INTERMEDIATE

From Individual to Market Demand Functions

- Think of an economy containing n consumers, denoted by $i=1, \ldots, n$.
-Consumer i's ordinary demand function for commodity j is

$$
x_{j}^{* i}\left(p_{1}, p_{2}, m^{i}\right)
$$

From Individual to Market

 Demand Functions - When all consumers are price-takers, the market demand function for commodity j is$$
x_{j}\left(p_{1}, p_{2}, m^{1}, \cdots, m^{n}\right)=\sum_{i=1}^{n} x_{j}^{* i}\left(p_{1}, p_{2}, m^{i}\right) .
$$

- If all consumers are identical then

$$
X_{j}\left(p_{1}, p_{2}, M\right)=n \times x_{j}^{*}\left(p_{1}, p_{2}, m\right)
$$

where $M=n m$.

From Individual to Market Demand Functions

- The market demand curve is the "horizontal sum" of the individual consumers' demand curves.
\bullet E.g. suppose there are only two consumers; i = A,B.

From Individual to Market Demand Functions

Elasticities

- Elasticity measures the "sensitivity" of one variable with respect to another.
- The elasticity of variable X with respect to variable Y is

$$
\varepsilon_{x, y}=\frac{\% \Delta x}{\% \Delta y}
$$

Economic Applications of

Elasticity

- Economists use elasticities to measure the sensitivity of
- quantity demanded of commodity \mathbf{i} with respect to the price of commodity i (own-price elasticity of demand)
- demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand).

Economic Applications of Elasticity

- demand for commodity i with respect to income (income elasticity of demand)
-quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

-quantity supplied of commodity i with respect to the wage rate (elasticity of supply with respect to the price of labor)
-and many, many others.

Own-Price Elasticity of Demand

\bullet Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity's own price?

Own-Price Elasticity of Demand

$5 \quad X_{1}{ }^{*}$

In which case is the quantity demanded $\mathrm{X}_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand

In which case is the quantity demanded $X_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand 10-packs Single Units

p_{1}

5
In which case is the quantity demanded $\mathrm{X}_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand 10-packs Single Units

In which case is the quantity demanded $\mathrm{X}_{1}{ }^{*}$ more sensitive to changes to p_{1} ? It is the same in both cases.

Own-Price Elasticity of Demand

\bullet Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price?
A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

Own-Price Elasticity of Demand
 $$
\varepsilon_{\mathrm{x}_{1}^{*}, \mathrm{p}_{1}}=\frac{\% \Delta \mathrm{x}_{1}^{*}}{\% \Delta \mathrm{p}_{1}}
$$

is a ratio of percentages and so has no units of measurement. Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

Arc and Point Elasticities

- An "average" own-price elasticity of demand for commodity i over an interval of values for p_{i} is an arcelasticity, usually computed by a mid-point formula.
- Elasticity computed for a single value of p_{i} is a point elasticity.

Arc Own-Price Elasticity

Arc Own-Price Elasticity

$$
\begin{gathered}
\% \Delta \mathrm{p}_{\mathrm{i}}=100 \times \frac{2 \mathrm{~h}}{\mathrm{p}_{\mathrm{i}}^{\prime}} \\
\% \Delta X_{i}^{*}=100 \times \frac{\left(\mathrm{X}_{i}^{\prime \prime}-X_{i^{\prime \prime}}\right)}{\left(X_{i}{ }^{\prime \prime}+X_{i}^{\prime \prime \prime}\right) / 2}
\end{gathered}
$$

Arc Own-Price Elasticity

$$
\varepsilon_{X_{i}^{*}, p_{i}}=\frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}} \quad \% \Delta \mathrm{P}_{\mathrm{i}}=100 \times \frac{2 \mathrm{~h}}{\mathrm{p}_{\mathrm{i}}^{\prime}}
$$

So

$\varepsilon_{X_{i}, p_{i}}=\frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}}=\frac{p_{i}^{\prime}}{\left(X_{i}{ }^{\prime \prime}+\mathrm{X}_{i}^{\prime \prime \prime \prime}\right) / 2} \times \frac{\left(\mathrm{X}_{\mathrm{i}}{ }^{\prime \prime}-\mathrm{X}_{\mathrm{i}}{ }^{\prime \prime \prime}\right)}{2 \mathrm{~h}}$.
is the arc own-price elasticity of demand.

