INTERMEDIATE

MICROEECONOMICS HAL R. VARIAN

Exchange Economies (revisited)

- No production, only endowments, so no description of how resources are converted to consumables.
- General equilibrium: all markets clear simultaneously.
- 1st and 2nd Fundamental Theorems of Welfare Economićs.

Now Add Production ...

- Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ...

Now Add Production ...

- Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ... That's not easy!

Robinson Crusoe's Economy

- One agent, RC.
- Endowed with a fixed quantity of one resource -- 24 hours.
- Use time for labor (production) or leisure (consumption).
- Labor time = L. Leisure time = 24 - L.
-What will RC choose?

Robinson Crusoe’s Technology

- Technology: Labor produces output (coconuts) according to a concave production function.

Robinson Crusoe's Technology

Coconuts

Robinson Crusoe's Technology

Coconuts

Production function

Robinson Crusoe's Preferences

- RC's preferences:
- coconut is a good
- leisure is a good

Robinson Crusoe's Preferences

Coconuts

Robinson Crusoe's Preferences

Coconuts

Robinson Crusoe's Choice

Coconuts

12

Robinson Crusoe's Choice

Coconuts

19

Robinson Crusoe's Choice

Coconuts

Robinson Crusoe as a Firm

- Now suppose RC is both a utilitymaximizing consumer and a profitmaximizing firm.
- Use coconuts as the numeraire good; i.e. price of a coconut = \$1.
\bullet RC's wage rate is w.
- Coconut output levell is C.

Robinson Crusoe as a Firm

\bullet RC's firm's profit is $\pi=C-w L$.

- $\pi=C-w L \Leftrightarrow C=\pi+w L$, the equation of an isoprofit line.
- Slope = + w .
\rightarrow Intercept $=\pi$.

Isoprofit Lines

Coconuts
\uparrow Higher profit; $\pi_{1}<\pi_{2}<\pi_{3}$

$$
C=\pi+w L
$$

23

Profit-Maximization

Coconuts

Profit-Maximization

Coconuts

25

Profit-Maximization

Coconuts

26

Profit-Maximization

Coconuts

27

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope (i.e. $w=\mathbf{M P}_{L}=1 \times \mathbf{M P}_{L}=\mathbf{M R P}_{L}$.

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope (i.e. $w=\mathbf{M P}_{L}=1 \times \mathbf{M P}_{L}=\mathbf{M R P}_{L}$. RC gets $\pi^{*}=C^{*}-w L^{*}$

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

Given \boldsymbol{w}, RC's firm's quantity demanded of labor is L^{*}

32

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

Given \boldsymbol{w}, RC's firm's quantity demanded of labor is L^{*} and output quantity supplied is C^{*}.

RC gets $\pi^{*}=C^{*}-w L^{*}$

33

Utility-Maximization

- Now consider RC as a consumer endowed with $\$ \pi^{*}$ who can work for \$w per hour.
- What is RC's most preferred consumption bundle?
- Budget constraint is $C=\pi^{*}+w L$.

Utility-Maximization

Coconuts

Given \boldsymbol{w}, RC's quantity supplied of labor is L^{*}

Utility-Maximization

Coconuts

Budget constraint; slope $=\boldsymbol{w}$

$$
C=\pi^{*}+w L
$$

Given \boldsymbol{w}, RC's quantity supplied of labor is L^{*} and output quantity demanded is C^{*}.

43

Utility-Maximization \& Profit-

 Maximization- Profit-maximization:
$-\mathbf{w}=\mathrm{MP}_{L}$
-quantity of output supplied = C^{*}
- quantity of labor demanded $=L^{*}$

Utility-Maximization \& Profit-

 Maximization- Profit-maximization:
$-\mathbf{w}=\mathrm{MP}_{L}$
-quantity of output supplied = C^{*}
-quantity of labor demanded $=L^{*}$
-Utility-maximization:
-w = MRS
- quantity of output demanded $=C^{*}$
- quantity of labor supplied $=L^{*}$

