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Ten Little Treasures of Game Theory

and Ten Intuitive Contradictions

By Jacob K. Goeree and Charles A. Holt*

This paper reports laboratory data for games that are played only once. These
games span the standard categories: static and dynamic games with complete and
incomplete information. For each game, the treasure is a treatment in which
behavior conforms nicely to predictions of the Nash equilibrium or relevant refine-
ment. In each case, however, a change in the payoff structure produces a large
inconsistency between theoretical predictions and observed behavior. These con-
tradictions are generally consistent with simple intuition based on the interaction of
payoff asymmetries and noisy introspection about others’ decisions. (JEL C72, C92)

The Nash equilibrium has been the center-
piece of game theory since its introduction
about 50 years ago. Along with supply and
demand, the Nash equilibrium is one of the
most commonly used theoretical constructs in
economics, and it is increasingly being applied
in other social sciences. Indeed, game theory
has finally gained the central role envisioned by
John von Neumann and Oscar Morgenstern, and
in some areas of economics (e.g., industrial
organization) virtually all recent theoretical de-
velopments are applications of game theory.
The impression one gets from recent surveys
and game theory textbooks is that the field has
reached a comfortable maturity, with neat clas-
sifications of games and successively stronger
(more “refined”) versions of the basic approach
being appropriate for more complex categories
of games: Nash equilibrium for static games
with complete information, Bayesian Nash for
static games with incomplete information, sub-
game perfectness for dynamic games with com-
plete information, and some refinement of the
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sequential Nash equilibrium for dynamic games
with incomplete information (e.g., Robert Gib-
bons, 1997). The rationality assumptions that
underlie this analysis are often preceded by
persuasive adjectives like “perfect,” “intuitive,”
and “divine.” If any noise in decision-making is
admitted, it is eliminated in the limit in a pro-
cess of “purification.” It is hard not to notice
parallels with theology, and the highly mathe-
matical nature of the developments makes this
work about as inaccessible to mainstream econ-
omists as medieval treatises on theology would
have been to the general public.

The discordant note in this view of game
theory has come primarily from laboratory ex-
periments, but the prevailing opinion among
game theorists seems to be that behavior will
eventually converge to Nash predictions under
the right conditions.! This paper presents a
much more unsettled perspective of the current
state of game theory. In each of the major types
of games, we present one or more examples for
which the relevant version of the Nash equilib-
rium predicts remarkably well. These “trea-
sures” are observed in games played only once
by financially motivated subjects who have had
prior experience in other, similar, strategic sit-
uations. In each of these games, however, we
show that a change in the payoff structure can
produce a large inconsistency between theoret-

! For example, George J. Mailath’s (1998) survey of
evolutionary models cites the failure of backward induction
as the main cause of behavioral deviations from Nash pre-
dictions.
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ical prediction(s) and human behavior. For ex-
ample, a payoff change that does not alter the
unique Nash equilibrium may move the data to
the opposite side of the range of feasible deci-
sions. Alternatively, a payoff change may cause
a major shift in the game-theoretic predictions
and have no noticeable effect on actual behav-
ior. The observed contradictions are typically
somewhat intuitive, even though they are not
explained by standard game theory. In a simul-
taneous effort-choice coordination game, for
example, an increase in the cost of players’
“effort” decisions is shown to cause a dramatic
decrease in effort, despite the fact that any com-
mon effort is a Nash equilibrium for a range of
effort costs. In some of these games, it seems
like the Nash equilibrium works only by coin-
cidence, e.g., in symmetric cases where the
costs of errors in each direction are balanced. In
other cases, the Nash equilibrium has consider-
able drawing power, but economically signifi-
cant deviations remain to be explained.

The idea that game theory should be tested
with laboratory experiments is as old as the
notion of a Nash equilibrium, and indeed, the
classic prisoner’s dilemma paradigm was in-
spired by an experiment conducted at the
RAND Corporation in 1950. Some of the stra-
tegic analysts at RAND were dissatisfied with
the received theory of cooperative and zero-sum
games in von Neumann and Morgenstern’s
(1944) Theory of Games and Economic Behav-
ior. In particular, nuclear conflict was not
thought of as a zero-sum game because both
parties may lose. Sylvia Nasar (1998) describes
the interest at RAND when word spread that a
Princeton graduate student, John Nash, had gen-
eralized von Neumann’s existence proof for
zero-sum games to the class of all games with
finite numbers of strategies. Two mathemati-
cians, Melvin Dresher and Merrill Flood, had
been running some game experiments with their
colleagues, and they were skeptical that human
behavior would be consistent with Nash’s no-
tion of equilibrium. In fact, they designed an
experiment that was run on the same day they
heard about Nash’s proof. Each player in this
game had a dominant strategy to defect, but
both would earn more if they both used the
cooperative strategy. The game was repeated
100 times with the same two players, and a fair
amount of cooperation was observed. One of
Nash’s professors, Al W. Tucker, saw the pay-
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offs for this game written on a blackboard, and
he invented the prisoner’s dilemma story that
was later used in a lecture on game theory that
he gave in the Psychology Department at Stan-
ford (Tucker, 1950).

Interestingly, Nash’s response to Dresher and
Flood’s repeated prisoner’s dilemma experi-
ment is contained in a note to the authors that
was published as a footnote to their paper:

The flaw in the experiment as a test of
equilibrium point theory is that the exper-
iment really amounts to having the play-
ers play one large multi-move game. One
cannot just as well think of the thing as a
sequence of independent games as one
can in zero-sum cases. There is just too
much interaction ... (Nasar, 1998 p.
119).

In contrast, the experiments that we report in
this paper involved games that were played only
once, although related results for repeated
games with random matching will be cited
where appropriate. As Nash noted, the advan-
tage of one-shot games is that they insulate
behavior from the incentives for cooperation
and reciprocity that are present in repeated
games. One potential disadvantage of one-shot
games is that, without an opportunity to learn
and adapt, subjects may be especially prone to
the effects of confusion. The games used in
this paper, however, are simple enough in
structure to ensure that Nash-like behavior
can be observed in the “treasure” treatment.
In addition, the study of games played only
once is of independent interest given the
widespread applications of game theory to
model one-shot interactions in economics and
other social sciences, e.g., the FCC license
auctions, elections, military campaigns, and
legal disputes.

The categories of games to be considered are
based on the usual distinctions: static versus
dynamic and complete versus incomplete infor-
mation. Section I describes the experiments
based on static games with complete informa-
tion: social dilemma, matching pennies, and
coordination games. Section II contains results
from dynamic games with complete informa-
tion: bargaining games and games with threats
that are not credible. The games reported in
Sections III and IV have incomplete infor-
mation about other players’ payoffs: in static
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settings (auctions) and two-stage settings (sig-
naling games).

It is well known that decisions can be af-
fected by psychological factors such as framing,
aspiration levels, social distance, and heuristics
(e.g., Daniel Kahneman et al., 1982; Catherine
Eckel and Rick Wilson, 1999). In this paper we
try to hold psychological factors constant and
focus on payoff changes that are primarily eco-
nomic in nature. As noted below, economic
theories can and are being devised to explain the
resulting anomalies. For example, the rational-
choice assumption underlying the notion of a
Nash equilibrium eliminates all errors, but if the
costs of “overshooting” an optimal decision are
much lower than the costs of “undershooting,”
one might expect an upward bias in decisions.
In a game, the endogenous effects of such bi-
ases may be reinforcing in a way that creates a
“snowball” effect that moves decisions well
away from a Nash prediction. Models that in-
troduce (possibly small) amounts of noise into
the decision-making process can produce pre-
dictions that are quite far from any Nash equi-
librium (Richard D. McKelvey and Thomas R.
Palfrey, 1995, 1998; Goeree and Holt, 1999).
Equilibrium models of noisy behavior have
been used to explain behavior in a variety of
contexts, including jury decision-making, bar-
gaining, public goods games, imperfect price
competition, and coordination (Simon P.
Anderson et al., 1998a, b, 2001a; C. Monica
Capra et al., 1999, 2002; Stanley S. Reynolds,
1999; Serena Guarnaschelli et al., 2001).

