INTERMEDIATE

MICROECONOMICS HALR, VARIAN

Oligopoly

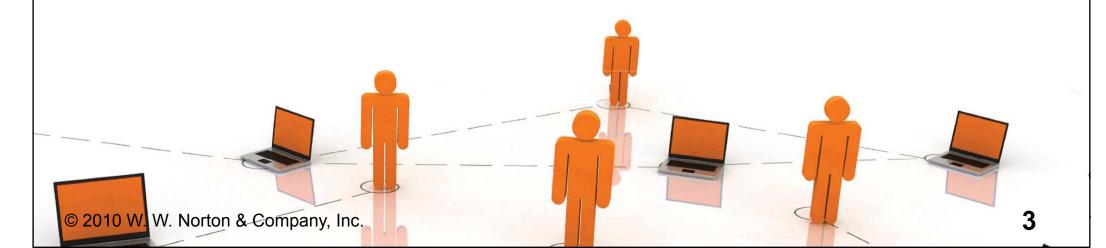
© 2010 W. Norton & Company, Inc.

Oligopoly

- ◆ A monopoly is an industry consisting a single firm.
- **♦** A duopoly is an industry consisting of two firms.
- ◆An oligopoly is an industry consisting of a few firms. Particularly, each firm's own price or output decisions affect its competitors' profits.

Oligopoly

- ♦ How do we analyze markets in which the supplying industry is oligopolistic?
- ◆ Consider the duopolistic case of two firms supplying the same product.



- ◆ Assume that firms compete by choosing output levels.
- ♦ If firm 1 produces y_1 units and firm 2 produces y_2 units then total quantity supplied is $y_1 + y_2$. The market price will be $p(y_1 + y_2)$.
- ♦ The firms' total cost functions are $c_1(y_1)$ and $c_2(y_2)$.

◆ Suppose firm 1 takes firm 2's output level choice y₂ as given. Then firm 1 sees its profit function as

$$\Pi_{1}(y_{1};y_{2}) = p(y_{1} + y_{2})y_{1} - c_{1}(y_{1}).$$

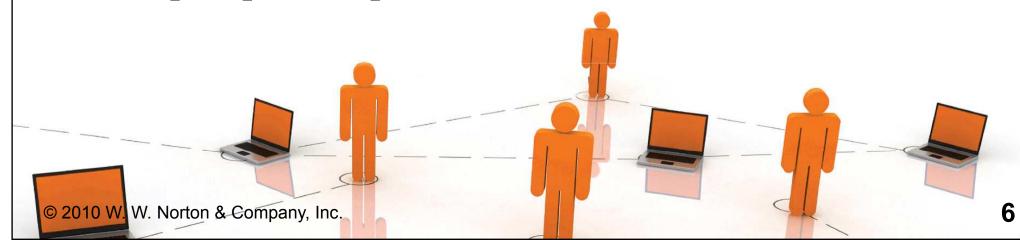
◆ Given y₂, what output level y₁ maximizes firm 1's profit?

◆ Suppose that the market inverse demand function is

$$p(y_T) = 60 - y_T$$

and that the firms' total cost functions are

$$c_1(y_1) = y_1^2$$
 and $c_2(y_2) = 15y_2 + y_2^2$.



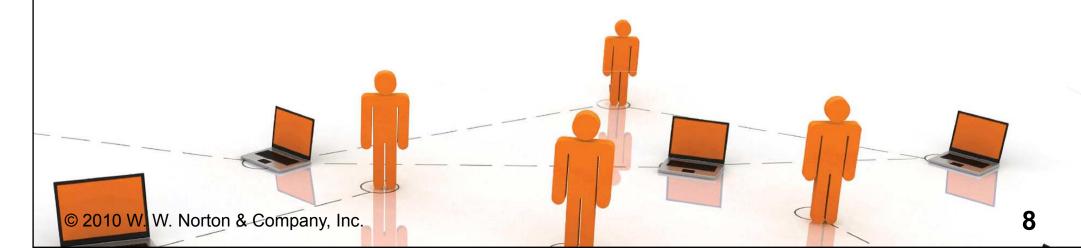
Quantity Competition; An Example Then, for given y_2 , firm 1's profit function is $\Pi(y_1; y_2) = (60 - y_1 - y_2)y_1 - y_1^2$.

Then, for given y₂, firm 1's profit function is

$$\Pi (y_1; y_2) = (60 - y_1 - y_2)y_1 - y_1^2.$$

So, given y₂, firm 1's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial y_1} = 60 - 2y_1 - y_2 - 2y_1 = 0.$$



Then, for given y₂, firm 1's profit function is

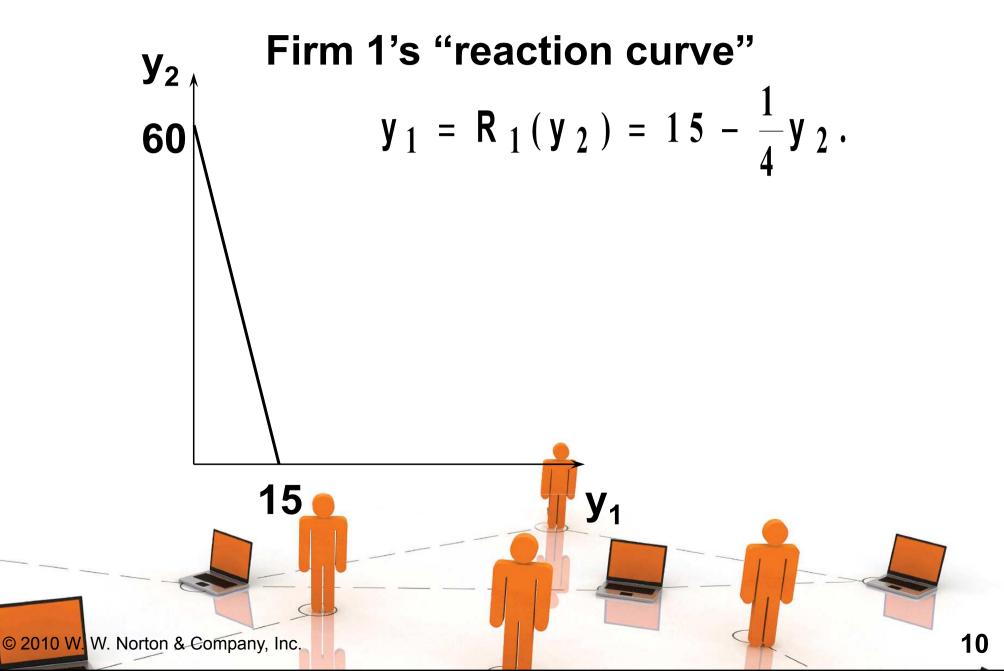
$$\Pi (y_1; y_2) = (60 - y_1 - y_2)y_1 - y_1^2.$$

So, given y₂, firm 1's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial y_1} = 60 - 2y_1 - y_2 - 2y_1 = 0.$$

I.e., firm 1's best response to y_2 is

$$y_1 = R_1 (y_2) = 15 - \frac{1}{4} y_2.$$



Quantity Competition; An Example Similarly, given y_1 , firm 2's profit function is $\Pi(y_2; y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2$.

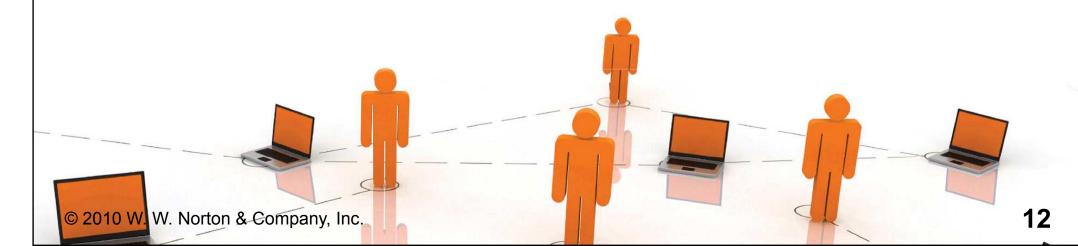


Similarly, given y₁, firm 2's profit function is

$$\Pi (y_2; y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2.$$

So, given y₁, firm 2's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial y_2} = 60 - y_1 - 2y_2 - 15 - 2y_2 = 0.$$



Similarly, given y₁, firm 2's profit function is

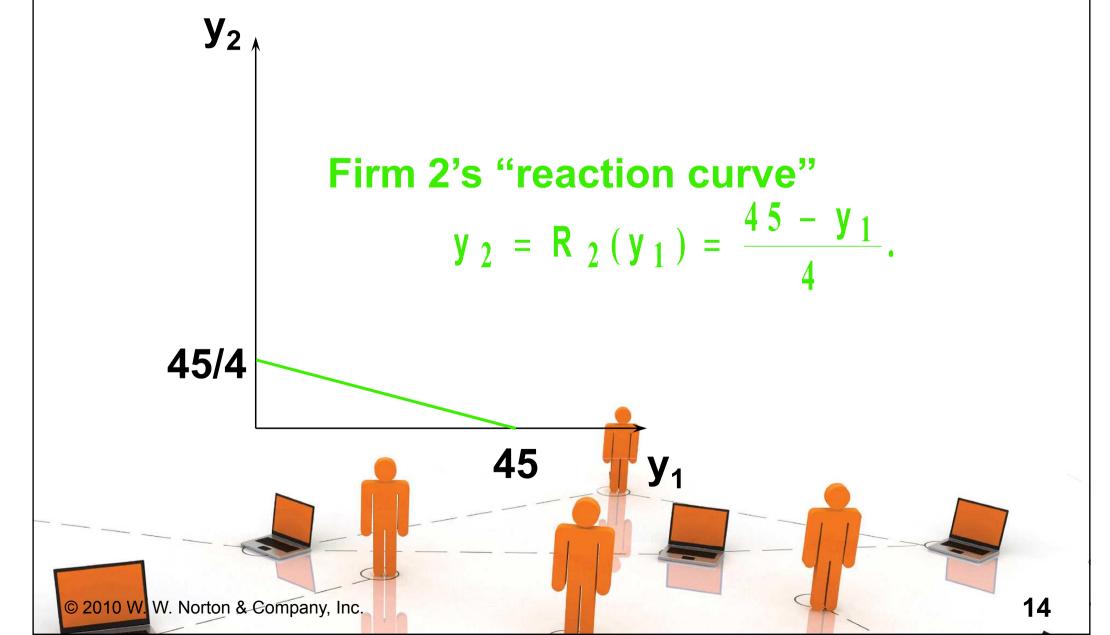
$$\Pi (y_2; y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2.$$

So, given y₁, firm 2's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial y_2} = 60 - y_1 - 2y_2 - 15 - 2y_2 = 0.$$

I.e., firm 1's best response to y_2 is

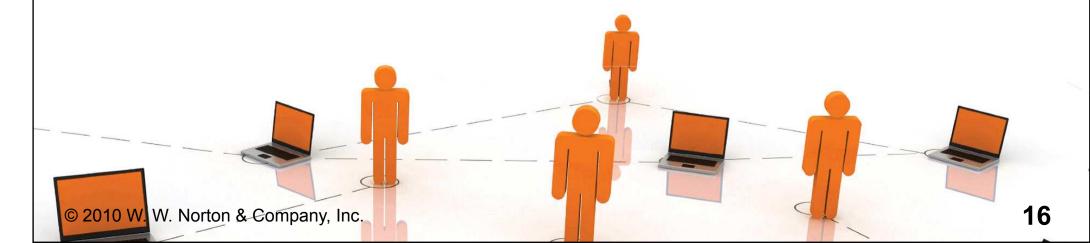
$$y_2 = R_2(y_1) = \frac{5 - y_1}{4}$$



- ◆ An equilibrium is when each firm's output level is a best response to the other firm's output level, for then neither wants to deviate from its output level.
- ♦ A pair of output levels (y_1^*, y_2^*) is a Cournot-Nash equilibrium if $y_1 = R y_2 = R y_1$ and $y_2 = R y_1 = R y_2$.

© 2010 W. W. Norton & Company, Inc.

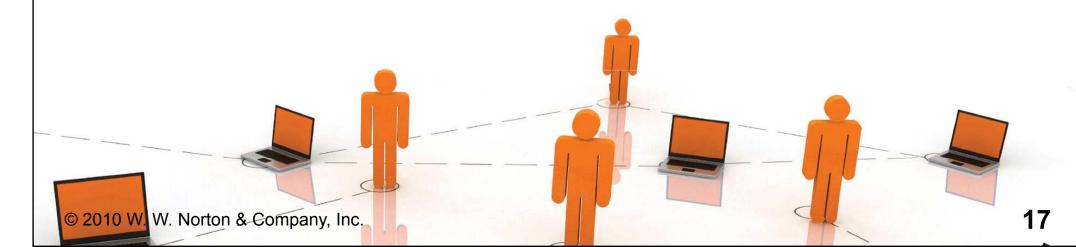
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.



$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $(y_2^*) = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

Substitute for y₂* to get

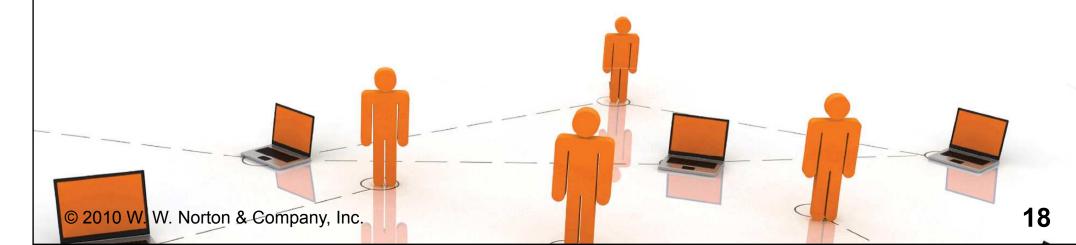
$$y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right)$$



$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $(y_2^*) = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

Substitute for y₂* to get

$$y_{1}^{*} = 15 - \frac{1}{4} \left(\frac{45 - y_{1}^{*}}{4} \right) \Rightarrow y_{1}^{*} = 13$$



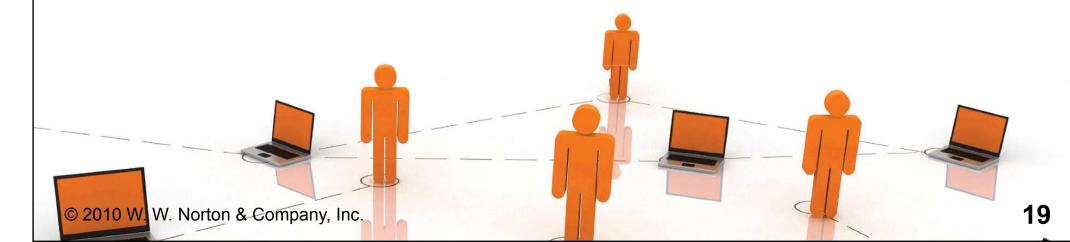
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $(y_2^*) = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

Substitute for y₂* to get

$$y_{1}^{*} = 15 - \frac{1}{4} \left(\frac{45 - y_{1}^{*}}{4} \right) \Rightarrow y_{1}^{*} = 13$$

Hence

$$y_2^* = \frac{45 - 13}{4} = 8.$$



$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $(y_2^*) = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

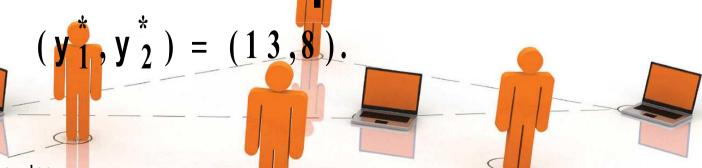
Substitute for y₂* to get

$$y_{1}^{*} = 15 - \frac{1}{4} \left(\frac{45 - y_{1}^{*}}{4} \right) \Rightarrow y_{1}^{*} = 13$$

