INTERMEDIATE

MICROEECONOMICS HAL R. VARIAN

Uncertainty is Pervasive

-What is uncertain in economic systems?
-tomorrow's prices
-future wealth

- future availability of commodities
- present and future actions of other people.
(c) 2010 W. W. Norton \& Company, Inc.

Uncertainty is Pervasive

-What are rational responses to uncertainty?
-buying insurance (health, life, auto)
-a portfolio of contingent consumption goods.

States of Nature

- Possible states of Nature:
-"car accident" (a)
-"no car accident" (na).
\bullet Accident occurs with probability π_{a}, does not with probability $\pi_{\text {na }}$;

$$
\pi_{\mathrm{a}}+\pi_{\mathrm{na}}=1
$$

- Accident causes a loss of \$L.

Contingencies

- A contract implemented only when a particular state of Nature occurs is state-contingent.
E.g. the insurer pays only if there is an accident.

Contingencies

- A state-contingent consumption plan is implemented only when a particular state of Nature occurs.
\bullet E.g. take a vacation only if there is no accident.

State-Contingent Budget Constraints

- Each \$1 of accident insurance costs γ.
-Consumer has \$m of wealth.
C_{na} is consumption value in the noaccident state.
$-C_{a}$ is consumption value in the accident state.

State-Contingent Budget Constraints

State-Contingent Budget Constraints

$C_{n a}$
20
A state-contingent consumption with $\$ 17$ consumption value in the accident state and $\$ 20$ consumption value in the no-accident state.

State-Contingent Budget Constraints

-Without insurance,
$-C_{a}=m-L$
$-C_{n a}=m$.

State-Contingent Budget Constraints

State-Contingent Budget Constraints

- Buy \$K of accident insurance.
$-C_{n a}=m-\gamma K$.
$\bullet C_{a}=m-L-\gamma K+K=m-L+(1-\gamma) K$.

State-Contingent Budget Constraints

-Buy \$K of accident insurance.
$-C_{\mathrm{na}}=\mathbf{m}-\gamma K$.
$-C_{a}=m-L-\gamma K+K=m-L+(1-\gamma) K$.
-So K = (Ca $-m+L) /(1-\gamma)$

State-Contingent Budget Constraints

-Buy \$K of accident insurance.
$-C_{\mathrm{na}}=\mathbf{m}-\gamma K$.
$-C_{a}=m-L-\gamma K+K=m-L+(1-\gamma) K$.

- SoK $=\left(C_{a}-m+L\right) /(1-\gamma)$
- And $C_{n a}=m-\gamma\left(C_{a}-m+L\right) /(1-\gamma)$

State-Contingent Budget Constraints

-Buy \$K of accident insurance.
$-C_{\mathrm{na}}=\mathbf{m}-\gamma K$.
$-C_{a}=m-L-\gamma K+K=m-L+(1-\gamma) K$.

- SoK $=\left(C_{a}-m+L\right) /(1-\gamma)$
- And $C_{n a}=m-\gamma\left(C_{a}-m+L\right) /(1-\gamma)$
-. .e. $C_{n a}=\frac{m-\gamma L}{1-\gamma}-\frac{\gamma}{1+\gamma} C_{a}$

State-Contingent Budget Constraints

State-Contingent Budget Constraints

State-Contingent Budget Constraints

Preferences Under Uncertainty

- Think of a lottery.
- Win $\$ 90$ with probability $1 / 2$ and win $\$ 0$ with probability $1 / 2$.
$-U(\$ 90)=12, \quad U(\$ 0)=2$.
- Expected utility is

Preferences Under Uncertainty

- Think of a lottery.
- Win $\$ 90$ with probability $1 / 2$ and win $\$ 0$ with probability $1 / 2$.
$-U(\$ 90)=12, \quad U(\$ 0)=2$.
- Expected utility is

Preferences Under Uncertainty

- Think of a lottery.
- Win $\$ 90$ with probability $1 / 2$ and win $\$ 0$ with probability $1 / 2$.
- Expected money value of the lottery is

$$
\mathrm{EM}=\frac{1}{2} \times \$ 90+\frac{1}{2} \times \$ 0=\$ 45 .
$$

Preferences Under Uncertainty

- EU = 7 and EM = \$45.
- $\mathbf{U}(\$ 45)>7 \Rightarrow \$ 45$ for sure is preferred to the lottery \Rightarrow risk-aversion.
- $\mathrm{U}(\$ 45)<7 \Rightarrow$ the lottery is preferred to $\$ 45$ for sure \Rightarrow risk-loving.
- $\mathrm{U}(\$ 45)=7 \Rightarrow$ the lottery is preferred equally to $\$ 45$ for sure \Rightarrow riskneutrality.