A second type of rationality assumption that
is built into the Nash equilibrium is that beliefs
are consistent with actual decisions. Beliefs are
not likely to be confirmed out of equilibrium,
and learning will presumably occur in such
cases. There is a large recent literature on in-
corporating learning into models of adjustment
in games that are played repeatedly with differ-
ent partners.” These models include adaptive
learning (e.g., Vincent P. Crawford, 1995;
David J. Cooper et al., 1997), naive Bayesian
learning (e.g., Jordi Brandts and Holt, 1996;
Dilip Mookherjee and Barry Sopher, 1997), re-
inforcement or stimulus-response learning (e.g.,
Ido Erev and Alvin E. Roth, 1998), and hybrid

2 See, for instance, Drew Fudenberg and David K. Le-
vine (1998) for a survey.
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models with elements of both belief and rein-
forcement learning (Colin Camerer and Teck-
Hua Ho, 1999). Learning from experience is not
possible in games that are only played once, and
beliefs must be formed from introspective
thought processes, which may be subject to
considerable noise. Without noise, iterated best
responses will converge to a Nash equilibrium,
if they converge at all. Some promising ap-
proaches to explaining deviations from Nash
predictions are based on models that limit play-
ers’ capacities for introspection, either by lim-
iting the number of iterations (e.g., Dale O.
Stahl and Paul W. Wilson, 1995; Rosemarie
Nagel, 1995) or by injecting increasing amounts
of noise into higher levels of iterated beliefs
(Goeree and Holt, 1999; Dorothea Kiibler and
Georg Weizsicker, 2000). The predictions de-
rived from these approaches, discussed in Sec-
tion V, generally conform to Nash predictions
in the treasure treatments and to the systematic,
intuitive deviations in the contradiction treat-
ments. Some conclusions are offered in
Section VL.

1. Static Games with Complete Information

In this section we consider a series of two-
player, simultaneous-move games, for which
the Nash equilibria show an increasing degree
of complexity. The first game is a “social di-
lemma” in which the pure-strategy Nash equi-
librium coincides with the unique rationalizable
outcome. Next, we consider a matching pennies
game with a unique Nash equilibrium in mixed
strategies. Finally, we discuss coordination
games that have multiple Nash equilibria, some
of which are better for all players.

In all of the games reported here and in
subsequent sections, we used cohorts of student
subjects recruited from undergraduate econom-
ics classes at the University of Virginia. Each
cohort consisted of ten students who were paid
$6 for arriving on time, plus all cash they earned
in the games played. These one-shot games
followed an initial “part A” in which the sub-
jects played the same two-person game for ten
periods with new pairings made randomly in
each period.®> Earnings for the two-hour ses-

3 We only had time to run about six one-shot games in
each session, so the data are obtained from a large number
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sions ranged from $15 to $60, with an average
of about $35. Each one-shot game began with
the distribution and reading of the instructions
for that game.* These instructions contained
assurances that all money earned would be paid
and that the game would be followed by “an-
other, quite different, decision-making experi-
ment.” Since the one-shot treatments were
paired, we switched the order of the treasure
and contradiction conditions in each subsequent
session. Finally, the paired treatments were al-
ways separated by other one-shot games of a
different type.

A. The One-Shot Traveler’s Dilemma Game

The Nash equilibrium concept is based on the
twin assumptions of perfect error-free decision-
making and the consistency of actions and be-
liefs. The latter requirement may seem
especially strong in the presence of multiple
equilibria when there is no obvious way for
players to coordinate. More compelling argu-
ments can be given for the Nash equilibrium
when it predicts the play of the unique justifi-
able, or rationalizable, action (B. Douglas
Bernheim, 1984; David G. Pierce, 1984). Ra-
tionalizability is based on the idea that players
should eliminate those strategies that are never
a best response for any possible beliefs, and
realize that other (rational) players will do the
same.’

To illustrate this procedure, consider the
game in which two players independently and
simultaneously choose integer numbers be-
tween (and including) 180 and 300. Both play-
ers are paid the lower of the two numbers, and,
in addition, an amount R > 1 is transferred
from the player with the higher number to the
player with the lower number. For instance, if
one person chooses 210 and the other chooses
250, they receive payoffs of 210 + R and

of sessions where part A involved a wide range of repeated
games, including public goods, coordination, price compe-
tition, and auction games that are reported in other papers.
The one-shot games never followed a repeated game of the
same type.

4 These instructions can be downloaded from http://
www.people.virginia.edu/~cah2k/datapage.html.

5 A well-known example for which this iterated deletion
process results in a unique outcome is a Cournot duopoly
game with linear demand (Fudenberg and Jean Tirole, 1993
pp. 47-48).
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210 — R respectively. Since R > 1, the best
response is to undercut the other’s decision by 1
(if that decision were known), and therefore, the
upper bound 300 is never a best response to any
possible beliefs that one could have. Conse-
quently, a rational person must assign a proba-
bility of zero to a choice of 300, and hence 299
cannot be a best response to any possible beliefs
that rule out choices of 300, etc. Only the lower
bound 180 survives this iterated deletion pro-
cess and is thus the unique rationalizable action,
and hence the unique Nash equilibrium.® This
game was introduced by Kaushik Basu (1994)
who coined it the “traveler’s dilemma” game.’

Although the Nash equilibrium for this game
can be motivated by successively dropping
those strategies that are never a best response
(to any beliefs about strategies that have not yet
been eliminated from consideration), this dele-
tion process may be too lengthy for human
subjects with limited cognitive abilities. When
the cost of having the higher number is small,
i.e., for small values of R, one might expect
more errors in the direction of high claims, well
away from the unique equilibrium at 180, and
indeed this is the intuition behind the dilemma.
In contrast, with a large penalty for having the
higher of the two claims, players are likely to
end up with claims that are near the unique
Nash prediction of 180.

To test these hypotheses we asked 50 subjects
(25 pairs) to make choices in a treatment with
R = 180, and again in a matched treatment
with R = 5. All subjects made decisions in
each treatment, and the two games were sepa-
rated by a number of other one-shot games. The

S In other games, rationalizability may allow outcomes
that are not Nash equilibria, so it is a weaker concept than
that of a Nash equilibrium, allowing a wider range of
possible behavior. It is in this sense that Nash is more
persuasive when it corresponds to the unique rationalizable
outcome.

7The associated story is that two travelers purchase
identical antiques while on a tropical vacation. Their lug-
gage is lost on the return trip, and the airline asks them to
make independent claims for compensation. In anticipation
of excessive claims, the airline representative announces:
“We know that the bags have identical contents, and we will
entertain any claim between $180 and $300, but you will
each be reimbursed at an amount that equals the minimum of
the two claims submitted. If the two claims differ, we wili
also pay a reward R to the person making the smaller claim
and we will deduct a penalty R from the reimbursement to
the person making the larger claim.”
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FIGURE 1. CLAIM FREQUENCIES IN A TRAVELER’S DILEMMA
FOR R = 180 (LIGHT BARS) AND R = 5 (DARK BARS)

ordering of the two treatments was alternated.
The instructions asked the participants to devise
their own numerical examples to be sure that
they understood the payoff structure.

Figure 1 shows the frequencies for each 10-
cent category centered around the claim label on
the horizontal axis. The lighter bars pertain to
the high-R “treasure” treatment, where close to
80 percent of all the subjects chose the Nash
equilibrium strategy, with an average claim of
201. However, roughly the same fraction chose
the highest possible claim in the low-R treat-
ment, for which the average was 280, as shown
by the darker bars. Notice that the data in the
contradiction treatment are clustered at the op-
posite end of the set of feasible decisions from
the unique (rationalizable) Nash equilibrium.?
Moreover, the “anomalous” result for the low-R
treatment does not disappear or even diminish
over time when subjects play the game repeat-
edly and have the opportunity to learn.® Since

8 This result is statistically significant at all conventional
levels, given the strong treatment effect and the relatively
large number of independent observations (two paired ob-
servations for each of the 50 subjects). We will not report
specific nonparametric tests for cases that are so clearly
significant. The individual choice data are provided in the
Data Appendix for this paper on: http://www.people.
virginia.edu/~cah2k/datapage.html.

° In Capra et al. (1999), we report results of a repeated
traveler’s dilemma game (with random matching). When
subjects chose numbers in the range [80, 200] with R = 5,
the average claim rose from approximately 180 in the first
period to 196 in period 5, and the average remained above
190 in later periods. Different cohorts played this game with
different values of R, and successive increases in R resulted
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TABLE 1—THREE ONE-SHOT MATCHING PENNIES GAMES
(wWITH CHOICE PERCENTAGES)

Left (48) Right (52)
Symmetric Top (48) 80, 40 40, 80
matching Bottom (52) 40, 80 80, 40
pennies
Left (16) Right (84)
Asymmetric Top (96) 320, 40 40, 80
matching Bottom (4) 40, 80 80, 40
pennies
Left (80) Right (20)
Reversed Top (8) 44, 40 40, 80
asymmetry  Bottom (92) 40, 80 80, 40

the treatment change does not alter the unique
Nash (and rationalizable) prediction, standard
game theory simply cannot explain the most
salient feature of the data, i.e., the effect of the
penalty/reward parameter on average claims.

