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This paper reports an experiment designed to discover how the prospect of
future interaction influences people’s ability to tacitly cooperate in repeated
dominance solvable games. The experiment varies two treatment variables: whether
the constituent game is solvable by strict or iterated dominance and whether
prospective interaction is finitely or randomly terminated. Specifically, we introduce
a special repeated matching protocol consisting of an initial phase terminated
randomly and a terminal phase of T periods. We call this protocol T-death. The
T-death protocol allows us to observe a pair’s behavior in both a sequence of
infinite continuation games and a sequence of finite continuation games. Journal of
Economic Literature Classification Numbers: C720, C920, 1120, 1400.  © 2002 Else-
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I. INTRODUCTION

Reciprocity among patient players is often used to explain why an
apparent incentive problem when analyzed in a static game does not
prevent tacit cooperation in a repeated game. For example, it is often
argued that oligopolists will be able to tacitly collude on the monopoly
solution since they interact repeatedly. However, almost “anything” is an
equilibrium of a repeated game if players are sufficiently “patient.” So in
applying repeated game theory, economists typically select an equilibrium
that is efficient and symmetric.?
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? See Fudenberg and Tirole (1991, p. 160).
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Using field data to investigate the psychological salience of deductive
selection principles, like efficiency and symmetry, is difficult. An alterna-
tive approach is to use the experimental method. Van Huyck et al. (1990,
1991) present evidence that security can undermine the salience of effi-
ciency in repeated coordination games.* Van Huyck et al. (1995) present
evidence that security can undermine the salience of symmetry in repeated
bargaining games. Except in simple settings, subjects are unlikely to
deduce a mutually consistent strategy combination from a complete infor-
mation description of the game. Nevertheless, with experience behavior
does frequently converge to a mutual best response outcome. It appears
that past instances of the present situation allow subjects to learn to
coordinate on a specific equilibrium strategy combination. Historical acci-
dent and dynamic process influence the origin of mutually consistent
behavior in repeated bargaining and coordination game experiments.’

The relevance of these discoveries for repeated cooperation problems is
an open question. Repeated game theory suggests that the prospect of
future interaction among patient players converts a cooperation problem
into a coordination problem. However, the resulting strategy coordination
problem is more difficult than those arising in repeated bargaining and
coordination games. Not only are there multiple equilibria in repeated
cooperation games, but the equilibria with desirable strategic properties,
like efficiency, are constructed using history contingent strategies. Conse-
quently, history must be used not only to focus expectations on an
equilibrium assignment, but also to monitor compliance with the equilib-
rium assignment.

Since history contingent strategies are not observable by other players in
the game, one wonders if observing the history of play would allow players
to solve the strategy coordination problem in the continuation game.
Surprising play by other strategically rational players may be due either to
a sincere disagreement about the equilibrium assignment or to an oppor-
tunistic defection from a commonly understood equilibrium assignment. In
the first case one should try to teach the assignment, and in the second
case one should try to enforce the assignment. This dual use of history
does not arise in repeated bargaining and coordination games.

In this paper, we report evidence on how the prospect of future
interaction influences the ability of people to tacitly cooperate. The
experiment uses repeated dominance solvable games that vary two treat-
ment variables: whether the constituent game was solvable by strict domi-
nance or iterated dominance and whether prospective interaction is finitely
or randomly terminated. Specifically, we introduce a special repeated

* See also Cachon and Camerer (1996), Cooper et al. (1996), and Straub (1995).
5 See also Binmore et al. (1993), Roth and Schoumaker (1983), and Van Huyck et al. (1997).
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matching protocol consisting of an initial phase terminated randomly and a
terminal phase of T periods. We call this matching protocol T-death. The
T-death matching protocol allows us to observe a pair’s behavior in both a
sequence of infinite continuation games and a sequence of finite continua-
tion games.

Our main finding is that efficiency and symmetry need not be salient
principles used by patient players to coordinate in the repeated dominance
solvable games considered. In fact, it turns out to be quite difficult for
subjects to learn to coordinate on the symmetric payoff-dominant play
path under the T-death protocol, but it does occur in some cases.

