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Anomalous Behavior in a Traveler's Dilemma? 

By C. MONICA CAPRA, JACOB K. GOEREE, RoSARIo GOMEZ, AND CHARLES A. HOLT* 

The notion of a Nash equilibrium has joined 
supply and demand as one of the two or three 
techniques that economists instinctively try to 
use first in the analysis of economic interac- 
tions. Moreover, the Nash equilibrium and 
closely related game-theoretic concepts are be- 
ing widely applied in other social sciences and 
even in biology, where evolutionary stability 
often selects a subset of the Nash equilibria. 
Many people are uneasy about the stark predic- 
tions of the Nash equilibrium in some contexts 
where the extreme rationality assumptions seem 
implausible. Kaushik Basu's (1994) "traveler's 
dilemma" is a particularly convincing example 
of a case where the unrelenting logic of game 
theory is at odds with intuitive notions about 
human behavior. The story associated with the 
dilemma is that two travelers purchase identical 
antiques while on a tropical vacation. Their 
luggage is lost on the return trip, and the airline 
asks them to make independent claims for com- 
pensation. In anticipation of excessive claims, 
the airline representative announces: 

We know that the bags have identical 
contents, and we will entertain any claim 
between $2 and $100, but you will each 
be reimbursed at an amount that equals 
the minimum of the two claims submitted. 
If the two claims differ, we will also pay 
a reward of $2 to the person making the 
smaller claim and we will deduct a pen- 
alty of $2 from the reimbursement to the 
person making the larger claim. 

Notice that, ifrespective of the actual value of 
the lost luggage, there is a unilateral incentive to 
"undercut" the other's claim. It follows from 

this logic that the only Nash equilibrium is for 
both to make the minimum claim of $2. As 
Basu (1994) notes, this is also the unique strict 
equilibrium, and the only rationalizable equilib- 
rium when claims are discrete. When one of us 
recently described this dilemma to an audience 
of physicists, someone asked incredulously: "Is 
this what economists think the equilibrium is? If 
so, then we should shut down all economics 
departments." 

The implausibility of the Nash equilibrium 
prediction is based on doubts that a small pen- 
alty and/or reward can drive claims all the way 
to an outcome that minimizes the sum of the 
players' payoffs. Indeed, the Nash equilibrium 
in a traveler's dilemma is independent of the 
size of the penalty or reward. Economic intu- 
ition suggests that behavior conforms closely to 
the Nash equilibrium when the penalty or re- 
ward is high, but that claims rise to the maxi- 
mum level as the penalty/reward parameter 
approaches $0. 

This paper uses laboratory experiments to eval- 
uate whether average claims are affected by (the- 
oretically irrelevant) changes in the penalty/ 
reward parameter. The laboratory procedures are 
described in Section I. The second and third sec- 
tions contain analyses of aggregate and individual 
data. Section IV presents a learing model that is 
used to obtain maximum likelihood estimates of 
the learing and decision error paramneters. The 
fifth section considers behavior in the final periods 
after most learning has occurred, i.e., when aver- 
age claims stabilize and behavior converges to a 
type of noisy equilibrium which combines a stan- 
dard logit probabilistic choice rule with a Nash- 
like consistency-of-actions-and-beliefs condition. 
The leaming/adjustment and equilibrium models 
are complementary, and together they are capable 
of explaining some key features of the data. Sec- 
tion VI concludes. 

L. Procedures 

The data were collected from groups of 9-12 
subjects, with each group participating in a 
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series of traveler's dilemma games during a 
session that lasted about an hour and a half. This 
type of experiment had not been done before, 
and we felt that more would be learned from 
letting the penalty/reward parameter, R, vary 
over a wide range of values. Therefore, we used 
two high values of R ($0.50 and $0.80), two 
intermediate values of R ($0.20 and $0.25), and 
two low values of R ($0.05 and $0.10). The 
penalty/reward parameter alternated between 
high and low values in parts A and B of the 
experiment. For example, session 1 began with 
R = $0.80 in part A, which lasted for 10 
periods. Then R was lowered to $0.10 in part B. 

Subjects were recruited from economics 
classes at the University of Virginia, with the 
promise that they would be paid a $6 participa- 
tion fee plus all additional money earned during 
the experiment. Individual earnings ranged 
from about $24.00 to $44.00 for a session. We 
began by reading the instructions for part A 
(these instructions are available from the au- 
thors on request). Although decisions were re- 
ferred to as "claims," the earnings calculations 
were explained without reference to the context, 
i.e., without mentioning luggage, etc. In each 
period, subjects would record their claim on 
their decision sheets, which were collected and 
randomly matched (with draws of numbered 
ping-pong balls) to determine the "other's 
claim" and "your earnings," and the sheets were 
then returned. Claims were required to be any 
number of cents between and including 80 and 
200, with decimals being used to indicate frac- 
tions of cents. Subjects only saw the claim 
decision made by the person with whom they 
were matched in a given period. They were told 
that part A would be followed by "another de- 
cision-making experiment" but were not given 
additional information about part B. The pen- 
alty/reward parameter was changed in part B, and 
random pairwise matchings were made as before. 
Part B lasted for 10 periods, except in the first two 
sessions where it lasted for 5 periods. 