B. A Matching Pennies Game

Consider a symmetric matching pennies
game in which the row player chooses between
Top and Bottom and the column player simul-
taneously chooses between Left and Right, as
shown in top part of Table 1. The payoff for the
row player is $0.80 when the outcome is (Top,
Left) or (Bottom, Right) and $0.40 otherwise.
The motivations for the two players are exactly
opposite: column earns $0.80 when row earns
$0.40, and vice versa. Since the players have
opposite interests there is no equilibrium in pure
strategies. Moreover, in order not to be ex-
ploited by the opponent, neither player should
favor one of their strategies, and the mixed-
strategy Nash equilibrium involves randomiz-
ing over both alternatives with equal
probabilities. As before, we obtained decisions
from 50 subjects in a one-shot version of this
game (five cohorts of ten subjects, who were
randomly matched and assigned row or column

in successive reductions in average claims. With a penalty/
reward parameter of 5, 10, 20, 25, 50, and 80 the average
claims in the final three periods were 195, 186, 119, 138, 85,
and 81 respectively. Even though there is one treatment
reversal, the effect of the penalty/reward parameter on av-
erage claims is significant at the 1-percent level. The pat-
terns of adjustment are well explained by a naive Bayesian
learning model with decision error, and the claim distribu-
tions for the final five periods are close to those predicted by
a logit equilibrium (McKelvey and Palfrey, 1995).
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roles). The choice percentages are shown in
parentheses next to the decision labels in the top
part of Table 1. Note that the choice percentages
are essentially “50-50,” or as close as possible
given that there was an odd number of players
in each role.

Now consider what happens if the row play-
er’s payoff of $0.80 in the (Top, Left) box is
increased to $3.20, as shown in the asymmetric
matching pennies game in the middle part of
Table 1. In a mixed-strategy equilibrium, a
player’s own decision probabilities should be
such that the other player is made indifferent
between the two alternatives. Since the column
player’s payoffs are unchanged, the mixed-
strategy Nash equilibrium predicts that row’s
decision probabilities do not change either. In
other words, the row player should ignore the
unusually high payoff of $3.20 and still choose
Top or Bottom with probabilities of one-half.
(Since column’s payoffs are either 40 or 80 for
playing Left and either 80 or 40 for playing
Right, row’s decision probabilities must equal
one-half to keep column indifferent between
Left and Right, and hence willing to random-
ize.)'® This counterintuitive prediction is dra-
matically rejected by the data, with 96 percent
of the row players choosing the Top decision
that gives a chance of the high $3.20 payoff.
Interestingly, the column players seemed to
have anticipated this, and they played Right 84
percent of the time, which is quite close to their
equilibrium mixed strategy of 7. Next, we low-
ered the row player’s (Top, Left) payoff to
$0.44, which again should leave the row play-
er’s own choice probabilities unaffected in a
mixed-strategy Nash equilibrium. Again the ef-
fect is dramatic, with 92 percent of the choices
being Down, as shown in the bottom part of
Table 1. As before, the column players seemed
to have anticipated this reaction, playing Left 80
percent of the time. To summarize, the unique
Nash prediction is for the bolded row-choice
percentages to be unchanged at 50 percent for
all three treatments. This prediction is violated

10 The predicted equilibrium probabilities for the row
player are not affected if we relax the assumption of risk
neutrality. There are only two possible payoff levels for
column so, without loss of generality, columns’ utilities for
payoffs of 40 and 80 can be normalized to 0 and 1. Hence
even a risk-averse column player will only be indifferent
when row uses choice probabilities of one-half.
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TABLE 2—AN EXTENDED COORDINATION GAME

L H S
L 90, 90 0,0 x, 40
H 0,0 180, 180 0, 40

in an intuitive manner, with row players’
choices responding to their own payoffs.'! In
this context, the Nash mixed-strategy prediction
seems to work only by coincidence, when the
payoffs are symmetric.

C. A Coordination Game with a Secure
Outside Option

Games with multiple Nash equilibria pose
interesting new problems for predicting behav-
ior, especially when some equilibria produce
higher payoffs for all players. The problem of
coordinating on the high-payoff equilibrium
may be complicated by the possible gains and
losses associated with payoffs that are not part
of any equilibrium outcome. Consider a coordi-
nation game in which players receive $1.80 if
they coordinate on the high-payoff equilibrium
(H, H) $0.90 if they coordinate on the low-
payoff equilibrium (L, L), and they receive
nothing if they fail to coordinate (i.e., when one
player chooses H and the other L). Suppose that,
in addition, the column player has a secure
option S that yields $0.40 for column and results
in a zero payoff for the row player. This game is
given in Table 2 when x = 0. To analyze the
Nash equilibria of this game, notice that for the
column player a 50-50 combination of L and H
dominates S, and a rational column player
should therefore avoid the secure option. Elim-
inating S turns the game into a standard 2 X 2
coordination game that has three Nash equilibria:

' This anomaly is persistent when subjects play the
game repeatedly. Jack Ochs (1995a, b) investigates a match-
ing pennies game with an asymmetry similar to that of the
middle game in Table 1, and reports that the row players
continue to select Top considerably more than one-half of
the time, even after as many as 50 rounds. These results are
replicated in McKelvey et al. (2000). Similarly, Goeree et
al. (2000) report results for ten-period repeated matching
pennies games that exactly match those in Table 1. The
results are qualitatively similar but less dramatic than those
in Table 1, with row’s choice probabilities showing strong
“own-payoff” effects that are not predicted by the Nash
equilibrium.
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both players choosing L, both choosing H, and
a mixed-strategy equilibrium in which both
players choose L with probability %4.

The Nash equilibria are independent of x,
which is the payoff to the row player when (L,
S) is the outcome, since the argument for elim-
inating S is based solely on column’s payoffs.
However, the magnitude of x may affect the
coordination process: for x = 0, row is indif-
ferent between L and H when column selects S,
and row is likely to prefer H when column does
not select S (since then L and H have the same
number of zero payoffs for row, but H has a
higher potential payoff). Row is thus more
likely to choose H, which is then also the opti-
mal action for the column player. However,
when x is large, say 400, the column player may
anticipate that row will select L in which case
column should avoid H.

This intuition is borne out by the experimen-
tal data: in the treasure treatment with x = 0, 96
percent of the row players and 84 percent of the
column players chose the high-payoff action H,
while in the contradiction treatment with x =
400 only 64 percent of the row players and 76
percent of the column players chose H. The
percentages of outcomes that were coordinated
on the high-payoff equilibrium were 80 for the
treasure treatment versus 32 for the contradic-
tion treatment. In the latter treatment, an addi-
tional 16 percent of the outcomes were
coordinated on the low-payoff equilibrium, but
more than half of all the outcomes were unco-
ordinated, non-Nash outcomes.

D. A Minimum-Effort Coordination Game

The next game we consider is also a coordi-
nation game with multiple equilibria, but in this
case the focus is on the effect of payoff asym-
metries that determine the risks of deviating in
the upward and downward directions. The two
players in this game choose “effort” levels si-
multaneously, and the cost of effort determines
the risk of deviation. The joint product is of the
fixed-coefficients variety, so that each person’s
payoff is the minimum of the two efforts, minus
the product of the player’s own effort and a
constant cost factor, c. In the experiment, we let
efforts be any integer in the range from 110 to
170. If ¢ < 1, any common effort in this
range is a Nash equilibrium, because a uni-
lateral one-unit increase in effort above a
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FIGURE 2. EFFORT CHOICE FREQUENCIES FOR A MINIMUM-
EFFORT COORDINATION GAME WITH HiGH EFFORT COST
(LiGHT BARs) AND Low EFFORT COST (DARK BARS)

common starting point will not change the
minimum but will reduce one’s payoff by c.
Similarly, a one-unit decrease in effort will
reduce one’s payoff by 1 — ¢, i.e., the reduc-
tion in the minimum is more than the savings
in effort costs when ¢ < 1. Obviously, a
higher effort cost increases the risk of raising
effort and reduces the risk of lowering effort.
Thus simple intuition suggests that effort lev-
els will be inversely related to effort costs,
despite the fact that any common effort level
is a Nash equilibrium.