Utility-Maximization \& Profit-

 MaximizationProfit-maximization: Coconut and labor $-\mathbf{w}=\mathrm{MP}_{L}$ markets both clear. -quantity of output supplied = C^{*} -quantity of labor demanded $=L^{*}$
-Utility-maximization:
-w = MRS

- quantity of output demanded $=C^{*}$
- quantity of labor supplied = L^{*}

Utility-Maximization \& Profit-

 MaximizationCoconuts
$\mathbf{M R S}=\boldsymbol{w}=\mathbf{M P}_{L}$

Given \boldsymbol{w}, RC's quantity supplied of labor = quantity demanded of labor $=L^{*}$ and output quantity demanded = output quantity supplied $=C^{*}$.

Pareto Efficiency

\rightarrow Must have MRS $=M P D_{L}$.

Pareto Efficiency

Coconuts

Pareto Efficiency

Coconuts

Preferred consumption bundles.

Pareto Efficiency

Coconuts

Pareto Efficiency

Coconuts
$\mathrm{MRS}=\mathrm{MP}_{L}$. The common slope \Rightarrow relative

First Fundamental Theorem of Welfare Economics

- A competitive market equilibrium is Pareto efficient if
-consumers' preferences are convex
-there are no externalities in consumption or production.

Second Fundamental Theorem of Welfare Economics

- Any Pareto efficient economic state can be achieved as a competitive market equilibrium if
-consumers' preferences are convex
- firms' technologies are convex
-there are no externalities in consumption or production.

Non-Convex Technologies

- Do the Welfare Theorems hold if firms have non-convex technologies?

Non-Convex Technologies

- Do the Welfare Theorems hold if firms have non-convex technologies?
- The 1st Theorem does not rely upon firms' technologies being convex.

Non-Convex Technologies

Coconuts

Non-Convex Technologies

- Do the Welfare Theorems hold if firms have non-convex technologies?
- The 2nd Theorem does require that firms' technologies be convex.

Non-Convex Technologies

Coconuts

$\uparrow \quad$ MRS $=$ MP $_{L} . \quad$ The Pareto optimal allocation cannot be implemented by a competitive equilibrium.

Production Possibilities

- Resource and technological limitations restrict what an economy can produce.
- The set of all feasible output bundles is the economy's production possibility set.
- The set's outer boundary is the production possibility frontier.

Production Possibilities

Coconuts

$\uparrow \quad$ Production possibility frontier (ppf)

Production Possibilities

Coconuts

$\uparrow \quad$ Production possibility frontier (ppf)
Production possibility set

62

Production Possibilities

Coconuts

Fish

Production Possibilities

Coconuts

Fish

Production Possibilities

Coconuts

Fish

Production Possibilities

Coconuts

Ppf's slope is the marginal rate of product transformation.

Production Possibilities

Coconuts
$\uparrow \quad$ Ppf's slope is the marginal rate of product transformation. Increasingly negative MRPT \Rightarrow increasing opportunity cost to specialization.

Production Possibilities

- If there are no production externalities then a ppf will be concave w.r.t. the origin.
-Why?

Production Possibilities

- If there are no production externalities then a ppf will be concave w.r.t. the origin.
-Why?
- Because efficient production requires exploitation of comparative advantages.

Comparative Advantage

- Two agents, RC and Man Friday (MF).
\bullet RC can produce at most 20 coconuts or 30 fish.
- MF can produce at most 50 coconuts or 25 fish.

Comparative Advantage

Comparative Advantage

Comparative Advantage

Comparative Advantage

RC
 Economy

Comparative Advantage

Comparative Advantage

Economy

More producers with different opp. costs "smooth out" the ppf.

Coordinating Production \& Consumption

- The ppf contains many technically efficient output bundles.
- Which are Pareto efficient for consumers?

Coordinating Production \& Consumption

Coconuts
Output bundle is $\left(F^{\prime}, C^{\prime}\right)$

Coordinating Production \& Consumption

Coconuts
Output bundle is $\left(F^{\prime}, C^{\prime}\right)$ and is the aggregate endowment for distribution to consumers RC and MF.

