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Abstract

We present a theoretical model of noisy introspection designed to explain behavior in games
played only once. The model determines layers of beliefs about others’ beliefs.aboetc., but
allows for surprises by relaxing the equilibrium requirement that belief distributions coincide with
decision distributions. Noise is injected into iterated conjectures about others’ decisions and beliefs,
which causes the predictions to differ from those of deterministic models of iterated thinking, e.g.,
rationalizability. The paper contains a convergence proof that implies existence and uniqueness of the
outcome of the iterated thought process. In addition, estimated introspection and noise parameters
for data from 37 one-shot matrix games are reported. The accuracy of the model is compared with
that of several alternatives.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Game theory is a collection of mathematical models that are used to predict and
explain behavior in strategic situations where players’ optimal decisions depend on what
other players are expected to do. A Nash equilibrium in a game is a state of rest in the
sense that no player would want to change their own strategy unilaterally, knowing what
strategies others are using. This notion of equilibrium is appropriate when decision makers
have learned from repeated interactions what others can be expected to do. Many recent
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applications of game theory outside of economics, however, are more accurately modeled
as games played only once, e.g., legal disputes, election campaigns, and international
conflicts. If game theory is to become a unifying theory of social science, we must develop
models that predict behavior in one-shot interactions where it is not possible for players
to learn what to expect. In such cases, it may or may not be appropriate to assume that
some process of introspection leads players to a Nash equilibrium. Humans are capable
of many layers of speculation about possible actions and reactions, like the inspector in
Edgar Allen Poe’sThe Purloined Letter who tries to think about where the thief thinks

the inspector will look, and where the thief thinks the inspector thinks the thief will hide
the letter, etc. Iterated reasoning of this type corresponds to considering a sequence of
best responses to best responses. It is well known that this sequence converges to a Nash
equilibrium, if it converges at all. More analysis is needed, however, if there are multiple
Nash equilibria, or if people are more and more uncertain about what others think, about
what others think they think, etc. This paper presents a new model of noisy introspection
designed to explain behavior in single-shot games.

2. Somesimple games

Since game theory makes precise predictions on the basis of the payoffs and game
structure, itis natural to test this theory in controlled experiments where the players’ money
payoffs depend on their own and others’ decisions. Many of the initial tests of the Nash'’s
theory involved repeated plays of a game for which the outcome with the highest total
payoffs for both players is not an equilibrium. In Table 1, for example, each player chooses
between decisions labelgd or S, with Row’s payoffs listed on the left. The lower-right
box shows three variations of Row’s payoffs that do not alter the fact that this outcome
maximizes the sum of the players’ payoffs. This R) outcome is risky in the sense that a
unilateral deviation by Row would increase Row’s payoffs to 25. Anticipating that, Column
may also consider switching t8, and (S, S) is the only equilibrium with no unilateral
incentive to deviate. Notice that iterated thinking in this manner focuses attention on the
Nash equilibrium. In experiments with repeated plays of games like this, it is common to
observe a significant amount of cooperatiy®e R) outcomes. Nash criticized initial tests
of his theory using repeated plays with the same individuals, arguing that the theory should
be applied to the whole multiple-round interaction (Nasar, 1998).

In this paper, we will calibrate our analysis using data from 37 one-shot games reported
by the psychologists Guyer and Rapoport (1972), including seven asymmetric prisoner’s

Table 1
A one-sided prisoner’'s dilemma game (Row payoff, Column pay-
off): three variations affecting Row’s “incentive to defect”

Column player’s decision

Row player’s decision S R

s 6,12 254
R ~4,18 918/24, 25
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Table 2
A coordination game with multiple equilibria: three variations that reduce
the risk for Row to “force” Column

Column player’s decision

Row player’s decision S R
S 10, 19 4,7
R —14/-7/-1,4 19,10

dilemma games, three of which are shown in Table 1. The changes in Row’s payoffs from
9 to 18 to 24 successively increase the attractiveness of the joint-maximizing outcome
for Row, without changing the location of the unique Nash equilibriuraSass). These
changes caused a sharp reduction in the incidenSechbices by Row players, from 90%

to 84% to 71%. While the best responses that determine a Nash equilibrium only depend
on the signs, not the magnitudes, of payoff differences, the data seem to be affected by
magnitudes in an intuitive manner.