We ran one treatment with a low effort cost
of 0.1, and the data for 50 randomly matched
subjects in this treatment are shown by the dark
bars in Figure 2. Notice that behavior is quite
concentrated at the highest effort level of 170;
subjects coordinate on the Pareto-dominant out-
come. The high effort cost treatment (¢ = 0.9),
however, produced a preponderance of efforts
at the lowest possible level, as can be seen by
the lighter bars in the figure. Clearly, the extent
of this “coordination failure” is affected by the
key economic variable in this model, even
though Nash theory is silent.'

12 The standard analysis of equilibrium selection in co-
ordination is based on the John C. Harsanyi and Reinhard
Selten’s (1988) notion of risk dominance, which allows a
formal analysis of the trade-off between risk and payoff
dominance. Paul G. Straub (1995) reports experimental
evidence for risk dominance as a selection criterium. There
is no agreement on how to generalize risk dominance be-
yond 2 X 2 games, but see Anderson et al. (2001b) for a
proposed generalization based on the “stochastic potential.”
Experiments with repeated plays of coordination games
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TABLE 3—Two0 VERSIONS OF THE KREPS GAME (WITH CHOICE PERCENTAGES)
Left (26) Middle (8) Non-Nash (68) Right (0)
Basic game Top (68) 200, 50 0, 45 10, 30 20, —250
Bottom (32) 0, —250 10, —100 30, 30 50, 40
Left (24) Middle (12) Non-Nash (64) Right (0)
Positive payoff frame Top (84) 500, 350 300, 345 310, 330 320, 50
Bottom (16) 300, 50 310, 200 330, 330 350, 340

E. The Kreps Game

The previous examples demonstrate how the
cold logic of game theory can be at odds with
intuitive notions about human behavior. This
tension has not gone unnoticed by some game
theorists. For instance, David M. Kreps (1995)
discusses a variant of the game in the top part of
Table 3 (where we have scaled back the payoffs
to levels that are appropriate for the laboratory).
The pure-strategy equilibrium outcomes of this
game are (Top, Leff) and (Bottom, Right). In
addition, there is a mixed-strategy equilibrium
in which row randomizes between Top and Bot-
tom and column randomizes between Left and
Middle. The only column strategy that is not
part of any Nash equilibrium is labeled Non-
Nash. Kreps argues that column players will
tend to choose Non-Nash because the other
options yield at best a slightly higher payoff
(i.e., 10, 15, or 20 cents higher) but could lead
to substantial losses of $1 or $2.50. Notice
that this intuition is based on payoff magni-
tudes out of equilibrium, in contrast to Nash
calculations based only on signs of payoff
differences.

Kreps did try the high-hypothetical-payoff
version of this game on several graduate stu-
dents, but let us consider what happens with
financially motivated subjects in an anonymous

have shown that behavior may begin near the Pareto-
dominant equilibrium, but later converge to the equilib-
rium that is worst for all concerned (John B. Van Huyck
et al., 1990). Moreover, the equilibrium that is selected
may be affected by the payoff structure for dominated
strategies (Russell Cooper et al., 1992). See Goeree and
Holt (1998) for results of a repeated coordination game
with random matching. They show that the dynamic
patterns of effort choices are well explained by a simple
evolutionary model of noisy adjustment toward higher
payoffs, and that final-period effort decisions can be
explained by the maximization of stochastic potential
function.

laboratory situation. As before, we randomly
paired 50 subjects and let them make a single
choice. Subjects were told that losses would
be subtracted from prior earnings, which were
quite substantial by that point. As seen from
the percentages in parentheses in the top part
of the table, the Non-Nash decision was se-
lected by approximately two-thirds of the col-
umn players. Of course, it is possible that this
result is simply a consequence of “loss-aver-
sion,” i.e., the disutility of losing some
amount of money is greater than the utility
associated with winning the same amount
(Daniel Kahneman et al., 1991). Since all the
other columns contain negative payoffs, loss-
averse subjects would thus be naturally in-
clined to choose Non-Nash. Therefore, we ran
another 50 subjects through the same game,
but with 300 cents added to payoffs to avoid
losses, as shown in the bottom part of Table
3. The choice percentages shown in parenthe-
ses indicate very little change, with close to
two-thirds of column players choosing Non-
Nash as before. Thus “loss aversion” biases
are not apparent in the data, and do not seem
to be the source of the prevalence of Non-
Nash decisions. Finally, we ran 50 new sub-
jects through the original version in the top
part of the table, with the (Bottom, Right)
payoffs of (50, 40) being replaced by (350,
400), which (again) does not alter the equi-
librium structure of the game. With this ad-
mittedly heavy-handed enhancement of the
equilibrium in that cell, we observed 96 per-
cent Bottom choices and 84 percent Right
choices, with 16 percent Non-Nash persisting
in this, the “treasure” treatment.

II. Dynamic Games with Complete Information

As game theory became more widely used in
fields like industrial organization, the complex-
ity of the applications increased to accommodate
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FIGURE 3. SHOULD You TRUST OTHERS TO BE RATIONAL?

dynamics and asymmetric information. One of
the major developments coming out of these
applications was the use of backward induction
to eliminate equilibria with threats that are not
“credible” (Selten, 1975). Backward induction
was also used to develop solutions to alternating-
offer bargaining games (Ariel Rubinstein,
1982), which was the first major advance on this
historically perplexing topic since Nash’s
(1950) axiomatic approach. However, there
have been persistent doubts that people are able
to figure out complicated, multistage backward
induction arguments. Robert W. Rosenthal (1981)
quickly proposed a game, later dubbed the “cen-
tipede game,” in which backward induction over a
large number of stages (e.g., 100 stages) was
thought to be particularly problematic (e.g.,
McKelvey and Palfrey, 1992). Many of the games
in this section are inspired by Rosenthal’s (1981)
doubts and Randolph T. Beard and Beil’s (1994)
experimental results. Indeed, the anomalies in this
section are better known than those in other sec-
tions, but we focus on very simple games with two
or three stages, using parallel procedures and sub-
jects who have previously made a number of
strategic decisions in different one-shot games.

A. Should You Trust Others to Be Rational?

The power of backward induction is illus-
trated in the top game in Figure 3. The first

DECEMBER 2001

player begins by choosing between a safe deci-
sion, S, and a risky decision, R. If R is chosen,
the second player must choose between a deci-
sion P that punishes both of them and a decision
N that leads to a Nash equilibrium that is also a
joint-payoff maximum. There is, however, a
second Nash equilibrium where the first player
chooses S and the second chooses P. The sec-
ond player has no incentive to deviate from this
equilibrium because the self-inflicted punish-
ment occurs off of the equilibrium path. Sub-
game perfectness rules out this equilibrium by
requiring equilibrium behavior in each sub-
game, i.e., that the second player behave opti-
mally in the event that the second-stage
subgame is reached.

Again, we used 50 randomly paired subjects
who played this game only once. The data for
this treasure treatment are quite consistent with
the subgame-perfect equilibrium; a preponder-
ance of first players trust the other’s rationality
enough to choose R, and there are no irrational
P decisions that follow. The game shown in the
bottom part of Figure 3 is identical, except that
the second player only forgoes 2 cents by
choosing P. This change does not alter the fact
that there are two Nash equilibria, one of which
is ruled out by subgame perfectness. The choice
percentages for 50 subjects indicate that a ma-
jority of the first players did not trust others
to be perfectly rational when the cost of
irrationality is so small. Only about a third of
the outcomes matched the subgame-perfect
equilibrium in this game."®> We did a third treat-
ment (not shown) in which we multiplied all
payoffs by a factor of 5, except that the P
decision led to (100, 348) instead of (100, 340).
This large increase in payoffs produced an even
more dramatic result; only 16 percent of the
outcomes were subgame perfect, and 80 percent
of the outcomes were at the Nash equilibrium
that is not subgame perfect.

B. Should You Believe a Threat
That Is Not Credible?

The game just considered is a little unusual in
that, in the absence of relative payoff effects,
the second player has no reason to punish, since

13 See Beard and Beil (1994) for similar results in a
two-stage game played only once.
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FIGURE 4. SHOULD YOU BELIEVE A THREAT THAT
Is Not CREDIBLE?

the first player’s R decision also benefits the
second player. This is not the case for the game
in Figure 4, where an R decision by the first
player will lower the second player’s payoff. As
before, there are two Nash equilibria, with the
(R, P) equilibrium ruled out by subgame per-
fectness. In addition to not being credible, the
threat to play P is a relatively costly punishment
for the second player to administer (40 cents).

