INTERMEDIATE

MICROECONOMICS HALR, VARIAN

Cost Curves

© 2010 W. W. Norton & Company, Inc.

Types of Cost Curves

- ◆ A total cost curve is the graph of a firm's total cost function.
- **♦** A variable cost curve is the graph of a firm's variable cost function.
- ◆ An average total cost curve is the graph of a firm's average total cost function.

Types of Cost Curves

- ◆ An average variable cost curve is the graph of a firm's average variable cost function.
- ◆ An average fixed cost curve is the graph of a firm's average fixed cost function.
- ♦ A marginal cost curve is the graph of a firm's marginal cost function.

Types of Cost Curves

- ♦ How are these cost curves related to each other?
- ♦ How are a firm's long-run and shortrun cost curves related?

Fixed, Variable & Total Cost Functions

- ◆ F is the total cost to a firm of its shortrun fixed inputs. F, the firm's fixed cost, does not vary with the firm's output level.
- \diamond $c_v(y)$ is the total cost to a firm of its variable inputs when producing y output units. $c_v(y)$ is the firm's variable cost function.
- ♦ c_v(y) depends upon the levels of the fixed inputs.

© 2010 W. W. Norton & Company, Inc.

Fixed, Variable & Total Cost Functions

• c(y) is the total cost of all inputs, fixed and variable, when producing y output units. c(y) is the firm's total cost function;

$$c(y) = F + c_v(y).$$

Av. Fixed, Av. Variable & Av. Total Cost Curves

♦ The firm's total cost function is $c(y) = F + c_y(y)$.

For y > 0, the firm's average total cost function is

cost function is
$$A C (y) = \frac{F}{y} + \frac{c_{y}(y)}{y}$$

$$= A F C (y) + A V C (y).$$

Av. Fixed, Av. Variable & Av. Total Cost Curves

◆AFC(y) is a rectangular hyperbola so its graph looks like ...

\$/output unit $\mathsf{AFC}(\mathsf{y}) \to \mathsf{0} \text{ as } \mathsf{y} \to \infty$ AFC(y) 13 © 2010 W. W. Norton & Company, Inc.

Av. Fixed, Av. Variable & Av. Total Cost Curves

♦ In a short-run with a fixed amount of at least one input, the Law of Diminishing (Marginal) Returns must apply, causing the firm's average variable cost of production to increase eventually.

\$/output unit AVC(y) © 2010 W. W. Norton & Company, Inc. 15

Av. Fixed, Av. Variable & Av. Total Cost Curves

And ATC(y) = AFC(y) + AVC(y)

\$/output unit

ATC(y)

AVC(y)

AFC(y)

\$/output unit AFC(y) = ATC(y) - AVC(y)ATC(y) AVC(y) **AFC** AFC(y) 19 © 2010 W. W. Norton & Company, Inc.

Marginal Cost Function

◆ Marginal cost is the rate-of-change of variable production cost as the output level changes. That is,

$$M C (y) = \frac{\partial c_{y}(y)}{\partial y}.$$

Marginal Cost Function

◆ The firm's total cost function is

and the fixed cost F does not change with the output level y, so

with the output level y, so
$$c(y) = \frac{\partial c(y)}{\partial y} = \frac{\partial c(y)}{\partial y}$$
.

♦ MC is the slope of both the variable cost and the total cost functions.

Marginal and Variable Cost Functions

♦ Since MC(y) is the derivative of $c_v(y)$, $c_v(y)$ must be the integral of MC(y). That is, $M(C(y)) = \frac{\partial C_v(y)}{\partial C_v(y)}$

$$\Rightarrow c_v(y) = \int_0^y M C(z) dz.$$

Marginal and Variable Cost Functions

\$/output unit

$$c_{v}(y') = \int_{0}^{y'} M C(z) dz$$

Area is the variable cost of making y' units

© 2010 W. W. Norton & Company, Inc.

y

MC(y)

♦ How is marginal cost related to average variable cost?

$$A V C (y) = \frac{c_v(y)}{y},$$

$$\frac{\partial A V C (y)}{\partial y} = \frac{y \times M C (y) - 1 \times c_{v} (y)}{y^{2}}.$$

$$A V C (y) = \frac{c_v(y)}{y},$$

$$\frac{\partial AVC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c_v(y)}{y^2}.$$

Therefore,

$$\frac{\partial A V C (y)}{\partial y} = 0$$

as
$$y \times MC(y) = c_v(y)$$
.

