

Consumption Choice Sets

- A consumption choice set is the collection of all consumption choices available to the consumer.
-What constrains consumption choice?
-Budgetary, time and other resource limitations.

Budget Constraints

\bullet A consumption bundle containing x_{1} units of commodity $1, x_{2}$ units of commodity 2 and so on up to x_{n} units of commodity \mathbf{n} is denoted by the vector ($x_{1}, x_{2}, \ldots, x_{n}$).
\rightarrow Commodity prices are $p_{1}, p_{2}, \ldots, p_{n}$.

Budget Constraints

$\bullet Q$: When is a consumption bundle ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) affordable at given prices p_{1}, \ldots, p_{n} ?

Budget Constraints

$\bullet Q$: When is a bundle $\left(x_{1}, \ldots, x_{n}\right)$ affordable at prices p_{1}, \ldots, p_{n} ?

- A: When

$$
p_{1} x_{1}+\ldots+p_{n} x_{n} \leq m
$$

where m is the consumer's
(disposable) income.

Budget Constraints

- The bundles that are only just affordable form the consumer's budget constraint. This is the set
$\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \geq 0, \ldots, x_{n} \geq 0\right.$ and

$$
\left.p_{1} x_{1}+\ldots+p_{n} x_{n}=m\right\}
$$

Budget Constraints

- The consumer's budget set is the set of all affordable bundles; $B\left(p_{1}, \ldots, p_{n}, m\right)=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \geq 0, \ldots, x_{n} \geq 0\right.$ and

$$
\left.p_{1} x_{1}+\ldots+p_{n} x_{n} \leq m\right\}
$$

- The budget constraint is the upper boundary of the budget set.

Budget Constraints

- If $\mathrm{n}=3$ what do the budget constraint and the budget set look like?

Budget Constraint for Three Commodities

Budget Set for Three Commodities

Budget Constraints

- For $\mathrm{n}=2$ and x_{1} on the horizontal axis, the constraint's slope is $-p_{1} / p_{2}$. What does it mean?

Budget Constraints

- For $\mathrm{n}=2$ and x_{1} on the horizontal axis, the constraint's slope is $-p_{1} / p_{2}$. What does it mean?
\bullet Increasing x_{1} by 1 must reduce x_{2} by p_{1} / p_{2}.

Budget Constraints

Budget Constraints

Budget Constraints

Budget Sets \& Constraints; Income and Price Changes

- The budget constraint and budget set depend upon prices and income. What happens as prices or income change?

Higher income gives more choice

How do the budget set and budget constraint change as income m

Budget Constraints - Income Changes

- Increases in income m shift the constraint outward in a parallel manner, thereby enlarging the budget set and improving choice.

Budget Constraints - Income Changes

\bullet Increases in income m shift the constraint outward in a parallel manner, thereby enlarging the budget set and improving choice.

- Decreases in income m shift the constraint inward in a parallel manner, thereby shrinking the budget set and reducing choice.

Budget Constraints - Income Changes

- No original choice is lost and new choices are added when income increases, so higher income cannot make a consumer worse off.
- An income decrease may (typically will) make the consumer worse off.

Budget Constraints - Price Changes

- What happens if just one price decreases?
-Suppose p_{1} decreases.

Budget Constraints - Price Changes

- Reducing the price of one commodity pivots the constraint outward. No old choice is lost and new choices are added, so reducing one price cannot make the consumer worse off.

Budget Constraints - Price Changes

- Similarly, increasing one price pivots the constraint inwards, reduces choice and may (typically will) make the consumer worse off.

Uniform Ad Valorem Sales Taxes

- An ad valorem sales tax levied at a rate of 5% increases all prices by 5%, from p to $(1+0 \times 05) p=1 \times 05 p$.
\rightarrow An ad valorem sales tax levied at a rate of \boldsymbol{t} increases all prices by $\boldsymbol{t p}$ from p to ($1+t$) p.
- A uniform sales tax is applied uniformly to all commodities.

Uniform Ad Valorem Sales Taxes

- A uniform sales tax levied at rate t changes the constraint from
$p_{1} x_{1}+p_{2} x_{2}=m$
to

$$
(1+t) p_{1} x_{1}+(1+t) p_{2} x_{2}=m
$$

Uniform Ad Valorem Sales Taxes

- A uniform sales tax levied at rate t changes the constraint from

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

to

$$
(1+t) p_{1} x_{1}+(1+t) p_{2} x_{2}=m
$$

i.e.

$$
p_{1} x_{1}+p_{2} x_{2}=m /(1+t) .
$$

Uniform Ad Valorem Sales Taxes X_{2}

Uniform Ad Valorem Sales Taxes x_{2}

Uniform Ad Valorem Sales Taxes \mathbf{x}_{2}

The Food Stamp Program

\bullet Food stamps are coupons that can be legally exchanged only for food.
\bullet How does a commodity-specific gift such as a food stamp alter a family's budget constraint?

The Food Stamp Program

-Suppose $\mathrm{m}=\$ 100, \mathrm{p}_{\mathrm{F}}=\$ 1$ and the price of "other goods" is $p_{G}=\$ 1$.

- The budget constraint is then $\mathrm{F}+\mathrm{G}=100$.

