
American Economic Association

Ten Little Treasures of Game Theory and Ten Intuitive Contradictions
Author(s): Jacob K. Goeree and Charles A. Holt
Source: The American Economic Review, Vol. 91, No. 5 (Dec., 2001), pp. 1402-1422
Published by: American Economic Association
Stable URL: http://www.jstor.org/stable/2677931
Accessed: 18/10/2010 12:56

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=aea.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Economic Association is collaborating with JSTOR to digitize, preserve and extend access to The
American Economic Review.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=aea
http://www.jstor.org/stable/2677931?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=aea


Ten Little Treasures of Game Theory 
and Ten Intuitive Contradictions 

By Jacob K. Goeree and Charles A. Holt* 

This paper reports laboratory data for games that are played only once. These 
games span the standard categories: static and dynamic games with complete and 
incomplete information. For each game, the treasure is a treatment in which 
behavior conforms nicely to predictions of the Nash equilibrium or relevant refine- 
ment. In each case, however, a change in the payoff structure produces a large 
inconsistency between theoretical predictions and observed behavior. These con- 
tradictions are generally consistent with simple intuition based on the interaction of 
payoff asymmetries and noisy introspection about others' decisions. (JEL C72, C92) 

The Nash equilibrium has been the center- 
piece of game theory since its introduction 
about 50 years ago. Along with supply and 
demand, the Nash equilibrium is one of the 
most commonly used theoretical constructs in 
economics, and it is increasingly being applied 
in other social sciences. Indeed, game theory 
has finally gained the central role envisioned by 
John von Neumann and Oscar Morgenstem, and 
in some areas of economics (e.g., industrial 
organization) virtually all recent theoretical de- 
velopments are applications of game theory. 
The impression one gets from recent surveys 
and game theory textbooks is that the field has 
reached a comfortable maturity, with neat clas- 
sifications of games and successively stronger 
(more "refined") versions of the basic approach 
being appropriate for more complex categories 
of games: Nash equilibrium for static games 
with complete information, Bayesian Nash for 
static games with incomplete information, sub- 
game perfectness for dynamic games with com- 
plete information, and some refinement of the 

sequential Nash equilibrium for dynamic games 
with incomplete information (e.g., Robert Gib- 
bons, 1997). The rationality assumptions that 
underlie this analysis are often preceded by 
persuasive adjectives like "perfect," "intuitive," 
and "divine." If any noise in decision-making is 
admitted, it is eliminated in the limit in a pro- 
cess of "purification." It is hard not to notice 
parallels with theology, and the highly mathe- 
matical nature of the developments makes this 
work about as inaccessible to mainstream econ- 
omists as medieval treatises on theology would 
have been to the general public. 

The discordant note in this view of game 
theory has come primarily from laboratory ex- 
periments, but the prevailing opinion among 
game theorists seems to be that behavior will 
eventually converge to Nash predictions under 
the right conditions.1 This paper presents a 
much more unsettled perspective of the current 
state of game theory. In each of the major types 
of games, we present one or more examples for 
which the relevant version of the Nash equilib- 
rium predicts remarkably well. These "trea- 
sures" are observed in games played only once 
by financially motivated subjects who have had 
prior experience in other, similar, strategic sit- 
uations. In each of these games, however, we 
show that a change in the payoff structure can 
produce a large inconsistency between theoret- 
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lottesville, VA 22904 (e-mail: cah2k@virginia.edu). We 
wish to thank Rachel Parkin and Scott Saiers for research 
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1 For example, George J. Mailath's (1998) survey of 
evolutionary models cites the failure of backward induction 
as the main cause of behavioral deviations from Nash pre- 
dictions. 
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ical prediction(s) and human behavior. For ex- 
ample, a payoff change that does not alter the 
unique Nash equilibrium may move the data to 
the opposite side of the range of feasible deci- 
sions. Alternatively, a payoff change may cause 
a major shift in the game-theoretic predictions 
and have no noticeable effect on actual behav- 
ior. The observed contradictions are typically 
somewhat intuitive, even though they are not 
explained by standard game theory. In a simul- 
taneous effort-choice coordination game, for 
example, an increase in the cost of players' 
"effort" decisions is shown to cause a dramatic 
decrease in effort, despite the fact that any com- 
mon effort is a Nash equilibrium for a range of 
effort costs. In some of these games, it seems 
like the Nash equilibrium works only by coin- 
cidence, e.g., in symmetric cases where the 
costs of errors in each direction are balanced. In 
other cases, the Nash equilibrium has consider- 
able drawing power, but economically signifi- 
cant deviations remain to be explained. 

The idea that game theory should be tested 
with laboratory experiments is as old as the 
notion of a Nash equilibrium, and indeed, the 
classic prisoner's dilemma paradigm was in- 
spired by an experiment conducted at the 
RAND Corporation in 1950. Some of the stra- 
tegic analysts at RAND were dissatisfied with 
the received theory of cooperative and zero-sum 
games in von Neumann and Morgenstern's 
(1944) Theory of Games and Economic Behav- 
ior. In particular, nuclear conflict was not 
thought of as a zero-sum game because both 
parties may lose. Sylvia Nasar (1998) describes 
the interest at RAND when word spread that a 
Princeton graduate student, John Nash, had gen- 
eralized von Neumann's existence proof for 
zero-sum games to the class of all games with 
finite numbers of strategies. Two mathemati- 
cians, Melvin Dresher and Merrill Flood, had 
been running some game experiments with their 
colleagues, and they were skeptical that human 
behavior would be consistent with Nash's no- 
tion of equilibrium. In fact, they designed an 
experiment that was run on the same day they 
heard about Nash's proof. Each player in this 
game had a dominant strategy to defect, but 
both would earn more if they both used the 
cooperative strategy. The game was repeated 
100 times with the same two players, and a fair 
amount of cooperation was observed. One of 
Nash's professors, Al W. Tucker, saw the pay- 

offs for this game written on a blackboard, and 
he invented the prisoner's dilemma story that 
was later used in a lecture on game theory that 
he gave in the Psychology Department at Stan- 
ford (Tucker, 1950). 

Interestingly, Nash's response to Dresher and 
Flood's repeated prisoner's dilemma experi- 
ment is contained in a note to the authors that 
was published as a footnote to their paper: 

The flaw in the experiment as a test of 
equilibrium point theory is that the exper- 
iment really amounts to having the play- 
ers play one large multi-move game. One 
cannot just as well think of the thing as a 
sequence of independent games as one 
can in zero-sum cases. There is just too 
much interaction .. . (Nasar, 1998 p. 
119). 

In contrast, the experiments that we report in 
this paper involved games that were played only 
once, although related results for repeated 
games with random matching will be cited 
where appropriate. As Nash noted, the advan- 
tage of one-shot games is that they insulate 
behavior from the incentives for cooperation 
and reciprocity that are present in repeated 
games. One potential disadvantage of one-shot 
games is that, without an opportunity to learn 
and adapt, subjects may be especially prone to 
the effects of confusion. The games used in 
this paper, however, are simple enough in 
structure to ensure that Nash-like behavior 
can be observed in the "treasure" treatment. 
In addition, the study of games played only 
once is of independent interest given the 
widespread applications of game theory to 
model one-shot interactions in economics and 
other social sciences, e.g., the FCC license 
auctions, elections, military campaigns, and 
legal disputes. 

The categories of games to be considered are 
based on the usual distinctions: static versus 
dynamic and complete versus incomplete infor- 
mation. Section I describes the experiments 
based on static games with complete informa- 
tion: social dilemma, matching pennies, and 
coordination games. Section II contains results 
from dynamic games with complete informa- 
tion: bargaining games and games with threats 
that are not credible. The games reported in 
Sections III and IV have incomplete infor- 
mation about other players' payoffs: in static 
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settings (auctions) and two-stage settings (sig- 
naling games). 

It is well known that decisions can be af- 
fected by psychological factors such as framing, 
aspiration levels, social distance, and heuristics 
(e.g., Daniel Kahneman et al., 1982; Catherine 
Eckel and Rick Wilson, 1999). In this paper we 
try to hold psychological factors constant and 
focus on payoff changes that are primarily eco- 
nomic in nature. As noted below, economic 
theories can and are being devised to explain the 
resulting anomalies. For example, the rational- 
choice assumption underlying the notion of a 
Nash equilibrium eliminates all errors, but if the 
costs of "overshooting" an optimal decision are 
much lower than the costs of "undershooting," 
one might expect an upward bias in decisions. 
In a game, the endogenous effects of such bi- 
ases may be reinforcing in a way that creates a 
"snowball" effect that moves decisions well 
away from a Nash prediction. Models that in- 
troduce (possibly small) amounts of noise into 
the decision-making process can produce pre- 
dictions that are quite far from any Nash equi- 
librium (Richard D. McKelvey and Thomas R. 
Palfrey, 1995, 1998; Goeree and Holt, 1999). 
Equilibrium models of noisy behavior have 
been used to explain behavior in a variety of 
contexts, including jury decision-making, bar- 
gaining, public goods games, imperfect price 
competition, and coordination (Simon P. 
Anderson et al., 1998a, b, 2001a; C. Monica 
Capra et al., 1999, 2002; Stanley S. Reynolds, 
1999; Serena Guarnaschelli et al., 2001). 