© 2010 W. W. Norton & Company, Inc.

$$A V C (y) = \frac{c_v(y)}{y}$$

$$\frac{\partial AVC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c_{v}(y)}{y^{2}}$$

Therefore,

$$\frac{\partial A V C (y)}{\partial y} \stackrel{>}{=} 0$$

as
$$y \times MC(y) = c_v(y)$$
.

© 2010 W. W. Norton & Company, Inc.

$$\frac{\partial A V C (y)}{\partial y} \stackrel{>}{=} 0 \quad \text{as M C } (y) \stackrel{>}{=} A V C (y).$$

\$/output unit

M C (y) > A V C (y)
$$\Rightarrow \frac{\partial A V C (y)}{\partial y} > 0$$

MC(y)

AVC(y)

\$/output unit

M C (y) = A V C (y)
$$\Rightarrow \frac{\partial A V C (y)}{\partial y} = 0$$

MC(y)

AVC(y)

\$/output unit

$$M C(y) = A V C(y) \Rightarrow \frac{\partial A V C(y)}{\partial y} = 0$$

The short-run MC curve intersects the short-run AVC curve from below at the AVC curve's MC(y) minimum.

AVC(y)

Similarly, since $ATC(y) = \frac{c(y)}{v}$,

$$\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{y^2}.$$

Marginal & Average Cost Functions

Similarly, since
$$ATC(y) = \frac{c(y)}{y}$$
,

$$\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{y^2}.$$

Therefore,

$$\frac{\partial A T C (y)}{\partial y} = 0$$

as
$$y \times MC(y) = c(y)$$
.

Marginal & Average Cost Functions

Similarly, since
$$ATC(y) = \frac{c(y)}{y}$$
,

$$\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{y^2}.$$

Therefore,

© 2010 W. W. Norton & Company, Inc.

$$\frac{\partial ATC(y)}{\partial y} = 0$$

as
$$y \times MC(y) = c(y)$$
.

$$\frac{\partial ATC(y)}{\partial y} = 0$$

\$/output unit

$$\frac{\partial ATC(y)}{\partial y} \stackrel{>}{=} 0 \quad \text{as} \quad MC(y) \stackrel{>}{=} ATC(y)$$

MC(y)

ATC(y)

Marginal & Average Cost Functions

- ◆ The short-run MC curve intersects the short-run AVC curve from below at the AVC curve's minimum.
- ◆ And, similarly, the short-run MC curve intersects the short-run ATC curve from below at the ATC curve's minimum.

- ◆ A firm has a different short-run total cost curve for each possible shortrun circumstance.
- ◆ Suppose the firm can be in one of just three short-runs;

$$x_2 = x_2'$$

or $x_2 = x_2''$ $x_2' < x_2'' < x_2'''$.
or $x_2 = x_2'''$.

\$

$$F' = F''_{2} = w_{2} x_{2}''$$

A larger amount of the fixed input increases the firm's fixed cost.

 $c_s(y;x_2')$

 $c_s(y;x_2^{"})$

Why does a larger amount of the fixed input reduce the slope of the firm's total cost curve?

F"

46

MP₁ is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP₁ extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is

 MP_1 is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP_1 extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/M P_1 units of input 1.

 MP_1 is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP_1 extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/M P_1 units of input 1.

Each unit of input 1 costs w₁, so the firm's extra cost from producing one extra unit of output is

 MP_1 is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP_1 extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/M P_1 units of input 1.

Each unit of input 1 costs w_1 , so the firm's extra cost from producing one extra unit of output is $w_1 = w_1 = w_1 = w_2 = w_1 = w_2 = w_2 = w_1 = w_2 = w_2 = w_2 = w_1 = w_2 = w_2$

M C =
$$\frac{W_1}{MP_1}$$
 is the slope of the firm's total cost curve.

M C =
$$\frac{W_1}{MP_1}$$
 is the slope of the firm's total cost curve.

If input 2 is a complement to input 1 then MP_1 is higher for higher x_2 . Hence, MC is lower for higher x_2 .

That is, a short-run total cost curve starts higher and has a lower slope if x₂ is larger.