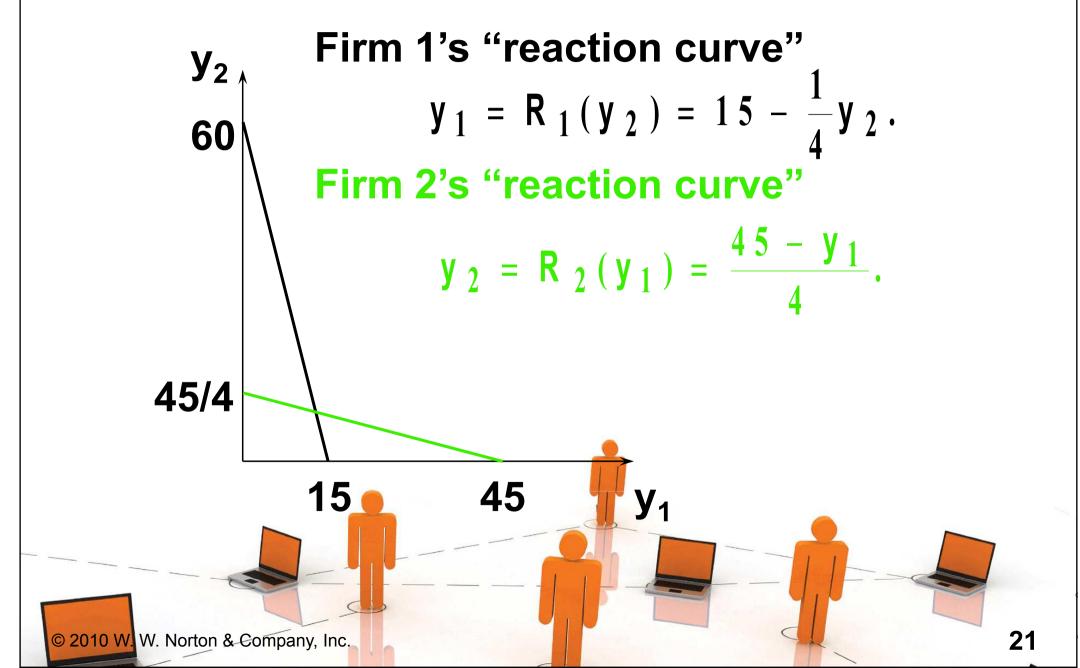
Hence

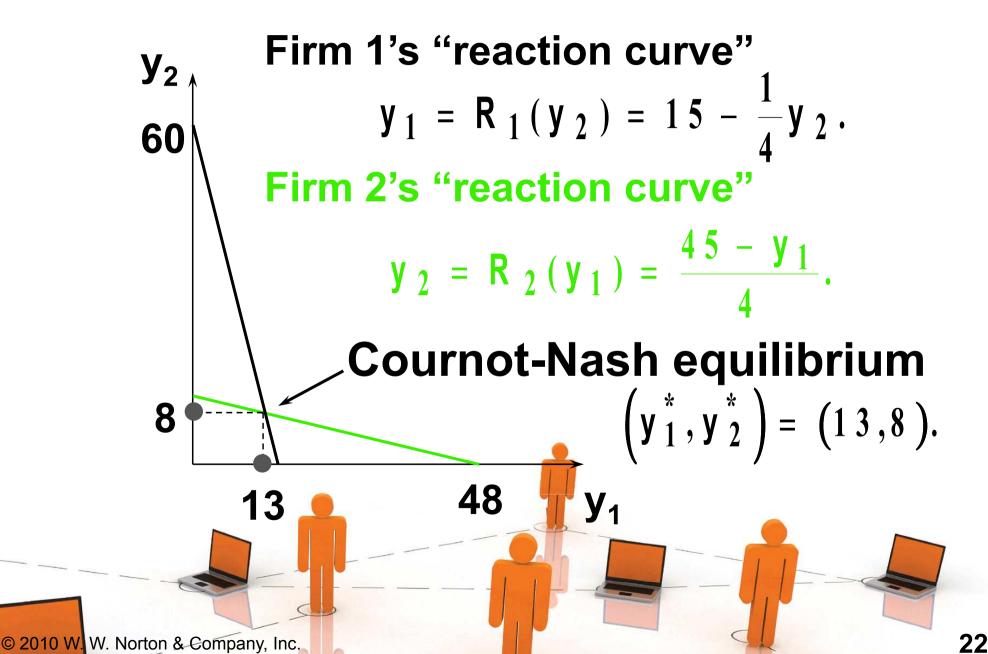
$$y_2^* = \frac{45 - 13}{4} = 8.$$

So the Cournot-Nash equilibrium is



20





Generally, given firm 2's chosen output level y₂, firm 1's profit function is

$$\Pi_{1}(y_{1};y_{2}) = p(y_{1} + y_{2})y_{1} - c_{1}(y_{1})$$

and the profit-maximizing value of y₁ solves

$$\frac{\partial \Pi_{1}}{\partial y_{1}} = p(y_{1} + y_{2}) + y_{1} \frac{\partial p(y_{1} + y_{2})}{\partial y_{1}} - c_{1}'(y_{1}) = 0.$$

The solution, $y_1 = R_1(y_2)$ is firm 1's Cournot-Nash reaction to y_2 .

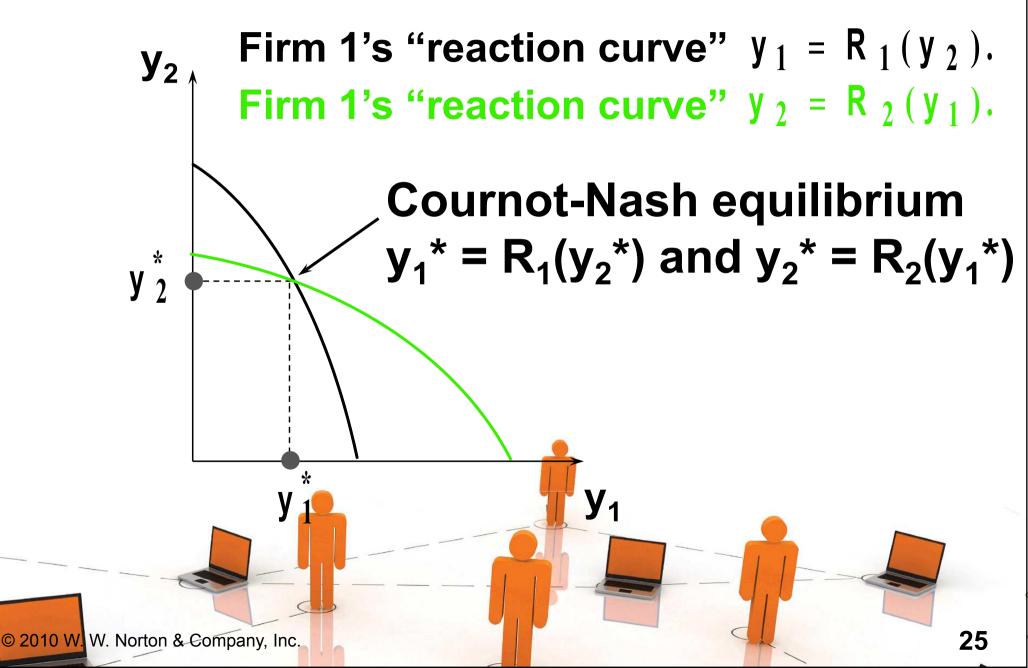
Similarly, given firm 1's chosen output level y₁, firm 2's profit function is

$$\Pi_{2}(y_{2};y_{1}) = p(y_{1} + y_{2})y_{2} - c_{2}(y_{2})$$

and the profit-maximizing value of y₂ solves

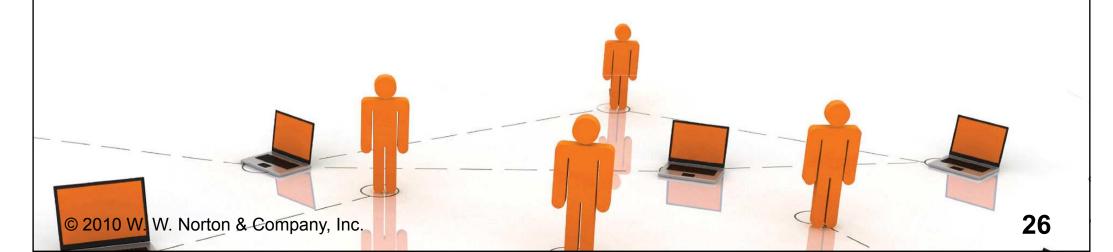
$$\frac{\partial \Pi_{2}}{\partial y_{2}} = p(y_{1} + y_{2}) + y_{2} \frac{\partial p(y_{1} + y_{2})}{\partial y_{2}} - c_{2}'(y_{2}) = 0.$$

The solution, $y_2 = R_2(y_1)$ is firm 2's Cournot-Nash reaction to y_1 .



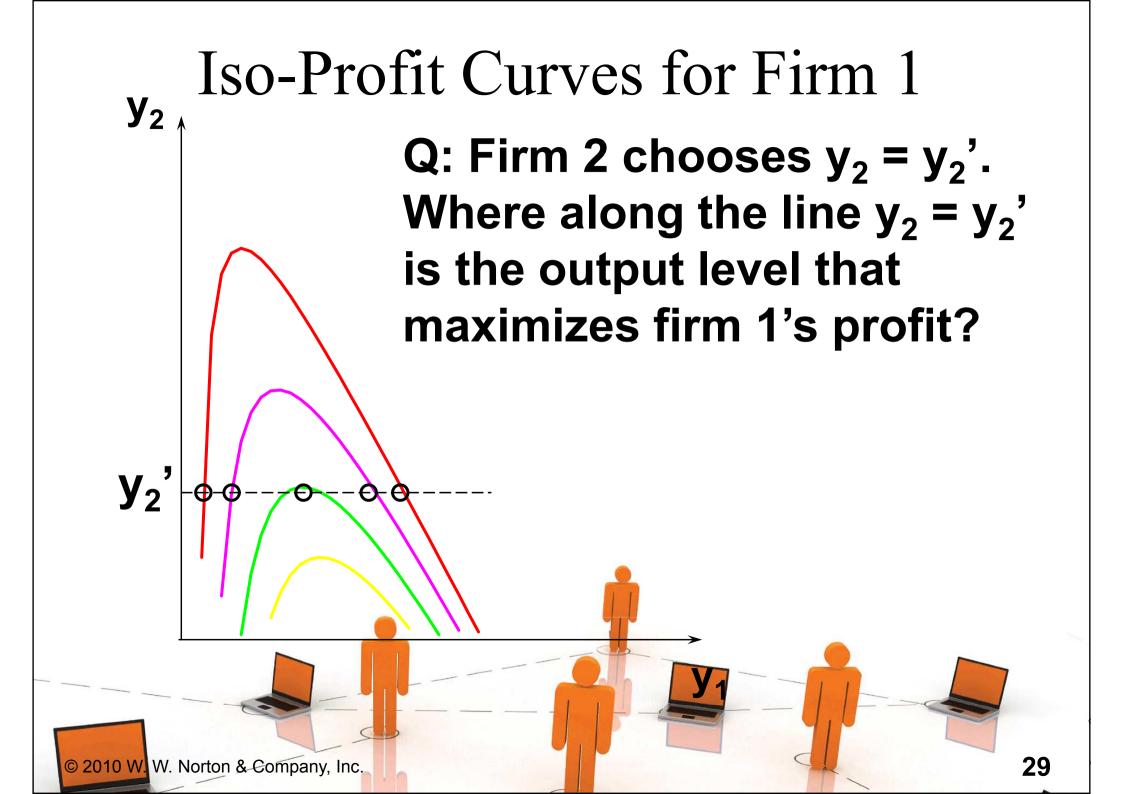
Iso-Profit Curves

- ♦ For firm 1, an iso-profit curve contains all the output pairs (y_1,y_2) giving firm 1 the same profit level Π_1 .
- ♦ What do iso-profit curves look like?



Iso-Profit Curves for Firm 1 **y**₂ With y₁ fixed, firm 1's profit increases as y₂ decreases. © 2010 W. W. Norton & Company, Inc.

Iso-Profit Curves for Firm 1 **y**₂ **Increasing profit** for firm 1. 28 © 2010 W. W. Norton & Company, Inc.

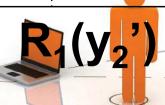


Iso-Profit Curves for Firm 1 **y**₂ Q: Firm 2 chooses $y_2 = y_2$. Where along the line $y_2 = y_2$ is the output level that maximizes firm 1's profit? A: The point attaining the highest iso-profit curve for firm 1. 30 W. Norton & Company, Inc.

Iso-Profit Curves for Firm 1 **y**₂ Q: Firm 2 chooses $y_2 = y_2$. Where along the line $y_2 = y_2$ is the output level that maximizes firm 1's profit? A: The point attaining the highest iso-profit curve for firm 1. y_1 ' is firm 1's best response to $y_2 = y_2$. W. Norton & Company, Inc.

Iso-Profit Curves for Firm 1

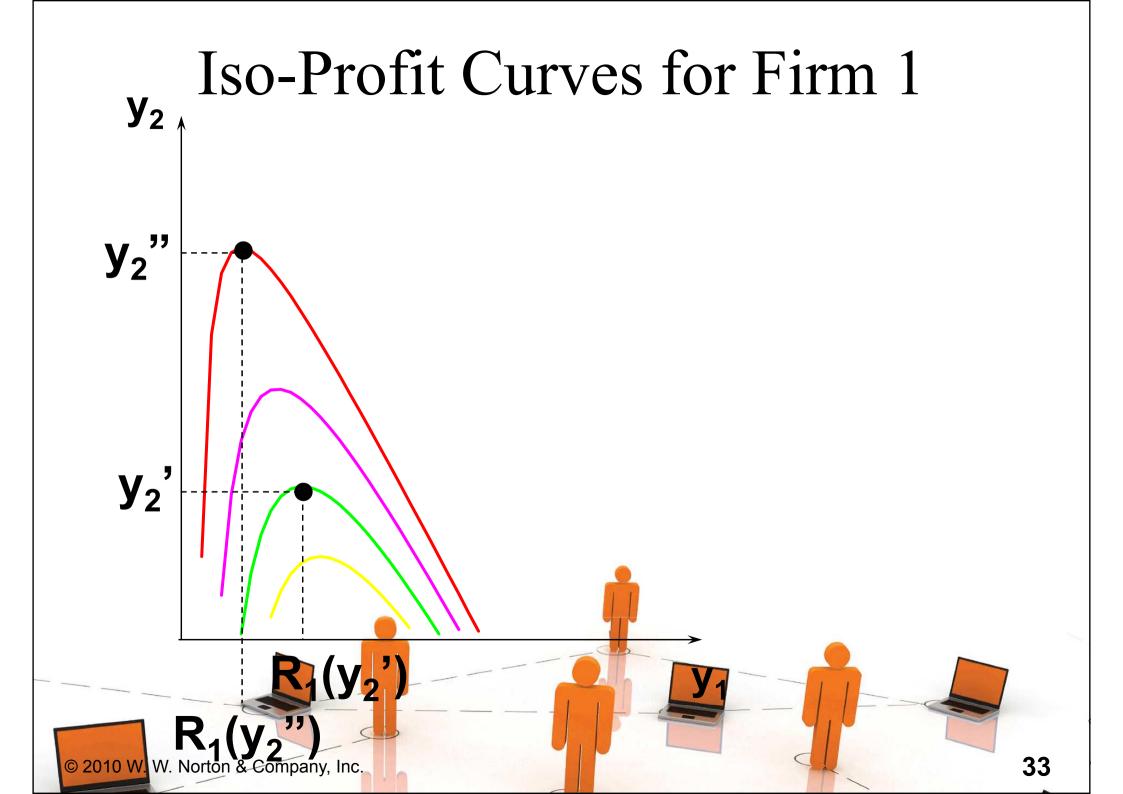
Q: Firm 2 chooses $y_2 = y_2$. Where along the line $y_2 = y_2$ is the output level that maximizes firm 1's profit? A: The point attaining the highest iso-profit curve for firm 1. y_1 ' is firm 1's best response to $y_2 = y_2$.

