INTERMEDIATE

MICROEECONOMICS HAL R. VARIAN

Market Equilibrium

- A market is in equilibrium when total quantity demanded by buyers equals total quantity supplied by sellers.

Market Equilibrium

Market Equilibrium

Market

S(p)

Market Equilibrium

$D(p), S(p)$

Market Equilibrium

Market Equilibrium

Market
 supply

$\mathrm{q}=\mathrm{S}(\mathrm{p})$

$D\left(p^{*}\right)=S\left(p^{*}\right)$; the market is in equilibrium.
$\mathrm{q}=\mathrm{D}(\mathrm{p})$

Market Equilibrium

Market Equilibrium

$$
D\left(p^{\prime}\right) \quad S\left(p^{\prime}\right) \quad D(p), S(p)
$$

Market price must fall towards p^{*}.

Market Equilibrium

Market Equilibrium

Market Equilibrium

- An example of calculating a market equilibrium when the market demand and supply curves are linear.

$$
\begin{aligned}
& D(p)=a-b p \\
& S(p)=c+d p
\end{aligned}
$$

Market Equilibrium

Market Equilibrium

Market Equilibrium
 $$
D(p)=a-b p
$$
 $$
S(p)=c+d p
$$

At the equilibrium price $\mathrm{p}^{*}, \mathrm{D}\left(\mathrm{p}^{*}\right)=\mathrm{S}\left(\mathrm{p}^{*}\right)$.

Market Equilibrium
 $$
D(p)=a-b p
$$
 $$
S(p)=c+d p
$$

At the equilibrium price $p^{*}, D\left(p^{*}\right)=S\left(p^{*}\right)$. That is, $\quad a-b p^{*}=c+d p^{*}$

Market Equilibrium $D(p)=a-b p$ $S(p)=c+d p$

At the equilibrium price $p^{*}, D\left(p^{*}\right)=S\left(p^{*}\right)$. That is, $\quad a-b p^{*}=c+d p^{*}$
which gives $\quad p^{*}=\frac{a-c}{b+d}$

Market Equilibrium $D(p)=a-b p$ $S(p)=c+d p$

At the equilibrium price $p^{*}, D\left(p^{*}\right)=S\left(p^{*}\right)$. That is, $\quad a-b p^{*}=c+d p^{*}$
which gives $\quad p^{*}=\frac{a-c}{b+d}$

Market Equilibrium

Market Equilibrium

-Can we calculate the market equilibrium using the inverse market demand and supply curves?

Market Equilibrium

- Can we calculate the market equilibrium using the inverse market demand and supply curves?
- Yes, it is the same calculation.

Market Equilibrium

$q=D(p)=a-b p \Leftrightarrow p=\frac{a-q}{b}=D^{-1}(q)$,
the equation of the inverse market demand curve. And
$q=S(p)=c+d p \Leftrightarrow p=\frac{-c+q}{d}=S^{-1}(q)$,
the equation of the inverse market supply curve.

Market Equilibrium

Market Equilibrium

Market Equilibrium

$$
p=D^{-1}(q)=\frac{a-q}{b} \text { and } p=s^{-1}(q)=\frac{-c+q}{d} \text {. }
$$

At the equilibrium quantity $\mathrm{q}^{*}, \mathrm{D}^{-1}\left(\mathrm{p}^{*}\right)=\mathbf{S}^{-1}\left(\mathrm{p}^{*}\right)$.

Market Equilibrium

$p=D^{-1}(q)=\frac{a-q}{b}$ and $p=S^{-1}(q)=\frac{-c+q}{d}$.
At the equilibrium quantity $q^{*}, D^{-1}\left(p^{*}\right)=S^{-1}\left(p^{*}\right)$. That is, \qquad
© 2010 W. W. Norton \& Company, Inc.
26

Market Equilibrium

$p=D^{-1}(q)=\frac{a-q}{b}$ and $p=S^{-1}(q)=\frac{-c+q}{d}$.
At the equilibrium quantity $q^{*}, D^{-1}\left(p^{*}\right)=S^{-1}\left(p^{*}\right)$. That is,
which gives $q^{*}=\frac{a d+b c}{b+d}$

Market Equilibrium

$p=D^{-1}(q)=\frac{a-q}{b}$ and $p=S^{-1}(q)=\frac{-c+q}{d}$.
At the equilibrium quantity $q^{*}, D^{-1}\left(p^{*}\right)=S^{-1}\left(p^{*}\right)$. That is,
which gives $q^{*}=\frac{a d+b c}{b+d}$
and $p^{*}=D^{-1}\left(q^{*}\right)=S^{-1}\left(q^{*}\right)=\frac{a-c}{b+d}$.