A second type of rationality assumption that 
is built into the Nash equilibrium is that beliefs 
are consistent with actual decisions. Beliefs are 
not likely to be confirmed out of equilibrium, 
and learning will presumably occur in such 
cases. There is a large recent literature on in- 
corporating learning into models of adjustment 
in games that are played repeatedly with differ- 
ent partners.2 These models include adaptive 
learning (e.g., Vincent P. Crawford, 1995; 
David J. Cooper et al., 1997), naive Bayesian 
learning (e.g., Jordi Brandts and Holt, 1996; 
Dilip Mookherjee and Barry Sopher, 1997), re- 
inforcement or stimulus-response learning (e.g., 
Ido Erev and Alvin E. Roth, 1998), and hybrid 

models with elements of both belief and rein- 
forcement learning (Colin Camerer and Teck- 
Hua Ho, 1999). Learning from experience is not 
possible in games that are only played once, and 
beliefs must be formed from introspective 
thought processes, which may be subject to 
considerable noise. Without noise, iterated best 
responses will converge to a Nash equilibrium, 
if they converge at all. Some promising ap- 
proaches to explaining deviations from Nash 
predictions are based on models that limit play- 
ers' capacities for introspection, either by lim- 
iting the number of iterations (e.g., Dale 0. 
Stahl and Paul W. Wilson, 1995; Rosemarie 
Nagel, 1995) or by injecting increasing amounts 
of noise into higher levels of iterated beliefs 
(Goeree and Holt, 1999; Dorothea Kubler and 
Georg Weizsacker, 2000). The predictions de- 
rived from these approaches, discussed in Sec- 
tion V, generally conform to Nash predictions 
in the treasure treatments and to the systematic, 
intuitive deviations in the contradiction treat- 
ments. Some conclusions are offered in 
Section VI. 

I. Static Games with Complete Information 

In this section we consider a series of two- 
player, simultaneous-move games, for which 
the Nash equilibria show an increasing degree 
of complexity. The first game is a "social di- 
lemma" in which the pure-strategy Nash equi- 
librium coincides with the unique rationalizable 
outcome. Next, we consider a matching pennies 
game with a unique Nash equilibrium in mixed 
strategies. Finally, we discuss coordination 
games that have multiple Nash equilibria, some 
of which are better for all players. 

In all of the games reported here and in 
subsequent sections, we used cohorts of student 
subjects recruited from undergraduate econom- 
ics classes at the University of Virginia. Each 
cohort consisted of ten students who were paid 
$6 for arriving on time, plus all cash they earned 
in the games 'played. These one-shot games 
followed an initial "part A" in which the sub- 
jects played the same two-person game for ten 
periods with new pairings made randomly in 
each period.3 Earnings for the two-hour ses- 

2 See, for instance, Drew Fudenberg and David K. Le- 
vine (1998) for a survey. 

3We only had time to run about six one-shot games in 
each session, so the data are obtained from a large number 
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sions ranged from $15 to $60, with an average 
of about $35. Each one-shot game began with 
the distribution and reading of the instructions 
for that game.4 These instructions contained 
assurances that all money earned would be paid 
and that the game would be followed by "an- 
other, quite different, decision-making experi- 
ment." Since the one-shot treatments were 
paired, we switched the order of the treasure 
and contradiction conditions in each subsequent 
session. Finally, the paired treatments were al- 
ways separated by other one-shot games of a 
different type. 

A. The One-Shot Traveler's Dilemma Game 

The Nash equilibrium concept is based on the 
twin assumptions of perfect error-free decision- 
making and the consistency of actions and be- 
liefs. The latter requirement may seem 
especially strong in the presence of multiple 
equilibria when there is no obvious way for 
players to coordinate. More compelling argu- 
ments can be given for the Nash equilibrium 
when it predicts the play of the unique justifi- 
able, or rationalizable, action (B. Douglas 
Bernheim, 1984; David G. Pierce, 1984). Ra- 
tionalizability is based on the idea that players 
should eliminate those strategies that are never 
a best response for any possible beliefs, and 
realize that other (rational) players will do the 
same.5 

To illustrate this procedure, consider the 
game in which two players independently and 
simultaneously choose integer numbers be- 
tween (and including) 180 and 300. Both play- 
ers are paid the lower of the two numbers, and, 
in addition, an amount R > 1 is transferred 
from the player with the higher number to the 
player with the lower number. For instance, if 
one person chooses 210 and the other chooses 
250, they receive payoffs of 210 + R and 

210 - R respectively. Since R > 1, the best 
response is to undercut the other's decision by 1 
(if that decision were known), and therefore, the 
upper bound 300 is never a best response to any 
possible beliefs that one could have. Conse- 
quently, a rational person must assign a proba- 
bility of zero to a choice of 300, and hence 299 
cannot be a best response to any possible beliefs 
that rule out choices of 300, etc. Only the lower 
bound 180 survives this iterated deletion pro- 
cess and is thus the unique rationalizable action, 
and hence the unique Nash equilibrium.6 This 
game was introduced by Kaushik Basu (1994) 
who coined it the "traveler's dilemma" game.7 

Although the Nash equilibrium for this game 
can be motivated by successively dropping 
those strategies that are never a best response 
(to any beliefs about strategies that have not yet 
been eliminated from consideration), this dele- 
tion process may be too lengthy for human 
subjects with limited cognitive abilities. When 
the cost of having the higher number is small, 
i.e., for small values of R, one might expect 
more errors in the direction of high claims, well 
away from the unique equilibrium at 180, and 
indeed this is the intuition behind the dilemma. 
In contrast, with a large penalty for having the 
higher of the two claims, players are likely to 
end up with claims that are near the unique 
Nash prediction of 180. 

To test these hypotheses we asked 50 subjects 
(25 pairs) to make choices in a treatment with 
R = 180, and again in a matched treatment 
with R = 5. All subjects made decisions in 
each treatment, and the two games were sepa- 
rated by a number of other one-shot games. The 

of sessions where part A involved a wide range of repeated 
games, including public goods, coordination, price compe- 
tition, and auction games that are reported in other papers. 
The one-shot games never followed a repeated game of the 
same type. 

4 These instructions can be downloaded from http:II 
www.people.virginia.edu/-cah2k/datapage.html. 

SA well-known example for which this iterated deletion 
process results in a unique outcome is a Cournot duopoly 
game with linear demand (Fudenberg and Jean Tirole, 1993 
pp. 47-48). 

6 In other games, rationalizability may allow outcomes 
that are not Nash equilibria, so it is a weaker concept than 
that of a Nash equilibrium, allowing a wider range of 
possible behavior. It is in this sense that Nash is more 
persuasive when it corresponds to the unique rationalizable 
outcome. 

7 The associated story is that two travelers purchase 
identical antiques while on a tropical vacation. Their lug- 
gage is lost on the return trip, and the airline asks them to 
make independent claims for compensation. In anticipation 
of excessive claims, the airline representative announces: 
"We know that the bags have identical contents, and we will 
entertain any claim between $180 and $300, but you will 
each be reimbursed at an amount that equals the minimum of 
the two claims submitted. If the two claims differ, we will 
also pay a reward R to the person making the smaller claim 
and we will deduct a penalty R from the reimbursement to 
the person making the larger claim." 



1406 THE AMERICAN ECONOMIC REVIEW DECEMBER 2001 

1frequency 

0.8 

0.6 

0.4 

0.2 

0 
185 195 205 215 225 235 245 255 265 275 285 295 

claim 
mR= 180 *R=5 

FIGURE 1. CLAIM FREQUENCIES IN A TRAVELER'S DILEMMA 

FOR R = 180 (LIGHT BARS) AND R = 5 (DARK BARS) 

ordering of the two treatments was alternated. 
The instructions asked the participants to devise 
their own numerical examples to be sure that 
they understood the payoff structure. 

Figure 1 shows the frequencies for each 10- 
cent category centered around the claim label on 
the horizontal axis. The lighter bars pertain to 
the high-R "treasure" treatment, where close to 
80 percent of all the subjects chose the Nash 
equilibrium strategy, with an average claim of 
201. However, roughly the same fraction chose 
the highest possible claim in the low-R treat- 
ment, for which the average was 280, as shown 
by the darker bars. Notice that the data in the 
contradiction treatment are clustered at the op- 
posite end of the set of feasible decisions from 
the unique (rationalizable) Nash equilibrium.8 
Moreover, the "anomalous" result for the low-R 
treatment does not disappear or even diminish 
over time when subjects play the game repeat- 
edly and have the opportunity to learn.9 Since 

TABLE 1-THREE ONE-SHOT MATCHING PENNIES GAMES 

(WITH CHOICE PERCENTAGES) 

Left (48) Right (52) 
Symmetric Top (48) 80, 40 40, 80 

matching Bottom (52) 40, 80 80, 40 
pennies 

Left (16) Right (84) 
Asymmetric Top (96) 320, 40 40, 80 

matching Bottom (4) 40, 80 80, 40 
pennies 

Left (80) Right (20) 
Reversed Top (8) 44, 40 40, 80 

asymmetry Bottom (92) 40, 80 80, 40 

the treatment change does not alter the unique 
Nash (and rationalizable) prediction, standard 
game theory simply cannot explain the most 
salient feature of the data, i.e., the effect of the 
penalty/reward parameter on average claims. 

