INTERMEDIATE

MICROIECONOMICS HAL R. VARIAN

Choice

© 2010 W. W. Norton \& Company, Inc.

Economic Rationality

- The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.
- The available choices constitute the choice set.
- How is the most preferred bundle in the choice set located?

Rational Constrained Choice

Rational Constrained Choice

Utility

Rational Constrained Choice

Rational Constrained Choice

- The most preferred affordable bundle is called the consumer's ORDINARY DEMAND at the given prices and budget.
- Ordinary demands will be denoted by $\mathrm{x}_{1}{ }^{*}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}{ }^{*}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$.

Rational Constrained Choice

-When $\mathrm{x}_{1}{ }^{*}>0$ and $\mathrm{x}_{2}{ }^{*}>0$ the demanded bundle is INTERIOR.

- If buying ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) costs $\$ \mathrm{~m}$ then the budget is exhausted.

Rational Constrained Choice

 $x_{2} \uparrow \quad\left(x_{1}{ }^{*}, x_{2}{ }^{*}\right)$ is interior.($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) exhausts the budget.

26

Rational Constrained Choice

Rational Constrained Choice

Rational Constrained Choice

- $\left(\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}\right)$ satisfies two conditions:
- (a) the budget is exhausted;

$$
p_{1} x_{1}{ }^{*}+p_{2} x_{2}^{*}=m
$$

- (b) the slope of the budget constraint, $-p_{1} / p_{2}$, and the slope of the indifference curve containing ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) are equal at ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$).

ComptingOdinaryDemands

- How can this information be used to locate ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) for given $\mathrm{p}_{1}, \mathrm{p}_{2}$ and m ?

ComatingOdinaryDemands - a CobbDogas Example.

-Suppose that the consumer has Cobb-Douglas preferences.

ComatingOdinary Demands - a CobbDugas Example.

-Suppose that the consumer has Cobb-Douglas preferences.

- Then

$$
M U_{1}=\frac{\partial U}{\partial x_{1}}=a x_{1}^{a-1} x_{2}^{b}
$$

$$
M U_{2}=\frac{\partial U}{\partial x_{2}}=b x_{1}^{a} x_{2}^{b-1}
$$

ComatingOdinaryDemands - a CobbDugas Example.

\bullet So the MRS is

ComatingOdinary Demands - a Cobb-Dugas Example.

- So the MRS is
\rightarrow At $\left(\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}\right), \mathrm{MRS}=-\mathrm{p}_{1} / \mathrm{p}_{2}$ so

ComatingOdinary Demands - a Cobb-Dugas Example.

- So the MRS is
\rightarrow At $\left(\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}\right), \mathrm{MRS}=-\mathrm{p}_{1} / \mathrm{p}_{2}$ so

ComatingOrdinaryDemands - a CobbDugas Example.

$\bullet\left(x_{1}{ }^{*}, x_{2}{ }^{*}\right)$ also exhausts the budget so
(B)

ComatingOdinary Demands - a CobbDugas Example.

-So now we know that
(A)
(B)

37

ComatingOdinaryDemands - a CobbDugas Example.

- So now we know that

Substitute

(A)
(B)

ComatingOdinaryDemands - a CobbDugas Example.

-So now we know that

Substitute

(A)
(B)
and get

This simplifies to
© 2010 W. W. Norton \& Company, Inc.

ComatingOdinaryDemands - a CobbDugas Example.

ComatingOdinary Demands - a Cobb-Dugas Example.

Substituting for $\mathrm{x}_{1}{ }^{*}$ in

 then gives

ComptingOdinary Demands - a CobbDogas Example.

So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences

ComptingOtdinary Demands - a CobbDogas Example.

X_{2}

Rational Constrained Choice

- When $\mathrm{x}_{1}{ }^{*}>0$ and $\mathrm{x}_{2}{ }^{*}>0$ and ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) exhausts the budget, and indifference curves have no 'kinks', the ordinary demands are obtained by solving:
- (a) $p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=y$
(b) the slopes of the budget constraint, $-p_{1} / p_{2}$, and of the indifference curve containing ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) are equal at ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$).

Rational Constrained Choice

- But what if $x_{1}{ }^{*}=0$?
- Or if $x_{2}{ }^{*}=0$?
- If either $x_{1}{ }^{*}=0$ or $x_{2}{ }^{*}=0$ then the ordinary demand $\left(x_{1}{ }^{*}, x_{2}{ }^{*}\right)$ is at a corner solution to the problem of maximizing utility subject to a budget constraint.

