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The paper considers the repeated prisoner’s dilemma in a large-population random-matching
setting where players are unable to recognize their opponents. Despite the informational restrictions
cooperation is still a sequential equilibrium supported by ‘““contagious’ punishments. The equilib-
rium does not require excessive patience, and contrary to previous thought, need not be extraordin-
arily fragile. It is robust to the introduction of small amounts of noise and remains nearly efficient.
Extensions are discussed to models with heterogeneous rates of time preference and without public
randomizations.

1. INTRODUCTION

Since the earliest work on the Folk Theorem, it has been well known that when two
players face each other in a repeated prisoner’s dilemma the “cooperative” outcome can
be sustained as an equilibrium (Friedman (1971), Aumann and Shapley (1976)). A variety
of extensions are possible. Given additional assumptions, the Folk Theorem has been
shown to apply to N-player games, finite-horizon games of incomplete information, and
games with imperfect observations (Fudenberg and Maskin (1986), Fudenberg, Levine,
and Maskin (1993)).

In models of social games in which a large population of players are randomly
matched it is reasonable to assume that players have limited information about other
players’ actions, e.g. players may observe only the outcome of matches in which they are
personally involved. The results cited above are then not applicable. This paper follows
those of Kandori (1992), Harrington (1991), and Okuno-Fujiwara and Postlewaite (1990)
in investigating the extent to which Folk Theorem-type results may be obtained despite
the special information structures generated by random matching games. In particular, 1
consider a random matching version of the prisoner’s dilemma under the most extreme
informational restriction—that players not only do not observe the outcomes of games in
which they are not involved, but also are completely anonymous in that they can neither
recognize nor communicate the identity of any of their past opponents. The main conclu-
sion of this paper is that cooperation is possible in equilibrium and that this cooperation
is somewhat robust. I hope that the argument is interesting to game theorists as an
illustration of the variety of dynamics which may emerge in equilibrium as a response to
informational limitations. The existence of a cooperative equilibrium also has practical
implications in relation to several areas of recent research.
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568 REVIEW OF ECONOMIC STUDIES

With anonymous random matching, it is impossible to maintain cooperation in a
repeated game simply by punishing players who deviate. This paper builds on the observa-
tion of Kandori (1992) and Harrington (1991) that cooperation may nonetheless be pos-
sible if players use strategies with “contagious’ punishments. In such strategies, when one
player cheats in period ¢, his period-t opponent cheats from period ¢+1 on, infecting
another player who cheats from period ¢+ 2 on, etc. For any fixed population size, Kandori
provides an example of a game in which cooperative repeated-game equilibria exist, show-
ing that we can define payoffs for the prisoner’s dilemma which allow cooperation in a
sequential equilibrium. However, when the population is large the argument applies only
to games with extreme payoffs.

In this paper, I build on Kandori’s arguments to study two main problems. First, for
general payoffs in the prisoner’s dilemma, is cooperation possible in a sequential equilib-
rium? I find that the answer is yes for sufficiently patient players. The argument demon-
strates the versatility of contagious punishments which lead to a breakdown of cooperation
after a single deviation. I assume at first that a publicly observable random variable is
available. The public randomization allows the severity of the punishments to be easily
adjusted so that the players fear a breakdown enough that they will not deviate first and
destroy cooperation, but do not fear the breakdown so much that they are unwilling to
contribute to its spread once it has begun. At several points I emphasize that this
cooperation does not require unduly patient players.

The second problem is a study of the stability and efficiency of the equilibrium in a
world with noise. Kandori observed that in the equilibrium he constructs a single deviation
causes a permanent end to cooperation and comments that this fragility may make the
equilibrium inappropriate as a model for trade. His observation reflects two quite distinct
concerns. The first is a modeling issue I will refer to as stability. If we intend for the
equilibrium to model cooperation in actual social settings and believe that in the real
world punishments never last infinitely long we would like to construct an equilibrium
with this property. Given public randomizations, this is not difficult. The second is a desire
for a model which retains its efficiency in a world with noise. If we introduce noise by
assuming that players either tremble and accidentally play the wrong strategy or misinter-
pret the actions of others, the equilibrium Kandori gives will be inefficient. Because
cooperation eventually breaks down, the expected payoff to very patient players will be
near the non-cooperative level. In the standard repeated prisoner’s dilemma with noise,
the results of Fudenberg, Levine and Maskin (1993) imply that this inefficiency can be
avoided. In the random-matching model here I am able to show that for sufficiently small
probabilities of mistakes being made there is a sequential equilibrium in which players
need not change their strategies in response to the presence of mistakes, and in which the
inefficiency is small. While this is clearly a limiting result, we can conclude that the cooper-
ative equilibrium with anonymous matching need not be as fragile as has been portrayed.

While public randomizations are appropriate for many social situations, it is in the
spirit of this paper to make do with as little information as possible. For this reason I
also consider the problem of eliminating the reliance on public randomizations, finding
that a cooperative equilibrium still exists. Interestingly, play in this equilibrium follows
an unusual pattern with punishments scattered among intervening periods of cooperation.
Payoffs in a model with noise are nearly efficient even though the equilibrium is no longer
stable.

The questions analyzed here may be of interest in connection with several lines of
research. First, in experimental economics it is a well-recognized concern that subjects
who are asked to play a game several times may treat the situation as a repeated game.
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To avoid repeated-game effects it is common practice to randomly match the players in
an anonymous setting so that pairs of players do not meet repeatedly. The results here
suggest, however, that given moderate population sizes random matching may not solve
the problem.

Second, random-matching models have proven useful in recent studies of the economic
institutions of trade. Greif (1989) discusses the Maghribi traders, a group of North African
Jews who conducted trade in many Mediterranean countries in the 11th century. Milgrom
et al. (1990) discuss trade in cities and fairs in Medieval Europe. In each case, the underly-
ing model is one of a large number of traders who in each period are randomly paired
with a trading partner. Each pair is presumed to play a game like the prisoner’s dilemma
with each party having both the opportunity and a private incentive to cheat the other
by under-reporting sales on consignment, reneging on promises to make future payments
or deliveries, supplying goods of inferior quality, etc.

In this literature, institutions are seen as a way of avoiding the inefficiency of
non-cooperative equilibria. Specifically, it is noted that the standard Folk Theorem
equilibria of repeated games make informational demands which are unreasonable in
a large society. Greif (1989) argues that the closeness of the Maghribi community did
allow the necessary information exchange. He cites evidence that many traders main-
tained ties to traders in other cities. Via this network of relationships they would
quickly learn the identity of any cheaters, allowing the offending parties to be punished.
Milgrom et al. (1990) argue that such closeness no longer existed with the development
of larger towns and trade fairs, and that this problem was resolved by the development
of the Law Merchant, a private legal code whereby disputes could be tried before a
judge who often lacked the power of enforcement. That I find cooperation to be
possible in equilibrium without any institutions implies that it is more difficult to
justify any institution as the least costly method of avoiding inefficiency. Note that it
is certainly not claimed here that we would have expected to see cooperation without
institutions, nor even that the equilibrium described here was feasible in Medieval
trade fairs. I claim only that a consideration of whether it was feasible is necessary,
and should sharpen our understanding of the role of the observed institutions.

