrelation
 - are important tools

Contents

- Violations of $V{\epsilon} = \sigma^2 I_N$
- Heteroskedasticity
- GLS Estimation
- Autocorrelation

Inference under Heteroskedasticity

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are homoskedastic

The Correct Variances

- $V{\epsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$: each observation has its own unknown parameter h_i
- *N* observation for estimating *N* unknown parameters?
- To estimate σ_{i}^{2} and V{*b*}
- Known form of the heteroskedasticity, specific correction
 - E.g., $h_i^2 = z_i^{\alpha}$ for some variables z_i
- White's heteroskedasticity-consistent covariance matrix estimator (HCCME)

$$\widetilde{\mathsf{V}}\{b\} = \sigma^2(XX)^{-1}(\Sigma_{\mathsf{i}}\hat{h}_{\mathsf{i}}^2 x_{\mathsf{i}} x_{\mathsf{i}}') (XX)^{-1}$$

with $\hat{h}_i^2 = e_i^2$

- Denoted as HC_0
- □ Inference based on HC_0 : heteroskedasticity-robust inference

White's Standard Errors

White's standard errors for *b*

- Square roots of diagonal elements of HCCME
- Underestimate the true standard errors
- Various refinements, e.g., HC₁ = HC₀[N/(N-K)]
- In **GRETL**: HC_0 is the default HCCME, HC_1 and other refinements are optionally available

An Alternative Estimator for b

Idea of the estimator

- Transform the model so that it satisfies the Gauss-Markov assumptions
- Apply OLS to the transformed model
- Should result in a BLUE
- Transformation often depends upon unknown parameters that characterizing heteroskedasticity: two-step procedure
- 1. Estimate the parameters that characterize heteroskedasticity and transform the model
- 2. Estimate the transformed model

The procedure results in an approximately BLUE

An Example

Model:

 $y_i = x_i^{\prime}\beta + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$

Division by $h_{\rm i}$ results in

 $y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$

with a homoskedastic error term

 $V\{\epsilon_i / h_i\} = \sigma_i^2 / h_i^2 = \sigma^2$

OLS applied to the transformed model gives

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

It is called a generalized least squares (GLS) or weighted least squares (WLS) estimator

Weighted Least Squares Estimator

 A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor w_i > 0:

$$\hat{\boldsymbol{\beta}}_{w} = \left(\sum_{i} w_{i} x_{i}' x_{i}\right)^{-1} \sum_{i} w_{i} x_{i}' y_{i}$$

- Weights proportional to the inverse of the error term variance:
 Observations with a higher error term variance have a lower weight; they provide less accurate information on β
- Needs knowledge of the h_i
 - □ Is seldom available
 - □ Is mostly provided by estimates of h_i based on assumptions on the form of h_i
 - E.g., $h_i^2 = z_i^{\alpha}$ for some variables z_i
- Analogous with general weights w_i

Example: Labor Demand

Verbeek's data set "labour2": Sample of 569 Belgian companies (data from 1996)

- Variables
 - Iabour: total employment (number of employees)
 - *capital*: total fixed assets
 - wage: total wage costs per employee (in 1000 EUR)
 - output: value added (in million EUR)
- Labour demand function

 $labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$

Labor Demand Function

For Belgian companies, 1996; Verbeek

Table 4.1 OLS results linear model				
Dependent variable: labour				
Variable	Estimate	Standard error	r <i>t</i> -ratio	
constant	287.72	19.64	14.648	
wage	-6.742	0.501	-13.446	
output	15.40	0.356	43.304	
capital	-4.590	0.269	-17.067	
s = 156.26	$R^2 = 0.9352$	$\bar{R}^2 = 0.9348$	F = 2716.02	

Can the error terms be assumed to be homoskedastic?

- They may vary depending of the company size, measured by, e.g., size of output or capital
- Regression of squared residuals on appropriate regressors will indicate heteroskedasticity

Auxiliary regression of squared residuals, Verbeek

Table 4	.2 Auxiliary r	regression Breusch-Pag	gan test	
Dependent variable: e_i^2				
Variable	Estimate	Standard error	t-ratio	
constant <i>wage</i>	-22719.51 228.86	11838.88 302.22	-1.919 0.757	
output capital	5362.21 - 3543.51	214.35 162.12	25.015 -21.858	
s = 94182	$R^2 = 0.5818$	$\bar{R}^2 = 0.5796$ $F = 2$	262.05	

Indicates dependence of error terms on *output*, *capital*, not on *wage*

Estimated function

 $labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$

OLS estimates without (s.e.) and with White standard errors (White s.e.), and GLS estimates with $w_i = 1/e_i$

	β ₁	β ₂	β ₃	β ₄
Coeff OLS	287.19	-6.742	15.400	-4.590
s.e.	19.642	0.501	0.356	0.269
White s.e.	64.877	1.852	2.482	1.713
Coeff GLS	282.06	-6.609	15.235	-4.197
s.e.	1.808	0.042	0.094	0.141

The standard errors are inflated by factors 3.7 (wage), 6.4 (*capital*), 7.0 (*output*) wrt the White s.e.