B. A Matching Pennies Game 

Consider a symmetric matching pennies 
game in which the row player chooses between 
Top and Bottom and the column player simul- 
taneously chooses between Left and Right, as 
shown in top part of Table 1. The payoff for the 
row player is $0.80 when the outcome is (Top, 
Left) or (Bottom, Right) and $0.40 otherwise. 
The motivations for the two players are exactly 
opposite: column earns $0.80 when row earns 
$0.40, and vice versa. Since the players have 
opposite interests there is no equilibrium in pure 
strategies. Moreover, in order not to be ex- 
ploited by the opponent, neither player should 
favor one of their strategies, and the mixed- 
strategy Nash equilibrium involves randomiz- 
ing over both alternatives with equal 
probabilities. As before, we obtained decisions 
from 50 subjects in a one-shot version of this 
game (five cohorts of ten subjects, who were 
randomly matched and assigned row or column 

8 This result is statistically significant at all conventional 
levels, given the strong treatment effect and the relatively 
large number of independent observations (two paired ob- 
servations for each of the 50 subjects). We will not report 
specific nonparametric tests for cases that are so clearly 
significant. The individual choice data are provided in the 
Data Appendix for this paper on: http://www.people. 
virginia.edu/-cah2k/datapage.html. 

9 In Capra et al. (1999), we report results of a repeated 
traveler's dilemma game (with random matching). When 
subjects chose numbers in the range [80, 200] with R = 5, 
the average claim rose from approximately 180 in the first 
period to 196 in period 5, and the average remained above 
190 in later periods. Different cohorts played this game with 
different values of R, and successive increases in R resulted 

in successive reductions in average claims. With a penalty/ 
reward parameter of 5, 10, 20, 25, 50, and 80 the average 
claims in the final three periods were 195, 186, 119, 138, 85, 
and 81 respectively. Even though there is one treatment 
reversal, the effect of the penalty/reward parameter on av- 
erage claims is significant at the 1-percent level. The pat- 
terns of adjustment are well explained by a naive Bayesian 
learning model with decision error, and the claim distribu- 
tions for the final five periods are close to those predicted by 
a logit equilibrium (McKelvey and Palfrey, 1995). 
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roles). The choice percentages are shown in 
parentheses next to the decision labels in the top 
part of Table 1. Note that the choice percentages 
are essentially "50-50," or as close as possible 
given that there was an odd number of players 
in each role. 

Now consider what happens if the row play- 
er's payoff of $0.80 in the (Top, Left) box is 
increased to $3.20, as shown in the asymmetric 
matching pennies game in the middle part of 
Table 1. In a mixed-strategy equilibrium, a 
player's own decision probabilities should be 
such that the other player is made indifferent 
between the two alternatives. Since the column 
player's payoffs are unchanged, the mixed- 
strategy Nash equilibrium predicts that row's 
decision probabilities do not change either. In 
other words, the row player should ignore the 
unusually high payoff of $3.20 and still choose 
Top or Bottom with probabilities of one-half. 
(Since column's payoffs are either 40 or 80 for 
playing Left and either 80 or 40 for playing 
Right, row's decision probabilities must equal 
one-half to keep column indifferent between 
Left and Right, and hence willing to random- 
ize.)10 This counterintuitive prediction is dra- 
matically rejected by the data, with 96 percent 
of the row players choosing the Top decision 
that gives a chance of the high $3.20 payoff. 
Interestingly, the column players seemed to 
have anticipated this, and they played Right 84 
percent of the time, which is quite close to their 
equilibrium mixed strategy of 7/8. Next, we low- 
ered the row player's (Top, Left) payoff to 
$0.44, which again should leave the row play- 
er's own choice probabilities unaffected in a 
mixed-strategy Nash equilibrium. Again the ef- 
fect is dramatic, with 92 percent of the choices 
being Down, as shown in the bottom part of 
Table 1. As before, the column players seemed 
to have anticipated this reaction, playing Left 80 
percent of the time. To summarize, the unique 
Nash prediction is for the bolded row-choice 
percentages to be unchanged at 50 percent for 
all three treatments. This prediction is violated 

TABLE 2-AN EXTENDED COORDINATION GAME 

L H S 
L 90, 90 0, 0 x, 40 
H 0, 0 180, 180 0, 40 

in an intuitive manner, with row players' 
choices responding to their own payoffs.11 In 
this context, the Nash mixed-strategy prediction 
seems to work only by coincidence, when the 
payoffs are symmetric. 

C. A Coordination Game with a Secure 
Outside Option 

Games with multiple Nash equilibria pose 
interesting new problems for predicting behav- 
ior, especially when some equilibria produce 
higher payoffs for all players. The problem of 
coordinating on the high-payoff equilibrium 
may be complicated by the possible gains and 
losses associated with payoffs that are not part 
of any equilibrium outcome. Consider a coordi- 
nation game in which players receive $1.80 if 
they coordinate on the high-payoff equilibrium 
(H, H) $0.90 if they coordinate on the low- 
payoff equilibrium (L, L), and they receive 
nothing if they fail to coordinate (i.e., when one 
player chooses H and the other L). Suppose that, 
in addition, the column player has a secure 
option S that yields $0.40 for column and results 
in a zero payoff for the row player. This game is 
given in Table 2 when x = 0. To analyze the 
Nash equilibria of this game, notice that for the 
column player a 50-50 combination of L and H 
dominates S, and a rational column player 
should therefore avoid the secure option. Elim- 
inating S turns the game into a standard 2 X 2 
coordination game that has three Nash equilibria: 

10 The predicted equilibrium probabilities for the row 
player are not affected if we relax the assumption of risk 
neutrality. There are only two possible payoff levels for 
column so, without loss of generality, columns' utilities for 
payoffs of 40 and 80 can be normalized to 0 and 1. Hence 
even a risk-averse column player will only be indifferent 
when row uses choice probabilities of one-half. 

" This anomaly is persistent when subjects play the 
game repeatedly. Jack Ochs (1995a, b) investigates a match- 
ing pennies game with an asymmetry similar to that of the 
middle game in Table 1, and reports that the row players 
continue to select Top considerably more than one-half of 
the time, even after as many as 50 rounds. These results are 
replicated in McKelvey et al. (2000). Similarly, Goeree et 
al. (2000) report results for ten-period repeated matching 
pennies games that exactly match those in Table 1. The 
results are qualitatively similar but less dramatic than those 
in Table 1, with row's choice probabilities showing strong 
"own-payoff' effects that are not predicted by the Nash 
equilibrium. 
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both players choosing L, both choosing H, and 
a mixed-strategy equilibrium in which both 
players choose L with probability 2/3. 

The Nash equilibria are independent of x, 
which is the payoff to the row player when (L, 
S) is the outcome, since the argument for elim- 
inating S is based solely on column's payoffs. 
However, the magnitude of x may affect the 
coordination process: for x = 0, row is indif- 
ferent between L and H when column selects S, 
and row is likely to prefer H when column does 
not select S (since then L and H have the same 
number of zero payoffs for row, but H has a 
higher potential payoff). Row is thus more 
likely to choose H, which is then also the opti- 
mal action for the column player. However, 
when x is large, say 400, the column player may 
anticipate that row will select L in which case 
column should avoid H. 

This intuition is borne out by the experimen- 
tal data: in the treasure treatment with x = 0, 96 
percent of the row players and 84 percent of the 
column players chose the high-payoff action H, 
while in the contradiction treatment with x = 
400 only 64 percent of the row players and 76 
percent of the column players chose H. The 
percentages of outcomes that were coordinated 
on the high-payoff equilibrium were 80 for the 
treasure treatment versus 32 for the contradic- 
tion treatment. In the latter treatment, an addi- 
tional 16 percent of the outcomes were 
coordinated on the low-payoff equilibrium, but 
more than half of all the outcomes were unco- 
ordinated, non-Nash outcomes. 

D. A Minimum-Effort Coordination Game 

The next game we consider is also a coordi- 
nation game with multiple equilibria, but in this 
case the focus is on the effect of payoff asym- 
metries that determine the risks of deviating in 
the upward and downward directions. The two 
players in this game choose "effort" levels si- 
multaneously, and the cost of effort determines 
the risk of deviation. The joint product is of the 
fixed-coefficients variety, so that each person's 
payoff is the minimum of the two efforts, minus 
the product of the player's own effort and a 
constant cost factor, c. In the experiment, we let 
efforts be any integer in the range from 1 10 to 
170. If c < 1, any common effort in this 
range is a Nash equilibrium, because a uni- 
lateral one-unit increase in effort above a 
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FIGuRE 2. EFFORT CHOICE FREQUENCIES FOR A MINIMUM- 
EFFORT COORDINATION GAME WITH HIGH EFFORT COST 

(LIGHT BARS) AND Low EFFORT COST (DARK BARS) 

common starting point will not change the 
minimum but will reduce one's payoff by c. 
Similarly, a one-unit decrease in effort will 
reduce one's payoff by 1 - c, i.e., the reduc- 
tion in the minimum is more than the savings 
in effort costs when c < 1. Obviously, a 
higher effort cost increases the risk of raising 
effort and reduces the risk of lowering effort. 
Thus simple intuition suggests that effort lev- 
els will be inversely related to effort costs, 
despite the fact that any common effort level 
is a Nash equilibrium. 