Finally, several authors have explored the possibility that large population models
may be used to reduce the multiplicity of equilibria in repeated games. Rosenthal (1979)
discusses “rational Markovian hypotheses” in which all players react to steady-state con-
jectures based only on their current opponent’s play in the previous period, not on any
further history. In the case of the prisoner’s dilemma, both players cheating in every period
is the only such equilibrium (except in one special case). Green (1980) and Sabourian
(1990) discuss models with noisy observation of an aggregate statistic and show that as
the number of players grows large the equilibrium set shrinks to the static Nash outcome.
With an information structure like that of this paper, Milgrom ef al. (1990) note that with
infinite population and an extreme matching rule where no player can affect his future
opponents’ play in any way, cheating is the only Nash equilibrium outcome. Our results
suggest that large populations may do little to reduce the equilibrium set unless special
assumptions are made.

The paper is organized as follows. Section 2 describes the model more precisely and
exhibits a sequential equilibrium which sustains cooperation. Section 3 discusses the prob-
lem of stability and also shows that after introducing noise into the model we can still
construct an equilibrium whose payoff approaches the efficient level as the amount of
noise tends to zero, even for very patient players. Section 4 discusses the extension of the
results to a model without public randomizations.
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2. THE RANDOM-MATCHING MODEL

For the remainder of this paper, I analyze the model described below. The game has M
players indexed by ie {1, 2, 3, ..., M} where M 24 is an even number. In each time period
te{l1,2,3,...}, the players are randomly matched into pairs with player i facing player
oi(t). It is assumed that the pairings are independent over time and uniform so that

Prob{o,-(t) =j|h,..|} =ﬁ Vj'-#l'

for all possible histories /#,_;. At time ¢, each pair of players plays the prisoner’s dilemma
as shown below. The payoff g is taken to be positive with / non-negative so that each
player has D as a dominant strategy in the stage game. All players have discount factor
6€(0, 1) and their payoffs are the discounted sum of the payoffs in each stage game. At
the end of period ¢, each player observes only the outcome of the prisoner’s dilemma he
and his opponent played. He does not observe the identity o) of his opponent and does
not observe the outcome of any of the games played by other pairs of players.

C D

c 1,1 —I1+g

D 1+g, —! 0,0

In addition, I will assume in this section and in the one which follows that before
players choose their actions in period ¢, they observe a public random variable g, which
is drawn independently from a uniform distribution on [0, 1]. In some situations, it seems
reasonable to assume that such a randomization is available. For example, all traders at
a market may have access to the same newspaper or hear the same government announce-
ments. In any case, the use of public randomizations simplifies the exposition below. I will
later discuss how many of the same results can be obtained without public randomizations.

The first thing to note about this model is that we can not implement the types of
strategies usually used to prove the Folk Theorem. For example, when a player is the first
to deviate, there is no way of identifying him, so it will be impossible to punish one player
more severely and reward others for carrying out the punishment. Also, there is no obvious
way to convey any information about the precise time of the deviation so that players
could coordinate on something like T-period punishments.

Kandori (1992) shows that contagious punishments can be used to sustain collusion
in some circumstances. Specifically, he shows that for any population size M, we can
choose the payoff / so that cooperation is a sequential equilibrium for sufficiently patient
players. The choice of / is used to give players an incentive to carry out the punishment
which follows a deviation. Unfortunately, the value of / Kandori uses grows without
bound as M increases and may be unreasonable for moderate values of M.

The main result of this section is that cooperation is indeed a sequential equilibrium
of the random-matching game for any payoffs g and /. The equilibrium is supported by
strategies like Kandori’s which rely on contagious punishments. All subsequent results
will rely on similar strategies. The following proposition gives the basic result.

Proposition 1. Consider the random-matching model with public randomizations
described above where M =4 players play the prisioner’s dilemma with g>0, [20. Then,
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3§ <1 such that V8 €[§, 1) there is a sequential equilibrium s*(8) of the repeated game in
which all players play C in every period along the equilibrium path.

Before giving a formal proof, let me first discuss the strategies s*(6) which will
support the equilibrium. The strategies described below employ a contagious process by
which a deviation in period ¢ will usually lead to two players playing D in period +1,
then four players playing D in period t+2, etc. The result is a breakdown of social
cooperation which punishes all players after one deviates. Given a function ¢(J) to be
defined below, the strategies are as follows.

In period 1, all players begin play according to phase 1.

Phase 1. Play C in period .
If (C, C) is the outcome for matched players i and j, both play according
to phase I in period ¢+1.
If (C, D), (D, C), or (D, D) results in the game between players i and j,
then at time ¢+ 1 both play according to phase Il if ¢, <¢(J ) and accord-
ing to phase I if g,+1>¢q(5).

Phase I1. Play D in period ¢.
In period ¢+ 1 play according to phase I if ¢,+,>¢(J) and according to
phase IT if ¢,+1=¢q(5).

The public randomizations are being used to adjust the severity of the punishment
phase so that it lasts 1/(1—¢(8)) periods on average. The basic idea of the proof is
this. In a sequential equilibrium the continuation payoffs of the players must satisfy two
constraints derived from players not having a profitable single-period deviation. First,
players must not want to deviate and play D in phase I. When punishments are of infinite
duration (i.e. for ¢(8 )=1), sufficiently patient players will not want to cause a breakdown
of cooperation in phase I so this constraint is satisfied. Second, we must recognize that in
phase II players might deviate and play C in hopes of slowing the spread of the contagious
punishment. When punishments almost never continue (i.e. for () ~0) there is no poss-
ible gain to deviating in phase II so this constraint will be satisfied.

To prove the proposition, I show that there exists at least one value ¢(6) which is
both large enough to prevent deviations in phase I and small enough to prevent deviations
in phase II. The intuitive reason why this can be done is simple. In either phase I or phase I
player i gets the same short-term gain of g from playing D when this opponent cooperates.
However, starting a punishment by playing D in phase I causes a greater loss in continua-
tion payoff than does spreading a punishment by playing D in phase II. Once play is in
phase II, cooperation is breaking down anyway so one extra deviation has limited impact.
Choosing an appropriate punishment severity, the loss from starting a punishment deters
playing D in phase I, but the loss from spreading a punishment does not deter playing D
in phase II.

To formalize this argument let k be the number of players who are playing according
to phase II at the start of period . Let f(k, &, ¢) be player i’s (per period) continuation
payoff from period ¢ on when all players are playing the strategies above, and player i
and k—1 others are playing according to phase II. If player i deviates and plays D in
phase I in period ¢, he gains g in period ¢ but will have a lower continuation payoff from
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period ¢+ 1 on. To show that no deviation is profitable in phase I we must show that

(1-6)g=6q(8)(1 112, 8, 4(5))). (0]

We can also derive a similar sufficient condition for there to be no profitable deviation
in phase II. If player i deviates and plays C in phase II at time ¢ we have one of two
possibilities. First, he could be matched with someone else who is playing according to
phase II. In this case, the result in period ¢ is (C, D) instead of (D, D), and continuation
payoffs are unaffected. Clearly, player i is not better off because /=0. Second, player i
might be matched with someone who is playing according to phase I. The period ¢ outcome
is then (C, C) instead of (D, C) so player i loses g in period ¢. In the continuation game,
however, one fewer player will be playing according to phase II. The deviation is not
profitable if

(1-6)g269(8)E[f(j, 6,9(8))—f(j+1, 8,4(5))]

where the expectation reflects player i’s beliefs over the number of players who will play
according to phase II at time ¢+ 1. To show that this relation holds for beliefs of player
i consistent with sequential equilibrium, a sufficient condition is to show that it holds
pointwise, i.e.