With White standard errors: Output from **GRETL**

Dependent variable : LABOR Heteroskedastic-robust standard errors, variant HC0,

	coefficient	std. error	t-ratio	p-value
const	287,719	64,8770	4,435	1,11e-05 ***
WAGE	-6,7419	1,8516	-3,641	0,0003 ***
CAPITAL	-4,59049	1,7133	-2,679	0,0076 ***
OUTPUT	15,4005	2,4820	6,205	1,06e-09 ***
Mean depe	endent var	201,024911	S.D. dependent var	611,9959
Sum squared resid		13795027	S.E. of regression	156,2561
R- squared		0,935155	Adjusted R-squared	0,934811
F(2, 129)		225,5597	P-value (F)	3,49e-96
Log-likelihood		455,9302	Akaike criterion	7367,341
Schwarz c	riterion	-3679,670	Hannan-Quinn	7374,121

Tests against Heteroskedasticity

Due to unbiasedness of *b*, residuals are expected to indicate heteroskedasticity

Graphical displays of residuals may give useful hints

Residual-based tests:

- Breusch-Pagan test
- Koenker test
- Goldfeld-Quandt test
- White test

Breusch-Pagan Test

For testing whether the error term variance is a function of Z_2 , ..., Z_p Model for heteroskedasticity

 $\sigma_i^2/\sigma^2 = h(z_i^{\cdot}\alpha)$

with function *h* with h(0)=1, *p*-vectors z_i und α , an intercept and *p*-1 variables Z_2 , ..., Z_p

Null hypothesis

 $H_0: \alpha = 0$

implies $\sigma_i^2 = \sigma^2$ for all *i*, i.e., homoskedasticity

Auxiliary regression of the standardized squared OLS residuals $g_i = e_i^2/s^2 - 1$, $s^2 = e'e/N$, on z_i (and squares of z_i)

Test statistic: BP = N^*ESS with the explained sum of squares ESS = $N^*V(\hat{g})$, of the auxiliary regression; \hat{g} are the fitted values for g. BP follows approximately the Chi-squared distribution with p d.f.

Breusch-Pagan Test, cont'd

Typical functions *h* for $h(z_i^{\cdot}\alpha)$

- Linear regression: $h(z_i^{\,i}\alpha) = z_i^{\,i}\alpha$
- Exponential function $h(z_i \alpha) = \exp\{z_i \alpha\}$
 - Auxiliary regression of the log (e_i^2) upon z_i
 - "Multiplicative heteroskedasticity"
 - Variances are non-negative
- Koenker test: variant of the BP test which is robust against nonnormality of the error terms
- **GRETL**: The output window of OLS estimation allows the execution of the Breusch-Pagan test with $h(z_i^{\alpha}) = z_i^{\alpha}$
 - OLS output => Tests => Heteroskedasticity => Breusch-Pagan
 - Koenker test: OLS output => Tests => Heteroskedasticity => Koenker

Auxiliary regression of squared residuals, Verbeek

Table 4	.2 Auxiliary r	regression Breusch-Pa	gan test	
Dependent variable: e_i^2				
Variable	Estimate	Standard error	<i>t</i> -ratio	
constant	-22719.51	11838.88	-1.919	
wage	228.86	302.22	0.757	
output	5362.21	214.35	25.015	
capital	-3543.51	162.12	-21.858	
s = 94182	$R^2 = 0.5818$	$\bar{R}^2 = 0.5796$ $F = 2$	262.05	

*N*R² = 331.04, *p*-value = 2.17E-70; reject null hypothesis of homoskedasticity

Goldfeld-Quandt Test

For testing whether the error term variance has values σ_A^2 and σ_B^2 for observations from regime A and B, respectively, $\sigma_A^2 \neq \sigma_B^2$ regimes can be urban vs rural area, economic prosperity vs stagnation, etc. Example (in matrix notation):

$$y_{A} = X_{A}\beta_{A} + \varepsilon_{A}, V\{\varepsilon_{A}\} = \sigma_{A}^{2}I_{NA}$$
 (regime A)
 $y_{B} = X_{B}\beta_{B} + \varepsilon_{B}, V\{\varepsilon_{B}\} = \sigma_{B}^{2}I_{NB}$ (regime B)

Null hypothesis: $\sigma_A^2 = \sigma_B^2$

Test statistic:

$$F = \frac{S_A}{S_B} \frac{N_B - K}{N_A - K}$$

with S_i : sum of squared residuals for *i*-th regime; follows under H₀ exactly or approximately the *F*-distribution with N_A -*K* and N_B -*K* d.f.

Goldfeld-Quandt Test, cont'd

Test procedure in three steps:

- 1. Sort the observations with respect to the regimes
- 2. Separate fittings of the model to the N_A and N_B observations; sum of squared residuals S_A and S_B
- 3. Calculation of test statistic F

White Test

For testing whether the error term variance is a function of the model regressors, their squares and their cross-products

- Auxiliary regression of the squared OLS residuals upon x_i 's, squares of x_i 's and cross-products
- Test statistic: *N*R² with R² of the auxiliary regression; follows the Chi-squared distribution with the number of coefficients in the auxiliary regression as d.f.
- The number of coefficients in the auxiliary regression may become large, maybe conflicting with size of *N*, resulting in low power of the White test

White's test for heteroskedasticity OLS, using observations 1-569 Dependent variable: uhat^2

	coefficient	std. error	t-ratio	p-value
const	-260,910	18478,5	-0,01412	0,9887
WAGE	554,352	833,028	0,6655	0,5060
CAPITAL	2810,43	663,073	4,238	2,63e-05 ***
OUTPUT	-2573,29	512,179	-5,024	6,81e-07 ***
sq_WAGE	-10,0719	9,29022	-1,084	0,2788
X2_X3	-48,2457	14,0199	-3,441	0,0006 ***
X2_X4	58,5385	8,11748	7,211	1,81e-012 ***
sq_CAPITAL	14,4176	2,01005	7,173	2,34e-012 ***
X3_X4	-40,0294	3,74634	-10,68	2,24e-024 ***
sq_OUTPUT	27,5945	1,83633	15,03	4,09e-043 ***
Unadjusted R-squar	ed = 0,818136	6		
Test statistic: TR^2 = 465,519295, with p-value = P(Chi-square(9) > 465,519295) = 0,000000				

Contents

- Violations of $V{\epsilon} = \sigma^2 I_N$
- Heteroskedasticity
- GLS Estimation
- Autocorrelation

Generalized Least Squares Estimator

- A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor w_i > 0
- Example:

