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The Analysis of Two-Factor Interactions 
in Fixed Effects Linear Models 

Robert J. Boik 
Montana State University 
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This article considers two related issues concerning the analysis of inter- 
actions in complex linear models. The first issue concerns the omnibus test 
for interaction. Apparently, it is not well known that the usual F test for 
interaction can be replaced, in many applications, by a test that is more 
powerful against a certain class of alternatives. The competing test is based 
on the maximal product interaction contrast F statistic and achieves its power 
advantage by focusing solely on product contrasts. The maximal product 
interaction F test is reviewed and three new results are reported: (a) An 
extended table of exact critical values is computed, (b) a table of moment 
functions usefulfor approximating the p-value corresponding to an observed 
maximal F statistic is computed, and (c) a simulation study concerning the 
null distribution of the maximal F statistic when data are unbalanced or 
covariates are present is reported. It is conjectured that lack of balance or 
presence of covariates has no effect on the null distribution. The simulation 
results support the conjecture. The second issue concerns follow-up tests 
when the omnibus test is significant. It appears that researchers, in general, 
do not perform coherent follow-up tests on interactions. To make it easier 
for researchers to do so, an exposition on the use of product interaction 
contrasts and partial interactions in complex fixed-effects models is provided. 
The recommended omnibus and follow-up tests are illustrated on an educa- 
tional data set analyzed using SAS (SAS Institute, 1988) and SPSS (1990). 

Hypotheses in an analysis of variance (ANOVA) or an analysis of covariance 
(ANCOVA) model are typically categorized into a small number of families. 
A two-way classification with covariates, for instance, might have four 
families: row effects, column effects, row x column interaction effects, and 
covariate effects. Associated with each family is a composite hypothesis 
stating that the null form of all subhypotheses in the family is true. The 
conventional strategy begins by testing the composite hypothesis; if it is 

The author thanks Carol Bittinger for her assistance with SAS and SPSS. Appre- 
ciation is also expressed to Steve Cherry, Don Daly, and Karen Summers for their 
comments on an earlier draft of this article. 
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rejected, then subhypotheses implied by the composite are tested. Gabriel 
(1969) refers to such a strategy as logically coherent. For example, in a 
one-way classification, the usual composite hypothesis states that all popu- 
lation means are identical. This composite hypothesis implies that every 
contrast among the population means is equal to zero. Accordingly, testing 
contrasts among means after rejection of the composite hypothesis is a 
coherent strategy. 

The usual composite hypothesis for a two-factor interaction states that 
contrasts among the levels of one factor do not differ between levels of the 
other factor. In one strategy, rejection of the composite interaction hypoth- 
esis is followed by tests of simple effects contrasts. A simple effects contrast 
is a contrast among the levels of one factor at a specific level of the other 
factor. It is well known that this strategy is not coherent (Betz & Gabriel, 
1978). That is, simple effects hypotheses are not implied by the composite 
interaction hypothesis. Testing simple effects following a significant interac- 
tion produce what Marascuilo and Levin (1970) call a Type IV error: "the 
incorrect interpretation of a correctly rejected hypothesis" (p. 398). 

Rosnow and Rosenthal (1989a), in a survey of studies employing factorial 
ANOVA, documented the widespread practice of following a significant inter- 
action by tests of simple effects contrasts. Rosnow and Rosenthal (1989b) 
suggested that one reason for the high frequency of incoherent analyses is 
that, for the analysis of interactions, researchers are poorly served by stan- 
dard software packages. While I sympathize with (and have empathy for) 
software users, I am not in complete agreement. I suspect that interactions 
are rarely analyzed correctly for the following three reasons. (a) Descrip- 
tions of coherent procedures for analyzing interactions have been, with few 
exceptions, restricted to balanced data without covariates. This is true in the 
statistical (Boik, 1986; Bradu & Gabriel, 1974; Gabriel, Putter, & Wax, 
1973), psychological (Boik, 1979; Keppel, 1973; Keppel & Zedeck, 1989), 
as well as educational (Betz & Gabriel, 1978; Betz & Levin, 1982; Maras- 
cuilo & Levin, 1970) literature. As a consequence, most researchers are 
unaware that methods for analyzing two-factor interactions are applicable 
to unbalanced as well as balanced data and to models that include covariates 
as well as higher order interactions. (b) Most researchers are unaware that 
standard software can compute detailed analyses of two-factor interactions. 
(c) Most researchers are unaware that specialized multiple comparison 
procedures for interaction have been developed. 

This article attempts to correct the preceding misconceptions. In partic- 
ular, the analysis of interactions in unbalanced data with covariates is 
described and illustrated with SAS (SAS Institute, 1985, 1988) and SPSS 
(1990). These software packages were selected because they are, to the 
author's knowledge, the only widely available packages that include both a 
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flexible linear models procedure and a matrix procedure capable of comput- 
ing the maximal product contrast F statistic. An extensive table of critical 
values for the maximal product contrast F statistic is given along with a table 
to facilitate computation of the associated p-values. Simulation evidence 
that the critical values and p-values are applicable when data are not 
balanced or covariates are present is reported. This article also compares 
the analysis strategy based on the maximal product contrast Fstatistic to the 
Lutz and Cundari (1987) strategy based on the most significant parametric 
function. 

To enhance readability, mathematical details have been relegated to the 
Appendix. Also, long technical phrases have been abbreviated to short 
technical phrases (second best, after short nontechnical phrases). For in- 
stance, Factor A simple effects contrast is shortened to simple-A contrast, and 
Factor B main effects contrast is shortened to main-B contrast. 

Adjusted Means and Main Effects Tests 

Adjusted Means 
Consider a fixed effects linear model that includes two factors, A and B, 

and their interaction. The model may also include other factors, interac- 
tions, and covariates. Factor A has a levels, and Factor B has b levels. The 
data need not be balanced, provided that each cell in the model is observed 
at least once, and the mean square error has at least one degree of freedom. 

All information concerning Factors A and B is contained in two matrices: 
the matrix of estimated means (adjusted, if covariates are present) and the 
matrix of estimated covariances among the estimated means. The corre- 
sponding model is 

M==M+E or =t= +e, 
where M is the a x b matrix of estimated (adjusted) means, M is the 
corresponding matrix of population (adjusted) means, and E is the a x b 
matrix of random residuals. The vectors i, pt, and e are each ab x 1 and 
are obtained by stacking the columns of M, M, and E, respectively. This 
operation is denoted by R = vec(M), pt = vec(M), and e = vec(E). The 
entries in M are called least-squares means by SAS (SAS Institute, 1988) 
and adjusted means by SPSS (1990). Estimation of adjusted means is de- 
scribed in the Appendix. 

The matrix of covariances among the entires of M can be written as 
var() = ar2I for I in (Al) and where a2 is an unknown scalar. The 
covariance matrix is estimated by var() = I 62 , where 62 is the mean 
square error (MSE) obtained from fitting the full model and has v degrees 
of freedom. 
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Likelihood Ratio Tests 

The usual hypotheses associated with a two-way classification can be 
written as Ho: C'p. = 0, where C is a known ab x s coefficient matrix and 
where C' denotes the transpose of C. The linear function, C'ti, could consist 
of a set of main effects contrasts, simple effects contrasts, or interaction 
contrasts depending on the choice of C. The likelihood ratio test (LRT) 
statistic for Ho: C'tt = 0 is an F statistic, is denoted by F(C), and is given 
in (A3). 

The principal disadvantage of expressing hypotheses as Ho: C' p = 0 is 
that the appropriate choice of C is not always apparent. Fortunately, most 
hypotheses of interest can be expressed, somewhat more transparently, as 
Ho: C MCB = 0, where CA and CB are known coefficient matrices. The 
matrix CA operates on Factor A while the matrix CB operates on Factor B. 
If the hypothesis concerns an effect averaged over the levels of Factor A, 
then CA is an a x 1 vector with each element equal to a-'. If the hypothesis 
concerns differences among the levels of Factor A, then each column of CA 
consists of the coefficients associated with a particular contrast among the 
levels of Factor A. The Factor B coefficient matrix is constructed similarly. 
For example, suppose a = 3, b = 4, and the difference between A1 and A3, 
averaged over B, is of interest (a main-A contrast). To average over 
columns, CB is equated to (.25 .25 .25 .25)'. To compare rows 1 and 3, 
CA is equated to (1 0 -1)'. 

Regardless of the particular choice of CA and CB, the LRT statistic is still 
an F statistic (or proportional to an F statistic). To emphasize the hypothesis 
being tested, the LRT statistic is written as T(CA, CB). An expression for 
T(CA, CB) is given in (A4). In general, T(CA, CB) is equal to the F statistic 
for testing H: CA MCB = 0 multiplied by the numerator degrees of free- 
dom. That is, the numerator is the hypothesis sum of squares, and the 
denominator is MSE. 

