INTERMEDIATE

W. Norton & Company, Inc.

MICROECONOMICS HALR, VARIAN

Monetary Measures of Gains-to-Trade

- ♦ You can buy as much gasoline as you wish at \$1 per gallon once you enter the gasoline market.
- ♦ Q: What is the most you would pay to enter the market?

Monetary Measures of Gains-to-Trade

- ◆ A: You would pay up to the dollar value of the gains-to-trade you would enjoy once in the market.
- ♦ How can such gains-to-trade be measured?

Monetary Measures of Gains-to-Trade

- **♦** Three such measures are:
 - -Consumer's Surplus
 - Equivalent Variation, and
 - Compensating Variation.
- ♦ Only in one special circumstance do these three measures coincide.

- ◆ Suppose gasoline can be bought only in lumps of one gallon.
- ◆ Use r₁ to denote the most a single consumer would pay for a 1st gallon -- call this her reservation price for the 1st gallon.
- ♦ r₁ is the dollar equivalent of the marginal utility of the 1st gallon.

- ♦ Now that she has one gallon, use r₂ to denote the most she would pay for a 2nd gallon -- this is her reservation price for the 2nd gallon.
- ♦ r₂ is the dollar equivalent of the marginal utility of the 2nd gallon.

- ◆ Generally, if she already has n-1 gallons of gasoline then r_n denotes the most she will pay for an nth gallon.
- ♦ r_n is the dollar equivalent of the marginal utility of the nth gallon.

- $ightharpoonup r_1 + ... + r_n$ will therefore be the dollar equivalent of the total change to utility from acquiring n gallons of gasoline at a price of \$0.
- ♦ So $r_1 + ... + r_n p_G n$ will be the dollar equivalent of the total change to utility from acquiring n gallons of gasoline at a price of p_G each.

◆ A plot of r₁, r₂, ..., r_n, ... against n is a reservation-price curve. This is not quite the same as the consumer's demand curve for gasoline.

♦ What is the monetary value of our consumer's gain-to-trading in the gasoline market at a price of \$p_G?

- ◆ The dollar equivalent net utility gain for the 1st gallon is \$(r₁ - p₀)
- ♦ and is \$(r₂ p_G) for the 2nd gallon,
- ◆ and so on, so the dollar value of the gain-to-trade is

$$(r_1 - p_G) + (r_2 - p_G) + ...$$

for as long as $r_n - p_G > 0$.

- ♦ Now suppose that gasoline is sold in half-gallon units.
- ♦ r₁, r₂, ..., r_n, ... denote the consumer's reservation prices for successive half-gallons of gasoline.
- ♦ Our consumer's new reservation price curve is

© 2010 W. W. Norton & Company, Inc.

◆And if gasoline is available in onequarter gallon units ...

♦ Finally, if gasoline can be purchased in any quantity then ...

Reservation Price Curve for Gasoline (\$) Res. **Prices** \$ value of net utility gains-to-trade **Gasoline 27** © 2010 W. W. Norton & Company, Inc.

- ◆ Unfortunately, estimating a consumer's reservation-price curve is difficult,
- ♦ so, as an approximation, the reservation-price curve is replaced with the consumer's ordinary demand curve.

© 2010 W. W. Norton & Company, Inc.

- ◆ A consumer's reservation-price curve is not quite the same as her ordinary demand curve. Why not?
- ◆ A reservation-price curve describes sequentially the values of successive single units of a commodity.
- ◆ An ordinary demand curve describes the most that would be paid for q units of a commodity purchased simultaneously.

© 2010 W. W. Norton & Company, Inc.

◆ Approximating the net utility gain area under the reservation-price curve by the corresponding area under the ordinary demand curve gives the Consumer's Surplus measure of net utility gain.

(\$) Reservation price curve for gasoline Ordinary demand curve for gasoline

Reservation price curve for gasoline Ordinary demand curve for gasoline Gasoline © 2010 W. W. Norton & Company, Inc.

Reservation price curve for gasoline Ordinary demand curve for gasoline \$ value of net utility gains-to-trade **Gasoline** 33 © 2010 W. W. Norton & Company, Inc.

- ◆ The difference between the consumer's reservation-price and ordinary demand curves is due to income effects.
- ◆ But, if the consumer's utility function is quasilinear in income then there are no income effects and Consumer's Surplus is an exact \$ measure of gains-to-trade.

The consumer's utility function is quasilinear in x_2 .

$$U(x_1, x_2) = v(x_1) + x_2$$

Take $p_2 = 1$. Then the consumer's choice problem is to maximize

$$U(x_1, x_2) = v(x_1) + x_2$$

subject to

$$\mathbf{p}_{1} \mathbf{x}_{1} + \mathbf{x}_{2} = \mathbf{m}.$$

The consumer's utility function is quasilinear in x_2 .

$$U(x_1, x_2) = v(x_1) + x_2$$

Take $p_2 = 1$. Then the consumer's choice problem is to maximize

$$U(x_1, x_2) = v(x_1) + x_2$$

subject to

$$p_1 x_1 + (x_2) = m$$

That is, choose x₁ to maximize

$$v(x_1) + m - p_1x_1$$
.