We ran one treatment with a low effort cost 
of 0.1, and the data for 50 randomly matched 
subjects in this treatment are shown by the dark 
bars in Figure 2. Notice that behavior is quite 
concentrated at the highest effort level of 170; 
subjects coordinate on the Pareto-dominant out- 
come. The high effort cost treatment (c = 0.9), 
however, produced a preponderance of efforts 
at the lowest possible level, as can be seen by 
the lighter bars in the figure. Clearly, the extent 
of this "coordination failure" is affected by the 
key economic variable in this model, even 
though Nash theory is silent.12 

12 The standard analysis of equilibrium selection in co- 
ordination is based on the John C. Harsanyi and Reinhard 
Selten's (1988) notion of risk dominance, which allows a 
formal analysis of the trade-off between risk and payoff 
dominance. Paul G. Straub (1995) reports experimental 
evidence for risk dominance as a selection criterium. There 
is no agreement on how to generalize risk dominance be- 
yond 2 x 2 games, but see Anderson et al. (2001b) for a 
proposed generalization based on the "stochastic potential." 
Experiments with repeated plays of coordination games 
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TABLE 3-Two VERSIONS OF THE KREPS GAME (WITH CHOICE PERCENTAGES) 

Left (26) Middle (8) Non-Nash (68) Right (0) 
Basic game Top (68) 200, 50 0, 45 10, 30 20, -250 

Bottom (32) 0, -250 10, -100 30,30 50, 40 

Left (24) Middle (12) Non-Nash (64) Right (0) 
Positive payoff frame Top (84) 500, 350 300, 345 310, 330 320, 50 

Bottom (16) 300, 50 310, 200 330, 330 350, 340 

E. The Kreps Game 

The previous examples demonstrate how the 
cold logic of game theory can be at odds with 
intuitive notions about human behavior. This 
tension has not gone unnoticed by some game 
theorists. For instance, David M. Kreps (1995) 
discusses a variant of the game in the top part of 
Table 3 (where we have scaled back the payoffs 
to levels that are appropriate for the laboratory). 
The pure-strategy equilibrium outcomes of this 
game are (Top, Left) and (Bottom, Right). In 
addition, there is a mixed-strategy equilibrium 
in which row randomizes between Top and Bot- 
tom and column randomizes between Left and 
Middle. The only column strategy that is not 
part of any Nash equilibrium is labeled Non- 
Nash. Kreps argues that column players will 
tend to choose Non-Nash because the other 
options yield at best a slightly higher payoff 
(i.e., 10, 15, or 20 cents higher) but could lead 
to substantial losses of $1 or $2.50. Notice 
that this intuition is based on payoff magni- 
tudes out of equilibrium, in contrast to Nash 
calculations based only on signs of payoff 
differences. 

Kreps did try the high-hypothetical-payoff 
version of this game on several graduate stu- 
dents, but let us consider what happens with 
financially motivated subjects in an anonymous 

laboratory situation. As before, we randomly 
paired 50 subjects and let them make a single 
choice. Subjects were told that losses would 
be subtracted from prior earnings, which were 
quite substantial by that point. As seen from 
the percentages in parentheses in the top part 
of the table, the Non-Nash decision was se- 
lected by approximately two-thirds of the col- 
umn players. Of course, it is possible that this 
result is simply a consequence of "loss-aver- 
sion," i.e., the disutility of losing some 
amount of money is greater than the utility 
associated with winning the same amount 
(Daniel Kahneman et al., 1991). Since all the 
other columns contain negative payoffs, loss- 
averse subjects would thus be naturally in- 
clined to choose Non-Nash. Therefore, we ran 
another 50 subjects through the same game, 
but with 300 cents added to payoffs to avoid 
losses, as shown in the bottom part of Table 
3. The choice percentages shown in parenthe- 
ses indicate very little change, with close to 
two-thirds of column players choosing Non- 
Nash as before. Thus "loss aversion" biases 
are not apparent in the data, and do not seem 
to be the source of the prevalence of Non- 
Nash decisions. Finally, we ran 50 new sub- 
jects through the original version in the top 
part of the table, with the (Bottom, Right) 
payoffs of (50, 40) being replaced by (350, 
400), which (again) does not alter the equi- 
librium structure of the game. With this ad- 
mittedly heavy-handed enhancement of the 
equilibrium in that cell, we observed 96 per- 
cent Bottom choices and 84 percent Right 
choices, with 16 percent Non-Nash persisting 
in this, the "treasure" treatment. 

II. Dynamic Games with Complete Information 

As game theory became more widely used in 
fields like industrial organization, the complex- 
ity of the applications increased to accommodate 

have shown that behavior may begin near the Pareto- 
dominant equilibrium, but later converge to the equilib- 
rium that is worst for all concerned (John B. Van Huyck 
et al., 1990). Moreover, the equilibrium that is selected 
may be affected by the payoff structure for dominated 
strategies (Russell Cooper et al., 1992). See Goeree and 
Holt (1998) for results of a repeated coordination game 
with random matching. They show that the dynamic 
patterns of effort choices are well explained by a simple 
evolutionary model of noisy adjustment toward higher 
payoffs, and that final-period effort decisions can be 
explained by the maximization of stochastic potential 
function. 
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FIGURE 3. SHOULD You TRUST OTHERS TO BE RATIONAL? 

dynamics and asymmetric information. One of 
the major developments coming out of these 
applications was the use of backward induction 
to eliminate equilibria with threats that are not 
"credible" (Selten, 1975). Backward induction 
was also used to develop solutions to alternating- 
offer bargaining games (Ariel Rubinstein, 
1982), which was the first major advance on this 
historically perplexing topic since Nash's 
(1950) axiomatic approach. However, there 
have been persistent doubts that people are able 
to figure out complicated, multistage backward 
induction arguments. Robert W. Rosenthal (1981) 
quickly proposed a game, later dubbed the "cen- 
tipede game," in which backward induction over a 
large number of stages (e.g., 100 stages) was 
thought to be particularly problematic (e.g., 
McKelvey and Palfrey, 1992). Many of the games 
in this section are inspired by Rosenthal's (1981) 
doubts and Randolph T. Beard and Beil's (1994) 
experimental results. Indeed, the anomalies in this 
section are better known than those in other sec- 
tions, but we focus on very simple games with two 
or three stages, using parallel procedures and sub- 
jects who have previously made a number of 
strategic decisions in different one-shot games. 

A. Should You Trust Others to Be Rational? 

The power of backward induction is illus- 
trated in the top game in Figure 3. The first 

player begins by choosing between a safe deci- 
sion, S, and a risky decision, R. If R is chosen, 
the second player must choose between a deci- 
sion P that punishes both of them and a decision 
N that leads to a Nash equilibrium that is also a 
joint-payoff maximum. There is, however, a 
second Nash equilibrium where the first player 
chooses S and the second chooses P. The sec- 
ond player has no incentive to deviate from this 
equilibrium because the self-inflicted punish- 
ment occurs off of the equilibrium path. Sub- 
game perfectness rules out this equilibrium by 
requiring equilibrium behavior in each sub- 
game, i.e., that the second player behave opti- 
mally in the event that the second-stage 
subgame is reached. 

Again, we used 50 randomly paired subjects 
who played this game only once. The data for 
this treasure treatment are quite consistent with 
the subgame-perfect equilibrium; a preponder- 
ance of first players trust the other's rationality 
enough to choose R, and there are no irrational 
P decisions that follow. The game shown in the 
bottom part of Figure 3 is identical, except that 
the second player only forgoes 2 cents by 
choosing P. This change does not alter the fact 
that there are two Nash equilibria, one of which 
is ruled out by subgame perfectness. The choice 
percentages for 50 subjects indicate that a ma- 
jority of the first players did not trust others 
to be perfectly rational when the cost of 
irrationality is so small. Only about a third of 
the outcomes matched the subgame-perfect 
equilibrium in this game.13 We did a third treat- 
ment (not shown) in which we multiplied all 
payoffs by a factor of 5, except that the P 
decision led to (100, 348) instead of (100, 340). 
This large increase in payoffs produced an even 
more dramatic result; only 16 percent of the 
outcomes were subgame perfect, and 80 percent 
of the outcomes were at the Nash equilibrium 
that is not subgame perfect. 