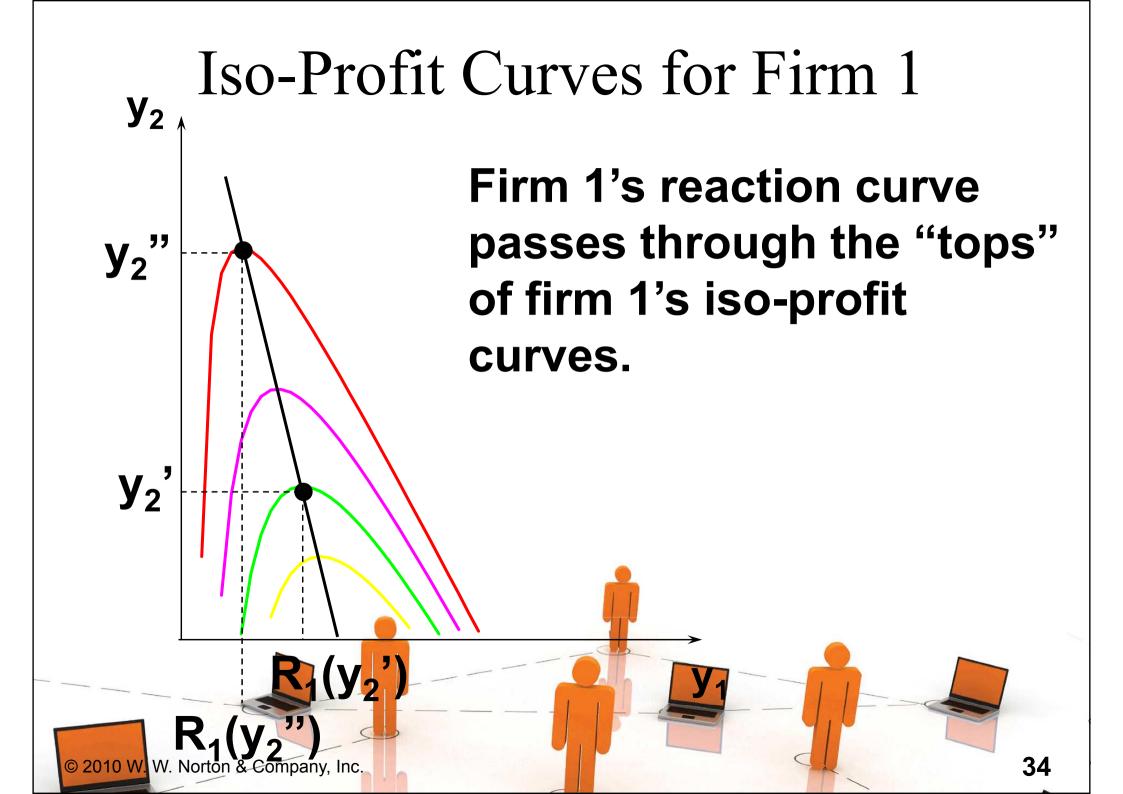


© 2010 W. W. Norton & Company, Inc.

y₂

y₂'





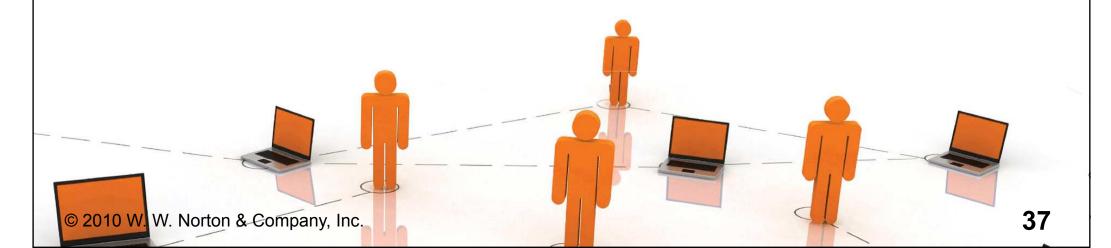
Iso-Profit Curves for Firm 2 **y**₂ **Increasing profit** for firm 2. 35 © 2010 W. W. Norton & Company, Inc.

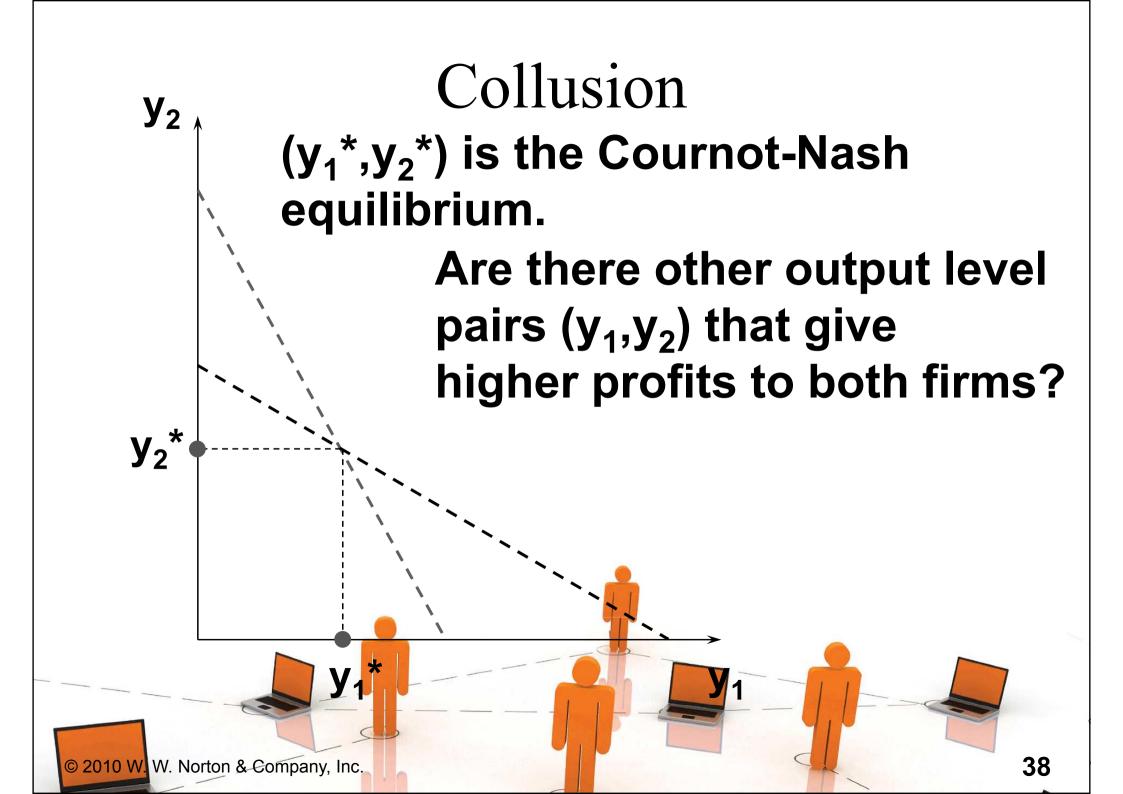
Iso-Profit Curves for Firm 2

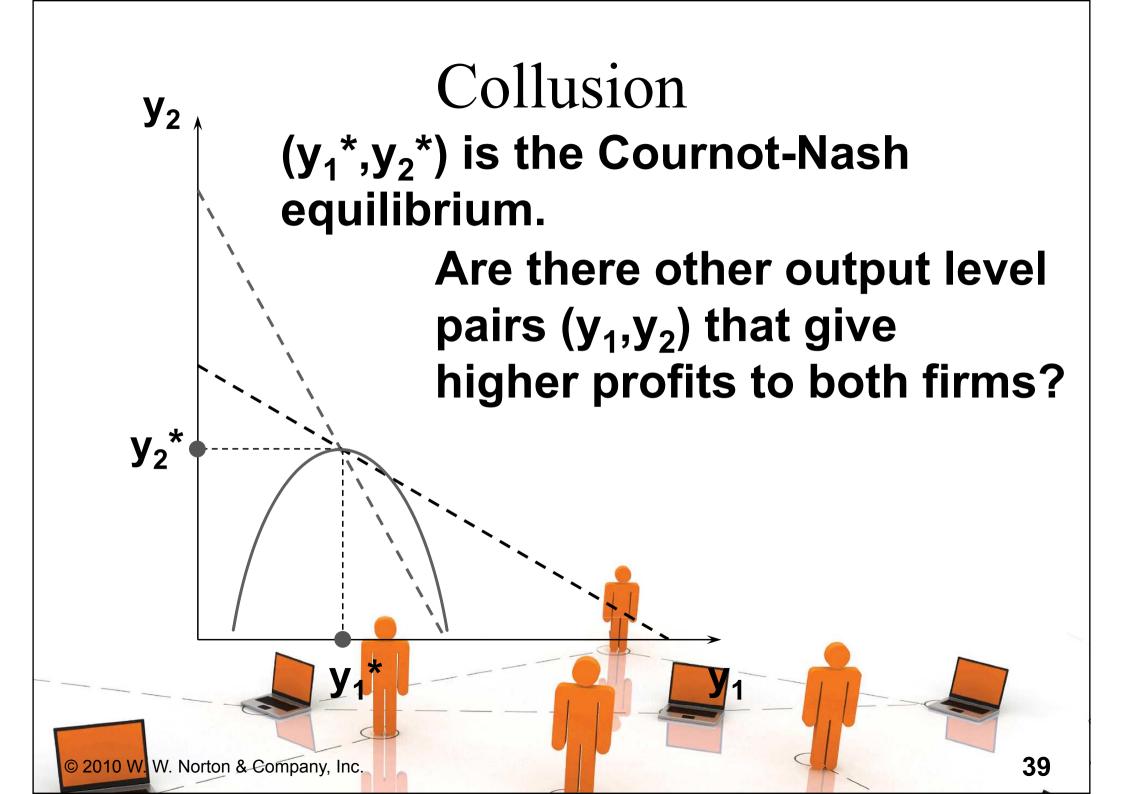
Firm 2's reaction curve passes through the "tops" of firm 2's iso-profit curves.

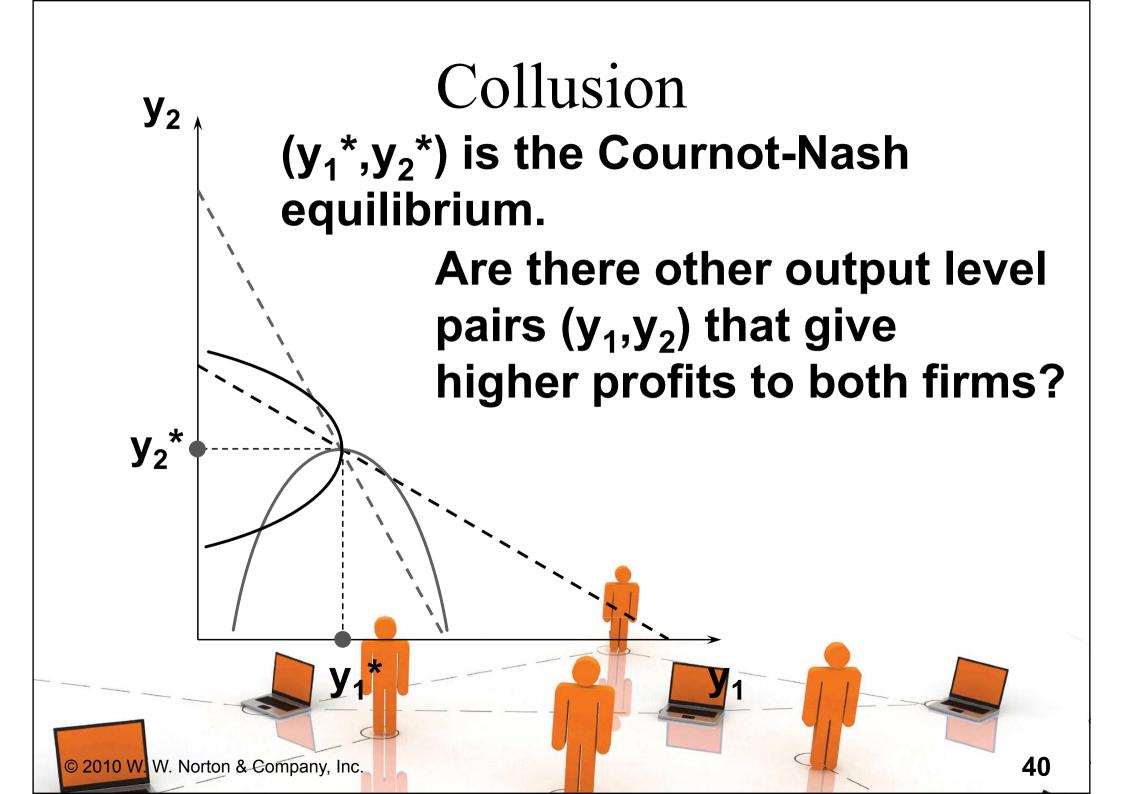
y₂

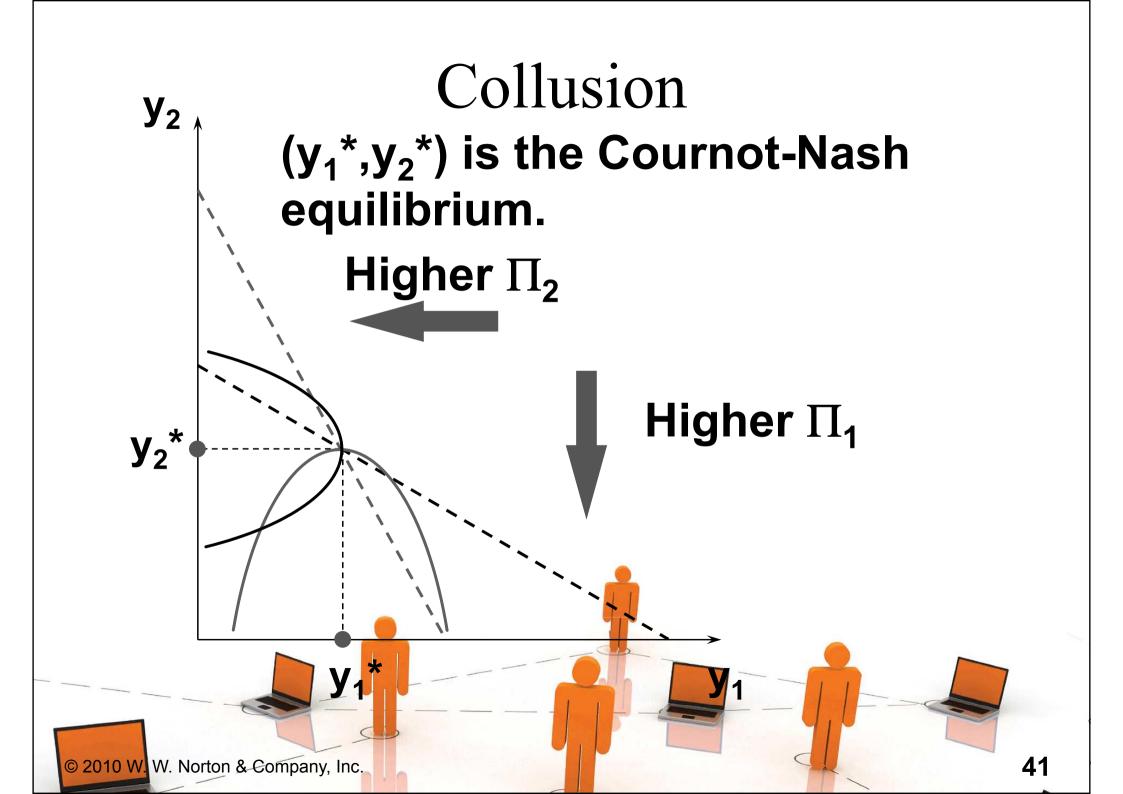
◆ Q: Are the Cournot-Nash equilibrium profits the largest that the firms can earn in total?