Point Own-Price Elasticity

 What is the own-price elasticity

Point Own-Price Elasticity

 What is the own-price elasticity

Point Own-Price Elasticity

 What is the own-price elasticity

Point Own-Price Elasticity

 What is the own-price elasticity

Point Own-Price Elasticity

 What is the own-price elasticity

Point Own-Price Elasticity What is the own-price elasticity

 $\mathbf{p}_{i} \uparrow \quad$ of demand in a very small interval of prices centered on $p_{i}^{\prime \prime}$?$$
{ }^{x_{i_{i}}^{*}, p_{i}}=\frac{p_{i^{\prime}}^{\prime}}{X_{i^{\prime}}} \times \frac{d X_{i}^{*}}{d p_{i}}
$$

is the elasticity at the point ($X_{i}{ }^{\prime}, \mathrm{p}_{\mathrm{i}}{ }^{\prime}$).

Point Own-Price Elasticity
 $$
\varepsilon_{X_{i}^{*}, p_{i}}=\frac{p_{i}}{X_{i}^{*}} \times \frac{d X_{i}^{*}}{d p_{i}}
$$

E.g. Suppose $p_{i}=a-b X_{i}$.

Then $X_{i}=\left(a-p_{i}\right) / b$ and
$\frac{d X_{i}^{*}}{d p_{i}}=-\frac{1}{b}$. Therefore,

$$
{ }^{\varepsilon} X_{i}^{*}, p_{i}=\frac{p_{i}}{\left(a-p_{i}\right) / b} \times\left(\frac{1}{b}\right)=-\frac{p_{i}}{a-p_{i}} .
$$

Point Own-Price Elasticity

Point Own-Price Elasticity

$a / 2 b$
a/b $\quad X_{i}{ }^{*}$

Point Own-Price Elasticity

Point Own-Price Elasticity

Point Own-Price Elasticity

own-price elastic

a/2

$$
\varepsilon=-1
$$

own-price inelastic

$$
\varepsilon=0
$$

$a / 2 b$
$a / b \quad X_{i}{ }^{*}$

Point Own-Price Elasticity

own-price elastic

own-price inelastic
$\varepsilon=0$
$a / 2 b$
$a / b \quad X_{i}^{*}$

Point Own-Price Elasticity
 $$
\varepsilon_{X_{i}^{*}, p_{i}}=\frac{p_{i}}{X_{i}^{*}} \times \frac{d X_{i}^{*}}{d p_{i}}
$$

Egg. $X_{i}^{*}=k p_{i}^{a}$. Then $\frac{d X_{i}^{*}}{d p_{i}}=a p_{i}^{a-1}$
so

Point Own-Price Elasticity

Revenue and Own-Price

 Elasticity of Demand- If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
- Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

Revenue and Own-Price

 Elasticity of Demand\bullet If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.

- Hence own-price elastic demand causes sellers' revenues to fall as price rises.

Revenue and Own-Price

 Elasticity of Demand Sellers' revenue is $R(p)=p \times X^{*}(p)$.
Revenue and Own-Price

 Elasticity of Demand Sellers' revenue is $R(p)=p \times X^{*}(p)$. So $\frac{d R}{d p}=X^{*}(p)+p \frac{d X^{*}}{d p}$
Revenue and Own-Price