II. LITERATURE REVIEW

There is a large experimental literature on repeated dominance solvable
games, which can be divided into matrix game experiments, oligopoly
experiments, and public goods experiments. Our review of this literature
focuses on the influence of prospective interaction in promoting tacit
cooperation. There is also a smaller evolutionary tournaments (strategy
method) literature, which is of interest here due to its use of explicit
strategies.

Rapoport et al. (1976) survey the early 2 X 2 game experiments. This
literature emphasized the relatively high levels of cooperation observed in
finitely repeated games for which the theory of the day predicted none.
Under complete information, game theory predicts backwards unraveling
in the finitely repeated Prisoners’ Dilemma. Kreps et al. (1982) explained
these early results for the Prisoners’ Dilemma by analyzing incomplete
information in finitely repeated games. Their analysis bounds the number
of periods of backwards unraveling when one player may be a tit-for-tat
automaton.

Selten and Stoecker (1986) report an experiment in which 35 subjects
participated in 25 repeated Prisoners’ Dilemma contests of 10 periods each
against randomly and anonymously assigned opponents. The typical behav-
ior of experienced subjects involves cooperation until shortly before the
end of the contest. They conclude that this behavior is inconsistent with
the Kreps et al. model because “subjects first have to learn cooperation
and only afterwards do they discover the end effect” (p. 48). They conclude
that it is not clear whether this decay would have continued in a much
longer sequence of contests.

The backwards unraveling argument in the finitely repeated Prisoners’
Dilemma breaks down when the repeated game is terminated randomly.
Roth and Murnighan (1978) report an experiment using a randomly
terminated repeated Prisoners’ Dilemma, where the probability the game
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continues varied over 0.105, 0.5, and 0.895. Tacit cooperation is consistent
with many equilibrium strategy combinations for continuation probabilities
0.5 and 0.895, but not 0.105. They find that the continuation probability
has a statistically significant effect on the incidence of cooperation ob-
served in the first period. Given that subjects were playing against the
tit-for-tat automaton, it is interesting to note how little cooperation actu-
ally emerges overall: 31% for 0.5 and 41% for 0.895.

Their results illustrate the importance of allowing subjects to acquire
experience in the repeated game. Surely, cooperation rates would have
been much higher had subjects learned they were playing against the
tit-for-tat automaton in Roth and Murnighan. In retrospect the puzzle
about this early literature is not why there is so much cooperation, but
rather why so little cooperation is observed in repeated dominance solv-
able games.’

Cooper et al. (1996) conduct what is probably the strongest test to date
of the decision theoretic prescription—don’t use strictly dominated strate-
gies—in that subjects were allowed to acquire experience in a “one-shot”
Prisoners’ Dilemma but were prevented from interacting with the same
player more than once. In fact, their matching protocol even prevents a
subject from interacting with anyone who has interacted with someone
that a subject has already met, which rules out contagion equilibria in the
evolutionary game. With 19 periods of experience, only about 12% of the
subjects played the symmetric efficient, but strictly dominated, action; that
is, only 12% cooperate.

They also report sessions in which subjects participate in 2 repeated
Prisoners’ Dilemma games of 10 periods each. For the second repeated
game, they observe cooperation rates less than 75% even in the early
periods of the repeated game, which violates the Kreps et al. (1982) bound
for plausible amounts of incomplete information. A comparison of the
“one-shot” and repeated pairing treatments does suggest that repeated
interaction promotes cooperation, but, like the results reported by Roth
and Murnighan, the observed cooperation rates are well below the theoret-
ical prediction suggesting a lot of confusion and the need for more
experience.

The once-repeated Prisoners’ Dilemma is special in that it can be solved
by a single deletion of strictly dominated strategies. Duopoly experiments
provide an interesting contrast in that the stage game is usually solvable by

® Rapoport et al. (1976, p. 234) do report that “the ‘average pair’ playing a long sequence of
Prisoner’s Dilemma eventually learns to cooperate,” which is what the theory of repeated
games predicts when combined with the selection principles of efficiency and symmetry. Of
course, the view that there is more cooperation than game theory predicts persists to the
current day; see, for example, Dawes and Thaler (1988).
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iterated dominance. Unlike the deletion of strictly dominated strategies,
iterated dominance requires a player to actually think about the behavior
of his opponent. Hence, one would expect games solvable by iterated
dominance to be more confusing to inexperienced subjects.