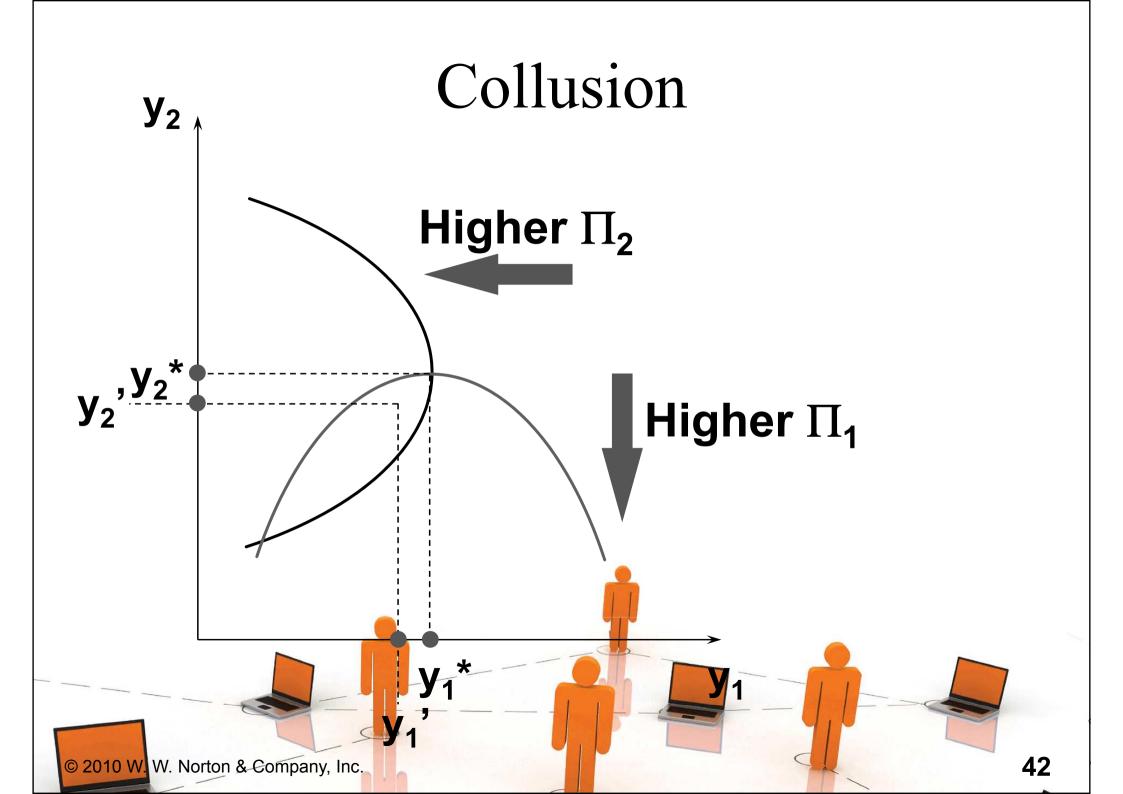


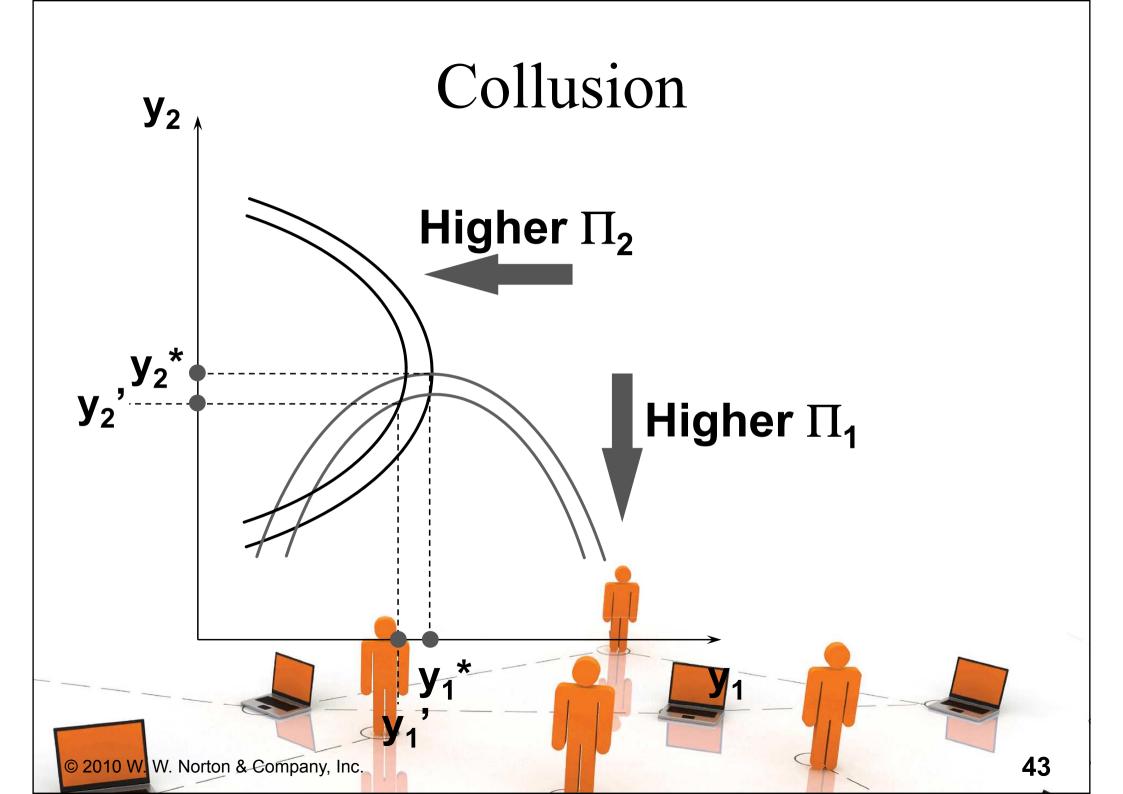


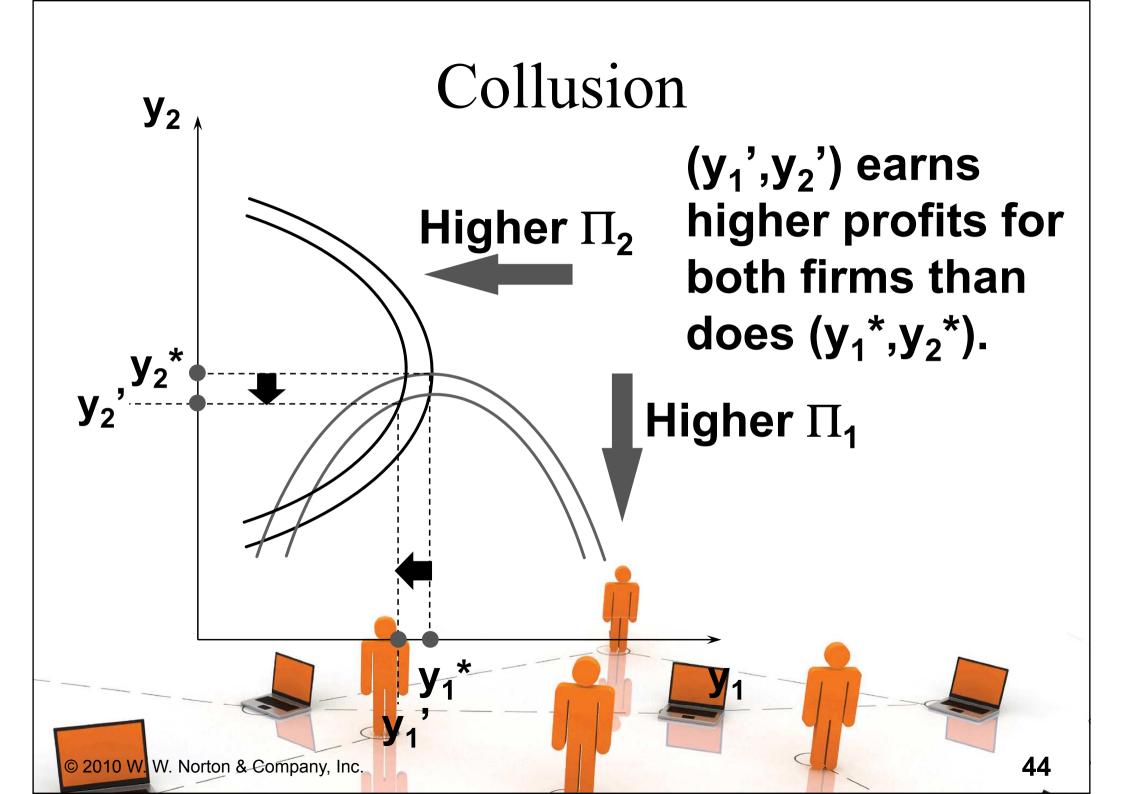












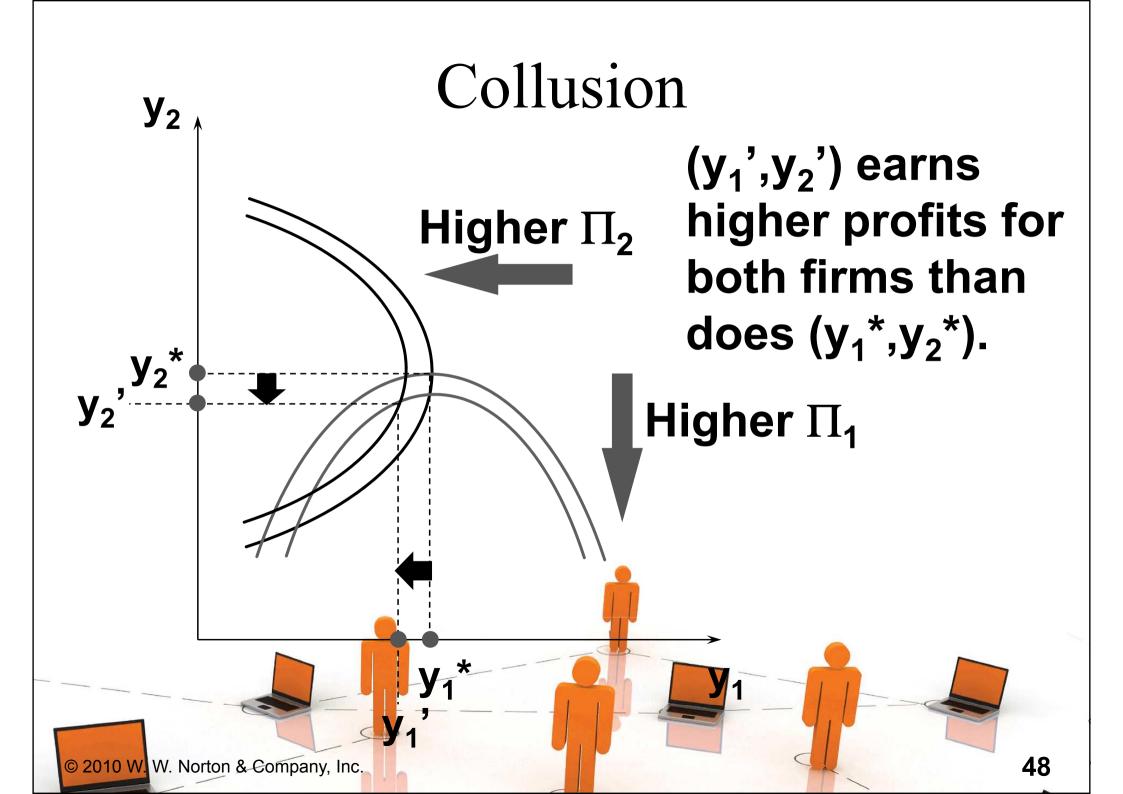
- ◆ So there are profit incentives for both firms to "cooperate" by lowering their output levels.
- **♦** This is collusion.
- ♦ Firms that collude are said to have formed a cartel.
- ♦ If firms form a cartel, how should they do it?

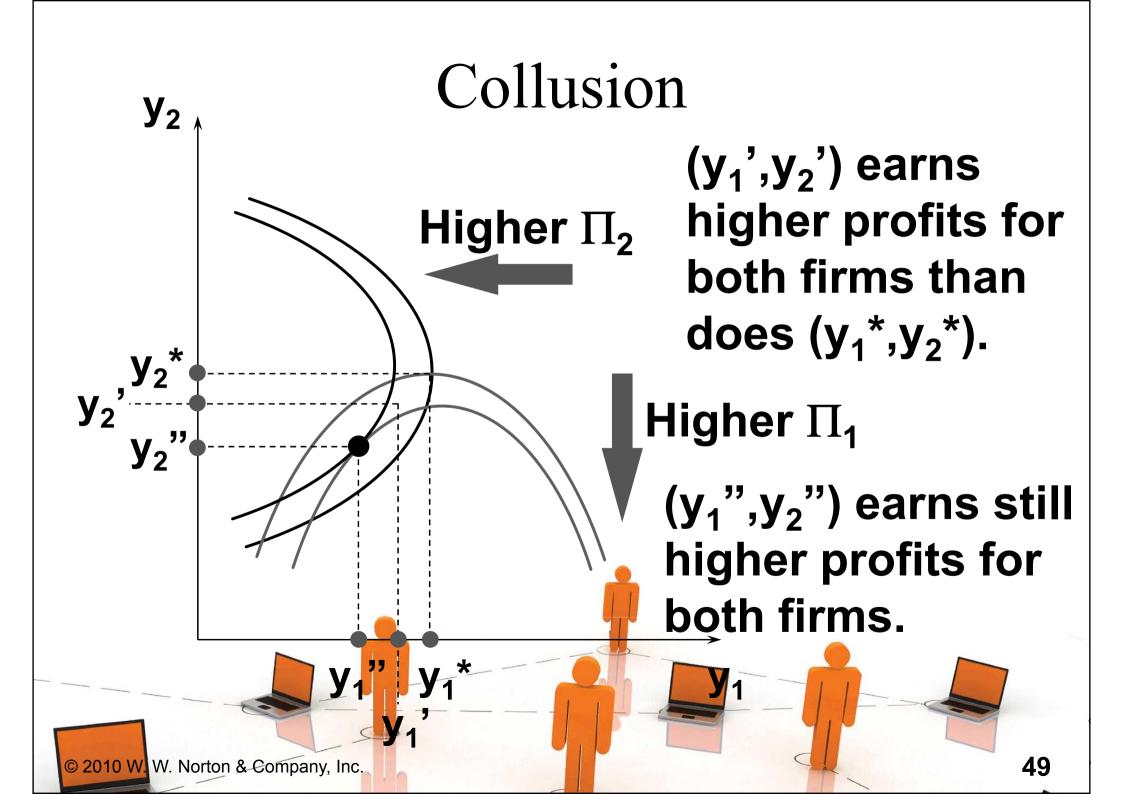
◆ Suppose the two firms want to maximize their total profit and divide it between them. Their goal is to choose cooperatively output levels y₁ and y₂ that maximize