Elasticity of Demand

Sellers' revenue is $R(p)=p \times X^{*}(p)$.
So $\frac{d R}{d p}=x^{*}(p)+p \frac{d X^{*}}{d p}$

$$
=X^{*}(p)\left[1+\frac{p}{X^{*}(p)} \frac{d X^{*}}{d p}\right]
$$

Revenue and Own-Price

Elasticity of Demand

Sellers' revenue is $R(p)=p \times X^{*}(p)$.
So $\frac{d R}{d p}=X^{*}(p)+p \frac{d X^{*}}{d p}$

$$
=X^{*}(p)\left[1+\frac{p}{X^{*}(p)} \frac{d X^{*}}{d p}\right]
$$

$$
=X^{*}(\underline{p})[1+\varepsilon] .
$$

Revenue and Own-Price

 Elasticity of Demand$$
\frac{d R}{d p}=X^{*}(p)[1+\varepsilon]
$$

Revenue and Own-Price

 Elasticity of Demand$$
\frac{d R}{d p}=X^{*}(p)[1+\varepsilon]
$$

so if $\varepsilon=-1 \quad$ then $\quad \frac{d R}{d p}=0$
and a change to price does not alter sellers' revenue.

Revenue and Own-Price

 Elasticity of Demand$\frac{d R}{d p}=X^{*}(p)[1+\varepsilon]$
but if $-1<\varepsilon \leq 0$ then $\frac{d R}{d p}>0$
and a price increase raises sellers' revenue.

Revenue and Own-Price

 Elasticity of Demand$\frac{d R}{d p}=X^{*}(p)[1+\varepsilon]$
And if $\varepsilon<-1 \quad$ then $\frac{d R}{d p}<0$
and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand

In summary:
Own-price inelastic demand; - $1<\varepsilon \leq 0$ price rise causes rise in sellers' revenue.
Own-price unit elastic demand; $\varepsilon=-1$ price rise causes no change in sellers' revenue.
Own-price elastic demand; $\varepsilon<-1$ price rise causes fall in sellers' revenue.

Marginal Revenue and OwnPrice Elasticity of Demand

- A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

Marginal Revenue and Own-

 Price Elasticity of Demand $p(q)$ denotes the seller's inverse demand function; ie. the price at which the seller can sell q units. Then$$
R(q)=p(q) \times q
$$

SO

$$
M R(q)=\frac{d R(q)}{d q}=\frac{d p(q)}{d q} q+p(q)
$$

Marginal Revenue and Own-
Price Elasticity of Demand
$M R(q)=p(q)\left[1+\frac{q}{p(q)} \frac{d p(q)}{d q}\right]$.
and $\quad \varepsilon=\frac{d q}{d p} \times \frac{p}{q}$
so $\quad M R(q)=p(q)\left[1+\frac{1}{\varepsilon}\right]$.

Marginal Revenue and OwnPrice Elasticity of Demand $M \mathrm{R}(\mathrm{q})=\mathrm{p}(\mathfrak{q})\left[1+\frac{1}{\varepsilon}\right] \quad$ says that the rate at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; i.e., upon the of the own-price elasticity of demand.

> Marginal Revenue and OwnPrice Elasticity of Demand $M R(q)=p(q)\left[1+\frac{1}{\varepsilon}\right]$
> If $\varepsilon=-1 \quad$ then $M R(q)=0$. If $-1<\varepsilon \leq 0$ then $M R(q)<0$.
> If $\varepsilon<-1 \quad$ then $M R(q)>0$.

Marginal Revenue and OwnPrice Elasticity of Demand If $\varepsilon=-1$ then $M R(q)=0$. Selling one more unit does not change the seller's revenue.

If $-1<\varepsilon \leq 0$ then $M R(q)<0$. Selling one more unit reduces the seller's revenue.

If $\varepsilon<-1$ then $M \boldsymbol{R}(q)>0$. Selling one more unit raises the seller's revenue.

Marginal Revenue and OwnPrice Elasticity of Demand
An example with linear inverse demand.

$$
p(q)=a-b q .
$$

Then $R(q)=p(q) q=(a-b q) q$ and $\quad M R(q)=a-2 b q$.

Marginal Revenue and OwnPrice Elasticity of Demand

p

