Budget Constraint, Preferences and Utility

Varian: Intermediate Microeconomics, 8e, Chapters 2, 3 and 4

Consumer Theory

Consumers choose the best bundles of goods they can afford.

- This is virtually the entire theory in a nutshell.
- But this theory has many surprising consequences.

Two parts to consumer theory

- "can afford" budget constraint
- "best" according to consumers' **preferences**

Consumer Theory (cont´d)

What do we want to do with the theory?

- Test it. See if it is adequate to describe consumer behavior.
- Predict how behavior changes as economic environment changes.
- Use observed behavior to estimate underlying values.

These values can be used for

- cost-benefit analysis,
- predicting impact of some policy.

3 / 5:

Budget Constraint

The first part of the lecture explains

- what is the budget constraint and the budget line,
- how changes in income and prices affect the budget line,
- how taxes, subsidies and rationing affect the budget line.

Consumption Bundle

For goods 1 and 2, the consumption bundle (x_1, x_2) shows how much of each good is consumed.

Suppose that we can observe

- the prices of the two goods (p_1, p_2)
- and the amount of money the consumer has to spend m (income).

The **budget constraint** can be written as $p_1x_1 + p_2x_2 \le m$.

The *affordable* consumption bundles are bundles that don't cost more than income.

The set of affordable consumption bundles is **budget set** of the consumer.

Two Goods

Theory works with more than two goods, but can't draw pictures.

We often think of good 2 (say) as a **composite good**, representing money to spend on other goods.

Budget constraint becomes $p_1x_1 + x_2 \le m$.

Money spent on good $1 (p_1x_1)$ plus the money spent on good $2 (x_2)$ has to be less than or equal to the available income (m).

Budget Line

Budget line is $p_1x_1 + p_2x_2 = m$. It can be also written as $x_2 = \frac{m}{p_2} - \frac{p_1}{p_2}x_1$.

Slope of budget line = opportunity cost of good 1.

Change in Income

Increasing *m* makes parallel shift out.

The vertical intercept increases and the slope remains the same.

() 8 / 53

Change in One Price

Increasing p_1 makes the budget line steeper.

The vertical intercept remains the same and the slope changes.

Changes in More Variables

Multiplying all prices by t is just like dividing income by t:

$$tp_1x_1 + tp_2x_2 = m \iff p_1x_1 + p_2x_2 = \frac{m}{t}.$$

Multiplying all prices and income by t doesn't change budget line:

$$tp_1x_1 + tp_2x_2 = tm \iff p_1x_1 + p_2x_2 = m.$$

A perfectly balanced inflation doesn't change consumption possibilities.

Numeraire

We can arbitrarily assign one price or income a value of 1 and adjust the other variables so as to describe the same budget set.

Budget line: $p_1x_1 + p_2x_2 = m$

The same budget line for $p_2 = 1$:

$$\frac{p_1}{p_2}x_1 + x_2 = \frac{m}{p_2}.$$

The same budget line for m = 1:

$$\frac{p_1}{m}x_1 + \frac{p_2}{m}x_2 = 1.$$

The price adjusted to 1 is called the **numeraire** price.

Useful when measuring relative prices; e.g. English pounds per dollar, 1987 dollars versus 1974 dollars, etc.

Taxes

Three types of taxes:

- quantity tax consumer pays amount t for each unit she purchases.
 - \rightarrow Price of good 1 increases to $p_1 + t$.
- value tax (or ad valorem tax) consumer pays a proportion of the price τ .
 - \rightarrow Price of good 1 increases to $p_1 + \tau p_1 = (1 + \tau)p_1$.
- **lump-sum** tax amount of tax is independent of the consumer's choices.
 - ightarrow The income of consumer decreases by the amount of the tax.

12 / 53

Subsidies

Subsidies – opposite effect than the taxes

- quantity subsidy of s on good 1
 - \rightarrow Price price of good 1 decreases to $p_1 s$.
- ullet ad valorem subsidy at a rate of σ on good 1
 - \rightarrow Price price of good 1 decreases to $p_1 \sigma p_1 = (1 \sigma)p_1$.
- lump-sum subsidy
 - \rightarrow The income increases by the amount of the subsidy.

Rationing

Rationing – can't consume more than a certain amount of some good.

Good 1 is rationed, no more than \bar{x} units of good 1 can be consumed by any consumer.