Fouraker and Siegel (1963) report sessions with both a price setting and
quantity setting duopolists under “complete information.” The price set-
ting duopoly session allowed subjects to choose from 10 actions and the
resulting matrix game is solvable by iterated dominance in 7 iterations.
The quantity setting duopoly session allowed 24 actions and could be
solved in 2 iterations. One problem with fitting these sessions into a
repeated versus random matching classification is that, while the experi-
mental design called for a finite number of periods (14 and 24 periods,
respectively), subjects did not know this. The symmetric efficient outcome
was achieved by 11% of the pairs in the terminal period of the repeated
price setting duopoly session and by 12% of the pairs in the terminal
period of the repeated quantity setting duopoly sessions. In comparison to
the finitely repeated Prisoners’ Dilemma, these are low rates of tacit
cooperation.

Holt (1985) reports a quantity setting duopoly experiment with 18
actions resulting in a payoff matrix solvable by iterated dominance in 4
iterations. Holt carefully distinguishes between random and repeated
matching protocols. The repeated pairings lasted for at least 7 periods.
After 7 periods, the pairing continued into the next period with probability
5/6th. The random pairings consisted of 12 subjects randomly repaired in
each of 10 periods. In the terminal period of the repeated pairing session,
25% of the pairs achieved the symmetric efficient outcome (collusion). In
the terminal period of the random pairing sessions, none of the pairs
achieved the symmetric efficient outcome. While the repeated pairing
treatment significantly increased observed cooperation, the reported level
of cooperation is still well below the level predicted by the theory of
repeated games when combined with the selection principles of efficiency
and symmetry.

Since repeated game strategies are not observed, it is hard to know if
the experimental literature is reporting equilibrium or disequilibrium
behavior. An alternative approach is to have subjects actually write pro-
grams, which are then run against each other and scored; see Axelrod
(1984) and Selten et al. (1997). These tournaments tend to select strategies
that have robust disequilibrium properties. For example, Axelrod (1984)
concludes that the tit-for-tat automaton does well in his repeated Prison-
ers’ Dilemma tournaments, because it is nice, provocable, forgiving, and
clear.

The tit-for-tat automaton is nice in that it will coordinate on the
efficient symmetric play path if matched with another nice automaton. It is
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provocable and, hence, willing to “punish” deviations from the efficient
symmetric play path, which can make cooperate until the terminal period a
best response to tit-for-tat if the incentive to defect from the cooperative
assignment is not too large. It is forgiving and clear, which allows it to
teach cooperation. Note that all these characteristics, except provocability,
concern the strategy coordination problem rather than the enforcement
problem.’

III. ANALYTICAL FRAMEWORK

Let T'(8, T) denote the stage game T played repeatedly with an initial
phase that continues with probability 6 and a terminal phase of T periods.
When & equals 0, there is no initial phase. T'(8, T) describes a repeated
game in which a given cohort of players can be observed not only in an
infinite game, but also in a finitely repeated continuation game. An
experiment based on I'(8,T) allows own subject control in respect to an
essential treatment variable: the length of prospective interaction.

The second treatment variable is whether the stage game I" is solvable
by the deletion of strictly dominated actions or by iterated (strict) domi-
nance. Consider the stage game I, which is inspired by the price setting
duopoly games studied in Fouraker and Siegel (1963); see Fig. 1. Game [
is symmetric and dominance solvable. It consists of five actions and is
solvable by iterated dominance in four iterations.® The dominance solvable
equilibrium (DSE) is (as, as).

A player’s best response in Game [ is always one larger than his
opponent’s action if possible. Game § is constructed from Game I by
making action a5 the best response to any action by a player’s opponent.
Game S is solvable by strict dominance. Like Game I, the DSE for Game
S is (as, as), which results in a payoff of 3 for each player.