 $y_i = x_i'\beta + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$

Division by h_i results in a model with homoskedastic error terms

$$V\{\varepsilon_i/h_i\} = \sigma_i^2/h_i^2 = \sigma^2$$

• OLS applied to the transformed model results in the weighted least squares (GLS) estimator with $w_i = h_i^{-2}$:

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

 The concept of transforming the model so that Gauss-Markov assumptions are fulfilled is used also in more general situations, e.g., for autocorrelated error terms

Properties of GLS Estimators

The GLS estimator

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

is a least squares estimator; standard properties of OLS estimator apply

The covariance matrix of the GLS estimator is

$$V\left\{\hat{\beta}\right\} = \sigma^2 \left(\sum_i h_i^{-2} x_i x_i'\right)^{-1}$$

Unbiased estimator of the error term variance

$$\hat{\sigma}^{2} = \frac{1}{N-K} \sum_{i} h_{i}^{-2} \left(y_{i} - x_{i}' \hat{\beta} \right)^{2}$$

 Under the assumption of normality of errors, *t*- and *F*-tests can be used; for large *N*, these properties apply approximately without normality assumption

Feasible GLS Estimator

Is a GLS estimator with estimated weights w_i

- Substitution of the weights $w_i = h_i^{-2}$ by estimates \hat{h}_i^{-2} $\hat{\beta}^* = \left(\sum_i \hat{h}_i^{-2} x_i x_i'\right)^{-1} \sum_i \hat{h}_i^{-2} x_i y_i$
- Feasible (or estimated) GLS or FGLS or EGLS estimator
- For consistent estimates \hat{h}_i , the FGLS and GLS estimators are asymptotically equivalent
- For small values of *N*, FGLS estimators are in general not BLUE
- For consistently estimated h
 _i, the FGLS estimator is consistent and asymptotically efficient with covariance matrix (estimate for σ²: based on FGLS residuals)

$$V\left\{\hat{\boldsymbol{\beta}}^{*}\right\} = \hat{\boldsymbol{\sigma}}^{2} \left(\sum_{i} \hat{h}_{i}^{-2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\prime}\right)^{-1}$$

Warning: the transformed model is uncentered

Multiplicative Heteroskedasticity

Assume V{ ϵ_i } = $\sigma_i^2 = \sigma^2 h_i^2 = \sigma^2 \exp\{z_i \alpha\}$

The auxiliary regression

 $\log e_i^2 = \log \sigma^2 + z_i^{\prime} \alpha + v_i \text{ with } v_i = \log(e_i^2/\sigma_i^2)$

provides a consistent estimator a for α

- Transform the model $y_i = x_i^{\beta} + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$ by dividing through \hat{h}_i from $\hat{h}_i^2 = \exp{\{z_i^{\beta}a\}}$
- Error term in this model is (approximately) homoskedastic
- Applying OLS to the transformed model gives the FGLS estimator for β

FGLS Estimation

In the following steps:

- 1. Calculate the OLS estimates *b* for β
- 2. Compute the OLS residuals $e_i = y_i x_i^{,b}$
- 3. Regress $log(e_i^2)$ on z_i and a constant, obtaining estimates *a* for α log $e_i^2 = log \sigma^2 + z_i^{\alpha} + v_i$
- 4. Compute $\hat{h}_i^2 = \exp\{z_i^a\}$, transform all variables and estimate the transformed model to obtain the FGLS estimators:

$$y_i / \hat{h}_i = (x_i / \hat{h}_i)'\beta + \varepsilon_i / \hat{h}_i$$

5. The consistent estimate s^2 for σ^2 , based on the FGLS-residuals, and the consistently estimated covariance matrix

$$\hat{V}\left\{\hat{\boldsymbol{\beta}}^{*}\right\} = s^{2}\left(\sum_{i}\hat{h}_{i}^{-2}\boldsymbol{x}_{i}\boldsymbol{x}_{i}'\right)$$

are part of the standard output when regressing the transformed model

Labor Demand Function

For Belgian companies, 1996; Verbeek

Table 4.5 OLS results loglinear model with White standard errors						
Dependent v	Dependent variable: log(labour)					
		Heteroskedasticit	y-consistent			
Variable	Estimate	Standard error	<i>t</i> -ratio			
constant	6.177	0.294	21.019			
log(<i>wage</i>)	-0.928	0.087	-10.706			
log(output)	0.990	0.047	21.159			
log(<i>capital</i>)	-0.004	0.038	-0.098			
s = 0.465	$R^2 = 0.8430$ $\bar{R}^2 = 0.8$	421 $F = 544.73$				

Log-tranformation is expected to reduce heteroskedasticity

For Belgian companies, 1996; Verbeek

 Table 4.6
 Auxiliary regression multiplicative heteroskedasticity

D		. 2
Dependent	variable:	$\log e_{\tau}^{2}$
Dependent	vanacie.	1080_i

Variable	Estimate	Standard error	<i>t</i> -ratio
constant	-3.254	1.185 0.344	$-2.745 \\ -0.178$
log(wage) log(output)	-0.061 0.267	0.127	2.099
log(<i>capital</i>)	-0.331	0.090	-3.659
$s = 2.241 R^2$	$= 0.0245 \bar{R}^2 =$	0.0193 F = 4.73	

Breusch-Pagan test: $NR^2 = 66.23$, *p*-value: 1,42E-13

For Belgian companies, 1996; Verbeek

Weights estimated assuming multiplicative heteroskedasticity

 Table 4.7
 EGLS results loglinear model

Dependent variable: log(*labour*)

Variable	Estimate	Standard e	error <i>t</i> -ratio
constant	5.895	0.248	23.806
log(<i>wage</i>)	-0.856	0.072	-11.903
log(output)	1.035	0.027	37.890
log(capital)	-0.057	0.022	-2.636
s = 2.509	$R^2 = 0.9903$	$\bar{R}^2 = 0.9902$	F = 14401.3