Subscripts are used to distinguish between the coefficient matrices when 
multiple hypotheses are tested. Factor A coefficient matrices are denoted 
by CA(1), CA(2), and so forth. The matrix CA(i) concerns the ith hypothesis 
involving Factor A; it does not refer to the ith level of Factor A. Factor B 
coefficient matrices are labeled in the same way. Small cs, CA(i) and CB(j), are 
used if the coefficient matrix is a vector. If the coefficient vector is a column 
of ones, it is denoted by la or lb* 

Main Effects Tests 
Main effects hypotheses concern contrasts among the row or column 

means of M. In computing these marginal means, rows and columns of M 
are weighted equally. The A means and their estimators are 

JLA = Mlbb-1 and 
•A = lbb-, 
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respectively. Similarly, the B means and their estimators are 

11B = M'laa-1 and ^B = 'laa-1. 
Let *IA be a contrast among the A means, and let *PA be the corresponding 

estimator. That is, 

1JmA=CA 
FLA and 41A CAI 4La, 

where CA is an a x 1 coefficient vector whose elements sum to zero. For 
example, suppose that a = 4 and that the difference between A1 and the 
average of A2 and A3 is of interest. The contrast is 

m .A =RA I - (A2 - 
+ R A3), where RLAi is the ith element of hA . The corresponding coefficient vector is 

CA = (1 -.5 -.5 0)'. A main-A contrast and its estimator can also be 
written as lA = CA MIb b-1 and 4JA CAI Mlb b-1, respectively. 

Suppose that 
tlA is an a priori main-A contrast and that a test of 

4JA 
= 0 is desired. Omitting the division by b, the hypothesis of interest is 

Ho: c Mlb = 0. The LRT statistic is an F statistic and can be written as: 
A_ 
2 

_A_( C ) 2 P (cC Ml T(cA, ,b) = vr(cA ) 
var(4iA) V CA1b) 

An expression for vxr(c' Mlb) is given in (A6). The statistic is written as 
T(cA, 1b) to emphasize that a contrast among rows (Factor A), summed over 
columns (Factor B), is being tested. Because the coefficient vector was 
chosen a priori, T(CA, 1b) can be referred to the F distribution with 1 and 
v degrees of freedom. 

If no a priori main-A contrasts have been specified, then a composite null 
is usually tested. The composite null states that RAi 

= 
P.Aj for all i,j or that 

all main-A contrasts are zero. The null can also be written as Ho:n0 A(1)= 

ltA(2) 
= 

... 
= A(a - 1) = 0, where 

JA(1), JIA(2), . ., I4A(a - 1) form a basis set of 
main-A contrasts. A basis set of main-A contrasts is a set of a - 1 contrasts 
whose coefficient vectors are linearly independent. The vectors need not be 
orthogonal. If the coefficient vectors are arranged into a matrix, 
CA = (CA(1) CA(2) ... CA(a - 1)), then the composite null can be written as 
Ho: C' LmA = 0 or, equivalently, as Ho: C Mlb = 0. For example, if a = 4, 
then a suitable CA matrix is 

1 1 1 

CA -1 0 0 
0 -1 0 
0 0 -1 

The columns of CA are said to form a basis set of coefficients. In the 
remainder of this article, CA and CB, without additional subscripts, denote 
matrices forming basis sets of coefficients for main-A and main-B contrasts. 

The LRT statistic for Ho:CA M1b = 0 is denoted by T(CA, lb) to em- 
phasize that a basis set of contrasts among rows, summed over columns, is 
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being tested. The statistic is identical to a - 1 times the usual F statistic for 
testing row effects. For an a level test, the composite null is rejected if 
(a - 1)-' T(CA, lb) F ,, where F1 ,is the upper 100(1 - a) percen- 
tile of the F distribution with a - 1 and v degrees of freedom. Scheff6's 
(1953) method can be used to control familywise Type I error rate for 
follow-up tests: Ho: c Mlb = 0 is rejected if T(cA, lb) - (a - 1) F1 I-,. 
Furthermore, if the composite null is rejected, then Scheff6's method is 
guaranteed to find at least one significant main-A contrast because 

max T(CA, b) = T(CA,lb), 
CA 

where the maximization is over all vectors that sum to zero. Main-B con- 
trasts are tested in an analogous manner. 

Interaction Tests 

Partial Interaction Hypotheses 
Let IB be a main-B contrast: kIB = cB '1B, where cB lb = 0. Associated 

with each main-B contrast is a set of simple-B contrasts, one at each level 
of Factor A. The simple-B contrast at the ith level of Factor A is denoted 
by 'B(Ai): 4kB(Ai) = C1 Cp j ij, where cj is the jth element of cB. In matrix 
terms, the vector of simple-B contrasts and its estimator are 

kIB(A ,) JB(A ) 

ltB(A) = MCB iB(A2) arid IB(A)= B = 
B(A 

2) 

\ 1B(Aa) /B(Aa) 

respectively. 
A main-B contrast and its associated vector of simple-B contrasts are 

related in a straightforward manner: The main-B contrast is the mean of the 
associated simple-B contrasts. The question of interaction is also straightfor- 
ward: Are the simple-B contrasts identical at all levels of A, or do they 
differ? A main-B contrast is said to interact with A if the simple-B contrasts 
are not identical. A main-B contrast does not interact with A if the simple-B 
contrasts are identical. A main-B contrast that does not interact with A can 
be interpreted without regard for any AB interactions that might exist. To 
help determine if 4, interacts with A, equality of the simple-B contrasts can 
be tested. The corresponding null is Ho: B(A) = fB(Ao) for all i, j. Boik (1979) 
called this a partial interaction hypothesis. The partial interaction hy- 
pothesis implies that all contrasts among the simple-B contrasts are equal 
to zero. Thus, the null can be written as Ho: C'A IB(A) 

= 0 or, equivalently, 
Ho: C MCB = 0. The LRT statistic for H: CA McB = 0 is T(CA, CB). The 
notation emphasizes that a basis set of row contrasts among a set of simple-B 
contrasts is being tested. For a priori cB, T(CA, CB) is distributed as a - 1 
times an F distribution with a - 1 and v degrees of freedom. 
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The distinction between simple effects hypotheses and partial interaction 
hypotheses is an important one and warrants repeating. The partial interac- 
tion hypothesis Ho: C' McB = 0 states that the a simple-B contrasts are each 
equal to the same value; but this value need not be zero. The simple-B 
hypothesis, Ho: 4B(A) = 0, or, equivalently, Ho: McB = 0, states that the a 
simple-B contrasts are each equal to the same value and that this value is 
0. The LRT statistic is T(Ia, CB), and, for a priori cB, is distributed as a times 
an F with a and v degrees of freedom. The simple-B hypothesis is false if 
some simple-B contrast, or some combination of the simple-B contrasts, is 
nonzero. The partial interaction hypothesis is false if some difference among 
the simple-B contrasts is nonzero. 

Composite Interaction Hypothesis: Likelihood Ratio Test 

If a priori partial interaction hypotheses have not been specified, then a 
composite interaction null is usually tested. The composite null states that, 
for any main-B contrast, the associated simple-B contrasts are identical at 
all levels of A. The null can be written as Ho: C' MCB = 0. The LRT statistic 
for the composite interaction null is T(CA, CB) and is identical to (a - 1) 
(b - 1) times the usual F statistic for interaction. For an ae level test, Ho is 
rejected if FAB Fla- 1)(b - 1),v, where FAB = [(a - 1)(b - 1)1-1 T(CA, CB) 

A composite interaction null, in many applications, can be tested by a test 
that is more powerful against a certain class of alternatives than the LRT. 
The competing test is based on the maximal product interaction contrast F 
statistic. To understand the rationale underlying the maximal F statistic, 
some background on interaction contrasts is needed. 

Interaction Contrasts 

A variety of coherent follow-up tests can be conducted if the composite 
interaction null is rejected. The composite null implies that all interaction 
contrasts are zero. The general form of an interaction contrast is 

a b 

IJAB 
= > > Cij Rij, or, equivalently, JAB 

= trace(CAB M), 
i= 1=1 

where CAB is an a x b matrix with elements {c/i}; each row and each column 
of CAB sums to zero. The LRT statistic for Ho: trace(C B M) = 0 is a special 
case of (A3) and can be written as 

v2AB _[trace(CAB M)] F [vec(CAB)) v[trace(C (1) 
var( rAB) VTa C(c B jM 

where vxr[trace(CB 'M)] is given in (A5). If CAB is specified a priori, then 
F [vec(CAB)] has an F distribution with 1 and v degrees of freedom. 

In practice, attention can often be restricted to a subset of interaction 
contrasts called product interaction contrasts. A product contrast is an inter- 
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action contrast for which the coefficient matrix can be written as CAB = 

CA cA, where CA and cB are coefficient vectors that sum to zero. The contrast 
is called a product contrast because the ijth coefficient in CAB is given 
by the product of the ith coefficient in cA and the jth coefficient in cB. A 
product contrast can be written as IJAB = CA MCB, and the LRT statistic for 
Ho: c MCB = 0 is T(CA, CB). 

If min(a, b) > 2, then product contrasts are only a subset of interaction 
contrasts. Consequently, some components of the interaction are ignored 
if attention is restricted to product contrasts. Nevertheless, substantial 
information is not likely to be lost because nonproduct contrasts are very 
difficult to interpret. Product contrasts, on the other hand, are frequently 
easy to interpret. The difficulty of interpreting nonproduct contrasts is 
illustrated in a later section that compares the Lutz and Cundari (1987) 
approach to the present approach. 