The payoffs have been chosen so that the set of feasible payoffs and the
DSE payoff are the same for both Game I and S. The convex hull of the
set of feasible payoffs is graphed in Fig. 2. Like the Prisoners’ Dilemma,

7 Axelrod (1984) also has some wonderful anecdotal evidence on the influence of prospec-
tive interaction on cooperation, including the observation that “a visiting professor is likely to
receive poor treatment by other faculty members compared to the way these same people
treat their regular colleagues” (p. 60) and Caesar’s explanation of why Pompey’s allies
stopped cooperating with him: “They regarded his [Pompey’s] prospects as hopeless and acted
according to the common rule by which a man’s friends become his enemies in adversity” (p.
59).

8 The mixed strategy {0,0.7,0.1,0.1,0.1} strictly dominates a;; {0,0,0.7,0.15,0.15} strictly
dominates @, once a; has been deleted; {0,0,0,0.7,0.3} strictly dominates a5 once a;, a,
have been deleted; aj strictly dominates a, once a,, a,, a; have been deleted.
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a a, a, a, as
q, 7.7 0,11 0.0 0.0 0,0
a, 11,0 6.6 0,10 0,0 0,0
a, 0,0 10,0 5.5 0.9 0,0
a, 0,0 0,0 9,0 4.4 0,8
as 0,0 0,0 0,0 8,0 3.3
Game /
a a, a a, as
a 7,7 0.0 0,0 0,0 0,11
a, 0,0 6,6 0,0 0,0 0,10
a, 0,0 0,0 5.5 0,0 0,9
a, 0,0 0,0 0,0 4.4 0.8
as 11,0 10,0 9,0 8,0 33
Game §

FIG. 1. Payoff tables.

price or quantity setting duopolies, and the voluntary contribution mecha-
nism for the provision of public goods, the DSE payoff is not contained in
the set of efficient outcomes in Games I and S.

Both games have the same DSE (as, as) and the same set of feasible
payoffs. However, the security level of the two games differs. The secure
action in Game S is a5, which guarantees a payoff of 3, but security fails to
select a unique action in Game I as all actions guarantee a payoff of 0. For
Game S, the maximin strategy is the secure action as;. For game I, the
maximin strategy is mixed and assigns probabilities {0,9,/55,9/110,
17/110,3 /5} to actions {a,, a,, as, a,, as}, respectively. The maximin strat-
egy ensures an expected payoff of 1.8.

A. Finitely Repeated Play: T(0,T)

There are some subtle differences in the set of equilibrium payoffs when
the game is repeated arising from the different security levels of I and S.
The usual backwards unraveling argument leads to the conclusion that the
only Nash equilibrium in S(0,7T) is repeated play of (as,as). This is
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FIG. 2. Convex hull of feasible payoffs in games / and S.

because in the terminal period, which is now a once-repeated game, the
only mutually consistent strategy combination is (as, as). Hence, in the
penultimate period a player cannot threaten to drive his opponent’s payoff
below the (as, as) payoff of 3 in the terminal period in order to establish
cooperation now and so forth.

This is not so in (0, T). The security level is 1.8, which is below 3. The
minimax strategy for I is {3/25,2/25,1/5,0,3/5}. The threat to minimax
a player if they do not conform can enforce symmetric efficient play up to
the last 4 periods.” Hence, for T greater than 4 the set of Nash equilibria
for I(0, T) and for S(0, T) differs. Of course, if one restricts attention to
subgame perfect equilibria and complete information, then the equilibrium

® The benefit to defecting is 4 and the maximal punishment is 1.2, which is the difference
between the payoff from (as,as) and the security level. Hence, one should not defect if
1.2t > 4, where ¢ is the number of punishment periods.
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sets for both games are identical, because minimaxing a player who defects
from the conjectured equilibrium assignment is not self-enforcing in the
subgame.

B. Randomly Repeated Play: T'(5,0)

Consider an infinitely repeated game with discounting constructed from
I or S by letting the probability that the game is repeated be & € (0, 1).
The Nash threats folk theorem implies that for sufficiently large &, any
payoff combination greater than or equal to the stage game equilibrium
payoff combination is in the set of subgame perfect average payoffs.