Market Equilibrium

Market Equilibrium

- Two special cases:
-quantity supplied is fixed, independent of the market price, and
-quantity supplied is extremely sensitive to the market price.

Market Equilibrium

Market quantity supplied is fixed, independent of price.

Market Equilibrium

p
Market quantity supplied is fixed, independent of price.
$S(p)=c+d p$, so $d=0$
and $S(p) \equiv c$.

Market Equilibrium

Market Equilibrium

- Two special cases are
- when quantity supplied is fixed, independent of the market price, and
- when quantity supplied is extremely sensitive to the market price.
© 2010 W. W. Norton \& Company, Inc.

Market Equilibrium

Market quantity supplied is extremely sensitive to price.

Market Equilibrium

Market quantity supplied is extremely sensitive to price.

$$
S^{-1}(q)=p^{*} .
$$

Market Equilibrium

Market Equilibrium

Market Equilibrium

Quantity Taxes

- A quantity tax levied at a rate of $\$ t$ is a tax of \$t paid on each unit traded.
- If the tax is levied on sellers then it is an excise tax.
\bullet If the tax is levied on buyers then it is a sales tax.

Quantity Taxes

\bullet What is the effect of a quantity tax on a market's equilibrium?
\bullet How are prices affected?
\bullet How is the quantity traded affected?
-Who pays the tax?

- How are gains-to-trade altered?

Quantity Taxes

- A tax rate t makes the price paid by buyers, p_{b}, higher by t from the price received by sellers, p_{s}.

$$
p_{b}-p_{s}=t
$$

Quantity Taxes

- Even with a tax the market must clear.
\bullet I.e. quantity demanded by buyers at price p_{b} must equal quantity supplied by sellers at price p_{s}.

Quantity Taxes

$$
\begin{aligned}
& \qquad p_{b}-p_{s}=t \quad \text { and } \quad D\left(p_{b}\right)=S\left(p_{s}\right) \\
& \text { describe the market's equilibrium. } \\
& \text { Notice these conditions apply no } \\
& \text { matter if the tax is levied on sellers or on } \\
& \text { buyers. }
\end{aligned}
$$

Quantity Taxes

$$
p_{b}-p_{s}=t \quad \text { and } \quad D\left(p_{b}\right)=S\left(p_{s}\right)
$$

describe the market's equilibrium.
Notice that these two conditions apply no matter if the tax is levied on sellers or on buyers.
Hence, a sales tax rate $\$ \mathrm{t}$ has the same effect as an excise tax rate $\$ \mathrm{t}$.

Quantity Taxes \& Market

 Equilibrium

No tax

$D(p), S(p)$

Quantity Taxes \& Market

 Equilibrium
Quantity Taxes \& Market Equilibrium

Quantity Taxes \& Market Equilibrium

An excise tax raises the market supply curve by \$t, raises the buyers' price and lowers the quantity traded.

And sethers receive only $p_{s}=p_{b}-t$.

Quantity Taxes \& Market

 EquilibriumMarket
§ demand supply

No tax
$D(p), S(p)$

54

Quantity Taxes \& Market

 Equilibrium
Quantity Taxes \& Market

Quantity Taxes \& Market

 Equilibrium

An sales tax lowers the market demand curve by \$t, lowers the sellers' price and reduces the quantity traded.

And bayers pay $p_{b}=p_{s}+t . \square$

Quantity Taxes \& Market Equilibrium

Quantity Taxes \& Market Equilibrium

- Who pays the tax of \$t per unit traded?
- The division of the $\$ \mathrm{t}$ between buyers and sellers is the incidence of the tax.