Preferences Under Uncertainty

Preferences Under Uncertainty

-State-contingent consumption plans that give equal expected utility are equally preferred.

Preferences Under Uncertainty

Preferences Under Uncertainty

-What is the MRS of an indifference curve?
\bullet Get consumption c_{1} with prob. π_{1} and c_{2} with prob. $\pi_{2} \quad\left(\pi_{1}+\pi_{2}=1\right)$.
$-E U=\pi_{1} U\left(c_{1}\right)+\pi_{2} U\left(c_{2}\right)$.
\bullet For constant EU, dEU = 0 .

Preferences Under Uncertainty $\mathrm{E} \mathrm{U}=\pi_{1} \mathrm{U}\left(\mathfrak{c}_{1}\right)+\pi_{2} \mathrm{U}\left(\mathfrak{c}_{2}\right)$

$$
\begin{aligned}
& \text { Preferences Under Uncertainty } \\
& \mathrm{EU}=\pi_{1} \mathrm{U}\left(\mathfrak{c}_{1}\right)+\pi_{2} \mathrm{U}\left(\mathfrak{c}_{2}\right) \\
& \mathrm{dEU}=\pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathfrak{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
\end{aligned}
$$

Preferences Under Uncertainty

 $\mathrm{E} \mathrm{U}=\pi_{1} \mathrm{U}\left(\mathfrak{c}_{1}\right)+\pi_{2} \mathrm{U}\left(\mathfrak{c}_{2}\right)$$$
\mathrm{dEU}=\pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathrm{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
$$

$$
\mathrm{dEU}=0 \Rightarrow \pi_{1} \mathrm{MU}\left(\mathrm{c}_{1}\right) \mathrm{d} \mathrm{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathrm{c}_{2}\right) \mathrm{d} \mathrm{c}_{2}=0
$$

Preferences Under Uncertainty $\mathrm{E} \mathrm{U}=\pi_{1} \mathrm{U}\left(\mathfrak{c}_{1}\right)+\pi_{2} \mathrm{U}\left(\mathfrak{c}_{2}\right)$

$$
\mathrm{dEU}=\pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathrm{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
$$

$$
\mathrm{dEU}=0 \Rightarrow \pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathrm{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}=0
$$

$$
\Rightarrow \pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathfrak{c}_{1}=-\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
$$

Preferences Under Uncertainty $\mathrm{E} \mathrm{U}=\pi_{1} \mathrm{U}\left(\mathfrak{c}_{1}\right)+\pi_{2} \mathrm{U}\left(\mathfrak{c}_{2}\right)$

$$
\mathrm{dEU}=\pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathrm{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathrm{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
$$

$$
\mathrm{dEU}=0 \Rightarrow \pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathfrak{c}_{1}+\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}=0
$$

$$
\Rightarrow \pi_{1} \mathrm{MU}\left(\mathfrak{c}_{1}\right) \mathrm{d} \mathfrak{c}_{1}=-\pi_{2} \mathrm{MU}\left(\mathfrak{c}_{2}\right) \mathrm{d} \mathfrak{c}_{2}
$$

$$
\Rightarrow \frac{d c_{2}}{d c_{1}}=-\frac{\pi_{1} \mathrm{MU}\left(c_{1}\right)}{\pi_{2} \mathrm{MU}\left(c_{2}\right)}
$$

Preferences Under Uncertainty

Choice Under Uncertainty

- Q: How is a rational choice made under uncertainty?
- A: Choose the most preferred affordable state-contingent consumption plan.