For example, let the strategy assignment for each player be play a, in
period 0; and in every period so long as one’s opponent has played ay; if
one’s opponent plays something else, then play as forever after. For a
strategy combination consisting of this “unforgiving” strategy to be an
equilibrium assignment the payoff to conforming, . must be greater
than the payoff to defecting, m,, s,

onform>

T, 7+ 7

conform = 1-39

o
3.
13}

Wdefect =11+

Notice that these equations hold for both I and S. The only difference is
that I defect implicitly means play a,, while S defect means play a;. For
8=15/6, M. ,p0rm = 42 which is greater than m,, .., = 26. Hence, play of
a, in the infinitely repeated game is consistent with a subgame perfect
equilibrium of T'(5/6,0). A similar argument rationalizes play of a,, a;,
and a,. Of course, repeated play of the stage game equilibrium (as, as) is
also a subgame perfect equilibrium of the repeated game.

For Games [ and S, the Nash threats folk theorem implies that for 6
sufficiently close to 1 the set of equilibrium average payoffs is everything in
the convex hull of feasible payoffs with a payoff greater than or equal to 3;
see the shaded region of Fig. 2. Hence, appealing to individual rationality
and mutual consistency leaves a theorist or a player with a difficult
equilibrium selection problem. One must invoke additional assumptions,
such as efficiency and symmetry, to obtain a unique solution to the game
or to even have an inkling of what to do.'

10 Allowing for “minimax threats” rather than “Nash threats” would not change the
analysis of game S but would result in a larger set of equilibrium average payoffs for game /
than the shaded region of Fig. 1. The polygon’s southwest corner would extend to (1.8, 1.8).
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Efficiency requires an outcome on the northeast frontier of the convex
hull of feasible payoffs in Fig. 2. Symmetry selects the points along the
diagonal from the origin to (7,7). Combining efficiency and symmetry
selects the average payoff (7,7) from the set of feasible outcomes. Of
course, there exist many strategy combinations that result in this outcome.

C. Randomly Repeated Play and T-Death: T'(8,T)

Finally, consider an infinitely repeated game constructed from I or S by
letting the probability that the repeated game enters a T-period finite
continuation game be (1 — §) € (0, 1). Even if players find efficiency and
symmetry salient selection principles—and, hence, coordinate on repeated
play of (a,,a,) each period of the random-endpoint phase—a strategic
analysis predicts that once the finite-endpoint phase has been entered play
will collapse to repeated play of (as, as) if T is not too large. We call this
the symmetric payoff-dominant play path.

Let ¢ be a random variable with probability distribution §~'(1 — &)
and let T denote the number of periods in the finite-endpoint phase. For
both 1(8,T) and S(8,T), the symmetric payoff-dominant play path is a,
through period ¢ and then as through period ¢ + T. Figure 3 graphs the

Action

Symmetric payoff-dominant play path for T-death protocol

1F @ 4 \ 4 2 4

L : ‘— Period
1 t t+T

FIG. 3. Observable actions of symmetric payoff-dominant equilibrium play path.
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observable actions produced by the symmetric payoff-dominant equilib-
rium play path.

D. Adaptive Learning

Both formal analysis and extant experiments suggest that subjects will
need to acquire experience before behavior will be mutually consistent in
repeated dominance solvable games. Milgrom and Roberts (1991) provide
a general theory of adaptive learning, which includes Cournot dynamics,
fictitious play, stochastic learning processes based on learning to optimize,
like genetic algorithms, and stochastic learning processes based on experi-
mentation, like reinforcement learning. A sequence of strategies is “con-
sistent with adaptive learning if player n eventually chooses only strategies
that are nearly best responses to some probability distribution over his
competitors’ joint strategies, where near zero probability is assigned to
strategies that have not been played for a sufficiently long time” (p. 85).
Milgrom and Roberts prove that if behavior is consistent with adaptive
learning then it will converge to the set of iteratively undominated strate-
gies.

Since both I and S are dominance solvable, all behavior consistent with
adaptive learning will converge to the DSE, that is, eventually the players
will play {as, a5} almost always. Adaptive learning models applied to the
stage game predict that cooperation will decay over time.

IV. EXPERIMENTAL DESIGN

The treatment variables in our experiment were the length of prospec-
tive interaction and the payoff table: either I or S. The entries in the
payoff tables I and S denoted dimes. Four sessions were conducted
for each cell of the 2 X 2 design matrix making a total of 16 sessions; see
Fig. 4.

