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The Analysis of Two-Factor Interactions
in Fixed Effects Linear Models

Robert J. Boik
Montana State University

Key words: simultaneous inference, multiple comparisons, product contrasts

This article considers two related issues concerning the analysis of inter-
actions in complex linear models. The first issue concerns the omnibus test
for interaction. Apparently, it is not well known that the usual F test for
interaction can be replaced, in many applications, by a test that is more
powerful against a certain class of alternatives. The competing test is based
on the maximal product interaction contrast F statistic and achieves its power
advantage by focusing solely on product contrasts. The maximal product
interaction F test is reviewed and three new results are reported: (a) An
extended table of exact critical values is computed, (b) a table of moment
functions useful for approximating the p-value corresponding to an observed
maximal F statistic is computed, and (c) a simulation study concerning the
null distribution of the maximal F statistic when data are unbalanced or
covariates are present is reported. It is conjectured that lack of balance or
presence of covariates has no effect on the null distribution. The simulation
results support the conjecture. The second issue concerns follow-up tests
when the omnibus test is significant. It appears that researchers, in general,
do not perform coherent follow-up tests on interactions. To make it easier
for researchers to do so, an exposition on the use of product interaction
contrasts and partial interactions in complex fixed-effects models is provided.
The recommended omnibus and follow-up tests are illustrated on an educa-
tional data set analyzed using SAS (SAS Institute, 1988) and SPSS (1990).

Hypotheses in an analysis of variance (ANOVA) or an analysis of covariance
(ANCOvA) model are typically categorized into a small number of families.
A two-way classification with covariates, for instance, might have four
families: row effects, column effects, row X column interaction effects, and
covariate effects. Associated with each family is a composite hypothesis
stating that the null form of all subhypotheses in the family is true. The
conventional strategy begins by testing the composite hypothesis; if it is
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rejected, then subhypotheses implied by the composite are tested. Gabriel
(1969) refers to such a strategy as logically coherent. For example, in a
one-way classification, the usual composite hypothesis states that all popu-
lation means are identical. This composite hypothesis implies that every
contrast among the population means is equal to zero. Accordingly, testing
contrasts among means after rejection of the composite hypothesis is a
coherent strategy.

The usual composite hypothesis for a two-factor interaction states that
contrasts among the levels of one factor do not differ between levels of the
other factor. In one strategy, rejection of the composite interaction hypoth-
esis is followed by tests of simple effects contrasts. A simple effects contrast
is a contrast among the levels of one factor at a specific level of the other
factor. It is well known that this strategy is not coherent (Betz & Gabriel,
1978). That is, simple effects hypotheses are not implied by the composite
interaction hypothesis. Testing simple effects following a significant interac-
tion produce what Marascuilo and Levin (1970) call a Type IV error: “the
incorrect interpretation of a correctly rejected hypothesis™ (p. 398).

Rosnow and Rosenthal (1989a), in a survey of studies employing factorial
ANOVA, documented the widespread practice of following a significant inter-
action by tests of simple effects contrasts. Rosnow and Rosenthal (1989b)
suggested that one reason for the high frequency of incoherent analyses is
that, for the analysis of interactions, researchers are poorly served by stan-
dard software packages. While I sympathize with (and have empathy for)
software users, I am not in complete agreement. I suspect that interactions
are rarely analyzed correctly for the following three reasons. (a) Descrip-
tions of coherent procedures for analyzing interactions have been, with few
exceptions, restricted to balanced data without covariates. This is true in the
statistical (Boik, 1986; Bradu & Gabriel, 1974; Gabriel, Putter, & Wax,
1973), psychological (Boik, 1979; Keppel, 1973; Keppel & Zedeck, 1989),
as well as educational (Betz & Gabriel, 1978; Betz & Levin, 1982; Maras-
cuilo & Levin, 1970) literature. As a consequence, most researchers are
unaware that methods for analyzing two-factor interactions are applicable
to unbalanced as well as balanced data and to models that include covariates
as well as higher order interactions. (b) Most researchers are unaware that
standard software can compute detailed analyses of two-factor interactions.
(c) Most researchers are unaware that specialized multiple comparison
procedures for interaction have been developed.

This article attempts to correct the preceding misconceptions. In partic-
ular, the analysis of interactions in unbalanced data with covariates is
described and illustrated with SAS (SAS Institute, 1985, 1988) and SPSS
(1990). These software packages were selected because they are, to the
author’s knowledge, the only widely available packages that include both a
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flexible linear models procedure and a matrix procedure capable of comput-
ing the maximal product contrast F statistic. An extensive table of critical
values for the maximal product contrast F statistic is given along with a table
to facilitate computation of the associated p-values. Simulation evidence
that the critical values and p-values are applicable when data are not
balanced or covariates are present is reported. This article also compares
the analysis strategy based on the maximal product contrast F statistic to the
Lutz and Cundari (1987) strategy based on the most significant parametric
function.

To enhance readability, mathematical details have been relegated to the
Appendix. Also, long technical phrases have been abbreviated to short
technical phrases (second best, after short nontechnical phrases). For in-
stance, Factor A simple effects contrastis shortened to simple-A contrast, and
Factor B main effects contrast is shortened to main-B contrast.

Adjusted Means and Main Effects Tests

Adjusted Means

Consider a fixed effects linear model that includes two factors, A and B,
and their interaction. The model may also include other factors, interac-
tions, and covariates. Factor A has a levels, and Factor B has b levels. The
data need not be balanced, provided that each cell in the model is observed
at least once, and the mean square error has at least one degree of freedom.

All information concerning Factors A and B is contained in two matrices:
the matrix of estimated means (adjusted, if covariates are present) and the
matrix of estimated covariances among the estimated means. The corre-
sponding model is

M=M+E or p=p+e,

where M is the a X b matrix of estimated (adjusted) means, M is the
corresponding matrix of population (adjusted) means, and E is the a x b
matrix of random residuals. The vectors ;l, I, and e are each ab X 1 and
are obtained by stacking the columns of M, M, and E, respectively. This
operation is denoted by . = vec(M), p = vec(M) and e = vec(E). The
entries in M are called least- -squares means by SAS (SAS Institute, 1988)
and adjusted means by SPSS (1990). Estimation of adjusted means is de-
scribed in the Appendix.

The matrix of covariances among the entires of M can be written as
var(j) = 0’3 for % in (A1) and where o® is an unknown scalar. The
covariance matrix is estimated by var(p) = 6?3, where ¢* is the mean
square error (MSE) obtained from fitting the full model and has v degrees
of freedom.
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Likelihood Ratio Tests

The usual hypotheses associated with a two-way classification can be
written as Hy: C'p = 0, where C is a known ab X s coefficient matrix and
where C' denotes the transpose of C. The linear function, C'p., could consist
of a set of main effects contrasts, simple effects contrasts, or interaction
contrasts depending on the choice of C. The likelihood ratio test (LRT)
statistic for Hy: C'pn = 0 is an F statistic, is denoted by F(C), and is given
in (A3).

The principal disadvantage of expressing hypotheses as Hy: C'p = 0 is
that the appropriate choice of C is not always apparent. Fortunately, most
hypotheses of interest can be expressed, somewhat more transparently, as
H,:C,MC; = 0, where C4 and Cj are known coefficient matrices. The
matrix C4 operates on Factor A while the matrix Cp operates on Factor B.
If the hypothesis concerns an effect averaged over the levels of Factor A,
then C4is ana X 1 vector with each element equal to a™". If the hypothesis
concerns differences among the levels of Factor A, then each column of C,
consists of the coefficients associated with a particular contrast among the
levels of Factor A. The Factor B coefficient matrix is constructed similarly.
For example, suppose a = 3, b = 4, and the difference between A, and A,,
averaged over B, is of interest (a main-A contrast). To average over
columns, Cpis equated to (.25 .25 .25 .25)'. To compare rows 1 and 3,
Cyisequatedto (1 0 —1)'.

Regardless of the particular choice of C4 and Cp, the LRT statistic is still
an F statistic (or proportional to an F statistic). To emphasize the hypothesis
being tested, the LRT statistic is written as T(C,4, Cp). An expression for
T(C,4,Cp) is given in (A4). In general, T(C4, Cp) is equal to the F statistic
for testing Hy: C4 MCjp = 0 multiplied by the numerator degrees of free-
dom. That is, the numerator is the hypothesis sum of squares, and the
denominator is MSE.

Subscripts are used to distinguish between the coefficient matrices when
multiple hypotheses are tested. Factor A coefficient matrices are denoted
by Caa), Caq), and so forth. The matrix C4; concerns the ith hypothesis
involving Factor A ; it does not refer to the ith level of Factor A. Factor B
coefficient matrices are labeled in the same way. Small cs, ¢, and cp(;, are
used if the coefficient matrix is a vector. If the coefficient vector is a column
of ones, it is denoted by 1, or 1,.

