8 TH EDITION

INTERMEDIATE

MICROECONONICS HAL R. VARIAN

Cost Minimization

© 2010 W. W. Norton & Company, Inc.

Cost Minimization

- A firm is a cost-minimizer if it produces any given output level y ≥ 0 at smallest possible total cost.
- c(y) denotes the firm's smallest possible total cost for producing y units of output.
- c(y) is the firm's total cost function.

Cost Minimization

When the firm faces given input prices w = (w₁,w₂,...,w_n) the total cost function will be written as c(w₁,...,w_n,y).

3

© 2010 W. W. Norton & Company, Inc.

- Consider a firm using two inputs to make one output.
- The production function is $y = f(x_1, x_2).$
- Take the output level $y \ge 0$ as given.
- Given the input prices w₁ and w₂, the cost of an input bundle (x₁,x₂) is

5

♦ For given w₁, w₂ and y, the firm's cost-minimization problem is to solve m in w₁x₁ + w₂x₂ x₁, x₂ ≥ 0
subject to f(x₁, x₂) = y.

- The levels x₁*(w₁,w₂,y) and x₁*(w₁,w₂,y) in the least-costly input bundle are the firm's conditional demands for inputs 1 and 2.
- The (smallest possible) total cost for producing y output units is therefore
 c(w₁, w₂, y) = w₁ x₁^{*} (w₁, w₂, y)

+ W 2 2 2

2, 5

Conditional Input Demands

- Given w₁, w₂ and y, how is the least costly input bundle located?
- And how is the total cost function computed?

Iso-cost Lines

- A curve that contains all of the input bundles that cost the same amount is an iso-cost curve.
- E.g., given w_1 and w_2 , the \$100 isocost line has the equation $w_1 x_1 + w_2 x_2 = 100$.

8

Iso-cost Lines

9

• Generally, given w_1 and w_2 , the equation of the \$c iso-cost line is $w_1 x_1 + w_2 x_2 = c$

• Slope is $-W_1/W_2$.

© 2010 W. W. Norton & Company, Inc.

Iso-cost Lines

The y'-Output Unit Isoquant

A Cobb-Douglas Example of Cost Minimization

- ♦ A firm's Cobb-Douglas production function is $y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$.
- Input prices are w₁ and w₂.
 What are the firm's conditional input demand functions?

A Cobb-Douglas Example of Cost Minimization

At the input bundle (x_1^*, x_2^*) which minimizes the cost of producing y output units: (a) $y = (x_1^*)^{1/3} (x_2^*)^{2/3}$ and

A Cobb-Douglas Example of
Cost Minimization
(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{W_1}{W_2} = \frac{x_2}{2x_1^*}$.
From (b), $x_2^* = \frac{2W_1}{W_2} x_1^*$.

© 2010 W. W. Norton & Company, Inc.

A Cobb-Douglas Example of
Cost Minimization
(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{W_1}{W_2} = \frac{x_2^*}{2x_1^*}$.
From (b), $(x_2^*) = \frac{2}{W_1} x_1^*$.
Now substitute into (a) to get
 $y = (x_1^*)^{1/3} \left(\frac{2}{W_1} x_1^*\right)^{2/3}$

A Cobb-Douglas Example of
Cost Minimization
(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2^*}{2x_1^*}$.
From (b), $(x_2^*) = \frac{2 w_1}{w_2} x_1^*$.
Now substitute into (a) to get
 $y = (x_1^*)^{1/3} (\frac{2 w_1}{w_2} x_1^*)^{2/3} = (\frac{2 w_1}{w_2})^{2/3} x_1^*$.

A Cobb-Douglas Example of
Cost Minimization
(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{W_1}{W_2} = \frac{x_2^*}{2x_1^*}$.
From (b), $(\frac{x_2^*}{2}) = \frac{2}{W_1} x_1^*$.
Now substitute into (a) to get
 $y = (x_1^*)^{1/3} (\frac{2}{W_1} x_1^*)^{2/3} = (\frac{2}{W_1} x_2)^{2/3} x_1^*$.
So $x_1^* = (\frac{W_2}{2W_1})^{2/3}$ y is the firm's conditional
demarted for input 1.