Estimated function

log(*labour*) = $\beta_1 + \beta_2 \log(wage) + \beta_3 \log(output) + \beta_4 \log(capital)$ The table shows: OLS estimates without (s.e.) and with White standard errors (White s.e.) as well as FGLS estimates and standard errors

	β ₁	β ₂	β ₃	β ₄
OLS coeff	6.177	-0.928	0.990	-0.0037
s.e.	0.246	0.071	0.026	0.0188
White s.e.	0.293	0.086	0.047	0.0377
FGLS coeff	5.895	-0.856	1.035	-0.0569
s.e.	0.248	0.072	0.027	0.0216

Some comments:

- Reduction of standard errors in FGLS estimation as compared with heteroskedasticity-robust estimation, efficiency gains
- Comparison with OLS estimation not appropriate
- FGLS estimates differ slightly from OLS estimates; effect of capital is indicated to be relevant (*p*-value: 0.0086)
- R² of FGLS estimation is misleading
 - Model is uncentered, no intercept
 - Comparison with that of OLS estimation not appropriate, explained variable differ

Contents

- Violations of $V{\epsilon} = \sigma^2 I_N$
- Heteroskedasticity
- GLS Estimation
- Autocorrelation

Autocorrelation

- Typical for time series data such as consumption, production, investments, etc., and models for time series data
- Autocorrelation of error terms is typically observed if
 - a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
 - the functional form of a regressor is incorrectly specified
 - the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Autocorrelation of the error terms indicates deficiencies of the model specification such as omitted regressors, incorrect functional form, incorrect dynamic
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Example: Demand for Ice Cream

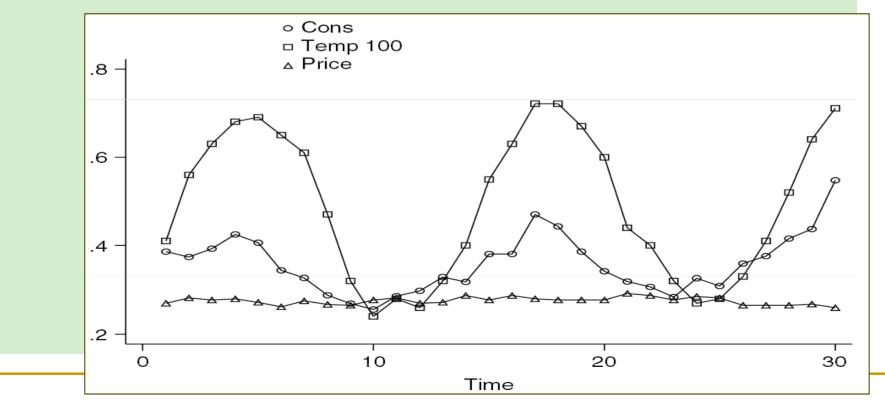
Time series of 30 four weekly observations (1951-1953)

- Variables
 - *cons*: consumption of ice cream per head (in pints)
 - income: average family income per week (in USD, red line)
 - price: price of ice cream (in USD per pint, blue line)
 - temp: average temperature (in Fahrenheit); tempc: (green, in °C)

Demand for Ice Cream, cont'd

Time series plot of

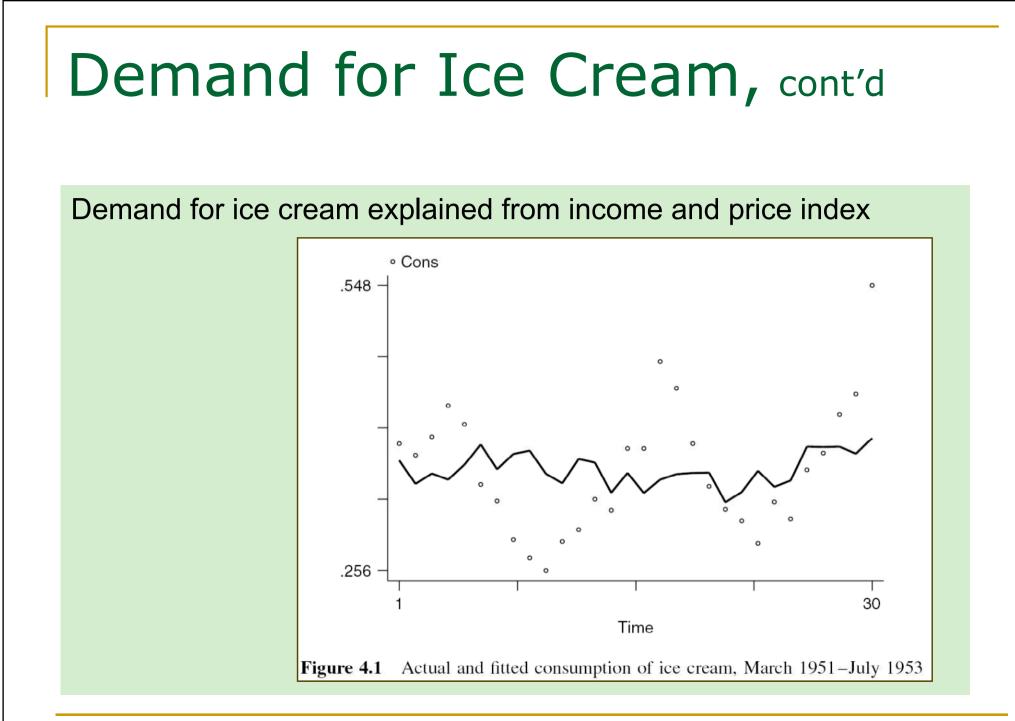
Cons: consumption of ice cream per head (in pints); mean: 0.36 *Temp/100*: average temperature (in Fahrenheit) *Price* (in USD per pint); mean: 0.275 USD