The threat to play P in the top part of Figure
4 is evidently not believed, and 88 percent of
the first players choose the R strategy, with
impunity. The threat is cheap (2 cents) for the
game in the bottom part of the figure, and out-
comes for 25 subject pairs are evenly divided
between the subgame-imperfect outcome, the
incredible threat outcome, and the subgame-
perfect outcome. Cheap threats often are (and
apparently should be) believed. Again we see
that payoff magnitudes and off-the-equilibrium-
path risks matter.

Since the P decisions in the bottom games of
Figures 3 and 4 only reduce the second player’s
payoff by 2 cents, behavior may be affected by
small variations in payoff preferences or emo-
tions, e.g., spite or rivalry. As suggested by
Ernst Fehr and Klaus Schmidt (1999) and Gary
E Bolton and Axel Ockenfels (2000), players
may be willing to sacrifice own earnings in
order to reduce payoff inequities which would
explain the P choices in the contradiction treat-
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ments. Alternatively, the occurrence of the high
fraction of P decisions in the bottom game of
Figure 4 may be due to negative emotions that
follow the first player’s R decision, which re-
duces the second player’s earnings (Matthew
Rabin, 1993). Notice that this earnings reduc-
tion does not occur when the first player
chooses R for the game in the bottom part of
Figure 3, which could explain the lower rate of
punishments in that game.

The anomalous results of the contradiction
treatments may not come as any surprise to
Selten, the originator of the notion of subgame
perfectness. His attitude toward game theory
has been that there is a sharp contrast between
standard theory and behavior. For a long time
he essentially wore different hats when he did
theory and ran experiments, although his 1994
Nobel prize was clearly for his contributions in
theory. This schizophrenic stance may seem
inconsistent, but it may prevent unnecessary
anxiety, and some of Selten’s recent theoretical
work is based on models of boundedly rational
(directional) learning (Selten and Joachim
Buchta, 1998). In contrast, John Nash was re-
portedly discouraged by the predictive failures
of game theory and gave up on both experimen-
tation and game theory (Nasar, 1998 p. 150).

C. Two-Stage Bargaining Games

Bargaining has long been considered a cen-
tral part of economic analysis, and at the same
time, one of the most difficult problems for
economic theory. One promising approach is to
model unstructured bargaining situations “as if”
the parties take turns making offers, with the
costs of delayed agreement reflected in a shrink-
ing size of the pie to be divided. This problem is
particularly easy to analyze when the number of
alternating offers is fixed and small.

Consider a bargaining game in which each
player gets to make a single proposal for how to
split a pie, but the amount of money to be
divided falls from $5 in the first stage to $2 in
the second. The first player proposes a split of
$5 that is either accepted (and implemented) or
rejected, in which case the second player pro-
poses a split of $2 that is either accepted or
rejected by the first player. This final rejection
results in payoffs of zero for both players, so the
second player can (in theory) successfully de-
mand $1.99 in the second stage if the first player
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prefers a penny to nothing. Knowing this, the
first player should demand $3 and offer $2 to
the other in the first stage. In a subgame-perfect
equilibrium, the first player receives the amount
by which the pie shrinks, so a larger cost of
delay confers a greater advantage to the player
making the initial demand, which seems reason-
able. For example, a similar argument shows
that if the pie shrinks by $4.50, from $5 to
$0.50, then the first player should make an
initial demand of $4.50.

We used 60 subjects (six cohorts of ten sub-
jects each), who were randomly paired for each
of the two treatments described above (alternat-
ing in order and separated by other one-shot
games). The average demand for the first player
was $2.83 for the $5/$2 treatment, with a stan-
dard deviation of $0.29. This is quite close to
the predicted $3.00 demand, and 14 of the 30
initial demands were exactly equal to $3.00 in
this treasure treatment. But the average demand
only increased to $3.38 for the other treatment
with a $4.50 prediction, and 28 of the 30 de-
mands were below the prediction of $4.50. Re-
jections were quite common in this contradiction
treatment with higher demands and correspond-
ingly lower offers to the second player, which is
not surprising given the smaller costs of rejecting
“stingy” offers.

These results fit into a larger pattern surveyed
in Douglas D. Davis and Holt (1993 Chapter 5)
and Roth (1995); initial demands in two-stage
bargaining games tend to be “too low” relative
to theoretical predictions when the equilibrium
demand is high, say more than 80 percent of the
pie as in our $5.00/$0.50 treatment, and initial
demands tend to be close to predictions when
the equilibrium demand is 5075 percent of the
pie (as in our $5.00/$2.00 treatment). Interest-
ingly, initial demands are “too high” when the
equilibrium demand is less than half of the pie.
Here is an example of why theoretical explana-
tions of behavior should not be based on exper-
iments in only one part of the parameter space,
and why theorists should have more than just a
casual, secondhand knowledge of the experi-
mental economics literature.'* Many of the di-
verse theoretical explanations for anomalous

14 Another example is the development of theories of
generalized expected utility to explain “fanning out” pref-
erences in Allais paradox situations, when later experiments
in other parts of the probability triangle found “fanning in.”
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behavior in bargaining games hinge on models
of preferences in which a person’s utility de-
pends on the payoffs of both players, i.e., dis-
tribution matters (Bolton, 1998; Fehr and
Schmidt, 1999; Bolton and Ockenfels, 2000;
Miguel Costa-Gomes and Klaus G. Zauner,
2001). The role of fairness is illustrated dramat-
ically in the experiment reported in Goeree and
Holt (2000a), who obtained even larger devia-
tions from subgame-perfect Nash predictions
than those reported here by giving subjects
asymmetric money endowments that were paid
independently of the bargaining outcome. These
endowments were selected to accentuate the
payoff inequities that result in the subgame-
perfect Nash equilibrium, and hence their effect
was to exaggerate fairness issues without alter-
ing the equilibrium prediction. The result (for
seven different one-shot bargaining games) was
for demands to be inversely related to the sub-
game-perfect Nash predictions.

III. Static Games with Incomplete Information

William Vickrey’s (1961) models of auctions
with incomplete information constitute one of the
most widely used applications of game theory. If
private values are drawn from a uniform distribu-
tion, the Bayesian Nash equilibrium predicts that
bids will be proportional to value, which is gen-
erally consistent with laboratory evidence. The
main deviation from theoretical predictions is the
tendency of human subjects to “overbid” (relative
to Nash), which is commonly rationalized in terms
of risk aversion, an explanation that has lead to
some controversy. Glenn W. Harrison (1989), for
instance, argues that deviations from the Nash
equilibrium may well be caused by a lack of
monetary incentives since the costs of such devi-
ations are rather small: the “flat maximum cri-
tique.” Our approach here is to specify two
auction games with identical Nash equilibria, but
with differing incentives not to overbid.

First, consider a game in which each of two
bidders receives a private value for a prize to be
auctioned in a first-price, sealed-bid auction. In
other words, the prize goes to the highest bidder
for a price equal to that bidder’s own bid. Each
bidder’s value for the prize is equally likely to
be $0, $2, or $5. Bids are constrained to be
integer dollar amounts, with ties decided by the
flip of a coin.

The relevant Nash equilibrium in this game
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TABLE 4—EQUILIBRIUM EXPECTED PAYOFFS FOR THE (0,2,5) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

Bid = 0 Bid =1 Bid = 2 Bid = 3 Bid = 4 Bid=5
Value = $0 o* -0.5 —1.66 -3 -4 -5
Value = $2 0.33 0.5% -1 -2 -3
Value = $5 0.83 2 2.5% 2 1 0

TABLE 5—EQUILIBRIUM EXPECTED PAYOFFS FOR THE (0,3,6) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

Bid =0 Bid =1 Bid =2 Bid =3 Bid = 4 Bid =5
Value = $0 0* —0.5 —1.66 -3 —4 -5
Value = $3 0.5 1* 0.83 0 -1 -2
Value = $6 1 2.5 3.33% 3 2 1

with incomplete information about others’ pref-
erences is the Bayesian Nash equilibrium,
which specifies an equilibrium bid for each pos-
sible realization of a bidder’s value. It is
straightforward but tedious to verify that the
Nash equilibrium bids are $0, $1, and $2 for a
value of $0, $2, and $5 respectively, as can be
seen from the equilibrium expected payoffs in
Table 4. For example, consider a bidder with a
private value of $5 (in the bottom row) who
faces a rival that bids according to the proposed
Nash solution. A bid of 0 has a one-half chance
of winning (decided by a coin flip) if the rival’s
value, and hence the rival’s bid, is zero, which
happens with probability one-third. Therefore,
the expected payoff of a zero bid with a value of
$5 equals %5 * V5 * ($5 — $0) = $5/6 = 0.83.
If the bid is raised to $1, the probability of win-
ning becomes %4 (V53 when the rival’s value is $0
plus Y% when the rival’s value is $2). Hence, the
expected payoff of a $1 bid is Y2 * (§5 —
$1) = $2. The other numbers in Table 4 are
derived in a similar way. The maximum expected
payoff in each row coincides with the equilibrium
bid, as indicated by an asterisk (*). Note that the
equilibrium involves bidding about one-half of
the value.'®

