INTERMEDIATE

W. Norton & Company, Inc.

MICROECONOMICS HALR. VARIAN

Market Demand

- **♦** Think of an economy containing n consumers, denoted by i = 1, ..., n.
- ◆ Consumer i's ordinary demand function for commodity j is

$$\mathbf{x}_{j}^{*i}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{m}_{j})$$

From Individual to Market

Demand Functions

♦ When all consumers are price-takers, the market demand function for commodity j is

$$X_{j}(p_{1},p_{2},m^{1},\cdots,m^{n}) = \sum_{i=1}^{n} x_{j}^{*i}(p_{1},p_{2},m^{i}).$$

♦ If all consumers are identical then

$$X_{j}(p_{1},p_{2},M) = n \times x_{j}^{*}(p_{1},p_{2},m)$$

where M = nm.

- ◆ The market demand curve is the "horizontal sum" of the individual consumers' demand curves.
- **♦** E.g. suppose there are only two consumers; i = A,B.

Elasticities

- ◆ Elasticity measures the "sensitivity" of one variable with respect to another.
- ◆ The elasticity of variable X with respect to variable Y is

$$\varepsilon_{x,y} = \frac{\% \Delta x}{\% y}$$

Economic Applications of

- **Elasticity ◆ Economists use elasticities to** measure the sensitivity of
 - quantity demanded of commodity i with respect to the price of commodity i (own-price elasticity of demand)
 - demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand).

Economic Applications of Elasticity

- demand for commodity i with respect to income (income elasticity of demand)
- quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

- quantity supplied of commodity i
 with respect to the wage rate
 (elasticity of supply with respect to
 the price of labor)
- -and many, many others.

◆ Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity's own price?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

Own-Price Elasticity of Demand 10-packs Single Units

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

Own-Price Elasticity of Demand 10-packs Single Units

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ? It is the same in both cases.

- ◆ Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price?
- ◆ A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

W. Norton & Company, Inc.

$$\varepsilon_{\mathsf{x}_{1}^{*},\mathsf{p}_{1}} = \frac{\% \Delta \mathsf{x}_{1}^{*}}{\% \Delta \mathsf{p}_{1}}$$

is a ratio of percentages and so has no units of measurement.

Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

Arc and Point Elasticities

- ◆ An "average" own-price elasticity of demand for commodity i over an interval of values for p_i is an arcelasticity, usually computed by a mid-point formula.
- ◆ Elasticity computed for a single value of p_i is a point lasticity.

© 2010 W. W. Norton & Company, Inc.

Arc Own-Price Elasticity What is the "average" own-price **p**i elasticity of demand for prices in an interval centered on p_i'? p_i'-h © 2010 W. W. Norton & Company, Inc.

W. Norton & Company, Inc.

23

24

© 2010 W. W. Norton & Company, Inc.

$$\varepsilon_{X_{i}^{*},p_{i}} = \frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}}$$

$$\% \Delta p_i = 100 \times \frac{2h}{p_i}$$

%
$$\Delta X_{i}^{*} = 100 \times \frac{(X_{i}" - X_{i}"")}{(X_{i}" + X_{i}"") / 2}$$

$$\varepsilon_{X_{i}^{*},p_{i}} = \frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}}$$

%
$$\Delta p_i = 100 \times \frac{2h}{p_i}$$

%
$$\Delta X_{i}^{*} = 100 \times \frac{(X_{i}" - X_{i}"")}{(X_{i}" + X_{i}"") / 2}$$

So

$$\epsilon_{X_{i}^{*},p_{i}}^{*} = \frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}} = \frac{p_{i}'}{(X_{i}'' + X_{i}''')/2} \times \frac{(X_{i}'' - X_{i}''')}{2h}.$$

is the arc own-price elasticity of demand.

Point Own-Price Elasticity

$$\varepsilon_{\chi_{i}^{*},p_{i}} = \frac{p_{i}}{\chi_{i}^{*}} \times \frac{d\chi_{i}^{"}}{dp_{i}}$$

E.g. Suppose $p_i = a - bX_i$. Then $X_i = (a-p_i)/b$ and

$$\frac{dX_{i}^{*}}{dp_{i}} = -\frac{1}{b}.$$
 Therefore,

© 2010 W. W. Norton & Company, Inc.

$$\mathcal{E}_{X_{i}^{*},p_{i}} = \frac{p_{i}}{(a p_{i})/b} \times \left(1 - \frac{p_{i}}{b}\right) = -\frac{p_{i}}{a - p_{i}}.$$

Point Own-Price Elasticity

Point Own-Price Elasticity

© 2010 W. W. Norton & Company, Inc.

39

© 2010 W. W. Norton & Company, Inc.