B. Should You Believe a Threat 
That Is Not Credible? 

The game just considered is a little unusual in 
that, in the absence of relative payoff effects, 
the second player has no reason to punish, since 

13 See Beard and Beil (1994) for similar results in a 
two-stage game played only once. 
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FIGURE 4. SHOULD You BELIEVE A THREAT THAT 
Is NOT CREDIBLE? 

the first player's R decision also benefits the 
second player. This is not the case for the game 
in Figure 4, where an R decision by the first 
player will lower the second player's payoff. As 
before, there are two Nash equilibria, with the 
(R, P) equilibrium ruled out by subgame per- 
fectness. In addition to not being credible, the 
threat to play P is a relatively costly punishment 
for the second player to administer (40 cents). 

The threat to play P in the top part of Figure 
4 is evidently not believed, and 88 percent of 
the first players choose the R strategy, with 
impunity. The threat is cheap (2 cents) for the 
game in the bottom part of the figure, and out- 
comes for 25 subject pairs are evenly divided 
between the subgame-imperfect outcome, the 
incredible threat outcome, and the subgame- 
perfect outcome. Cheap threats often are (and 
apparently should be) believed. Again we see 
that payoff magnitudes and off-the-equilibrium- 
path risks matter. 

Since the P decisions in the bottom games of 
Figures 3 and 4 only reduce the second player's 
payoff by 2 cents, behavior may be affected by 
small variations in payoff preferences or emo- 
tions, e.g., spite or rivalry. As suggested by 
Ernst Fehr and Klaus Schmidt (1999) and Gary 
E Bolton and Axel Ockenfels (2000), players 
may be willing to sacrifice own earnings in 
order to reduce payoff inequities which would 
explain the P choices in the contradiction treat- 

ments. Alternatively, the occurrence of the high 
fraction of P decisions in the bottom game of 
Figure 4 may be due to negative emotions that 
follow the first player's R decision, which re- 
duces the second player's earnings (Matthew 
Rabin, 1993). Notice that this earnings reduc- 
tion does not occur when the first player 
chooses R for the game in the bottom part of 
Figure 3, which could explain the lower rate of 
punishments in that game. 

The anomalous results of the contradiction 
treatments may not come as any surprise to 
Selten, the originator of the notion of subgame 
perfectness. His attitude toward game theory 
has been that there is a sharp contrast between 
standard theory and behavior. For a long time 
he essentially wore different hats when he did 
theory and ran experiments, although his 1994 
Nobel prize was clearly for his contributions in 
theory. This schizophrenic stance may seem 
inconsistent, but it may prevent unnecessary 
anxiety, and some of Selten's recent theoretical 
work is based on models of boundedly rational 
(directional) learning (Selten and Joachim 
Buchta, 1998). In contrast, John Nash was re- 
portedly discouraged by the predictive failures 
of game theory and gave up on both experimen- 
tation and game theory (Nasar, 1998 p. 150). 

C. Two-Stage Bargaining Games 

Bargaining has long been considered a cen- 
tral part of economic analysis, and at the same 
time, one of the most difficult problems for 
economic theory. One promising approach is to 
model unstructured bargaining situations "as if" 
the parties take turns making offers, with the 
costs of delayed agreement reflected in a shrink- 
ing size of the pie to be divided. This problem is 
particularly easy to analyze when the number of 
alternating offers is fixed and small. 

Consider a bargaining game in which each 
player gets to make a single proposal for how to 
split a pie, but the amount of money to be 
divided falls from $5 in the first stage to $2 in 
the second. The first player proposes a split of 
$5 that is either accepted (and implemented) or 
rejected, in which case the second player pro- 
poses a split of $2 that is either accepted or 
rejected by the first player. This final rejection 
results in payoffs of zero for both players, so the 
second player can (in theory) successfully de- 
mand $1.99 in the second stage if the first player 
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prefers a penny to nothing. Knowing this, the 
first player should demand $3 and offer $2 to 
the other in the first stage. In a subgame-perfect 
equilibrium, the first player receives the amount 
by which the pie shrinks, so a larger cost of 
delay confers a greater advantage to the player 
making the initial demand, which seems reason- 
able. For example, a similar argument shows 
that if the pie shrinks by $4.50, from $5 to 
$0.50, then the first player should make an 
initial demand of $4.50. 

We used 60 subjects (six cohorts of ten sub- 
jects each), who were randomly paired for each 
of the two treatments described above (alternat- 
ing in order and separated by other one-shot 
games). The average demand for the first player 
was $2.83 for the $5/$2 treatment, with a stan- 
dard deviation of $0.29. This is quite close to 
the predicted $3.00 demand, and 14 of the 30 
initial demands were exactly equal to $3.00 in 
this treasure treatment. But the average demand 
only increased to $3.38 for the other treatment 
with a $4.50 prediction, and 28 of the 30 de- 
mands were below the prediction of $4.50. Re- 
jections were quite common in this contradiction 
treatment with higher demands and correspond- 
ingly lower offers to the second player, which is 
not surprising given the smaller costs of rejecting 
"stingy" offers. 

These results fit into a larger pattern surveyed 
in Douglas D. Davis and Holt (1993 Chapter 5) 
and Roth (1995); initial demands in two-stage 
bargaining games tend to be "too low" relative 
to theoretical predictions when the equilibrium 
demand is high, say more than 80 percent of the 
pie as in our $5.00/$0.50 treatment, and initial 
demands tend to be close to predictions when 
the equilibrium demand is 50-75 percent of the 
pie (as in our $5.00/$2.00 treatment). Interest- 
ingly, initial demands are "too high" when the 
equilibrium demand is less than half of the pie. 
Here is an example of why theoretical explana- 
tions of behavior should not be based on exper- 
iments in only one part of the parameter space, 
and why theorists should have more than just a 
casual, secondhand knowledge of the experi- 
mental economics literature.14 Many of the di- 
verse theoretical explanations for anomalous 

behavior in bargaining games hinge on models 
of preferences in which a person's utility de- 
pends on the payoffs of both players, i.e., dis- 
tribution matters (Bolton, 1998; Fehr and 
Schmidt, 1999; Bolton and Ockenfels, 2000; 
Miguel Costa-Gomes and Klaus G. Zauner, 
2001). The role of fairness is illustrated dramat- 
ically in the experiment reported in Goeree and 
Holt (2000a), who obtained even larger devia- 
tions from subgame-perfect Nash predictions 
than those reported here by giving subjects 
asymmetric money endowments that were paid 
independently of the bargaining outcome. These 
endowments were selected to accentuate the 
payoff inequities that result in the subgame- 
perfect Nash equilibrium, and hence their effect 
was to exaggerate fairness issues without alter- 
ing the equilibrium prediction. The result (for 
seven different one-shot bargaining games) was 
for demands to be inversely related to the sub- 
game-perfect Nash predictions. 

III. Static Games with Incomplete Information 

William Vickrey's (1961) models of auctions 
with incomplete information constitute one of the 
most widely used applications of game theory. If 
private values are drawn from a uniform distribu- 
tion, the Bayesian Nash equilibrium predicts that 
bids will be proportional to value, which is gen- 
erally consistent with laboratoiy evidence. The 
main deviation from theoretical predictions is the 
tendency of human subjects to "overbid" (relative 
to Nash), which is commonly rationalized in terms 
of risk aversion, an explanation that has lead to 
some controversy. Glenn W. Harrison (1989), for 
instance, argues that deviations from the Nash 
equilibrium may well be caused by a lack of 
monetary incentives since the costs of such devi- 
ations are rather small: the "flat maximum cri- 
tique." Our approach here is to specify two 
auction games with identical Nash equilibria, but 
with differing incentives not to overbid. 

First, consider a game in which each of two 
bidders receives a private value for a prize to be 
auctioned in a first-price, sealed-bid auction. In 
other words, the prize goes to the highest bidder 
for a price equal to that bidder's own bid. Each 
bidder's value for the prize is equally likely to 
be $0, $2, or $5. Bids are constrained to be 
integer dollar amounts, with ties decided by the 
flip of a coin. 