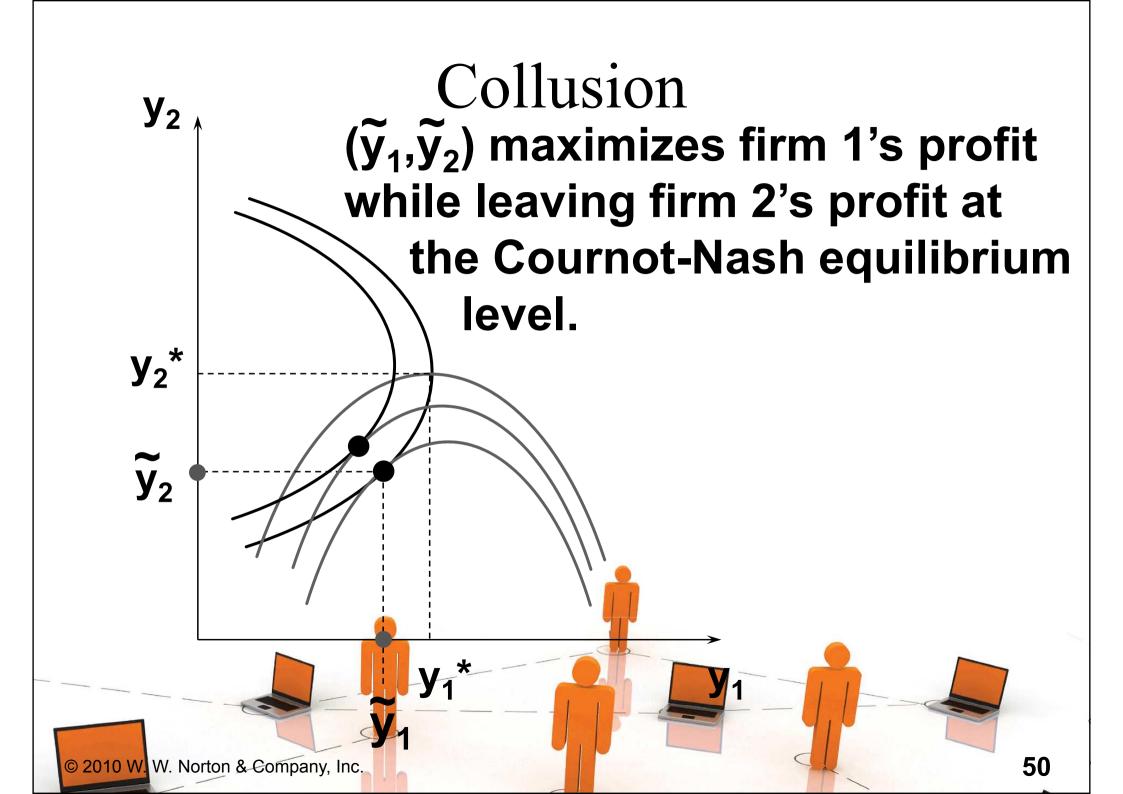
$$\Pi^{m}(y_{1},y_{2}) = p(y_{1} + y_{2})(y_{1} + y_{2}) - c_{1}(y_{1}) - c_{2}(y_{2}).$$

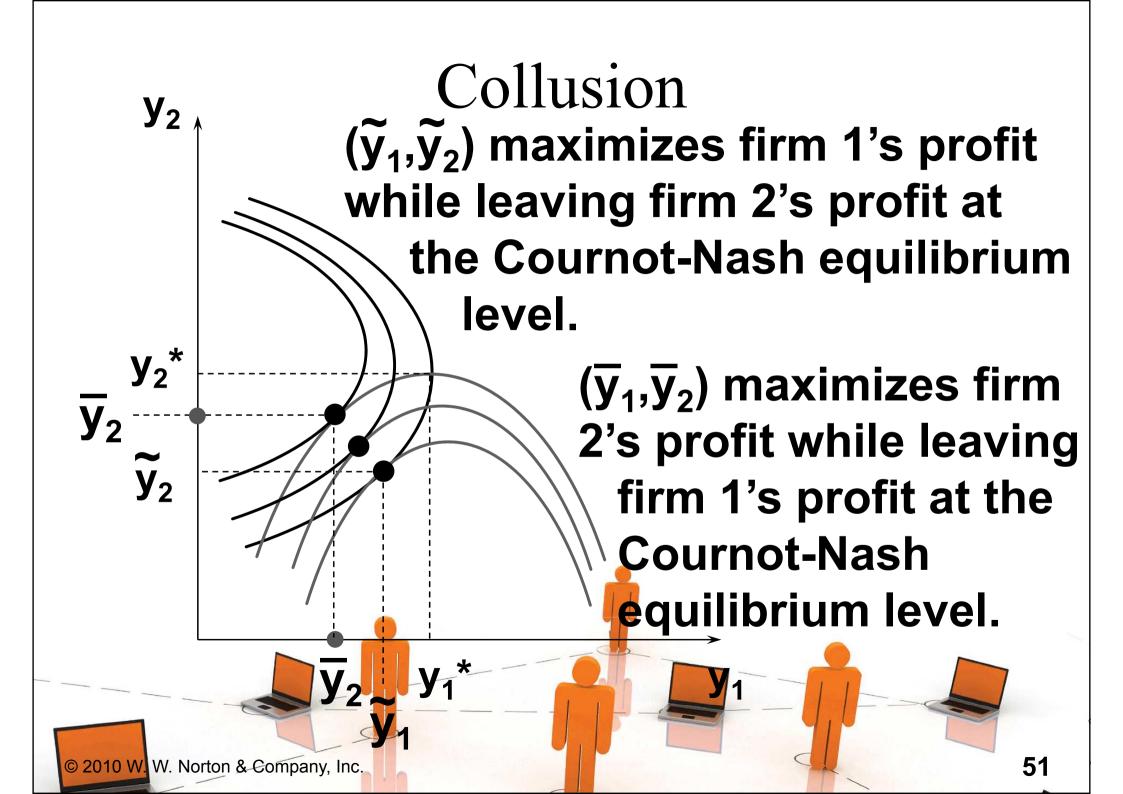
♦ The firms cannot do worse by colluding since they can cooperatively choose their Cournot-Nash equilibrium output levels and so earn their Cournot-Nash equilibrium profits. So collusion must provide profits at least as large as their Cournot-Nash equilibrium profits.

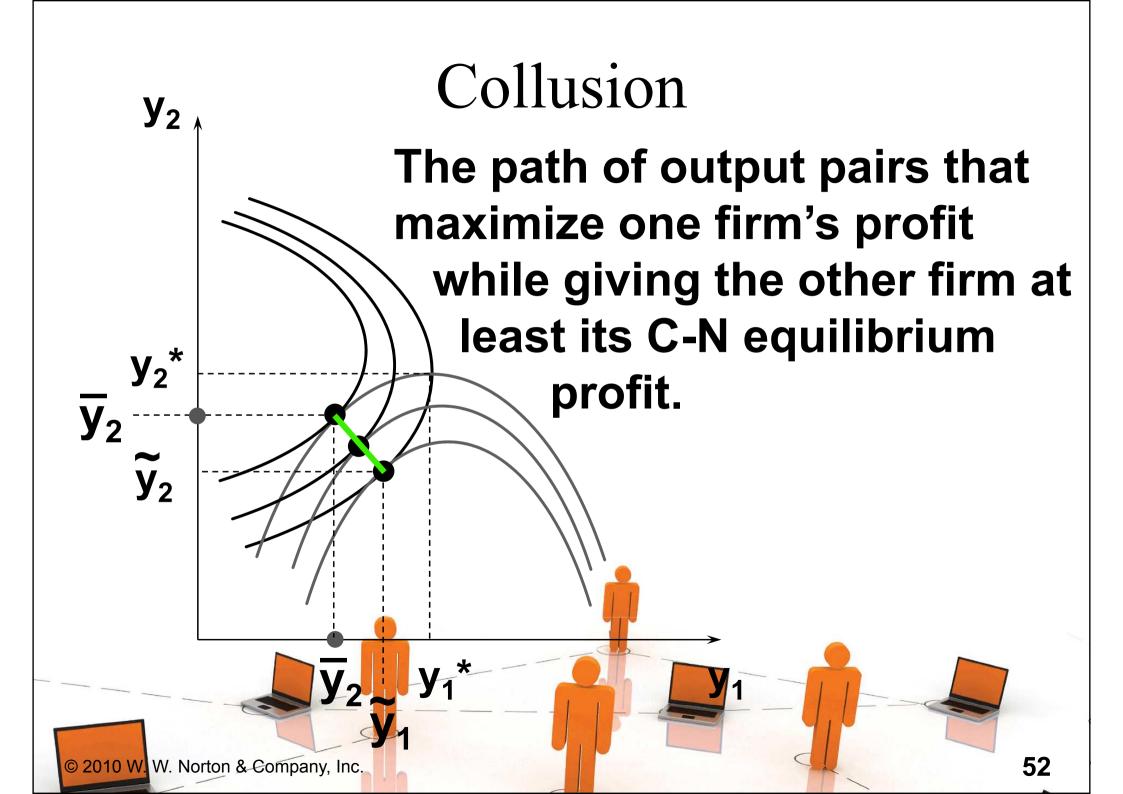
© 2010 W. W. Norton & Company, Inc.