Ten subjects participated in each session. Subjects were randomly and
repeatedly paired to play I'(§,T): either I'(5/6,2) or T'(0,1). Hence, the
subjects were in an evolutionary repeated game with one population of size
ten.

1 S

I'(5/6,2) 34,5.8 1,2,6,7

o1 | 9,12,13,15 | 10,11,14,16

FIG. 4. Design matrix.
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For T'(5/6,2), we explained the probabilistic mechanism to the subjects
using the heuristic of a bowl with five white chips and one red chip. The
finite-endpoint phase began when a red chip was reported. While we
actually drew chips in a previous experiment, these sessions used a script
file based on one of those sequences.'" The subjects were randomly paired
8 times in the T'(5/6,2) sessions and 55 times in the T'(0, 1) sessions to give
them a chance to learn to cooperate.

The period game was described to the subjects using a computer assisted
graphical user interface available in the TAMU economic research labora-
tory. The instructions were read aloud to ensure that the description of the
game was common information. The instructions text file used by the
graphical user interface is available on the web at http://erl.tamu.edu.
After reading the instructions, but before the session began, the subjects
filled out a questionnaire to determine that they understood how to
compute payoffs for themselves and their opponents. If any subject made a
mistake on the questionnaire, the relevant section of the instructions was
read again.

No pre-play negotiation was allowed. After each repetition of the period
game, the subjects calculated their earnings for that period. Subjects only
observed the actions taken in their own sequence of period games.

The subjects were undergraduate students in economics and business
classes at Texas A & M University in the 1992 and 1993 fall semesters. A
total of 160 subjects participated in the 16 sessions reported below. The
sessions took about one and one-half hours to conduct. Consequently,
subjects could earn significantly more than the minimum wage. For exam-
ple, if subjects always play the symmetric efficient outcome, then each
subject would earn $38.50.

V. EXPERIMENTAL RESULTS

The results are reported in three subsections. First, we report the T'(0, 1)
treatments. Second, we report the I'(5/6,2) treatments. Finally, we report
average payoffs and compare the outcomes to predictions based on effi-
ciency and symmetry.

"' The sequence for ¢ was {3,7,14,1,3,5, 3, 3}. The Kolmogorov T-statistic for the geomet-
ric distribution is 0.205. Prob(T < 0.358) > 0.8 for a sample size of 8; see Conover (1980, p.
462). Hence, one fails to reject the hypothesis that the sequence was drawn from the
geometric distribution using the Kolmogorov statistic and conventional significance levels.



168 VAN HUYCK, WILDENTHAL, AND BATTALIO

A. Sessions with Contest T'(0,1)

Figure 5 reports the median action for sessions with contest 7(0, 1) and
S(0,1). The difference between the two series is striking. The median
subject in treatment S(0, 1) always chooses the strictly dominant action as.
The median subject in treatment [(0, 1) initially chooses a;, which corre-
sponds to only two rounds of iterated dominance.

This behavior is unstable. It slowly decays much like adaptive learning
theories predict. After period 39, the median subject chooses the itera-
tively dominant action a5 in (0, 1).

Figures 6a and 6b report the frequency distribution of actions by period
observed in treatments 7(0,1) and S(0,1), respectively. As the figures
show, the median is representative. However, there is a second striking
difference between the two treatments. The frequency distribution for
treatment (0, 1) is single peaked at a,; while the frequency distribution
for treatment S(0, 1) is double peaked with peaks at a, and as.

The S(0,1) sessions reveal some innately cooperative behavior in the
sense that subjects are not making uniformly distributed errors. Initially,
some subjects are focused on the cooperative action a,. This behavior is
extinguished by experience with the S(0, 1) contest.