Main Effects Tests

Main effects hypotheses concern contrasts among the row or column
means of M. In computing these marginal means, rows and columns of M
are weighted equally. The A means and their estimators are

pa =M1,b' and p, = M1, b7},



Analysis of Interactions

respectively. Similarly, the B means and their estimators are
ps =M'1,a! and pz=M1la".

Let ¢4 be a contrast among the A means, and let J:A be the corresponding
estimator. That is,

Ua=cipy and Yy = ciphy,

where ¢4 is an a X 1 coefficient vector whose elements sum to zero. For
example, suppose that @ = 4 and that the difference between A, and the
average of A; and A is of interest. The contrastis Y, = pa, — 3(pa, + pa,),
where g4, is the ith element of p,. The corresponding coefficient vector is
¢a=(1 —-.5 —-.5 0)'. Amain-A contrast and its estimator can also be
written as ¢4 = ¢y M1,b " and y, = ¢, M1, b7}, respectively.

Suppose that ¢, is an a priori main-A contrast and that a test of

Y4 = 01is desired. Omitting the division by b, the hypothesis of interest is
H;:c4s M1, = 0. The LRT statistic is an F statistic and can be written as:

Vi (caM1,)?

var(y,) var(ciM1,)’
An expression for var(cs M1,) is given in (A6). The statistic is written as
T(ca,1,) to emphasize that a contrast among rows (Factor A), summed over
columns (Factor B), is being tested. Because the coefficient vector was
chosen a priori, T(c4,1,) can be referred to the F distribution with 1 and
v degrees of freedom.

If no a priori main-A contrasts have been specified, then a composite null
is usually tested. The composite null states that p,, = g, for all i, j or that
all main-A contrasts are zero. The null can also be written as Hy: Yaq) =
Vae) = - = Ya@-1 = 0, where Yy, Uag), - - . , Yae - 1) form a basis set of
main-A contrasts. A basis set of main-A contrasts is a set of a — 1 contrasts
whose coefficient vectors are linearly independent. The vectors need not be
orthogonal. If the coefficient vectors are arranged into a matrix,
Cs=(caq) Ca@y ... Ca@-1), then the composite null can be written as
Hy:C4ipa = 0o0r, equivalently, as Hy: C4 M1, = 0. For example, if a = 4,
then a suitable C, matrix is

T(CA , lb) =

1 1 1

(-1 0o o
Ci="0 -1 ol

0 0 -1

The columns of C, are said to form a basis set of coefficients. In the
remainder of this article, C, and Cg, without additional subscripts, denote
matrices forming basis sets of coefficients for main-A and main-B contrasts.

The LRT statistic for Hy: C4M1, = 0 is denoted by T(C,, 1,) to em-
phasize that a basis set of contrasts among rows, summed over columns, is

5
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being tested. The statistic is identical to @ — 1 times the usual F statistic for
testing row effects. For an o level test, the composite null is rejected if
(@ = 1)"'T(Cy, 1,) = F, =%, where F; _§ ,is the upper 100(1 — «) percen-
tile of the F distribution with @ — 1 and v degrees of freedom. Scheffé’s
(1953) method can be used to control familywise Type I error rate for
follow-up tests: Ho:cyM1, = 0 is rejected if T(c4,1,) = (a — 1) F, 3,
Furthermore, if the composite null is rejected, then Scheffé’s method is
guaranteed to find at least one significant main-A contrast because

max T(cq,1,) = T(Cy,1p),
€A

where the maximization is over all vectors that sum to zero. Main-B con-
trasts are tested in an analogous manner.

Interaction Tests
Partial Interaction Hypotheses

Let Y5 be a main-B contrast: Yz = ¢z pg, where ¢z1, = 0. Associated
with each main-B contrast is a set of simple-B contrasts, one at each level
of Factor A. The simple-B contrast at the ith level of Factor A is denoted
by Wpay: Usuy = E,’-’: 16 ij, where ¢; is the jth element of ¢p. In matrix
terms, the vector of simple-B contrasts and its estimator are

Wpa,) Usa,)
. n . "
Wp4) = Mcz = :’JB(AZ) and g = Mcp = th( ? ,

Up(a,) Upa,)
respectively.

A main-B contrast and its associated vector of simple-B contrasts are
related in a straightforward manner: The main-B contrast is the mean of the
associated simple-B contrasts. The question of interaction is also straightfor-
ward: Are the simple-B contrasts identical at all levels of A, or do they
differ? A main-B contrast is said to interact with A if the simple-B contrasts
are not identical. A main-B contrast does not interact with A if the simple-B
contrasts are identical. A main-B contrast that does not interact with A can
be interpreted without regard for any A B interactions that might exist. To
help determine if {5z interacts with A, equality of the simple-B contrasts can
be tested. The corresponding nullis Hy : Yip(a) = Wpa) foralli, j. Boik (1979)
called this a partial interaction hypothesis. The partial interaction hy-
pothesis implies that all contrasts among the simple-B contrasts are equal
to zero. Thus, the null can be written as Hy: C/ g4 = 0 or, equivalently,
H,:CiMcp = 0. The LRT statistic for Hy: C4Mcz = 0 is T(Ca,cp). The
notation emphasizes that a basis set of row contrasts among a set of simple-B
contrasts is being tested. For a priori ¢z, T(Cy, ¢) is distributed as a — 1
times an F distribution with @ — 1 and v degrees of freedom.

6
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The distinction between simple effects hypotheses and partial interaction
hypotheses is an important one and warrants repeating. The partial interac-
tion hypothesis Hy: C; Mcp = 0 states that the a simple- B contrasts are each
equal to the same value; but this value need not be zero. The simple-B
hypothesis, Ho : ¥54) = 0, or, equivalently, Hy: Mcz = 0, states that the a
simple-B contrasts are each equal to the same value and that this value is
0. The LRT statisticis T(I,, ¢;), and, for a priori ¢, is distributed as a times
an F with a and v degrees of freedom. The simple-B hypothesis is false if
some simple-B contrast, or some combination of the simple-B contrasts, is
nonzero. The partial interaction hypothesis is false if some difference among
the simple-B contrasts is nonzero.

Composite Interaction Hypothesis: Likelihood Ratio Test

If a priori partial interaction hypotheses have not been specified, then a
composite interaction null is usually tested. The composite null states that,
for any main-B contrast, the associated simple-B contrasts are identical at
alllevels of A. The null can be written as Hy: C; MCjg = 0. The LRT statistic
for the composite interaction null is 7(C,, Cp) and is identical to (a — 1)
(b — 1) times the usual F statistic for interaction. For an « level test, Hy is
rejected if Fag = F(,_%e - 1),,, Where Fap = [(a — 1)(b — 1)]7' T(C4, Cs).

A composite interaction null, in many applications, can be tested by a test
that is more powerful against a certain class of alternatives than the LRT.
The competing test is based on the maximal product interaction contrast F
statistic. To understand the rationale underlying the maximal F statistic,
some background on interaction contrasts is needed.

Interaction Contrasts

A variety of coherent follow-up tests can be conducted if the composite
interaction null is rejected. The composite null implies that all interaction
contrasts are zero. The general form of an interaction contrast is

a b
Yup = 2 O Cijij, or, equivalently, .5 = trace(Cjz M),
i=1j=1

where C4pis ana X b matrix with elements {c;;}; each row and each column
of C4p sums to zero. The LRT statistic for Hy : trace(C4;3M) = Ois a special
case of (A3) and can be written as

{25 _ [trace(C s M) M
var({p)  var[trace(ChpM)]’

where var[trace(Cjs M)] is given in (A5). If Cp is specified a priori, then
F[vec(Cy4p)] has an F distribution with 1 and v degrees of freedom.

In practice, attention can often be restricted to a subset of interaction
contrasts called product interaction contrasts. A product contrast is an inter-

F[vec(Cap)] =

7
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action contrast for which the coefficient matrix can be written as C,5 =
¢4 ¢z, Where ¢, and c;p are coefficient vectors that sum to zero. The contrast
is called a product contrast because the ijth coefficient in C4p is given
by the product of the ith coefficient in ¢4 and the jth coefficient in c5. A
product contrast can be written as {5 = ¢y Mcg, and the LRT statistic for
Ho:ciMcp = 0is T(cy,cCp).

If min(a, b) > 2, then product contrasts are only a subset of interaction
contrasts. Consequently, some components of the interaction are ignored
if attention is restricted to product contrasts. Nevertheless, substantial
information is not likely to be lost because nonproduct.contrasts are very
difficult to interpret. Product contrasts, on the other hand, are frequently
easy to interpret. The difficulty of interpreting nonproduct contrasts is
illustrated in a later section that compares the Lutz and Cundari (1987)
approach to the present approach.