Demand for Ice Cream, cont'd

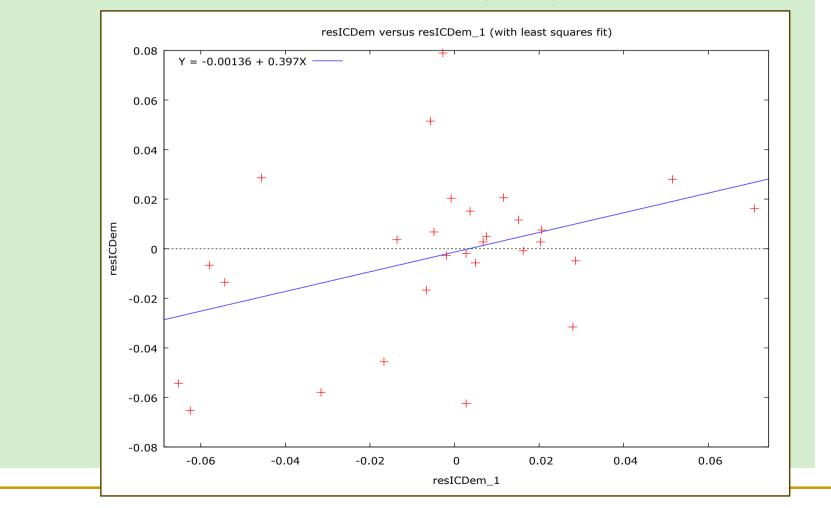
Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*

	Table 4.9	OLS results					
Dependent	Dependent variable: cons						
Variable	Estimate	Standard error	<i>t</i> -ratio				
constant	0.197	0.270	0.730				
price	-1.044	0.834	-1.252				
income	0.00331	0.00117	2.824				
temp	0.00345	0.00045	7.762				
s = 0.0368 dw = 1.021		$\bar{R}^2 = 0.6866$ F	= 22.175				



Demand for Ice Cream, cont'd

Ice cream model: Scatter-plot of residuals e_t vs e_{t-1} (r = 0.401)



A Model with AR(1) Errors

Linear regression

$$y_t = x_t^{\beta} + \varepsilon_t^{-1}$$

with

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$
 with $-1 < \rho < 1$ or $|\rho| < 1$

where v_t are uncorrelated random variables with mean zero and constant variance σ_v^2

- For $\rho \neq 0$, the error terms ε_t are correlated; the Gauss-Markov assumption V{ ε } = $\sigma_{\varepsilon}^2 I_N$ is violated
- The other Gauss-Markov assumptions are assumed to be fulfilled

The sequence ε_t , t = 0, 1, 2, ... which follows $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ is called an autoregressive process of order 1 or AR(1) process

¹⁾ In the context of time series models, variables are indexed by "t"

Properties of AR(1) Processes

Repeated substitution of ε_{t-1} , ε_{t-2} , etc. results in

 $\varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t} = v_{t} + \rho v_{t-1} + \rho^{2} v_{t-2} + \dots$

with v_t being uncorrelated and having mean zero and variance σ_v^2 :

- $E{\epsilon_t} = 0$
- $V{\epsilon_t} = \sigma_{\epsilon}^2 = \sigma_v^2 (1-\rho^2)^{-1}$
- This results from V{ ϵ_t } = $\sigma_v^2 + \rho^2 \sigma_v^2 + \rho^4 \sigma_v^2 + ... = \sigma_v^2 (1-\rho^2)^{-1}$ for $|\rho| < 1$ as the geometric series $1 + \rho^2 + \rho^4 + ...$ has the sum $(1-\rho^2)^{-1}$ given that $|\rho| < 1$
 - for $|\rho| > 1$, $V{\epsilon_t}$ is undefined
- Cov{ $\epsilon_t, \epsilon_{t-s}$ } = $\rho^s \sigma_v^2 (1-\rho^2)^{-1}$ for s > 0

all error terms are correlated; covariances – and correlations Corr{ $\epsilon_t, \epsilon_{t-s}$ } = $\rho^s (1-\rho^2)^{-1}$ – decrease with growing distance *s* in time

AR(1) Process, cont'd

The covariance matrix $V{\epsilon}$:

$$V\{\varepsilon\} = \sigma_{v}^{2}\Psi = \frac{\sigma_{v}^{2}}{1-\rho^{2}} \begin{pmatrix} 1 & \rho & \cdots & \rho^{N-1} \\ \rho & 1 & \cdots & \rho^{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho^{N-1} & \rho^{N-2} & \cdots & 1 \end{pmatrix}$$

- V{ε} has a band structure
- Depends only of two parameters: ρ and σ_v^2

Consequences of V{ ϵ } $\neq \sigma^2 I_T$

OLS estimators b for β

- are unbiased
- are consistent
- have the covariance-matrix

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator $s^2 = e'e/(T-K)$ for σ^2 is biased

```
For an AR(1)-process \varepsilon_t with \rho > 0, s.e. from \sigma^2 (X'X)^{-1}
underestimates the true s.e.
```

Inference under Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

Use of $\sigma^2 (X'X)^{-1}$ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Identification of autocorrelation:

Statistical tests, e.g., Durbin-Watson test

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

Estimation of p

Autocorrelation coefficient ρ : parameter of the AR(1) process

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$

Estimation of ρ

by regressing the OLS residual e_t on the lagged residual e_{t-1}

$$r = \frac{\sum_{t=2}^{T} e_t e_{t-1}}{(T-k)s^2}$$

- estimator is
 - biased
 - but consistent under weak conditions

Autocorrelation Function

Autocorrelation of order *s*:

$$r_s = \frac{\sum_{t=s+1}^{T} e_t e_{t-s}}{(T-k)s^2}$$

- Autocorrelation function assigns r_s to s
- Correlogram: graphical representation of the autocorrelation function

