INTERMEDIATE

Monetary Measures of Gains-toTrade

- You can buy as much gasoline as you wish at \$1 per gallon once you enter the gasoline market.
\bullet Q: What is the most you would pay to enter the market?

Monetary Measures of Gains-toTrade

- A: You would pay up to the dollar value of the gains-to-trade you would enjoy once in the market.
- How can such gains-to-trade be measured?

Monetary Measures of Gains-toTrade

- Three such measures are:
-Consumer's Surplus
-Equivalent Variation, and
-Compensating Variation.
- Only in one special circumstance do these three measures coincide.

\$ Equivalent Utility Gains

- Suppose gasoline can be bought only in lumps of one gallon.
\bullet Use r_{1} to denote the most a single consumer would pay for a 1st gallon -- call this her reservation price for the 1 st gallon.
$\bullet r_{1}$ is the dollar equivalent of the marginal utility of the 1st gallon.

\$ Equivalent Utility Gains

- Now that she has one gallon, use r_{2} to denote the most she would pay for a 2nd gallon -- this is her reservation price for the 2nd gallon.
$\bullet r_{2}$ is the dollar equivalent of the marginal utility of the 2 nd gallon.

\$ Equivalent Utility Gains

- Generally, if she already has $\mathbf{n - 1}$ gallons of gasoline then r_{n} denotes the most she will pay for an nth gallon.
$\star r_{n}$ is the dollar equivalent of the marginal utility of the nth gallon.

\$ Equivalent Utility Gains

$\bullet r_{1}+\ldots+r_{n}$ will therefore be the dollar equivalent of the total change to utility from acquiring n gallons of gasoline at a price of $\$ 0$.
-So $r_{1}+\ldots+r_{n}-p_{G} n \quad$ will be the dollar equivalent of the total change to utility from acquiring n gallons of gasoline at a price of $\$ \mathrm{p}_{\mathrm{G}}$ each,

\$ Equivalent Utility Gains

\bullet A plot of $r_{1}, r_{2}, \ldots, r_{n}, \ldots$ against n is a reservation-price curve. This is not quite the same as the consumer's demand curve for gasoline.

\$ Equivalent Utility Gains

\$ Equivalent Utility Gains

- What is the monetary value of our consumer's gain-to-trading in the gasoline market at a price of $\$ \mathrm{p}_{\mathrm{G}}$?

\$ Equivalent Utility Gains

- The dollar equivalent net utility gain for the 1st gallon is $\$\left(r_{1}-p_{G}\right)$
* and is $\$\left(r_{2}-p_{G}\right)$ for the $2 n d$ gallon,
* and so on, so the dollar value of the gain-to-trade is

$$
\$\left(r_{1}-p_{G}\right)+\$\left(r_{2}-p_{G}\right)+\ldots
$$

for as long as $r_{n}-p_{G}>0$.

\$ Equivalent Utility Gains

\$ Equivalent Utility Gains

\$ Equivalent Utility Gains

\$ Equivalent Utility Gains

- Now suppose that gasoline is sold in half-gallon units.
$\rightarrow r_{1}, r_{2}, \ldots, r_{n}, \ldots$ denote the consumer's reservation prices for successive half-gallons of gasoline.
- Our consumer's new reservation price curve is

\$ Equivalent Utility Gains

© 2010 W. W. Norton \& Company, Inc.

\$ Equivalent Utility Gains

18

\$ Equivalent Utility Gains

\$ Equivalent Utility Gains

- And if gasoline is available in onequarter gallon units ...

\$ Equivalent Utility Gains

© 2010 W. W. Norton \& Company, Inc.

\$ Equivalent Utility Gains

22

\$ Equivalent Utility Gains

23

\$ Equivalent Utility Gains

\bullet Finally, if gasoline can be purchased in any quantity then ...

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices \$ value of net utility gains-to-trade

\$ Equivalent Utility Gains

- Unfortunately, estimating a consumer's reservation-price curve is difficult,
- so, as an approximation, the reservation-price curve is replaced with the consumer's ordinary demand curve.

Consumer's Surplus

- A consumer's reservation-price curve is not quite the same as her ordinary demand curve. Why not?
- A reservation-price curve describes sequentially the values of successive single units of a commodity.
- An ordinary demand curve describes the most that would be paid for q units of a commodity purchased simuttaneously.

Consumer's Surplus

- Approximating the net utility gain area under the reservation-price curve by the corresponding area under the ordinary demand curve gives the Consumer's Surplus measure of net utility gain.