The Food Stamp Program

G
F + G = 100; before stamps.
100

The Food Stamp Program

G
$F+G=100$: before stamps.
100
© 2010 W. W. Norton \& Company, Inc.

The Food Stamp Program

$F+G=100$: before stamps.
100
Budget set after 40 food stamps issued.
© 2010 W. W. Norton \& Company, Inc.

The Food Stamp Program

 $\mathrm{F}+\mathrm{G}=100$: before stamps.100 Budget set after 40 food stamps issued.
© 2010 W. W. Norton \& Company, Inc.

The Food Stamp Program

\bullet What if food stamps can be traded on a black market for $\$ 0.50$ each?

The Food Stamp Program

G
F + G = 100: before stamps.

Budget constraint after 40

 food stamps issued.
Budget constraint with

 black market trading.
The Food Stamp Program

G
F + G = 100: before stamps.

Budget constraint after 40

 food stamps issued.
Black market trading

 makes the budget set larger again.
Budget Constraints - Relative Prices

" "Numeraire" means "unit of account".
-Suppose prices and income are measured in dollars. Say $p_{1}=\$ 2$, $p_{2}=\$ 3, m=\$ 12$. Then the constraint is

$$
2 x_{1}+3 x_{2}=12 .
$$

Budget Constraints - Relative Prices

- If prices and income are measured in cents, then $p_{1}=200, p_{2}=300, m=1200$ and the constraint is

$$
200 x_{1}+300 x_{2}=1200,
$$

the same as

$$
2 x_{1}+3 x_{2}=12 .
$$

- Changing the numeraire changes neither the budget constraint nor the budget set.

Budget Constraints - Relative Prices

- The constraint for $p_{1}=2, p_{2}=3, m=12$

$$
2 x_{1}+3 x_{2}=12
$$

is also $1 . x_{1}+(3 / 2) x_{2}=6$, the constraint for $p_{1}=1, p_{2}=3 / 2, m=6$. Setting $p_{1}=1$ makes commodity 1 the numeraire and defines all prices relative to p_{1}; e.g. $3 / 2$ is the price of commodity 2 relative to the price of commodity 1.

Budget Constraints - Relative Prices

- Any commodity can be chosen as the numeraire without changing the budget set or the budget constraint.

Budget Constraints - Relative Prices

$-p_{1}=2, p_{2}=3$ and $p_{3}=6 \Rightarrow$

- price of commodity 2 relative to commodity 1 is $3 / 2$,
- price of commodity 3 relative to commodity 1 is 3.
- Relative prices are the rates of exchange of commodities 2 and 3 for units of commodity 1.

Shapes of Budget Constraints

- Q: What makes a budget constraint a straight line?
- A: A straight line has a constant slope and the constraint is

$$
p_{1} x_{1}+\ldots+p_{n} x_{n}=m
$$

so if prices are constants then a constraint is a straight line.

Shapes of Budget Constraints

But what if prices are not constants?

- E.g. bulk buying discounts, or price penalties for buying "too much".
- Then constraints will be curved.

Shapes of Budget Constraints Quantity Discounts

\bullet Suppose p_{2} is constant at $\$ 1$ but that $p_{1}=\$ 2$ for $0 \leq x_{1} \leq 20$ and $p_{1}=\$ 1$ for $\mathrm{x}_{1}>20$.

Shapes of Budget Constraints Quantity Discounts

-Suppose p_{2} is constant at $\$ 1$ but that $p_{1}=\$ 2$ for $0 \leq x_{1} \leq 20$ and $p_{1}=\$ 1$ for $x_{1}>20$. Then the constraint's slope is
$-p_{1} / p_{2}=\left\{\begin{array}{l}-2 \text {, for } 0 \leq x_{1} \leq 20\end{array}\right.$ -1 , for $x_{1}>20$
and the constraint is

Shapes of Budget Constraints with a Quantity Discount $m=\$ 100$ ($p_{1}=2, p_{2}=1$)

Shapes of Budget Constraints with a Quantity Discount

Shapes of Budget Constraints with a Quantity Penalty

Shapes of Budget Constraints One Price Negative

\bullet Commodity 1 is stinky garbage. You are paid $\$ 2$ per unit to accept it; i.e. $p_{1}=-\$ 2 . p_{2}=\$ 1$. Income, other than from accepting commodity 1 , is $m=$ \$10.

- Then the constraint is

$$
-2 x_{1}+x_{2}=10 \text { or } x_{2}=2 x_{1}+10
$$

Shapes of Budget Constraints One Price Negative

Shapes of Budget Constraints One Price Negative

More General Choice Sets

- Choices are usually constrained by more than a budget; e.g. time constraints and other resources constraints.
- A bundle is available only if it meets every constraint.

More General Choice Sets Other Stuff

At least 10 units of food must be eaten to survive

More General Choice Sets Other Stuff

Choice is also budget constrained.

Budget Set

More General Choice Sets Other Stuff

More General Choice Sets

So what is the choice set?

More General Choice Sets Other Stuff

More General Choice Sets Other Stuff

More General Choice Sets Other Stuff

The choice set is the intersection of all of the constraint sets.