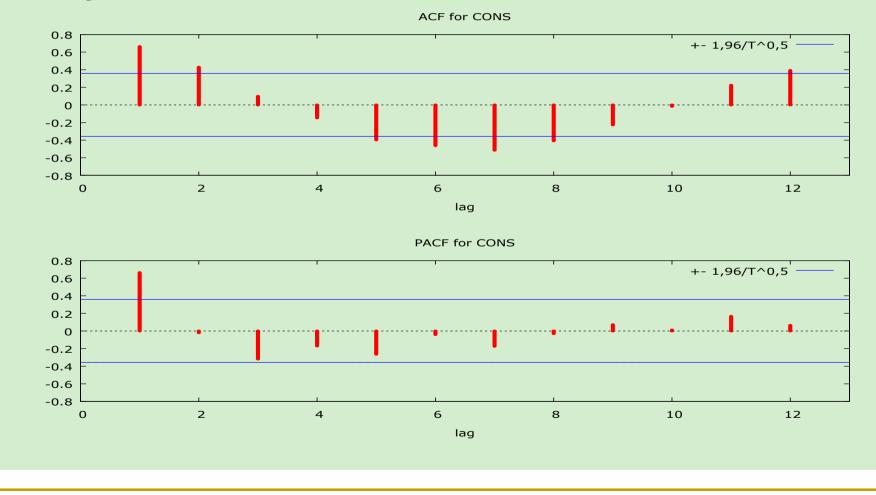
Example: Ice Cream Demand

Autocorrelation function (ACF) of cons

LAG	ACF		PACF	Q-stat. [p-value]
4	0 0007	***	0 0007 ***	
	0,6627		0,6627 ***	14,5389 [0,000]
2	0,4283	**	-0,0195	20,8275 [0,000]
3	0,0982		-0,3179 *	21,1706 [0,000]
4	-0,1470		-0,1701	21,9685 [0,000]
5	-0,3968	**	-0,2630	28,0152 [0,000]
6	-0,4623	**	-0,0398	36,5628 [0,000]
7	-0,5145	***	-0,1735	47,6132 [0,000]
8	-0,4068	**	-0,0299	54,8362 [0,000]
9	-0,2271		0,0711	57,1929 [0,000]
10	-0,0156		0,0117	57,2047 [0,000]
11	0,2237		0,1666	59,7335 [0,000]
12	0,3912	**	0,0645	67,8959 [0,000]

Example: Ice Cream Demand

Correlogram of cons



Tests for Autocorrelation of Error Terms

Due to unbiasedness of *b*, residuals are expected to indicate autocorrelation

Graphical display, correlogram of residuals may give useful hints Residual-based tests:

- Durbin-Watson test
- Box-Pierce test
- Breusch-Godfrey test

Durbin-Watson Test

Test of H_0 : $\rho = 0$ against H_1 : $\rho \neq 0$

Test statistic

$$dw = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - r)$$

- For $\rho > 0$, *dw* is expected to have a value in (0,2)
- For $\rho < 0$, *dw* is expected to have a value in (2,4)
- *dw* close to the value 2 indicates no autocorrelation of error terms
- Critical limits of dw
 - depend upon x_t 's
 - exact critical value is unknown, but upper and lower bounds can be derived, which depend only of the number of regression coefficients
- Test can be inconclusive

Durbin-Watson Test: Bounds for Critical Limits

Derived by Durbin and Watson

Upper ($d_{\rm U}$) and lower ($d_{\rm L}$) bounds for the critical limits and $\alpha = 0.05$

<i>K</i> =2		K =3		<i>K</i> =10		
	d_{L}	d_{\cup}	$d_{ m L}$	d_{\cup}	$d_{ m L}$	d_{\cup}
15	1.08	1.36	0.95	1.54	0.17	3.22
20	1.20	1.41	1.10	1.54	0.42	2.70
100	1.65	1.69	1.63	1.71	1.48	1.87

- $dw < d_L$: reject H₀
- $dw > d_{\cup}$: do not reject H₀
- $d_{\rm L} < dw < d_{\rm U}$: no decision (inconclusive region)

Durbin-Watson Test: Remarks

- Durbin-Watson test gives no reference to causes of rejection of the null hypothesis and how the model to modify
- Various types of misspecification may cause the rejection of the null hypothesis
- Durbin-Watson test is a test against first-order autocorrelation; a test against autocorrelation of other orders may be more suitable, e.g., order four if the model is for quarterly data
- Use of tables unwieldy
 - Limited number of critical bounds (*K*, *T*, α) in tables
 - Inconclusive region

Asymptotic Tests

AR(1) process for error terms

```
\varepsilon_t = \rho \varepsilon_{t-1} + v_t
```

Auxiliary regression of e_t on x_t β and e_{t-1} : produces

R_e²

Test of H_0 : $\rho = 0$

- 1. Breusch-Godfrey test (GRETL: OLS output => Tests => Autocorr.)
 - \square R_e² of the auxiliary regression: close to zero if $\rho = 0$
 - (*T*-1) R_e^2 follows approximately the Chi-square distribution with 1 d.f. if $\rho = 0$
 - Lagrange multiplier *F* (LMF) statistic: *F*-test for explanatory power of e_{t-1} ; follows approximately the *F*(1, *T*-*K*-1) distribution if ρ = 0
 - General case of the Breusch-Godfrey test: Auxiliary regression based on higher order autoregressive process

Asymptotic Tests, cont'd

2. Box-Pierce test

• The corresponding *t*-statistic

 $t=\sqrt{(T)} r$

follows approximately the *t*-distribution if $\rho = 0$

- □ Test based on $\sqrt{(T)} r$ is a special case of the Box-Pierce test which uses the test statistic $Q_m = T \Sigma_s^m r_s^2$
- Similar the Ljung-Box test, based on

$$\frac{T(T-2)}{T-1} \sum_{s=1}^{m} r_s^2$$

which follows the Chi-square distribution with *m* d.f. if $\rho = 0$

 Ljung-Box test in GRETL: OLS output => Graphs => Residual correlogram

Asymptotic Tests, cont'd

Remarks

- If the model of interest contains lagged values of y the auxiliary regression should also include all explanatory variables (just to make sure the distribution of the test is correct)
- If heteroskedasticity is suspected, White standard errors may be used in the auxiliary regression

