MICROECONOMICS
 HAL R. VARIAN

Game Theory

© 2010 W. W. Norton \& Eompany, Inc.

Game Theory

- Game theory helps to model strategic behavior by agents who understand that their actions affect the actions of other agents.

Some Applications of Game Theory

- The study of oligopolies (industries containing only a few firms)
- The study of cartels; e.g. OPEC
- The study of externalities; e.g. using a common resource such as a fishery.

Some Applications of Game Theory

- The study of military strategies.
- Bargaining.
- How markets work.

What is a Game?

\bullet A game consists of

- a set of players
- a set of strategies for each player
- the payoffs to each player for every possible choice of strategies by the players.

Two-Player Games

- A game with just two players is a two-player game.
- We will study only games in which there are two players, each of whom can choose between only two actions.

An Example of a Two-Player Game

- The players are called A and B.
- Player A has two actions, called "Up" and "Down".

An Example of a Two-Player Game

- Player B has two actions, called "Left" and "Right".
- The table showing the payoffs to both players for each of the four possible action combinations is the game's payoff matrix.

An Example of a Two-Player Game

Player B
L R

U	$(3,9)$	$(1,8)$	This is the
Player A	$(0,0)$	$(2,1)$	payoff matrix

Player A's payoff is shown first. Player payoff is shown second.

An Example of a Two-Player Game

Player B
L $\quad \mathbf{R}$

	U	$(3,9)$
Player A	$(1,8)$	
	$(0,0)$	$(2,1)$

A play of the game is a pair such as (U, R) where the 1st element is the action chosen by Player A and the znet is the action chosen Player B.

An Example of a Two-Player Game

Player B

This is the game's payoff matrix.
E.g. if A plays Up and B plays Right then A's payoff is $\mathbf{1}$ and $\mathrm{B}^{\prime} s$ payoff is $\mathbf{8}$.

An Example of a Two-Player Game

Player B

This is the game's payoff matrix.

And if A plays Down and B plays Right then A's payoff is 2 and B^{\prime} 's payoff is 1.

An Example of a Two-Player Game

Player B
L $\quad \mathbf{R}$

What plays are we likely to see for this game?

An Example of a Two-Player Game

An Example of a Two-Player Game

If B plays Right then A's best reply is Down since this improves A^{\prime} s payoff from 1 to 2. So (U, R) is not a likepoplay.

An Example of a Two-Player Game

An Example of a Two-Player Game

If B plays Right then A's best reply is Down.

An Example of a Two-Player Game

If B plays Right then A's best reply is Down. If A plays Down then B's best reply is Right. So (D, R) is likely play.

An Example of a Two-Player Game

An Example of a Two-Player Game

If A plays Down then B's best reply is Right, so (D, L) is not a likely play.

An Example of a Two-Player Game

An Example of a Two-Player Game

If A plays Up then B's best reply is Left.

An Example of a Two-Player Game

If A plays Up then B's best reply is Left. If B plays Left then A's best reply is Up. So (U,L) is a likely play.

Nash Equilibrium

- A play of the game where each strategy is a best reply to the other is a

Nash equilibrium.

- Our example has two Nash equilibria; (U,L) and (D,R).

An Example of a Two-Player Game

Player B

Player A
D $\mathbf{(0 , 0)}(\mathbf{(2 , 1)}$
(U, L) and (D, R) are both Nâsh equilibria for the game

An Example of a Two-Player Game

Player B

(U, L) and (D, R) are both Nash equilibria for the game. But which will we see? Notice that (U, L) is preferred to (D, R) by boyers.

The Prisoner's Dilemma

- To see if Pareto-preferred outcomes must be what we see in the play of a game, consider the famous example called the Prisoner's Dilemma game.

The Prisoner's Dilemma

Clyde

What plays are we likely to see for this game?

The Prisoner's Dilemma

Clyde

If Bonnie plays Silence then Clyde's best reply is Confess.

The Prisoner's Dilemma

Clyde
S

If Bonnie plays Silence then Clyde's best reply is Confess If Bonnie-plays Confess then Elyde's best repis Conferss.

The Prisoner's Dilemma

Clyde

So no matter what Bonnie plays, Clyde's best reply is always Confess. Confess is a strategifor Clyde.

The Prisoner's Dilemma

Clyde

Similarly, no matter what Clyde plays, Bonnie's best reply is always Confess. Confess is a dominates sti tegy for Bonniealso.