To interpret a product contrast, cA MCB, consider, first, the associated 
main-B contrast: 4B = cB 'IB. A complete interpretation of the main-B 
contrast entails a statement about its value, averaged over the levels of A, 
plus a statement about how it differs among the levels of A. Testing the 
partial interaction, using T(CA, CB), helps to determine if the contrast differs 
among the levels of A. If it is concluded that the simple-B contrasts do differ 
among the levels of A, then a natural follow-up strategy is to examine 
specific differences among the simple-B contrasts. This is where product 
contrasts are useful. A product contrast is a specific difference among the 
simple-B contrasts. Hence, to interpret a product contrast, one need only 
interpret a difference among simple-B contrasts. Of course, if the partial 
interaction null cannot be rejected, then product contrasts need not be 
examined; the simple-B contrasts do not differ significantly. Product con- 
trasts can also be interpreted as a difference among simple-A contrasts. 

As an illustration, consider the example from Rosnow and Rosenthal 
(1989a): 

B1 B2 

A1(3 3 

M=A2 5 7"' 

The sample means reflect the effects of a fictitious treatment, ralphing, on 
the performance (number of hits) of baseball players. Factor A has levels 
A,: control and A2: ralphed. Factor B has levels B1: inexperienced players 
and B2: experienced players. The two main effects and their interaction are 
significant. There is only one contrast in a two-level factor, so this analysis 
is somewhat mechanical. For CA = (-1 1)', the estimated simple-A con- 
trasts are IA(B) 

= (2 4)', and the average contrast is 4A = 3. The perfor- 
mance improvement due to ralphing is estimated to be 2 hits for inexperi- 
enced players, 4 hits for experienced players, and 3 hits on the average. For 
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CB = (-1 1)', the estimated product contrast is 
jIAB 

= 2. Because the 
interaction has just one degree of freedom, this product contrast is the entire 
interaction. The interpretations are straightforward. On the average, the 
performance improvement due to ralphing is 3 hits, but experienced players 
benefit more (by two hits) than inexperienced players. 

Composite Interaction Hypothesis: Maximal F Test 

The LRT test of Ho: CA MCB = 0 is not recommended when attention is 
restricted to product contrasts. It is not as powerful for product contrasts 
as a competing test which considers only product contrasts. The recom- 
mended test is based on Roy's (1953) union-intersection principle and 
rejects the composite null for large R, where 

R = max T(CA, CB), (2) 
CA, CB 

and where the maximization is over all vectors that sum to zero. The test 
statistic, R, is the maximal Fcorresponding to a product interaction contrast. 

When data are balanced and there are no covariates, the exact null dis- 
tribution of R is known. Boik (1985, 1986) referred to the distribution of R 
as the Studentized maximum root (SMR) distribution. The 100(1 - a) per- 
centile of the SMR distribution is denoted by Rpl,q,a, where p = min 
(a - 1, b - 1) and q = max(a - 1, b - 1). Tables of Rp, ,a for 2 S p < 5, 
p s q ? 6, a = .05, and a = .01 are given in Boik (1986). There is no need 
for special tables corresponding to p = 1 because R ,,a = qF  . The 
SMR percentiles can still be used when data are unbalanced or covariates 
are present, but the percentiles are, perhaps, no longer exact. The accuracy 
of the SMR percentiles for unbalanced data or ANCOVA is discussed in a 
following section. 

Interaction Contrasts Versus Corrected Cell Means 
Rosnow and Rosenthal (1989a, 1989b) argued that to correctly interpret 

an interaction "the exercise of looking at the 'corrected' cell means is 
absolutely essential" (1989b, p. 1282). Corrected cell means are sometimes 
called interaction effects and are obtained by removing row, column, and 
grand mean effects from the cell means. The ijth corrected cell mean is 

"ij= Lij- (- - ) - - j ) - = - 
- j , 

using the usual dot and overbar notation to denote averaging. The a x b 
matrix of corrected cell means is 

F = {yij} = HaMHb, 

where Ha = Ia - a-1 la 1 and Hb = Ib - b-1 1ob l. From the expression for F, it can be deduced that a corrected cell mean 
is a product contrast. In particular, Yij = cA(i) McB(), where CA(i) is the ith 
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column of H, and cB(j) is the jth column of Hb. For example, if a = 4 and 
b = 5, then the coefficient vectors corresponding to Y23 are CA(2)= 
(-.25 .75 -.25 -.25)' and cB(3) = (-.2 -.2 .8 -.2 -.2)'. It is 
not clear why Rosnow and Rosenthal insisted that one must examine the 
corrected cell means. The corrected cell means are merely one set of product 
contrasts. In a particular study, other interaction contrasts may be more 
meaningful. 

Rosenthal and Rosnow (1985, p. 28-36) also examined more general 
product contrasts (they call them crossed contrasts). They computed the 
product contrasts on the corrected cell means, r, rather than on the uncor- 
rected cell means, M. This is not erroneous, but it is unnecessary. Interac- 
tion contrasts (product or otherwise) are identical whether computed on the 
corrected or uncorrected cell means. That is, trace(CAB F) = trace(CAB M) 
for all matrices, CAB, in which each row and each column sums to zero. Thus, 
corrected cell means need not be computed to examine interaction contrasts. 

Multiple Comparison Procedures for Interactions 

It is asumed that Type I error rate is to be controlled for some set (i.e., 
family) of contrasts. Power for testing a particular contrast depends, in part, 
on the size of the set the contrast belongs to. Large sets translate into small 
power for individual contrasts. Power can be increased by restricting tests 
to smaller sets of contrasts. This trade-off between generality and power is 
typical of multiple comparison procedures. Hochberg and Tamhane (1987, 
sec. 10.5) review multiple comparison procedures for interaction in bal- 
anced two-way classifications without covariates. This section reviews se- 
lected procedures that can be employed in more complex linear models 
where data need not be balanced and covariates may be present. 

Family 1: All Interaction Contrasts 

If the set of interest consists of all interaction contrasts, then the recom- 
mended test of the composite null, Ho: CA MCB = 0, is the LRT: reject Ho 
if FAB F1a -1)(b - 1), v. Scheff6's (1953) method can be used to control family- 
wise Type I error rate of any follow-up tests of interaction contrasts. That 
is, Ho: trace(CABM) = 0 is rejected if F[vec(CAB)] ? (a - 1)(b - 1) 
Ff-_1)(b - 1), ,. Furthermore, if the composite null is rejected, then Scheff6's 
method is guaranteed to find at least one significant interaction contrast 
because 

max F [vec(CAB) = T(CA, CB) = (a - 1)(b - 1) FAB. (3) 
CAB 

For a proof of (3), see Johnson (1973). The associated simultaneous confi- 
dence intervals are given by 

trace(CA•B•I) ? (a - 1)(b - 1) Fa - •1)(b - 1),var[trace(CAB M)] 
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Family 2: All Product Interaction Contrasts 
If the set of interest consists of all product interaction contrasts, then 

the recommended test of the composite null, Ho: CAMCB = 0, is the max- 
imal F test: reject Ho if R : R,1-t.• Familywise Type I error is controlled 
at a if a partial interaction null, Ho: CA MCB = 0, is rejected whenever 
T(CA, CB) R q, . Similarly, Ho: c' MCB = 0 is rejected whenever 
T(cA CB) R R1,-,L, and a product contrast null, Ho: cA McB = 0, is rejected 
whenever T(cA CB) ? R 1,,. By construction, a significant maximal F test 
guarantees the existence of at least one significant product contrast. Signif- 
icant partial interactions are also guaranteed because R is the maximal 
statistic for testing a partial interaction as well as the maximal Ffor a product 
contrast: 

R = max T(CA, CB) = max T(CA,CB) = max T(CA, CB), 
CA, CB CA CB 

and the maximization is over all coefficient vectors that sum to zero. Simul- 
taneous confidence intervals for product contrasts are given by 

cA MCB ? VR1 - vr(cA McB) c p,q,v var B), 

for vir(cA lMCB) of (A6). 
The increase in sensitivity purchased by restricting attention to product 

contrasts can be gauged by comparing the Scheffe and SMR critical values. 
For example, if a = 6, b = 7, v = 100, and at = .05, then the Scheff6 criti- 
cal value for tests of interaction contrasts is 30 F3o09 0= 47.197. The corre- 
sponding SMR critical value for product contrasts, from Boik (1986), is 
R5,6,100 oo = 25.571. The SMR simultaneous confidence intervals are only 
100\/25.571/47.197 ? 74% as wide as the Scheffe intervals. 

Family 3: An A Priori Set of Partial Interactions 

Sensitivity is increased further if attention is restricted to a small set of 
a priori main effect contrasts and their associated interactions. The Bonfer- 
roni inequality provides a straightforward way of controlling the per family 
Type I error rate (an upper bound on the familywise error rate) in this 
situation. The procedure consists of allocating a portion of a to each a priori 
test in the family. Suppose, for example, that one of the factors--say Factor 
B-has quantitative levels and that it is sensible to partition Factor B ac- 
cording to polynomial trend contrasts. For b = 3, the a priori main-B 
hypotheses are H: la' MCB(1) = 0 and Ho: l' McB(2) = 0, where CB(1)= 
(-1 0 1)' and cB(2) = (1 -2 1)'. If each of the a priori hypotheses is 
tested at the at/2 level, then the per family Type I error rate for Factor B is 
at. The interaction can be partitioned similarly. The questions to be answered 
are whether the linear effect of Factor B varies over the levels of A and 
whether the quadratic effect of Factor B varies over the levels of A. If 
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Ho: CA McB(l) = 0 and Ho: CA MB(2) = 0 are each tested at level a/2, then 
the per family Type I error rate for the interaction is oa. The appropriate 
critical value for the test statistics T(CA, CB(1)) and T(CA, CB(2)) is (a - 1) 
F•-•2. The critical value for follow-up tests of product contrasts also is 
(a - 1) F1 - 2 

The gain in sensitivity purchased by restricting attention to the two trend 
contrasts can be gauged by comparing the critical values. Suppose, as above, 
that b = 3. Also, suppose that a = 5, v = 50, and at = .05. If all interac- 
tion contrasts are of interest, the critical value for an interaction test is 

8,50 F95 = 17.040. If attention is restricted to product contrasts, the corre- 
sponding critical value is R 295O = 13.876. Finally, if attention is restricted 
to the two trend contrasts, then the critical value is only 4,F0.57 

= 12.218. 