To interpret a product contrast, ¢; Mcg, consider, first, the associated
main-B contrast: {5 = cppp. A complete interpretation of the main-B
contrast entails a statement about its value, averaged over the levels of A,
plus a statement about how it differs among the levels of A. Testing the
partial interaction, using 7(C,, ¢z), helps to determine if the contrast differs
among the levels of A. If it is concluded that the simple-B contrasts do differ
among the levels of A, then a natural follow-up strategy is to examine
specific differences among the simple-B contrasts. This is where product
contrasts are useful. A product contrast is a specific difference among the
simple-B contrasts. Hence, to interpret a product contrast, one need only
interpret a difference among simple-B contrasts. Of course, if the partial
interaction null cannot be rejected, then product contrasts need not be
examined; the simple-B contrasts do not differ significantly. Product con-
trasts can also be interpreted as a difference among simple-A contrasts.

As an illustration, consider the example from Rosnow and Rosenthal
(1989a):

B, B,
~ A3 3
M= A2(5 7)'
The sample means reflect the effects of a fictitious treatment, ralphing, on
the performance (number of hits) of baseball players. Factor A has levels
A;: control and A;: ralphed. Factor B has levels B;: inexperienced players
and B,: experienced players. The two main effects and their interaction are
significant. There is only one contrast in a two-level factor, so this analysis
is somewhat mechanical. For ¢, = (=1 1)’, the estlmated simple-A con-
trasts are ¢A(B) = (2 4)', and the average contrast is q;,, = 3. The perfor-

mance improvement due to ralphing is estimated to be 2 hits for inexperi-
enced players, 4 hits for experienced players, and 3 hits on the average. For

8
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cg = (=1 1)', the estimated product contrast is s = 2. Because the
interaction has just one degree of freedom, this product contrast is the entire
interaction. The interpretations are straightforward. On the average, the
performance improvement due to ralphing is 3 hits, but experienced players
benefit more (by two hits) than inexperienced players.

Composite Interaction Hypothesis: Maximal F Test

The LRT test of Hy: C4; MCjp = 0 is not recommended when attention is
restricted to product contrasts. It is not as powerful for product contrasts
as a competing test which considers only product contrasts. The recom-
mended test is based on Roy’s (1953) union-intersection principle and
rejects the composite null for large R, where

R = max T(c4, cp), 2)

cq.Cp
and where the maximization is over all vectors that sum to zero. The test
statistic, R, is the maximal F corresponding to a product interaction contrast.

When data are balanced and there are no covariates, the exact null dis-
tribution of R is known. Boik (1985, 1986) referred to the distribution of R
as the Studentized maximum root (SMR) distribution. The 100(1 — «) per-
centile of the SMR distribution is denoted by R, %, where p = min
(@—1,b —1)and g = max(a — 1,b — 1). Tablesof R} ;S for2 =p <5,
p=q=6,a=.05anda = .01 are given in Boik (1986). There is no need
for special tables corresponding to p = 1 because R, 5 = qF ,.° The
SMR percentiles can still be used when data are unbalanced or covariates
are present, but the percentiles are, perhaps, no longer exact. The accuracy
of the SMR percentiles for unbalanced data or ANCOVA is discussed in a
following section.

Interaction Contrasts Versus Corrected Cell Means

Rosnow and Rosenthal (1989a, 1989b) argued that to correctly interpret
an interaction “the exercise of looking at the ‘corrected’ cell means is
absolutely essential” (1989b, p. 1282). Corrected cell means are sometimes
called interaction effects and are obtained by removing row, column, and
grand mean effects from the cell means. The ijth corrected cell mean is

Yi=wi~ (R —E) - -R) R = - - R, TR,
using the usual dot and overbar notation to denote averaging. The a X b
matrix of corrected cell means is

I'= {‘Yt/} = H,MH,,

where H, =1, —a'1,1,and H, = I, — b1, 1;.
From the expression for I', it can be deduced that a corrected cell mean
is a product contrast. In particular, vy; = ¢4 Mcg(), Where ¢, is the ith

9
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column of H, and ¢ is the jth column of H,. For example, if a = 4 and
b =5, then the coefficient vectors corresponding to <y are cup) =
(=25 75 —-25 —-25) andcps=(—-2 -2 8 -2 -2).Itis
not clear why Rosnow and Rosenthal insisted that one must examine the
corrected cell means. The corrected cell means are merely one set of product
contrasts. In a particular study, other interaction contrasts may be more
meaningful.

Rosenthal and Rosnow (1985, p. 28-36) also examined more general
product contrasts (they call them crossed contrasts). They computed the
product contrasts on the corrected cell means, I', rather than on the uncor-
rected cell means, M. This is not erroneous, but it is unnecessary. Interac-
tion contrasts (product or otherwise) are identical whether computed on the
corrected or uncorrected cell means. That is, trace(C4zI") = trace(C 3z M)
for all matrices, C 4, in which each row and each column sums to zero. Thus,
corrected cell means need not be computed to examine interaction contrasts.

Multiple Comparison Procedures for Interactions

It is asumed that Type I error rate is to be controlled for some set (i.e.,
family) of contrasts. Power for testing a particular contrast depends, in part,
on the size of the set the contrast belongs to. Large sets translate into small
power for individual contrasts. Power can be increased by restricting tests
to smaller sets of contrasts. This trade-off between generality and power is
typical of multiple comparison procedures. Hochberg and Tamhane (1987,
sec. 10.5) review multiple comparison procedures for interaction in bal-
anced two-way classifications without covariates. This section reviews se-
lected procedures that can be employed in more complex linear models
where data need not be balanced and covariates may be present.

Family 1: All Interaction Contrasts

If the set of interest consists of all interaction contrasts, then the recom-
mended test of the composite null, Hy: C; MCjp = 0, is the LRT: reject H,
if Fap = F(,_% - 1.,- Scheffé’s (1953) method can be used to control family-
wise Type I error rate of any follow-up tests of interaction contrasts. That
is, Hp:trace(CjgM) =0 is rejected if F[vec(Cqp)l=(a — 1)(b — 1)
F (1,,"_“1)(,, - 1,,- Furthermore, if the composite null is rejected, then Scheffé’s
method is guaranteed to find at least one significant interaction contrast
because

max F[vec(Cap)] = T(C4,Cp) = (@ — 1)(b — 1) Fpp. 3)

For a proof of (3), see Johnson (1973). The associated simultaneous confi-
dence intervals are given by

trace(C4sM) = V(a — 1)(b — 1)F @~ - 1.» Var[trace(Chp M)] -

10
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Family 2: All Product Interaction Contrasts

If the set of interest consists of all product interaction contrasts, then
the recommended test of the composite null, Hy: CAMCjp = 0, is the max-
imal F test: reject Hy if R = R} 5. Familywise Type I error is controlled
at a if a partial interaction null, Hyo: C4Mcp = 0, is rejected whenever
T(Ca,c3) = R, ,%. Similarly, Hy:ciMCp =0 is rejected whenever
T(cy,Cp) = R;,;“.‘, , and a product contrast null, Hy: ¢4 Mcp = 0, is rejected
whenever T(c4,¢p) = R, 5. By construction, a significant maximal F test
guarantees the existence of at least one significant product contrast. Signif-
icant partial interactions are also guaranteed because R is the maximal
statistic for testing a partial interaction as well as the maximal F for a product
contrast:

R = max T(c4,cp) = max T(cs,Cp) = max T(Cg4,cp),
c4,€p cyq cg
and the maximization is over all coefficient vectors that sum to zero. Simul-
taneous confidence intervals for product contrasts are given by
ciMc;p + \/R;,;v‘f, var(c; Mcg),
for var(cs Mcp) of (A6).

The increase in sensitivity purchased by restricting attention to product
contrasts can be gauged by comparing the Scheffé and SMR critical values.
For example, ifa = 6, b = 7, v = 100, and o = .05, then the Scheffé criti-
cal value for tests of interaction contrasts is 30 F3 30 = 47.197. The corre-
sponding SMR critical value for product contrasts, from Boik (1986), is
R$ &0 = 25.571. The SMR simultaneous confidence intervals are only
100V25.571/47.197 = 74% as wide as the Scheffé intervals.

Family 3: An A Priori Set of Partial Interactions

Sensitivity is increased further if attention is restricted to a small set of
a priori main effect contrasts and their associated interactions. The Bonfer-
roni inequality provides a straightforward way of controlling the per family
Type I error rate (an upper bound on the familywise error rate) in this
situation. The procedure consists of allocating a portion of a to each a priori
test in the family. Suppose, for example, that one of the factors—say Factor
B—has quantitative levels and that it is sensible to partition Factor B ac-
cording to polynomial trend contrasts. For b = 3, the a priori main-B
hypotheses are Hy:1;Mcpq) =0 and Hp:1; Mcpp = 0, where Cpy =
(=1 0 1) andecpp = (1 —2 1)'.If each of the a priori hypotheses is
tested at the a/2 level, then the per family Type I error rate for Factor B is
a. The interaction can be partitioned similarly. The questions to be answered
are whether the linear effect of Factor B varies over the levels of A and
whether the quadratic effect of Factor B varies over the levels of A. If

11
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Hy: CiMcpi) = 0 and Hy: C4 Mcp(,) = 0 are each tested at level a/2, then
the per family Type I error rate for the interaction is a. The appropriate
critical value for the test statistics T(Cy,, cp1)) and T(Ca,cp) is (a — 1)
F~ %2, The critical value for follow-up tests of product contrasts also is
(@ - 1V)F;-%2

The gain in sensitivity purchased by restricting attention to the two trend
contrasts can be gauged by comparing the critical values. Suppose, as above,
that b = 3. Also, suppose that a = 5, v = 50, and o = .05. If all interac-
tion contrasts are of interest, the critical value for an interaction test is
8 Fg% = 17.040. If attention is restricted to product contrasts, the corre-

sponding critical value is R9% 5o = 13.876. Finally, if attention is restricted

to the two trend contrasts, then the critical value is only 4 F% = 12.218.