BB AAAAAAAAA B B BB A AAN A A A A AA A BB - P -

T T T T T T T T T T T L
0 5 10 15 20 25 30 35 40 45 50 55
Period
TABLE 588 | s S

FIG. 5. Median actions for 1(0,1), O, and S(0, 1), A, sessions.
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Reporting cooperation rates is a conventional way to report the results
of repeated cooperation games. By the end of the T'(0,1) treatments the
cooperation rates are not high. Only one subject chooses the “cooperative”
action, a,, in period 55 of either T'(0, 1) treatment. Conversely, 70% of the
subjects choose the “noncooperative” action as in treatment 7(0,1) and
more than 97% of the subjects choose a5 in treatment S(0, 1).

In the initial periods, Smirnov tests reject the null hypothesis that the
sample distribution for 1(0,1) and S(0,1) was drawn from the same
population distribution at conventional levels of significance. This confirms
what is already apparent in Figs. 5 and 6: behavior is influenced by the
difference between iterative dominance and strict dominance.

Even though it appears that the two distributions have converged to a;
by the terminal period, this observation is only weakly consistent with the
Smirnov test. In the terminal period, the Smirnov statistic is 0.275, which
exceeds the critical value of 0.25 at the 10% level of statistical significance
(Conover, 1980, Table A20). So even after 54 periods the difference
between iterative and strict dominance has not disappeared entirely.

It is also interesting to compare the sample distributions to the DSE
prediction. The Kolmogorov test fails to reject the hypothesis that behav-
ior in treatment S(0, 1) has converged to the DSE prediction, but it does
reject the hypothesis for treatment 1(0, 1) at the 1% level (Conover, 1980,
Table Al14). Nevertheless, behavior appears to be converging to the DSE
much as one would expect if human behavior were consistent with adap-
tive learning. It takes longer for behavior to converge to the DSE when the
solution requires iterative dominance rather than strict dominance.

B. Sessions with Contest T'(5/6,2)

Figure 7 reports the median action for treatment 1(5/6,2) and S(5/6,2).
The dashed vertical lines mark the start of a terminal phase and the solid
vertical lines mark the start of a new contest. In the first two contests, the
length of prospective interaction seems to play no role. This is true both
when comparing the initial and terminal phases of the T'(5/6,2) contests
or when comparing the I'(5/6,2) contests with the I'(0, 1) contests. Hence,
if one only studied the first (or second) contest, as is typical, one would
conclude that prospective interaction, whether randomly or finitely re-
peated, didn’t influence behavior.

However, the third contest lasts 16 periods and it permanently alters
behavior in treatment S(5/6,2). Median behavior in 3 out of the last 5
contests exactly matches the predicted symmetric payoff-dominant play
path. The two exceptions, the sixth and eighth contest, only differ from
predicted play in that there is more cooperation in the first period of the
terminal phase than predicted.
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0 5 10 15 20 25 30 35 40 45 50 55
Period

TABLE e88 | aaa §

FIG. 7. Median action in I(5/6,2), O, and S(5/6,2), a. Dotted vertical line denotes
transition to terminal phase and solid vertical line denotes rematching.

Neither the DSE of the stage game nor the symmetric payoff-dominant
play path emerge as a convention in treatment I(5/6,2). Instead, the
median action remains fixed at a, and appears invariant to the length of
prospective interaction. Cooperation does not decay as it did in treatment
100, 1).

Table I reports frequency counts and empirical distribution functions for
the first and last contests of the I(5/6,2) and S(5/6,2) treatments. If we
look at the last period of the last contest, the cooperation rates, the
frequency of a,;, are only 5% for I(5/6,2) and 7.5% for S(5/6,2).
However, if we look at the last period of the initial phase of the last
contest, the cooperation rates are 30% for 1(5/6,2) and 65% for S(5/6,2).
These rates are not only significantly higher than the cooperation rates of
the last period of the terminal phase of the last contest, but also signifi-
cantly higher than the cooperation rates of the last period of the initial
phase of the first contest, which are 10 and 17.5% respectively; see
repetition 3 of Table I. However, the high cooperation rates in the initial
phase of the last contest are still well below that predicted by selection
theories based on symmetry and efficiency.
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TABLE I
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Frequency Counts and Empirical Distribution Functions for the First and Last Match

