INTERMEDIATE

Technologies

- A technology is a process by which inputs are converted to an output.
- E.g. labor, a computer, a projector, electricity, and software are being combined to produce this lecture.

Technologies

- Usually several technologies will produce the same product -- a blackboard and chalk can be used instead of a computer and a projector.
- Which technology is "best"?
- How do we compare technologies?

Input Bundles

$\bullet x_{i}$ denotes the amount used of input i; i.e. the level of input i.
\bullet An input bundle is a vector of the input levels; $\quad\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
\rightarrow E.g. $\left(x_{1}, x_{2}, x_{3}\right)=(6,0,9 \times 3)$.

Production Functions

- y denotes the output level.
- The technology's production function states the maximum amount of output possible from an input bundle.
$y=f\left(x_{1}, \cdots, x_{n}\right)$

Production Functions One input, one output

Output Level

$y=f(x)$ is the
production function.
$y^{\prime}=f\left(x^{\prime}\right)$ is the maximal output level obtainable from x ' input units.

Technology Sets

- A production plan is an input bundle and an output level; (x_{1}, \ldots, x_{n}, y).
- A production plan is feasible if

$$
y \leq f\left(x_{1}, \cdots, x_{n}\right)
$$

- The collection of all feasible production plans is the technology set.

Technology Sets
 One input, one output

Output Level
$y=f(x)$ is the
 $y^{\prime}=f\left(x^{\prime}\right)$ is the maximal output level obtainable from x^{\prime} input units. $y^{\prime \prime}=f\left(x^{\prime}\right)$ is an output level that is feasible from x ' input units.

Technology Sets

The technology set is

$$
\begin{array}{r}
T=\left\{\left(x_{1}, \cdots, x_{n}, y\right) \mid y \leq f\left(x_{1}, \cdots, x_{n}\right)\right. \text { and } \\
\left.x_{1} \geq 0, \ldots, x_{n} \geq 0\right\} .
\end{array}
$$

Technology Sets
 One input, one output

Output Level

Technology Sets
 One input, one output

Output Level

Technologies with Multiple Inputs

-What does a technology look like when there is more than one input?

- The two input case: Input levels are x_{1} and x_{2}. Output level is y.
-Suppose the production function is

Technologies with Multiple

- E.g. the maximatoutput level possible from the input bundle $\left(x_{1}, x_{2}\right)=(1,8)$ is
- And the maximal output level possible from $\left(x_{1}, x_{2}\right)=(8,8)$ is

Technologies with Multiple

 InputsOutput, y

Technologies with Multiple Inputs

- The y output unit isoquant is the set of all input bundles that yield at most the same output level y.

Isoquants with Two Variable

x_{2}
 Inputs

Isoquants with Two Variable

 Inputs\bullet Isoquants can be graphed by adding an output level axis and displaying each isoquant at the height of the isoquant's output level.

Isoquants with Two Variable

Inputs
Output, y

Isoquants with Two Variable

Inputs

- More isoquants tell us more about the technology.

Isoquants with Two Variable

$\mathrm{x}_{2} \quad$ Inputs

Isoquants with Two Variable

Inputs

Output, y

Technologies with Multiple

 Inputs- The complete collection of isoquants is the
\checkmark

- E.g.
© 2010 W. W. Norton \& Company, Inc.

Technologies with Multiple

$\mathrm{x}_{2} \quad$ Inputs

Technologies with Multiple

Inputs

Technologies with Multiple

 Inputs

Technologies with Multiple

 Inputs

Technologies with Multiple

 Inputs

Technologies with Multiple Inputs

Technologies with Multiple Inputs

Technologies with Multiple Inputs

Technologies with Multiple

Inputs

Technologies with Multiple Inputs

Technologies with Multiple

 Inputs

Technologies with Multiple Inputs

Technologies with Multiple

 Inputs

Cobb-Douglas Technologies

- A Cobb-Douglas production function is of the form
- E.g.
with
© 2010 W. W. Norton \& Eompany, Inc.