Extension of SMR Percentiles and Computation of P-Values

If min(a,b) > 6 or max(a,b) > 7, the tables in Boik (1986) cannot be
used. New percentage points corresponding to larger a and/or b are given
in Table 1. The entries in Table 1 were extracted from a larger set of exact
upper percentiles. The complete set is available from the author and in-
cludes denominator degrees of freedom 1(1)30, 32(2)50, 55(5)100, 125, 150,
200(100)1000, and . The upper percentiles in Table 1 were computed by
using the mathematical results of Krishnaiah and Chang (1971) to evaluate
Equation 4.1 in Boik (1986). Reasonably accurate interpolation between
tabled values, R, 5, < R, ;5 < R, 5, can be accomplished as follows:

1-a 1-a 1- N N
R,.S=R,.5 + (R, R (—)

Pq:v g\ 1 _ -1
131 V2

For example, the exact value of R¢% s is 35.759; interpolation yields

1507' -0
1007' -0

In practice, many researchers like to compute the p-value corresponding
to an observed test statistic. Computation of exact p-values for the SMR
distribution is quite complicated, but relatively simple approximations have
been proposed. Johnson (1976) approximated the distribution of the numer-
ator of R by a multiple of a x* random variable. The multiplier and degrees-
of-freedom parameters were obtained by matching the first two moments.
Boik (1985) obtained a 3-moment approximation by matching the moments
of R to those of a multiple of an F random variable. Moment functions for
using Boik’s (1985) approximation are given in Table 2. Table 2 represents
a simplification and extension of Table 1 in Boik (1985). The moment
functions in Table 2 assume that v > 6 and are defined by

_(W-2ER)  _ (v-4HER) (v — 6)E(R?)

O v T )ERE @ - 2E(R)ER)

RE7 150 = 33.404 + (36.970 — 33.404)( ) = 35.781.

and 0; =
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Analysis of Interactions

The 3-moment F approximation to the SMR distribution is
Pr(R = x) = P1(F, ., =< k'x),

where

0,(v—2)— (v—4) ]

v =6+ Ay - 6)[93@ — 20— 4) - 20,00~ 2)(v— 6) + (v — ) — 6))'

2(V _ 4)(V2 _ 2) and k = 91_1}(1}_2—._2)
0,0 —2)(1n -4 -@v-Hr-2)’ vv—-2)
If v = 6, Johnson’s (1976) approximation can be obtained by letting v, = v,
vy = 2/(6; — 1), and k = 6,. Critical values are approximated by

R,.5~kF, %

p.q,v

V=

As an illustration, R % 3 = 39.330. The 3-moment approximation yields
Ri’ﬂi,x ~22.15 Fgﬁs,szn = 39.296

and

39.330

Pr(R4 12,3 = 39.330) = PT(F37.75,32417 =

Distribution of the Maximal F When Data Are Unbalanced

Equation A7 in the Appendix gives a sufficient condition for R to follow
the SMR distribution. The condition in (A7) is satisfied, for example, when
there are no covariates and when data are balanced or sample sizes are
proportional. It is not known if (A7) is a necessary condition. I suspect that
R follows the SMR distribution regardless of lack of balance or presence of
covariates. Of course, I could be wrong. For the case of unbalanced data
without covariates, Boik (1989) showed, theoretically, that as sample size
increases, R converges in distribution to the SMR distribution. Simulation
evidence that the null distribution of R is accurately approximated by the
SMR distribution for the case of unbalanced data with covariates is given
in this section.

A two-way classification witha = 6 and b = 7 was selected for the simu-
lation. The condition in (A7) does not depend on o? or error degrees of
freedom, so, for convenience, ¢ was equated to 1 and assumed known.
Each of 5,000 trials in the simulation consisted of (a) randomly generating
a 30 x 30 covariance matrix, ®; (b) randomly generating a 30 X 1 vector,
vec(C;MC;), from a multlvarlate normal distribution with mean 0 and
variance ®; and (c) computing the test statistic R.

The covariance matrices were generated to represent a wide variety of
structures not satisfying the sufficient condition in (A7). In each trial, the
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TABLE 2
Moment functions for approximating the SMR distribution

D,q 0, 02 03 pP>q 01 02 93

2,2 3.5708 1.5234 2.0571 3,14  22.0874 1.0655 1.1330
2,3 5.0000 1.3600 1.7294 3,15 23.3654 1.0616 1.1251
2,4 6.3562 1.2762 1.5604 3,16 24.6338 1.0581 1.1180
2,5 7.6667 1.2250 1.4565 3,17 25.8937 1.0550 1.1117
2,6 8.9452 1.1902 1.3859 3,18 27.1458 1.0523 1.1061
2,7 10.2000 1.1649 1.3347 3,19 28.3908 1.0498 1.1010
2,8 11.4361 1.1458 1.2957 3,20 29.6292 1.0475 1.0964
29 12.6571 1.1307 1.2651 3,21 30.8615 1.0455 1.0922
2,10 13.8656 1.1185 1.2403 3,22 32.0882 1.0436 1.0884
2,11  15.0635 1.1085 1.2199 3,23 33.3097 1.0419 1.0849
2,12 16.2522 1.1000 1.2027 3.24 34.5263 1.0403 1.0817
2,13 17.4329 1.0928 1.1881 3,25 35.7383 1.0388 1.0787
2,14 18.6065 1.0866 1.1755 3,26 36.9460 1.0375 1.0759
2,15 19.7739 1.0812 1.1645 3,27  38.1497 1.0362 1.0733
2,16  20.9356 1.0765 1.1548 3,28 39.3495 1.0350 1.0709
2,17 22.0922 1.0722 1.1462 3,29  40.5458 1.0339 1.0687
2,18 23.2441 1.0685 1.1385 3,30 41.7386 1.0329 1.0665
2,19  24.3917 1.0651 1.1316 44 10.1312 1.1549 1.3159
2,20  25.5354 1.0620 1.1254 4,5 11.8210 1.1286 1.2624
2,21  26.6755 1.0592 1.1198 4,6 13.4368 1.1104 1.2253
2,22 27.8122 1.0567 1.1146 4,7 14.9982 1.0970 1.1979
2,23 28.9457 1.0544 1.1099 4.8 16.5173 1.0867 1.1767
2,24 30.0764 1.0522 1.1055 4,9 18.0024 1.0785 1.1599
2,25  31.2042 1.0502 1.1015 4,10 19.4593 1.0717 1.1462
2,26 32.3295 1.0484 1.0978 4,11  20.8926 1.0661 1.1347
2,27 33.4524 1.0467 1.0944 4,12 22.3054 1.0614 1.1250
2,28 34.5730 1.0451 1.0912 4,13 23.7004 1.0573 1.1166
2,29 35.6914 1.0437 1.0882 4,14  25.0797 1.0538 1.1094
2,30 36.8077 1.0423 1.0854 4,15  26.4452 1.0507 1.1030
33 6.7321 1.2527 1.5140 4,16 27.7981 1.0479 1.0974
3,4 8.3333 1.1968 1.4009 4,17 29.1397 1.0454 1.0924
3,5 9.8547 1.1621 1.3303 4,18 30.4710 1.0432 1.0878
3,6 11.3210 1.1383 1.2817 4,19 31.7929 1.0412 1.0838
3,7 12.7465 1.1208 1.2461 4,20 33.1061 1.0394 1.0801
3,8 14.1404 1.1075 1.2189 4,21 34.4113 1.0378 1.0767
3,9 15.5086 1.0969 1.1972 4,22 35.7092 1.0363 1.0736
3,10 16.8557 1.0883 1.1797 4,23 37.0001 1.0349 1.0708
3,11 18.1849 1.0811 1.1651 4,24 38.2846 1.0336 1.0682
3,12 19.4986 1.0751 1.1527 4,25 39.5631 1.0324 1.0657
3,13 20.7990 1.0699 1.1422 4,26 40.8359 1.0313 1.0635



TABLE 2 (Continued)