(1-6)g26q(8)(f(J, 6,49(8))—f(j+1,6,49(5))) Vj=23. 2

(The beliefs must assign probability zero to j<2 because when player i is in phase II, his
opponent when he first saw cheating and that player’s period ¢ opponent will also play
according to phase II in period ¢+1.) When (1) and (2) hold, we have a sequential
equilibrium. In establishing these relations, both the result and the intermediate calcula-
tions of the following lemma will prove useful.

Lemma 1. f(k, 0, q) is convex in k for k=1, i.e.
Sk, 0,9)—f(k+1,6,9)2f(k+5,6,9)—f(k+s5+1,5,9)

for all s=1.

The lemma simply states that the loss in continuation payoff from having one extra
player infected declines as the number of infected players grows. This is to be expected
as, when many players are infected, the one extra player not infected in period ¢ is likely
to become infected in period ¢+ 1 anyway and thus never have a chance to affect player
i’s payoff. The proof is straightforward once I introduce enough notation.

Proof of Lemma 1. Note that
Sk, 6,9)=Eug(k, 5, q, »),

where o is the random variable whose realization is a pairing of all players in each period,
and the function g gives player 1’s continuation payoff for a given matching when he and
players 2, . . ., k are playing according to phase II. For expositional convenience I define
h(k, 8, q, ®) to be player i’s continuation payoff when he and players 2, . . ., k and player
M are playing according to phase II. Clearly

E,g(k+1,6,q, ®)=E,h(k, d, q, ).
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I show that
E,lg(k, 6, q, ) —h(k, 6, q, )| 2 E,[g(k+s, 6,9, ) —h(k+s, 5, q, ®)]

by showing that the inequality holds for every realization of w.
Define the set C(¢, k, w) by

C0, k, )= {k+1,k+2,..., M},
C(t+1,k, w)={ieC(t, k, )|o(t, ®)eC(t, k, »)}.

C(t, k, @) will be the set of players still playing according to phase I in period ¢ when
q;=q for all s=<¢ and players 1, 2, . ., k begin in phase II in period 0.
Define the set D(¢, ) by

D(0, w)={M}
D(t+1, o)=D(t, 0) v {ilo:(t, ) e D(t, w)}.

D(t, ) gives the set of all players who will be playing according to Phase II in period ¢
when ¢;<¢q for all s<¢ and player M begins in phase II in period 0.

Note that the payoff to player 1 in period ¢ differs between the situations of
gk, 8, q, ) and h(k, &, q, ®) only if g,<q for all s<¢ and only if his opponent 0,(¢, @)
plays C when players 1,2, ...,k start in phase II but plays D when players 1,2, ...k,
and player M start in phase II. Thus,

gk, d,q, @)—h(k,96,q, a))=z;.:0(l =8)q'0'(1+g)(oi(t, w)eC(t, k, ) " D(t, ®)). (3)
\
(The notation I(E) indicates a function equal to one or zero depending on whether the

deterministic condition E is true or false.) The definition of C clearly implies that
C(t,kts, 0)cC(t k, ®)
$O
C(t, k+s, ®)nD(t, ) =C(t, k, ) " D(t, ®)

and the expansion (3) gives the desired result. ||
We are now in a position to give

Proof of Proposition 1. Let s*(8) be the strategy profile given above. It suffices to
demonstrate the existence of a § <1 such that (1) and (2) hold for all 5[4, 1). To establish
the relation (1), we will simply define § and ¢(J) on [§,1) so that (1) holds with equality.
To see that this is possible, note that for ¢(§)=1, punishments are infinite so

2,8, 1)=(1-8)y" &a

where a, is the expected payoff in the ¢-th period after phase II play begins. With probability
1 all players will eventually be infected and start playing D so a,—0. We then have

lim 2 (1-1(2, 6, 1))= o,
s-11—6

lim —— (172, 6, 1))=0.
§501—0
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By continuity we can choose §€(0, 1) so that
1)
-3 (1-f(2,6,1)=g. “4)

Note that when (1) holds with equality, a player in phase I is exactly indifferent between
playing C and D. The payoff to a player who plays D in period 1 is f(1, &, g(5)). Thus,
(1) holds with equality only if

69(5)

T_g U1.6,9(8)=/(2,5,4(5))=¢. )

The converse is also true. When (5) holds, a player in phase I is exactly indifferent between
playing D in period ¢ (and following the equilibrium strategies thereafter) and playing C
in period ¢ then deviating and playing D in period ¢+ 1. Applying the same indifference
again, he is also indifferent between deviating in period ¢ and playing C in periods ¢ and
t+1 and then deviating in period ¢+ 2. Repeating this process, he is indifferent between
deviating in period ¢ and cooperating in all future periods. This implies that (1) holds
with equality.
From expansion (3) we have

2L (f(k, 5,0)~fk+1,5,9)
=y, (89)"'(1+g) Prob {o\(t, @) e C(t, k, ®) N D(t, )} (6)
As the right-hand side depends only on the product 8¢, we simply define
q(6)=4/6.
Then, for any de[d, 1) 6g(5)=¢ and

09(8)

15 J1,8,49(8))=f(2,6,9(5))=¢

as desired.
The result of the lemma now immediately implies (2) and hence completes the
proof. |

At this point, we may better understand the role of the prisoner’s dilemma in the
argument above. In the prisoner’s dilemma, the maximum one-period gain from cheating
is identical to the short-term loss a play incurs by not playing the static Nash equilibrium
when he successfully slows a punishment. The convexity argument above establishes that
the loss starting a punishment is greater than the gain from slowing a punishment, and
therefore that the short-term loss/gain from following the equilibrium strategies in phase
I/1I can be made to lie between these future effects. In general games, such an argument
shows that the symmetric strategy profile 4 is an equilibrium if the payoff u(4, 4) domi-
nates the payoff u(s*, s*) of a Nash equilibrium and s* is a best response to A. (This, for
example, gives a Folk Theorem for games with a dominant-strategy equilibrium.) In
other games there may be a much more profitable deviation from cooperation, and hence
strategies similar to those described above will sustain a Nash equilibrium only if there is
a sufficient difference between the loss from starting a punishment and the gain from
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TABLE 1

Discount factor sufficient to maintain cooperation
g=0-01 g=1 g=10

M=2 0-01 0-50 0-91

M=4 0-03 0-68 0-95

M=10 0-08 0-79 0-97
M=100 0-35 0-89 0-985
M=1000 0-57 0-93 0-990

slowing a punishment. To establish a more general Folk Theorem, we would need somehow
to create punishments for which that difference could be made arbitrarily large.