Much recent work in game theory pertains to games with multiple equilibria, as in each
of the three variations of the “coordination game” in Table 2, also taken from Guyer and
Rapoport (1972). Th& decision is the “maximin” strategy; it maximizes the minimum
payoff, so we will sometimes refer t6 as “safe” andr as “risky.” The risky decisiorR
is best for each if the other will also chooRe but S is best if the probability of the other
playing S is sufficiently high. These best response functions for the first variation of this
game are shown in Fig. 1 as dark lines, with Row’s probabilitys afn the vertical axis
and Column’s probability o on the horizontal axis (please ignore the dotted lines for
now). Row’s best response stays on the bottom of the figure on the left side, but jumps to
1 as soon as Column’s probability Sfexceeds 0.39. The crossings of the best response

Row Pr{S)
1 — T
loglt SR _~* X |
e /
Row .-~ /
0.76F pd /
i /.»*
'/ /
// /,—
o5k . loglt SR/
e Column
,/ ,/'/
S
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P - /./
0 n - 1 1
o} 0.26 0.5 0.76 1
Column Pr(S)

Fig. 1. A coordination game: best responses (dark lines) and logit stochastic responses (dotted lines).
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functions at(0, 0) and(1, 1) represent Nash equilibria in pure strategies, and the crossing
at(0.39,0.19) is an equilibrium in randomized strategies.

In the first variation of this game, the percentagess afhoices were 89% and 92%
for Row and Column players respectively in the one-shot games reported by Guyer and
Rapoport (1972). These proportions are graphed as<dnr' the upper-right part of the
figure. This outcome is near thig, §) Nash outcome that is “risk-dominant” in the sense of
Harsanyi and Selten (1988). This risk dominance criterion is based on the intuitive notion
that it is more risky to deviate from thes, S) outcome: in the first variation a unilateral
deviation costs 24 for Row and 26 for Column, whereas unilateral deviations from the
(R, R) outcome only cost 15 for Row and 6 for Column. The three variations of this game,
going from top to bottom, reduce Row’s “deviation loss” at {l§eS) equilibrium, but it is
still the risk dominant outcome in all caseFhese payoff changes do reduce the riskiness
of Row’s R decision, and not surprisingly, the incidenceSoplay falls from 89% to 88%
to 75%. Again we see that magnitudes of payoff differences seem to matter, even when the
“preferred” Nash equilibrium is unaffected.

Theoretical justifications for payoff-magnitude effects can be devised by introducing
some random noise into the decision-making process. Without such noise, the probability
of choosing a decision jumps “sharply” from 0 to 1 as soon as its expected payoff is the
highest available. Following Luce (1959), suppose instead that the probability of choosing
each decision is a smoothly increasing function of the expected payoff for that decision.
Luce provided an axiomatic derivation of the popular “logit” rule, which is based on
exponential functiond.Suppose there are only two possible optighand R, which yield
expected payoffs s andx, to playeri. Then the logit probability of choosing strategy
S is given by

exprs/ 1)
exp(n /1) + expim /1)’

and the probability that playérchoosesR is simply 1 minus the probability in (1). The
denominator in (1) ensures that probabilities lie between 0 and 1uaizda “noise”

or “error” parameter. At goes to zero, the decision with the highest expected payoff
is selected with probability one. The slight rounding off of the corners of the response
functions in Fig. 1 is due to the fact that these were drawn for gdasalue of 0.1 (instead

of 0). A further increase i softens the corners even more, and the dotted lines are for
logit stochastic responses with= 6.6, which we estimated from the Guyer and Rapoport
data as explained below. With this higher amount of noise, the lines only intersect once,
close to the risk-dominant Nash equilibrium. This intersectio@#7, 0.98) is aquantal

pi(§) = 1)