D,q 0, 0, 63 D,q 0, 6, 0
4,27 42.1033 1.0303 1.0614 6,16 33.2982 1.0364 1.0741
428 43.3658 1.0293 1.0594 6,17 34.7707 1.0347 1.0705
429 44,6235 1.0284 1.0576 6,18 36.2289 1.0331 1.0672
430 45.8767 1.0276 1.0559 6,19 37.6739 1.0316 1.0642
5,5 13.6547 1.1074 1.2193 6,20 39.1070 1.0303 1.0615
5,6 15.3982 1.0927 1.1892 6,21 40.5290 1.0291 1.0590
5,7 17.0754 1.0818 1.1669 6,22  41.9407 1.0280 1.0568
5,8 18.7013 1.0733 1.1496 6,23  43.3428 1.0269 1.0547
5,9 20.2858 1.0666 1.1358 6,24 44.7359 1.0260 1.0527
5,10 21.8364 1.0610 1.1244 6,25 46.1208 1.0251 1.0509
5,11 23.3581 1.0564 1.1149 6,26 47.4977 1.0243 1.0493
5,12 24.8552 1.0525 1.1069 6,27 48.8673 1.0235 1.0477
5,13 26.3308 1.0491 1.0999 6,28 50.2299 1.0228 1.0462
5,14  27.7875 1.0461 1.0939 6,29 51.5859 1.0221 1.0449
5,15 29.2273 1.0435 1.0886 6,30 52.9357 1.0215 1.0436
5,16 30.6520 1.0412 1.0839 7,7 20.9073 1.0631 1.1288
5,17  32.0631 1.0392 1.0796 7,8 22.7133 1.0569 1.1160
5,18 33.4617 1.0373 1.0758 7,9 24.4657 1.0519 1.1058
5,19 34.8490 1.0356 1.0724 7,10 26.1740 1.0478 1.0973
5,20 36.2259 1.0341 1.0693 7,11  27.8450 1.0443 1.0902
5,21  37.5931 1.0327 1.0665 7,12 29.4842 1.0413 1.0842
5,22 38.9514 1.0314 1.0638 7,13 31.0955 1.0388 1.0790
5,23 40.3013 1.0303 1.0614 7,14  32.6824 1.0366 1.0744
5,24  41.6435 1.0292 1.0592 7,15 34.2475 1.0346 1.0703
5,25 42.9785 1.0282 1.0572 7,16 35.7932 1.0328 1.0667
5,26  44.3066 1.0272 1.0552 7,17 37.3213 1.0312 1.0635
5,27 45.6283 1.0263 1.0534 7,18 38.8333 1.0298 1.0606
5,28 46.9439 1.0255 1.0518 7,19 40.3307 1.0285 1.0580
5,29 48.2538 1.0248 1.0502 7,20 41.8146 1.0274 1.0556
5,30 49.5583 1.0240 1.0487 7,21  43.2862 1.0263 1.0534
6,6 17.2548 1.0803 1.1639 7,22  44.7462 1.0253 1.0514
6,7 19.0346 1.0711 1.1451 7,23 46.1955 1.0244 1.0495
6,8 20.7549 1.0639 1.1304 7,24  47.6348 1.0235 1.0478
6,9 22.4276 1.0582 1.1187 7,25 49.0647 1.0228 1.0462
6,10 24.0609 1.0535 1.1090 7,26 50.4859 1.0220 1.0447
6,11 25.6610 1.0495 1.1009 7,27 51.8988 1.0213 1.0433
6,12 27.2326 1.0461 1.0940 7,28 53.3039 1.0207 1.0420
6,13 28.7794 1.0432 1.0880 7,29 54.7017 1.0201 1.0408
6,14  30.3044 1.0407 1.0828 7,30  56.0924 1.0195 1.0396
6,15 31.8100 1.0384 1.0782 8,8 24.5981 1.0514 1.1048
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TABLE 2 (Continued)

D,q 0, 0, 03 P>q 6: (7S 03
8,9 26.4240 1.0470 1.0957 8,20 44.3890 1.0250 1.0509
8,10 28.2013 1.0433 1.0882 8,21  45.9061 1.0241 1.0489
8,11  29.9376 1.0402 1.0819 8,22  47.4105 1.0232 1.0471
8,12 31.6389 1.0376 1.0765 8,23 48.9033 1.0224 1.0454

8,13 33.3096 1.0353 1.0718

8,14 34.9534 1.0333 1.0677
8,15 36.5734 1.0315 1.0641
8,16 38.1719 1.0300 1.0609

8,17 ?3;?; }‘8%% i'gggg 828 562153 1.0190  1.0386
8,18 4l : : 829 57.6514 1.0185  1.0375
819 42.8582 1.0261  1.0530 830 59.0799  1.0180  1.0365

8,24  50.3850 1.0216 1.0438
8,25 51.8565 1.0209 1.0424
8,26  53.3183 1.0202 1.0410
8,27 54.7711 1.0196 1.0398

covariance matrix was generated as the sum of two component matrices:
® =I5 + S. The first is an identity matrix and would be the only compo-
nent if data were balanced and no covariates were present. The second
component is a random matrix with distribution 31 X S ~ W3, (31,1I). The
second component reflects the contribution of unbalanced data and covari-
ates to ®. This method of generating the ®s yields covariance matrices more
deviant from (A7) than those likely to be encountered in practice.

Figure 1 presents an empirical cumulative distribution plot of the results
of the simulation experiment. Also plotted is a simultaneous 95% accep-
tance region for testing the hypothesis that R follows the SMR distribution.
The acceptance region is based on inverting the Kolmogorov test. The entire
empirical distribution function falls inside the 95% acceptance region. The
computed Kolmogorov statistic is .0152 (p = .12). As Figure 1 shows, the
R percentiles are accurately approximated by the SMR percentiles. For
example, 94.78% of the R statistics were smaller than the 95th SMR percen-
tile, R$%.=23.954, and 98.76% of the R statistics were smaller than the 99th
SMR percentile, R % ..=28.862.

Maximal Product Contrast F
Versus Most Significant Parametric Function

A competing strategy for selecting interaction contrasts for further exam-
ination after rejecting the composite null was described by Lutz and Cundari
(1987). If the composite null is rejected by the LRT, they suggested exam-
ining the coefficient matrix, C,5, that maximizes F[vec(C,5)] in (1). The
corresponding interaction contrast is necessarily significant according to
Scheffé’s (1953) method because of (3). Direct interpretation of the maxi-
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FIGURE 1. Empirical distribution function of the maximal F. The area between the
upper and lower curves is a 95% acceptance region for testing that the maximal F
follows the SMR distribution

mizing coefficient matrix is likely to be elusive, so they simplify the coeffi-
cients (by rescaling and rounding) and interpret the simplified interaction
contrast. To illustrate their approach, Lutz and Cundari used a study con-
ducted by Beatty (1984). Learning disabled (LD) students from Grades 3,
4, and 5 were assigned to treatment (summer reading program) or control
groups. Non-LD students from each grade also served as controls. The data
were analyzed according to a 3 (Grades 3, 4, and 5) X 3 (LD treatment, LD
control, non-LD control) fixed effects model. The interaction p-value from
the LRT was 0.043. The maximizing coefficient matrix and its simplification
are

Cip = | 20.462 —21.231 0.769 0.5 -0.5 0.0
—45.669 21.834 23.834 -1.0 05 05

The simplified interaction contrast, trace (C%3'M), is also significant, but its
meaning is still elusive. To interpret the interaction, Lutz and Cundari
further simplify the coefficient matrix to

25.207 —0.603 —24.603 0.5 0.0 —-0.5
i Cﬁy = 50 X .
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507'Ciz =~ Ci3 =| 050 —-0.25 -0.25

-1.00 050 0.50

The resulting interaction contrast, trace(C%3 'M), is not significant accord-
ing to Scheffé’s (1953) method, but Lutz and Cundari were able to make an
interpretation: The difference between fifth-grade students and the average
of third- and fourth-grade students depends on whether students partici-
pated in the summer reading program. Note that the contrast that Lutz and
Cundari were finally able to interpret is a product contrast. The row (grade)
coefficient vectorisci* = (0.5 0.5 —1.0)', and the column (group) coef-
ficient vector is ¢z* = (1.0 —0.5 —0.5)'. Apparently, the nonproduct
contrasts were uninterpretable.

Reanalysis of the data by the proposed method leads to the same con-
trast, but it does so more directly. The computed test statistic is R =
9.38 which, by coincidence, has the same p-value as the LRT (p = 0.043).
The maximizing vectors in (2) are ¢, = (0.46 0.35 —0.81)' and ¢z =
(0.81 -0.37 —0.44)'. Simplification yields ¢}* and c3*. Furthermore,
the product interaction ¢}*'Mcg* is significant by the proposed method:
T(ci*,cg*) =9.33, p = 0.044.