Table 5 shows the analogous calculations for
the second treatment, with equally likely private
values of $0, $3, or $6. Interestingly, this in-
crease in values does not alter the equilibrium
bids in the unique Bayesian Nash equilibrium,

15 The bids would be exactly one-half of the value if the
highest value were $4 instead of $5, but we had to raise the
highest value to eliminate multiple Nash equilibria.

as indicated by the location of optimal bids for
each value. Even though the equilibria are the
same, we expected more of an upward bias in
bids in the second (0, 3, 6) treatment. The
intuition can be seen by looking at payoff losses
associated with deviations from the Nash equi-
librium. Consider, for instance, the middle-
value bidder with expected payoffs shown in the
second rows of Tables 4 and 5. In the (0, 3, 6)
treatment, the cost of bidding $1 above the
equilibrium bid is $1 — $0.83 = $0.17, which is
less than the cost of bidding $1 below the equi-
librium bid: $1 — $0.50 = $0.50. In the (0, 2, 5)
treatment, the cost of an upward deviation from
the equilibrium bid is greater than the cost of a
downward deviation; see the middle row of
Table 4. A similar argument applies to the high-
value bidders, while deviation costs are the
same in both treatments for the low-value bid-
der. Hence we expected more overbidding for
the (0, 3, 6) treatment.

This intuition is borne out by bid data for the
50 subjects who participated in a single auction
under each condition (again alternating the or-
der of the two treatments and separating the two
auctions with other one-shot games). Eighty
percent of the bids in the (0, 2, 5) treatment
matched the equilibrium: the average bids for
low-, medium-, and high-value bidders were $0,
$1.06, and $2.64, respectively. In contrast, the
average bids for the (0, 3, 6) treatment were $0,
$1.82, and $3.40 for the three value levels, and
only 50 percent of all bids were Nash bids. The
bid frequencies for each value are shown in
Table 6. As in previous games, deviations from
Nash behavior in these private-value auctions
seem to be sensitive to the costs of deviation. Of
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TABLE 6—BID FREQUENCIES
(EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

(0, 2, 5) Treatment (0, 3, 6) Treatment

Bid Frequency Bid Frequency

Value = 0 0* 20 Value = 0 0* 17

Value = 2 1* 15 Value = 3 1* 5
2 1 2 11
3 3 2
Value=5 1 1 Value =6 1 0
2% 5 2% 3
3 6 3 4
4 2 4 6
5 0 5 1
6 0 6 1

course, this does not rule out the possibility that
risk aversion or some other factor may also have
some role in explaining the overbidding ob-
served here, especially the slight overbidding
for the high value in the (0, 2, 5) treatment. '®

IV. Dynamic Games with Incomplete
Information: Signaling

Signaling games are complex and interesting
because the two-stage structure allows an op-
portunity for players to make inferences and
change others’ inferences about private infor-
mation. This complexity often generates multi-
ple equilibria that, in turn, have stimulated a
sequence of increasingly complex refinements
of the Nash equilibrium condition. Although it
is unlikely that introspective thinking about the
game will produce equilibrium behavior in a
single play of a game this complex (except by
coincidence), the one-shot play reveals useful
information about subjects’ cognitive processes.

In the experiment, half of the subjects were
designated as “senders” and half as “respond-
ers.” After reading the instructions, we began by
throwing a die for each sender to determine

16 Goeree et al. (2001) report a first-price auction exper-
iment with six possible values, under repeated random
matching for ten periods. A two-parameter econometric
model that includes both decision error and risk aversion
provides a good fit of 67 value/bid frequencies and shows
that both the error parameter and risk-aversion parameter
are significantly different from zero. David Lucking-Reiley
(1999) mentions risk aversion as a possible explanation for
overbidding in a variety of auction experiments.
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whether the sender was of type A or B. Every-
body knew that the ex ante probability of a type
A sender was one-half. The sender, knowing
his/her own type would choose a signal, Left or
Right. This signal determined whether the pay-
offs on the right or left side of Table 7 would be
used. (The instructions used letters to identify
the signals, but we will use words here to facil-
itate the explanations.) This signal would be
communicated to the responder that was
matched with that sender. The responder would
see the sender’s signal, Left or Right, but not the
sender’s type, and then choose a response, C, D,
or E. The payoffs were determined by Table
7, with the sender’s payoff to the left in each
cell.

First, consider the problem facing a type A
sender, for whom the possible payoffs from
sending a Left signal (300, 0, 500) seem, in
some loose sense, less attractive than those
for sending a Right signal (450, 150, 1,000).
For example, if each response is thought to be
equally likely (the “principle of insufficient
reason”), then the Right signal has a higher
expected payoff. Consequently, type A’s pay-
offs have been made bold for the Right row in
the top right part of Table 7. Applying the
principle of insufficient reason again, a type B
sender looking at the payoffs in the bottom
row of the table might be more attracted by
the Left signal, with payoffs of (500, 300,
300) as compared with (450, 0, 0).!” There-
fore, sender B’s payoffs are in bold for the
Left signal. In fact, all of the type B subjects
did send the Left signal, and seven of the ten
type A subjects sent the Right signal. All
responses in this game were C, so all but three
of the outcomes were in one of the two cells
marked by an asterisk. Notice that this is an
equilibrium, since neither type of sender
would benefit from sending the other signal,
and the respondent cannot do any better than
the maximum payoff received in the marked
cells. This is a separating Nash equilibrium;
the signal reveals the sender’s type.

The payoff structure for this game becomes a
little clearer if you think of the responses as one
of three answers to a request: Concede, Deny, or

17 These are not dominance arguments, since the responder
can respond differently to each signal, and the lowest payoff
from sending one signal is not higher than the highest payoff
that can be obtained from sending the other signal.
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TABLE 7-——SIGNALING WITH A SEPARATING EQUILIBRIUM (MARKED BY ASTERISKS) (SENDER’S PAYOFF, RESPONDER’S PAYOFF)

Response to Left signal

Response to Right signal

C D E C D E
Type A sends Left 300, 300 0,0 500, 300 Type A sends Right 450, 900 150, 150 1,000, 300
@)
Type B sends Left 500, 500 300,450 300,0 Type B sends Right 450, 0 0, 300 0, 150
*)

TABLE 8—SIGNALING WITHOUT A SEPARATING EQUILIBRIUM (SENDER’S PAYOFF, RESPONDER’S PAYOFF)

Response to Left signal

Response to Right signal

C D E C D E
Type A 300, 300 0,0 500, 300 Type A 450, 900 150, 150 1,000, 300
sends Left sends Right
Type B 300, 300 300, 450 300, 0 Type B 450, 0 0, 300 0, 150
sends Left sends Right

Evade. With some uncertainty about the send-
er’s type, Evade is sufficiently unattractive to
respondents that it is never selected. Consider
the other two responses and note that a sender
always prefers that the responder choose Con-
cede instead of Deny. In the separating equilib-
rium, the signals reveal the senders’ types, the
responder always Concedes, and all players are
satisfied. There is, however, a second equilib-
rium for the game in Table 7 in which the
responder Concedes to Left and Denies Right,
and therefore both sender types send Left to
avoid being Denied.'® Backward induction ra-
tionality (of the sequential Nash equilibrium)
does not rule out these beliefs, since a deviation
does not occur in equilibrium, and the respon-
dent is making a best response to the beliefs.
What is unintuitive about these beliefs (that a
deviant Right signal comes from a type B) is
that the type B sender is earning 500 in this
(Left, Concede) equilibrium outcome, and no
deviation could conceivably increase this pay-
off. In contrast, the type A sender is earning 300
in the Left side pooling equilibrium, and this
type could possibly earn more (450 or even
1,000), depending on the response to a devia-
tion. The In-Koo Cho and Kreps (1987) intui-

18 To check that the responder has no incentive to devi-
ate, note that Concede is a best response to a Left regardless
of the sender’s type, and that Deny is a best response to a
deviant Right signal if the responder believes that it was sent
by a type B.

tive criterion rules out these beliefs, and selects
the separating eguilibrium observed in the trea-
sure treatment.!