Taxing Consumption Greater than $\bar{x_1}$

Taxed only consumption of good 1 in excess of $\bar{x_1}$, the budget line becomes steeper right of $\bar{x_1}$

The Food Stamp Program

Before 1979 was an ad valorem subsidy on food

- paid a certain amount of money to get food stamps which were worth more than they cost
- some rationing component could only buy a maximum amount of food stamps

After 1979 got a straight lump-sum grant of food coupons. Not the same as a pure lump-sum grant since could only spend the coupons on food.

Summary

- The budget set consists of bundles of goods that the consumer can afford at given prices and income. Typically assume only 2 goods – one of the goods might be composite good.
- The budget line can be written as $p_1x_1 + p_2x_2 = m$.
- Increasing income shifts the budget line outward. Increasing price of one good changes the slope of the budget line.
- Taxes, subsidies, and rationing change the position and slope of the budget line.

() 18 / 53

Preferences

The second part of the lecture explains

- what are consumer's preferences,
- what properties have well-behaved preferences,
- what is marginal rate of substitution.

Preferences - Introduction

Economic model of consumer behavior – people choose the best things they can afford

- up to now, we clarified "can afford"
- next, we deal with "best things"

Several observations about optimal choice from movements of budget lines

- perfectly balanced inflation doesn't change anybody's optimal choice
- after a rise of income, the same choices are available – consumer must be at least as well of as before

() 20 / 53

Preferences

Preferences are relationships between bundles.

- If a consumer chooses bundle (x_1, x_2) when (y_1, y_2) is available, then it is natural to say that bundle (x_1, x_2) is preferred to (y_1, y_2) by this consumer.
- Preferences have to do with the entire bundle of goods, not with individual goods.

Notation

- $(x_1, x_2) \succ (y_1, y_2)$ means the x-bundle is strictly preferred to the y-bundle.
- $(x_1, x_2) \sim (y_1, y_2)$ means that the x-bundle is regarded as indifferent to the y-bundle.
- $(x_1, x_2) \succeq (y_1, y_2)$ means the x-bundle is at least as good as (or weakly preferred) the y-bundle.

Assumptions about Preferences

Assumptions about "consistency" of consumers' preferences:

- Completeness any two bundles can be compared: $(x_1, x_2) \succeq (y_1, y_2)$, or $(x_1, x_2) \preceq (y_1, y_2)$, or both
- **Reflexivity** any bundle is at least as good as itself: $(x_1, x_2) \succeq (x_1, x_2)$
- Transitivity if the bundle X is at least as good as Y and Y at least as good as Z, then X is at least as good as Z: If $(x_1, x_2) \succeq (y_1, y_2)$, and $(y_1, y_2) \succeq (z_1, z_2)$, then $(x_1, x_2) \succeq (z_1, z_2)$

Transitivity necessary for theory of optimal choice. Otherwise, there could be a set of bundles for which there is no best choice.

Indifference Curves

Weakly preferred set are all consumption bundles that are weakly preffered to a bundle (x_1, x_2) .

Indifference curve is formed by all consumption bundles for which the consumer is indifferent to (x_1, x_2) – like contour lines on a map.

Indifference Curves (cont'd)

Note that indifference curves describing two distinct levels of preference cannot cross.

Proof — we know that $X \sim Z$ and $Z \sim Y$. Transitivity implies that $X \sim Y$. This contradicts the assumption that $X \succ Y$.

Examples: Perfect Substitutes

Perfect substitutes have constant rate of trade-off between the two goods; constant slope of the indifference curve (not necessarily -1).

E.g. red pencils and blue pencils; pints and quarts.

() 25 / 53

Examples: Perfect Complements

Perfect complements are consumed in fixed proportion (not necessarily 1:1).

E.g. right shoes and left shoes; coffee and cream.

() 26 / 53

Examples: Bad Good

A bad is a commodity that the consumer doesn't like.

Suppose consumer is doesn't like anchovies and likes pepperoni.

() 27 / 53

Examples: Neutral Good

Consumer doesn't care about the **neutral good**.

Suppose consumer is neutral about anchovies and likes pepperoni.

() 28 / 53

Examples: Satiation Point

Satiation or **bliss point** is the most preferred bundle $(\bar{x_1}, \bar{x_2})$

- When consumer has too much of good, it becomes a bad reducing consumption of the good makes consumer better off.
- E.g. amount of chocolate cake and ice cream per week

() 29 / 53

Examples: Discrete Good

Discrete good is only available in integer amounts.

- Indiference "curves" sets of discrete points; weakly preferred set line segments.
- Important if consumer chooses only few units of the good per time period (e.g. cars).