II. Data 

The part A data are summarized in Fig- 
ure 1. Each line connects the period-by-period 
averages of the 9-12 subjects in each group. 
There is a different penalty/reward parameter 
for each cohort, as indicated by the labels on the 

right. The data plots are bounded by horizontal 
dashed lines that show the maximum and min- 
imum claims of 200 and 80. The Nash equilib- 
rium prediction is 80 for all treatments. The two 
highest lines in Figure 1 plot the average claims 
for low reward/penalty parameters of 5 and 10 
(cents). The first-period averages are close to 
180, and they stay high in all subsequent peri- 
ods, well away from the Nash equilibrium. The 
two lowest lines represent the average claims 
for the higher penalty/reward parameters of 50 
and 80. Note that with these parameters, the 
average claims quickly fall toward the Nash 
equilibrium. For intermediate reward/penalty 
parameters of 20 and 25, the average claims 
level off at about 120 and 145 respectively. The 
averages in the last five periods are clearly 
inversely related to the magnitude of the penal- 
ty/reward parameter, and the n-ull hypothesis of 
no relation can be rejected at the 1-percent 
level. 1 

For some sessions, the switch in treatments 
between parts A and B caused a dramatic 
change in behavior. In the two sessions using 
R = 80 and R = 10, for example, the 
behavior is ayproximately reversed, as shown 
in Figure 2. There is some evidence of a 
sequence effect, since the average claims 
were higher for R = 10 when this treatment 
came first than when it followed the R = 80 
treatment that "locked" onto a Nash equilib- 
rium. In fact, the sequence effect was so 
strong in one session, with a treatment switch 
from R = 50 to R = 20, that the data did not 
rise in part B after converging to the Nash 
outcome in part A. In all other sessions, the 
high-R treatment resulted in lower average 
claims, as shown in Table 1. 

Consider again the null hypothesis of no treat- 
ment effect, under which higher average claims 
are equally likely in both treatments. The alterna- 
tive hypothesis is that average claims are higher 

' Of the 720 (=6!) ways that the 6 session averages 
could have been ranked, there are only 6 possible outcomes 
that are as extreme as the one observed (i.e., with zero or 
one reversals between adjacent R values). Under the null 
hypothesis the probability of obtaining a ranking this ex- 
treme is: 6/720, so the null hypothesis can be rejected 
(one-tailed test) at the 1-percent level. 

2 Obviously, the part B data have not settled down yet 
after 5 periods, and therefore we decided to extend part B to 
10 periods in subsequent sessions. 



680 THE AMERICAN ECONOMIC REVIEW JUNE 1999 

cents maximum claim 
200 ------------R = 

190 
180 R = 10 
170 

160 
150 R = 25 
140 
130 - 

120 - R 20 
110 
100 

80 t R 
Bo ------------------------ ------------ R 8 0 
70- Nash equilibrium R80 
60 r 
50 

1 2 3 4 5 6 7 8 9 10 period 

FIGURE 1. DATA FOR PART A FOR VARIOUS VALUES OF THE REWARD/PENALTY PARAMETER 

for the treatments with a low value of R. The null 
hypothesis can be rejected at a 3-percent signifi- 
cance level using a standard Wilcoxon (signed- 
rank) nonparametric test. Thus the treatment effect 
is significant, even though it does not affect the 
Nash equilibrium. 

Basically, the Nash equilibrium provides 
good predictions for high incentives (R = 80 
and R = 50), but behavior is quite different 
from the Nash prediction under the treatments 
with low and intermediate values of R. In par- 
ticular, as shown in Figure 1, the data for the 
low-R treatments is concentrated at the opposite 
end of the range of feasible decisions. Basu's 
(1994) presentation of the traveler's dilemma 
involved low incentives relative to the range of 
choices so, in this sense, the intuition behind the 
dilemma is confirmed.3 To summarize, the Nash 

equilibrium prediction of 80 for all treatments 
fails to account for the most salient feature of 
the data, the intuitive inverse relationship be- 
tween average claims and the parameter that 
determines the relative cost of having the higher 
claim. 

