INTERMEDIATE

How Should a Monopoly Price?

-So far a monopoly has been thought of as a firm which has to sell its product at the same price to every customer. This is uniform pricing.
-Can price-discrimination earn a monopoly higher profits?

Types of Price Discrimination

-1st-degree: Each output unit is sold at a different price. Prices may differ across buyers.

- 2nd-degree: The price paid by a buyer can vary with the quantity demanded by the buyer. But all customers face the same price schedule. E.g., bulk-buying discounts.

Types of Price Discrimination

-3rd-degree: Price paid by buyers in a given group is the same for all units purchased. But price may differ across buyer groups. E.g., senior citizen and student discounts vs. no discounts for middle-aged persons.

First-degree Price Discrimination

- Each output unit is sold at a different price. Price may differ across buyers.
- It requires that the monopolist can discover the buyer with the highest valuation of its product, the buyer with the next highest valuation, and so on.

First-degree Price Discrimination

 \$/output unit

First-degree Price Discrimination

 \$/output unit

First-degree Price Discrimination

 \$/output unit

First-degree Price Discrimination

 \$/output unit The gains to the monopolist on these trades are: $p\left(y^{\prime}\right)-M C\left(y^{\prime}\right), p\left(y^{\prime \prime}\right)-M C\left(y^{\prime \prime}\right)$ and zero.

First-degree Price Discrimination

\$/output unit

 So the sum of the gains to the monopolist on all trades is the maximum possible total gains-to-trade.
First-degree Price Discrimination

 \$/output unit The monopolist gets the maximum possible gains from trade.First-degree price discrimination

First-degree Price Discrimination

- First-degree price discrimination gives a monopolist all of the possible gains-to-trade, leaves the buyers with zero surplus, and supplies the efficient amount of output.

Third-degree Price Discrimination

- Price paid by buyers in a given group is the same for all units purchased. But price may differ across buyer groups.

Third-degree Price Discrimination

- A monopolist manipulates market price by altering the quantity of product supplied to that market.
- So the question "What discriminatory prices will the monopolist set, one for each group?" is really the question "How many units of product will the monopolist supply to each group?"

Third-degree Price Discrimination

- Two markets, 1 and 2.
$-\mathrm{y}_{1}$ is the quantity supplied to market 1. Market 1's inverse demand function is $p_{1}\left(y_{1}\right)$.
$\bullet y_{2}$ is the quantity supplied to market 2. Market 2's inverse demand function is $p_{2}\left(y_{2}\right)$.

Third-degree Price Discrimination

\bullet For given supply levels y_{1} and y_{2} the firm's profit is
$\Pi\left(y_{1}, y_{2}\right)=p_{1}\left(y_{1}\right) y_{1}+p_{2}\left(y_{2}\right) y_{2}-c\left(y_{1}+y_{2}\right)$.
\bullet What values of y_{1} and y_{2} maximize profit?

$$
\begin{gathered}
\text { Third-degree Price } \\
\text { Discrimination } \\
\text { D } \left.y_{1}, y_{2}\right)=p_{1}\left(y_{1}\right) y_{1}+p_{2}\left(y_{2}\right) y_{2}-c\left(y_{1}+y_{2}\right) .
\end{gathered}
$$

The profit-maximization conditions are

$$
\begin{aligned}
\frac{\partial \Pi}{\partial y_{1}} & =\frac{\partial}{\partial y_{1}}\left(p_{1}\left(y_{1}\right) y_{1}\right)-\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}+y_{2}\right)} \times \frac{\partial\left(y_{1}+y_{2}\right)}{\partial y_{1}} \\
& =0
\end{aligned}
$$