Fixed-Proportions Technologies

- A fixed-proportions production function is of the form
- E.g.
with

Fixed-Proportions Technologies

x_{2}

$x_{1}=2 x_{2}$ $\min \left\{x_{1}, 2 x_{2}\right\}=14$
$\min \left\{x_{1}, 2 x_{2}\right\}=8$
$\min \left\{x_{1}, 2 x_{2}\right\}=4$

Perfect-Substitutes Technologies

- A perfect-substitutes production function is of the form
- E.g.
with

Perfect-Substitution Technologies

X_{2}

All are linear and parallel

Marginal (Physical) Products

- The marginal product of input i is the rate-of-change of the output level as the level of input i changes, holding all other input levels fixed.
- That is,
© 2010 W. W. Norton \& Company, Inc.

Marginal (Physical) Products
E.g. if
then the marginal product of input 1 is

Marginal (Physical) Products
E.g. if
then the marginal product of input 1 is

Marginal (Physical) Products
E.g. if
then the marginal product of input 1 is

and the marginal product of input 2 is

Marginal (Physical) Products
E.g. if
then the marginal product of input 1 is
and the marginal product of input 2 is

Marginal (Physical) Products

Typically the marginal product of one input depends upon the amount used of other inputs. E.g. if
then,
if $x_{2}=8$,
and if $x_{2}=27$ then

Marginal (Physical) Products

- The marginal product of input i is if it becomes smaller as the level of input increases. That is, if
© 2010 W. W. Norton \& Company, Inc.

Marginal (Physical) Products

E.g. if
 then

and

Marginal (Physical) Products

E.g. if

and

so

Marginal (Physical) Products

E.g. if
${ }^{14} \mathrm{P}_{1}=$

and
so
and

Marginal (Physical) Products

E.g. if

 then

and

so
and

Both marginal products are diminishing.

Returns-to-Scale

\bullet Marginal products describe the change in output level as a input level changes.
describes how the output level changes as all input levels change in (e.g. all input levels doubled, or halved).

Returns-to-Scale

If, for any input bundle ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$),

then the technology described by the production function f exhibits
E.g. $(k=2)$ doubling all input levels doubles the output level.

Returns-to-Scale One input, one output

Output Level

Returns-to-Scale

If, for any input bundle $\left(x_{1}, \ldots, x_{n}\right)$,
then the technology exhibits
E.g. $(k=2)$ doubling all input levels less than doubles the output level.

Returns-to-Scale One input, one output

Output Level

Returns-to-Scale

If, for any input bundle ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$),

then the technology exhibits

E.g. $(\mathbf{k}=2)$ doubling all input levels more than doubles the output level.

Returns-to-Scale One input, one output

Output Level

Returns-to-Scale

- A single technology can 'locally’ exhibit different returns-to-scale.

Returns-to-Scale One input, one output

Output Level

Examples of Returns-to-Scale

The perfect-substitutes production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale

The perfect-substitutes production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale

The perfect-substitutes production function is

Expand all input levels proportionately by k. The output level becomes

The perfect-substitutes production functionexhibits constantreturns-to-scale.
© 2010 W. W. Norton \& Eompany, Inc.

Examples of Returns-to-Scale

The perfect-complements production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale

The perfect-complements production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale

The perfect-complements production function is

Expand all input levels proportionately by k. The output level becomes

The perfect-complements production functionexhibits constantreturns-to-scale.
© 2010 W. W. Norton \& Company, Inc.

Examples of Returns-to-Scale The Cobb-Douglas production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale The Cobb-Douglas production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale The Cobb-Douglas production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale The Cobb-Douglas production function is

Expand all input levels proportionately by k. The output level becomes

Examples of Returns-to-Scale The Cobb-Douglas production function is

The Cobb-Douglas technology's returns-to-scale is
constant if $a_{1}+\ldots+a_{n}=1$

Examples of Returns-to-Scale The Cobb-Douglas production function is

The Cobb-Douglas technology's returns-to-scale is
constant if $a_{1}+\ldots+a_{n}=1$ increasing if $a_{1}+\ldots+a_{n}>1$

Examples of Returns-to-Scale The Cobb-Douglas production function is

The Cobb-Douglas technology's returns-to-scale is
constant if $a_{1}+\ldots+a_{n}=1$ increasing if $a_{1}+\ldots+a_{n}>1$ decreasing if $a_{1}+\ldots+a_{n}<1$.

Returns-to-Scale

- Q: Can a technology exhibit increasing returns-to-scale even though all of its marginal products are diminishing?

Returns-to-Scale

- Q: Can a technology exhibit increasing returns-to-scale even if all of its marginal products are diminishing?
- A: Yes.
- E.g.
(c) 2010 W. W. Norton \& Company, Inc.