Since the Nash equilibrium works well in 
some contexts, what is needed is not a radi- 
cally different alternative, but rather, a gen- 
eralization that conforms to Nash predictions 
in some situations (e.g., with high-R values) 
and not in others. In addition, it would be 
interesting to consider dynamic theories to 
explain the patterns of adjustment in initial 
periods when the data have not yet stabilized. 
Many adjustment theories in the literature are 
based on the idea of movement toward a best 
response to previously observed decisions. 
The next section evaluates some of these ad- 
justment theories and shows that they explain 
a high proportion of the directions of changes 

3Basu (1994) does not claim to offer a resolution of the 
paradox, but he suggests several directions of attack. 
Loosely speaking, these approaches involve restricting in- 
dividual decisions to sets, T, and T2 for players 1 and 2 
respectively, where each set contains all best responses to 
claims in the other person's set. Such sets may exist if open 
sets are allowed, or if some notion of "ill-defined catego- 

ries" is introduced. Without further refinement these ap- 
proaches do not predict the effects of the penalty/reward 
parameter on claim levels. 
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in individual claims, but not the strong effect 
of the penalty/reward parameter on the levels 
of average claims. Then in Sections IV and V 
we present both dynamic and equilibrium the- 
ories that are sensitive to the magnitude of the 
penalty/reward parameter. 

III. Patterns of Individual Adjustment 

One approach to data analysis is based on 
the perspective that people react to previous 
experience via what is called reinforcement 
learning in the psychology literature. In this 
spirit, Reinhard Selten and Joachim Buchta 
(1994) consider a model of directional adjust- 
ment in response to immediate past experi- 
ence. The prediction is that changes are more 
likely to be made in the direction of what 
would have been a best response to others' 
decisions in the previous period. The predic- 
tions of this "learning direction theory" are, 
therefore, qualitative and probabilistic. The 
theory is useful in that it provides the natural 
hypothesis that changes in the "wrong" direc- 
tion are just as likely as changes in the "right" 
direction. This null hypothesis is decisively 
rejected for data from auctions (Selten and 
Buchta, 1994). 

To evaluate leamning direction theory, we cat- 

egorize all individual claims after the first pe- 
nod as either being consistent with the theory, 
"+", or inconsistent, "-". Excluded from con- 
sideration are cases of no change, irrespective 
of whether or not these are Nash equilibrium 
decisions. These cases of no change are classi- 
fied as "na" (for not applicable). Table 2 shows 
the data classification counts by treatment. The 
(79, 21, 80) entry under the R = 5 column 
heading, for example, means that there were 79 
"+" classifications, 21 "-" classifications, and 
80 "na" classifications. The percentage given 
just below this entry indicates that 79 percent of 
the "+" and "-" changes were actually "+". 
The percentages exclude the "na" cases from 
the denominator. The "percentage of +" row 
indicates that significantly more than half of the 
classifications were consistent with the learning 
direction theory. Therefore, the null hypothesis 
of no difference can be rejected in all treat- 
ments, as indicated by the "p-value" row. 

Note, however, that at least part of the 
success of learning direction theory may be 
due to a statistical artifact if subjects' deci- 
sions are draws from a random distribution, as 
described for instance by the equilibrium 
model in Section V. With random draws, the 
person who has the lower claim in a given 
period is more likely to be near the bottom of 
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TABLE I-AVERAGE CLAIMS IN TH{E LAST FIVE PERIODS FOR ALL SESSIONS 

Session 1 2 3 4 5 6 

High-R treatment 82 99 92 82 146 170 
Low-R treatment 162 186 86 116 171 196 

the distribution, and hence to draw a higher 
claim in the next period. Similarly, the person 
with the higher claim is more likely to draw a 
lower claim in the following period. In fact, it 
can be shown that if claims are drawn from 
any stationary distribution, the probability is 
2/3 that changes are in the direction predicted 
by learning direction theory.4 But even the 
null hypothesis that the fraction of predicted 
changes is 2/3 rejected by our data at low 
levels of significance. 

One feature of learning direction theory in 
this context is that noncritical changes in the 
penalty/reward parameter R do not change the 
directional predictions of the theory. This is 
because R affects the magnitude of the incen- 
tive to change one's claim, but not the direc- 
tion of the best response. This feature is 
shared by several other directional best- 
response models of evolutionary adjustment 
that have been proposed recently, admittedly 
in different contexts. For example, Vincent P. 
Crawford (1995) considered an evolutionary 
adjustment mechanism for coordination 
games that was operationalized by assuming 
that individuals switch to a weighted average 
of their previous decision and the best re- 
sponse to all players' decisions in the previ- 
ous period. This adaptive learning model, 
which explains some key elements of adjust- 
ments in coordination game experiments, is 
similar to directional learning with the extent 
of directional movements determined by 
the relative weights placed on the previous 
decision and on the best response in the ad- 
justment function. Another evolutionary for- 