The Prisoner's Dilemma

Clyde

\[

\]

So the only Nash equilibrium for this game is (C, C), even though (S, S) gives both Bonnie and Clyde better payoffs. The only Nash equilibrium oovis is inefficient inc

Who Plays When?

- In both examples the players chose their strategies simultaneously.
- Such games are simultaneous play games.

Who Plays When?

-But there are other games in which one player plays before another player.
-Such games are sequential play games.

- The player who plays first is the leader. The player who plays second is the foll wer.

A Sequential Game Example

- Sometimes a game has more than one Nash equilibrium and it is hard to say which is more likely to occur.
- When a game is sequential it is sometimes possible to argue that one of the Nash equilibria is more likely to occur than the other.

A Sequential Game Example

(U, L) and (D, R) are both NE when this game is played simultaneously and we have no way of deciding which equilibrium is more-likely to occur:

A Sequential Game Example

Suppose instead that the game is played sequentiall y, with A leading and B following. We can rewrite the game in its

A Sequential Game Example

A Sequential Game Example

A Sequential Game Example

This is our original example once more. Suppose again that play is simultaneous. We discovered that the game two Nash equilibria; (U,L) and (D,R).

A Sequential Game Example

Player A has been thought of as choosing to play either U or D, but no combination of both; i.e. as playing purs=ly U or D. U and D=are Player A's

A Sequential Game Example

Similarly, L and R are Player B's pure strategies.

A Sequential Game Example

Consequently, (U, L) and (D, R) lare pure strategy Nash equilibri. Must every game have at least one pure strategy Nash equilibrium?

Pure Strategies

Player B

L $\quad \mathbf{R}$

Here is a new game. Are there any pure strategy Nash equilibria?

Pure Strategies

Is (U,L) a Nash equilibrium?

Pure Strategies

Player B

Player A
R

	U	$(1,2)$
Player A	$(0,4)$	
	D	$(0,5)$
		$(3,2)$

Is (U,L) a Nash equilibrium? No. Is (U, R) a Nash equilibrium?

Pure Strategies

Player B

L \quad R

Is (U,L) a Nash equilibrium? No. Is (U, R) a Nash equilibrium? No. Is (D, L) a fash equilibrium?

Pure Strategies

Player B

Player A
R

U	$(1,2)$	$(0,4)$
Player A	$(0,5)$	$(3,2)$

Is (U,L) a Nash equilibrium? No. Is (U, R) a Nash equilibrium? No. Is (D,L) a Nash equilibrium? No.

Pure Strategies

Player B

Player A
R

U	$(1,2)$	$(0,4)$
Player A	$(0,5)$	$(3,2)$

Is (U,L) a Nash equilibrium? No. Is (U, R) a Nash equilibrium? No. Is (D, L) a Nash equilibrium? No. Is, (Dur) R) Nashequilibrium? No.

Pure Strategies

Player B

L $\quad \mathbf{R}$

So the game has no Nash equilibria in pure strategies. Even so, the game does have a Nash equilibrium, but in mixed strate les.

Mixed Strategies

- Instead of playing purely Up or Down, Player A selects a probability distribution ($\pi_{\mathrm{U}}, 1-\pi_{\mathrm{U}}$), meaning that with probability π_{U} Player A will play Up and with probability $1-\pi_{u}$ will play Down.
- Player A is mixing over the pure strategies Up and Down.

Mixed Strategies

- Similarly, Player B selects a probability distribution ($\pi_{\mathrm{L}}, 1-\pi_{\mathrm{L}}$), meaning that with probability π_{L} Player B will play Left and with probability $1-\pi_{\mathrm{L}}$ will play Right.
\bullet Player B is mixing over the pure strategies Left and Right.
- The probaloility distril ution $\left(\pi_{\mathrm{L}}, 1=\pi_{\mathrm{L}}\right)$ is a mixed tra gy for Player B.

Mixed Strategies

Player B
L $\quad \mathbf{R}$

This game has no Nash equilibrium in pure strategies, but it does have a Nash equilibrium in mixed strategies. Fow is it computed?

Mixed Strategies

Player B

Mixed Strategies

> Player B
> $\mathrm{L}, \pi_{\mathrm{L}} \quad \mathbf{R}, 1-\pi_{\mathrm{L}}$

A's expected value of choosing Up is ??

Mixed Strategies

\[

\]

A's expected value of choosing $U p$ is π_{L}. A's expected value of choosing Down is ??