Returns-to-Scale

so this technology exhibits increasing returns-to-scale.

Returns-to-Scale

so this technology exhibits increasing returns-to-scale.

diminishes as X_{1}

increases

Returns-to-Scale

so this technology exhibits increasing returns-to-scale.

diminishes as x_{1}

increases and

Returns-to-Scale

-So a technology can exhibit increasing returns-to-scale even if all of its marginal products are diminishing. Why?

Returns-to-Scale

- A marginal product is the rate-ofchange of output as one input level increases, holding all other input levels fixed.
- Marginal product diminishes because the other input levels are fixed, so the increasing input's units have each less and less of other inputs with which to work.

Returns-to-Scale

- When all input levels are increased proportionately, there need be no diminution of marginal products since each input will always have the same amount of other inputs with which to work. Input productivities need not fall and so returns-to-scale can be constant or increasing.

Technical Rate-of-Substitution

- At what rate can a firm substitute one input for another without changing its output level?

Technical Rate-of-Substitution

Technical Rate-of-Substitution

The slope is the rate at which input 2 must be given up as input 1 's level is increased so as not to change the output level. The slope of an isoquant is its

Technical Rate-of-Substitution

- How is a technical rate-of-substitution computed?

Technical Rate-of-Substitution

- How is a technical rate-of-substitution computed?
- The production function is

A small change ($\mathrm{dx}_{1}, \mathrm{dx}_{2}$) in the input bundle causes a change to the output level of

Technical Rate-of-Substitution

But dy $=0$ since there is to be no change to the output level, so the changes dx_{1} and dx_{2} to the input levels must satisfy

Technical Rate-of-Substitution

rearranges to

Technical Rate-of-Substitution

is the rate at which input 2 must be given up as input 1 increases so as to keep the output level constant. It is the slope of the isoquant.

Technical Rate-of-Substitution; A Cobb-Douglas Example

SO

and

The technical rate-of-substitution is

Technical Rate-of-Substitution;

 \mathbf{x}_{2} A Cobb-Douglas Example
Technical Rate-of-Substitution;

 \mathbf{x}_{2} A Cobb-Douglas ExampleTRS $=-\frac{x_{2}}{2 x_{1}}=-\frac{8}{2 \times 4}=-1$

Technical Rate-of-Substitution;

 \mathbf{x}_{2} A Cobb-Douglas Example

Well-Behaved Technologies

- A well-behaved technology is
-monotonic, and
- convex.

Well-Behaved Technologies Monotonicity

- Monotonicity: More of any input generates more output.

Well-Behaved Technologies Convexity

: If the input bundles x^{\prime} and x " both provide y units of output then the mixture $t x$ ' $+(1-t) x^{\prime \prime}$ provides at least y units of output, for any $0<\mathrm{t}<1$.

Well-Behaved Technologies -

 Convexity

Well-Behaved Technologies Convexity

Well-Behaved Technologies Convexity

Well-Behaved Technologies -
Convexity
$x_{2} \xlongequal{ } \quad$ Convexity implies that the TRS increases (becomes less negative) as x_{1} increases.

Well-Behaved Technologies

The Long-Run and the ShortRuns

- The long-run is the circumstance in which a firm is unrestricted in its choice of
- There are many possible short-runs.
- A short-run is circumstance in which a firm is in some way in its choice of ai

The Long-Run and the Short-

 Runs- Examples of restrictions that place a firm into a short-run:
-temporarily being unable to install, or remove, machinery
-being required by law to meet affirmative action quotas
-having to meet domestic content regulations.

The Long-Run and the ShortRuns

- A useful way to think of the long-run is that the firm can choose as it pleases in which short-run circumstance to be.

The Long-Run and the ShortRuns

- What do short-run restrictions imply for a firm's technology?
- Suppose the short-run restriction is fixing the level of input 2.
\bullet Input 2 is thus a fixed input in the short-run. Input 1 remains

The Long-Run and the Short-

The Long-Run and the ShortRuns

The Long-Run and the Short-

 Runs is the long-run production function (both x_{1} and x_{2} are variable).The short-run production function when $x_{2} \equiv 1$ is

The short-run production function when $x_{2} \equiv 10$ is
© 2010 W. W. Norton \& Eompany, Inc.

The Long-Run and the ShortRuns