mulation that is independent of the magnitude 
of R is that of imitation models in which 
individuals are assumed to copy the decision 
of the person who made the highest payoff. 
With two-person matchings in a traveler's 
dilemma, the high-payoff person is always the 
person with the lower claim, regardless of the 
R parameter, so that imitation (with a little 
exogenous randomness) will result in deci- 
sions that are driven to near-Nash levels.5 To 
conclude, individual changes tend to be in the 
direction of a best response to the other's 
action in the previous period, but the strong 
effect of the penalty/reward parameter on 
the average claims cannot be explained by 
directional learning, adaptive learning (par- 
tial adjustment to a best response), and imi- 
tation-based learning models. 

IV. A Dynamic Learning Model with Logit 
Decision Error 

In this section we present a dynamic model in 
which players use a simple counting rule to 
update their (initially diffuse) beliefs about oth- 
ers' claims. The modeling of beliefs is impor- 
tant because people will wish to make high 
claims if they come to expect that others will do 
the same. Although the only set of internally 
consistent beliefs and perfectly rational actions 
is at the unique Nash equilibrium claim of 80 
for all values of R, the costs of increasing 
claims above 80 depend on the size of the 
penalty/reward parameter. For small values of R 
such deviations are relatively costless and some 
noise in decision-making may result in claims 
that are well above 80. As subjects enr:ounter 
higher claims, the (noisy) best responses to ex- 
pected claims may become even higher. In this 
manner, a relatively small amount of noise may 

4 Suppose that a player's draw, x,, is less than the other 
player's draw, y. Then the probability that a next draw, x2, 
is higher than x, is given by: P[x2 > xIIy > xI] = 

P[x2 > xI, y > x,]IP[y > xI]. The numerator is equal to 
the probability that x, is the lowest of three draws, which is 
'A, and the denominator is equal to the probability that x I is 
the lowest of 2 draws, which is ?/2. So the relevant proba- 
bility is 2/3. 

5Paul Rhode and Mark Stegeman (1995) and Fernando 
Vega-Redondo (1997) have shown that this type of imita- 
tion dynamic will drive outputs in a Cournot model up to the 
Walrasian levels. 
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TABLE 2-CONSISTENCY OF CLAIM CHANGES WITH LEARNING DIRECTION THEORY 

All 
R = 5 R= 10 R =20 R = 25 R =50 R-80 treatments 

Numbers 
of +, 
-, na 79, 21, 80 62,15,43 50,7,123 94, 23, 63 65,12,103 50, 3, 87 400, 81, 499 

Percentage 
of +a 79 81 88 80 84 94 83 

p-valueb <0.00003 <0.00003 <0.00003 <0.00003 <0.00003 <0.00003 <0.00003 

a The percentage of "+" calculations excluded the nonapplicable "na" cases. 
b Denotes the p-value for a one-tailed test. 

move claims well above the Nash prediction 
when beliefs evolve endogenously over time in 
a sequence of random matchings. 

This section begins with a relatively standard 
experience-based learning model.6 There is 
clearly noise in the data, even in the final peri- 
ods for some treatments, so for estimation pur- 
poses it is necessary to introduce a stochastic 
element. Noisy behavior is modeled with a 
probabilistic choice rule that specifies the prob- 
abilities of various decisions as increasing func- 
tions of the expected payoffs associated with 
those decisions. For low values of R, the "mis- 
takes" in the direction of higher claims will be 
relatively less costly and, hence, more probable. 
Our analysis will be based on the standard logit 
model for which decision probabilities are pro- 
portional to exponential functions of expected 
payoffs. The logit model is equivalent to assum- 
ing that expected payoffs are subjected to 
shocks that have an extreme value distribution. 
These errors can be interpreted either as unob- 
served random changes in preferences or as 
errors in responding to expected payoffs.7 The 

logit formulation is convenient in that it is char- 
acterized by a single error parameter, which 
allows the consideration of perfect rationality in 
the limit as the error parameter goes to zero. 
Maximum likelihood techniques will be used to 
estimate the error and learning parameters for 
the data from the traveler's dilemma experi- 
ment. 