Third-degree Price Discrimination

$\Pi\left(y_{1}, y_{2}\right)=p_{1}\left(y_{1}\right) y_{1}+p_{2}\left(y_{2}\right) y_{2}-c\left(y_{1}+y_{2}\right)$.
The profit-maximization conditions are
$\frac{\partial \Pi}{\partial y_{1}}=\frac{\partial}{\partial y_{1}}\left(p_{1}\left(y_{1}\right) y_{1}\right)-\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}+y_{2}\right)} \times \frac{\partial\left(y_{1}+y_{2}\right)}{\partial y_{1}}$

$$
=0
$$

$\frac{\partial \Pi}{\partial y_{2}}=\frac{\partial}{\partial y_{2}}\left(p_{2}\left(y_{2}\right) y_{2}\right)-\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}+y_{2}\right)} \times \frac{\partial\left(y_{1}+y_{2}\right)}{\partial y_{2}}$
$=0$

> Third-degree Price $\frac{\partial\left(y_{1}+y_{2}\right)}{\partial y_{1}}=1$ and $\frac{\left.\text { anination }_{1}+y_{2}\right)}{\partial y_{2}}=1$ so
the profit-maximization conditions are

$$
\begin{aligned}
\frac{\partial}{\partial y_{1}}\left(p_{1}\left(y_{1}\right) y_{1}\right) & =\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}+y_{2}\right)} \\
\text { and } \frac{\partial}{\partial y_{2}}\left(p_{2}\left(y_{2}\right) y_{2}\right) & =\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}+y_{2}\right)} .
\end{aligned}
$$

$$
\begin{gathered}
\text { Third-degree Price } \\
\text { Disgrimination } \\
\frac{\partial}{\partial y_{1}}\left(p_{1}\left(y_{1}\right) y_{1}\right)=\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial y_{2}}\left(p_{2}\left(y_{2}\right) y_{2}\right)=\frac{d\left(y_{1}+y_{2}\right)}{\partial(1)}
\end{gathered}
$$

> Third-degree Price Disgrimination $\left.y_{1}\right)=\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial y_{2}}\left(p_{2}\left(y_{2}\right) y_{2}\right)=\frac{\partial\left(y_{1}+y_{2}\right)}{\partial\left(y_{1}\right)}$
$\operatorname{MR}_{1}\left(\mathrm{y}_{1}\right)=\mathrm{MR}_{2}\left(\mathrm{y}_{2}\right)$ says that the allocation y_{1}, y_{2} maximizes the revenue from selling $y_{1}+y_{2}$ output units.
E.g., if $\mathrm{MR}_{1}\left(\mathrm{y}_{1}\right)>\mathrm{MR}_{2}\left(\mathrm{y}_{2}\right)$ then an output unit should be moved from market 2 to market 1 to increase total revenue.

$$
\begin{gathered}
\text { Third-degree Price } \\
\text { Disgrimination } \\
\frac{\partial}{\partial y_{1}}\left(p_{1}\left(y_{1}\right) y_{1}\right)=\frac{\partial c\left(y_{1}+y_{2}\right)}{\partial y_{2}}\left(p_{2}\left(y_{2}\right) y_{2}\right)=\frac{\partial\left(y_{1}+y_{2}\right)}{\partial y_{2}}
\end{gathered}
$$

The marginal revenue common to both markets equals the marginal production cost if profit is to be maximized.

Third-degree Price Discrimination

- In which market will the monopolist cause the higher price?

Third-degree Price Discrimination

- In which market will the monopolist cause the higher price?
- Recall that ${ }_{1}\left(y_{1}\right)=p_{1}\left(y_{1}\right)\left[1+\frac{1}{\varepsilon_{1}}\right]$
and

$$
M R_{2}\left(y_{2}\right)=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right]
$$

Third-degree Price Discrimination

- In which market will the monopolist cause the higher price?
- Recall that ${ }_{1}\left(y_{1}\right)=p_{1}\left(y_{1}\right)\left[1+\frac{1}{\varepsilon_{1}}\right]$
and

$$
M R_{2}\left(y_{2}\right)=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right] .
$$

- But, ${ }^{M R_{1}\left(y_{1}^{*}\right)}=M R_{2}\left(y_{2}^{*}\right)=M C\left(y_{1}^{*}+y_{2}^{*}\right)$