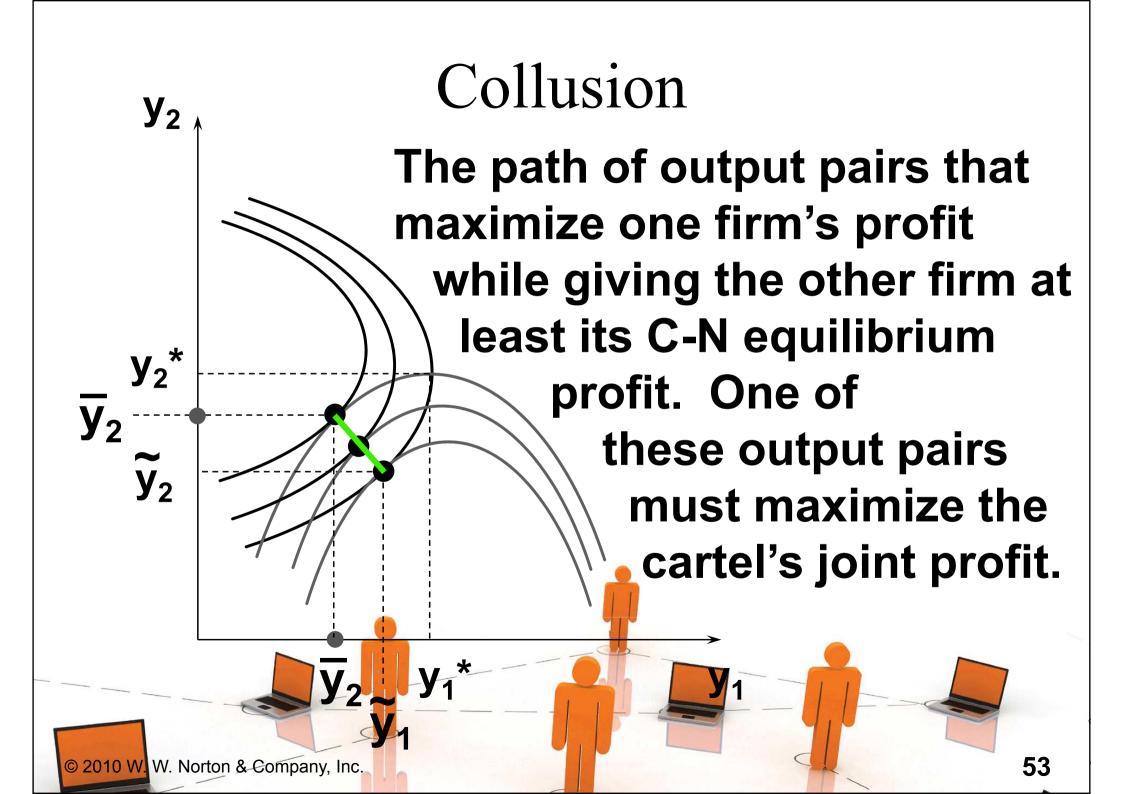


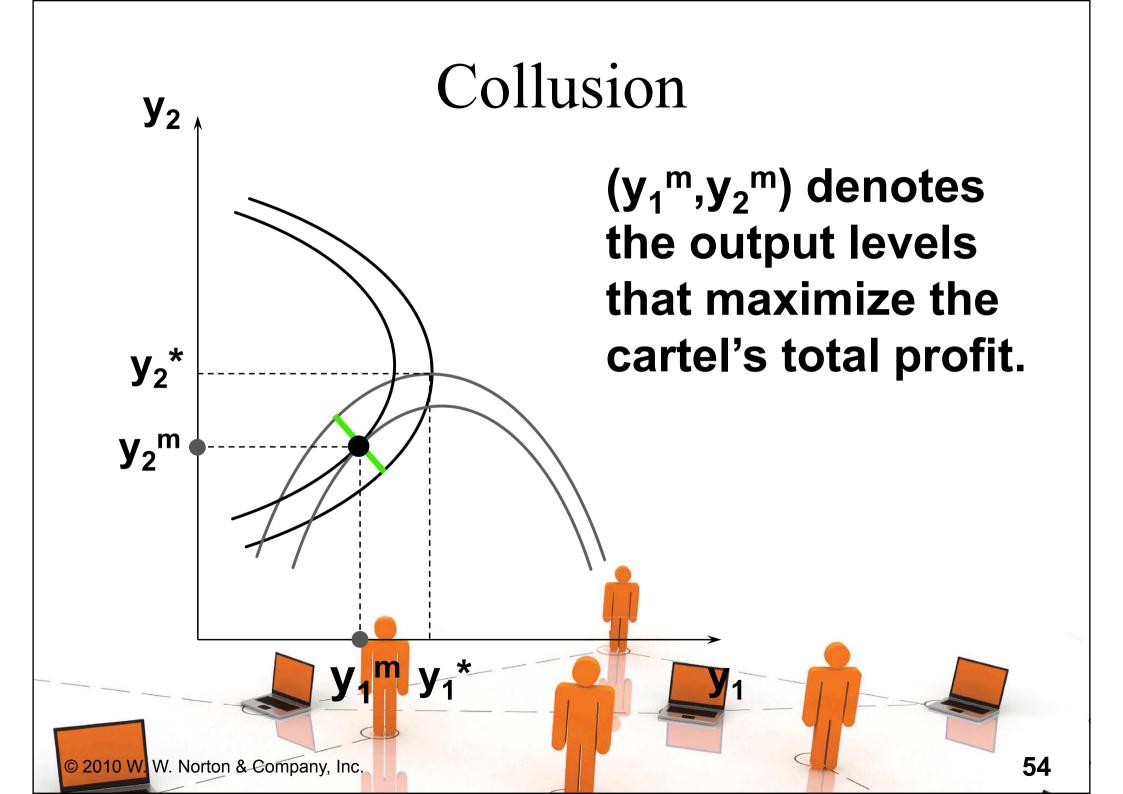




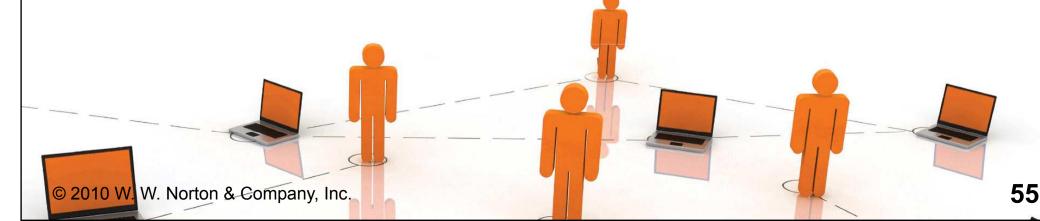




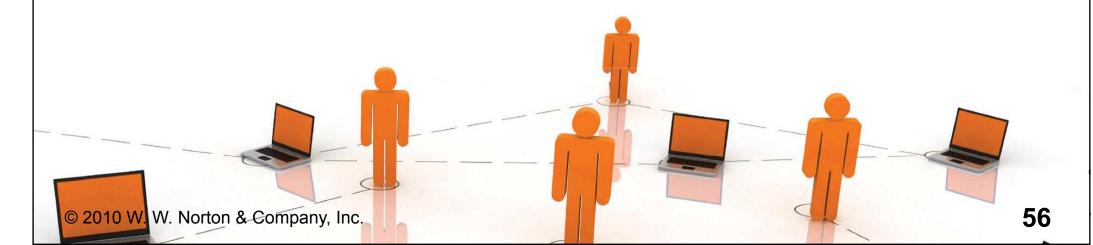


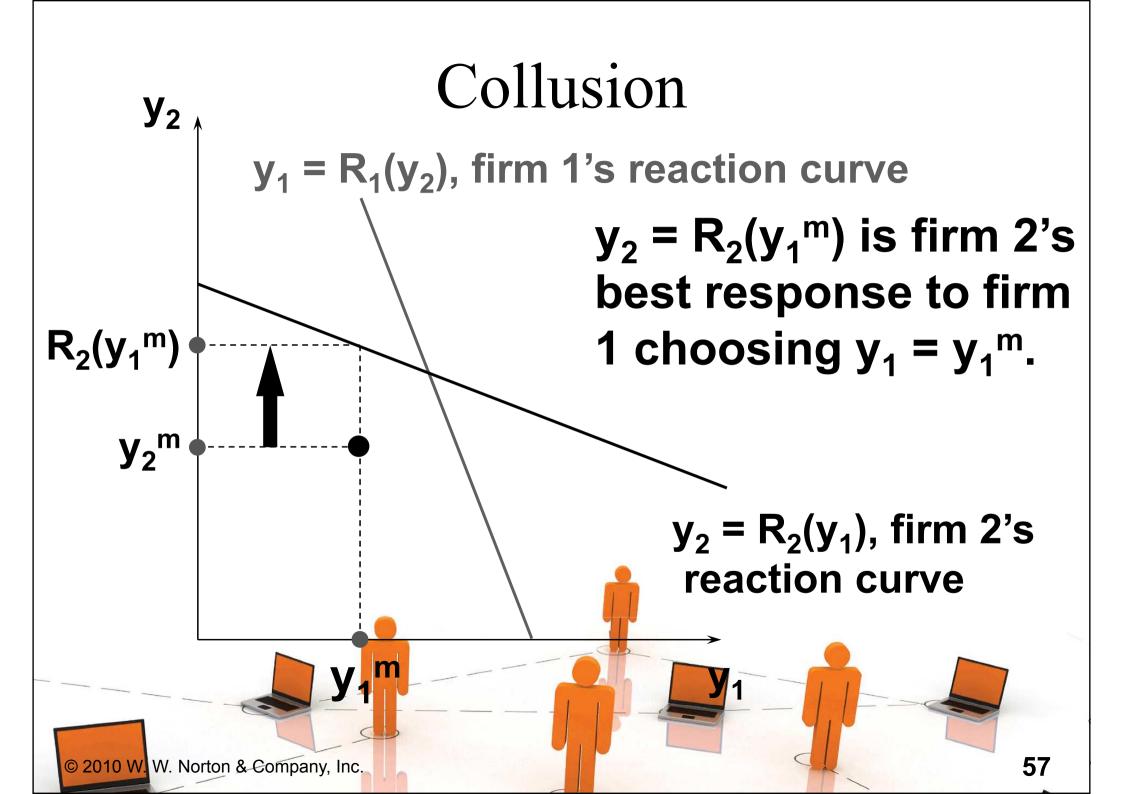


- ♦ Is such a cartel stable?
- ◆ Does one firm have an incentive to cheat on the other?
- ♦ *I.e.,* if firm 1 continues to produce y₁^m units, is it profit-maximizing for firm 2 to continue to produce y₂^m units?

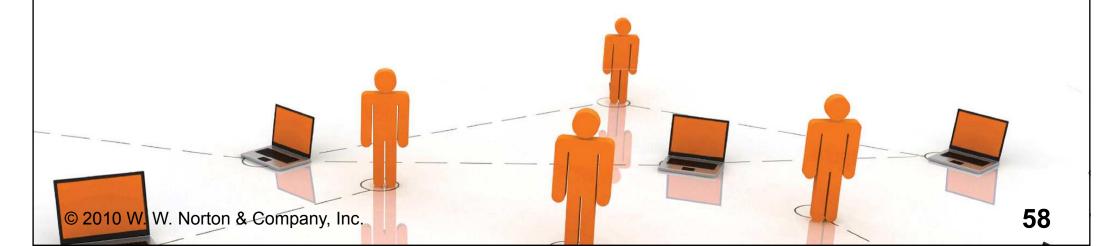


♦ Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m)$.

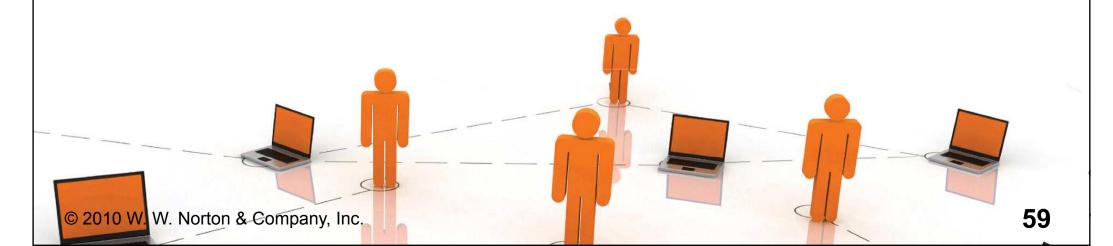


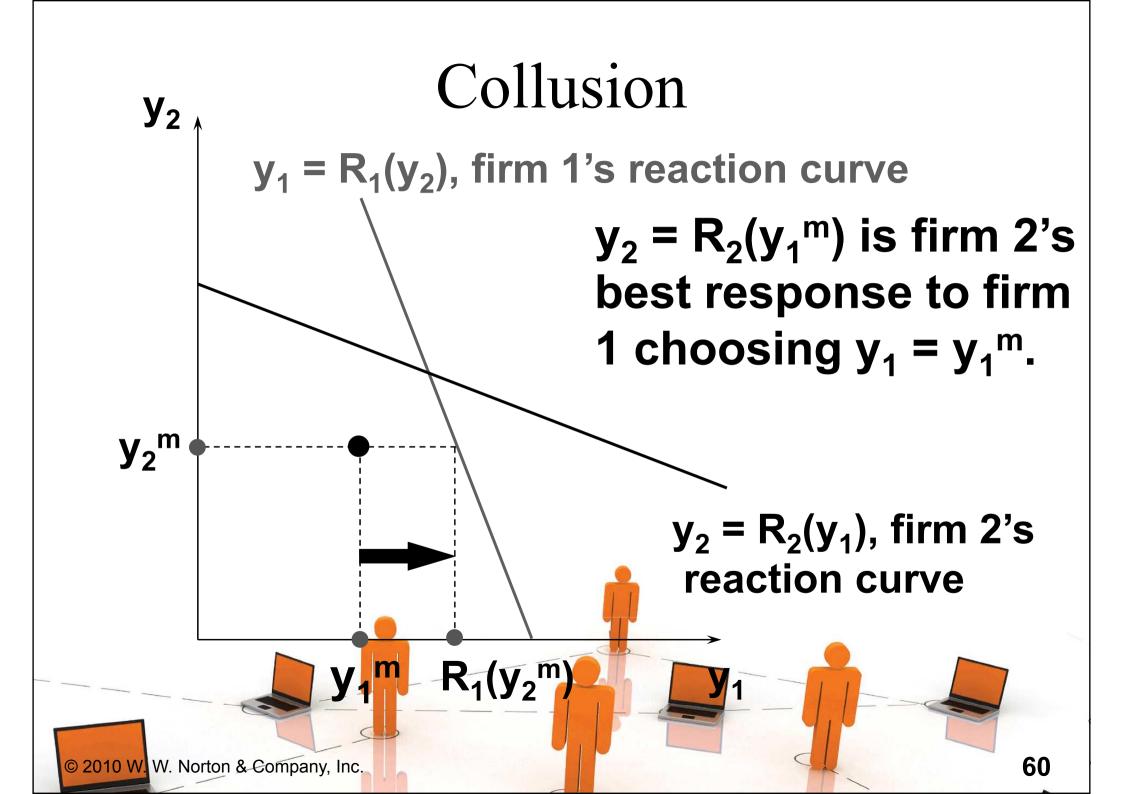


- ♦ Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m) > y_2^m$.
- ♦ Firm 2's profit increases if it cheats on firm 1 by increasing its output level from y₂^m to R₂(y₁^m).

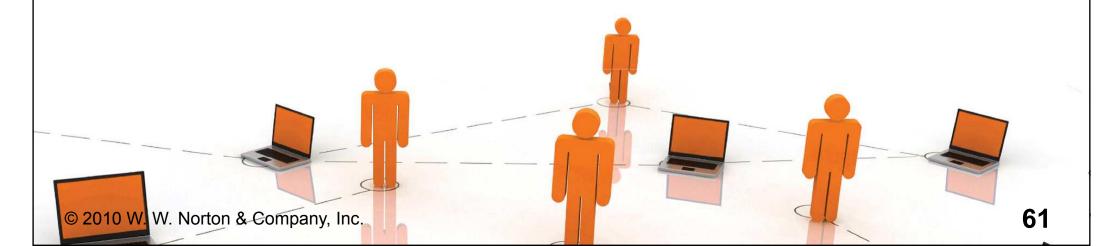


♦ Similarly, firm 1's profit increases if it cheats on firm 2 by increasing its output level from y_1^m to $R_1(y_2^m)$.





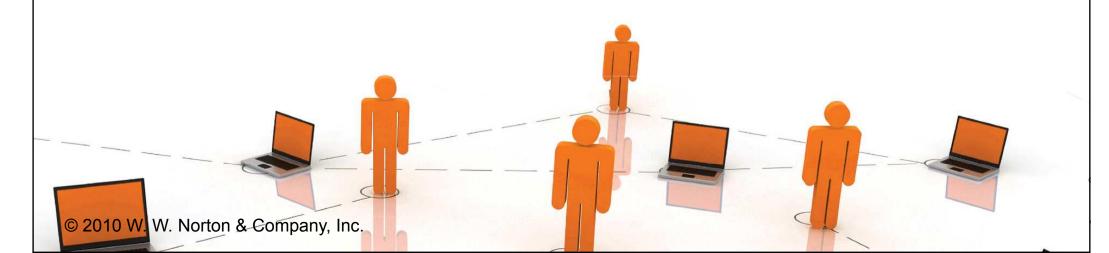
- ◆ So a profit-seeking cartel in which firms cooperatively set their output levels is fundamentally unstable.
- **♦** *E.g.,* OPEC's broken agreements.



- ◆ So a profit-seeking cartel in which firms cooperatively set their output levels is fundamentally unstable.
- **♦** *E.g.,* OPEC's broken agreements.
- ◆ But is the cartel unstable if the game is repeated many times, instead of being played only once? Then there is an opportunity to punish a cheater.

- ◆ To determine if such a cartel can be stable we need to know 3 things:
 - (i) What is each firm's per period profit in the cartel?
 - (ii) What is the profit a cheat earns in the first period in which it cheats?
 - (iii) What is the profit the cheat earns in each period after it first cheats?

♦ Suppose two firms face an inverse market demand of $p(y_T) = 24 - y_T$ and have total costs of $c_1(y_1) = y_1^2$ and $c_2(y_2) = y_2^2$.



- ♦ (i) What is each firm's per period profit in the cartel?
- \bullet p(y_T) = 24 y_T, c₁(y₁) = y²₁, c₂(y₂) = y²₂.
- ◆ If the firms collude then their joint profit function is

$$\pi^{M}(y_1,y_2) = (24 - y_1 - y_2)(y_1 + y_2) - y_1^2 - y_2^2$$

♦ What values of y₁ and y₂ maximize the cartel's profit?

- $\bullet \pi^{M}(y_1,y_2) = (24 y_1 y_2)(y_1 + y_2) y_1^2 y_2^2$
- ♦ What values of y₁ and y₂ maximize the cartel's profit? Solve

$$\frac{\partial \pi^{M}}{\partial y_{1}} = 24 - 4y_{1} - 2y_{2} = 0$$

$$\frac{\partial \pi^{M}}{\partial y_{2}} = 24 - 2y_{1} - 4y_{2} = 0.$$

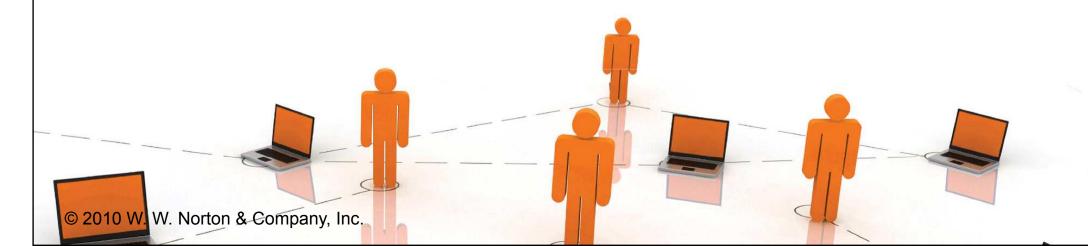
- ♦ What values of y₁ and y₂ maximize the cartel's profit? Solve

$$\frac{\partial \pi^{M}}{\partial y_{1}} = 24 - 4y_{1} - 2y_{2} = 0$$

$$\frac{\partial \pi^{M}}{\partial y_{2}} = 24 - 2y_{1} - 4y_{2} = 0.$$

♦ Solution is $y_1^M = y_2^M = 4$.

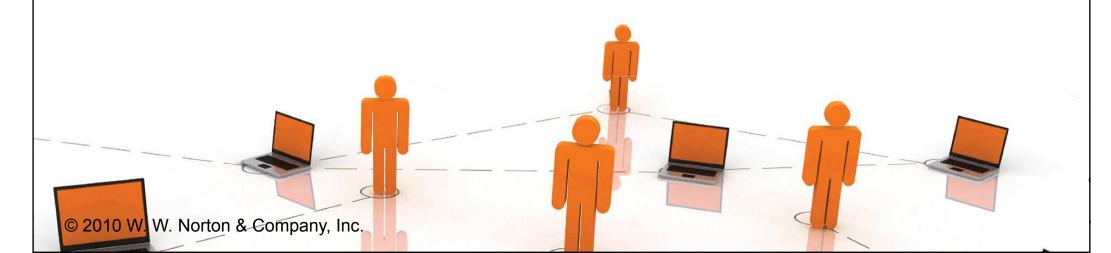
- $\bullet \pi^{M}(y_1,y_2) = (24 y_1 y_2)(y_1 + y_2) y_1^2 y_2^2$
- ♦ $y_1^M = y_2^M = 4$ maximizes the cartel's profit.
- ♦ The maximum profit is therefore π^M = \$(24 8)(8) \$16 \$16 = \$112.
- ◆ Suppose the firms share the profit equally, getting \$112/2 = \$56 each per period.



- ♦ (iii) What is the profit the cheat earns in each period after it first cheats?
- ◆ This depends upon the punishment inflicted upon the cheat by the other firm.

- ♦ (iii) What is the profit the cheat earns in each period after it first cheats?
- ◆ This depends upon the punishment inflicted upon the cheat by the other firm.
- ◆ Suppose the other firm punishes by forever after not cooperating with the cheat.
- ♦ What are the firms' profits in the noncooperative C-N equilibrium?

- ♦ What are the firms' profits in the noncooperative C-N equilibrium?
- $p(y_T) = 24 y_T, c_1(y_1) = y_1^2, c_2(y_2) = y_2^2.$
- ♦ Given y₂, firm 1's profit function is $\pi_1(y_1; y_2) = (24 y_1 y_2)y_1 y_1^2$.



- ♦ What are the firms' profits in the noncooperative C-N equilibrium?
- $p(y_T) = 24 y_T, c_1(y_1) = y_1^2, c_2(y_2) = y_2^2.$
- ♦ Given y₂, firm 1's profit function is $\pi_1(y_1; y_2) = (24 y_1 y_2)y_1 y_1^2$.
- ◆ The value of y₁ that is firm 1's best response to y₂ solves

$$\frac{\partial \pi_1}{\partial y_1} = 24 - 4y_1 \qquad \Rightarrow \qquad \Rightarrow \qquad y_1 = R_1(y_2) = \frac{24 - y_2}{4}$$
© 2010 W. Norton & Company, Inc.

♦ What are the firms' profits in the noncooperative C-N equilibrium?

$$\bullet \pi_1(y_1;y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$

•
$$y_1 = R_1(y_2) = \frac{24 - y_2}{4}$$

♦ Similarly,
$$y_2 = R_2(y_1) = \frac{24 - y_1}{4}$$

♦ What are the firms' profits in the noncooperative C-N equilibrium?

$$\bullet \pi_1(y_1;y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$

•
$$y_1 = R_1(y_2) = \frac{24 - y_2}{4}$$
.