A Cobb-Douglas Example of
Cost Minimization
Since
$$x_{2}^{*} = \frac{2 w_{1}}{w_{2}} x_{1}^{*}$$
 and $x_{1}^{*} = \left(\frac{w_{2}}{2 w_{1}}\right)^{2/3} y$
 $x_{2}^{*} = \frac{2 w_{1}}{w_{2}} \left(\frac{w_{2}}{2 w_{1}}\right)^{2/3} y = \left(\frac{2 w_{1}}{w_{2}}\right)^{1/3} y$

is the firm's conditional demand for input 2.

27

© 2010 W. W. Norton & Company, Inc.

A Cobb-Douglas Example of Cost Minimization

So the cheapest input bundle yielding y output units is

A Cobb-Douglas Example of Cost Minimization

For the production function $y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$ the cheapest input bundle yielding y output units is

$$\left(x_{1}^{*}\left(W_{1},W_{2},y\right),x_{2}^{*}\left(W_{1},W_{2},y\right)\right)$$

$$=\left(\left(\frac{W_{2}}{2W_{1}}\right)^{2/3}y,\left(\frac{2W_{1}}{W_{2}}\right)^{1/3}y\right).$$

$$(2010 W W. Norton & Company, Inc. (35)$$

A Cobb-Douglas Example of **Cost Minimization** So the firm's total cost function is $c(w_1, w_2, y) = w_1 x_1^* (w_1, w_2, y) + w_2 x_2^* (w_1, w_2, y)$ © 2010 W. W. Norton & Company, Inc. 36
A Cobb-Douglas Example of
Cost Minimization
So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^* (w_1, w_2, y) + w_2 x_2^* (w_1, w_2, y)$$

 $= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$

A Cobb-Douglas Example of
Cost Minimization
So the firm's total cost function is

$$c(w_{1}, w_{2}, y) = w_{1}x_{1}^{*}(w_{1}, w_{2}, y) + w_{2}x_{2}^{*}(w_{1}, w_{2}, y)$$

$$= w_{1}\left(\frac{w_{2}}{2w_{1}}\right)^{2/3}y + w_{2}\left(\frac{2w_{1}}{w_{2}}\right)^{1/3}y$$

$$= \left(\frac{1}{2}\right)^{2/3}w_{1}^{1/3}w_{2}^{2/3}y + 2^{1/3}w_{1}^{1/3}w_{2}^{2/3}y$$

A Cobb-Douglas Example of
Cost Minimization
So the firm's total cost function is

$$c(w_{1}, w_{2}, y) = w_{1}x_{1}^{*}(w_{1}, w_{2}, y) + w_{2}x_{2}^{*}(w_{1}, w_{2}, y)$$

$$= w_{1}\left(\frac{w_{2}}{2w_{1}}\right)^{2/3}y + w_{2}\left(\frac{2w_{1}}{w_{2}}\right)^{1/3}y$$

$$= \left(\frac{1}{2}\right)^{2/3}w_{1}^{1/3}w_{2}^{2/3}y + 2^{1/3}w_{1}^{1/3}w_{2}^{2/3}y$$

$$= \left(\frac{1}{2}\right)^{2/3}w_{1}^{1/3}w_{2}^{2/3}y + 2^{1/3}w_{1}^{1/3}w_{2}^{2/3}y$$

A Perfect Complements Example of Cost Minimization

• The firm's production function is $y = m in \{4x_1, x_2\}.$

Input prices w₁ and w₂ are given.
What are the firm's conditional demands for inputs 1 and 2?
What is the firm's total cost function?

A Perfect Complements Example
of Cost Minimization
The firm's production function is
$$y = m in \{4x_1, x_2\}$$

and the conditional input demands are
 $x_1^*(w_1, w_2, y) = \frac{y}{4}$ and $x_2^*(w_1, w_2, y) = y$.