To obtain a tractable econometric learning 
model, the feasible range of claims (between 80 
and 200) is divided into n = 121 intervals or 
categories of a cent. A choice that falls in cat- 
egory j corresponds to a claim of 80 + j - 1 
cents. Players' initial beliefs, prior to the first 
period, are represented by a uniform distribu- 
tion with weights of l/n. Hence, all categories 
are thought to be equally likely in the first 
period.8 Players update their beliefs using a 
simple counting rule that is best explained by 
assigning weights to all categories. Let wi(j, t) 
denote the weight that player i assigns to cate- 
gory j in period t. If, in period t, player i 
observes a rival's price that falls in the mth 
category, player i's weights are updated as fol- 
lows: wi(m, t + 1) = wi(m, t) + p, while all 

6 This model builds on the work of Jordi Brandts 
and Holt (1996), David J. Cooper et al. (1997), Dilip 
Mookherjee and Barry Sopher (1997), Yan Chen and Fang- 
Fang Tang (1998), Drew Fudenberg and David K. Levine 
(1998), Colin Camerer and Teck-Hua Ho (1999), and others. 

7 R. Duncan Luce (1959) provides an alternative, axiom- 
atic derivation of this type of decision rule; he showed that 
if the ratio of probabilities associated with any two deci- 
sions is independent of the payoffs for all other decisions, 
then the choice probability for decision i can be expressed 
as a ratio: u 1Yjuj, where ui is a "scale value" number 
associated with decision i. When scale values are functions 
of expected payoffs, and one adds the assumption that 
choice probabilities are unaffected by adding a constant to 
all expected payoffs, then it can be shown that the scale 
values are exponential functions of expected payoffs. There- 

fore, any ratio-based probabilistic choice rule that general- 
izes the exponential form would allow the possibility that 
decision probabilities would be changed by adding a con- 
stant to all payoffs. While there is some experimental evi- 
dence that multiplicative increases in payoffs reduce noise 
in behavior (Vernon L. Smith and James M. Walker, 1997), 
we know of no evidence that behavior is affected by addi- 
tive changes, except when subtracting a constant converts 
some gains into (focal) losses. 

8 Alternatively, the first-period data can be used to esti- 
mate initial beliefs. The assumption of a uniform prior is 
admittedly a simplification, but allows us to explain why the 
penalty/reward parameter has a strong effect even on deci- 
sions in the first period. 
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other weights remain unchanged. These weights 
translate into belief probabilities, Pi(j, t), by 
dividing the weight of each category by the sum 
of all weights. The model is one of "fictitious 
play" in which a new observation is weighted 
by a learning parameter, p, that determines the 
importance of a new observation relative to the 
initial prior. A low value of p indicates "con- 
servative" behavior in that new information has 
little impact on a player's beliefs, which are 
mainly determined by the initial prior. 

Once beliefs are formed, they can be used to 
determine the expected payoffs of all the op- 
tions available. Since in our model each player 
chooses among n possible categories, the ex- 
pected payoffs are given by the sum 

n 

(1) ,e(j, t) = r(j, k)Pi(k, t), j -1, n..n 
k=1 

where wi(j, k) is player i's payoff from choos- 
ing a claim equal to j when the other player 
claims k. 

In a standard model of best-reply dynamics, a 
player simply chooses the category that maxi- 
mizes the expected payoff in (1). However, as 
we discussed above, the adjustments in such a 
model will be independent of the magnitude of 
the key incentive parameter, R. We will there- 
fore allow players to make nonoptimal deci- 
sions, or "mistakes," with the probability of a 
mistake being inversely related to its severity. 
The specific parameterization that we use is the 
logit rule, for which player i's decision proba- 
bilities, Di(j, t), are proportional to an expo- 
nential function of expected payoffs: 

(2) Di(j, t) = exp(n(j, t)/p) 
exp(,a (k, t)l,ut) 

k = 1 

The denominator ensures that the choice prob- 
abilities add up to 1, and ,u is an error parameter 
that determines the effect of payoff differences 
on choice probabilities. When , is small, the 
decision with the highest payoff is very likely to 
be selected, whereas all decisions become 
equally likely (i.e., behavior becomes purely 
random) in the limit as ,u tends to infinity. To 

summarize the key ingredients of our dynamic 
model: (i) players start with a uniform prior and 
use a simple counting rule to update their be- 
liefs; (ii) these beliefs determine expected pay- 
offs by (1); and (iii) the expected payoffs in turn 
determine players' choice probabilities by (2)?9 

This "logit learning model" can be used to 
estimate the error parameter, t, and the learning 
parameter, p. Recall that the probability that 
player i chooses a claim in the jdi category in 
period t is given by Di(j, t), and the likelihood 
function is simply the product of the decision 
probabilities of the actual decisions made for all 
subjects and all 10 periods. The maximum likeli- 
hood estimates of the error and learning parame- 
ters of the dynamic learning model are: , = 10.9 
(0.6) and p = 0.75 (0.12), with standard errors 
shown in parentheses. The error parameter is sig- 
nificantly different from the value of zero implied 
by perfect rationality, which is not surprising in 
light of the clear deviations from the Nash predic- 
tions.10 If the learning parameter were equal to 
1.0, each observation of another person's decision 
would be as informative as prior information, so a 
value of 0.7 means that the prior information is 

9 An alternative approach would specify that the proba- 
bility of a given decision is an increasing function of pay- 
offs that have been earned when that decision was made in 
the past. Thus high-payoff outcomes are "reinforced." See 
Alvin E. Roth and Ido Erev (1995) and Erev and Roth 
(1998) for a simulation-based analysis of reinforcement 
models in other contexts. 