So

$$
\begin{gathered}
\text { Third-degree Price } \\
p_{1}\left(y_{1}^{*}\right)\left[\begin{array}{l}
\text { Pisarimination } \\
\varepsilon_{1}
\end{array}\right]=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right] .
\end{gathered}
$$

Third-degree Price

$$
p_{1}\left(y_{1}^{*}\right)\left[1+\frac{\text { Disarimination }}{\varepsilon_{1}}\right]=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right]
$$

Therefore, $p_{1}\left(y_{1}^{*}\right)>p_{2}\left(y_{2}^{*}\right)$ if and only if

$$
1+\frac{1}{\varepsilon_{1}}<1+\frac{1}{\varepsilon_{2}}
$$

Third-degree Price

$$
p_{1}\left(y_{1}^{*}\right)\left[1+\frac{\text { isarim }}{\varepsilon_{1}}\right]=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right] .
$$

Therefore, $p_{1}\left(y_{1}^{*}\right)>p_{2}\left(y_{2}^{*}\right)$ if and only if

$$
1+\frac{1}{\varepsilon_{1}}<1+\frac{1}{\varepsilon_{2}} \Rightarrow \varepsilon_{1}>\varepsilon_{2} .
$$

Third-degree Price

So

$$
p_{1}\left(y_{1}^{*}\right)\left[1+\frac{\text { Disarimination }}{\varepsilon_{1}}\right]=p_{2}\left(y_{2}\right)\left[1+\frac{1}{\varepsilon_{2}}\right] .
$$

Therefore, $p_{1}\left(y_{1}^{*}\right)>p_{2}\left(y_{2}^{*}\right)$ if and only if

$$
1+\frac{1}{\varepsilon_{1}}<1+\frac{1}{\varepsilon_{2}} \Rightarrow \varepsilon_{1}>\varepsilon_{2} .
$$

The monopolist sets the higher price in the market where demand is least own-price elastic.

Two-Part Tariffs

- A two-part tariff is a lump-sum fee, p_{1}, plus a price p_{2} for each unit of product purchased.
- Thus the cost of buying x units of product is

$$
p_{1}+p_{2} x
$$

Two-Part Tariffs

- Should a monopolist prefer a twopart tariff to uniform pricing, or to any of the price-discrimination schemes discussed so far?
- If so, how should the monopolist design its two-part tariff?

Two-Part Tariffs

$p_{1}+p_{2} x$
 $\bullet Q$: What is the largest that p_{1} can be?

Two-Part Tariffs

$$
p_{1}+p_{2} x
$$

$\bullet Q$: What is the largest that p_{1} can be?
A: p_{1} is the "market entrance fee" so the largest it can be is the surplus the buyer gains from entering the market.
-Set $\mathrm{p}_{1}=$ CS and now ask what should be p_{2} ?

Two-Part Tariffs

Two-Part Tariffs

\$/output unit

Should the monopolist set p_{2} above MC?
$\mathrm{p}_{1}=\mathbf{C S}$.
$p_{2}=p\left(y^{\prime}\right) \quad C S$

Two-Part Tariffs

Two-Part Tariffs

Two-Part Tariffs

\$/output unit

Two-Part Tariffs

\$/output unit

Two-Part Tariffs

\$/output unit
Should the monopolist set $p_{2}=M C ?$
$p_{1}=C S$.
PS is profit from sales.

$\left.p p^{\prime \prime}\right)$

Two-Part Tariffs

\$/output unit
Should the monopolist set $p_{2}=M C$?
$p_{1}=C S$.
PS is profit from sales.

CS

Two-Part Tariffs

\$/output unit
Should the monopolist set $p_{2}=M C$?
$p_{1}=C S$.
PS is profit from sales.
$p_{2}=p\left(y^{\prime \prime}\right)^{\text {CS }}$

Two-Part Tariffs

\$/output unit
Should the monopolist set $p_{2}=M C$?
$p_{1}=C S$.
PS is profit from sales.

CS

Additional profit from setting $p_{2}=M C$.

Two-Part Tariffs

- The monopolist maximizes its profit when using a two-part tariff by setting its per unit price p_{2} at marginal cost and setting its lumpsum fee p_{1} equal to Consumers' Surplus.