The first-order condition is

$$v'(x_1) - p_1 = 0$$

That is,
$$p_1 = v'(x_1)$$
.

This is the equation of the consumer's ordinary demand for commodity 1.

43

- ◆ Consumer's Surplus is an exact dollar measure of utility gained from consuming commodity 1 when the consumer's utility function is quasilinear in commodity 2.
- ♦ Otherwise Consumer's Surplus is an approximation.

© 2010 W. W. Norton & Company, Inc.

◆ The change to a consumer's total utility due to a change to p₁ is approximately the change in her Consumer's Surplus.

Compensating Variation and Equivalent Variation

◆ Two additional dollar measures of the total utility change caused by a price change are Compensating Variation and Equivalent Variation.

- ♦ p₁ rises.
- ◆ Q: What is the least extra income that, at the new prices, just restores the consumer's original utility level?

- ♦ p₁ rises.
- ◆ Q: What is the least extra income that, at the new prices, just restores the consumer's original utility level?
- **♦** A: The Compensating Variation.

- ♦ p₁ rises.
- ◆ Q: What is the least extra income that, at the original prices, just restores the consumer's original utility level?
- **♦** A: The Equivalent Variation.

◆ Relationship 1: When the consumer's preferences are quasilinear, all three measures are the same.

◆ Consider first the change in Consumer's Surplus when p₁ rises from p₁' to p₁".

If
$$U(x_1, x_2) = v(x_1) + x_2$$
 then $CS(p'_1) = v(x'_1) - v(0) - p'_1x'_1$

If
$$U(x_1, x_2) = v(x_1) + x_2$$
 then $CS(p'_1) = v(x'_1) - v(0) - p'_1x'_1$

and so the change in CS when p_1 rises from p_1 ' to p_1 " is

$$\Delta CS = CS(p_1') - CS(p_1'')$$

If
$$U(x_1, x_2) = v(x_1) + x_2$$
 then $CS(p'_1) = v(x'_1) - v(0) - p'_1x'_1$

and so the change in CS when p_1 rises from p_1 ' to p_1 " is

$$\Delta CS = CS(p_1') - CS(p_1'')$$

$$= v(x_1') - v(0) - p_1'x_1' - [v(x_1'') - v(0) - p_1''x_1'']$$

If
$$U(x_1, x_2) = v(x_1) + x_2$$
 then $CS(p'_1) = v(x'_1) - v(0) - p'_1x'_1$

and so the change in CS when p_1 rises from p_1 ' to p_1 " is

$$\Delta CS = CS(p_1') - CS(p_1'')$$

$$= v(x_1') - v(0) - p_1'x_1' - [v(x_1'') - v(0) - p_1''x_1'']$$

$$= v(x_1) - (p_1x_1 - p_1x_1).$$

© 2010 W. W. Norton & Company, Inc.

68

- ♦ Now consider the change in CV when p₁ rises from p₁' to p₁".
- ♦ The consumer's utility for given p₁ is

$$v(x_1^*(p_1)) + m - p_1x_1^*(p_1)$$

and CV is the extra income which, at the new prices, makes the consumer's utility the same as at the old prices. That is, ...

$$v(x_1') + m - p_1'x_1'$$

= $v(x_1'') + m + CV - p_1'x_1''$.

$$v(x_1') + m - p_1'x_1'$$

= $v(x_1'') + m + CV - p_1''x_1''$.

So

$$C V = V(X_1') - V(X_1'') - (p_1'X_1' - p_1''X_1')$$

= $\Delta C S$.

- ♦ Now consider the change in EV when p₁ rises from p₁' to p₁".
- ♦ The consumer's utility for given p₁ is

$$v(x_1^*(p_1)) + m - p_1x_1^*(p_1)$$

and EV is the extra income which, at the old prices, makes the consumer's utility the same as at the new prices.

That is, ...

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$v(x_1') + m - p_1'x_1'$$

= $v(x_1'') + m + EV - p_1'x_1''$.

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$v(x_1') + m - p_1'x_1'$$

= $v(x_1'') + m + EV - p_1''x_1''$.

That is,

$$EV = v(x_1') - v(x_1'') - (p_1'x_1' - p_1''x_1')$$

= $\Delta C S$.

Consumer's Surplus, Compensating Variation and Equivalent Variation

So when the consumer has quasilinear utility,

 $CV = EV = \triangle CS$.

But, otherwise, we have:

Relationship 2: In size, EV $< \Delta$ CS < CV.

◆ Changes in a firm's welfare can be measured in dollars much as for a consumer.

- ◆ Can we measure in money units the net gain, or loss, caused by a market intervention; *e.g.*, the imposition or the removal of a market regulation?
- ♦ Yes, by using measures such as the Consumer's Surplus and the Producer's Surplus.

© 2010 W. W. Norton & Company, Inc.