10 We also estimated the learning model for each session 
separately, and in all cases the error parameter estimates 
were significantly different from zero, except for the R = 
20 session where the program did not converge. Recall that 
this treatment was the only one with an average claim that 
was out of the order that cofresponds to the magnitude of 
the R parameter. The error parameter estimates (with stan- 
dard efrors) for R = 5, 10, 25, 50, and 80 were 6.3 (1.0), 
4.0 (1.0), 16.7 (5.1), 6.8 (0.9), and 9.5 (0.7) respectively. 
These estimates are of approximately the same magnitude, 
but some of the differences are statistically significant at 
normal levels, which indicates that the learning model does 
not account for all of the "cohort effects." These estimates 
are, however, of roughly the same magnitude as those we 
have obtained in other contexts. Capra et al. (1998) estimate 
an error parameter of 8.1 in an experimental study of im- 
perfect price competition. The estimates for the Lisa 
Anderson and Holt (1997) information cascade experiments 
imply an error parameter of about 12.5 (when payoffs are 
measured in cents as in this paper). Richard D. McKelvey 
and Thomas R. Palfrey (1998) use the Brandts and Holt 
(1996) signaling game data to estimate u = 10 (they report 
l/,u = 0.1). 
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TABLE 3-PREDICTED AND ACTUAL AVERAGE CLAIMS 

R = 5 R= 10 R = 20 R = 25 R -= 50 R =80 

Average claim in period 1 180 177 131 150 155 120 
Average claim for periods 8-10 195 186 119 138 85 81 

Average simulated claim for 
period 1 171 166 156 150 118 97 

Average simulated claims for 
periods 8-10 178 170 155 148 107 85 

Logit equilibrium prediction 183 174 149 133 95 88 
Nash equilibrium prediction 80 80 80 80 80 80 

slightly stronger than the information conveyed in 
a single observation. 

Table 3 shows the relationship between av- 
erage claims and simulation-based predictions 
of the logit learning model. The first row shows 
average claims observed in the first period of 
the experiment, where claims are highest for 
R = 5 and R = 10, and lowest for R = 80. 
The second row shows the average observed 
claims for the final three periods; we see that 
claims rise slightly for the two low-R treatments 
and fall for the high-R treatments. The third row 
shows the first-period predictions of the dy- 
namic model, based on the estimated error rate 
and the assumption of uniform initial priors. 
These predictions are also inversely related to 
the level of R. The predictions of the dynamic 
model for periods 8-10, shown in the fourth 
row, are obtained by letting a computer program 
keep track of 10 cohorts of 10 simulated sub- 
jects which begin with flat priors, make error- 
prone decisions, "see" the other's decision, and 
update beliefs before being rematched ran- 
domly with another simulated subject. The sim- 
ulated claims also show a tendency for claims to 
increase for low-R values and decrease for 
high-R values, but the treatment effect is a little 
too flat relative to the actual data. To summa- 
rize, the parameter estimates for the logit learn- 
ing model can be used in simulations to 
reproduce the qualitative features of observed 
adjustment patterns and the inverse relation- 
ship between the penalty/reward parameter and 
average claims. 

V. A Logit Equilibrium Analysis 

As players gain experience during the exper- 
iment, the prior information becomes consider- 

ably less important. With more experience, 
there are fewer surprises on average, and this 
raises the issue of what happens if decisions 
stabilize, as indicated by the relatively flat 
trends in the final periods of part A for each 
treatment in Figure 1. An equilibrium is a state 
in which the beliefs reach a point where the 
decision distributions match the belief distribu- 
tions, which is the topic of this section. Recall 
that in the previous section's logit learning 
model, player i's belief probabilities, Pi(j, t) 
for the jth category in period t, are used in the 
probabilistic choice function (2) to calculate the 
corresponding choice probabilities, Di(j, t). A 
symmetric logit equilibrium is a situation where 
all players' beliefs have stabilized at the same 
distributions, so that we can drop the i and t 
arguments and simply equate the corresponding 
decision and belief probabilities: Di(j, t) = 
Pi(j, t) = P(j) for decision category j. In 
such an equilibrium, the equations in (2) deter- 
mine the equilibrium probabilities (McKelvey 
and Palfrey, 1995, 1998).11 The probabilities 
that solve these equations will, of course, de- 
pend on the penalty/reward parameter, which is 
desirable given the fact that this parameter has 
such a strong effect on the levels at which 
claims stabilize in the experiments. The equi- 
librium probabilities will also depend on the 
error parameter in (2), which can be estimated 