Consumer's Surplus

(\$) Reservation price curve for gasoline $\hat{\$}$ Ordinary demand curve for gasoline

Consumer's Surplus

(\$) Reservation price curve for gasoline \uparrow Ordinary demand curve for gasoline

Consumer's Surplus

(\$) Reservation price curve for gasoline $\hat{\sim}$ Ordinary demand curve for gasoline \$ value of net utility gains-to-trade

Consumer's Surplus

(\$) Reservation price curve for gasoline \uparrow Ordinary demand curve for gasoline \$ value of net utility gains-to-trade Consumer's Surplus

Consumer's Surplus

(\$) Reservation price curve for gasoline \uparrow Ordinary demand curve for gasoline \$ value of net utility gains-to-trade Consumer's Surplus

Consumer's Surplus

- The difference between the consumer's reservation-price and ordinary demand curves is due to income effects.
-But, if the consumer's utility function is quasilinear in income then there are no income effects and Consumer's Surplus is an exact \$ measure of gains-to-trade.

Consumer's Surplus

The consumer's utility function is quasilinear in X_{2}.

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

Take $p_{2}=1$. Then the consumer's choice problem is to maximize

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

subject to

Consumer's Surplus

The consumer's utility function is quasilinear in X_{2}.

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

Take $p_{2}=1$. Then the consumer's choice problem is to maximize

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

subject to

Consumer's Surplus

That is, choose x_{1} to maximize

$$
v\left(x_{1}\right)+m-p_{1} x_{1}
$$

The first-order condition is

$$
v^{\prime}\left(x_{1}\right)-p_{1}=0
$$

That is, $\quad \mathrm{P}_{1}=\mathrm{V}^{\prime}\left(\mathrm{X}_{1}\right)$.
This is the equation of the consumer's ordinary demand for commodity 1.

Consumer's Surplus

Consumer's Surplus

Consumer's Surplus

Consumer's Surplus

Consumer's Surplus

-Consumer's Surplus is an exact dollar measure of utility gained from consuming commodity 1 when the consumer's utility function is quasilinear in commodity 2.

- Otherwise Consumer's Surplus is an approximation.

Consumer's Surplus

- The change to a consumer's total utility due to a change to p_{1} is approximately the change in her Consumer's Surplus.

Consumer's Surplus

$p_{1}\left(x_{1}\right)$, the inverse ordinary demand curve for commodity 1
© 2010 W. W. Norton \& Company, Inc.
46

Consumer's Surplus

Consumer's Surplus

р". CS after

Consumer's Surplus

Compensating Variation and Equivalent Variation

- Two additional dollar measures of the total utility change caused by a price change are Compensating Variation and Equivalent Variation.

Compensating Variation

$-p_{1}$ rises.

- Q: What is the least extra income that, at the new prices, just restores the consumer's original utility level?

Compensating Variation

$-p_{1}$ rises.

- Q: What is the least extra income that, at the new prices, just restores the consumer's original utility level?
- A: The Compensating Variation.

Compensating Variation

$p_{1}=p_{1} \quad p_{2}$ is fixed.

$$
m_{1}=p_{1}^{\prime} x_{1}^{\prime}+p_{2} x_{2}^{\prime}
$$

© 2010 W. W. Norton \& Eompany, Inc.

Compensating Variation

Compensating Variation

Compensating Variation

Equivalent Variation

$-p_{1}$ rises.

- Q: What is the least extra income that, at the original prices, just restores the consumer's original utility level?
- A: The Equivalent Variation.

Equivalent Variation

Equivalent Variation

Equivalent Variation

Equivalent Variation

Consumer's Surplus, Compensating Variation and Equivalent Variation

- Relationship 1: When the consumer's preferences are quasilinear, all three measures are the same.

Consumer's Surplus, Compensating
 Variation and Equivalent Variation

-Consider first the change in Consumer's Surplus when p_{1} rises from p_{1} ' to $p_{1}{ }^{\prime \prime}$.

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\text { If } \quad U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2} \quad \text { then }
$$

$$
\operatorname{cs}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

If $\quad U\left(x_{1}, x_{2}\right)=V\left(x_{1}\right)+x_{2} \quad$ then

$$
\operatorname{cs}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=C S\left(p_{1}^{\prime}\right)-C S\left(p_{1}^{\prime \prime}\right)
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

If $\quad U\left(x_{1}, x_{2}\right)=V\left(x_{1}\right)+x_{2} \quad$ then

$$
\operatorname{cs}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=C S\left(p_{1}^{\prime}\right)-C S\left(p_{1}^{\prime \prime}\right)
$$

$$
=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}-\left[v\left(x_{1}^{\prime \prime}\right)-v(0)-p_{1}^{\prime \prime} x_{1}^{\prime \prime}\right]
$$

Consumer's Surplus, Compensating

 Variation and Equivalent VariationIf $\quad U\left(x_{1}, x_{2}\right)=V\left(x_{1}\right)+x_{2} \quad$ then

$$
\operatorname{cs}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=C S\left(p_{1}^{\prime}\right)-C S\left(p_{1}^{\prime \prime}\right)
$$

$$
=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}-\left[v\left(x_{1}^{\prime \prime}\right)-v(0)-p_{1}^{\prime \prime} x_{1}^{\prime \prime}\right]
$$

$$
=v\left(x_{1}^{\prime}\right) \Rightarrow\left(x_{1}^{\prime \prime}\right)-\left(p_{1}^{\prime} x_{1}^{\prime}-p_{1}^{\prime \prime *} x_{1}^{\prime}\right) \cdot 1_{1} b
$$