The relevant Nash equilibrium in this game 

14 Another example is the development of theories of 
generalized expected utility to explain "fanning out" pref- 
erences in Allais paradox situations, when later experiments 
in other parts of the probability triangle found "fanning in." 
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TABLE 4-EQUILIBRIUM EXPECTED PAYOFFS FOR THE (0,2,5) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*) 

Bid = 0 Bid = 1 Bid = 2 Bid = 3 Bid = 4 Bid = 5 

Value = $0 0* -0.5 -1.66 -3 -4 -5 
Value = $2 0.33 0.5* 0 -1 -2 -3 
Value= $5 0.83 2 2.5* 2 1 0 

TABLE 5-EQUILIBRIUM EXPECTED PAYOFFS FOR THE (0,3,6) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*) 

Bid = 0 Bid = 1 Bid = 2 Bid = 3 Bid = 4 Bid = 5 

Value = $0 0* -0.5 -1.66 -3 -4 -5 
Value = $3 0.5 1* 0.83 0 -1 -2 
Value= $6 1 2.5 3.33* 3 2 1 

with incomplete information about others' pref- 
erences is the Bayesian Nash equilibrium, 
which specifies an equilibrium bid for each pos- 
sible realization of a bidder's value. It is 
straightforward but tedious to verify that the 
Nash equilibrium bids are $0, $1, and $2 for a 
value of $0, $2, and $5 respectively, as can be 
seen from the equilibrium expected payoffs in 
Table 4. For example, consider a bidder with a 
private value of $5 (in the bottom row) who 
faces a rival that bids according to the proposed 
Nash solution. A bid of 0 has a one-half chance 
of winning (decided by a coin flip) if the rival's 
value, and hence the rival's bid, is zero, which 
happens with probability one-third. Therefore, 
the expected payoff of a zero bid with a value of 
$5 equals 1/2 ? 1/3 * ($5 - $0) = $5/6 = 0.83. 
If the bid is raised to $1, the probability of win- 
ning becomes 1/2 (1/3 when the rival's value is $0 
plus 1/6 when the rival's value is $2). Hence, the 
expected payoff of a $1 bid is 1/2 * ($5 - 
$1) = $2. The other numbers in Table 4 are 
derived in a similar way. The maximum expected 
payoff in each row coincides with the equilibrium 
bid, as indicated by an asterisk (*). Note that the 
equilibrium involves bidding about one-half of 
the value.15 

Table 5 shows the analogous calculations for 
the second treatment, with equally likely private 
values of $0, $3, or $6. Interestingly, this in- 
crease in values does not alter the equilibrium 
bids in the unique Bayesian Nash equilibrium, 

as indicated by the location of optimal bids for 
each value. Even though the equilibria are the 
same, we expected more of an upward bias in 
bids in the second (0, 3, 6) treatment. The 
intuition can be seen by looking at payoff losses 
associated with deviations from the Nash equi- 
librium. Consider, for instance, the middle- 
value bidder with expected payoffs shown in the 
second rows of Tables 4 and 5. In the (0, 3, 6) 
treatment, the cost of bidding $1 above the 
equilibrium bid is $1 - $0.83 = $0.17, which is 
less than the cost of bidding $1 below the equi- 
librium bid: $1 - $0.50 = $0.50. In the (0, 2, 5) 
treatment, the cost of an upward deviation from 
the equilibrium bid is greater than the cost of a 
downward deviation; see the middle row of 
Table 4. A similar argument applies to the high- 
value bidders, while deviation costs are the 
same in both treatments for the low-value bid- 
der. Hence we expected more overbidding for 
the (0, 3, 6) treatment. 

This intuition is borne out by bid data for the 
50 subjects who participated in a single auction 
under each condition (again alternating the or- 
der of the two treatments and separating the two 
auctions with other one-shot games). Eighty 
percent of the bids in the (0, 2, 5) treatment 
matched the equilibrium: the average bids for 
low-, medium-, and high-value bidders were $0, 
$1.06, and $2.64, respectively. In contrast, the 
average bids for the (0, 3, 6) treatment were $0, 
$1.82, and $3.40 for the three value levels, and 
only 50 percent of all bids were Nash bids. The 
bid frequencies for each value are shown in 
Table 6. As in previous games, deviations from 
Nash behavior in these private-value auctions 
seem to be sensitive to the costs of deviation. Of 

15 The bids would be exactly one-half of the value if the 
highest value were $4 instead of $5, but we had to raise the 
highest value to eliminate multiple Nash equilibria. 
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TABLE 6-BID FREQUENCIES 
(EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*) 

(0, 2, 5) Treatment (0, 3, 6) Treatment 

Bid Frequency Bid Frequency 

Value = 0 0* 20 Value = 0 0* 17 

Value = 2 1* 15 Value = 3 1* 5 
2 1 2 11 
3 0 3 2 

Value = 5 1 1 Value = 6 1 0 
2* 5 2* 3 
3 6 3 4 
4 2 4 6 
5 0 5 1 
6 0 6 1 

course, this does not rule out the possibility that 
risk aversion or some other factor may also have 
some role in explaining the overbidding ob- 
served here, especially the slight overbidding 
for the high value in the (0, 2, 5) treatment.16 

IV. Dynamic Games with Incomplete 
Information: Signaling 

Signaling games are complex and interesting 
because the two-stage structure allows an op- 
portunity for players to make inferences and 
change others' inferences about private infor- 
mation. This complexity often generates multi- 
ple equilibria that, in turn, have stimulated a 
sequence of increasingly complex refinements 
of the Nash equilibrium condition. Although it 
is unlikely that introspective thinking about the 
game will produce equilibrium behavior in a 
single play of a game this complex (except by 
coincidence), the one-shot play reveals useful 
information about subjects' cognitive processes. 

In the experiment, half of the subjects were 
designated as "senders" and half as "respond- 
ers." After reading the instructions, we began by 
throwing a die for each sender to determine 

whether the sender was of type A or B. Every- 
body knew that the ex ante probability of a type 
A sender was one-half. The sender, knowing 
his/her own type would choose a signal, Left or 
Right. This signal determined whether the pay- 
offs on the right or left side of Table 7 would be 
used. (The instructions used letters to identify 
the signals, but we will use words here to facil- 
itate the explanations.) This signal would be 
communicated to the responder that was 
matched with that sender. The responder would 
see the sender's signal, Left or Right, but not the 
sender's type, and then choose a response, C, D, 
or E. The payoffs were determined by Table 
7, with the sender's payoff to the left in each 
cell. 

First, consider the problem facing a type A 
sender, for whom the possible payoffs from 
sending a Left signal (300, 0, 500) seem, in 
some loose sense, less attractive than those 
for sending a Right signal (450, 150, 1,000). 
For example, if each response is thought to be 
equally likely (the "principle of insufficient 
reason"), then the Right signal has a higher 
expected payoff. Consequently, type A's pay- 
offs have been made bold for the Right row in 
the top right part of Table 7. Applying the 
principle of insufficient reason again, a type B 
sender looking at the payoffs in the bottom 
row of the table might be more attracted by 
the Left signal, with payoffs of (500, 300, 
300) as compared with (450, 0, 0).17 There- 
fore, sender B's payoffs are in bold for the 
Left signal. In fact, all of the type B subjects 
did send the Left signal, and seven of the ten 
type A subjects sent the Right signal. All 
responses in this game were C, so all but three 
of the outcomes were in one of the two cells 
marked by an asterisk. Notice that this is an 
equilibrium, since neither type of sender 
would benefit from sending the other signal, 
and the respondent cannot do any better than 
the maximum payoff received in the marked 
cells. This is a separating Nash equilibrium; 
the signal reveals the sender's type. 

The payoff structure for this game becomes a 
little clearer if you think of the responses as one 
of three answers to a request: Concede, Deny, or 

16 Goeree et al. (2001) report a first-price auction exper- 
iment with six possible values, under repeated random 
matching for ten periods. A two-parameter econometric 
model that includes both decision error and risk aversion 
provides a good fit of 67 value/bid frequencies and shows 
that both the error parameter and risk-aversion parameter 
are significantly different from zero. David Lucking-Reiley 
(1999) mentions risk aversion as a possible explanation for 
overbidding in a variety of auction experiments. 

17 These are not dominance arguments, since the responder 
can respond differently to each signal, and the lowest payoff 
from sending one signal is not higher than the highest payoff 
that can be obtained from sending the other signal. 
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TABLE 7-SIGNALING WITH A SEPARATING EQUILIBRIUM (MARKED BY ASTERISKS) (SENDER'S PAYOFF, RESPONDER'S PAYOFF) 

Response to Left signal Response to Right signal 

C D E C D E 

Type A sends Left 300, 300 0, 0 500, 300 Type A sends Right 450,900 150, 150 1,000, 300 
(*) 

Type B sends Left 500,500 300, 450 300, 0 Type B sends Right 450, 0 0, 300 0, 150 
(*) 

TABLE 8-SIGNALING WITHOUT A SEPARATING EQUILIBRIUM (SENDER'S PAYOFF, RESPONDER'S PAYOFF) 

Response to Left signal Response to Right signal 

C D E C D E 

Type A 300, 300 0, 0 500, 300 Type A 450,900 150, 150 1,000, 300 
sends Left sends Right 

Type B 300, 300 300, 450 300, 0 Type B 450, 0 0, 300 0, 150 
sends Left sends Right 

Evade. With some uncertainty about the send- 
er's type, Evade is sufficiently unattractive to 
respondents that it is never selected. Consider 
the other two responses and note that a sender 
always prefers that the responder choose Con- 
cede instead of Deny. In the separating equilib- 
rium, the signals reveal the senders' types, the 
responder always Concedes, and all players are 
satisfied. There is, however, a second equilib- 
rium for the game in Table 7 in which the 
responder Concedes to Left and Denies Right, 
and therefore both sender types send Left to 
avoid being Denied.'8 Backward induction ra- 
tionality (of the sequential Nash equilibrium) 
does not rule out these beliefs, since a deviation 
does not occur in equilibrium, and the respon- 
dent is making a best response to the beliefs. 
What is unintuitive about these beliefs (that a 
deviant Right signal comes from a type B) is 
that the type B sender is earning 500 in this 
(Left, Concede) equilibrium outcome, and no 
deviation could conceivably increase this pay- 
off. In contrast, the type A sender is earning 300 
in the Left side pooling equilibrium, and this 
type could possibly earn more (450 or even 
1,000), depending on the response to a devia- 
tion. The In-Koo Cho and Kreps (1987) intui- 

tive criterion rules out these beliefs, and selects 
the separating equilibrium observed in the trea- 
sure treatment.1 

The game in Table 8 is a minor variation on 
the previous game, with the only change be- 
ing that the (500, 500) in the bottom left part 
of Table 7 is replaced by a (300, 300) pay- 
off.20 As before, consider the sender's ex- 
pected payoffs when each response is 
presumed to be equally likely, which leads 
one to expect that type A senders will choose 
Right and that type B senders will choose 
Left, as indicated by the bold payoff numbers. 
In the experiment, 10 of the 13 type A senders 
did choose Right, and 9 of the 11 type B 
senders did choose Left. But the separation 
observed in this contradiction treatment is not 
a Nash equilibrium.2' All equilibria for this 

18 To check that the responder has no incentive to devi- 
ate, note that Concede is a best response to a Left regardless 
of the sender's type, and that Deny is a best response to a 
deviant Right signal if the responder believes that it was sent 
by a type B. 