1 l The logit equilibrium has been used to explain devi- 
ations from Nash behavior in some matrix games (Robert 
W. Rosenthal, 1989; McKelvey and Palfrey, 1995; Jack 
Ochs, 1995), in other games with a continuum of decisions, 
e.g., the "all-pay" auction (Simon P. Anderson et al., 
1998a), public-goods games (Anderson et al., 1998b), and 
price-choice games (Gladys Lopez, 1995; Capra et al., 
1998). 
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as before by maximizing the likelihood func- 
tion. Instead of being determined by learning 
experience, beliefs are now determined by equi- 
librium consistency conditions.'2 

It is clear from the data patterns in Figure 
1 that the process is not in equilibrium in the 
early periods, as average claims fall for some 
treatments and rise for others. Therefore, it 
would be inappropriate to estimate the logit 
equilibrium model with all data as was done for 
the logit learning model. We used the last three 
periods of data to estimate ,u - 8.3 with a 
standard error of 0.5. This error parameter esti- 
mate for the equilibrium model is somewhat 
lower than the estimate for the logit learning 
model (10.9). This difference may be due to the 
fact that the learning model was estimated with 
data from all periods, including the initial peri- 
ods where decisions show greater variability. 
Despite the difference in the treatment of be- 
liefs, the logit learning and equilibrium models 
have similar structures, and are complementary 
in the sense that the equilibrium corresponds to 
the case where learning would stop having 
much effect, i.e., where decision and belief dis- 
tributions are identical. 

Once the error and penalty/reward parame- 
ters are specified, the logit equilibrium equa- 
tions in (2) can be solved using Mathematica. 
Figure 3 shows the equilibrium probability dis- 
tributions for all treatments with A = 8.3.13 

These plots reveal a clear inverse relationship 
between predicted claims and the magnitude of 
the penalty/reward parameter, as observed in 
the experiment. In particular, notice that the 
noise introduced in the logit equilibrium model 
does more than spread the predictions away 
from a central tendency at the Nash equilibrium. 
In fact, for low values of R, the claim distribu- 
tions are centered well away from the Nash 
prediction, at the opposite end of the range of 
feasible choices. 

We can use the logit equilibrium model (for 
= 8.3) to obtain predictions for the last three 

periods. These predictions, calculated from the 
equilibrium probability distributions in Figure 
3, are found in the fifth row in Table 3. The 
closeness of the logit equilibrium predictions 
and the actual averages (row 2) for the final 
three periods is remarkable. In all cases, the 
predictions are much better than those of the 
Nash equilibrium, which is 80 for all treatments 
(row 6 in Table 3). 14 To summarize, the esti- 
mated error parameter of the logit equilibrium 
model can be used to derive predicted average 
claims that track the salient treatment effect on 
claim data in the final three periods, an effect 
that is not explained by the Nash equilibrium. 

The logit-equilibrium approach in this sec- 
tion does not explain all aspects of the data. For 
example, the claims in part B are generally 
lower when preceded by very low claims in a 
competitive part A treatment, as can be seen in 
Figure 2. This cross-game learning, which has 
been observed in other experiments, is difficult 
to model, and is not surprising. After all, the 
optimal decision depends on beliefs about oth- 
ers' behavior, and low claims in a previous 
treatment can affect these beliefs. Beliefs would 
also be influenced by knowing the true price of 
the item that was lost in the traveler's dilemma 
game. This true value might be a focal point for 
claims made in early periods. Another aspect of 
the data that is not explained by the logit equi- 
librium model is the tendency for a significant 

12 A theoretical analysis of the effect of R on equilibrium 
claims can be based on a continuous formulation in which 
probabilities are replaced by a continuous density, f(x), 
with a distributioni function, F(x). In equilibrium, these 
represent players' beliefs about others' claims, which de- 
termine the expected payoff from choosing a claim of x, 
denoted by re(x). The expected payoffs deternine the 
claim density via a continuous logit choice function: f(x)= 
k exp(7Te(x)/tL), where k is a constant of integration. This 
is not a closed-form solution for f(x), since the claim 
distribution affects the expected payoff function. Neverthe- 
less, it is possible to derive a number of theoretical proper- 
ties of the equilibrium claim distribution. Anderson et al. 
(1998c) consider a class of auction-like games that includes 
the traveler's dilemma as a special case. For this class, the 
logit equilibrium exists, and is unique and symmetric across 
players. Moreover, it is shown that, for any ,u > 0, an 
increase in the R parameter results in a stochastic reduction 
in claims, in the sense of first-degree stochastic dominance. 