40

© 2010 W. W. Norton & Company, Inc.

© 2010 W. W. Norton & Company, Inc.

© 2010 W. W. Norton & Company, Inc.

$$\mathcal{E}_{X_{i}^{*},p_{i}} = \frac{p_{i}}{X_{i}^{*}} \times \frac{dX_{i}^{*}}{dp_{i}}$$

E.g.
$$X_{i}^{*} = k p_{i}^{a}$$
. Then $\frac{d X_{i}^{*}}{d p_{i}} = a p_{i}^{a-1}$

SO

$$\varepsilon_{X_{i}^{*},p_{i}} = \frac{p_{i}}{kp_{i}^{a}} \times kap_{i}^{a-1} = a\frac{p_{i}^{a}}{p_{i}^{a}} = a.$$

 $\mathcal{E} = -2$ everywhere along the demand curve.

- ♦ If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
- ♦ Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

- ♦ If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.
- ♦ Hence own-price elastic demand causes sellers' revenues to fall as price rises.

Revenue and Own-Price Elasticity of Demand Sellers' revenue is $R(p) = p \times X^*(p)$.

Revenue and Own-Price Elasticity of Demand Sellers' revenue is $R(p) = p \times X^*(p)$.

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

Revenue and Own-Price Elasticity of Demand Sellers' revenue is $R(p) = p \times X^*(p)$.

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

$$= X^*(p) \left[1 + \frac{p}{X^*(p)} \frac{dX^*}{dp} \right]$$

Revenue and Own-Price Elasticity of Demand Sellers' revenue is $R(p) = p \times X^*(p)$.

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

© 2010 W. W. Norton & Company, Inc.

$$= X^*(p) \left[1 + \frac{p}{X^*(p)} \frac{dX^*}{dp} \right]$$

$$= \mathbf{X}^* (\mathbf{p}) [1 + \varepsilon]$$

$$\frac{dR}{dp} = X^*(p)[1 + \varepsilon]$$

$$\frac{dR}{dp} = X^*(p)[1 + \varepsilon]$$

so if
$$\varepsilon = -1$$
 then $\frac{dR}{dp} = 0$

and a change to price does not alter sellers' revenue.

$$\frac{dR}{dp} = X^*(p)[1 + \varepsilon]$$

but if
$$-1 < \varepsilon \le 0$$
 then $\frac{dR}{dp} > 0$

and a price increase raises sellers' revenue.

$$\frac{dR}{dp} = X^*(p)[1 + \varepsilon]$$

And if
$$\varepsilon < -1$$
 then $\frac{dR}{dp} < 0$

and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand In summary:

Own-price inelastic demand; $-1 < \varepsilon \le 0$ price rise causes rise in sellers' revenue.

Own-price unit elastic demand; $\varepsilon = -1$ price rise causes no change in sellers' revenue.

Own-price elastic demand; $\varepsilon < -1$ price rise causes fall in sellers' revenue.

◆ A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

p(q) denotes the seller's inverse demand function; i.e. the price at which the seller can sell q units. Then

$$R(q) = p(q) \times q$$

SO

$$MR(q) = \frac{dR(q)}{dq} = \frac{dp(q)}{dq}q + p(q)$$

$$= p(q) \left[1 + \frac{q d p(q)}{p(q)} \right]$$

$$MR(q) = p(q) \left[1 + \frac{q}{p(q)} \frac{dp(q)}{dq} \right].$$

$$\varepsilon = \frac{d q}{d p} \times \frac{p}{q}$$

so MR(q) =
$$p(q)\left[1 + \frac{1}{\varepsilon}\right]$$
.

MR(q) = p(q)
$$\left[1 + \frac{1}{\varepsilon}\right]$$
 says that the rate

at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; *i.e.*, upon the of the own-price elasticity of demand.

$$M R (q) = p (q) \left[1 + \frac{1}{\epsilon} \right]$$

If
$$\varepsilon = -1$$
 then $MR(q) = 0$.

If
$$-1 < \varepsilon \le 0$$
 then $MR(q) < 0$.

If
$$\varepsilon < -1$$
 then $MR(q) > 0$.

If $\varepsilon = -1$ then MR(q) = 0. Selling one more unit does not change the seller's revenue.

If $-1 < \varepsilon \le 0$ then MR(q) < 0. Selling one more unit reduces the seller's revenue.

If $\varepsilon < -1$ then MR(q) > 0. Selling one more unit raises the seller's revenue.

Marginal Revenue and Own-Price Elasticity of Demand An example with linear inverse demand.

$$p(q) = a - bq$$
.

Then
$$R(q) = p(q)q = (a - bq)q$$

and $MR(q) = a - 2bq$.

66