Two-Part Tariffs

- A profit-maximizing two-part tariff gives an efficient market outcome in which the monopolist obtains as profit the total of all gains-to-trade.

Differentiating Products

- In many markets the commodities traded are very close, but not perfect, substitutes.
- E.g., the markets for T-shirts, watches, cars, and cookies.
- Each individual supplier thus has some slight "monopoly power."
-What does an equilibrium look like for such a market?

Differentiating Products

\bullet Free entry \Rightarrow zero profits for each seller.

Differentiating Products

\bullet Free entry \Rightarrow zero profits for each seller.

- Profit-maximization \Rightarrow MR = MC for each seller.

Differentiating Products

\bullet Free entry \Rightarrow zero profits for each seller.

- Profit-maximization \Rightarrow MR = MC for each seller.
-Less than perfect substitution between commodities \Rightarrow slight downward slope for the demand curve for each commodity.

Differentiating Products

- Such markets are monopolistically competitive.
- Are these markets efficient?
- No, because for each commodity the equilibrium price $p\left(y^{*}\right)>\operatorname{MC}\left(y^{*}\right)$.

Differentiating Products

- Each seller supplies less than the efficient quantity of its product.
- Also, each seller supplies less than the quantity that minimizes its average cost and so, in this sense, each supplier has "excess capacity."

Differentiating Products by Location

- Think a region in which consumers are uniformly located along a line.
- Each consumer prefers to travel a shorter distance to a seller.
- There are $\mathrm{n} \geq 1$ sellers.
- Where would we expect these sellers to choose their locations?

Differentiating Products by Location

- If $\mathbf{n}=1$ (monopoly) then the seller maximizes its profit at $\mathrm{x}=$? ?

Differentiating Products by Loogtion

- If $\mathbf{n}=1$ (monopoly) then the seller maximizes its profit at $x=1 / 2$ and minimizes the consumers' travel cost.

Differentiating Products by Loogation

0

- If $\mathbf{n}=\mathbf{2}$ (duopoly) then the equilibrium locations of the sellers, A and B, are $x_{A}=$?? and $x_{B}=$??

Differentiating Products by

Loag̨tion

$\longrightarrow x$

- If $\mathbf{n}=\mathbf{2}$ (duopoly) then the equilibrium locations of the sellers, A and B, are $x_{A}=$?? and $x_{B}=$??
\rightarrow How about $x_{A}=0$ and $x_{B}=1$; i.e. the sellers separate themselves as much as is possible?

Differentiating Products by

Loag̨tion

- If $x_{A}=0$ and $x_{B}=1$ then A sells to all consumers in $[0,1 / 2$) and B sells to all consumers in $(1 / 2,1]$.
- Given B's location at $x_{B}=1$, can A increase its profit?

\rightarrow If $x_{A}=0$ and $x_{B}=1$ then A sells to all consumers in $[0,1 / 2$) and B sells to all consumers in $(1 / 2,1]$.
- Given B's location at $x_{B}=1$, can A increase its profit? What if A moves to $x^{\prime} ?$

\bullet If $x_{A}=0$ and $x_{B}=1$ then A sells to all consumers in $[0,1 / 2$) and B sells to all consumers in $(1 / 2,1]$.
- Given B's location at $x_{B}=1$, can A increase its profit? What if A moves to x '? Then A sells to all customers in $\left[0,1,2+1 / 2 x^{\prime}\right)$ and increases its profit.

Differentiating Products by

Loogation
B

- Given $x_{A}=x^{\prime}$, can B improve its profit by moving from $x_{B}=1$?

Differentiating Products by

- Given $x_{A}=x^{\prime}$, can B improve its profit by moving from $x_{B}=1$? What if B moves to $x_{B}=x$ '?

Differentiating Products by

Loogtion

- Given $x_{A}=x^{\prime}$, can B improve its profit by moving from $x_{B}=1$? What if B moves to $x_{B}=x$ '? Then B sells to all customers in (($\left.\left.x^{\prime}+x^{\prime \prime}\right) / 2,1\right]$ and increases its profit.
-So what is the NE?