State-Contingent Budget Constraints

Competitive Insurance

-Suppose entry to the insurance industry is free.

- Expected economic profit $=0$.
l.e. $\gamma \mathrm{K}-\pi_{\mathrm{a}} \mathrm{K}-\left(1-\pi_{\mathrm{a}}\right) 0=\left(\gamma-\pi_{\mathrm{a}}\right) \mathrm{K}=0$.
- l.e. free entry $\Rightarrow \gamma=\pi_{\mathrm{a}}$.
- If price of $\$ 1$ insurance $=$ accident probability, then insurance is fair.

Competitive Insurance

- When insurance is fair, rational insurance choices satisfy

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a}}{1-\pi_{a}}=\frac{\pi_{a} \mathrm{MU}\left(\mathfrak{c}_{\mathrm{a}}\right)}{\pi_{n_{a}} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

Competitive Insurance

- When insurance is fair, rational insurance choices satisfy

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a}}{1-\pi_{a}}=\frac{\pi_{a} \mathrm{MU}\left(\mathfrak{c}_{\mathrm{a}}\right)}{\pi_{n_{a}} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

\bullet l.e. $\operatorname{MU}\left(c_{a}\right)=\operatorname{MU}\left(c_{n a}\right)$

Competitive Insurance

- When insurance is fair, rational insurance choices satisfy

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a}}{1-\pi_{a}}=\frac{\pi_{a} \operatorname{MU}\left(\mathfrak{c}_{a}\right)}{\pi_{n_{a}} \operatorname{MU}\left(c_{n_{a}}\right)}
$$

- l.e. $\quad \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)=\mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)$
- Marginal utility of income must be the same in both states.

Competitive Insurance

- How much fair insurance does a riskaverse consumer buy?

$$
M U\left(c_{a}\right)=M U\left(c_{n_{a}}\right)
$$

Competitive Insurance

- How much fair insurance does a riskaverse consumer buy?

$$
\operatorname{MU}\left(\mathfrak{c}_{\mathrm{a}}\right)=\operatorname{MU}\left(\mathfrak{c}_{\mathrm{n}} \mathrm{a}\right)
$$

- Risk-aversion $\Rightarrow \mathrm{MU}(\mathrm{c}) \downarrow$ as $\mathbf{c} \uparrow$.

Competitive Insurance

- How much fair insurance does a riskaverse consumer buy?

$$
\operatorname{MU}\left(\mathfrak{c}_{\mathfrak{a}}\right)=\operatorname{MU}\left(\mathfrak{c}_{\mathrm{n}_{\mathrm{a}}}\right)
$$

- Risk-aversion $\Rightarrow \operatorname{MU}(\mathbf{c}) \downarrow$ as $\mathbf{c} \uparrow$.
- Hence $\mathfrak{c}_{\mathfrak{a}}=\mathrm{c}_{\mathrm{na}}$.

Competitive Insurance

- How much fair insurance does a riskaverse consumer buy?

$$
\operatorname{MU}\left(\mathfrak{c}_{\mathfrak{a}}\right)=\operatorname{MU}\left(\mathfrak{c}_{\mathrm{n}_{\mathrm{a}}}\right)
$$

- Risk-aversion $\Rightarrow \operatorname{MU}(\mathbf{c}) \downarrow$ as $\mathbf{c} \uparrow$.
- Hence $c_{a}=c_{n a}$.
$\stackrel{\text { l.e. full-insurance. }}{ }$

"Unfair" Insurance

-Suppose insurers make positive expected economic profit.
\leftrightarrow l.e. $\gamma \mathrm{K}-\pi_{\mathrm{a}} \mathrm{K}-\left(1-\pi_{\mathrm{a}}\right) 0=\left(\gamma-\pi_{\mathrm{a}}\right) \mathrm{K}>0$.

"Unfair" Insurance

-Suppose insurers make positive expected economic profit.

- l.e. $\gamma \mathrm{K}-\pi_{\mathrm{a}} \mathrm{K}-\left(1-\pi_{\mathrm{a}}\right) 0=\left(\gamma-\pi_{\mathrm{a}}\right) \mathrm{K}>0$.
\rightarrow Then $\Rightarrow \gamma>\pi_{\mathrm{a}} \Rightarrow \frac{\gamma}{1-\gamma}>\frac{\pi_{a}}{1-\pi_{a}}$.