Mixed Strategies

$$
\begin{aligned}
& \text { Player B } \\
& \mathbf{L}, \pi_{\mathrm{L}} \quad \mathbf{R}, 1-\pi_{\mathrm{L}} \\
& \begin{array}{r|c|c|}
\cline { 2 - 3 } & \mathbf{U}, \pi_{U} & (1,2) \\
\text { Player A } \\
\mathbf{D}, 1-\pi_{U} & (0,4) \\
\cline { 2 - 3 } & (0,5) & (3,2) \\
\hline
\end{array}
\end{aligned}
$$

A's expected value of choosing $U p$ is π_{L}. A's expected value of choosing Down is $3\left(1-\pi_{\mathrm{L}}\right)$.

Mixed Strategies

A's expected value of choosing Up is π_{L}. A's expected value of choosing Down is $3\left(1-\pi_{L}\right)$. If $\pi_{L}>3\left(1 \leqslant t_{L}\right)$ then A will choose only Up, but there is no NE in which A plays only Up.

Mixed Strategies

A's expected value of choosing Up is π_{L}. A's expected value of choosing Down is $3\left(1-\pi_{L}\right)$. If $\pi_{L}<3\left(1 \leqslant s_{L}\right)$ then A will choose only Down, bet there is no NE in which A plays only Down.

Mixed Strategies

\[

\]

If there is a NE necessarily $\pi_{\mathrm{L}} \xlongequal{\hat{}} 3\left(1-\pi_{\mathrm{L}}\right) \Rightarrow \pi_{\mathrm{L}}=3 / 4$; i.e. the way B mixes over Left and Right must make A indifferent between choosing Up Down.

Mixed Strategies

$$
\begin{aligned}
& \text { Player B } \\
& \text { L, 3/4 R, 1/4 }
\end{aligned}
$$

If there is a NE necessarily $\pi_{\mathrm{L}} \stackrel{\rho}{\hat{\rho}} 3\left(1-\pi_{\mathrm{L}}\right) \Rightarrow \pi_{\mathrm{L}}=3 / 4$; i.e. the way B mixes over Left and Right must make A indifferent between choosing Up Down.

Mixed Strategies

Player B
L, 3/4 R, 1/4

\mathbf{U}, π_{U}	$\mathbf{(1 , 2)}$	$\mathbf{(0 , 4)}$
Player A D, $1-\pi_{U}$	$\mathbf{(0 , 5)}$	$\mathbf{(3 , 2)}$

Mixed Strategies

\[

\]

B's expected value of choosing Left is ??

Mixed Strategies

Player B

$$
\mathbf{L}, 3 / 4 \quad \mathbf{R}, 1 / 4
$$

	\mathbf{U}, π_{U}	$(1,2)$
Player A		
D, $1-\pi_{U}$	$(0,4)$	
	$(0,5)$	$(3,2)$

B's expected value of choosing Left is $2 \pi_{U}+5\left(1-\pi_{U}\right)$. B's expected value of choosing Right is ??

Mixed Strategies

Player B

$$
\mathbf{L}, 3 / 4 \quad \mathbf{R}, 1 / 4
$$

\mathbf{U}, π_{U}	$(1,2)$	$(0,4)$
D, $1-\pi_{U}$	$(0,5)$	$(3,2)$

B's expected value of choosing Left is $2 \pi_{U}+5\left(1-\pi_{U}\right)$. B's expected value of choosing Right is $4 \pi_{\mathrm{U}}+2\left(1-\pi_{\mathrm{U}}\right)$.

Mixed Strategies

\[

\]

B's expected value of choosing Left is $2 \pi_{U}+5\left(1-\pi_{U}\right)$. B's expected value of choosing Right is $4 \pi_{J}+2\left(1-\pi_{U}\right)$. If $2 \pi_{U}+5\left(1-\pi_{U}\right)>4 \pi_{U}+2\left(1-\pi_{U}\right)$ then B will choose only Left, but there is no NE in which B plays only Left.

Mixed Strategies

\[

\]

B's expected value of choosing Left is $2 \pi_{U}+5\left(1-\pi_{U}\right)$. B's expected value of choosing Right is $4 \pi_{\mathrm{J}}+2\left(1-\pi_{\mathrm{U}}\right)$. If $2 \pi_{U}+5\left(1-\pi_{U}\right)<4 \pi_{U}+2\left(1-\pi_{u}\right)$ then B playseply Right, but there is no NE where B plays only Right.

Mixed Strategies

\[

\]

If there is a NE then necessarily
$2 \pi_{U}+5\left(1-\pi_{U}\right)=4 \pi_{U}+2\left(1-\pi_{U}\right) \Rightarrow \pi_{U}=3 / 5 ;$ i.e. the way A mixes over Up and Down must make B Indifferent between choosing Left or Right.