Coordinating Production \&

 ConsumptionCoconuts
Output bundle is (F^{\prime}, C^{\prime}) and is the aggregate endowment for distribution to consumers RC and MF.

Coordinating Production \& Consumption

Coconuts
Allocate (F^{\prime}, C^{\prime}) efficiently; $\operatorname{say}\left(F_{\mathrm{RC}}^{\prime}, C_{\mathrm{RC}}^{\prime}\right)$ to $\mathbf{R C}$

Coordinating Production \& Consumption

Coconuts

Coordinating Production \& Consumption

Coconuts

Coordinating Production \& Consumption

Coconuts

Coordinating Production \& Consumption

Coconuts

$$
\uparrow \quad I
$$

Coordinating Production \& Consumption

Coconuts

Coordinating Production \& Consumption

Coconuts

Coordinating Production \& Consumption

Coconuts

Coordinating Production \&

Coconuts

Coordinating Production \&

Coconuts

Consumption

Coordinating Production \&

Coconuts

Consumption

$\uparrow \quad$ Instead produce ($F^{\prime \prime}, C^{\prime \prime}$).
Give MF same allocation
 utility is unchanged

Coordinating Production \&

Coconuts

Consumption

Coordinating Production \&

Coconuts

Consumption

Coordinating Production \&

Coconuts

Consumption

Coordinating Production \& Consumption

- MRS $=$ MRPT \Rightarrow inefficient coordination of production and consumption.
- Hence, MRS = MRPT is necessary for a Pareto optimal economic state.

Coordinating Production \& Consumption

Coconuts

Decentralized Coordination of

 Production \& Consumption\rightarrow RC and MF jointly run a firm producing coconuts and fish.

- RC and MF are also consumers who can sell labor.
\bullet Price of coconut $=p_{c}$.
\rightarrow Price of fish $=p_{F}$.
- RC's wage rate $=w_{\text {RC }}$.
- MF's wage rate $=w_{M F}$.

Decentralized Coordination of Production \& Consumption

$-L_{R C}, L_{M F}$ are amounts of labor purchased from RC and MF.
\bullet Firm's profit-maximization problem is choose $C, F, L_{R C}$ and $L_{M F}$ to
$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$.

Decentralized Coordination of Production \& Consumption

$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$. Isoprofit line equation is
constant $\pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$

Decentralized Coordination of Production \& Consumption

$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$. Isoprofit line equation is
constant $\pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$ which rearranges to

$$
C=\frac{\pi+w_{R C} L_{R C}+w_{M F} L_{M F}}{p_{C}}-\frac{p_{F}}{p_{C}} F .
$$

Decentralized Coordination of Production \& Consumption

$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$. Isoprofit line equation is
constant $\pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$ which rearranges to

$$
C=\frac{\pi+w_{R C} L_{R C}+w_{M F} L_{M F}}{----\underset{\text { intercept }}{p_{C}}-\frac{p_{F}}{\mathbb{R C}_{C}} F .}
$$

Decentralized Coordination of Production \& Consumption

Coconuts

Decentralized Coordination of Production \& Consumption

Coconuts

The firm's production possibility set.

Decentralized Coordination of Production \& Consumption

Coconuts

Decentralized Coordination of Production \& Consumption

Coconuts

Decentralized Coordination of Production \& Consumption

Coconuts

Decentralized Coordination of Production \& Consumption

Coconuts

Profit-max. plan
Competitive markets Slope $=-\frac{p_{F}}{p_{C}}$ and profit-maximization
\Rightarrow
$M R P T=-\frac{p_{F}}{p_{C}}$.
© 2010 W. W. Norton \& Eompany, Inc.

Decentralized Coordination of

 Production \& Consumption- So competitive markets, profitmaximization, and utility maximization all together cause

$$
M R P T=-\frac{p_{F}}{p_{C}}=M R S,
$$

the condition necessary for a Pareto optimal economic state.

Decentralized Coordination of Production \& Consumption

Coconuts

Decentralized Coordination of

Production \& Consumption

Coconuts
Competitive markets, utility$\uparrow \quad$ maximization and profit-