A Perfect Complements Example of Cost Minimization The firm's production function is $y = m in \{4x_1, x_2\}$ and the conditional input demands are $\hat{x}_{1}(w_{1}, w_{2}, y) = \frac{y}{4}$ and $\hat{x}_{2}(w_{1}, w_{2}, y) = y$. So the firm's total cost function is $c(w_1, w_2, y) = w_1 x_1^{"} (w_1, w_2, y)$ $+ w 2 x^{*} (w_{1}, w_{2}, y)$ W. Norton & Company, Inc. 46 © 2010 W

A Perfect Complements Example
of Cost Minimization
The firm's production function is
$$y = m in \{4x_1, x_2\}$$

and the conditional input demands are
 $x_1^*(w_1, w_2, y) = \frac{y}{4}$ and $x_2^*(w_1, w_2, y) = y$.
So the firm's total cost function is
 $c(w_1, w_2, y) = w_1x_1^*(w_1, w_2, y)$
 $+ w_2x_2^*(w_1, w_2, y)$
 $+ w_2x_2^*(w_1, w_2, y)$

Average Total Production Costs

◆ For positive output levels y, a firm's average total cost of producing y units is $AC(W_1, W_2, y) = \frac{C(W_1, W_2, y)}{y}$.

- The returns-to-scale properties of a firm's technology determine how average production costs change with output level.
- Our firm is presently producing y' output units.
- How does the firm's average production cost change if it instead produces 2y' units of output?

Constant Returns-to-Scale and Average Total Costs

 If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.

© 2010 W. W. Norton & Company, Inc.

Constant Returns-to-Scale and Average Total Costs

 If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
 Total production cost doubles.

Constant Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
- Total production cost doubles.
- Average production cost does not change.

Decreasing Returns-to-Scale and Average Total Costs

If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.

53

Decreasing Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- Total production cost more than doubles.

Decreasing Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- Total production cost more than doubles.

Average production cost increases.

Increasing Returns-to-Scale and Average Total Costs

If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.

Increasing Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- Total production cost less than doubles.

Increasing Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- Total production cost less than doubles.

Average production cost decreases.

What does this imply for the shapes of total cost functions?

- In the long-run a firm can vary all of its input levels.
- Consider a firm that cannot change its input 2 level from x₂' units.
- How does the short-run total cost of producing y output units compare to the long-run total cost of producing y units of output?

- ◆ The long-run cost-minimization problem is $\min_{x_1,x_2 \ge 0} w_1 x_1 + w_2 x_2$ Subject to $f(x_1, x_2) = y$.
- ♦ The short-run cost-minimization problem is $\min_{x_1 \ge 0} w_1 x_1 + w_2 x'_2$
 - subject to $f(x_1, x'_2) = y$.

Short-Run & Long-Run Total Costs ♦ The short-run cost-min. problem is the long-run problem subject to the extra constraint that $x_2 = x_2$ '. \bullet If the long-run choice for x_2 was x_2 ' then the extra constraint $x_2 = x_2$ ' is not really a constraint at all and so the long-run and short-run total costs of producing y output units are the same.

- The short-run cost-min. problem is therefore the long-run problem subject to the extra constraint that x₂ = x₂".
- But, if the long-run choice for $x_2 \neq x_2$ " then the extra constraint $x_2 = x_2$ " prevents the firm in this short-run from achieving its long-run production cost, causing the short-run total cost to exceed the longrun total cost of producing y output units

© 2010 W. W. Norton & Company, Inc.

Now suppose the firm becomes subject to the short-run constraint that x₂ = x₂".

Short-run total cost exceeds long-run total cost except for the output level where the short-run input level restriction is the long-run input level choice.

This says that the long-run total cost curve always has one point in common with any particular shortrun total cost curve.

A short-run total cost curve always has one point in common with the long-run total cost curve, and is elsewhere higher than the long-run total cost curve.