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*

	Table 4.9	OLS results	
Dependent v	variable: cons		
Variable	Estimate	Standard error	t-ratio
constant	0.197	0.270	0.730
price	-1.044	0.834	-1.252
income	$0.00331 \\ 0.00345$	0.00117 0.00045	2.824 7.762
temp	0.00343	0.00045	7.762
s = 0.0368	$R^2 = 0.7190$	$\bar{R}^2 = 0.6866$ F	= 22.175
dw = 1.021	2		

OLS estimated demand function: Output from **GRETL**

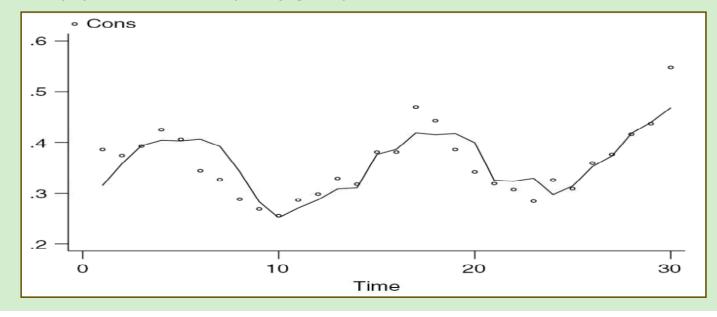
Dependent	variable : CONS			
	coefficient	std. error	t-ratio	p-value
const	0.197315	0.270216	0.7302	0.4718
INCOME	0.00330776	0.00117142	2.824	0.0090 ***
PRICE	-1.04441	0.834357	-1.252	0.2218
TEMP	0.00345843	0.000445547	7.762	3.10e-08 *
Mean depe	endent var	0.359433	S.D. dependent var	
Sum squar	ed resid	0,035273	S.E. of regression	
R- squared	l i i i i i i i i i i i i i i i i i i i	0,718994	Adjusted R-squared	
F(2, 129)		22,17489	P-value (F)	
Log-likeliho	bod	58,61944	Akaike criterion	
Schwarz cr	riterion	-103,6341	Hannan-Quinn	
rho		0,400633	Durbin-Watson	

0,065791 0,036833 0,686570 2,45e-07

-109,2389 -107,4459 1,021170

Test for autocorrelation of error terms

- $H_0: \rho = 0, H_1: \rho \neq 0$
- $dw = 1.02 < 1.21 = d_{\rm L}$ for T = 30, K = 4
- GRETL also shows the autocorrelation coefficient: r = 0.401
 Plot of actual (o) and fitted (polygon) values



Auxiliary regression $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$: OLS estimation gives

 $e_{\rm t}$ = 0.401 $e_{\rm t-1}$

with s.e.(r) = 0.177, R² = 0.154

Test of H_0 : $\rho = 0$ against H_1 : $\rho > 0$

1. Box-Pierce test:

- □ $t \approx \sqrt{(30)} 0.401 = 2.196$, *p*-value: 0.018
- *t*-statistic: 2.258, *p*-value: 0.016
- 2. Breusch-Godfrey test
 - □ (*T*-1) R² = 4.47, *p*-value: 0.035

Both reject the null hypothesis

Inference under Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

HAC-estimator for $V\{b\}$

Substitution of Ψ in

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

by a suitable estimator

• Newey-West: substitution of $S_x = \sigma^2(X \Omega X)/T = (\Sigma_t \Sigma_s \sigma_{ts} x_t x_s')/T$ by

$$\hat{S}_{x} = \frac{1}{T} \sum_{t} e_{t}^{2} x_{t} x_{t}' + \frac{1}{T} \sum_{j=1}^{p} \sum_{t} (1 - w_{j}) e_{t} e_{t-j} (x_{t} x_{t-j}' + x_{t-j} x_{t}')$$

with $w_j = j/(p+1)$; *p*, the *truncation lag*, is to be chosen suitably The estimator

 $T(XX)^{-1} \hat{S}_{X}(XX)^{-1}$

for V{*b*} is called *heteroskedasticity and autocorrelation consistent* (HAC) estimator, the corresponding standard errors are the HAC s.e.

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors

	coeff	s.e.	
		OLS HAC	
constant	0.197	0.270	0.288
price	-1.044	0.834	0.876
income*10 ⁻³	3.308	1.171	1.184
temp*10 ⁻³	3.458	0.446	0.411

Cochrane-Orcutt Estimator

GLS estimator

• With transformed variables $y_t^* = y_t - \rho y_{t-1}$ and $x_t^* = x_t - \rho x_{t-1}$, also called quasi-differences, the model $y_t = x_t^{\cdot}\beta + \varepsilon_t$ with $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ can be written as

 $y_t - \rho y_{t-1} = y_t^* = (x_t - \rho x_{t-1})^{\prime}\beta + v_t = x_t^{*\prime}\beta + v_t$ (A)

- The model in quasi-differences has error terms which fulfill the Gauss-Markov assumptions
- Given observations for t = 1, ..., T, model (A) is defined for t = 2, ..., T
- Estimation of ρ using, e.g., the auxiliary regression $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ gives the estimate *r*; substitution of *r* in (A) for ρ results in FGLS estimators for β
- The FGLS estimator is called Cochrane-Orcutt estimator

Cochrane-Orcutt Estimation

In following steps

- 1. OLS estimation of *b* for β from $y_t = x_t^{\dagger}\beta + \varepsilon_t$, t = 1, ..., T
- 2. Estimation of *r* for ρ from the auxiliary regression $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$
- 3. Calculation of quasi-differences $y_t^* = y_t ry_{t-1}$ and $x_t^* = x_t rx_{t-1}$
- 4. OLS estimation of β from