19 Brandts and Holt (1992, 1993) report experimental 
data that contradict the predictions of the intuitive criterion, 
i.e., the decision converged to an equilibrium ruled out by 
that criterion. 

20 Unlike the paired treatments considered previously, 
the payoff change for these signaling games does alter the 
set of Nash equilibria. 

21 The respondents would prefer to Concede to a Right 
signal and Deny a Left signal. Type B senders would there- 
fore have an incentive to deviate from the proposed sepa- 
rating equilibrium and send a Right signal. In the 
experiment, half of the Left signals were Denied, whereas 
only 2 of the 12 Right signals were Denied. 
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contradiction treatment involve "pooling," 
with both types sending the same signal.22 

V. Explaining Anomalous Behavior 
in One-Shot Games 

Although the results for the contradiction 
treatments seem to preclude a game-theoretic 
explanation, many of the anomalous data pat- 
terns are related to the nature of the incentives. 
This suggests that it may be possible to develop 
formal models that explain both treasures and 
contradictions. Below we discuss several recent 
approaches that relax the common assumptions 
of perfect selfishness, perfect decision-making 
(no error), and perfect foresight (no surprises). 

As noted in Section II, the anomalies ob- 
served for the dynamic games in Figures 3 and 
4 are consistent with models of inequity aver- 
sion (Fehr and Schmidt, 1999; Bolton and Oc- 
kenfels, 2000), which assumes that people like 
higher payoffs for themselves and dislike earn- 
ing less than the other person ("envy") or earn- 
ing more ("guilt"). Inequity aversion also seems 
to play a role when players bargain over the 
division of a fixed amount of money (Goeree 
and Holt, 2000a). However, it cannot explain 
observed behavior in the contradiction match- 
ing pennies treatments. Consider, for exam- 
ple, the "320" version of the matching 
pennies game in Table 1. Since the column 
player is averse to the (320, 40) outcome, the 
column player would only be willing to ran- 
domize between Left and Right if the attrac- 
tiveness of Right is increased by having the 
row player play Bottom more often than the 
0.5 probability that would make a purely self- 
ish column player indifferent. This prediction, 
that the row player should play Bottom more 

often, is sharply contradicted by the data in 
the middle part of Table 1.23,24 

Another possibility is that behavior in one- 
shot games conforms to a simple heuristic. In- 
deed, some experimental economists have 
suggested that subjects in the initial period of a 
repeated game choose the decision that maxi- 
mizes their security level, i.e., the "maximim" 
decision. For example, in the Kreps game of 
Table 3, the frequently observed Non-Nash de- 
cision maximizes column's security. The strong 
treatment effects in the matching pennies games 
cannot be explained in this way, however, since 
in all three treatments each player's minimum 
payoff is the same for both decisions. A similar 
argument applies to the coordination game in 
Table 2. Moreover, the security-maximizing 
choices in the traveler's dilemma and the 
minimum-effort coordination game are the low- 
est possible decision, which is contradicted by 
the high claim and effort choices in the contra- 
diction treatments. Subjects may be risk averse 
in unfamiliar situations, but the extreme risk 
aversion implied by maximum security is gen- 
erally not observed. Furthermore, heuristics 
based on reciprocity or a status quo bias do not 
apply to single-stage, one-shot games where 
there is neither a precedent nor an opportunity 
to reciprocate. Nor can loss aversion be the 
primary cause, since losses are impossible in 
most of the games reported here, and the pos- 
sibility of a loss had no effect in the Kreps 
game. 

As an alternative to simple heuristics, one 
could try to model players' introspective 
thought processes. Previous models have typi- 
cally specified some process of belief forma- 
tion, assuming that players best respond to the 

22 For example, it is an equilibrium for both types to send 
Right if a Left signal triggers a C or a D response. The D 
response to Left is appropriate if the respondent thinks the 
deviant signal comes from a type B sender, and the C 
response is appropriate if the deviant is thought to be of type 
A. Beliefs that the deviant is of type A are intuitive, since 
type A earns 450 in equilibrium and could possibly earn 
more (500) by switching to Left (if an E response follows). 
A second pooling equilibrium involves both types sending a 
Left signal to which the respondents Concede. A deviant 
Right signal is Denied, which is appropriate if the respon- 
dent thinks the deviant signal comes from a type B sender. 
Again these beliefs are intuitive since the type B sender 
could possibly gain by deviating. 

23 Goeree et al. (2000) report formal econometric tests 
that reject the predictions of inequity aversion models in the 
context of a group of repeated asymmetric matching pennies 
games. 

24 Payoff inequity aversion also has no effect in the 
minimum-effort coordination game; any common effort 
level is still a Nash equilibrium. To see this, note that a 
unilateral effort increase from a common level reduces 
one's own payoff and creates an disadvantageous inequity. 
Similarly, a unilateral decrease from a common effort level 
reduces one's payoff and creates an inequity where one 
earns more than the other, since their costly extra effort is 
wasted. Thus inequity aversion cannot explain the strong 
effect of an increase in effort costs. 
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resulting beliefs.25 The experiments reported 
above indicate that magnitudes (not just signs) 
of payoff differences matter, and it is thus nat- 
ural to consider a decision rule for which choice 
probabilities are positively but imperfectly re- 
lated to payoffs. The logit rule, for example, 
specifies that choice probabilities, pi, for op- 
tions i = 1, ... ,m, are proportional to exponen- 
tial functions of the associated expected 
payoffs, 7r': 

exp( 7rTel) 
(1) Pi= v , z = 19 ... m, 
(1)j= ~ exp(<7rje/4) 

where the sum in the denominator ensures that 
the probabilities sum to one, and the "error 
parameter," ,u, determines how sensitive choice 
probabilities are to payoff differences.26 

In order to use the "logit best response" in 
(1), we need to model the process of belief 
formation, since belief probabilities are used to 
calculate the expected payoffs on the right side 
of (1). By the principle of insufficient reason 
one might postulate that each of the others' 
actions are equally likely. This corresponds to 
the Stahl and Wilson (1995) notion of "level 
one" rationality, which captures many of the 
first-period decisions in the "guessing game" 

reported by Nagel (1995).27 It is easy to verify 
that level one rationality also provides good 
predictions for both treasure and contradiction 
treatments in the traveler's dilemma, the 
minimum-effort coordination game, and the 
Kreps game. There is evidence, however, that at 
least some subjects form more precise beliefs 
about others' actions, possibly through higher 
levels of introspection.28 In the matching pen- 
nies games in Table 1, for example, a flat prior 
makes column indifferent between Left and 
Right, and yet most column players seem to 
anticipate that row will choose Top in the 320 
version and Bottom in the 44 version of this 
game. 

Of course, what the other player does de- 
pends on what they think you will do, so the 
next logical step is to assume that others make 
responses to a flat prior, and then you respond to 
that anticipated response (Selten, 1991). This is 
Stahl and Wilson's (1995) "level two" rational- 
ity. There is, however, no obvious reason to 
truncate the levels of iterated thinking. The no- 
tion of rationalizability discussed above, for ex- 
ample, involves infinitely many levels of 
iterated thinking, with "never-best" responses 
eliminated in succession. But rationalizability 
seems to imply too much rationality, since it 
predicts that all claims in the traveler's dilemma 
will be equal to the minimum claim, indepen- 
dent of the penalty/reward parameter. One way 
to limit the precision of the thought process, 
without making an arbitrary assumption about 
the number of iterations, is to inject increasing 
amounts of noise into higher levels of iterated 
thinking (Goeree and Holt, 1999; Kuibler and 
Weizsacker, 2000). Let 4,, denote the logit best- 
response map (for error rate ,u) on the right side 
of (1). Just as a single logit response to beliefs, 
po, can be represented as p = 4l(po), a series of 
such responses can be represented as:29 

25 Perhaps the best-known model of introspection is Har- 
sanyi and Selten's (1988) "tracing procedure." This proce- 
dure involves an axiomatic determination of players' 
common priors (the "preliminary theory") and the construc- 
tion of a modified game with payoffs for each decision that 
are weighted averages of those in the original game and of 
the expected payoffs determined by the prior distribution. 
By varying the weight on the original game, a sequence of 
best responses for the modified game are generated. This 
process is used to select one of the Nash equilibria of the 
original game. Gonzalo Olcina and Amparo Urbano (1994) 
also use an axiomatic approach to select a prior distribution, 
which is then revised by a simulated learning process that is 
essentially a partial adjustment from current beliefs to best 
responses to current beliefs. Since neither the Harsanyi/ 
Selten model nor the Olcina/Urbano model incorporates any 
noise, they predict that behavior will converge to the Nash 
equilibrium in games with a unique equilibrium, which is an 
undesirable feature in light of the contradictions data re- 
ported above. 