♦ Similarly,
$$y_2 = R_2(y_1) = \frac{24 - y_1}{4}$$
.

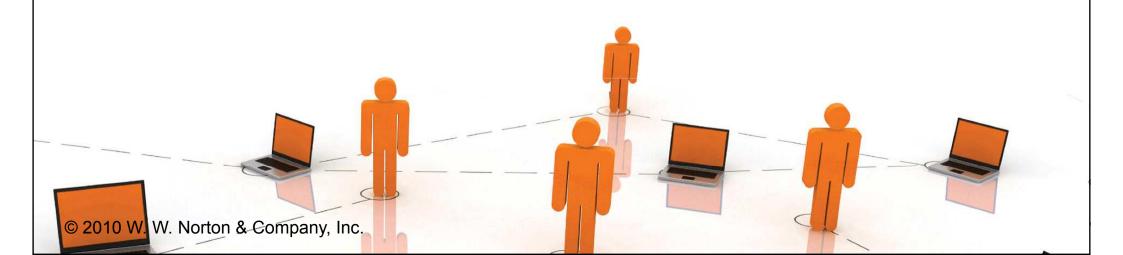
◆ The C-N equilibrium (y^{*}/₁,y^{*}₂) solves

$$y_1 = R_1(y_2)$$
 and $y_2 = R_2(y_1) \rightarrow y_1^* = y_2^* = 4.8$.

- ♦ What are the firms' profits in the noncooperative C-N equilibrium?
- $\bullet \pi_1(y_1;y_2) = (24 y_1 y_2)y_1 y_1^2$
- ϕ $y_1^* = y_2^* = 4.8.$
- ♦ So each firm's profit in the C-N equilibrium is $\pi_1^* = \pi_2^* = (14.4)(4.8) 4.8^2 \approx 46 each period.



- ♦ (ii) What is the profit a cheat earns in the first period in which it cheats?
- ♦ Firm 1 cheats on firm 2 by producing the quantity y^{CH}_1 that maximizes firm 1's profit given that firm 2 continues to produce $y^{M}_2 = 4$. What is the value of y^{CH}_1 ?



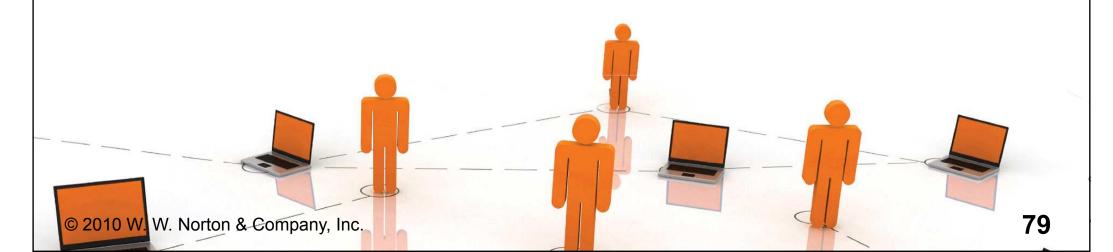
- ♦ (ii) What is the profit a cheat earns in the first period in which it cheats?
- ♦ Firm 1 cheats on firm 2 by producing the quantity y^{CH}_1 that maximizes firm 1's profit given that firm 2 continues to produce $y^{M}_2 = 4$. What is the value of y^{CH}_1 ?
- $\bullet y^{CH}_1 = R_1(y^M_2) = (24 y^M_2)/4 = (24 4)/4 = 5.$
- ♦ Firm 1's profit in the period in which it cheats is therefore.

$$\pi^{CH}_1 = (24 - 5 - 1)(5) - 5^2 = $65.$$

© 2010 W. W. Norton & Company, Inc.

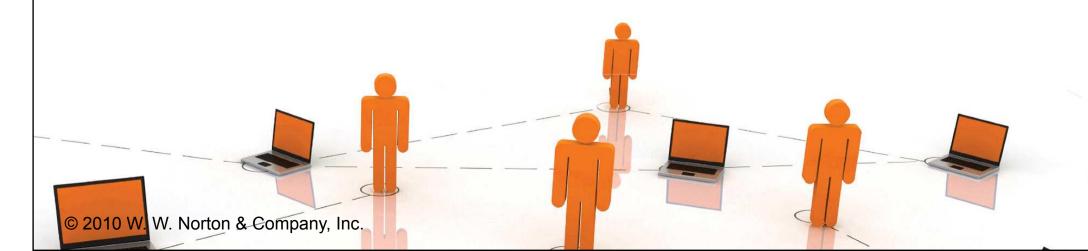
- ◆ To determine if such a cartel can be stable we need to know 3 things:
 - (i) What is each firm's per period profit in the cartel? \$56.
 - (ii) What is the profit a cheat earns in the first period in which it cheats? \$65.
 - (iii) What is the profit the cheat earns in each period after it first cheats? \$46.

- ◆ Each firm's periodic discount factor is 1/(1+r).
- ◆ The present-value of firm 1's profits if it does not cheat is ??



- ◆ Each firm's periodic discount factor is 1/(1+r).
- ◆ The present-value of firm 1's profits if it does not cheat is

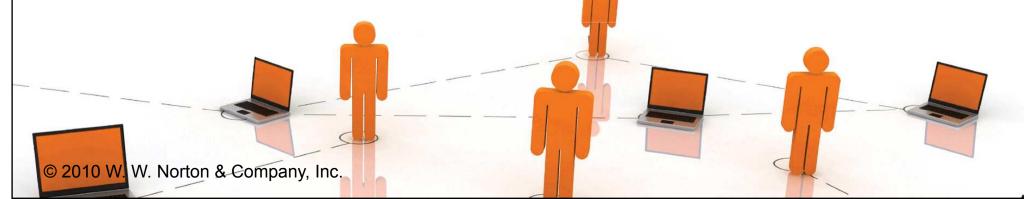
$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \cdots = \$\frac{(1+r)56}{r}.$$



- ◆ Each firm's periodic discount factor is 1/(1+r).
- ◆ The present-value of firm 1's profits if it does not cheat is

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \cdots = \$\frac{(1+r)56}{r}.$$

♦ The present-value of firm 1's profit if it cheats this period is ??



- ◆ Each firm's periodic discount factor is 1/(1+r).
- ◆ The present-value of firm 1's profits if it does not cheat is

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \cdots = \$\frac{(1+r)56}{r}.$$

◆ The present-value of firm 1's profit if it cheats this period is

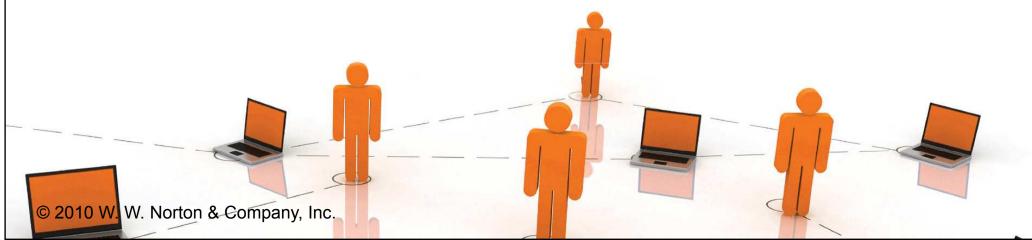
$$PV^{M} = \$65 + \frac{\$46}{1+r} + \frac{\$46}{(1+r)^{2}} + \dots = \$65 + \frac{\$46}{r}$$
W. Norton & Company, Inc.

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \dots = \$\frac{(1+r)56}{r}.$$

$$PV^{M} = \$65 + \frac{\$46}{1+r} + \frac{\$46}{(1+r)^2} + \dots = \$65 + \frac{\$46}{r}.$$

So the cartel will be stable if

$$\frac{(1+r)56}{r} + 56 < 65 + \frac{46}{r} \implies r > \frac{10}{9} \implies \frac{1}{1+r} < \frac{9}{19}.$$



The Order of Play

- ◆ So far it has been assumed that firms choose their output levels simultaneously.
- ◆ The competition between the firms is then a simultaneous play game in which the output levels are the strategic variables. ♣

W. Norton & Company, Inc.

The Order of Play

- ♦ What if firm 1 chooses its output level first and then firm 2 responds to this choice?
- ◆ Firm 1 is then a leader. Firm 2 is a follower.
- ♦ The competition is a sequential game in which the output levels are the strategic variables.

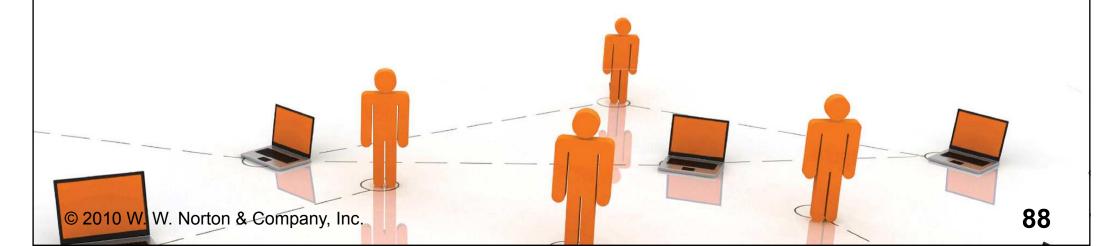
The Order of Play

- Such games are von Stackelberg games.
- ♦ Is it better to be the leader?
- ♦ Or is it better to be the follower?

◆ Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?



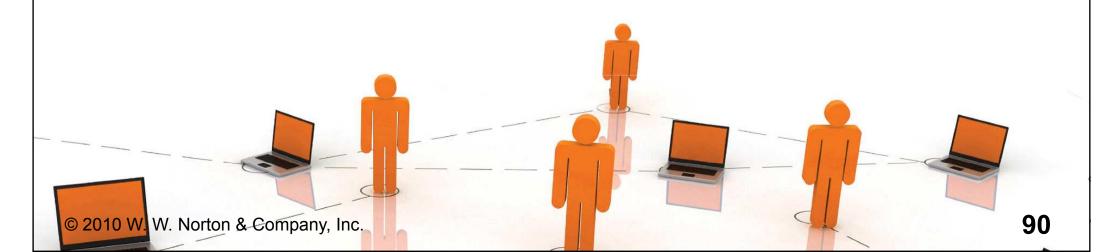
- ◆ Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?
- A: Choose $y_2 = R_2(y_1)$.



- ◆ Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?
- A: Choose $y_2 = R_2(y_1)$.
- ♦ Firm 1 knows this and so perfectly anticipates firm 2's reaction to any y₁ chosen by firm 1.

◆ This makes the leader's profit function

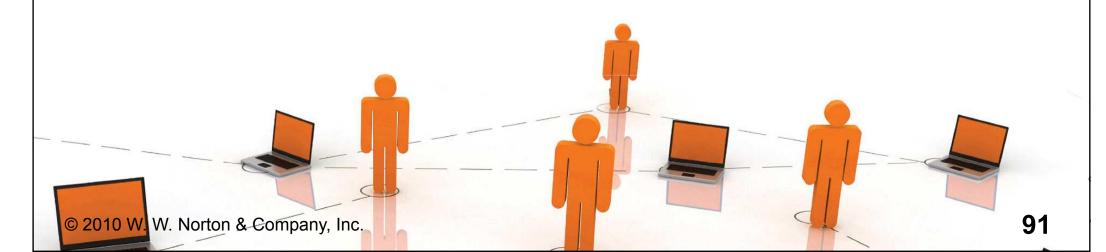
$$\Pi_{1}^{s}(y_{1}) = p(y_{1} + R_{2}(y_{1}))y_{1} - c_{1}(y_{1}).$$



◆ This makes the leader's profit function

$$\Pi_{1}^{s}(y_{1}) = p(y_{1} + R_{2}(y_{1}))y_{1} - c_{1}(y_{1}).$$

♦ The leader chooses y₁ to maximize its profit.



◆ This makes the leader's profit function

$$\Pi_{1}^{s}(y_{1}) = p(y_{1} + R_{2}(y_{1}))y_{1} - c_{1}(y_{1}).$$

- ♦ The leader chooses y₁ to maximize its profit.
- ◆ Q: Will the leader make a profit at least as large as its Cournot-Nash equilibrium profit?

◆ A: Yes. The leader could choose its Cournot-Nash output level, knowing that the follower would then also choose its C-N output level. The leader's profit would then be its C-N profit. But the leader does not have to do this, so its profit must be at least as large as its C-N profit,

© 2010 W. W. Norton & Company, Inc.

- ♦ The market inverse demand function is $p = 60 y_T$. The firms' cost functions are $c_1(y_1) = y_1^2$ and $c_2(y_2) = 15y_2 + y_2^2$.
- **♦** Firm 2 is the follower. Its reaction function is

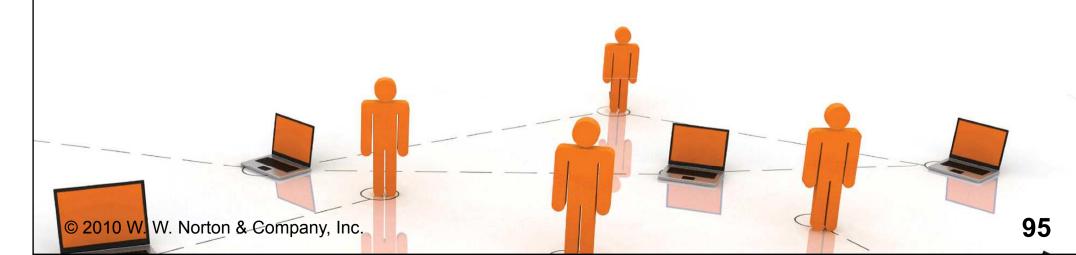
$$y_2 = R_2(y_1) = \frac{45 - y_1}{4}$$
.

The leader's profit function is therefore

$$\Pi_{1}^{s}(y_{1}) = (60 - y_{1} - R_{2}(y_{1}))y_{1} - y_{1}^{2}$$

$$= (60 - y_{1} - \frac{45 - y_{1}}{4})y_{1} - y_{1}^{2}$$

$$= \frac{195}{4}y_{1} - \frac{7}{4}y_{1}^{2}.$$



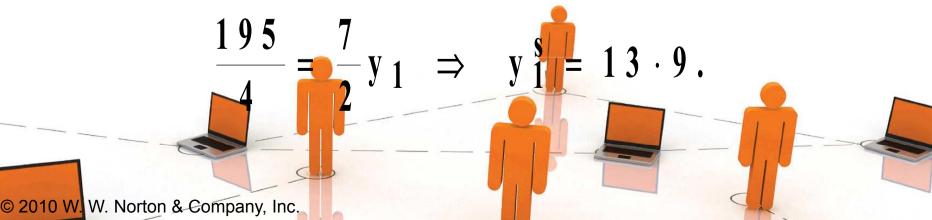
The leader's profit function is therefore

$$\Pi_{1}^{s}(y_{1}) = (60 - y_{1} - R_{2}(y_{1}))y_{1} - y_{1}^{2}$$

$$= (60 - y_{1} - \frac{45 - y_{1}}{4})y_{1} - y_{1}^{2}$$

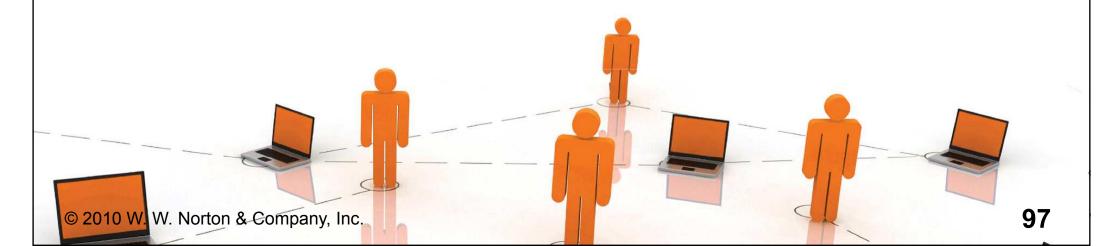
$$= \frac{195}{4}y_{1} - \frac{7}{4}y_{1}^{2}.$$

For a profit-maximum for firm 1,



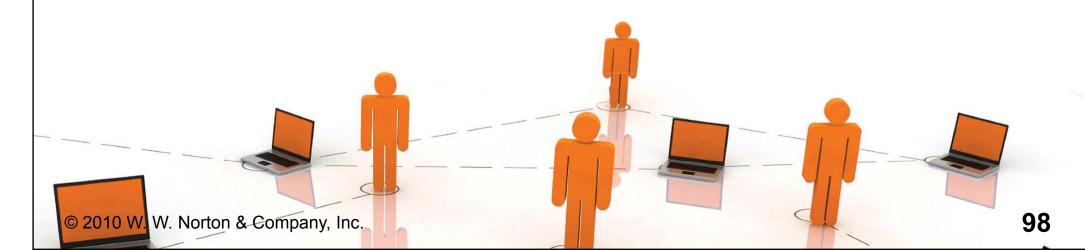
96

Stackelberg Games; An Example Q: What is firm 2's response to the leader's choice $y_1^{\S} = 13 \cdot 9$?