Differentiating Products by Loogation

A\&B
\bullet Given $x_{A}=x^{\prime}$, can B improve its profit by moving from $x_{B}=1$? What if B moves to $x_{B}=x^{\prime \prime}$? Then B sells to all customers in (($\left.\left.x^{\prime}+x^{\prime \prime}\right) / 2,1\right]$ and increases its profit.
\bullet So what is the $N E ? x_{A}=x_{B}=1 / 2$.

Differentiating Products by Loogation

$\longrightarrow x$

\rightarrow The only NE is $x_{A}=x_{B}=1 / 2$.
\bullet Is the NE efficient?

Differentiating Products by Loogation

\rightarrow The only NE is $x_{A}=x_{B}=1 / 2$.

- Is the NE efficient? No.
\bullet What is the efficient location of A and B ?

Differentiating Products by

$1 / 4 \quad$ Looątion $3 / 4$

\rightarrow The only NE is $x_{A}=x_{B}=1 / 2$.

- Is the NE efficient? No.
\bullet What is the efficient location of A and B ? $x_{A}=1 / 4$ and $x_{B}=3 / 4$ since this minimizes the consumers' travel costs.

Differentiating Products by Loogation

0
 $\longmapsto \mathbf{X}$

-What if $\mathrm{n}=3$; sellers A, B and C ?

Differentiating Products by Loogation

0
 $\longmapsto \mathbf{X}$

-What if $\mathrm{n}=3$; sellers A, B and C ?

- Then there is no NE at all! Why?

Differentiating Products by Looaztion

$\longmapsto \mathbf{X}$

\bullet What if $n=3$; sellers A, B and C ?

- Then there is no NE at all! Why?
- The possibilities are:
- (i) All 3 sellers locate at the same point.
- (ii) 2 sellers locate at the same point.
- (iii) Every seller locates at a different point.

Differentiating Products by

 Aooatien

$\longmapsto X$

- (iii) Every seller locates at a different point.
-Cannot be a NE since, as for $\mathbf{n}=2$, the two outside sellers get higher profits by moving closer to the middle seller.

Differentiating Products by

- (i) All 3 sellers locate at the same point.
-Cannot be an NE since it pays one of the sellers to move just a little bit left or right of the other two to get all of the market on that side, instead of having to share those customers.

Differentiating Products by

$\longmapsto X \quad C$ gets almost $1 / 2$ of the market

- (i) All 3 sellers locate at the same point.
-Cannot be an NE since it pays one of the sellers to move just a little bit left or right of the other two to get all of the market on that side, instead of having to share those customers.

Differentiating Products by

$\longmapsto X \quad$ A gets about $1 / 4$ of the market
2 sellers locate at the same point.
-Cannot be an NE since it pays one of the two sellers to move just a little away from the other.

Differentiating Products by

$\longmapsto \mathbf{X}$

A gets almost $\mathbf{1 / 2}$ of the market
2 sellers locate at the same point.
-Cannot be an NE since it pays one of the two sellers to move just a little away from the other.

Differentiating Products by

$\longmapsto \mathbf{X}$

A gets almost $\mathbf{1 / 2}$ of the market
2 sellers locate at the same point.
-Cannot be an NE since it pays one of the two sellers to move just a little away from the other.

Differentiating Products by

 Location\bullet If $\mathbf{n}=\mathbf{3}$ the possibilities are:
-(i) Alll 3 -sellers locate at the same point.

- (ii) 2 sellers locate at the same point.
- (iii) Cvery-sellerlocates-ata different point.
\bullet There is no NE for $n=3$.

Differentiating Products by

Location

- If $\mathbf{n}=\mathbf{3}$ the possibilities are:
-(i) All 3 -sellers locate at the same point.
-(ii) 2 sellers looate at the same point.
-(iii) Cwery-sellerloeates-at-a different point.
\bullet There is no NE for $\mathrm{n}=3$.
- However, this is a NE for every $n \geq 4$.