Consumer's Surplus, Compensating
Variation and Equivalent Variation

- Now consider the change in CV when p_{1} rises from p_{1} ' to p_{1} ".
- The consumer's utility for given p_{1} is

$$
v\left(x_{1}^{*}\left(p_{1}\right)\right)+m-p_{1} x_{1}^{*}\left(p_{1}\right)
$$

and CV is the extra income which, at the new prices, makes the consumer's utility the same as at the old prices. That is,...

Consumer's Surplus, Compensating
Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(x_{1}^{\prime}\right)+m-p_{1}^{\prime} x_{1}^{\prime} \\
= & v\left(x_{1}^{\prime \prime}\right)+m+c v-p_{1}^{\prime \prime} x_{1}^{\prime \prime} .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(x_{1}^{\prime}\right)+m-p_{1}^{\prime} x_{1}^{\prime} \\
= & v\left(x_{1}^{\prime \prime}\right)+m+c v-p_{1}^{\prime \prime} x_{1}^{\prime \prime} .
\end{aligned}
$$

So

$$
\begin{aligned}
C V & =v\left(x_{1}^{\prime}\right)-v\left(x_{1}^{\prime \prime}\right)-\left(p_{1}^{\prime} x_{1}^{\prime}-p_{1}^{\prime \prime} x_{1}^{\prime \prime}\right) \\
& =\Delta C S .
\end{aligned}
$$

Consumer's Surplus, Compensating
Variation and Equivalent Variation

- Now consider the change in EV when p_{1} rises from p_{1} ' to p_{1} ".
- The consumer's utility for given p_{1} is

$$
v\left(x_{1}^{*}\left(p_{1}\right)\right)+m-p_{1} x_{1}^{*}\left(p_{1}\right)
$$

and EV is the extra income which, at the old prices, makes the consumer's utility the same as at the new prices. That is, ..

Consumer's Surplus, Compensating
Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(x_{1}^{\prime}\right)+m-p_{1}^{\prime} x_{1}^{\prime} \\
= & v\left(x_{1}^{\prime \prime}\right)+m+E v-p_{1}^{\prime \prime} x_{1}^{\prime \prime} .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(x_{1}^{\prime}\right)+m-p_{1}^{\prime} x_{1}^{\prime} \\
= & v\left(x_{1}^{\prime \prime}\right)+m+E V-p_{1}^{\prime \prime} x_{1}^{\prime \prime} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
E V & =v\left(x_{1}^{\prime}\right)-v\left(x_{1}^{\prime \prime}\right)-\left(p_{1}^{\prime} x_{1}^{\prime}-p_{1}^{\prime \prime} x_{1}^{\prime \prime}\right) \\
& =\Delta C S .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

So when the consumer has quasilinear utility,

$$
C V=E V=\Delta C S .
$$

But, otherwise, we have:
Relationship 2: In size, EV < $\Delta \mathrm{CS}<\mathrm{CV}$.

Producer's Surplus

-Changes in a firm's welfare can be measured in dollars much as for a consumer.

Producer's Surplus

Output price (p)

Producer's Surplus

Output price (p)

Benefit-Cost Analysis

-Can we measure in money units the net gain, or loss, caused by a market intervention; e.g., the imposition or the removal of a market regulation?

- Yes, by using measures such as the Consumer's Surplus and the Producer's Surplus.

Benefit-Cost Analysis

Price

Benefit-Cost Analysis

Price The free-market equilibrium

 and the gains from trade generated by it.Supply
© 2010 W. W. Norton \& Company, Inc.

Benefit-Cost Analysis

Price The gain from freely
\uparrow trading the $q_{1}{ }^{\text {th }}$ unit.
ρ_{0}

Benefit-Cost Analysis

Price The gains from freely
\uparrow trading the units from
Supply
Consumer's gains
© 2010 W. W. Norton \& Company, Inc.

Benefit-Cost Analysis

Price The gains from freely
\uparrow trading the units from
Supply
Consumer's
ρ_{0} q_{1} to q_{0}. gains

87

Benefit-Cost Analysis

Price

Benefit-Cost Analysis

Benefit-Cost Analysis

Price An excise tax imposed at a rate of \$t \uparrow per traded unit destroys these gains.

Benefit-Cost Analysis

Price An excise tax imposed at a rate of $\mathbf{\$ t}$ \uparrow per traded unit destroys these gains.

So does a floor price set at p_{f}, a ceiling price set at p_{c}

Benefit-Cost Analysis