Extension of SMR Percentiles and Computation of P-Values 

If min(a,b) > 6 or max(a, b) > 7, the tables in Boik (1986) cannot be 
used. New percentage points corresponding to larger a and/or b are given 
in Table 1. The entries in Table 1 were extracted from a larger set of exact 
upper percentiles. The complete set is available from the author and in- 
cludes denominator degrees of freedom 1(1)30, 32(2)50, 55(5)100, 125, 150, 
200(100)1000, and oo. The upper percentiles in Table 1 were computed by 
using the mathematical results of Krishnaiah and Chang (1971) to evaluate 
Equation 4.1 in Boik (1986). Reasonably accurate interpolation between 
tabled values, R,2 < R',-, < R,-, can be accomplished as follows: 

pq-x2- V21q 

RX- R- + (RX,- - RX-v-)( 1 p,q, v p,q, v2 p,q,v1, p , 1 

For example, the exact value of R 60,7,150 is 35.759; interpolation yields 

R, -159 33.404 + (36.970- 33.404)( 15-1 = 35.781. 6,7,150 0.9100 -0)= 35.781. 

In practice, many researchers like to compute the p-value corresponding 
to an observed test statistic. Computation of exact p-values for the SMR 
distribution is quite complicated, but relatively simple approximations have 
been proposed. Johnson (1976) approximated the distribution of the numer- 
ator of R by a multiple of a x2 random variable. The multiplier and degrees- 
of-freedom parameters were obtained by matching the first two moments. 
Boik (1985) obtained a 3-moment approximation by matching the moments 
of R to those of a multiple of an F random variable. Moment functions for 
using Boik's (1985) approximation are given in Table 2. Table 2 represents 
a simplification and extension of Table 1 in Boik (1985). The moment 
functions in Table 2 assume that v > 6 and are defined by 

(v - 2)E(R) (v - 4)E(R2) (v - 6)E(R3) 
01 02 (v - () and 03 = 

v ' (v - 2)[E(R)]2' 3 (v - 2)E(R)E(R2) 
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Analysis of Interactions 

The 3-moment F approximation to the SMR distribution is 

Pr(R s x) - Pr(F,,, 2 - k- x), 
where 

V2= 6 4(v6)[ 02(v - 2) - (v-4) 
v2=6+4(v-6)[3(v- 2)(v - 4)-202(v-2)(v - 6)+ (v - 4)(v-6) 

' 

2(v - 4)(v2 - 2) 01 v(v2- 2) v1 and k = 

l02(v-2)(v2- 4)- (v - 4)(v2- 2)' v2(v-2) 

If v s 6, Johnson's (1976) approximation can be obtained by letting v2 = v, 
vl = 2/(02 - 1), and k = 01. Critical values are approximated by 

R 1-, kF'l-a 
p, q, v I V1, V2 

As an illustration, R 415, 36 = 39.330. The 3-moment approximation yields 
0.950.95 =39.296 R 4,12,36 22.15 F 37.5,32.17 = 39.296 

and 

Pr(R4, 12,36 39.330) :Pr F37 75,32.17 2. = .9503. 
22.15 ) 

Distribution of the Maximal F When Data Are Unbalanced 

Equation A7 in the Appendix gives a sufficient condition for R to follow 
the SMR distribution. The condition in (A7) is satisfied, for example, when 
there are no covariates and when data are balanced or sample sizes are 
proportional. It is not known if (A7) is a necessary condition. I suspect that 
R follows the SMR distribution regardless of lack of balance or presence of 
covariates. Of course, I could be wrong. For the case of unbalanced data 
without covariates, Boik (1989) showed, theoretically, that as sample size 
increases, R converges in distribution to the SMR distribution. Simulation 
evidence that the null distribution of R is accurately approximated by the 
SMR distribution for the case of unbalanced data with covariates is given 
in this section. 

A two-way classification with a = 6 and b = 7 was selected for the simu- 
lation. The condition in (A7) does not depend on F2 or error degrees of 
freedom, so, for convenience, &2 was equated to 1 and assumed known. 
Each of 5,000 trials in the simulation consisted of (a) randomly generating 
a 30 x 30 covariance matrix, D; (b) randomly generating a 30 x 1 vector, 
vec(CA MCB), from a multivariate normal distribution with mean 0 and 
variance D; and (c) computing the test statistic R. 

The covariance matrices were generated to represent a wide variety of 
structures not satisfying the sufficient condition in (A7). In each trial, the 
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TABLE 2 
Moment functions for approximating the SMR distribution 

p,q O1 02 03 p,q 01 02 03 

2,2 3.5708 1.5234 2.0571 3,14 22.0874 1.0655 1.1330 
2,3 5.0000 1.3600 1.7294 3,15 23.3654 1.0616 1.1251 
2,4 6.3562 1.2762 1.5604 3,16 24.6338 1.0581 1.1180 
2,5 7.6667 1.2250 1.4565 3,17 25.8937 1.0550 1.1117 
2,6 8.9452 1.1902 1.3859 3,18 27.1458 1.0523 1.1061 

2,7 10.2000 1.1649 1.3347 3,19 28.3908 1.0498 1.1010 
2,8 11.4361 1.1458 1.2957 3,20 29.6292 1.0475 1.0964 
2,9 12.6571 1.1307 1.2651 3,21 30.8615 1.0455 1.0922 
2,10 13.8656 1.1185 1.2403 3,22 32.0882 1.0436 1.0884 
2,11 15.0635 1.1085 1.2199 3,23 33.3097 1.0419 1.0849 

2,12 16.2522 1.1000 1.2027 3.24 34.5263 1.0403 1.0817 
2,13 17.4329 1.0928 1.1881 3,25 35.7383 1.0388 1.0787 
2,14 18.6065 1.0866 1.1755 3,26 36.9460 1.0375 1.0759 
2,15 19.7739 1.0812 1.1645 3,27 38.1497 1.0362 1.0733 
2,16 20.9356 1.0765 1.1548 3,28 39.3495 1.0350 1.0709 

2,17 22.0922 1.0722 1.1462 3,29 40.5458 1.0339 1.0687 
2,18 23.2441 1.0685 1.1385 3,30 41.7386 1.0329 1.0665 
2,19 24.3917 1.0651 1.1316 4,4 10.1312 1.1549 1.3159 
2,20 25.5354 1.0620 1.1254 4,5 11.8210 1.1286 1.2624 
2,21 26.6755 1.0592 1.1198 4,6 13.4368 1.1104 1.2253 

2,22 27.8122 1.0567 1.1146 4,7 14.9982 1.0970 1.1979 
2,23 28.9457 1.0544 1.1099 4,8 16.5173 1.0867 1.1767 
2,24 30.0764 1.0522 1.1055 4,9 18.0024 1.0785 1.1599 
2,25 31.2042 1.0502 1.1015 4,10 19.4593 1.0717 1.1462 
2,26 32.3295 1.0484 1.0978 4,11 20.8926 1.0661 1.1347 

2,27 33.4524 1.0467 1.0944 4,12 22.3054 1.0614 1.1250 
2,28 34.5730 1.0451 1.0912 4,13 23.7004 1.0573 1.1166 
2,29 35.6914 1.0437 1.0882 4,14 25.0797 1.0538 1.1094 
2,30 36.8077 1.0423 1.0854 4,15 26.4452 1.0507 1.1030 
3,3 6.7321 1.2527 1.5140 4,16 27.7981 1.0479 1.0974 

3,4 8.3333 1.1968 1.4009 4,17 29.1397 1.0454 1.0924 
3,5 9.8547 1.1621 1.3303 4,18 30.4710 1.0432 1.0878 
3,6 11.3210 1.1383 1.2817 4,19 31.7929 1.0412 1.0838 
3,7 12.7465 1.1208 1.2461 4,20 33.1061 1.0394 1.0801 
3,8 14.1404 1.1075 1.2189 4,21 34.4113 1.0378 1.0767 

3,9 15.5086 1.0969 1.1972 4,22 35.7092 1.0363 1.0736 
3,10 16.8557 1.0883 1.1797 4,23 37.0001 1.0349 1.0708 
3,11 18.1849 1.0811 1.1651 4,24 38.2846 1.0336 1.0682 
3,12 19.4986 1.0751 1.1527 4,25 39.5631 1.0324 1.0657 
3,13 20.7990 1.0699 1.1422 4,26 40.8359 1.0313 1.0635 



TABLE 2 (Continued) 

p,q 01 02 03 p,q 01 02 03 

4,27 42.1033 1.0303 1.0614 6,16 33.2982 1.0364 1.0741 
4,28 43.3658 1.0293 1.0594 6,17 34.7707 1.0347 1.0705 
4,29 44.6235 1.0284 1.0576 6,18 36.2289 1.0331 1.0672 
4,30 45.8767 1.0276 1.0559 6,19 37.6739 1.0316 1.0642 
5,5 13.6547 1.1074 1.2193 6,20 39.1070 1.0303 1.0615 