 $y_t^* = x_t^{*'}\beta + v_t, t = 2, ..., T$

resulting in the Cochrane-Orcutt estimators

Steps 2. to 4. can be repeated: iterated Cochrane-Orcutt estimator

GRETL provides the iterated Cochrane-Orcutt estimator:

Model => Time series => Cochrane-Orcutt

Iterated Cochrane-Orcutt estimator

Table 4.10 EGLS (iterative Cochrane–Orcutt) results	ive Cochrane-Orcutt) result	(iterative	EGLS	Table 4.10
---	-----------------------------	------------	------	-------------------

Dependent variable: cons

Variable	Estimate	Standard error	<i>t</i> -ratio	
constant price income temp ρ̂	$\begin{array}{c} 0.157 \\ -0.892 \\ 0.00320 \\ 0.00356 \\ 0.401 \end{array}$	0.300 0.830 0.00159 0.00061 0.2079	$\begin{array}{r} 0.524 \\ -1.076 \\ 2.005 \\ 5.800 \\ 1.927 \end{array}$	
$s = 0.0326^*$ dw = 1.5486		$\bar{R}^2 = 0.7621^*$	F = 23.419	

Durbin-Watson test: dw = 1.55; $d_{L}=1.21 < dw < 1.65 = d_{U}$

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors, and Cochrane-Orcutt estimates

	coeff	s.e.		Coch Orc	
		OLS HAC		coeff	se
constant	0.197	0.270	0.288	0.157	0.300
price	-1.044	0.834	0.881	-0.892	0.830
income	3.308	1.171	1.151	3.203	1.546
temp	3.458	0.446 0.449		3.558	0.555

Model extended by *temp*₋₁

Table 4.11 OLS results extended specification							
Dependent variable: cons							
Variable	Estimate	Standard error	<i>t</i> -ratio				
constant	0.189	0.232	0.816				
price	-0.838	0.688	-1.218				
income	0.00287	0.00105	2.722				
temp	0.00533	0.00067	7.953				
$temp_{t-1}$	-0.00220	0.00073	-3.016				
s = 0.0299	$R^2 = 0.8285$	$\bar{R}^2 = 0.7999$ <i>R</i>	F = 28.979				
dw = 1.5822							

Durbin-Watson test: dw = 1.58; $d_{L}=1.21 < dw < 1.65 = d_{U}$

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors, Cochrane-Orcutt estimates, and OLS estimates for the extended model

	OLS		Cochrane- Orcutt		OLS	
	coeff	HAC	coeff	se	coeff	se
constant	0.197	0.288	0.157	0.300	0.189	0.232
price	-1.044	0.881	-0.892	0.830	-0.838	0.688
income	3.308	1.151	3.203	1.546	2.867	1.053
temp	3.458	0.449	3.558	0.555	5.332	0.670
temp ₋₁					-2.204	0.731

General Autocorrelation Structures

Generalization of model

$$y_t = x_t \beta + \varepsilon_t$$

with $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$

Alternative dependence structures of error terms

- Autocorrelation of higher order than 1
- Moving average pattern

Higher Order Autocorrelation

For quarterly data, error terms may develop according to

$$\varepsilon_t = \gamma \varepsilon_{t-4} + V_t$$

or - more generally - to

 $\varepsilon_{t} = \gamma_{1}\varepsilon_{t-1} + \ldots + \gamma_{4}\varepsilon_{t-4} + V_{t}$

- ϵ_t follows an AR(4) process, an autoregressive process of order 4
- More complex structures of correlations between variables with autocorrelation of order 4 are possible than with that of order 1

Moving Average Processes

Moving average process of order 1, MA(1) process

 $\varepsilon_t = v_t + \alpha v_{t-1}$

- **ε**_t is correlated with $ε_{t-1}$, but not with $ε_{t-2}$, $ε_{t-3}$, ...
- Generalizations to higher orders

Remedies against Autocorrelation

- Change functional form, e.g., use log(y) instead of y
- Extend the model by including additional explanatory variables, e.g., seasonal dummies, or additional lags
- Use HAC standard errors for the OLS estimators
- Reformulate the model in quasi-differences (FGLS) or in differences

Your Homework

1. Use the data set "labour2" of Verbeek for the following analyses:

- a. Estimate (OLS) the model where log *labor* is explained by log *output* and log *wage*; generate a display of the residuals which may indicate heteroskedasticity of the error term
- b. Perform the Breusch-Pagan (i) with $h(z_i \cdot \alpha) = \exp(z_i \cdot \alpha)$ and (ii) with $h(z_i \cdot \alpha) = z_i \cdot \alpha$, and the White test (iii) with and (iv) without interactions; explain the tests and compare and interpret the results
- c. Compare (i) the OLS and the White standard errors with (ii) HC0 and (iii) HC1 of the estimated coefficients; interpret the results
- d. Estimate the model of a., using FGLS and weights obtained in the auxiliary regression of the Breusch-Pagan test (ii) in b.; compare the results with that of a.

Your Homework, cont'd

2. Use the data set "icecream" of Verbeek for the following analyses:

- a. Estimate the model where *cons* is explained by *income* and *temp*; generate two displays of the residuals which may indicate autocorrelation of the error terms
- b. Use the Durbin-Watson and the Breusch-Godfrey test against autocorrelation; interpret the result
- c. Repeat a., using (i) the iterative Cochrane-Orcutt estimation and (ii) OLS estimation of the model in differences; interpret the result.
- Durbin-Watson: (a) Explain the meaning of the statement "The Durbin-Watson test is a misspecification test"; (b) show that dw ≈ 2 2r; (c) which of the following tests is a generalization of the DW test? (i) Box-Pierce test; (ii) Breusch-Godfrey test; explain why.