26 As p, goes to zero, payoff differences are "blown up," 
and the probability of the optimal decision converges to 1. 
In the other extreme, as p, goes to oo, the choice probabilities 
converge to 1/m independently of expected payoffs. See R. 
Duncan Luce (1959) for an axiomatic derivation of the logit 
choice rule in (1). 

27 In our own work, we have used a noisy response to a 
flat prior as a way of starting computer simulations of 
simulations of behavior in repeated games (Brandts and 
Holt, 1996; Capra et al., 1999, 2002; Goeree and Holt, 
1999). 

28 Costa-Gomes et al. (2001), for example, infer some 
heterogeneity in the amount of introspection by observing 
the types of information that subjects acquire before making 
a decision. 

29 Goeree and Holt (2000b) use continuity arguments to 
show that the limit in (2) exists even if the (increasing) error 
parameters are person specific. 
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(2) P = lim4A(4,2( 4ln,(Po))), 

where ,-l - : C***, with pt,, converging 
to infinity.30 This assumption captures the idea 
that it becomes increasingly complex to do 
more and more iterations.31 Since 0,, for ,u = oo 
maps the whole probability simplex to a single 
point, the right side of (2) is independent of the 
initial belief vectorpo. Moreover, the introspec- 
tion process in (2) yields a unique outcome even 
in games with multiple Nash equilibria. Note 
that the choice probabilities on the left side of 
(2) generally do not match the beliefs at any 
stage of the iterative process on the right. In 
other words, the introspective process allows 
for surprises, which are likely to occur in one- 
shot games. 

For games with very different levels of com- 
plexity such as the ones reported here, the error 
parameters that provide the best fit are likely to 
be different. In this case, the estimates indicate 
the degree of complexity, i.e., they serve as a 
measurement device. For games of similar com- 
plexity, the model in (2) could be applied to 
predict behavior across games. We have used it 
to explain data patterns in a series of 37 simple 
matrix games, assuming a simple two-parame- 
ter model for which Un = ,ut', where t deter- 
mines the rate at which noise increases with 
higher iterations (Goeree and Holt, 2000b). The 
estimated value (t = 4.1) implies that there is 
more noise for higher levels of introspection, a 
result that is roughly consistent with estimates 
obtained by Kuibler and Weizsacker (2000) for 
data from information-cascade experiments. 

The analysis of introspection is a relatively 
understudied topic in game theory, as compared 
with equilibrium refinements and learning, for 

example. Several of the models discussed above 
do a fairly good job of organizing the qualitative 
patterns of conformity and deviation from the 
predictions of standard theory, but there are 
obvious discrepancies. We hope that this paper 
will stimulate further theoretical work on mod- 
els of behavior in one-shot games. One poten- 
tially useful approach may be to elicit beliefs 
directly as the games are played (Theo Offer- 
man, 1997; Andrew Schotter and Yaw Narkov, 
1998). 

VI. Conclusion 

One-shot game experiments are interesting 
because many games are in fact only played 
once; single play is especially relevant in appli- 
cations of game theory in other fields, e.g., 
international conflicts, election campaigns, and 
legal disputes. The decision makers in these 
contexts, like the subjects in our experiments, 
typically have experience in similar games with 
other people. One-shot games are also appeal- 
ing because they allow us to abstract away from 
issues of learning and attempts to manipulate 
others' beliefs, behavior, or preferences (e.g., 
reciprocity, cooperativeness). This paper re- 
ports the results of ten pairs of games that are 
played only once by subjects who have experi- 
ence with other one-shot and repeated games. 
The Nash equilibrium (or relevant refinement) 
provides accurate predictions for standard ver- 
sions of these games. In each case, however, 
there is a matched game for which the Nash 
prediction clearly fails, although it fails in a way 
that is consistent with simple (non-game- 
theoretic) intuition. The results for these expe- 
rienced subjects show: 

(1) Behavior may diverge sharply from the 
unique rationalizable (Nash) equilibrium in 
a social (traveler's) dilemma. In these 
games, the Nash equilibrium is located on 
one side of the range of feasible decisions, 
and data for the contradiction treatment 
have a mode on the opposite side of this 
range. The most salient feature of the data 
is the extreme sensitivity to a parameter 
that has no effect on the Nash outcome. 

(2) Students suffering through game theory 
classes may have good reasons when they 
have trouble understanding why a change 
in one player's payoffs only affects the 

30 The case of a constant parameter (,u l = ,u2 = ... = p) 

is of special interest. In this case, the process may not 
converge for some games (e.g., matching pennies), but 
when it does, the limit probabilities, p*, must be invariant 
under the logit map: 4,,.(p*) = p*. A fixed point of this 
type constitutes a "logit equilibrium," which is a special 
case of the quantal-response equilibrium defined in 
McKelvey and Palfrey (1995). It is in this sense that the 
logit equilibrium arises as a limit case of the noisy intro- 
spective process defined in (2). 

31 For an interesting alternative approach, see Capra 
(1998). In her model, beliefs are represented by degenerate 
distributions that put all probability mass at a single point. 
The location of the belief points is, ex ante, stochastic. 
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other player's decision probabilities in a 
mixed-strategy Nash equilibrium. The data 
from matching pennies experiments show 
strong "own-payoff' effects that are not 
predicted by the unique (mixed-strategy) 
Nash equilibrium. The Nash analysis seems 
to work only by coincidence, when the pay- 
off structure is symmetric and deviation 
risks are balanced. 

(3) Effort choices are strongly influenced by 
the cost of effort in coordination games, an 
intuitive result that is not explained by stan- 
dard theory, since any common effort is a 
Nash equilibrium in such games. Moreover, 
as Kreps conjectured, it is possible to de- 
sign coordination games where the majority 
of one player's decisions correspond to the 
only action that is not part of any Nash 
equilibrium. 

(4) Subjects often do not trust others to be 
rational when irrationality is relatively cost- 
less. Moreover, "threats" that are not cred- 
ible in a technical sense may nevertheless 
alter behavior in simple two-stage games 
when carrying out these threats is not 
costly. 

(5) Deviations from Nash predictions in alter- 
nating-offer bargaining games and in pri- 
vate-value auctions are inversely related to 
the costs of such deviations. The effects of 
these biases can be quite large in the games 
considered. 

(6) It is possible to set up a simple signaling 
game in which the decisions reveal the sig- 
naler's type (separation), even though the 
equilibrium involves pooling. 

So what should be done? Reinhard Selten, 
one of the three game theorists to share the 1994 
Nobel Prize, has said: "Game theory is for prov- 
ing theorems, not for playing games."32 Indeed, 
the internal elegance of traditional game theory 
is appealing, and it has been defended as being 
a normative theory about how perfectly rational 
people should play games with each other, 
rather than a positive theory that predicts actual 
behavior (Rubinstein, 1982). It is natural to 
separate normative and positive studies of indi- 
vidual decision-making, which allows one to 

compare actual and optimal decision-making. 
This normative-based defense is not convincing 
for games, however, since the best way for one 
to play a game depends on how others actually 
play, not on how some theory dictates that ra- 
tional people should play. John Nash, one of 
the other Nobel recipients, saw no way 
around this dilemma, and when his experi- 
ments were not providing support to theory, 
he lost whatever confidence he had in the 
relevance of game theory and focused on 
more purely mathematical topics in his later 
research (Nasar, 1998). 

Nash seems to have undersold the importance 
of his insight, and we will be the first to admit 
that we begin the analysis of a new strategic 
problem by considering the equilibria derived 
from standard game theory, before considering 
the effects of payoff and risk asymmetries on 
incentives to deviate. But in an interactive, stra- 
tegic context, biases can have reinforcing ef- 
fects that drive behavior well away from Nash 
predictions, and economists are starting to ex- 
plain such deviations using computer simula- 
tions and theoretical analyses of learning and 
decision error processes. There has been rela- 
tively little theoretical analysis of one-shot 
games where learning is impossible. The mod- 
els of iterated introspection discussed here offer 
some promise in explaining the qualitative fea- 
tures of deviations from Nash predictions enu- 
merated above. Taken together, these new 
approaches to a stochastic game theory enhance 
the behavioral relevance of standard game the- 
ory. And looking at laboratory data is a lot less 
stressful than before. 

32 Selten reiterated this point of view in a personal com- 
munication to the authors. 
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