5,6 15.3982 1.0927 1.1892 6,21 40.5290 1.0291 1.0590 
5,7 17.0754 1.0818 1.1669 6,22 41.9407 1.0280 1.0568 
5,8 18.7013 1.0733 1.1496 6,23 43.3428 1.0269 1.0547 
5,9 20.2858 1.0666 1.1358 6,24 44.7359 1.0260 1.0527 
5,10 21.8364 1.0610 1.1244 6,25 46.1208 1.0251 1.0509 

5,11 23.3581 1.0564 1.1149 6,26 47.4977 1.0243 1.0493 
5,12 24.8552 1.0525 1.1069 6,27 48.8673 1.0235 1.0477 
5,13 26.3308 1.0491 1.0999 6,28 50.2299 1.0228 1.0462 
5,14 27.7875 1.0461 1.0939 6,29 51.5859 1.0221 1.0449 
5,15 29.2273 1.0435 1.0886 6,30 52.9357 1.0215 1.0436 

5,16 30.6520 1.0412 1.0839 7,7 20.9073 1.0631 1.1288 
5,17 32.0631 1.0392 1.0796 7,8 22.7133 1.0569 1.1160 
5,18 33.4617 1.0373 1.0758 7,9 24.4657 1.0519 1.1058 
5,19 34.8490 1.0356 1.0724 7,10 26.1740 1.0478 1.0973 
5,20 36.2259 1.0341 1.0693 7,11 27.8450 1.0443 1.0902 

5,21 37.5931 1.0327 1.0665 7,12 29.4842 1.0413 1.0842 
5,22 38.9514 1.0314 1.0638 7,13 31.0955 1.0388 1.0790 
5,23 40.3013 1.0303 1.0614 7,14 32.6824 1.0366 1.0744 
5,24 41.6435 1.0292 1.0592 7,15 34.2475 1.0346 1.0703 
5,25 42.9785 1.0282 1.0572 7,16 35.7932 1.0328 1.0667 

5,26 44.3066 1.0272 1.0552 7,17 37.3213 1.0312 1.0635 
5,27 45.6283 1.0263 1.0534 7,18 38.8333 1.0298 1.0606 
5,28 46.9439 1.0255 1.0518 7,19 40.3307 1.0285 1.0580 
5,29 48.2538 1.0248 1.0502 7,20 41.8146 1.0274 1.0556 
5,30 49.5583 1.0240 1.0487 7,21 43.2862 1.0263 1.0534 

6,6 17.2548 1.0803 1.1639 7,22 44.7462 1.0253 1.0514 
6,7 19.0346 1.0711 1.1451 7,23 46.1955 1.0244 1.0495 
6,8 20.7549 1.0639 1.1304 7,24 47.6348 1.0235 1.0478 
6,9 22.4276 1.0582 1.1187 7,25 49.0647 1.0228 1.0462 
6,10 24.0609 1.0535 1.1090 7,26 50.4859 1.0220 1.0447 

6,11 25.6610 1.0495 1.1009 7,27 51.8988 1.0213 1.0433 
6,12 27.2326 1.0461 1.0940 7,28 53.3039 1.0207 1.0420 
6,13 28.7794 1.0432 1.0880 7,29 54.7017 1.0201 1.0408 
6,14 30.3044 1.0407 1.0828 7,30 56.0924 1.0195 1.0396 
6,15 31.8100 1.0384 1.0782 8,8 24.5981 1.0514 1.1048 
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TABLE 2 (Continued) 

p, q 1 02 03 p, q 1 02 03 

8,9 26.4240 1.0470 1.0957 8,20 44.3890 1.0250 1.0509 
8,10 28.2013 1.0433 1.0882 8,21 45.9061 1.0241 1.0489 
8,11 29.9376 1.0402 1.0819 8,22 47.4105 1.0232 1.0471 
8,12 31.6389 1.0376 1.0765 8,23 48.9033 1.0224 1.0454 
8,13 33.3096 1.0353 1.0718 

8,24 50.3850 1.0216 1.0438 

8,15 36.5734 1.0315 1.0641 8,25 51.8565 1.0209 1.0424 
8,15 36.5734 1.0315 1.0641 

8,26 53.3183 1.0202 1.0410 8,16 38.1719 1.0300 1.0609 8,26 53.3183 1.0202 1.0410 
8,17 39.7511 1.0285 1.0580 8,27 54.7711 1.0196 1.0398 
8,18 41.3127 1.0273 1.0554 

8,29 57.6514 1.0185 1.0375 
8,19 42.8582 1.0261 1.0530 8,30 59.0799 1.0180 1.0365 

covariance matrix was generated as the sum of two component matrices: 
(D = 130 + S. The first is an identity matrix and would be the only compo- 
nent if data were balanced and no covariates were present. The second 
component is a random matrix with distribution 31 x S - W30 (31, I). The 
second component reflects the contribution of unbalanced data and covari- 
ates to Q. This method of generating the Ds yields covariance matrices more 
deviant from (A7) than those likely to be encountered in practice. 

Figure 1 presents an empirical cumulative distribution plot of the results 
of the simulation experiment. Also plotted is a simultaneous 95% accep- 
tance region for testing the hypothesis that R follows the SMR distribution. 
The acceptance region is based on inverting the Kolmogorov test. The entire 
empirical distribution function falls inside the 95% acceptance region. The 
computed Kolmogorov statistic is .0152 (p - .12). As Figure 1 shows, the 
R percentiles are accurately approximated by the SMR percentiles. For 
example, 94.78% of the R statistics were smaller than the 95th SMR percen- 
tile, R 5,6,= 23.954, and 98.76% of the R statistics were smaller than the 99th 
SMR percentile, R 0;99c=28.862. 

Maximal Product Contrast F 
Versus Most Significant Parametric Function 

A competing strategy for selecting interaction contrasts for further exam- 
ination after rejecting the composite null was described by Lutz and Cundari 
(1987). If the composite null is rejected by the LRT, they suggested exam- 
ining the coefficient matrix, CAB, that maximizes F[vec(CAB)] in (1). The 
corresponding interaction contrast is necessarily significant according to 
Scheff6's (1953) method because of (3). Direct interpretation of the maxi- 
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Maximal F Statistic: R 

FIGURE 1. Empirical distribution function of the maximal F. The area between the 
upper and lower curves is a 95% acceptance region for testing that the maximal F 
follows the SMR distribution 

mizing coefficient matrix is likely to be elusive, so they simplify the coeffi- 
cients (by rescaling and rounding) and interpret the simplified interaction 
contrast. To illustrate their approach, Lutz and Cundari used a study con- 
ducted by Beatty (1984). Learning disabled (LD) students from Grades 3, 
4, and 5 were assigned to treatment (summer reading program) or control 
groups. Non-LD students from each grade also served as controls. The data 
were analyzed according to a 3 (Grades 3, 4, and 5) x 3 (LD treatment, LD 
control, non-LD control) fixed effects model. The interaction p-value from 
the LRT was 0.043. The maximizing coefficient matrix and its simplification 
are 

25.207 -0.603 -24.603 ( 0.5 0.0 -0. 
CAB = 20.462 -21.231 0.769 1 CB = 50 x 0.5 -0.5 0.0 . 

-45.669 21.834 23.834/ -1.0 0.5 0.5 

The simplified interaction contrast, trace (CAB 'M), is also significant, but its 
meaning is still elusive. To interpret the interaction, Lutz and Cundari 
further simplify the coefficient matrix to 
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0.50 -0.25 -0.25\ 
50-1C*B C* = 0.50 -0.25 -0.25 . 

-1.00 0.50 0.50 

The resulting interaction contrast, trace(C* 'M), is not significant accord- 
ing to Scheff6's (1953) method, but Lutz and Cundari were able to make an 
interpretation: The difference between fifth-grade students and the average 
of third- and fourth-grade students depends on whether students partici- 
pated in the summer reading program. Note that the contrast that Lutz and 
Cundari were finally able to interpret is a product contrast. The row (grade) 
coefficient vector is c * = (0.5 0.5 -1.0)', and the column (group) coef- 
ficient vector is c•* = (1.0 -0.5 -0.5)'. Apparently, the nonproduct 
contrasts were uninterpretable. 

Reanalysis of the data by the proposed method leads to the same con- 
trast, but it does so more directly. The computed test statistic is R = 
9.38 which, by coincidence, has the same p-value as the LRT (p = 0.043). 
The maximizing vectors in (2) are cA = (0.46 0.35 -0.81)' and cB = 

(0.81 -0.37 -0.44)'. Simplification yields c•* and c•*. Furthermore, 
the product interaction cA* 'Mc** is significant by the proposed method: 
T(cA**, c*) = 9.33, p = 0.044. 

Analyses of Interaction With SAS and SPSS 

Project TALENT 

Project TALENT was a large scale survey conducted to assess the abili- 
ties, interests, and personality characteristics of American high-school stu- 
dents. The present analysis is concerned with modeling interest in physical 
science as a function of size of high school (4 levels), geographic region of 
the country (9 levels), plans for attending college (5 levels), and gender. 
Socioeconomic status, results of a mathematics test, and results of a mechan- 
ical reasoning test served as covariates. Cooley and Lohnes (1971, Appendix 
B) list a subset of measures from 505 high-school seniors enrolled in the 
project (a 2% random sample of all enrolled seniors). Female case 215 was 
dropped because of missing data. The number of high-school sizes was 
reduced to three by merging students from the smallest high schools (n = 9) 
with students from the second smallest high schools (n = 144). The number 
of geographic regions was reduced to eight by merging students from Alaska 
and Hawaii (n = 2) with students from the far western states (n = 41). 