(0.50 -0.25 —0.25)

Analyses of Interaction With SAS and SPSS

Project TALENT

Project TALENT was a large scale survey conducted to assess the abili-
ties, interests, and personality characteristics of American high-school stu-
dents. The present analysis is concerned with modeling interest in physical
science as a function of size of high school (4 levels), geographic region of
the country (9 levels), plans for attending college (5 levels), and gender.
Socioeconomic status, results of a mathematics test, and results of a mechan-
ical reasoning test served as covariates. Cooley and Lohnes (1971, Appendix
B) list a subset of measures from 505 high-school seniors enrolled in the
project (a 2% random sample of all enrolled seniors). Female case 215 was
dropped because of missing data. The number of high-school sizes was
reduced to three by merging students from the smallest high schools (n = 9)
with students from the second smallest high schools (n = 144). The number
of geographic regions was reduced to eight by merging students from Alaska
and Hawaii (n = 2) with students from the far western states (n = 41).

Preliminary tests suggested that some two-factor, all three-factor, and the
four-factor interactions can be eliminated from the model. An ANCOVA
based on the reduced model is summarized in Table 3. All sums of squares
are SAS Type III. Most of the families are significant and, in practice, would
merit follow-up tests. For present purposes, attention is focused on the
college plans main effect and the plans x size of high-school interaction.
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TABLE 3
ANCOVA summary table of physical science interest inventory
Source SS df MS F p-Value
Covariates 3534.44 3 1178.15 2479 p <0.01
Mathematics test 1124.83 1 112483 23.67 p<0.01
Mechanical reasoning test 693.43 1 693.43 1459 p<0.01
Socioeconomic status index 11.39 1 11.39 024 p=0.62
Gender 1452.45 1 145245 30.56 p <0.01
College plans 913.63 4 228.41 481 p<0.01
Geographic region 741.21 7 105.89 223 p=20.03
Size of high school 96.21 2 48.10 1.01 p=20.36
Gender X plans 305.71 4 76.43 1.61 p=0.17
Gender X region 700.60 7 100.09 211 p=0.04
Gender X size 332.27 2 166.14 350 p=10.03
Plans X size 1234.51 8 154.31 325 p<0.01
Error 22100.13 465 47.53
Total 46294.66 503

Computation of the Maximal F Statistic

If the usual F test is nonsignificant and pq F,5 < R, 3, then the maximal
F test need not be performed because the outcome (nonsignificance) is
known. Conversely, if the F test is nonsignificant but pq F43 > R, 5, then
the maximal F test ought to be performed because significant product
contrasts might exist. See Boik (1986) for an example. If, as in the present
case, the F test is significant, then one could bypass the maximal F test and
proceed directly to follow-up tests. Nevertheless, this strategy is not recom-
mended. Computing the maximal F statistic automatically produces the
maximizing vectors, ¢, and cz. These vectors are quite useful when selecting
follow-up tests of partial interactions and interaction contrasts. In addition,
unless the maximal F test is performed, one cannot be sure that follow-up
tests on product contrasts are necessary. It is unlikely, but possible, for the
usual F test to detect a significant nonproduct contrast while the maximal
Ftest declares all product contrasts to be nonsignificant. The interpretation
of such an interaction would be difficult.

Table 4 lists a SAS program for computing the maximal F statistic for the
college plans X size of high-school interaction. The computation requires
two steps. First, the model is fit using proc glm (SAS Institute, 1988), and
the estimated adjusted means (covariates equated to their means) and cor-
responding covariances are saved. The estimated adjusted means are dis-
played in Table 5 and plotted in Figure 2. In Step two, an alternating
least-squares algorithm (Boik, 1989) is used to compute the maximal F
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TABLE 4
SAS program to compute maximal F statistic

data;
infile talent; input size region gender plan mech math physics ses;
proc glm;
class plan size gender region;
model physics = math mech ses plan|size plan|gender size|gender
gender|region;
Ismeans planxsize/ cov out = means;
proc iml;
use means; reset noname; read all var _num_ into X;
a = ncol(design(X[,2])); p = a — 1;
b = ncol(design(X[,1])); q =b — 1;
Sigma = X[,6:axb + 5]; mu = X[,3];
Ha = I(a) — J(a,a,1/a); Ca = Ha[,1:p];
Hb = I(b) — J(b,b,1/b); Cb = Hb[,1:q];
Phi = (Cb@Ca)‘*Sigma*(Cb@Ca); Psi = Ca‘*shape(mu,b,a)*Cb;
call svd(U,D,V,Psi); wp = U[,1]; psi = shape(Psi‘,p*q,1);
start als;
wq = inv((1(q)@wp)**Phi*(1(q)@wp))(I(q)@wp)‘*psi;
wp = inv((wq@I(p))**Phi*(wq@I(p)))*(wq@I(p))‘ *psi;
epsi = psi‘*(wq@wp) — R; R = R + epsi;
finish;
epsi=1; R =0;
start iterate;
do while(epsi >=.00001); run als; end;
finish;
run iterate;
print "Maximal Contrast Coeff.: Treat. A” (Ca*wp/sqrt(wp‘*Ca‘*Ca*wp));
print "Maximal Contrast Coeff.: Treat. B” (Cb*wg/sqrt(wq‘*Cb‘*Cb*wq));
print "Maximal F Ratio for Product Contrast” R;

statistic. The second step involves matrix computations and.is performed by
prociml, the interactive matrix language (SAS Institute, 1985). The proc iml
statements can be applied to other data sets without modification. The
computed test statistic is R = 23.08. Designating college plans as Factor A
and high-school size as Factor B, the maximizing coefficients are

—0.49
0.11 0.72
¢ca=| 0.75| and ¢z = (—0.03).
0.06 —0.69
-0.43

Interpolation in Tables 1 and 2 of Boik (1986) yields R 3% 45 =~ 12.80 and
R37% 45 ~ 16.97. Using the 3-moment approximation, p =83 x107"
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Estimated adjusted means: College plans X size of high school

Size of high school

College plans Small Medium Large Row means
Definitely will go 15.76 18.02 19.57 17.78
Almost sure to go 19.31 17.76 18.64 18.57
Likely to go 21.87 14.93 11.99 16.26
Not likely to go 14.53 15.35 15.28 15.06
Definitely will not go 13.37 12.55 16.49 14.14
Column means 16.96 15.72 16.39 16.36

Table 6 lists SPSS programs (SPSS, 1990, Release 4.0) to compute the
maximal F statistic. The analysis requires two SPSS runs. In Run 1, the
estimated adjusted means and corresponding standard errors, correlations,
and covariance factors (covariances divided by MSE) are computed. Be-
cause of a bug in Release 4.0, multiple covariates, if they exist, must be
specified on the design command rather than on the analysis subcommand.

Physicad Science Interest

1

Large H.S.

Smal H.S.

T |
Yes 2

Ful—Time College Plans

3

4

No

FIGURE 2. Profile plot of estimated adjusted means: college plans x high school

size
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TABLE 6
SPSS program to compute maximal F statistic

Computation of adjusted means and corresponding correlation/covariance matrix

descriptives variables = math mech ses/ save.

manova physics by plan(1,5) size(1,3) gender(1,2) region(1,8) with zmath zmech
zses/ analysis physics/ print = parameters(estim cor)/ design = muplus plan by
size gender plan by gender size by gender region gender by region zmath
zmech zses.

Computation of maximal F

data list file = adjust free/ mean se covl to cov1$.
matrix.

get X.

compute a = 3.

compute b = §.

compute p =a — 1.

compute q =b — 1.

compute mu = X(:,1).

compute Sigma = mdiag(X(:,2)&*X(:,2)).

compute k = a*b + 2.

compute Corr = X(:,3:k).

loop i = 2 to axb.

+ loopj=1toi—1.

+ compute Sigmal(i, j) = Corr(i, j)*X(i,2)*X( j,2).
+ compute Sigma( j,i) = Sigma(i, j).

+ end loop.

end loop.

compute Ca = Ident(a,a — 1) — make(a,a — 1,1/a).
compute Cb = Ident(b,b — 1) — make(b,b — 1,1/b).
compute Psi = t(Ca)=*t(reshape(mu,b,a))*Cb.

call svd(Psi,U,D,V).

compute wp = U(:,1).

compute Phi = t(Kroneker(Cb,Ca))*Sigma*Kroneker(Cb,Ca).
compute psi = reshape(t(Psi),p*q,1).

compute R = 0.

compute epsi = 1.

loop.

+ compute C = Kroneker(Ident(q),wp).

compute wq = inv(t(C)*Phi*C)*t(C)*psi.
compute C = Kroneker(wq,Ident(p)).

compute wp = inv(t(C)*Phi*C)*t(C)*psi.
compute epsi = t(psi)*Kroneker(wq,wp) — R.
compute R = R + epsi.

end loop if (epsi It .00001).

print (Ca*wp/sqrt(t(Ca*wp)*Ca*wp))/ title "Maximal Contrast Coeff.: Treat. A”.
print (Cb*wg/sqrt(t(Cb*wq)*Cb+*wq))/ title "Maximal Contrast Coeff.: Treat. B”.
print Ri/title “Maximal F Ratio for Product Contrast”.
end matrix.