It should also be noted that the assumption that the random matching is uniform
has been made largely for convenience. With this assumption the players have symmetric
continuation payoffs and the analysis is simplified by the fact that these can be written as
a function of the number of players in each phase. The idea that the long-term consequen-
ces of a single deviation are smaller when some players are already in the punishment
phase appears to be much more general, and might be applicable to populations with
other matching rules such as the local matching rules discussed in Ellison (1993). The
argument does rely, however, on the matching being sufficiently symmetric so that all
players have the appropriate incentive to avoid or to spread punishments.

In a full-information model, the “grim” strategies immediately punish a player who
has cheated once. In contrast, the contagious punishment takes time to spread throughout
the population so that a player may be able to cheat several opponents before he begins
to suffer from the punishment phase he has brought on. This observation leads us to ask
whether the equilibrium described in Proposition 1 requires undue patience on the part
of the players.

Table I gives the minium value of § which can sustain cooperation for several popula-
tion sizes M and for several values of the gain g to deviation. For comparison, 1 have
also listed under the heading M =2 the discount factor necessary for the standard “grim”
equilibrium in a two-player game. In a limiting sense, the behaviour of our model matches
that of Green and Sabourian. For a fixed discount factor, cooperation will be impossible
if the population size is sufficiently large. From the table, however, we can see that for
reasonable population sizes patience is simply not a problem for our equilbrium. With the
extreme gain (g=10), cooperation is possible in a population of one thousand players if
players meet one opponent per month and discount the future at a rate of 5% per year.
For the more standard payoffs with g =1, cooperation is possible in the same population
even if players meet only one opponent per year. Moreover, a more detailed look at the
numbers in the table suggests that (as would be expected given the exponential growth of
contagious punishments) doubling the frequency with which players meet squares the size
of the population for which a cooperative equilibrium exists. Although I have not done
the calculation, this would imply that cooperation is possible in any population of fewer
than a trillion players (with g=1) if each player meets one opponent per quarter.

To better appreciate the power of the contagious punishments in large populations,
it is instructive to compare the discount factors of Table I to those necessary for another
large population equilibrium. While this paper focusses on completely anonymous match-
ing, for some applications it may be reasonable to make the less stringent assumption that
identities can be observed but not communicated. In such a model, we could sustain
cooperation via personal retaliation strategies where a deviation by player i in period ¢
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causes his period ¢ opponent o0,(¢) to play D whenever they are matched in the future.
Note that this equilibrium requires frequent individual interactions, and thus requires far
more patient players than does the equilibrium with contagious punishments. If player i
cheats in period ¢, he gains g in period ¢ and loses 1 in each future period in which he is
again matched with o,(¢). This gives a cooperative equilibrium only if

Z“i S’ __l_gg@(s;_g(_M:_l_)_.
=1 M-1 1+g(M—1)

For g=1 and M= 1000, for example, this requires & =0-999, whereas § =0-93 is sufficient
for the equilibrium with contagious punishments.

3. STABILITY AND EFFICIENCY WITH NOISE

The cooperative equilibrium described in Section 2 exhibits the desirable property of
global stability described by Kandori (1992). That is, after any finite history, the continua-
tion payoffs of the players eventually return to the cooperative level (with probability 1).
Obviously, this is a result of the introduction of public randomizations. The stability does
suggest, though, that robustness in this sense is not a big problem for this model.

A more interesting question is whether we can still sustain a nearly efficient outcome
in a model with noise. Suppose we really believed that the model of Section 2 with its
completely rational players and perfect observations were an accurate depiction of reality.
Even if players follow the strategies of an equilibrium with infinite punishments, in equilib-
rium the punishment never begins, so we have no reason to care about the behaviour of
the continuation payoffs after a deviation. On the other hand, suppose that there is noise
in the model, as players either act irrationally some fraction of the time, or try to cooperate
but make mistakes and play the wrong strategy or misinterpret their opponent’s action.
Again, I would argue that whether an equilibrium is stable is not the appropriate question
to ask. If we have a globally stable equilibrium in which the continuation payoffs return
to the cooperative level so slowly so that with noise the equilibrium has an expected payoff
near zero, stability is not comforting. Suppose we have two different equilibria which have
the same loss of efficiency after any deviation. Should we care if one equilibrium has all
the inefficiency right away and then returns to cooperation while the other spreads out
the same inefficiency over an infinite time period? The answer, I think, is that all that
matters is the degree of efficiency the equilibrium attains in a model with the noise explicitly
modelled.

- In the two-player repeated prisoner’s dilemma complete efficiency can be attained in
the limit 6 »1 (Fudenberg, Levine, and Maskin (1993)). I will now introduce noise into
the model of Section 2 by assuming that all players are constrained to play D with
probability at least £>0 at every possible history. In the trade example, this could corre-
spond to players trying to supply a high-quality good but accidentally supplying one which
proves defective. A similar result could be obtained if we assumed instead that there was
only noise in observing opponents’ actions. While the equilibrium of Section 2 is not
robust to this noise (because of the exact indifference during phase I play), the proposition
below shows that for a slightly longer punishment length we do in fact have an equilibrium
robust to this noise. While the existence of a fully efficient equilibrium is still an open
question, the equilibrium described is approximately efficient in the sense that it approaches
efficiency as £—-0.
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Proposition 2. Under the assumptions of Proposition 1, there exists §' <1 and a set
of strategy profiles s*(8) for 5€[8',1) of the random-matching game with the following
three properties:

1. In the game with discount factor &, s*(8) is a sequential equilibrium with all players

playing C on the path in every period.

2. Define s*(8, €) to be the strategy which at each history assigns probability € to D

and probability 1 — ¢ to the action given by s*(8). Then, there exists & >0 such that
Ve< & s*(3, €) is a sequential equilibrium of a perturbed game where all players are
required to play D with probability at least ¢ at each history.

3. For u; defined to player i’s expected per period payoff,

lim lim u(s*(5, £))=1.
-0 61

Outline of Proof. We will show that s*(8) can be taken to have the same form as
the strategy profile in the proof of Proposition 1, but with a slightly larger probability
q'(6) of continuing in a punishment phase. The proof requires attention to some tedious
details, so I only outline the proof here and leave the rest to the Appendix.

To begin, I give a slight extension of Lemma 1, showing that the continuation payoff
function fis strictly convex. The strict convexity allows us to choose a slightly larger ¢'(5)
so that the two inequalities which describe a player’s loss from deviating in phase I or
phase II of the model with no noise hold strictly. Formally, the Appendix shows that we
can choose ¢, ¢'(6) and 1>0 for which 6 = §’ implies

6q'(6
and
6q'(6

1-6

This immediately gives property 1.