Preliminary tests suggested that some two-factor, all three-factor, and the 
four-factor interactions can be eliminated from the model. An ANCOVA 
based on the reduced model is summarized in Table 3. All sums of squares 
are SAS Type III. Most of the families are significant and, in practice, would 
merit follow-up tests. For present purposes, attention is focused on the 
college plans main effect and the plans x size of high-school interaction. 
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TABLE 3 
ANCOVA summary table of physical science interest inventory 

Source SS df MS F p-Value 

Covariates 3534.44 3 1178.15 24.79 p < 0.01 
Mathematics test 1124.83 1 1124.83 23.67 p < 0.01 
Mechanical reasoning test 693.43 1 693.43 14.59 p < 0.01 
Socioeconomic status index 11.39 1 11.39 0.24 p = 0.62 

Gender 1452.45 1 1452.45 30.56 p < 0.01 
College plans 913.63 4 228.41 4.81 p < 0.01 
Geographic region 741.21 7 105.89 2.23 p = 0.03 
Size of high school 96.21 2 48.10 1.01 p = 0.36 
Gender x plans 305.71 4 76.43 1.61 p = 0.17 
Gender x region 700.60 7 100.09 2.11 p = 0.04 
Gender x size 332.27 2 166.14 3.50 p = 0.03 
Plans x size 1234.51 8 154.31 3.25 p < 0.01 
Error 22100.13 465 47.53 

Total 46294.66 503 

Computation of the Maximal F Statistic 

If the usual F test is nonsignificant and pq FAB < R -g then the maximal 
F test need not be performed because the outcome (nonsignificance) is 
known. Conversely, if the F test is nonsignificant but pq FAB > R ,-,-, then 
the maximal F test ought to be performed because significant product 
contrasts might exist. See Boik (1986) for an example. If, as in the present 
case, the F test is significant, then one could bypass the maximal F test and 
proceed directly to follow-up tests. Nevertheless, this strategy is not recom- 
mended. Computing the maximal F statistic automatically produces the 
maximizing vectors, CA and cB. These vectors are quite useful when selecting 
follow-up tests of partial interactions and interaction contrasts. In addition, 
unless the maximal F test is performed, one cannot be sure that follow-up 
tests on product contrasts are necessary. It is unlikely, but possible, for the 
usual F test to detect a significant nonproduct contrast while the maximal 
F test declares all product contrasts to be nonsignificant. The interpretation 
of such an interaction would be difficult. 

Table 4 lists a SAS program for computing the maximal F statistic for the 
college plans x size of high-school interaction. The computation requires 
two steps. First, the model is fit using proc glm (SAS Institute, 1988), and 
the estimated adjusted means (covariates equated to their means) and cor- 
responding covariances are saved. The estimated adjusted means are dis- 
played in Table 5 and plotted in Figure 2. In Step two, an alternating 
least-squares algorithm (Boik, 1989) is used to compute the maximal F 
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TABLE 4 
SAS program to compute maximal F statistic 

data; 
infile talent; input size region gender plan mech math physics ses; 

proc glm; 
class plan size gender region; 
model physics = math mech ses planisize planIgender sizelgender 

genderiregion; 
lsmeans plan*size/ cov out = means; 

proc iml; 
use means; reset noname; read all var _num_ into X; 
a = ncol(design(X[,2])); p = a - 1; 
b = ncol(design(X[,1])); q = b - 1; 
Sigma = X[,6:a*b + 5]; mu = X[,3]; 
Ha = I(a) - J(a,a,1/a); Ca = Ha[,l:p]; 
Hb = I(b) - J(b,b,1/b); Cb = Hb[,l:q]; 
Phi = (Cb@Ca)'*Sigma*(Cb@Ca); Psi = Ca'*shape(mu,b,a)'*Cb; 
call svd(U,D,V,Psi); wp = U[,1]; psi = shape(Psi',p*q,1); 
start als; 

wq = inv((I(q)@wp)'*Phi*(I(q)@wp))*(I(q)@wp)'*psi; 
wp = inv((wq@I(p))'*Phi*(wq@I(p)))*(wq@I(p))'*psi; 
epsi = psi'*(wq@wp) - R; R = R + epsi; 

finish; 
epsi = 1; R = 0; 
start iterate; 

do while(epsi >= .00001); run als; end; 
finish; 
run iterate; 
print "Maximal Contrast Coeff.: Treat. A" (Ca*wp/sqrt(wp'*Ca'*Ca*wp)); 
print "Maximal Contrast Coeff.: Treat. B" (Cb*wq/sqrt(wq'*Cb'*Cb*wq)); 
print "Maximal F Ratio for Product Contrast" R; 

statistic. The second step involves matrix computations and.is performed by 
proc iml, the interactive matrix language (SAS Institute, 1985). The proc iml 
statements can be applied to other data sets without modification. The 
computed test statistic is R = 23.08. Designating college plans as Factor A 
and high-school size as Factor B, the maximizing coefficients are 

-0.49 
0.11 0.72\ 

cA = 0.75 and CB = -0.03 . 
0.06 -0.69 

-0.43 

Interpolation in Tables 1 and 2 of Boik (1986) yields R 465 12.80 and 
R 2,465 16.97. Using the 3-moment approximation, p - 8.3 x 10-4. 
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TABLE 5 
Estimated adjusted means: College plans x size of high school 

Size of high school 

College plans Small Medium Large Row means 

Definitely will go 15.76 18.02 19.57 17.78 
Almost sure to go 19.31 17.76 18.64 18.57 
Likely to go 21.87 14.93 11.99 16.26 
Not likely to go 14.53 15.35 15.28 15.06 
Definitely will not go 13.37 12.55 16.49 14.14 

Column means 16.96 15.72 16.39 16.36 

Table 6 lists SPSS programs (SPSS, 1990, Release 4.0) to compute the 
maximal F statistic. The analysis requires two SPSS runs. In Run 1, the 
estimated adjusted means and corresponding standard errors, correlations, 
and covariance factors (covariances divided by MSE) are computed. Be- 
cause of a bug in Release 4.0, multiple covariates, if they exist, must be 
specified on the design command rather than on the analysis subcommand. 

S -Small H.S. 
i 

a, Med. H.S. 
C) 
U) 

C Large H.S. 

Yes 2 3 4 No 

Full-Time College Plans 
FIGURE 2. Profile plot of estimated adjusted means: college plans x high school 
size 
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TABLE 6 
SPSS program to compute maximal F statistic 

Computation of adjusted means and corresponding correlation/covariance matrix 

descriptives variables = math mech ses/ save. 
manova physics by plan(1,5) size(1,3) gender(1,2) region(1,8) with zmath zmech 

zses/ analysis physics/ print = parameters(estim cor)/ design = muplus plan by 
size gender plan by gender size by gender region gender by region zmath 
zmech zses. 

Computation of maximal F 

data list file = adjust free/ mean se covl to cov15. 
matrix. 
get X. 
compute a = 3. 
compute b = 5. 
compute p = a - 1. 

compute q = b - 1. 

compute mu = X(:,1). 
compute Sigma = mdiag(X(:,2)&*X(:,2)). 
compute k = a*b + 2. 
compute Corr = X(:,3:k). 
loop i = 2 to a*b. 
+ loop j = 1 to i - 1. 
+ compute Sigma(i, j) = Corr(i, j)*X(i,2)*X( j,2). 
+ compute Sigma(j,i) = Sigma(i, j). 
+ end loop. 
end loop. 
compute Ca = Ident(a,a - 1) - make(a,a - 1,1/a). 
compute Cb = Ident(b,b - 1) - make(b,b - 1,1/b). 
compute Psi = t(Ca)*t(reshape(mu,b,a))*Cb. 
call svd(Psi,U,D,V). 
compute wp = U(:,1). 
compute Phi = t(Kroneker(Cb,Ca))*Sigma*Kroneker(Cb,Ca). 
compute psi = reshape(t(Psi),p*q,1). 
compute R = 0. 
compute epsi = 1. 
loop. 
"+ compute C = Kroneker(Ident(q),wp). 
"+ compute wq = inv(t(C)*Phi*C)*t(C)*psi. 
"+ compute C = Kroneker(wq,Ident(p)). 
"+ compute wp = inv(t(C)*Phi*C)*t(C)*psi. 
"+ compute epsi = t(psi)*Kroneker(wq,wp) - R. 
"+ compute R = R + epsi. 
end loop if (epsi It .00001). 
print (Ca*wp/sqrt(t(Ca*wp)*Ca*wp))/ title "Maximal Contrast Coeff.: Treat. A". 
print (Cb*wq/sqrt(t(Cb*wq)*Cb*wq))/ title "Maximal Contrast Coeff.: Treat. B". 
print R/title "Maximal F Ratio for Product Contrast". 
end matrix. 