Well-Behaved Preferences

Monotonicity – more is better (we have only goods, not bads) \Longrightarrow indifference curves have negative slope (see Figure 3.9): If (y_1, y_2) has at least as much of both goods as (x_1, x_2) and more of one, then $(y_1, y_2) > (x_1, x_2)$.

Convexity – averages are preferred to extremes \implies slope gets flatter as you move further to right (see Figure 3.10): If $(x_1, x_2) \sim (y_1, y_2)$, then $(tx_1 + (1-t)y_1, tx_2 + (1-t)y_2) \succeq (x_1, x_2)$ for all 0 < t < 1

- non convex preferences olives and ice cream
- strict convexity If the bundles $(x_1, x_2) \sim (y_1, y_2)$, then $(tx_1 + (1-t)y_1, tx_2 + (1-t)y_2) \succ (x_1, x_2)$ for all $0 \le t \le 1$

Marginal Rate of Substitution

Marginal rate of substitution (MRS) is the slope of the indifference curve: $MRS = \Delta x_2/\Delta x_1 = dx_2/dx_1$.

Sign problem — natural sign is negative, since indifference curves will generally have negative slope.

*x*₁

Marginal Rate of Substitution (cont'd)

MRS measures how the consumer is willing to trade off consumption of good 1 for consumption of good 2 (see Figure 3.12).

For strictly convex preferences, the indifference curves exhibit diminishing marginal rate of sustitution

Other interpretation: **marginal willingness to pay** – how much of good 2 is one willing to pay for a extra consumption of good 1.

If good 2 is a composite good, the willingness-to-pay interpretation is very natural.

Not the same as how much you have to pay.

() 35 / 53

Example: Slope of the Indifference Curve

1) Calculate the slope of the indifference curve $x_2 = 4/x_1$ at the point $(x_1, x_2) = (2, 2)$.

Slope of the indifference curve = MRS =
$$\frac{dx_2}{dx_1} = \frac{-4}{x_1^2} = -1$$
.

2) Calculate the slope of the indifference curve $x_2 = 10 - 6\sqrt{x_1}$ at the point $(x_1, x_2) = (4, 5)$.

Slope of the indifference curve = MRS =
$$\frac{dx_2}{dx_1} = \frac{-3}{\sqrt{x_1}} = \frac{-3}{2}$$
.

() 37 / 53

Summary

- Economists assume that a consumer can rank consumption bundles. The ranking describes the consumer's preferences.
- The preferences are assumed to be complete, reflexive and transitive.
- Well-behaved preferences are monotonic and convex.
- MRS measures the slope of the indifference curve. MRS can be interpreted as how much of good 2 is one willing to pay for an extra consumption of good 1.

() 38 / 53

Utility

The third part of the lecture explains

- · what is utility,
- what is a utility function,
- what is a monotonic tranformation of a utility function,
- how can we use utility function to calculate MRS.

39 / 53

Utility

Two ways of viewing utility:

Old way - measures how "satisfied" you are (cardinal utility)

- not operational
- many other problems

New way - summarizes preferences, only the ordering of bundles counts (**ordinal utility**)

- operational
- gives a complete theory of demand

Ordinal Utility

A utility function assigns a number to each bundle of goods so that more preferred bundles get higher numbers.

If
$$(x_1, x_2) \succ (y_1, y_2)$$
, then $u(x_1, x_2) > u(y_1, y_2)$.

Three ways to assign utility that represent the same preferences:

Bundle	U_1	U_2	U_3
Α	3	17	-1
В	2	10	-2
С	1	.002	-3

Utility Function is Not Unique

A **positive monotonic transformation** f(u) is any increasing function.

Examples:
$$f(u) = 3u$$
, $f(u) = u + 3$, $f(u) = u^3$.

If $u(x_1, x_2)$ is a utility function that represents some preferences, then $f(u(x_1, x_2))$ represents the same preferences.

Why? Because $u(x_1, x_2) > u(y_1, y_2)$ only if $f(u(x_1, x_2)) > f(u(y_1, y_2))$.

$\Delta f(x) \geqslant 0$	Nondecreasing	
$\Delta f(x) \leqslant 0$	Nonincreasing)
$\Delta f(x) > 0$	Increasing	
$\Delta f(x) < 0$	Decreasing	

() 42 / 53

Constructing Utility Functions

Mechanically using the indifference curves.