To show that these strategies give an equilibrium for all sufficiently small & requires
two further steps. First, it must be shown that the left-hand side of each equation is
uniformly continuous in & so that for small enough ¢ the inequalities above still hold but
with n replaced by n/2. For f(k, 8, q, €) defined to be the continuation payoff of the
strategies 5*(J, €) the Appendix demonstrates the existence of an & <0 such that for any
e<§

6q'(0
%(m, 5,4(8), &)=f(2,8,4(5), €))>g+1/2 ®)
and
6q'(8
1q_( 5) (fk, 8,4(8), &)—fk+1,5,q(8), €))<g—n/2 Vk22. (10)

Second, we have a new complication in that when a player is playing according to phase
I, he can no longer believe with probability 1 that all other players are doing so. Again
though, as £¢—0, this uncertainty also has an effect which vanishes so that the incentives
to cooperate are maintained for sufficiently small ¢. This completes the proof of 2.
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Finally, the proof that we get efficiency in the limit is easy. The basic idea is that the
punishment phases have a finite expected length bounded above by a constant independent
of 6 for & close to 1. As £€—0 a vanishing fraction of the periods is spent in a punishment
phase, so the expected payoff tends to the efficient level. Again the details are in the
Appendix. |

The results of Proposition 2 indicate that the equilibrium I have described is far less
fragile than it might appear at first. The same strategies yield an equilibrium for all
sufficiently small amounts of noise, so players can cooperate even if they do not know the
precise frequency with which other players make mistakes. Further, the strategies are truly
supporting cooperation in the sense of having nearly efficient payoffs with noise.

The theoretical notion of stability established in Proposition 2 has practical signifi-
cance, for example, in that it implies that a formal justification of institutions cannot rely
on the simplest limiting notion of robustness. I should note, however, that in other ways
contagious equilibria may be very non-robust. For example, if we wish to assess whether
a cooperative equilibrium was possible in a particular population of traders, we would
want to consider reasonable mistake probabilities. Population size then becomes a major
concern, because the £ defined in Proposition 2 may be extremely small and is decreasing
in M. If even one player is expected to tremble in each period then mistakes will be far
too common for players to want to cooperate in order to avoid starting a punishment.
While robustness to large trembles is undoubtedly a problem, it is interesting to note that
there are ways to modify the model to accommodate more frequent mistakes. First, we
might suppose as in Ellison (1993) that we have some type of local matching rule in which
each player is likely to meet only say 50 opponents regardless of the population size.
Because a player suffers soon after starting a punishment in his neighbourhood and cares
mostly about whether a punishment phase is ongoing nearby, it might be possible to
construct an equilibrium in which § and & can be chosen independently of the population
size and £ is not so extremely small. Second, even with uniform matching we might
(following Milgrom et al. (1990)) modify the stage game so that a player who accidentally
trembles has the opportunity to give back his excess payoff at a trial and avoid the start
of a punishment. If mistakes result from independent trembles at each information set,
accidental punishments would now be much less likely. While a bit far-fetched, this does
provide an alternative justification for legal institutions.

What is probably more important practically and harder to overcome is that the
argument above deals only with trembles. If one player were “crazy” and always played
D (or simply was unaware which equilibrium was being played) again the contagious
strategies would not support cooperation. In large populations, the assumption that all
players are rational and know their opponents’ strategies may be both very important to
the conclusions and fairly implausible.

Returning to our standard model, the fact that each action in our equilibrium with
contagious punishments is a strict best response also allows the further extension that
follows. In a large population, we may want to allow for heterogeneity among the players.
In particular, it is probably reasonable to assume that the players have different rates of
time preference. In each of the first two propositions, the equilibrium strategy profile s*(5)
is a function of the discount factor. For each discount factor &, the equilibrium involves
a different probabilty ¢(J) of continuing within the punishment phase. Hence, the strate-
gies are only appropriate for a population of players all of whom share a common discount
factor. As long as all of the players are sufficiently patient, however, we can eliminate this
restriction. The proposition below guarantees the existence of a sequential equilibrium
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strategy profile s* which is not a function of §. This profile will then sustain cooperation
regardless of whether the population shares a common discount factor. For convenience,
I shall discuss only a model without noise although the arguments clearly extend to the
results of Proposition 2 as well. The proof is similar to that of Proposition 2, but is less
involved.

Proposition 3.  Under the assumptions of P; oposition 1, there exists a strategy profile
s* and a constant §" <1 such that V5€[8", 1), s* is a sequenttal equtltbrtum of the repeated
matching game and all players play C in every period on the path of s*

Proof. Once again, let s* be a strategy profile like the one described in the proof of
Proposition 1, but this time with punishment probability ¢’ =lim;_,, ¢'(8). (The function
q'(0) is defined in the proof of Proposition 2. Note that ¢” a constant independent of &
and that ¢”=§’, with ¢’ the value chosen in that proof.) Intuitively, s* is an equilibrium
for & c]ose to one because when & approaches one, ¢ approaches ¢'(5) and the strategy
profile s* approaches the equilibrium s*(8) of Proposition 2. A formal proof along these
lines is rather tedious and involves several limiting arguments like those given in the proof
of Proposition 2. Instead, a simple constructive proof is given below.

Let §"=§/q", where § is as defined in (4). From (6) we know that (J8q/
1-6)(f(1,6,9) —f(2, 8, q)) depends only on the product §q and is increasing in that
expression. From § = §” we have §q” =8 and hence

"

1)
—f(2,5,q"))§1~;—5(f(1 yD=/2,8,1))

=g,

with the final equality following from (4). As in the proof of Proposition 1, this implies
that no player expects to gain from a single-period deviation in phase I.

For any 6€[§”, 1), we also have §¢” <q"=§’. Hence, from (6), (8) and ¢'(§') =1 we
know that

I
1

5 (20,47 )=/, 48, 1))

<g.

This equation, combined with the convexity of fin its first argument implies that no player
expects to gain from a single-period deviation from phase II play. ||

A potentially disturbing aspect of the preceding proof is that because it involves
another limit as 6 — 1, the equilibrium with heterogeneous discount factors might require
far more patient players than was previously necessary. From Table I we know that
Propositions 1 and 2 do not require unreasonably patient players. Certainly, the equilib-
rium described in Proposition 3 will sometimes require more patient players. This is par-
ticularly true when the gain g from deviation is small so that it is"hard to get players to
carry out punishments. For example, for a population of 100 players, if we take g to be
0-01 the equilibrium as constructed requires § =0-96. Usually, though, we will think of g
as being much larger. In the trade example, the payoff of 1 is the profit or consumer
surplus from an honest transaction and g répresent the additional profit from cheating
(e.g. non-payment), which is liable to be at least as large as the profits from honest trade.
For larger values of g, a cooperative equilibrium with heterogeneity often requires no
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greater patience than was necessary for cooperation in the homogeneous population model.
When the constraint that players be willing to carry out punishment is sufficiently far from
binding, we can simply use infinite punishments for all §€[g, 1) to get an equilibrium.
Numerical calculations show this to be the case for each of the population sizes given in
Table I for g=1 or g=10.

4. COOPERATION WITHOUT PUBLIC RANDOMIZATIONS

Throughout this paper, I have assumed that a public randomizing device is available. For
many applications, including trade at a market, the assumption seems reasonable. When-
ever all the players are present at the same physical location it seems likely that if the
players looked hard enough they could find some random factor like the weather which
everyone could observe and hence use to coordinate. Nonetheless, the focus of this paper
is to describe how cooperation can be maintained with very little information available
to the players. In this spirit then, I will discuss what can be done without public
randomizations.