Analysis of Interactions 

Otherwise, incorrect standard errors and covariances are obtained. Specify- 
ing covariates on the design command ordinarily produces adjusted means 
in which covariates are equated to zero. By centering the covariates at zero 
(performed by the descriptives command), adjusted means in which covari- 
ates are equated to their means can be obtained. The output is edited to 
produce a file containing only the estimated means, the standard errors, and 
the correlation/covariance matrix. If the design contains all higher order 
interactions and there are no empty cells, then the pmeans subcommand can 
be used to obtain estimated adjusted means (covariates equated to averaged 
unweighted means). Nevertheless, the muplus keyword is still required to 
obtain correlations among the estimated adjusted means. In Run 2, the file 
containing means, standard errors, and correlations/covariances is read, and 
matrix-end matrix commands (SPSS, 1990) are used to compute the max- 
imal F. To apply the matrix-end matrix program to other data sets, a and 
b must be set to their correct values (lines 4 and 5). Factor B precedes Factor 
A in the manova command. Also, the variable name covl5 (line 1) should 
be changed, if necessary, so that SPSS reads ab correlations/covariances 
after each (mean, standard error) pair. In some applications, the numerical 
accuracy of the Run 2 output can be somewhat degraded because of its 
dependence on the accuracy of the printed Run 1 output. For the TALENT 
data, the maximal F, computed by SPSS, is correct to two decimal places. 

Follow-Up Tests 
This section examines selected partial interactions and interaction con- 

trasts related to the college plans by high-school size interaction. SAS and 
SPSS programs to perform the analyses appear after the description of the 
tests. 

The Factor A (college plans) coefficient vector associated with the max- 
imal F statistic primarily reflects a comparison between students who are de- 
cided about their college plans (levels 1 and 5) and students who are rela- 
tively undecided (level 3). That is, CA(1) 

= (-.5 0 1 0 -.5)' appears to 
be a near maximizer of the product contrast F statistic. The corresponding 
main-A and simple-A contrast estimates are 

17.78 

18.57 

A1A(1) =CA(l)IA 
= (-.5 0 1 0 -.5) 16.26 = 0.30 

15.06 
14.14 

and 

41A(1)(B) = MCA(1) 
= (7.30 -0.35 -6.04)', 

respectively. Averaged over school sizes, it appears that decided students 
(mean = 15.96) and undecided students (mean = 16.26) are about equally 
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interested in physical science. The corresponding main effect contrast is not 
significant: T(CA(1), lb) = 0.07 < 4 F40465 = 9.564. The A(I B partial inter- 
action, however, is significant, T(CA(1), CB) = 22.49 > R 99246s, indicating 
that the difference between decided and undecided students depends on 
high-school size. This partial interaction is said to be disordinal (Hager & 
Westermann, 1983) because the simple-A contrasts do not have the same 
algebraic sign for all school sizes. In general, disordinal interactions are 
more difficult to interpret than ordinal interactions. 

Virtually all of the A(l• B partial interaction can be accounted for by a 
contrast between small and large high schools. The associated coefficient 
vector is CB() = (1 0 -1)', and the product contrast estimate is 4tA(1)B(1) = 

CAI(l) MlcB(• 
= 13.34. The hypothesis 4?A(1)B(1) = 0 is rejected because 

T(CA(1), CB(1)) = 22.44 exceeds the ca = 0.01 SMR critical value of 16.97. The 
corresponding 99% confidence interval is 1.74 < 41A(1)B(1) < 24.95. 

Table 7 displays the estimated adjusted means that correspond to 4A(1)B(1)* 

To interpret a product contrast, I usually begin with a direct transcription. 
The product contrast estimate says that, with respect to interest in physical 
science, the difference between undecided and decided students (unde- 
cided - decided) is 13.34 points larger at small high schools than at large 
high schools. Equivalently, the product contrast estimate says that the 
difference between small and large high schools (small - large) is 13.34 
points larger among undecided students than among decided students. 
Often, literal translations such as these are sufficient to interpret the con- 
trast (e.g., effects of ralphing on baseball players). In this case, however, the 
literal translations are not very satisfying, possibly because they do not 
suggest a plausible underlying mechanism or because of the disordinal 
nature of the interaction. 

Interpretations beyond a literal translation require caution. In an uncon- 
trolled observational study such as project TALENT, conclusions regarding 
cause-effect cannot be made. Tentative explanations that are consistent 
with the data can, of course, be proposed. Their validity, however, must 
await further research. One such explanation is the following. It seems 

TABLE 7 
Estimated adjusted means corresponding to 'IA(1) B(1) 

Size of high school 

College plans Small Large Difference 

Undecided 21.87 11.99 9.88 
Decided 14.57 18.03 -3.46 

Difference 7.30 -6.04 13.34 
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reasonable to assume that interest in physical science (or lack thereof) 
precedes and affects college enrollment decisions rather than vice versa. It 
may be that students at large high schools are more likely to base their career 
choices on interest patterns than are students at small high schools. If so, 
a student who has definite interests and is from a large high school is more 
likely to be sure of his/her college plans than is a comparable student from 
a small high school. Strong interest in physical science may actually make 
college decisions more difficult for students from small high schools. Addi- 
tional analyses in which college plans is the response variable (e.g., log- 
linear models, logistic regression) could be informative. 

Some researchers might choose to ignore the interaction contrast in Table 
7 and, instead, test the associated simple effect contrasts. Tests of these four 
simple effect contrasts, however, are not part of a coherent strategy unless 
the model is changed. The strategy is coherent if the three families (A, B, 
and AB) are combined to form a single family (Betz & Gabriel, 1978). The 
composite null now states that there are no differences among the ab 
adjusted means. A follow-up test of Ho: c'IL= 0 is judged to be significant 
if F(c) ? (ab - 1) Fb1-l,v, for F(c) of (A3), and where C'lab = 0. For 
a = 0.15, the critical value for follow-up tests is 14 F4, 465 = 19.561. All four 
of the simple effect contrasts in Table 7 are nonsignificant. The interpreta- 
tion is straightforward but trivial. 

The presence of plans x size interaction does not imply that all contrasts 
among the levels of college plans interact with high-school size. Consider 
the contrast between the two groups most likely to attend college and the 
two groups least likely to attend college. The coefficient vector is CA(2)= 
(.5 .5 0 -.5 -.5)', and the corresponding main-A and simple-A 
contrast estimates are tA(2)= C'A(2) IA 

= 3.58 and IA(2)(B)= M'CA(2)= 

(3.58 3.94 3.22)', respectively. The main effect contrast is significant, 
T(cA(2), lb) 

= 16.52 > 4F,465 
= 13.439. Averaged over school sizes, high- 

school students most likely to attend college are more interested in physical 
science than are high-school students least likely to attend college. The 
corresponding A(2)B partial interaction is not significant, T(CA(2), CB) 
0.17 < R2,4,465, indicating that the difference between students most and 
least likely to attend college does not depend on high-school size. 

The follow-up tests are summarized in Table 8. Table 9 lists the SAS 
commands (SAS Institute, 1988) to compute the analysis. Coefficients of an 
orthogonal basis set of Factor A (college plans) contrasts are assigned in the 
data step. Proc glm computes an ANCOVA in which the plans main effect 
is partitioned according to four contrasts each having 1 df while the 
plans x size interaction is partitioned into four partial interactions each 
having 2 df. The basis set of coefficients must be orthogonal; otherwise, the 
correct partitioning is not obtained. To partition main effects and interac- 
tions according to nonorthogonal contrasts, multiple proc glm executions 
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TABLE 8 
Follow-up tests on college plans x size of high school 

Source SS df T(CA(i), CB(j)) p-Value 

Factor A; College plans 913.63 4 
A(,): Decided vs. undecided 3.17 1 0.07 p > 0.50 
A(2): Most likely vs. least likely 784.99 1 16.52 p < 0.01 

Factor B: Size of high school 96.21 2 
B(1): Large vs. small 16.84 1 0.35 p > 0.50 

AB Interaction: Plans x size 1234.51 8 
Maximal product contrast 1097.09 1 23.08 p < 0.01 
A(,) B 1069.07 2 22.49 p < 0.01 

A(,) B(1) 1066.58 1 22.44 p < 0.01 
A(2) B 7.97 2 0.17 p > 0.50 

are required. The contrast coefficients employed in each proc glm must 
constitute an orthogonal basis set. In the present case, a single proc glm is 
sufficient because coefficients of the two contrasts of interest, t'1A(1) and 4A(2), 
happen to be orthogonal. Contrast estimates and standard errors are ob- 
tained by an estimate statement. Note that a scaling factor of 3 is used for 

IA(1) 
and that a scaling factor of 2 is used for 4A(2). This is because of the 

model parameterization. If a coefficient vector-say CA-iS assigned in the 
data step, then the coefficient vector that actually corresponds to the con- 
trast is CA + CACA CA. In the present case, to obtain (-.5 0 1 0 -.5), 

TABLE 9 
SAS program to compute follow-up test statistics 

data; 
infile talent; input size region gender plan mech math physics ses; 
if plan = 1 then do; A1 = -1;A2= 1; A3 = -1; A4 = 2; end; 
if plan = 2 then do; Al = 0; A2 = 1; A3 = 1; A4 = -3; end; 
if plan = 3 then do; Al = 2; A2 = 0; A3 = 0; A4 = 2; end; 
if plan = 4 then do; Al = 0; A2 = -1; A3 = -1; A4 = -3; end; 
if plan = 5 then do; Al = -1; A2 = -1; A3 = 1; A4 = 2; end; 

Proc glm; 
class plan size gender region; 
model physics = math mech ses Allgender A2lgender A3lgender A41gender 

sizelgender genderlregion Al*size A2*size A3*size A4*size; 
estimate 'Decided vs Undecided' Al 3; 
estimate 'Most vs Least Likely' A2 2; 
estimate 'BI: Large vs Small' size 1 0 -1; 
contrast 'Bl: Large vs Small' size 1 0 -1; 
estimate 'Al x BI' Al*size 3 0 -3; 
contrast 'Al x BI' Al*size 1 0 -1; 
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CA(1) CA(1) CA(1) must be multiplied by 3. Contrast sums of squares are 
obtained by using a contrast statement. 