Quantity Taxes \& Market

 Equilibrium

60

Quantity Taxes \& Market

 Equilibrium

Tax paid by

p /buyers

Quantity Taxes \& Market Equilibrium
 \(\mathbf{p}^{\substack{Market
 demand

}\)\begin{tabular}{r} Equinapket

supply
\end{tabular}

}

Tax paid by sellers

Quantity Taxes \& Market Equilibrium p $\begin{array}{r}\text { Market } \\ \text { demand }\end{array} \begin{array}{r}\text { Equikapriu } \\ \text { supply }\end{array}$

Tax paid by

$q^{t} q^{*} \quad D(p), S(p)$

Quantity Taxes \& Market Equilibrium

\bullet E.g. suppose the market demand and supply curves are linear.

$$
\begin{aligned}
D\left(p_{b}\right) & =a-b p_{b} \\
s\left(p_{s}\right) & =c+d p_{s}
\end{aligned}
$$

Quantity Taxes \& Market

 $D\left(p_{b}\right)=a-b p_{b}^{\text {Equilibrium }}\left(p_{s}\right)=c+d p_{s}$.$$
\begin{gathered}
\text { Quantity Taxes \& Market } \\
D\left(p_{b}\right)=a-b \text { pquilibrium }_{b} \text { and }_{s}\left(p_{s}\right)=c+d p_{s} .
\end{gathered}
$$

With the tax, the market equilibrium satisfies

$$
\begin{aligned}
& p_{b}=p_{s}+t \text { and } D\left(p_{b}\right)=s\left(p_{s}\right) \text { so } \\
& p_{b}=p_{s}+t \text { and } a-b p_{b}=c+d p_{s} .
\end{aligned}
$$

$$
\begin{gathered}
\text { Quantity Taxes \& Market } \\
D\left(p_{b}\right)=a-b p_{b} \text { Equilibrium }^{2}\left(p_{s}\right)=c+d p_{s} .
\end{gathered}
$$

With the tax, the market equilibrium satisfies

$$
\begin{aligned}
& p_{b}=p_{s}+t \text { and } D\left(p_{b}\right)=S\left(p_{s}\right) \text { so } \\
& p_{b}=p_{s}+t \text { and } a-b p_{b}=c+d p_{s} .
\end{aligned}
$$

Substituting for p_{b} gives
$a-b\left(p_{s}+t\right)=c+d p_{s} \Rightarrow p_{s}=\frac{a-c-b t}{b+d} \cdot$
67

Quantity Taxes \& Market

 $p_{s}=a-c-b t$ Equilibrium$p_{s}=\frac{a-c-b t}{b+d}$ and $p_{b}=p_{s}+t$ give
$p_{b}=\frac{a-c+d t}{b+d}$
The quantity traded at equilibrium is

$$
\begin{aligned}
& q^{t}=D\left(p_{b}\right)=S\left(p_{s}\right) \\
& =a+b p_{b}=\frac{a d+b c-b d t}{b+d} .
\end{aligned}
$$

Quantity Taxes \& Market

$$
\begin{aligned}
& p_{s}=\frac{a-c-b t}{b+d} \quad q^{t}=\frac{a d+b c-b d t}{b+d} \\
& p_{b}=\frac{a-c+d t}{b+d}
\end{aligned}
$$ there is no tax $(t=0)$ and $q^{t} \rightarrow$

the quantity traded at equilibrium when there is no tax.
Quantity Taxes \& Market
$p_{s}=-c-b t$ Equilibrium

$$
q^{t}=\frac{a d+b c-b d t}{b+d}
$$

As t increases,

p_{b} rises, q^{t} falls.

Quantity Taxes \& Market

$a-c-b t$ Equilibrium

$$
p_{s}=\frac{a}{b+d} \quad q^{t}=\frac{a d+b c-b d t}{b+c+d t}
$$

The tax paid per unit by the buyer is
$p_{b}-p^{*}=\frac{a-c+d t}{b+d}-\frac{a-c}{b+d}=\frac{d t}{b+d}$.