Q: What is firm 2's response to the leader's choice $y_1^s = 13 \cdot 9$?

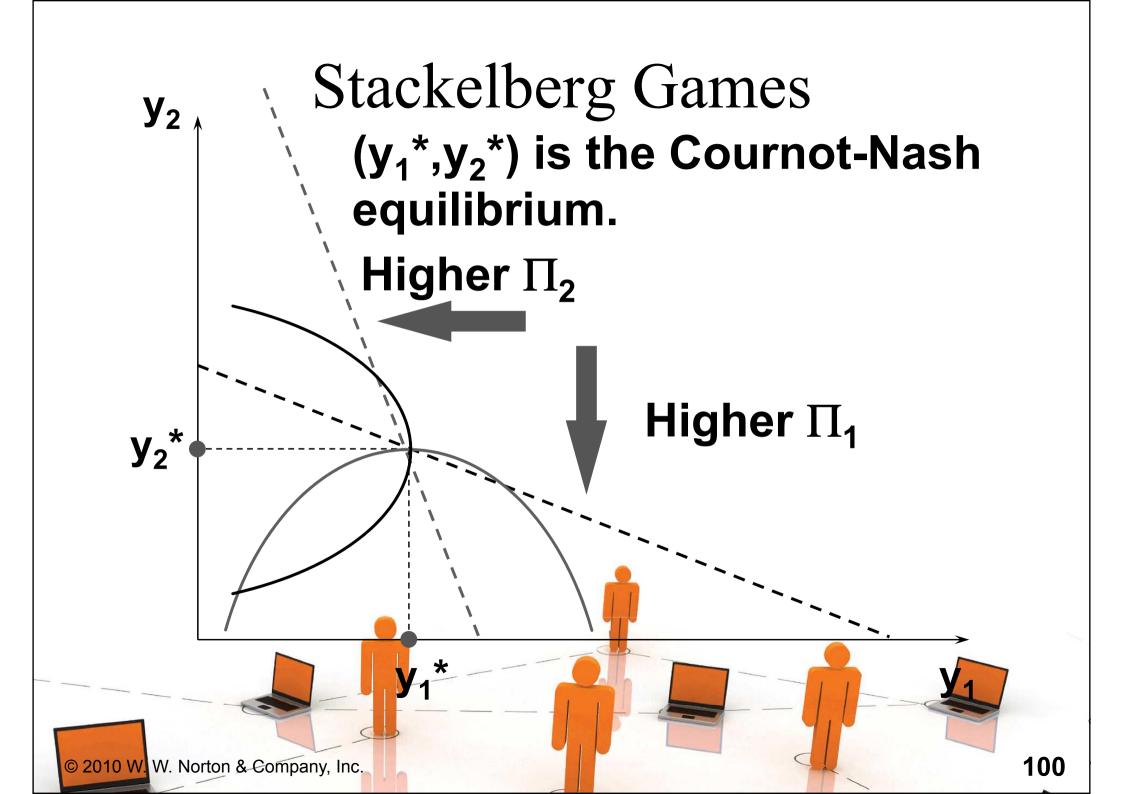
A:
$$y_{2}^{s} = R_{2}(y_{1}^{s}) = \frac{45 - 13 \cdot 9}{4} = 7 \cdot 8$$
.

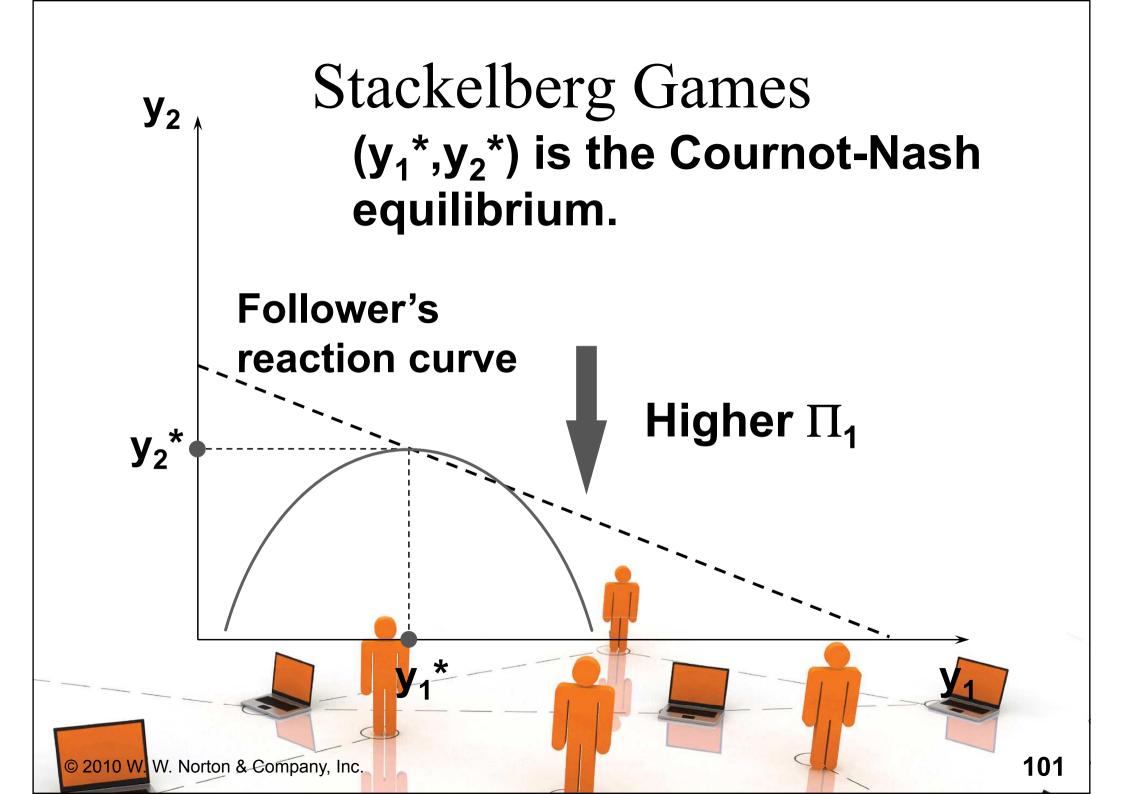


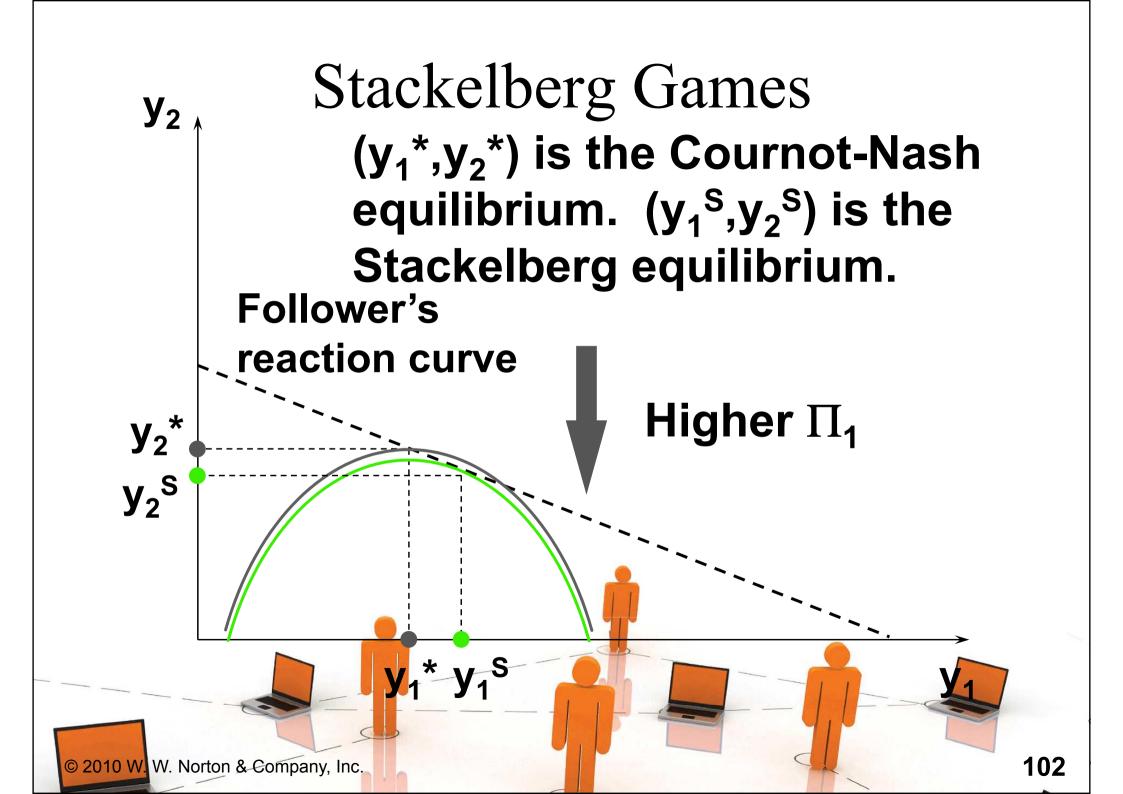
Q: What is firm 2's response to the leader's choice $y_1^s = 13 \cdot 9$?

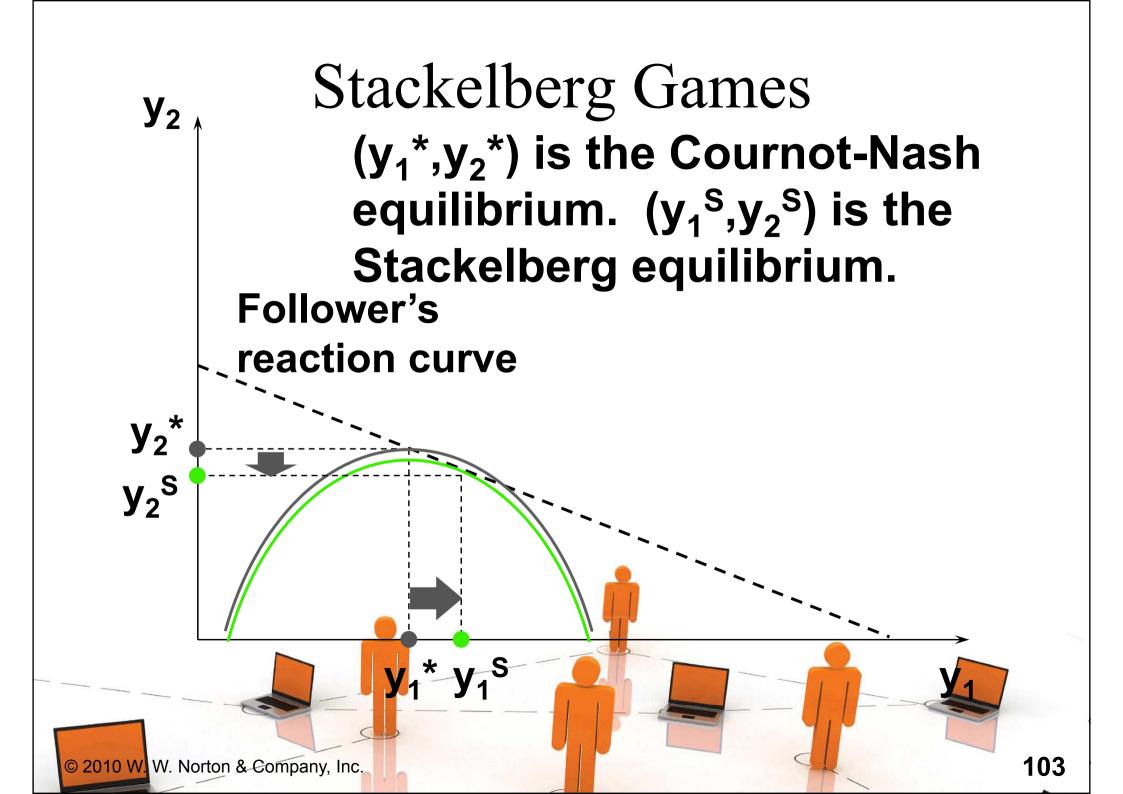
A:
$$y_{2}^{s} = R_{2}(y_{1}^{s}) = \frac{45 - 13 \cdot 9}{4} = 7 \cdot 8$$
.

The C-N output levels are $(y_1^*, y_2^*) = (13,8)$ so the leader produces more than its C-N output and the follower produces less than its C-N output. This is true generally.









Price Competition

- ♦ What if firms compete using only price-setting strategies, instead of using only quantity-setting strategies?
- ◆ Games in which firms use only price strategies and play simultaneously are Bertrand games♣

- **◆** Each firm's marginal production cost is constant at c.
- **♦** All firms set their prices simultaneously.
- **♦ Q:** Is there a Nash equilibrium?

- ◆ Each firm's marginal production cost is constant at c.
- **♦** All firms set their prices simultaneously.
- ◆ Q: Is there a Nash equilibrium?
- **♦** A: Yes. Exactly one.

106

- ◆ Each firm's marginal production cost is constant at c.
- **♦** All firms set their prices simultaneously.
- ◆ Q: Is there a Nash equilibrium?
- ◆ A: Yes. Exactly one. All firms set their prices equal to the marginal cost c. Why?

♦ Suppose one firm sets its price higher than another firm's price.

- ♦ Suppose one firm sets its price higher than another firm's price.
- ◆ Then the higher-priced firm would have no customers.



- ♦ Suppose one firm sets its price higher than another firm's price.
- ◆ Then the higher-priced firm would have no customers.
- ♦ Hence, at an equilibrium, all firms must set the same price.

◆ Suppose the common price set by all firm is higher than marginal cost c.

- ◆ Suppose the common price set by all firm is higher than marginal cost c.
- ◆ Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit.



- ◆ Suppose the common price set by all firm is higher than marginal cost c.
- ◆ Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit.
- ◆ The only common price which prevents undercutting is c. Hence this is the only Nash equilibrium.

- ♦ What if, instead of simultaneous play in pricing strategies, one firm decides its price ahead of the others.
- ◆ This is a sequential game in pricing strategies called a price-leadership game.
- ♦ The firm which sets its price ahead of the other firms is the price-leader.

- ◆ Think of one large firm (the leader) and many competitive small firms (the followers).
- ◆ The small firms are price-takers and so their collective supply reaction to a market price p is their aggregate supply function Y_f(p).

© 2010 W. W. Norton & Company, Inc.

- **♦** The market demand function is D(p).
- ◆ So the leader knows that if it sets a price p the quantity demanded from it will be the residual demand

$$L(p) = D(p) - Y_f(p).$$

♦ Hence the leader's profit function is

$$\Pi_{L}(p) = p(D(p) - Y_{f}(p)) - c_{L}(D(p) - Y_{f}(p)).$$

♦ The leader's profit function is

♦ The followers collectively supply $Y_f(p^*)$ units and the leader supplies the residual quantity $D(p^*) - Y_f(p^*)$.