The game in Table 8 is a minor variation on
the previous game, with the only change be-
ing that the (500, 500) in the bottom left part
of Table 7 is replaced by a (300, 300) pay-
off.2° As before, consider the sender’s ex-
pected payoffs when each response is
presumed to be equally likely, which leads
one to expect that type A senders will choose
Right and that type B senders will choose
Left, as indicated by the bold payoff numbers.
In the experiment, 10 of the 13 type A senders
did choose Right, and 9 of the 11 type B
senders did choose Left. But the separation
observed in this contradiction treatment is not
a Nash equilibrium.?! All equilibria for this

19 Brandts and Holt (1992, 1993) report experimental
data that contradict the predictions of the intuitive criterion,
i.e., the decision converged to an equilibrium ruled out by
that criterion.

20 Unlike the paired treatments considered previously,
the payoff change for these signaling games does alter the
set of Nash equilibria.

21 The respondents would prefer to Concede to a Right
signal and Deny a Left signal. Type B senders would there-
fore have an incentive to deviate from the proposed sepa-
rating equilibrium and send a Right signal. In the
experiment, half of the Left signals were Denied, whereas
only 2 of the 12 Right signals were Denied.
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contradiction treatment involve “pooling,”
with both types sending the same signal.*

V. Explaining Anomalous Behavior
in One-Shot Games

Although the results for the contradiction
treatments seem to preclude a game-theoretic
explanation, many of the anomalous data pat-
terns are related to the nature of the incentives.
This suggests that it may be possible to develop
formal models that explain both treasures and
contradictions. Below we discuss several recent
approaches that relax the common assumptions
of perfect selfishness, perfect decision-making
(no error), and perfect foresight (no surprises).

As noted in Section II, the anomalies ob-
served for the dynamic games in Figures 3 and
4 are consistent with models of inequity aver-
sion (Fehr and Schmidt, 1999; Bolton and Oc-
kenfels, 2000), which assumes that people like
higher payoffs for themselves and dislike earn-
ing less than the other person (“envy”) or earn-
ing more (“guilt”). Inequity aversion also seems
to play a role when players bargain over the
division of a fixed amount of money (Goeree
and Holt, 2000a). However, it cannot explain
observed behavior in the contradiction match-
ing pennies treatments. Consider, for exam-
ple, the “320” version of the matching
pennies game in Table 1. Since the column
player is averse to the (320, 40) outcome, the
column player would only be willing to ran-
domize between Left and Right if the attrac-
tiveness of Right is increased by having the
row player play Bottom more often than the
0.5 probability that would make a purely self-
ish column player indifferent. This prediction,
that the row player should play Bottom more

22 For example, it is an equilibrium for both types to send
Right if a Left signal triggers a C or a D response. The D
response to Left is appropriate if the respondent thinks the
deviant signal comes from a type B sender, and the C
response is appropriate if the deviant is thought to be of type
A. Beliefs that the deviant is of type A are intuitive, since
type A earns 450 in equilibrium and could possibly earn
more (500) by switching to Left (if an E response follows).
A second pooling equilibrium involves both types sending a
Left signal to which the respondents Concede. A deviant
Right signal is Denied, which is appropriate if the respon-
dent thinks the deviant signal comes from a type B sender.
Again these beliefs are intuitive since the type B sender
could possibly gain by deviating.
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often, is sharply contradicted by the data in
the middle part of Table 1.232*

Another possibility is that behavior in one-
shot games conforms to a simple heuristic. In-
deed, some experimental economists have
suggested that subjects in the initial period of a
repeated game choose the decision that maxi-
mizes their security level, i.e., the “maximim”
decision. For example, in the Kreps game of
Table 3, the frequently observed Non-Nash de-
cision maximizes column’s security. The strong
treatment effects in the matching pennies games
cannot be explained in this way, however, since
in all three treatments each player’s minimum
payoff is the same for both decisions. A similar
argument applies to the coordination game in
Table 2. Moreover, the security-maximizing
choices in the traveler’s dilemma and the
minimum-effort coordination game are the low-
est possible decision, which is contradicted by
the high claim and effort choices in the contra-
diction treatments. Subjects may be risk averse
in unfamiliar situations, but the extreme risk
aversion implied by maximum security is gen-
erally not observed. Furthermore, heuristics
based on reciprocity or a status quo bias do not
apply to single-stage, one-shot games where
there is neither a precedent nor an opportunity
to reciprocate. Nor can loss aversion be the
primary cause, since losses are impossible in
most of the games reported here, and the pos-
sibility of a loss had no effect in the Kreps
game.

As an alternative to simple heuristics, one
could try to model players’ introspective
thought processes. Previous models have typi-
cally specified some process of belief forma-
tion, assuming that players best respond to the

23 Goeree et al. (2000) report formal econometric tests
that reject the predictions of inequity aversion models in the
context of a group of repeated asymmetric matching pennies
games.

24 Payoff inequity aversion also has no effect in the
minimum-effort coordination game; any common effort
level is still a Nash equilibrium. To see this, note that a
unilateral effort increase from a common level reduces
one’s own payoff and creates an disadvantageous inequity.
Similarly, a unilateral decrease from a common effort level
reduces one’s payoff and creates an inequity where one
earns more than the other, since their costly extra effort is
wasted. Thus inequity aversion cannot explain the strong
effect of an increase in effort costs.
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resulting beliefs.>> The experiments reported
above indicate that magnitudes (not just signs)
of payoff differences matter, and it is thus nat-
ural to consider a decision rule for which choice
probabilities are positively but imperfectly re-
lated to payoffs. The logit rule, for example,
specifies that choice probabilities, p;, for op-
tions i = 1, ... ,m, are proportional to exponen-
tial functions of the associated expected
payoffs, m:

1 p= exp(m/p) o1 .
1 E ) exp(wje/u) ’ ’ ’ ’

,,,,,

where the sum in the denominator ensures that
the probabilities sum to one, and the “error
parameter,” w, determines how sensitive choice
probabilities are to payoff differences.?®

In order to use the “logit best response” in
(1), we need to model the process of belief
formation, since belief probabilities are used to
calculate the expected payoffs on the right side
of (1). By the principle of insufficient reason
one might postulate that each of the others’
actions are equally likely. This corresponds to
the Stahl and Wilson (1995) notion of “level
one” rationality, which captures many of the
first-period decisions in the “guessing game”

25 Perhaps the best-known model of introspection is Har-
sanyi and Selten’s (1988) “tracing procedure.” This proce-
dure involves an axiomatic determination of players’
common priors (the “preliminary theory”) and the construc-
tion of a modified game with payoffs for each decision that
are weighted averages of those in the original game and of
the expected payoffs determined by the prior distribution.
By varying the weight on the original game, a sequence of
best responses for the modified game are generated. This
process is used to select one of the Nash equilibria of the
original game. Gonzalo Olcina and Amparo Urbano (1994)
also use an axiomatic approach to select a prior distribution,
which is then revised by a simulated learning process that is
essentially a partial adjustment from current beliefs to best
responses to current beliefs. Since neither the Harsanyi/
Selten model nor the Olcina/Urbano model incorporates any
noise, they predict that behavior will converge to the Nash
equilibrium in games with a unique equilibrium, which is an
undesirable feature in light of the contradictions data re-
ported above.

26 As . goes to zero, payoff differences are “blown up,”
and the probability of the optimal decision converges to 1.
In the other extreme, as u goes to ®, the choice probabilities
converge to 1/m independently of expected payoffs. See R.
Duncan Luce (1959) for an axiomatic derivation of the logit
choice rule in (1).
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reported by Nagel (1995).%7 It is easy to verify
that level one rationality also provides good
predictions for both treasure and contradiction
treatments in the traveler’s dilemma, the
minimum-effort coordination game, and the
Kreps game. There is evidence, however, that at
least some subjects form more precise beliefs
about others’ actions, possibly through higher
levels of introspection.”® In the matching pen-
nies games in Table 1, for example, a flat prior
makes column indifferent between Left and
Right, and yet most column players seem to
anticipate that row will choose Top in the 320
version and Bottom in the 44 version of this
game.