of the 1(5/6,2) and S(5/6,2) Treatments

1(5/6,2) $(5/6,2)
Match
period Act match match match match
a; 8 20.0 2 30.0 25.0 65.0
a, 8 20.0 9 225 5.0 0.0
1 as 16 40.0 9 225 7.5 0.0
a, 7 17.5 9 225 0.0 0.0
as 1 25 1 2.5 62.5 35.0
a; 4 10.0 27.5 25.0 57.5
a, 15 37.5 12.5 7.5 2.5
2 as 14 35.0 37.5 2.5 2.5
a, 5 12.5 15.0 5.0 0.0
as 2 5.0 7.5 60.0 37.5
a; 4 10.0 30.0 17.5 65.0
a, 5 12.5 5.0 2.5 0.0
3 as 16 40.0 25.0 5.0 0.0
ay, 9 225 20.0 5.0 0.0
as 6 15.0 20.0 70.0 35.0
a; 5 12.5 225 7 17.5 50.0
a, 14 35.0 20.0 0 0.0 0.0
4 as 12 30.0 15.0 0 0.0 0.0
ay, 4 10.0 10.0 0 0.0 0.0
as 5 12.5 325 33 82.5 50.0
a, 0 0.0 5.0 4 10.0 3 7.5
a, 13 325 12.5 0 0.0 0 0.0
5 as 18 45.0 35.0 0 0.0 0 0.0
a, 10.0 225 4 10.0 0 0.0
as 5 12.5 25.0 32 80.0 7 92.5

Note. Act denotes action.

For treatment I(5/6,2), Smirnov tests fail to reject the hypothesis that

the sample distribution of actions in the first contest and the last contest
was drawn from the same population distribution for any match period in
Experience had little influence on behavior in treatment
1(5/6,2). For treatment S(5/6,2), things are different. Smirnov tests do
reject the hypothesis for all but the last repetition at the 5% significance

the contes

t12

12 The probability values are 0.91, 0.57, 0.40, 0.40, 0.16, respectively.
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level.”® Experience had a statistically significant influence on behavior in
treatment S(5/6,2).

Holding experience constant, Smirnov tests reveal that there is also a
statistically significant difference between behavior in treatment I(5/6,2)
and S(5/6,2)." The basic difference remains the single peaked distribu-
tions of the iterative dominance treatments and the double peaked distri-
butions of the strict dominance treatments. Subjects don’t play actions a,,
as, or a, in S(5/6,2).

VI. CONCLUSIONS

The experiment varied two treatment variables: whether the constituent
game was solvable by strict dominance or iterated dominance and whether
prospective interaction was finitely or randomly terminated. Both treat-
ments had an economically significant influence on behavior.

The difference between strict and iterated dominance had a large
influence on behavior initially. Our results suggest a low order of reason-
ing about the reasoning of others; see also Nagel (1995) and Stahl and
Wilson (1995). Nevertheless, with experience behavior does appear to be
converging to the dominance solvable equilibrium, which is the same for
both payoff tables, under a once-repeated random matching protocol,
I'(0,1), as predicted by adaptive learning theories.

While reciprocity among patient players explains why an apparent
incentive problem when analyzed in a static game does not prevent tacit
cooperation in theory, our results suggest that the resulting strategy
coordination problem is difficult and should not be assumed away in
practice. Our subjects were not able to coordinate on the symmetric
payoff-dominant equilibrium play path initially. In fact, if one only studied
the first (or second) match, as is typical, one would conclude that prospec-
tive interaction, whether randomly or finitely repeated, didn’t influence
behavior.

The use of an evolutionary repeated game protocol allows subjects to
learn to discriminate between the randomly terminated initial phase and
the finite terminal phase of the T-death matching protocol in the S(5/6,2)
treatment, but not in I(5/6,2). Again, we attribute this to the difference
between the depth of reasoning needed to solve the stage games. In

3 The probability values are 0.00, 0.03, 0.00, 0.03, 0.91, respectively.

" The probability values for the null hypothesis of no difference are 0.00, 0.00, 0.00, 0.00,
0.00, respectively, in the first contest and 0.01, 0.05, 0.01, 0.09, 0.00, respectively, in the last
contest.
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S(5/6,2), there are only two salient actions and this clarity allows subjects
to learn to coordinate on the symmetric payoff-dominant equilibrium play
path.
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