13 The density for R = 80 seems to lie below that for 
R 50. What the figure does not show is that the density 
for R = 80 puts most of its mass at claims that are very 
close to 80 and has a much higher vertical intercept. 

14 We have no formal proof that the belief distributions 
in the logit learning model will converge to the equilibrium 
distributions, but notice that the simulated average claims in 
row 4 end up being reasonably close to the predicted equi- 
librium claims in row 5, even after as few as 8-10 simulated 
matchings, and the difference is largely due to the higher 
error parameter estimate for the dynamic model. 
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FIGURE 3. LOGIT EQUILIBRIUM CLAIM DENSITIES (WITH , = 8.3) 

fraction of the subjects to use the samne decision 
as in the previous period. Other subjects change 
their decisions frequently, even when average 
decisions have stabilized. There seems to be 
some inertia in decision-making that is not cap- 
tured by the logit model. Finally, separate esti- 
mates of the logit error parameter for each 
treatment reveal some differences. However, 
the estimates are, with one exception, of the 
same order of magnitude and are similar to 
estimates that we have found for other games. 

VI. Conclusion 

Basu's traveler's dilemma is of interest because 
the stark predictions of the unique Nash equilib- 
rium are at odds with most economists' intuition 
about how people would behave in such a situa- 
tion. This conflict between theory and intuition is 
especially sharp for low values of the penalty/ 
reward parameter, since upward deviations from 

the low Nash equilibrium claims are relatively 
costless. The experiment reported here is designed 
to exploit the invariance of the Nash prediction 
with respect to changes in the penalty/reward pa- 
rameter. The behavior of financially motivated 
subjects confirmed our expectation that the Nash 
prediction would fail on two counts: claims were 
well above the Nash prediction for some treat- 
ments, and average claims were inversely related 
to the value of the penalty/reward parameter. 
Moreover, these results cannot be explained by 
any theory, static or dynamic, that is based on 
(perfectly rational) best responses to a previously 
observed claim, since the best response to a given 
claim is independent of the penalty/reward param- 
eter in the traveler's dilemma game. In particular, 
the strong treatment effects are not predicted by 
learning direction theory, imitation theories, or 
evolutionary models that specify partial adjust- 
ments to best responses to the most recent out- 
come. 
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Note: Dots represent average claims for each of the treatments. 

The Nash equilibrium is the central organiz- 
ing concept in game theory, and has been for 
over 25 years. This approach should not be 
discarded; it has worked well in many contexts, 
and here it works well for high values of the 
penalty/reward parameter. Rather, what is 
needed is a generalization that includes the 
Nash equilibrium as a special case, and that can 
explain why it predicts well in some contexts 
and not others. One alternative approach is to 
model the formation of beliefs about others' 
decisions, and we implement this by estimating 
a dynamic learning model in which players 
make noisy best responses to beliefs that 
evolve, using a standard logit probabilistic 

choice rule. In an equilibrium where beliefs 
stabilize, the belief and decision distributions 
are identical, although the probabilistic choice 
function will keep injecting some noise into the 
system. 

The logit equilibrium model uses the 
logit probabilistic choice function to deter- 
mine decisions, while keeping a Nash-like 
consistency-of-actions-and-beliefs condition. 
This model performs particularly well in the 
traveler' s dilemma game, where the Nash pre- 
dictions are at odds with both data and intu- 
ition about average claims and incentive 
effects. Consider the results for each treat- 
ment, as shown by the dark dots in Figure 



VOL. 89 NO. 3 CAPRA ET AL: ANOMALOUS BEHAVIOR IN A TRAVELER'S DILEMMA? 689 

4 that represent average claims for the final 
three periods plotted above the corresponding 
penalty/reward parameter on the horizontal 
axis. If one were to draw a freehand line 
through these dots, it would look approxi- 
mately like the dark curved line, which is in 
fact the graph of the logit equilibrium predic- 
tion as a function of the R parameter (calcu- 
lated on basis of the estimated value of the 
logit error parameter for the equilibrium 
model).15 Even the treatment reversal between 
R values of 20 and 25 seems unsurprising given 
the closeness of these two treatments on the 
horizontal axis and the flatness of the densities 
for these treatments in Figure 3. Recall that the 
Nash prediction is 80 (the horizontal axis) for 
all treatments. Thus the data are concentrated at 
the opposite end of the range of feasible claims 
for low values of the penalty/reward parameter, 
which cannot be explained by adding errors 
around the Nash prediction. These data patterns 
are well explained by the logit equilibrium and 
learning models. 
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