In Fudenberg and Maskin’s (1986) proof of the perfect Folk Theorem, public random-
izations play a crucial role in allowing the adjustment of players continuation payoffs
necessary for maintaining exact indifference. Fudenberg and Maskin (1991) show that
public randomizations, are, in fact, not necessary for this purpose. The crucial insight is
that payoffs in the convex hull of the set of feasible payoffs can be obtained instead from
a deterministic sequence of play.

In this paper, randomizations are playing two quite distinct roles. First, they are used
as a coordinating device so that all players can simultaneously return to cooperation at
the end of a punishment phase. The simultaneity is important because all players only
slightly prefer cooperating when all others are doing so. If the probability that everyone
else returns to cooperation in period ¢ is not very close to one, no one will be willing to
try returning to cooperative play. Coordination then allows the construction of a globally
stable equilibrium. Whether global stability is possible without the public randomizations
is unknown.

The second role of the public randomizations in this paper is to adjust the expected
duration, and hence the severity of the punishment. This is the property which enabled
us to construct strategies where punishments deter cheating, but are not so severe that
individuals would be unwilling to carry them out. In the argument below, I show that for
large enough discount factors it is possible to adjust the severity of the punishments in a
completely different way—spreading out the punishments over time. This will allow us to
establish the most important results of the paper even without the availability of public
randomizations.

The ability to soften punishments by delaying them is at the heart of the following
lemma. The lemma guarantees that any game which has a cooperative equilibrium for
some interval of discount factors has a cooperative equilibrium for all discount factors
near one as well. I hope that the very simple proof makes the lemma interesting in its own
right.

Lemma 2. Let G(6) be any repeated game of complete information, and suppose that
there is a non-empty interval (8o, 8,) such that G(8) has a sequential equilibrium s*(5)
with outcome a for all §€(8o, 81). Then, there exists § <1 such that V5 e(8, 1) we can also
define a strategy profile s**(8) which is a sequential equilibrium of G(8) with outcome a.
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Proof. The key observations here is that for § close enough to 1, we can simulate
the situation of smaller discount factors by using slower responses.
Take §=60/8,. For any §€(4d, 1) there exists an integer N(&) for which

SV DE (8o, 8)).

When there is more than one such integer take N(J) to be as large as possible. Now, have
the players treat the game G(§) as if it were N(§) separate games, the first taking place
in periods

1, N(§)+1,2N(8)+1,3N(5)+1,...,
the second in periods
2, N(6)+2,2N(8)+2,3N(8)+2, . ..,

etc. Just as is the case in finding Markov equilibria, if for some set T all other players
play strategies in period ¢ which do not depend on the outcomes in all periods ¢ €7, then
the best response for player i can be taken to be independent of the outcomes in all periods
r'eT as well. Hence, to show that we have an equilibrium s**(§) for G(8) it suffices to
show:

1. The strategies s**(8) give play in period aN+ b which does not depend on play

in period cN+d if (b—d) is not a multiple of N.
2. Restricting consideration to each “component” game played in periods

b, N(6)+b,2N(6)+b,3N(6)+b,...,
the restriction of the strategy profile s**(8) is a sequential equilibrium.

The obvious choice of s**(§) is to play the equilibrium s*(8" ¥) in each of the N(5)
component games described above. In our prisoner’s dilemma example, this would mean
that if player i or his opponent plays D in period aN(§)+ b, player i plays D in periods

(a+1)N(8)+b, (@a+2)N(5)+b,...,

but does not change his planned play in any other period. Within these component games,
players have discount factor 5" ¥, so s*(8" ¥) satisfies the second condition. Clearly, we
have a sequential equilibrium. ||

Note that when ¢'(6)=1, the strategies described in the proof of Proposition 2
prescribe infinite punishments, and hence do not require randomizations. In particular, §’
was defined so that taking g=1 gives a sequential equilibrium. In order to apply Lemma
2, we need only show that infinite punishments also yield a sequential equilibrium for a
small interval of discount factors around §'. This result is not hard. It is simply another
application of the fact that each action is a strict best response. The resulting equilibrium
of the game has a peculiar appearance with punishments being softened by being delayed
into the future, spread among intervening periods of cooperation. In the trade example,
this might mean that if a single deviation occurs on a Friday, eventually we will see all
players cheating on every third Friday but cooperating on all other days. The punishments
are of infinite duration so with noise, eventually all players will cheat in all periods. Despite
this, the punishments are still no more severe than the punishments of the previous section.
As players become more patient, the punishment periods become correspondingly further
apart. The somewhat surprising result is that in the limit as the amount of noise vanishes,
the equilibrium approaches efficiency. These results are summarized below.
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Proposition 4. The results of Proposition 2 still hold in a model where no public random-
izations are available.

Proof. In order to establish the first two results of Proposition 2, that there is a
sequential equilibrium which remains an equilibrium for sufficiently small amounts & of
noise, it will suffice to show that for a fixed range of discount factors the standard strategies
with g=1 give a sequential equilibrium. Just as in Proposition 3, we apply continuity of
the payoff functions to show that a strict equilibrium for one discount factor implies that
nearby discount factors also gives an equilibrium.

Recall that in the proof of Proposition 2, §' was defined so that the contagious
strategies with parameter ¢'(§’) =1 give a sequential equilibrium. An important intermedi-
ate step in the proof was to establish the existence of & such that (9) and (10) held for
all e<g, and all 5e[§’, 1). Substituting §’ into these equations gives

5/

5 (/(1,8,1,8)—f(2, 8,1, &))>g+n/2

and

’

L (81,014 1,8, ) <g-n/2 V22,

Restricting attention to values §€[d’, (1+§')/2], we once again can easily establish
bounds on the derivatives of the left-hand sides of the equations (11) and (12). For
example, using expression (A3) from the proof of Proposition 2 we get

[ &

—|—(f(k, 58,1, &)—f(k+1, 6,1,

55<]_5(f( 0,1, &)= f( 8)))
=y~ (t+1)8'(1+g) Prob {o;() e C(t, k) n D(t) N E(1)}
< 1+g
~(1-6)°
S4(1 +g)'
T(1-8)

Hence, we can find a value &, such that for all §€[§’, §,] and all ¢< &, we have
L (f1,8,1,9-10,5,1, ) >+ /4 (13)
and

Tf_a(f(k’ 0,1, &)= f(k+1,6,1,¢e))<g—n/4 Vk=2. (14)

From here, the same steps as in the proof of Proposition 2 but with /2 in place of
show that for sufficiently small ¢, the strategies with g=1 give an equilibrium for all
€[, 6,]. Now, the construction in Lemma 2 gives us an equilibrium without public
randomizations for all §e[§'/8,, 1).