Of course, what the other player does de-
pends on what they think you will do, so the
next logical step is to assume that others make
responses to a flat prior, and then you respond to
that anticipated response (Selten, 1991). This is
Stahl and Wilson’s (1995) “level two” rational-
ity. There is, however, no obvious reason to
truncate the levels of iterated thinking. The no-
tion of rationalizability discussed above, for ex-
ample, involves infinitely many levels of
iterated thinking, with “never-best” responses
eliminated in succession. But rationalizability
seems to imply too much rationality, since it
predicts that all claims in the traveler’s dilemma
will be equal to the minimum claim, indepen-
dent of the penalty/reward parameter. One way
to limit the precision of the thought process,
without making an arbitrary assumption about
the number of iterations, is to inject increasing
amounts of noise into higher levels of iterated
thinking (Goeree and Holt, 1999; Kiibler and
Weizsécker, 2000). Let ¢ " denote the logit best-
response map (for error rate w) on the right side
of (1). Just as a single logit response to beliefs,
Po> can be represented as p = ¢, (py), a series of
such responses can be represented as:

27 In our own work, we have used a noisy response to a
flat prior as a way of starting computer simulations of
simulations of behavior in repeated games (Brandts and
Holt, 1996; Capra et al., 1999, 2002; Goeree and Holt,
1999).

28 Costa-Gomes et al. (2001), for example, infer some
heterogeneity in the amount of introspection by observing
the types of information that subjects acquire before making
a decision.

29 Goeree and Holt (2000b) use continuity arguments to
show that the limit in (2) exists even if the (increasing) error
parameters are person specific.
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(2) p= lim(bm((buz("' ¢,L,,(I’o))),

n—>0

where w;, = u, =.., with w, converging
to infinity.° This assumption captures the idea
that it becomes increasingly complex to do
more and more iterations.?! Since ¢, for p = oo
maps the whole probability simplex to a single
point, the right side of (2) is independent of the
initial belief vector p,. Moreover, the introspec-
tion process in (2) yields a unique outcome even
in games with multiple Nash equilibria. Note
that the choice probabilities on the left side of
(2) generally do not match the beliefs at any
stage of the iterative process on the right. In
other words, the introspective process allows
for surprises, which are likely to occur in one-
shot games.

For games with very different levels of com-
plexity such as the ones reported here, the error
parameters that provide the best fit are likely to
be different. In this case, the estimates indicate
the degree of complexity, i.e., they serve as a
measurement device. For games of similar com-
plexity, the model in (2) could be applied to
predict behavior across games. We have used it
to explain data patterns in a series of 37 simple
matrix games, assuming a simple two-parame-
ter model for which w, = wf”, where ¢ deter-
mines the rate at which noise increases with
higher iterations (Goeree and Holt, 2000b). The
estimated value (t = 4.1) implies that there is
more noise for higher levels of introspection, a
result that is roughly consistent with estimates
obtained by Kiibler and Weizsécker (2000) for
data from information-cascade experiments.

The analysis of introspection is a relatively
understudied topic in game theory, as compared
with equilibrium refinements and learning, for

30 The case of a constant parameter (W, = f, = ... = )
is of special interest. In this case, the process may not
converge for some games (e.g., matching pennies), but
when it does, the limit probabilities, p*, must be invariant
under the logit map: ¢, (p*) = p*. A fixed point of this
type constitutes a “logit equilibrium,” which is a special
case of the quantal-response equilibrium defined in
McKelvey and Palfrey (1995). It is in this sense that the
logit equilibrium arises as a limit case of the noisy intro-
spective process defined in (2).

31 For an interesting alternative approach, see Capra
(1998). In her model, beliefs are represented by degenerate
distributions that put all probability mass at a single point.
The location of the belief points is, ex ante, stochastic.
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example. Several of the models discussed above
do a fairly good job of organizing the qualitative
patterns of conformity and deviation from the
predictions of standard theory, but there are
obvious discrepancies. We hope that this paper
will stimulate further theoretical work on mod-
els of behavior in one-shot games. One poten-
tially useful approach may be to elicit beliefs
directly as the games are played (Theo Offer-
man, 1997; Andrew Schotter and Yaw Narkov,
1998).

VI. Conclusion

One-shot game experiments are interesting
because many games are in fact only played
once; single play is especially relevant in appli-
cations of game theory in other fields, e.g.,
international conflicts, election campaigns, and
legal disputes. The decision makers in these
contexts, like the subjects in our experiments,
typically have experience in similar games with
other people. One-shot games are also appeal-
ing because they allow us to abstract away from
issues of learning and attempts to manipulate
others’ beliefs, behavior, or preferences (e.g.,
reciprocity, cooperativeness). This paper re-
ports the results of ten pairs of games that are
played only once by subjects who have experi-
ence with other one-shot and repeated games.
The Nash equilibrium (or relevant refinement)
provides accurate predictions for standard ver-
sions of these games. In each case, however,
there is a matched game for which the Nash
prediction clearly fails, although it fails in a way
that is consistent with simple (non-game-
theoretic) intuition. The results for these expe-
rienced subjects show:

(1) Behavior may diverge sharply from the
unique rationalizable (Nash) equilibrium in
a social (traveler’s) dilemma. In these
games, the Nash equilibrium is located on
one side of the range of feasible decisions,
and data for the contradiction treatment
have a mode on the opposite side of this
range. The most salient feature of the data
is the extreme sensitivity to a parameter
that has no effect on the Nash outcome.

(2) Students suffering through game theory
classes may have good reasons when they
have trouble understanding why a change
in one player’s payoffs only affects the



VOL. 91 NO. 5

other player’s decision probabilities in a
mixed-strategy Nash equilibrium. The data
from matching pennies experiments show
strong “own-payoff” effects that are not
predicted by the unique (mixed-strategy)
Nash equilibrium. The Nash analysis seems
to work only by coincidence, when the pay-
off structure is symmetric and deviation
risks are balanced.

(3) Effort choices are strongly influenced by
the cost of effort in coordination games, an
intuitive result that is not explained by stan-
dard theory, since any common effort is a
Nash equilibrium in such games. Moreover,
as Kreps conjectured, it is possible to de-
sign coordination games where the majority
of one player’s decisions correspond to the
only action that is not part of any Nash
equilibrium.

(4) Subjects often do not trust others to be
rational when irrationality is relatively cost-
less. Moreover, “threats” that are not cred-
ible in a technical sense may nevertheless
alter behavior in simple two-stage games
when carrying out these threats is not
costly.

(5) Deviations from Nash predictions in alter-
nating-offer bargaining games and in pri-
vate-value auctions are inversely related to
the costs of such deviations. The effects of
these biases can be quite large in the games
considered.

(6) It is possible to set up a simple signaling
game in which the decisions reveal the sig-
naler’s type (separation), even though the
equilibrium involves pooling.

So what should be done? Reinhard Selten,
one of the three game theorists to share the 1994
Nobel Prize, has said: “Game theory is for prov-
ing theorems, not for playing games.”* Indeed,
the internal elegance of traditional game theory
is appealing, and it has been defended as being
a normative theory about how perfectly rational
people should play games with each other,
rather than a positive theory that predicts actual
behavior (Rubinstein, 1982). It is natural to
separate normative and positive studies of indi-
vidual decision-making, which allows one to

32 Selten reiterated this point of view in a personal com-
munication to the authors.
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compare actual and optimal decision-making.
This normative-based defense is not convincing
for games, however, since the best way for one
to play a game depends on how others actually
play, not on how some theory dictates that ra-
tional people should play. John Nash, one of
the other Nobel recipients, saw no way
around this dilemma, and when his experi-
ments were not providing support to theory,
he lost whatever confidence he had in the
relevance of game theory and focused on
more purely mathematical topics in his later
research (Nasar, 1998).

Nash seems to have undersold the importance
of his insight, and we will be the first to admit
that we begin the analysis of a new strategic
problem by considering the equilibria derived
from standard game theory, before considering
the effects of payoff and risk asymmetries on
incentives to deviate. But in an interactive, stra-
tegic context, biases can have reinforcing ef-
fects that drive behavior well away from Nash
predictions, and economists are starting to ex-
plain such deviations using computer simula-
tions and theoretical analyses of learning and
decision error processes. There has been rela-
tively little theoretical analysis of one-shot
games where learning is impossible. The mod-
els of iterated introspection discussed here offer
some promise in explaining the qualitative fea-
tures of deviations from Nash predictions enu-
merated above. Taken together, these new
approaches to a stochastic game theory enhance
the behavioral relevance of standard game the-
ory. And looking at laboratory data is a lot less
stressful than before.
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