"Unfair" Insurance

- Rational choice requires

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)}{\pi_{n_{a}} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

"Unfair" Insurance

- Rational choice requires

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)}{\pi_{n a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

-Since

$$
\frac{\gamma}{1-\gamma}>\frac{\pi_{a}}{1-\pi_{a}}, \quad \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)>\mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)
$$

"Unfair" Insurance

- Rational choice requires

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)}{\pi_{n a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

- Since $\frac{\gamma}{1-\gamma}>\frac{\pi_{a}}{1-\pi_{a}}, \quad \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)>\mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)$
- Hence $\mathfrak{c}_{\mathrm{a}}<\mathrm{c}_{\mathrm{n}}$ for a risk-averter.

"Unfair" Insurance

- Rational choice requires

$$
\frac{\gamma}{1-\gamma}=\frac{\pi_{a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{a}}\right)}{\pi_{n a} \mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)}
$$

- Since $\frac{\gamma}{1-\gamma}>\frac{\pi_{a}}{1-\pi_{a}}, \mathrm{MU}\left(\mathfrak{c}_{\mathfrak{a}}\right)>\mathrm{MU}\left(\mathrm{c}_{\mathrm{na}}\right)$
- Hence $\mathfrak{c}_{\mathrm{a}}<\mathrm{c}_{\mathrm{n}}$ for a risk-averter.
- l.e. a risk-averter buys less than full "unfair" insurance.

Uncertainty is Pervasive

-What are rational responses to uncertainty?
-buying insurance (health, life, auto)
-a portfolio of contingent consumption goods.

Uncertainty is Pervasive

-What are rational responses to uncertainty?
-buying insurance (health, life, auto)
-a portfolio of contingent consumption goods.

Uncertainty is Pervasive

-What are rational responses to uncertainty?
\checkmark-buying insurance (health, life, auto)
? -a portfolio of contingent consumption goods.

Diversification

- Two firms, A and B. Shares cost \$10.

With prob. 1/2 A's profit is \$100 and B's profit is $\$ 20$.

- With prob. 1/2 A's profit is $\$ 20$ and B's profit is $\$ 100$.
- You have \$100 to invest. How?

Diversification

- Buy only firm A's stock?
- \$100/10 = 10 shares.
- You earn $\$ 1000$ with prob. 1/2 and $\$ 200$ with prob. 1/2.
- Expected earning: \$500 + \$100 = \$600

Diversification

- Buy only firm B's stock?
- \$100/10 = 10 shares.
- You earn \$1000 with prob. 1/2 and $\$ 200$ with prob. 1/2.
- Expected earning: \$500 + \$100 = \$600

Diversification

- Buy 5 shares in each firm?
- You earn \$600 for sure.
- Diversification has maintained expected earning and lowered risk.

Diversification

-Buy 5 shares in each firm?

- You earn \$600 for sure.
- Diversification has maintained expected earning and lowered risk.
- Typically, diversification lowers expected earnings in exchange for lowered risk.

Risk Spreading/Mutual Insurance

- 100 risk-neutral persons each independently risk a \$10,000 loss.
- Loss probability $=0.01$.
\bullet Initial wealth is $\mathbf{\$ 4 0 , 0 0 0}$.
- No insurance: expected wealth is

$$
\begin{aligned}
& 0 \cdot 99 \times \$ 40,000+0 \cdot 01(\$ 40,000-\$ 10,000) \\
& =\$ 39900 .
\end{aligned}
$$

Risk Spreading/Mutual Insurance

- Mutual insurance: Expected loss is

$$
0 \cdot 01 \times \$ 10,000=\$ 100 .
$$

- Each of the 100 persons pays $\$ 1$ into a mutual insurance fund.
- Mutual insurance: expected wealth is

$$
\$ 40,000-\$ 1=\$ 39,999>\$ 39,900 .
$$

- Risk-spreading benefits everyone.