A further consequence of Lemma 2 is that the per period payoff to a player with
discount factor § of the no randomization equilibrium s**(§, €) is exactly equal to the
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TABLE II

Discount factors with and without public randomizations
g=0-01 g=1 g=10

') 0-03 0-68 0-95

M=4 61 0-03 1-00 1-00

8/6, 0-96 0-68 0-95

B 0-08 079 097

M=10 S, 0-08 1-00 1-00

8/6, 0-96 0-79 0-97
) 0-35 0-89 0-985

M=100 5, 0-36 1-00 1-00
/6, 0-96 0-89 0-985
é 0-57 0-93 0-990

M=1000 o, 0-60 1-00 1-00
/6, 0-96 0-93 0-990

per period payoff that the strategies with g=1 give a player with discount factor
V@ £(0, 87?1, £). The function f is continuous in its second argument and §" ® - §’
as 8 — 1, so for u; being player i’s expected utility in the game with discount factor 6,
lim lim u,(s**(5, £))=1lim £(0, &, 1, &).
£—0 51 £—0
This, however, is merely the limit of the expected payoff for a fixed discount factor as
£-0 so efficiency in the limit is easy. For any y >0, we can simply choose T so that
(1-8)(1+8+ -+ - +87)>1—y/2 then pick & small enough so that with very high prob-
ability there are no e-probability events in the first T periods, hence giving an expected
payoff of at least 1 —y in the game with £ noise. ||

If we had not worried about noise in this section, we could have found an equilibrium
without public randomizations whenever d€[8, §,] where § is defined by ’

a(1-f(2,6,1))=(1-90)¢
and 6, is defined either by

61(f(3, 61, 1)=f(4,6,, 1))=(1-61)g

or by 8,=1 if the equation above has no solution. Table II gives §, 5, and §/8, for a
range of values of g and M. For § >§ a cooperative sequential equilibrium exists with
public randomizations, and for § > /8, one exists without them. Note that for many of
the parameter values, J, is in fact equal to one. In this case, eliminating public randomiza-
tions does not require any additional patience on the part of the players. When g=0-01,
the difficulty in getting the players to carry out punishments results in much more patient
play being necessary to support the equilibrium I have given.

5. CONCLUSION

In all of the results above, cooperation has been sustained in equilibrium by the use of
“contagious” punishments which lead eventually to a breakdown of cooperation after a
single deviation. The results illustrate the extent to which the convexity of the breakdown
process can be exploited, and the interesting patterns of play which can arise in equilibrium.
In addition, the contagious punishments are a fairly powerful tool for enforcing
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cooperation. Besides the basic result that cooperation can be sustained despite a very large
population of not unreasonably patient players with infrequent individual interactions,
we have seen that cooperation is still possible with heterogeneity in time preferences or
without public randomizations.

I have also argued that these results can be made far more robust than Kandori’s
first example suggests. Global stability is not a problem if public randomizations are
available. In a limiting sense, the possibility that players may tremble and cheat accidentally
is also not a problem even if players do not know the exact frequency of these trembles.
All the attention paid to robustness in this sense should not be taken to necessarily imply
that the paper is intended to be a plausible explanation for why cooperation has been
observed in some particular situation. The equilibrum has a number of problems as a
practical model: the cooperative equilibrium is at best one of a multiplicity of equilibria
and when mistakes are introduced we may need extremely restrictive assumptions on the
frequency of mistakes and the size of the population. The equilibrium is also very depen-
dent on the assumption that all players are rational. I nonetheless think that the robustness
is not merely of game theoretic interest, because it suggests that further analysis of proper-
ties other than the simplest notions of stability or limiting efficiency with noise is needed
and may improve our understanding of behaviour in large populations.

Finally, I should note that I have also left one major question of game-theoretic
interest unanswered. The results of this paper rely heavily on the fact that the prisoner’s
dilemma has a dominant strategy equilibrium. In light of Kandori’s Folk Theorem for
games with a more complex information structure, it would be interesting to know whether
the results of this paper extend to a more general class of games. If so, we would have a
much more general Folk Theorem. If not, we would have a sharper picture of the type of
information transmission which is necessary to maintain cooperation.

APPENDIX

Proof of Proposition 2. 1 begin by establishing equations (7) and (8) which are analagous to equations (1)
and (2) from the proof of Proposition 1. I will write f(k, 8, g, £) for the per period continuation payoff of player
i when at the start of period ¢, k players (including player i if k>0) are playing according to phase II of the
strategies described in the proof of Proposition 1. I wish to show that there exists §' < 1, >0 and a function
q':[¢', 1) - [0, 1] such that (7) and (8) hold for all 5&[§’, 1).

Note first that because I have not yet introduced noise, £(0, 8, ¢(5),0)=1. 1 begin by establishing a degree
of strict convexity of f. From equation (3) in the proof of Lemma 1 we know that

((/(1,6,4,0)-f(2,8,9,0) ~ (f(2, 8, 4,0)—f(3, 5, 9,0)))
= ,,,[ZZO (1-8)q'8'(1+)(ai(t, @)e(C(t, 1, ®) — C(t, 2, )) A D(t, ®))].
The second term of this sum is ’
(1-8)g6(1+g) Prob {o:(t, w)e(C(1, 1, ) — C(1, 2, ®)) N D(1, ®)}. (Al)

If player 2 is matched with player M in period 0 under @ we have

2eC(1, 1, w) MeC(l, 1, )

2¢C(1,2, w) Meg(C(1, 2, w)

D(1, w)={2, M}.
Together, these imply

(C(1, 1, @) - C(1, 2, ®)) " D(1, w)= {2, M}.



ELLISON COOPERATION IN THE PRISONER’S DILEMMA 585

From this, we know that the probability term in (A1) is at least the probability that players 2 and M are matched
in period 0 and that player 1 subsequently is matched against one of 2 or M in period 1. This probability is
2/(M—1)%

Hence, for § as defined in Proposition 1, we have for any § > g,

28%(1 +8) _

=" (A2)

l—fg((f(l, 6,1,00-1(2,6,1,00)~(f(2,6,1,0)—f(3,5,1,0)) 2
From equation (5) we know that
l—ij—é(f(l, 4,1,00-/(2,4,1,0)=¢.
From expansion (6) in the proof of Proposition 1 it is immediate that
% (f(1,8,1,0)-1(2,6,1,0))5>0.
Thus for some 1 <y/2 we can choose §'e(d, 1) so that
lf;lé,(f(l, &, 1,0-f(2,8,1,0)=¢g+n.
By (A2) we know
S UQ.81,0-10.8,1,0)<g-

Now, we simply set
q(6)=4'/8
and note from (6) that Vée[§’, 1)

8q' (6 [y
208D 11k, 5,4(8), 0= 10c+1,8,4(3), ) =—2= (8, 1,0) -1k +1, 8, 1,0)).
As ¢'(6)>q(d), players will not deviate in phase I of a model with no noise so

f00,48,4(5), 002/, 8, 4(5),0).