Quantity Taxes \& Market

 Equilibrium$p_{s}=\frac{a-c-b t}{b+d} \quad q^{t}=\frac{a d+b c-b d t}{b+d}$
$p_{b}=\frac{a-c+d t}{b+d}$
The tax paid per unit by the buyer is
$p_{b}-p^{*}=\frac{a-c+d t}{b+d}-\frac{a-c}{b+d}=\frac{d t}{b+d}$.
The tax paid per unit by the seller is
$p^{*}-p_{s}=\frac{a-c}{b+d}-\frac{a-c-b t}{b+d}=\frac{b t}{b+d}$.

Quantity Taxes \& Market

$a-c-b t$ Equilibrium

$$
\begin{aligned}
& p_{s}=\frac{a}{b+d} \\
& p_{b}=\frac{a-c+d t}{b+d}
\end{aligned} \quad q^{t}=\frac{a d+b c-b d t}{b+d}
$$

The total tax paid (by buyers and sellers combined) is

$$
T=t q^{t}=t \frac{a d+b c-b d t}{b t d}
$$

Tax Incidence and Own-Price Elasticities

- The incidence of a quantity tax depends upon the own-price elasticities of demand and supply.

Tax Incidence and Own-Price $\mathbf{p}_{\uparrow}^{\text {Market }} \underset{\mathbf{q}^{\mathbf{t}} \mathbf{q}^{*}}{\substack{\text { Elasticities } \\ \text { supply } \\ \mathbf{p}_{\mathbf{b}}}}$

75

Tax Incidence and Own-Price

 Elasticities

Tax Incidence and Own-Price Elasticities

Around $\mathrm{p}=\mathrm{p}^{*}$ the own-price elasticity of demand is approximately

$$
\varepsilon_{D} \approx \frac{\frac{\Delta q}{q^{*}}}{\frac{p_{b}-p^{*}}{p^{*}}}
$$

Tax Incidence and Own-Price Elasticities

Around p = p^{*} the own-price elasticity of demand is approximately

Tax Incidence and Own-Price $\mathbf{p}_{\uparrow}^{\text {Market }} \underset{\mathbf{q}^{\mathbf{t}} \mathbf{q}^{*}}{\substack{\text { Elasticities } \\ \text { supply } \\ \mathbf{p}_{\mathbf{b}}}}$

79

Tax Incidence and Own-Price

Tax Incidence and Own-Price Elasticities

Around p = p^{*} the own-price elasticity of supply is approximately

$$
p_{s}-p^{*}
$$

Tax Incidence and Own-Price Elasticities

Around p = p^{*} the own-price elasticity of supply is approximately

Tax Incidence and Own-Price $\mathbf{p}^{\text {Market }}$ demand $\begin{gathered}\text { Elasticicitit } \\ \text { supply }\end{gathered}$

Tax paid by
$q^{t} q^{*} \quad D(p), S(p)$

Tax Incidence and Own-Price Elasticities

Tax Incidence and Own-Price Elasticities

Tax Incidence and Own-Price Elasticities
 Tax incidence $=\frac{p_{b}-p}{p^{*}-p_{s}}$.

So

Tax Incidence and Own-Price Elasticities

Tax incidence is

$$
\frac{p_{b}-p^{i}}{p^{*}-p_{S}} \approx-\frac{\varepsilon_{S}}{\varepsilon_{D}} .
$$

The fraction of a \$t quantity tax paid by buyers rises as supply becomes more own-price elastic or as demand becomes less own-price elastic.

Tax Incidence and Own-Price

Tax Incidence and Own-Price

 $\mathfrak{p} \underset{\text { demand }}{\substack{\text { Market } \\ \text { dasticititil } \\ \text { supply }}}$

As market demand becomes less ownprice elastic, tax incidence shifts more to the buyers.
$D(p), S(p)$

89

Tax Incidence and Own-Price

 Elasticities

Tax Incidence and Own-Price

Elasticicitic supply

As market demand becomes less ownprice elastic, tax incidence shifts more to the buyers.
$D(p), S(p)$
When $\varepsilon_{D}=0$, buyers pay the entire tax, even though itis levied on the se\#ers.