Examples of Corner Solitions -the Perfect Sibstitutes Case

Examples of Corner Solitions -the Perfect Substitutes Case

Examples of Corner Solitions -the Perfect Sibstitutes Case

Examples of Corner Solitions -the Perfect Substitutes Case

Examples of Corner Solitions -the Perfect Substitutes Case

Examples of Corner Solitions -the Perfect Substitutes Case So when $U\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$, the most preferred affordable bundle is ($\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}$) where

$$
\text { if } p_{1}<p_{2}
$$

and

Examples of Corner Solitions -the Perfect Sibstitutes Case

Examples of Corner Solitions -the Perfect Sibstitutes Case

Examples of Corner Solutions -- the

 Non-Convex Preferences Case

Examples of Corner Solutions -- the

 Non-Convex Preferences Case

Examples of Corner Solutions -- the

 Non-Convex Preferences Case

Examples of Corner Solutions -- the

 Non-Convex Preferences Case

Examples of Corner Solutions -- the

 Non-Convex Preferences Case Notice that the "tangency solution"

Examples of 'Kinky' Solitions -the Perfect Complements Case
 X_{2} $U\left(x_{1}, x_{2}\right)=\min \left\{\mathrm{ax}_{1}, \mathrm{x}_{2}\right\}$

Examples of 'Kinky' Solutions -the Perfect Complements Case
 X_{2} $U\left(x_{1}, x_{2}\right)=\min \left\{\mathrm{ax}_{1}, \mathrm{x}_{2}\right\}$

Examples of 'Kinky' Solutions --

 the Perfect Complements Casex_{2} $U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}$

Examples of 'Kinky' Solitions -the Perfect Complements Case
X_{2}
$U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}$
$\uparrow \quad$ MRS $=-\infty$
MRS is undefined

62

Examples of 'Kinky' Solitions -the Perfect Complements Case
 X_{2} $U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}$

63

Examples of 'Kinky' Solutions -the Perfect Complements Case
 X_{2}
 $$
U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}
$$

Which is the most preferred affordable bundle?
© 2010 W. W. Norton \& Company, Inc.

Examples of 'Kinky' Solutions -the Perfect Complements Case
 X_{2}
 $$
U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}
$$

The most preferred affordable bundle

$$
x_{2}=a x_{1}
$$

65

Examples of 'Kinky' Solitions -the Perfect Complements Case

Examples of 'Kinky' Solutions -the Perfect Complements Case

Examples of 'Kinky' Solitions -the Perfect Complements Case

Examples of 'Kinky' Solutions -the Perfect Complements Case

$$
\text { (a) } p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=m ; \text { (b) } x_{2}{ }^{*}=a x_{1}{ }^{*} \text {. }
$$

Examples of 'Kinky' Solitions -the Perfect Complements Case
(a) $p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=m$; (b) $\left.x_{2}\right)^{*}=a x_{1}{ }^{*}$.

Substitution from (b) for $\mathrm{x}_{2}{ }^{*}$ in (a) gives $p_{1} x_{1}{ }^{*}+p_{2} a x_{1}{ }^{*}=m$

Examples of 'Kinky' Solutions -the Perfect Complements Case

(a) $p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=m ;$ (b) $x_{2}{ }^{*}=a x_{1}{ }^{*}$.

Substitution from (b) for $x_{2}{ }^{*}$ in (a) gives $p_{1} x_{1}{ }^{*}+p_{2} a x_{1}{ }^{*}=m$ which gives

Examples of 'Kinky' Solutions -the Perfect Complements Case

(a) $p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=m ;$ (b) $x_{2}{ }^{*}=a x_{1}{ }^{*}$.

Substitution from (b) for $x_{2}{ }^{*}$ in (a) gives $p_{1} x_{1}{ }^{*}+p_{2} a x_{1}{ }^{*}=m$ which gives

Examples of 'Kinky' Solutions -the Perfect Complements Case

(a) $p_{1} x_{1}{ }^{*}+p_{2} x_{2}{ }^{*}=m ;$ (b) $x_{2}{ }^{*}=a x_{1}{ }^{*}$.

Substitution from (b) for $\mathrm{x}_{2}{ }^{\text {* }}$ in (a) gives $p_{1} x_{1}{ }^{*}+p_{2} a x_{1}{ }^{*}=m$ which gives

A bundle of 1 commodity 1 unit and a commodity 2 units costs $p_{1}+a p_{2}$; $\mathrm{m} /\left(p_{1}+a p_{2}\right)$ such bundles are affordable.

Examples of 'Kinky' Solitions -the Perfect Complements Case
 X_{2}
 $$
U\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, x_{2}\right\}
$$