+ 4+ + + +
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Otherwise, incorrect standard errors and covariances are obtained. Specify-
ing covariates on the design command ordinarily produces adjusted means
in which covariates are equated to zero. By centering the covariates at zero
(performed by the descriptives command), adjusted means in which covari-
ates are equated to their means can be obtained. The output is edited to
produce a file containing only the estimated means, the standard errors, and
the correlation/covariance matrix. If the design contains all higher order
interactions and there are no empty cells, then the pmeans subcommand can
be used to obtain estimated adjusted means (covariates equated to averaged
unweighted means). Nevertheless, the muplus keyword is still required to
obtain correlations among the estimated adjusted means. In Run 2, the file
containing means, standard errors, and correlations/covariances is read, and
matrix—end matrix commands (SPSS, 1990) are used to compute the max-
imal F. To apply the matrix—end matrix program to other data sets, a and
b must be set to their correct values (lines 4 and 5). Factor B precedes Factor
A in the manova command. Also, the variable name cov15 (line 1) should
be changed, if necessary, so that SPSS reads ab correlations/covariances
after each (mean, standard error) pair. In some applications, the numerical
accuracy of the Run 2 output can be somewhat degraded because of its
dependence on the accuracy of the printed Run 1 output. For the TALENT
data, the maximal F, computed by SPSS, is correct to two decimal places.

Follow-Up Tests

This section examines selected partial interactions and interaction con-
trasts related to the college plans by high-school size interaction. SAS and
SPSS programs to perform the analyses appear after the description of the
tests.

The Factor A (college plans) coefficient vector associated with the max-
imal F'statistic primarily reflects a comparison between students who are de-
cided about their college plans (levels 1 and 5) and students who are rela-
tively undecided (level 3). Thatis, c4qy = (=.5 0 1 0 -—.5)"appearsto
be a near maximizer of the product contrast F statistic. The corresponding
main-A and simple-A contrast estimates are

17.78
. 18.57
Yay =ChpyPsa = (=5 0 1 0 —.5)[16.26] = 0.30
15.06
14.14
and

‘LA(])(B) = M'CA(D = (730 -0.35 —6.04)’,

respectively. Averaged over school sizes, it appears that decided students
(mean = 15.96) and undecided students (mean = 16.26) are about equally
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interested in physical science. The corresponding main effect contrast is not
significant: T(ca), 1,) = 0.07 < 4 FQ%s = 9.564. The Ay B partial inter-
action, however, is significant, T(ca), Cp) = 22.49 > RJ% 4s, indicating
that the difference between decided and undecided students depends on
high-school size. This partial interaction is said to be disordinal (Hager &
Westermann, 1983) because the simple-A contrasts do not have the same
algebraic sign for all school sizes. In general, disordinal interactions are
more difficult to interpret than ordinal interactions.

Virtually all of the A, B partial interaction can be accounted for by a
contrast between small and large high schools. The associated coefficient
vectorisczyy = (1 0 —1)’, and the product contrast estimate is Y41y gy =
¢hayMcgy = 13.34. The hypothesis ia1)s0) = 0 is rejected because
T(caq), €s1)) = 22.44 exceeds the o = 0.01 SMR critical value of 16.97. The
corresponding 99% confidence interval is 1.74 < $a)p0) < 24.95.

Table 7 displays the estimated adjusted means that correspond to ¥ () 5()-
To interpret a product contrast, I usually begin with a direct transcription.
The product contrast estimate says that, with respect to interest in physical
science, the difference between undecided and decided students (unde-
cided — decided) is 13.34 points larger at small high schools than at large
high schools. Equivalently, the product contrast estimate says that the
difference between small and large high schools (small — large) is 13.34
points larger among undecided students than among decided students.
Often, literal translations such as these are sufficient to interpret the con-
trast (e.g., effects of ralphing on baseball players). In this case, however, the
literal translations are not very satisfying, possibly because they do not
suggest a plausible underlying mechanism or because of the disordinal
nature of the interaction.

Interpretations beyond a literal translation require caution. In an uncon-
trolled observational study such as project TALENT, conclusions regarding
cause—effect cannot be made. Tentative explanations that are consistent
with the data can, of course, be proposed. Their validity, however, must
await further research. One such explanation is the following. It seems

TABLE 7 A
Estimated adjusted means corresponding 10 Y4, sy

Size of high school

College plans Small Large Difference
Undecided 21.87 11.99 9.88
Decided 14.57 18.03 —3.46
Difference 7.30 —6.04 13.34
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reasonable to assume that interest in physical science (or lack thereof)
precedes and affects college enrollment decisions rather than vice versa. It
may be that students at large high schools are more likely to base their career
choices on interest patterns than are students at small high schools. If so,
a student who has definite interests and is from a large high school is more
likely to be sure of his/her college plans than is a comparable student from
a small high school. Strong interest in physical science may actually make
college decisions more difficult for students from small high schools. Addi-
tional analyses in which college plans is the response variable (e.g., log-
linear models, logistic regression) could be informative.

Some researchers might choose to ignore the interaction contrast in Table
7 and, instead, test the associated simple effect contrasts. Tests of these four
simple effect contrasts, however, are not part of a coherent strategy unless
the model is changed. The strategy is coherent if the three families (A, B,
and A B) are combined to form a single family (Betz & Gabriel, 1978). The
composite null now states that there are no differences among the ab
adjusted means. A follow-up test of Hy: ¢’ = 0 is judged to be significant
if F(¢) = (ab — 1) Fy %, for F(c) of (A3), and where ¢'l, = 0. For
a = 0.15, the critical value for follow-up tests is 14 F {135 = 19.561. All four
of the simple effect contrasts in Table 7 are nonsignificant. The interpreta-
tion is straightforward but trivial.

The presence of plans X size interaction does not imply that all contrasts
among the levels of college plans interact with high-school size. Consider
the contrast between the two groups most likely to attend college and the
two groups least likely to attend college. The coefficient vector is ¢, =
(.5 .5 0 =5 -.5), and the corresponding main-A and simple-A
contrast estimates are ) = ¢ 40 fha = 3.58 and Yapym = M'caq) =
(3.58 3.94 3.22)', respectively. The main effect contrast is significant,
T(cap), 15) = 16.52 > 4 F{%; = 13.439. Averaged over school sizes, high-
school students most likely to attend college are more interested in physical
science than are high-school students least likely to attend college. The
corresponding A(; B partial interaction is not significant, T(c4g), Cp) =
0.17 < R3% «s, indicating that the difference between students most and
least likely to attend college does not depend on high-school size.

The follow-up tests are summarized in Table 8. Table 9 lists the SAS
commands (SAS Institute, 1988) to compute the analysis. Coefficients of an
orthogonal basis set of Factor A (college plans) contrasts are assigned in the
data step. Proc glm computes an ANCOVA in which the plans main effect
is partitioned according to four contrasts each having 1 df while the
plans X size interaction is partitioned into four partial interactions each
having 2 df. The basis set of coefficients must be orthogonal; otherwise, the
correct partitioning is not obtained. To partition main effects and interac-
tions according to nonorthogonal contrasts, multiple proc glm executions
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TABLE 8
Follow-up tests on college plans X size of high school
Source SS df T(Caw,Csj)  p-Value
Factor A; College plans 913.63 4
Aqy: Decided vs. undecided 3.17 1 0.07 p > 0.50
A): Most likely vs. least likely 784.99 1 16.52 p <0.01
Factor B: Size of high school 96.21 2
B,y: Large vs. small 16.84 1 0.35 p > 0.50
AB Interaction: Plans X size 1234.51 8
Maximal product contrast 1097.09 1 23.08 p <0.01
AwB 1069.07 2 22.49 p <0.01
Aqay By 1066.58 1 22.44 p <0.01
A B 7.97 2 0.17 p > 0.50

are required. The contrast coefficients employed in each proc glm must
constitute an orthogonal basis set. In the present case, a single proc glm is
sufficient because coefficients of the two contrasts of interest, Y4y and Y42,
happen to be orthogonal. Contrast estimates and standard errors are ob-
tained by an estimate statement. Note that a scaling factor of 3 is used for
Paq) and that a scaling factor of 2 is used for Y. This is because of the
model parameterization. If a coefficient vector—say c,—is assigned in the
data step, then the coefficient vector that actually corresponds to the con-
trast is ¢4 + c4c4. In the present case, to obtain (=.5 0 1 0 -.5),

TABLE 9
SAS program to compute follow-up test statistics

data;
infile talent; input size region gender plan mech math physics ses;
if plan = 1 then do; A1 = -1; A2= 1; A3 =-1; Ad = 2; end;
if plan = 2 then do; Al = 0; A2= 1;A3= 1;A4=-3; end;
if plan = 3 thendo; Al = 2; A2= 0;A3= 0;Ad = 2; end;
if plan = 4 then do; A1 = 0; A2=-1; A3 = —1; Ad = —3; end;
if plan = 5 then do; Al = -1; A2=-1; A3 = 1, Ad = 2; end;
Proc glm;
class plan size gender region;

model physics = math mech ses Allgender A2|gender A3|gender Ad|gender

size|gender gender|region Al*size A2+size A3+size Adssize;
estimate ’Decided vs Undecided’ A1 3;
estimate 'Most vs Least Likely’ A2 2;
estimate 'B1: Large vs Small’ size 1 0 —1;
contrast 'B1: Large vs Small’ size 1 0 —1;
estimate Al x B1’ Alxsize 30 —3;
contrast ’Al x B1’ Al#*size 10 —1;
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€4y T C41yCaqy must be multiplied by 3. Contrast sums of squares are
obtained by using a contrast statement.