Tax Incidence and Own-Price

 ElasticitiesTax incidence is

$$
\frac{p_{b}-p^{*}}{p^{*}-p_{S}} \approx-\frac{\varepsilon_{S}}{\varepsilon_{D}} .
$$

Similarly, the fraction of a \$t quantity tax paid by sellers rises as supply becomes less own-price elastic or as demand becomes morê own-price elastic.

Deadweight Loss and Own-Price

 Elasticities- A quantity tax imposed on a competitive market reduces the quantity traded and so reduces gains-to-trade (i.e. the sum of Consumers' and Producers' Surpluses).
- The lost total surplus is the tax's deadweight loss, or excess burden.

Deadweight Loss and Own-Price

 Elasticities

No tax

$\mathrm{D}(\mathrm{p}), \mathrm{S}(\mathrm{p})$

94

Deadweight Loss and Own-Price Elasticities

No tax

Deadweight Loss and Own-Price

 ElasticitiesNo tax

$D(p), S(p)$

Deadweight Loss and Own-Price Elasticities
 Market
 $\mathbf{p}_{\uparrow \text { demand }}$
 supply

No tax

97

Deadweight Loss and Own-Price Elasticities
 Market
 $\mathbf{p}_{\uparrow \text { demand }}$
 supply

No tax
$\mathrm{D}(\mathrm{p}), \mathrm{S}(\mathrm{p})$

98

Deadweight Loss and Own-Price Elasticities \mathfrak{p} Market $\begin{gathered}\text { demand }\end{gathered} \begin{gathered}\text { Elasticicticl } \\ \text { supply }\end{gathered}$

The tax reduces both CS and PS

Deadweight Loss and Own-Price

 $\mathfrak{p} \underset{\text { Market }}{\substack{\text { demand }}} \begin{gathered}\text { Elasticititic } \\ \text { supply }\end{gathered}$

Deadweight Loss and Own-Price

 Elasticities\mathfrak{p} Market | demand $\left.\begin{array}{c}\text { Elasticiketil } \\ \text { supply }\end{array}\right)$ |
| :---: |

Deadweight Loss and Own-Price

 \mathfrak{p} demand $\begin{gathered}\text { Market } \\ \begin{array}{c}\text { Elasticititit } \\ \text { supply }\end{array}\end{gathered}$

The tax reduces both CS and PS, transfers surplus to government

$\mathrm{D}(\mathrm{p}), \mathrm{S}(\mathrm{p})$

Deadweight Loss and Own-Price

 \mathfrak{p} Market $\begin{gathered}\text { demand }\end{gathered} \begin{gathered}\text { Elasticititi } \\ \text { supply }\end{gathered}$

Deadweight Loss and Own-Price

 Elasticities $\mathfrak{p}{ }_{\text {demand }}^{\text {Market }} \begin{gathered}\text { Elasticiktict } \\ \text { supply }\end{gathered}$

Deadweight loss

Deadweight Loss and Own-Price

 Elasticities \mathfrak{p} Market $\begin{gathered}\text { demand }\end{gathered} \begin{gathered}\text { Elastickikelie } \\ \text { supply }\end{gathered}$
Deadweight Loss and Own-Price

 Elasticities \mathfrak{p} Market $\begin{gathered}\text { demand }\end{gathered} \begin{gathered}\text { Elasticicitice } \\ \text { supply }\end{gathered}$
Deadweight Loss and Own-Price

 Elasticities \mathfrak{p} Market $\begin{gathered}\text { demand }\end{gathered} \begin{gathered}\text { Elastickikel } \\ \text { supply }\end{gathered}$
Deadweight Loss and Own-Price

 Elasticities

When $\varepsilon_{D}=0$, the tax causes no deadweight loss.

Deadweight Loss and Own-Price Elasticities

- Deadweight loss due to a quantity tax rises as either market demand or market supply becomes more ownprice elastic.
- If either $\varepsilon_{D}=0$ or $\varepsilon_{S}=0$ then the deadweight loss is zero.