- ◆ The firm has three short-run total cost curves.
- ♦ In the long-run the firm is free to choose amongst these three since it is free to select x₂ equal to any of x₂', x₂", or x₂".
- ♦ How does the firm make this choice?

For $0 \le y \le y'$, choose $x_2 = x_2'$. $c_s(y;x_2')$ For $y' \le y \le y''$, choose $x_2 = x_2''$. $c_s(y;x_2^{"})$ $c_s(y;x_2''')$ W. Norton & Company, Inc.

For $0 \le y \le y'$, choose $x_2 = x_2'$. $c_s(y;x_2')$ For $y' \le y \le y''$, choose $x_2 = x_2''$. For y'' < y, choose $x_2 = ?$ $c_s(y;x_2'')$ $c_s(y;x_2''')$ W. Norton & Company, Inc.

For $0 \le y \le y'$, choose $x_2 = x_2'$. $c_s(y;x_2')$ For $y' \le y \le y''$, choose $x_2 = x_2''$. For y'' < y, choose $x_2 = x_2'''$. $c_s(y;x_2'')$ $C_s(y;x_2''')$ © 2010 W. W. Norton & Company, Inc. 60

For $0 \le y \le y'$, choose $x_2 = x_2'$. $c_s(y;x_2')$ For $y' \le y \le y''$, choose $x_2 = x_2''$. For y'' < y, choose $x_2 = x_2'''$. $c_s(y;x_2'')$ $C_s(y;x_2''')$ c(y), the F''' firm's longrun total st curve © 2010 W. W. Norton & Company, Inc.

◆ The firm's long-run total cost curve consists of the lowest parts of the short-run total cost curves. The long-run total cost curve is the lower envelope of the short-run total cost curves.

♦ If input 2 is available in continuous amounts then there is an infinity of short-run total cost curves but the long-run total cost curve is still the lower envelope of all of the short-run total cost curves.

Short-Run & Long-Run Average Total Cost Curves

- ◆ For any output level y, the long-run total cost curve always gives the lowest possible total production cost.
- ◆ Therefore, the long-run av. total cost curve must always give the lowest possible av. total production cost.
- ◆ The long-run av. total cost curve must be the lower envelope of all of the firm's short-run av. total cost curves.

Short-Run & Long-Run Average Total Cost Curves

◆ E.g. suppose again that the firm can be in one of just three short-runs;

$$x_2 = x_2'$$

or $x_2 = x_2''$ $(x_2' < x_2'' < x_2''')$
or $x_2 = x_2'''$
then the firm's three short-run
average total cost curves are ...

Short-Run & Long-Run Average Total Cost Curves

◆ The firm's long-run average total cost curve is the lower envelope of the short-run average total cost curves ...

\$/output unit

 $AC_s(y;x_2''')$

 $AC_s(y;x_2')$

 $AC_s(y;x_2'')$

The long-run av. total cost AC(y) curve is the lower envelope of the short-run av. total cost curves.

69

Short-Run & Long-Run Marginal Cost Curves

◆ Q: Is the long-run marginal cost curve the lower envelope of the firm's short-run marginal cost curves?

Short-Run & Long-Run Marginal Cost Curves

◆ Q: Is the long-run marginal cost curve the lower envelope of the firm's short-run marginal cost curves?

♦A: No.

Short-Run & Long-Run Marginal Cost Curves

♦ The firm's three short-run average total cost curves are ...

\$/output unit $AC_s(y;x_2''')$ $AC_s(y;x_2')$ $AC_s(y;x_2'')$ © 2010 W. W. Norton & Company, Inc.

◆ For any output level y > 0, the longrun marginal cost of production is the marginal cost of production for the short-run chosen by the firm.

- ◆ For any output level y > 0, the longrun marginal cost is the marginal cost for the short-run chosen by the firm.
- ◆ This is always true, no matter how many and which short-run circumstances exist for the firm.

- ◆ For any output level y > 0, the longrun marginal cost is the marginal cost for the short-run chosen by the firm.
- ◆ So for the continuous case, where x₂ can be fixed at any value of zero or more, the relationship between the long-run marginal costs and all of the short-run marginal costs is ...

Short-Run & Long-Run Marginal Cost Curves \$/output unit

For each y > 0, the long-run MC equals the MC for the short-run chosen by the firm. 84