An excellent discussion on the use of SPSS* (1983) to partition interac-
tions when one or both factors are repeated measures can be found in
O’Brien and Kaiser (1985, pp. 323-329). Certain modifications are required
to partition interactions when neither factor represents repeated measures.
The SPSS (1990) subcommands to perform this partitioning are listed in
Table 10. The covariates need not be centered to obtain correct follow-up
tests by SPSS. Contrast coefficients are assigned by a contrast subcommand.
The first row of the contrast subcommand is a vector of ones which weights
college plans (sizes) equally when averaging to obtain means for sizes
(plans). The remaining rows must form a basis set of contrast coefficient
vectors. The rows need not be orthogonal as they are in Table 10. The effect
of plans is partitioned into three components (1, 1, and 2 df ) that correspond
torow 2, row 3, and rows 4 and 5, respectively, of the contrast subcommand.
The effect of size is partitioned into two components (1 df each). Sums of
squares for partial interactions are produced by the first design subcom-
mand. Sums of squares for product interaction contrasts are produced by
the second design subcommand.

Concluding Comments

Although each has relative strengths and weaknesses, either of the two
software packages can be used to compute detailed analyses of two-factor
interactions. SAS’s (SAS Institute, 1985, 1988) strength is that the maximal

TABLE 10
SPSS program to compute follow-up test statistics

manova physics by plan(1,5) gender(1,2) size(1,3) region(1,8) with math mech ses/
contrast(plan) = special( 1 1 1 1 1
-1 0 2 0-1
1 1 0-1-1
-1 1 0-1 1
2-3 2-3 2
partition(plan) = (1,1,2)/ analysis physics/
design = plan(1) plan(2) plan(3) gender size region plan by gender size by
gender gender by region plan(1) by size plan(2) by size plan(3) by
size math mech ses/
contrast(size) = special( 1 1 1
1 0-1
1 -2 1y
partition(size) = (1,1)/ analysis physics/
design = plan gender size region plan by gender size by gender gender by
region plan(1) by size(1) plan(1) by size(2) plan(2) by size plan(3) by
size math mech ses/
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F statistic can be computed in a single run; there is no need to edit an output
file. SAS’s weakness is that, to perform follow-up tests, orthogonal basis sets
of contrast coefficients must be specified. The main strength of SPSS (1990)
is its straightforward syntax for partitioning an effect into multiple compo-
nents. Coefficient vectors need not be orthogonal, but a complete basis set
must be specified. In addition, SPSS can compute the maximal F statistic,
but the computations require two runs.

One goal of this article was to demonstrate the usefulness of partial inter-
actions and product contrasts for interpreting significant interactions. I do
not claim that partial interactions and product contrasts always lead to
straightforward interpretations (disordinal interactions can be particularly
troublesome), nor do I contend that simple effects contrasts should never
be tested after detection of a significant interaction. Rather, I suggest that
when interaction is detected, some effort ought to be expended to find out
why. That is, the initial follow-up procedures should test hypotheses which
are implied by the composite interaction hypothesis. If the interaction resists
interpretation by a coherent strategy and the study is exploratory in nature,
then one is certainly free to test other hypotheses, more amenable to inter-
pretation. If this means that simple contrasts are tested after detection of
interaction, then so be it. Testing simple contrasts after detection of an
interaction, however, implies that the factorial model has been discarded
and that an alternative (nested or one-way) model has been adopted. Nat-
urally, the model change should be reported. Otherwise, readers might be
misled into believing that the interaction is being interpreted in terms of
simple effects contrasts. If the study is strictly confirmatory, a model change
may be difficult to justify.

APPENDIX

Kronecker products

Let F and G be matrices of size p X ¢ and r X s, respectively. Then F®G is a
pr X gs matrix and is given by

MmG ... fi,G
FRG=| . .
fpl G ... qu G
Adjusted means
The data analytic methods in this article are based on the linear model
y=XB+Zy+e,

where X is an n X d design matrix, Z is an n X ¢ matrix of covariates, rank(X) =r,
rank(Z) =t, n >rank(XZ)=r +¢, and € is an n X 1 vector of residuals with a
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multivariate normal distribution: € ~N(0,¢*I). The design matrix must code
uniquely for each of the ab combinations of Factor A X Factor B. The design matrix
may code for additional factors and interactions.

If the model contains no covariates, then the ab cell means are linear combinations
of the elements in B. In particular, the ijth mean is the expectation of the ijth
treatment combination, averaged over levels of other factors (e.g., C, D) and
interactions (e.g., AC, BC, CD). For example, in a three-way classification having
no three factor interaction, the entries in B can be partitioned as ., o, B;, v«,
(aB)ij, (y)ix, and (By)jc fori=1,...,a,j=1,...b,and k=1,...,c. The ijth
meanis w; = p+ o; + B; + §. + (aB)i; + (@¥):. + (By);., where, forexample, (By),. =
¢ ' 2%~ (BY),«. In general, the ab X 1 vector of means can be obtained as p=Fg,
where F is a d X ab matrix with rank ab.

The addition of covariates requires minimal modifications. The ijth adjusted
mean is the average expectation of the ijth treatment combination, conditional on
the ¢ X 1 vector of covariates being equal to a specified vector—say, z,. Typically,
2o is equated to the vector of means: zo=Z=Z'1,n"" or to the vector of averaged
unweighted means: zo =Z'1,, (ab) ™', where Z is the ab X t matrix of unweighted
cell means of the 7 covariates: Z = F'(X'X)~X'Z and where (X'X) " is any generalized
inverse of X'X. The adjusted means and their estimators are

n=FB+1,zy and p=FP+ 1,27,

respectively, where (ﬁ' ¥') is a solution to the normal equations. Searle, Speed,
and Milliken (1980) refer to p as a vector of population marginal means and to ji
as a vector of estimated marginal means.

It can be shown that var(jn) = ¢* 3, where

3=FX'X) F+((Z-1,z)[Z' (1, —P)Z] " (Z - 1, 2)' (A1)

and P, = X(X'X) "X'. If there are no covariates, the term involving Z is omitted. The
usual unbiased estimator of o (i.e., MSE) has v = n — r — t degrees of freedom and
is given by
Ay y’(ln - Px - Pz~x)y
o=

n—r—t

where P, ., =(1, - P,)Z[Z'(1. - P.)Z]) 'Z'(1, - P,).

, (A2)

Likelihood ratio test statistics
Let C be a known ab X s matrix of constants with rank s. The LRT of Ho: C'pn =0
rejects Hy for large values of

L'C(C'=C)™'C'p
Fo=t—-= ~F ( s(}z) = (A3)

where % is given in (A1) and 67 is given in (A2). The test statistic has distribution
p'C(C’'EC)'C'p
- 2 -

(o3

F(C)~F,,\, where A=

An important special case consists of linear functions, C’p., in which C has the
Kronecker structure C = C; ® C4, where C4isa X s, Cgis b X 55, and s = 5, 5,. The
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corresponding null can be written as Ho: C4 MCjp = 0. It follows that the LRT of

H,: C,MCj = 0 rejects H, for large values of

[vec(CAMC5)]'[(Cs ® Ca) Z(Cs ®C4)] ™" vec(Co MCs)
~2

g

T(C4,Cs) = . (A4)

The test statistic has distribution
T(C4,Cs) _

S,V

s
where
A= [vec(CAMC3)]'[(Ce®C.)'2(Cs ®C,q)]"1 vec(C4iMCp)

0,2

Variance of interaction contrast estimator
The variance of an interaction contrast estimator, trace(CizM), is

var[trace(C}s M)] = o*[vec(Cas)]’ T vec(Cas),
where % is given in (A1). The estimator of the variance is
var[trace(Css M)] = 6*[vec(C5)]’ T vec(Cas), (AS)

where &7 is given in (A2). For a product contrast, the variance and estimator of the
variance are

var(cs Mcs) = 0% (c5 ® c4) Z(cs ®ca)
and
var(cs Mcz) = 62 (cs ® ca)’ Z(cs Rca), (A6)
respectively.
Sufficient condition for R to follow the SMR distribution R
The covariance matrix for a basis set of interaction contrasts, C4; MCp, is
® = var[vec(C4 MCj)] = 0* (Cs ® C,) 3(C5 R C.,).

It can be shown that, if the composite interaction null is true, then R follows the SMR
distribution whenever ® satisfies

P=0;D,, (A7)

for some b — 1 X b — 1 matrix ® and some a —1 X a — 1 matrix ®,.
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