This establishes (7) and (8) as desired.
The next major step in the proof is to establish that the similar inequalities (9) and (10) hold for a model
with sufficiently little noise. To do this, I extend expansion (3) to a model with noise. Note that

Sk, 8,9, 8)—f(k+1,6,q, ¢)
=E,[E20 (1-6)q'6'(1 +g)I(0\(t, ®)eC(t, k, @) N D(t, ®) N E(t, »))] (A3)

where a realization of @ now includes also the set of players who “tremble” and play D accidentally in each
period and E(t, ») is defined to be the set of players affected by an e-probability tremble up to and including
time ¢. If T(¢, ®) is the set of players who tremble at time ¢ for a realization of w, E(t, ) can be formally
defined by

EQ©, »)=T(0, ®)
E(t+1,0)=E(t, 0) yT(t+1, 0) U {ilo;(t, ®) e E(t, ®)}.
Using the expansions (3) and (A3) we get

22D (1tk, 6,4(5),0) -1k +1,5,4), )~ Sk, 6,4(8), ) ~(k-+1,6,45), &)

=E,[¥,.,4(8) '8 (1 +g)l(01(t, @) C(t, k, @) N D(t, @) N E(t, @))]

SEY,. 8" (1 + )0t ) e E(t, @))]. (A%)



586 REVIEW OF ECONOMIC STUDIES

Given >0 as defined above, we can choose T such that

éIT n
< .
1-§" 4(1+g)

Next, choose &, sufficiently small such that

n

Prob {E(T, ) #0} <4(1 T+ 1

Now, for any §e[d’, 1) and any £ <&, the right-hand side of equation (A4) is bounded above by n/2. This and
equations (7) and (8) gives

240D (101, 5,4(5), 611, 5,46), N>g+1/2

and

20 (12, 6,4(5), ©1-10.5,4(), N <g=n/2.

The first equation is (9). Using the expansion (A3) in place of (3) it is easy to see that the result of Lemma 1
carries over to the model with ¢-noise. This and the second equation above gives us (10).

Now that (9) and (10) have been established, I will proceed to show that there are no profitable deviations
from either phase I or phase II play in the e-constrained game. The phase II case is easier so I’ll start with that.
Note that we can rewrite (10) to give Ve< &, 6€[d’, 1), and k=2,

0q(8)(S(k, 8,q'(8), &)—f(k+1,6,4(5), &) <(1-)g.

As in the proof of Proposition 1, the right hand side of this expression is the short term loss when a player
plays C instead of D in phase II and is matched with someone who plays C. The expectation over k of the left-
hand side is the expected future gain. Clearly, the future gain is too small to make a deviation profitable.

The discussion of phase I play is more complicated than before because a player in phase I must assign
probability r,>0 to the event that unbeknown to him, k other players are already playing according to phase
II or will tremble and play D in the current period. Keep in mind that r; is a function both of & and of the
history of the game. I will show, however, that for ¢ sufficiently small this uncertainty is small regardless of the
history of the game.

To show that player 1’s best response whenever he is in phase I in period ¢ is to play C, I will not show
directly that his expected payoff from playing C in period ¢ and then following his equilibrium strategy is better
than his expected payoff from playing D in period ¢ then following his equilibrium strategy. Instead, I will
compare the payoff from playing C in period ¢ then switching to phase II play in period ¢+ 1 to the payoff from
playing D in period f and continuing according to phase II. Player 1’s period ¢ action has no affect on play after
any period 7 +s in which ¢,+,>¢'(6). We have already seen that playing D in phase II is a best repsonse so that
the latter strategy gives the greatest possible expected payoff to a player who plays D in period ¢. If the former
is greater, the best response must involve playing C in period .

To compare the payoffs of the two strategies, look first at the period-t outcome. If player 1 plays D in
period ¢ he gains g whenever 0,(¢) plays C and avoids a loss of / whenever 0,(¢) plays D. Hence the short term

gain is
M-k—1 k
T “( AT )

In the future, a player who plays D in period ¢ can never be better off because both strategies prescribe the same
play from period ¢+ 1 on and there are always either the same number or more players in phase II in period
t+1. When k=0 and there are also no &-probability trembles in period ¢+ 1, the player who plays D in period
t is worse off, obtaining a continuation payoff of f(2, 8, ¢'(6), €) instead of f(1, 8, ¢'(6), €). The discounted
expected loss is then at least

M- 4(5)

ro(1-¢) /1, 8, 4(8)), &)—f(2, 6, 4(8), #)).
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To show that playing C is better in period ¢ is thus suffices to show that this loss outweighs the short-term gain.
Using (9), it will suffice to show

ro(1— &) ~"(g+ n/2) = rog+ (1 —ro) max (g, I).
We can choose & such that
(-8 "(g+n/22g+n/4
for all £<§&,. It then only remains to establish
ron/42 (1 —ro) max (g, 1) (A5)

for ¢ sufficiently small.

At first look one might think that if the game has been going on long enough then player 1 will be fairly
sure that someone must have trembled. This reasoning suggests that the ro term might not dominate in (AS5).
However, it is important to keep in mind that ro is not an unconditional probability, but rather the conditional
probability that no one has trembled since the last time s that ¢,>¢'(6) occurred given that no opponent of
player 1 has played D since that time. Write ro(f) for the probability that all other players are cooperating
conditional on it having been ¢ periods since ¢,>¢'(6) and on cooperation only having been observed in that
time. To show in fact that

lim inf ro(£) =1 (A6)

=0 1t

take any {>0. We can choose T so that

a=0a-¢/2)

Prob {Player 1 is still in phase I|Some player was in phase II T, periods ago} < 5

Next choose &; so that
(1-2)"™>1-¢/2

We now show by induction that for any &< &; and any ¢ we have ro(t) >1—¢. First, for t< T, the probability
that there has been no tremble is at least 1 —¢ /2 and conditioning on not seeing a tremble only increases this
probability. Next, if for some T= T, we have ro(f) >1—¢ for all t< T, then 1 —ro(T+1) is less than the sum of
the probability that some player was in phase II in period T+ 1 — T; conditional on player 1 still being in phase
1, and the probability that there has been a tremble in the last T periods. The first probability by Bayes’ rule
is less than

(L=r(T+1-T(A-OU=¢/)/2
(= ro(T+1 =T = O ={/D/2+r(T+1=-T)(1-{/2)
L4=00-¢/2)_¢

20-001-¢/2) 2

The second term is at most /2. Hence, by induction ro(#) > 1 —¢ for all ¢. Choosing & smaller than &, &, and
&; we get the sufficient condition (A5) for no deviations in phase 1. This concludes the proof that s*(8, ¢) is a
sequential equilibrium of the e-constrained game.

Finally, the proof of 3, that we get efficiency in the limit, is relatively easy. Consider the largest possible
effect that a single tremble by player j in ¢ period ¢ can have on player i’s total payoff anywhere on the path of
the equilibrium with noise. This tremble can only affect player i’s payoff in period ¢ and in any future priod
until the first time ¢,.,<q'(6). Thus, the expected loss caused by this single tremble is at most

8(1-6)

ST, (1=8)8qEY (I +g+D=(1+g+D) =

Player i’s expected per period payoff is equal to 1 minus the expected loss from each possible tremble times the
probability of that tremble occurring. This gives

S0,5,4(8), D21 (-85, (1 +g+) — Me

_(l+g+DMe
1-§

=1
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Clearly
lim lim £(0, 8, 4'(6), &)=1. |
=0 51
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