An excellent discussion on the use of SPSSx (1983) to partition interac- 
tions when one or both factors are repeated measures can be found in 
O'Brien and Kaiser (1985, pp. 323-329). Certain modifications are required 
to partition interactions when neither factor represents repeated measures. 
The SPSS (1990) subcommands to perform this partitioning are listed in 
Table 10. The covariates need not be centered to obtain correct follow-up 
tests by SPSS. Contrast coefficients are assigned by a contrast subcommand. 
The first row of the contrast subcommand is a vector of ones which weights 
college plans (sizes) equally when averaging to obtain means for sizes 
(plans). The remaining rows must form a basis set of contrast coefficient 
vectors. The rows need not be orthogonal as they are in Table 10. The effect 
of plans is partitioned into three components (1, 1, and 2 df ) that correspond 
to row 2, row 3, and rows 4 and 5, respectively, of the contrast subcommand. 
The effect of size is partitioned into two components (1 df each). Sums of 
squares for partial interactions are produced by the first design subcom- 
mand. Sums of squares for product interaction contrasts are produced by 
the second design subcommand. 

Concluding Comments 

Although each has relative strengths and weaknesses, either of the two 
software packages can be used to compute detailed analyses of two-factor 
interactions. SAS's (SAS Institute, 1985, 1988) strength is that the maximal 

TABLE 10 
SPSS program to compute follow-up test statistics 

manova physics by plan(1,5) gender(1,2) size(1,3) region(1,8) with math mech ses/ 
contrast(plan) = special( 1 1 1 1 1 

-1 0 2 0 -1 
1 1 0 -1 -1 

-1 1 0 -1 1 
2 -3 2 -3 2)/ 

partition(plan) = (1,1,2)/ analysis physics/ 
design = plan(l) plan(2) plan(3) gender size region plan by gender size by 

gender gender by region plan(l) by size plan(2) by size plan(3) by 
size math mech ses/ 

contrast(size) = special( 1 1 1 
1 0 -1 
1 -2 1)/ 

partition(size) = (1,1)/ analysis physics/ 
design = plan gender size region plan by gender size by gender gender by 

region plan(l) by size(l) plan(l) by size(2) plan(2) by size plan(3) by 
size math mech ses/ 

35 



Boik 

F statistic can be computed in a single run; there is no need to edit an output 
file. SAS's weakness is that, to perform follow-up tests, orthogonal basis sets 
of contrast coefficients must be specified. The main strength of SPSS (1990) 
is its straightforward syntax for partitioning an effect into multiple compo- 
nents. Coefficient vectors need not be orthogonal, but a complete basis set 
must be specified. In addition, SPSS can compute the maximal F statistic, 
but the computations require two runs. 

One goal of this article was to demonstrate the usefulness of partial inter- 
actions and product contrasts for interpreting significant interactions. I do 
not claim that partial interactions and product contrasts always lead to 
straightforward interpretations (disordinal interactions can be particularly 
troublesome), nor do I contend that simple effects contrasts should never 
be tested after detection of a significant interaction. Rather, I suggest that 
when interaction is detected, some effort ought to be expended to find out 
why. That is, the initial follow-up procedures should test hypotheses which 
are implied by the composite interaction hypothesis. If the interaction resists 
interpretation by a coherent strategy and the study is exploratory in nature, 
then one is certainly free to test other hypotheses, more amenable to inter- 
pretation. If this means that simple contrasts are tested after detection of 
interaction, then so be it. Testing simple contrasts after detection of an 
interaction, however, implies that the factorial model has been discarded 
and that an alternative (nested or one-way) model has been adopted. Nat- 
urally, the model change should be reported. Otherwise, readers might be 
misled into believing that the interaction is being interpreted in terms of 
simple effects contrasts. If the study is strictly confirmatory, a model change 
may be difficult to justify. 

APPENDIX 

Kronecker products 

Let F and G be matrices of size p x q and r x s, respectively. Then F 0 G is a 
pr x qs matrix and is given by 

fil G ... flq 
FOG= F G = . . " G : 

fp1G ... fp qG 

Adjusted means 
The data analytic methods in this article are based on the linear model 

y = 
X03 

+ Zy + E, 

where X is an n x d design matrix, Z is an n x t matrix of covariates, rank(X) = r, 
rank(Z) = t, n > rank(X Z) = r + t, and E is an n x 1 vector of residuals with a 
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multivariate normal distribution: E --N(O, 
2 

2I). The design matrix must code 
uniquely for each of the ab combinations of Factor A x Factor B. The design matrix 
may code for additional factors and interactions. 

If the model contains no covariates, then the ab cell means are linear combinations 
of the elements in p. In particular, the ijth mean is the expectation of the ijth 
treatment combination, averaged over levels of other factors (e.g., C, D) and 
interactions (e.g., AC, BC, CD). For example, in a three-way classification having 
no three factor interaction, the entries in 0 can be partitioned as c, i, tPi, y k, 

(OtP)ij, (OtY)ik, 
and (P1y)jk for i = 1, .. . , a, j = 1,... b, and k = 1,... ,c. The ijth 

mean is piJ 
= 
- + ai + p3 + j?. + (ap)ij + (a-)i. + (3y)j., where, for example, (3y)- 

= 

c-1 
_ 

= 1 (P-3)jk. In general, the ab x 1 vector of means can be obtained as i = F'P, 
where F is a d x ab matrix with rank ab. 

The addition of covariates requires minimal modifications. The ijth adjusted 
mean is the average expectation of the ijth treatment combination, conditional on 
the t x 1 vector of covariates being equal to a specified vector-say, zo. Typically, 
zo is equated to the vector of means: zo = i = Z'1, n-1 or to the vector of averaged 
unweighted means: zo = Z'la (ab (ab)-', where Z is the ab x t matrix of unweighted 
cell means of the t covariates: Z = F'(X'X)-X'Z and where (X'X)- is any generalized 
inverse of X'X. The adjusted means and their estimators are 

L = F' + lab Z6 'y and = F'I + lab Zi, 

respectively, where (Y' y') is a solution to the normal equations. Searle, Speed, 
and Milliken (1980) refer to Fi as a vector of population marginal means and to iF 
as a vector of estimated marginal means. 

It can be shown that var() = ir2 ', where 

S= F'(X'X)-F + (Z - lab z)[Z'(In - Px) Z]-1 ( - lab Z•)' (Al) 

and Px = X(X'X)-X'. If there are no covariates, the term involving Z is omitted. The 
usual unbiased estimator of r2 (i.e., MSE) has v = n - r - t degrees of freedom and 
is given by 

A2= Y'(In - Px Pz x)Y F 
- r t (A2) n-r-t 

where Pz x = (In - Px)Z [Z'(In - Px) Z]- Z'(In - P). 

Likelihood ratio test statistics 
Let C be a known ab x s matrix of constants with rank s. The LRT of Ho: C' *i 

= 0 
rejects Ho for large values of 

F 'C(C'IC)-' C'/ 
F(C) = 2 (A3) 

where I is given in (Al) and a2 is given in (A2). The test statistic has distribution 

F(C)--F, ,, X, where X= 

An important special case consists of linear functions, C'iF, in which C has the 
Kronecker structure C = CB 0 CA, where CA is a x s1, CB is b x s2, and s = sl s2. The 
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corresponding null can be written as Ho: CA MCB = 0. It follows that the LRT of 
Ho: CA MCB = 0 rejects Ho for large values of 

[vec(CA MCB)]]'[(CB 0 CA)'Y(CB 0 CA)I 
1 
vec(CA IMiCB) T(CA, CB) -2 (A4) 

The test statistic has distribution 

T(CAC, B) 

S 

where 

[vec(C' MCB)]'[(CB 9CA) t(CB 9CA)]-1 vec(C MCB) 
U2 

Variance of interaction contrast estimator 
The variance of an interaction contrast estimator, trace(CAB M), is 

var[trace(CA'B M)] = U2[veC(CAB)]' Y vec(CAB), 

where I is given in (Al). The estimator of the variance is 

vir[trace(CB M1)] = T2[vec(CAB)]' Y vec(CAB), (A5) 

where &2 is given in (A2). For a product contrast, the variance and estimator of the 
variance are 

var(cA McB) = 
02 (CB CA)' (CB 0 

)CA) 

and 

var(cA IMCB) = 
.2 (CB 0CA)'t (CB 0 CA), (A6) 

respectively. 

Sufficient condition for R to follow the SMR distribution 
The covariance matrix for a basis set of interaction contrasts, C A MCB, is 

Q) = var[vec(CA MCB)] = 02 (CB 0 CA)I' (CB 0 
CA). 

It can be shown that, if the composite interaction null is true, then R follows the SMR 
distribution whenever 4) satisfies 

() = B @9A, (A7) 

for some b - 1 x b - 1 matrix (4 and some a - 1 x a - 1 matrix DA . 
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