Mixed Strategies

\[

\]

The game's only Nash equilibrium consists of A playing the mixed strategy $(3 / 5,2 / 5)$ and B playing the mixed strategy $(3 / 4,1 / 4)$.

Mixed Strategies

\[

\]

The payoff will be $(1,2)$ with probability $3 / 5 \times 3 / 4=9 / 20$.

Mixed Strategies

\[

\]

The payoff will be $(0,4)$ with probability $3 / 5 \times 1 / 4=3 / 20$.

Mixed Strategies

\[

\]

The payoff will be $(0,5)$ with probability $2 / 5 \times 3 / 4=6 / 20$.

Mixed Strategies

\[

\]

The payoff will be $(3,2)$ with probability $2 / 5 \times 1 / 4=2 / 20$.

Mixed Strategies

\[

\]

A's NE expected payoff is

$$
1 \times 9 / 20+3 \times 2 / 20=3 / 4
$$

Mixed Strategies

\[

\]

A's NE expected payoff is

$$
1 \times 9 / 20+3 \times 2 / 20=3 / 4
$$

B's NE expected payoff is 20010 $\times 9 / 20+4 \times 3 / 20+5 \times 6 / 20+2 \times 2 / 20=16 / 5$.

How Many Nash Equilibria?

- A game with a finite number of players, each with a finite number of pure strategies, has at least one Nash equilibrium.
- So if the game has no pure strategy Nash equilibrium then it must have at least one mixed strategy Nash equilibrium.

Repeated Games

- A strategic game that is repeated by being played once in each of a number of periods.
-What strategies are sensible for the players depends greatly on whether or not the game
- is repeated over only a finite number of periods
- is repeated over an infinite number 2010 w w. Norof prerliods.

Repeated Games

- An important example is the repeated Prisoner's Dilemma game. Here is the one-period version of it that we considered before.

The Prisoner's Dilemma

Clyde

Suppose that this game will be played in each of only 3 periods; $t=1,2,3$. What is the likely outcome.

The Prisoner's Dilemma

Clyde

$$
\begin{aligned}
& S \quad C \\
&
\end{aligned}
$$

Suppose the start of period $\mathrm{t}=3$ has been reached (i.e. the game has already been played twice). What should Clyee do? What should Bomie do?

The Prisoner's Dilemma

Clyde

	S	C
S	$(-5,-5)$	(-30,-1)
C	$(-1,-30)$	(-10,-10)

Suppose the start of period $\mathrm{t}=3$ has been reached (i.e. the game has already been played twice). What should Clyee do? What should Bemnie do? Both should ochoose :Confess.

The Prisoner's Dilemma

Clyde

Now suppose the start of period $t=2$ has been reached. Clyde and Bonnie expect each will choose Confess next period. What shouldelyde do? What shouldo Bonnie, do?

The Prisoner's Dilemma

Clyde

Now suppose the start of period $t=2$ has been reached. Glyde and Bonnie expect each will choose Confess next period. What shouldelyde do? What shouldobonnie, do? Both should choose Confess.

The Prisoner's Dilemma

Clyde

		S	C
	Bonnie	S	$(-5,-5)$
	C	$(-1,-30)$	$(-10,-10)$

At the start of period $t=1$ Clyde and Bonnie both expect that each will choose Confess in each of the nexf two periods. What should Ce do? What should Bonnie do?

The Prisoner's Dilemma

Clyde

\[

\]

At the start of period $t=1$ Clyde and Bonnie both expect that each will choose Confess in each of the nexf two periods. What should Cue do? What should Bonnie, do? Both should choose Confess.

The Prisoner's Dilemma

Clyde

The only credible (subgame perfect) NE for this game is where both Clyde and Bonnie ghoose Confess in every periect.

The Prisoner's Dilemma

Clyde

The only credible (subgame perfect) NE for this game is where both Clyde and Bonnie choose Confe
every perier. This is true even if the game is repeated for ar large, still finite, number of periods. 92

The Prisoner's Dilemma

Clyde

\[

\]

However, if the game is repeated for an infinite number of periods then the game has a huge number of credible=NE.

The Prisoner's Dilemma

Clyde

Bonnie	S	S
	$(-5,-5)$	$(-30,-1)$
	C	$(-1,-30)$
		$(-10,-10)$

(C, C) forever is one such NE. But (S, S) can also be a NE because a player can punish the other for not cooperating (i.e. for choosing Confess).