Examples: Utility to Indifference Curves

Easy — just plot all points where the utility is constant

Utility function
$$u(x_1, x_2) = x_1x_2$$
;
Indifference curves: $k = x_1x_2 \iff x_2 = \frac{k}{x_1}$

44 / 53

Examples: Indifference Curves to Utility

More difficult - given the preferences, what combination of goods describes the consumer's choices.

Perfect substitutes

- All that matters is total number of pencils, so $u(x_1, x_2) = x_1 + x_2$ does the trick.
- Can use any monotonic transformation of this as well, such as $ln(x_1 + x_2)$.

Perfect complements

- What matters is the minimum of the left and right shoes you have, so $u(x_1, x_2) = \min\{x_1, x_2\}$ works.
- In general, if it not 1:1, the utility function is $u(x_1, x_2) = \min\{ax_1, bx_2\}$, where a and b are positive numbers.

Examples: Indifference Curves to Utility (cont'd)

Quasilinear preferences

- Indifference curves are vertically parallel (see Figure 4.4). Not particularly realistic, but easy to work with.
- Utility function has form $u(x_1, x_2) = v(x_1) + x_2$
- Specific examples: $u(x_1, x_2) = \sqrt{x_1} + x_2$ or $u(x_1, x_2) = \ln x_1 + x_2$

Cobb-Douglas preferences

- Simplest algebraic expression that generates well-behaved preferences.
- Utility function has form $u(x_1, x_2) = x_1^b x_2^c$ (See Figure 4.5).
- Convenient to take transformation $f(u) = u^{\frac{1}{b+c}}$ and write $x_1^{\frac{b}{b+c}} x_2^{\frac{c}{b+c}}$ or $x_1^a x_2^{1-a}$, where a = b/(b+c).

() 46 / 53

Marginal Utility

Marginal utility (MU) is extra utility from some extra consumption of one of the goods, holding the other good fixed.

A partial derivative – this just means that you look at the derivative of $u(x_1, x_2)$ keeping x_2 fixed — treating it like a constant. Examples:

- if $u(x_1, x_2) = x_1 + x_2$, then $MU_1 = \partial u / \partial x_1 = 1$
- if $u(x_1, x_2) = x_1^a x_2^{1-a}$, then $MU_1 = \partial u / \partial x_1 = a x_1^{a-1} x_2^{1-a}$

Note that marginal utility depends on which utility function you choose to represent preferences.

- If you multiply utility 2x, you multiply marginal utility 2x \implies it is not an operational concept.
- However, *MU* is closely related to *MRS*, which is an operational concept.

Relationship between MU and MRS

An indifference curve $u(x_1, x_2) = k$, where k is a constant.

We want to measure slope of indifference curve, the MRS.

So consider a change $(\Delta x_1, \Delta x_2)$ that keeps utility constant. Then,

$$MU_1\Delta x_1 + MU_2\Delta x_2 = 0$$

$$\frac{\partial u}{\partial x_1} \Delta x_1 + \frac{\partial u}{\partial x_2} \Delta x_2 = 0.$$

Hence,

$$\frac{\Delta x_2}{\Delta x_1} = -\frac{MU_1}{MU_2}.$$

So we can compute MRS from knowing the utility function.

Example: Utility for Commuting

Question: Take a bus or take a car to work?

Each way of transport represents bundle of different characteristics: Let x_1 be the time of taking a car, y_1 be the time of taking a bus. Let x_2 be cost of car, etc.

Suppose utility function takes linear form $U(x_1,...,x_n) = \beta_1 x_1 + ... + \beta_n x_n$.

We can observe a number of choices and use statistical tech- niques to estimate the parameters β_i that best describe choices.

Example: Utility for Commuting (con't)

Domenich a McFadden (1975) report a utility function

$$U(TE, TT, C) = -0.147TW - 0.0411TT - 2.24C$$

where

TW = total walking time to and from bus or car in minutes TT = total time of trip in minutes C = total cost of trip in dollars.

Once we have the utility function we can do many things with it:

- Calculate the marginal rate of substitution between two characteristics. How much money would the average consumer give up in order to get a shorter travel time?
- Forecast consumer response to proposed changes.
- Estimate whether proposed change is worthwhile in a benefit-cost sense.

Summary

- A utility function is a way to represent a preference ordering. The numbers assigned to different utility levels have no intrinsic meaning.
- Any monotonic transformation of a utility function will represent the same preferences.
- The marginal rate of substitution is equal to MRS = $\Delta x_2/\Delta x_1 = -MU_1/MU_2$.

() 53 / 53