8TH EDITION

INTERMEDIATE

MICROECONONICS HAL R. VARIAN

Choice

Economic Rationality

- The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.
- The available choices constitute the choice set.
- How is the most preferred bundle in the choice set located?

- The most preferred affordable bundle is called the consumer's ORDINARY DEMAND at the given prices and budget.
- Ordinary demands will be denoted by x₁*(p₁,p₂,m) and x₂*(p₁,p₂,m).

- When $x_1^* > 0$ and $x_2^* > 0$ the demanded bundle is INTERIOR.
- If buying (x₁*,x₂*) costs \$m then the budget is exhausted.

- ♦ (x₁*,x₂*) satisfies two conditions:
- (a) the budget is exhausted;
 p₁x₁* + p₂x₂* = m
- ♦ (b) the slope of the budget constraint, -p₁/p₂, and the slope of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

ComptingOrdinaryDemands

How can this information be used to locate (x₁*,x₂*) for given p₁, p₂ and m?

30

ComptingOrdinaryDemands - a CobbDaglas Example.

Suppose that the consumer has Cobb-Douglas preferences.

 $U(x_1, x_2) = x_1^a x_2^b$

ComptingOrdinaryDemands - a CobbDagas Example.

So the MRS is

ComptingOrdinaryDemands - a CobbDagas Example.

So the MRS is

34

• At (x_1^*, x_2^*) , MRS = $-p_1/p_2$ so

ComptingOrdinaryDemands - a CobbDagas Example.

So the MRS is

• At (x_1^*, x_2^*) , MRS = $-p_1/p_2$ so

© 2010 W. W. Norton & Company, Inc.

A)

ComptingOrdinaryDemands - a Cobb-Daglas Example.

(x_1^*, x_2^*) also exhausts the budget so

$p_1 x_1^* + p_2 x_2^* = m$. (B)
ComptingOrdinaryDemands - a CobbDagas Example.

* hn · *

So now we know that

$$x_{2}^{*} = \frac{\mathbf{p} \mathbf{p}_{1}}{\mathbf{a} \mathbf{p}_{2}} x_{1}^{*}$$
$$\mathbf{p}_{1} x_{1}^{*} + \mathbf{p}_{2} x_{2}^{*} = \mathbf{m}.$$

© 2010 W. W. Norton & Company, Inc.

(A)

(B)

Substitute $p_1 x_1^* + p_2 x_2^* = m$.

© 2010 W. W. Norton & Company, Inc.

(A)

(B)

© 2010 W. W. Norton & Company, Inc.

ComptingOrdinaryDemands - a CobbDaglas Example.

 $x_{1}^{*} = \frac{am}{(a + b)p_{1}}.$

© 2010 W. W. Norton & Company, Inc.

ComptingOrdinaryDemands - a CobbDagas Example.

41

 $x_{1}^{*} = \frac{am}{(a + b)p_{1}}.$

Substituting for x_1^* in $p_1 x_1^* + p_2 x_2^* = m$

then gives

© 2010 W. W. Norton & Company, Inc.

ComptingOrdinaryDemands - a CobbDugas Example.

So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences

 $U(x_1, x_2) = x_1^a x_2^b$

Rational Constrained Choice • When $x_1^* > 0$ and $x_2^* > 0$ and (x_1^*, x_2^*) exhausts the budget, and indifference curves have no 'kinks', the ordinary demands are obtained by solving: $(a) \quad p_1 x_1^* + p_2 x_2^* = y$ (b) the slopes of the budget constraint, $-p_1/p_2$, and of the indifference curve

containing (x_1^*, x_2^*) are equal at (x_1^*, x_2^*) .

Rational Constrained Choice

• But what if $x_1^* = 0$? • Or if $x_2^* = 0$? • If either $x_1^* = 0$ or $x_2^* = 0$ then the ordinary demand (x_1^*, x_2^*) is at a corner solution to the problem of maximizing utility subject to a budget constraint.

Examples of Corner Solutions -the Perfect Substitutes Case So when $U(x_1,x_2) = x_1 + x_2$, the most preferred affordable bundle is (x_1^*,x_2^*) where

 $\left(x_{1}^{*}x_{2}^{*}\right) = \left(0, \frac{y_{1}}{2}\right)$

 $(x_{1}^{*}, x_{2}^{*}) = \left(\frac{y}{p_{1}}, 0\right)$ if $p_{1} < p_{2}$

if p₁ > p₂.

© 2010 W. W. Norton & Company, Inc.

and

Examples of Corner Solutions -- the Non-Convex Preferences Case

Examples of Corner Solutions -- the Non-Convex Preferences Case

Examples of Corner Solutions -- the Non-Convex Preferences Case

Examples of Corner Solutions -- the Non-Convex Preferences Case

Examples of 'Kinky' Solutions -the Perfect Complements Case (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. © 2010 W. W. Norton & Company, Inc. **69**

Examples of 'Kinky' Solutions -the Perfect Complements Case (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ © 2010 W. W. Norton & Company, Inc. 70

Examples of 'Kinky' Solutions -the Perfect Complements Case (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $p_1 + a p_2$ © 2010 W. W. Norton & Company, Inc. 71

Examples of 'Kinky' Solutions -the Perfect Complements Case (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $= \frac{m}{p_1 + ap_2}; x_2^* = \frac{am}{p_1 + ap_2}$ © 2010 W. W. Norton & Company, Inc. 72
Examples of 'Kinky' Solutions -the Perfect Complements Case (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_{1}^{*} = \frac{m}{p_{1} + a p_{2}}; x_{2}^{*} = \frac{a m}{p_{1} + a p_{2}}$ A bundle of 1 commodity 1 unit and a commodity 2 units costs $p_1 + ap_2$; $m/(p_1 + ap_2)$ such bundles are affordable.