1 Risk dominance selects the equilibrium for which the product of Row’s and Column’s deviation losses is
greatest.

2 The necessary axioms are that choice probabilities be unaffected by adding a constant to all payoffs, and
that ratios of probabilities for two decisions be independent of the payoffs associated with any other decision.
An alternative derivation of the logit rule is based on an assumption that the payoffs for each decision are
augmented by an unobserved preference shock, with a double exponential distribution. This random-preference
model was used by Harsanyi (1967-1968) in an equilibrium analysis, which is closely related to the quantal
response equilibrium discussed below.
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response equilibrium proposed by McKelvey and Palfrey (1995); it is an equilibrium in

the sense that each of these probabilities is a logit stochastic response to the other one.
This equilibrium is a generalization of the Nash equilibrium, and it converges to a Nash
outcome ag goes to zero (perfect rationality). In the other extreme, as the noise parameter
w1 goes to infinity (perfect randomness), the intersection of the logit stochastic response
lines converges to the centroid, with probabilities of 0.5 for each dectsion.

In some cases, laboratory experiments produce outcomes that are reasonably close to
Nash predictions, both in one-shot play as for the coordination game discussed above,
and in settings where players are randomly rematched with each other for a series of
(approximately) one-shot interactions. There are many situations, however, in which
observed play shows systematic deviations from Nash, and these are often tracked nicely
by the quantal response equilibrium (see McKelvey and Palfrey, 1995; and for continuous
games, Goeree and Holt, 1999For the middle variation of the asymmetric prisoner’s
dilemma in Table 1, the unique Nash outcomésdss), but the percentage & choices
(84% for Row and 82% for Column) are quite close to the logit quantal response
predictions (81% for Row and 85% for Column).

Both the Nash equilibrium and its quantal response generalizatiomgargbrium
concepts, e.g., fixed point intersections in Fig. 3, that map belief probabilities into
actions that occur with the same probability. In all but the simplest games, equilibrium
concepts will have the most explanatory power when people have the opportunity to
learn about others’ decision probabilities through experience. Such “rational expectations”
assumptions may not be appropriate in one-shot interactions with no chance for learning
and adaptation.

To see why surprises may occur in disequilibrium situations, consider again the dotted
stochastic response lines for the coordination game in Fig. 1. The logit quantal response
equilibrium (for the pooled estimatg, = 6.6) is almost at an extreme corner where the
probabilities ofS are essentially 1. Prior to the first and only play of a game like this, it
may be the case that players are not so sure about others’ decisions. If the Row player
thinks that Column will only plays with a probability of about 0.7, for example, then the
logit response is represented by the asterisk on the dotted line for Row. A similar asterisk
is shown on Column’s stochastic response line, and together these beliefs produce choice
probabilities that are somewhat smaller than the logit and Nash predictions. In fact, beliefs
of about 0.7 produce stochastic responses that are close to the actual choice percentages
marked with the %.” Since these two asterisk points do not coincide, the expectations
are not in equilibrium, e.g., Row expects a 0.7 chance,ofvhereas Column playS
with probability 0.92. Notice that the asterisk points pull decisions away from the logit

3 In fact, there is a locus of quantal response equilibria, connecting the center of Fig. 1 with the upper-right
corner, where each point on the locus corresponds to a quantal response equilibrium for a particularalue of
This locus will pass very close to thex” that represents the data average, and in this sense, a quantal response
model can explain the data in this game. The approach taken in Section 5, however, is to estimate a single value
of  using data from 37 different games.

4 These papers report situations in which both quantal response equilibria and the observed choice data may
be located far from Nash outcomes, in some cases on the opposite side of the set of feasible decisions, see also
Goeree and Holt (2001).
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intersection toward lower probabilities 6f This “pull to the center” is caused by (1) the
tendency for uncertainty about other’s actions to push beliefs towards 0.5, and (2) the fact
that the dotted line logit response functions in Fig. 1 have positive slopes. In games where
the logit response functions have negative slopes, however, the effect is reversed: greater
uncertainty about other’s decisions will pull decisions toward higher probabiliti€$tedn

are implied by the logit equilibrium. This “push to the edge” effect is revisited below in
the context of “chicken” games where it is best to pkaysafe) when the other player is
playing R (risky) and vice versa.

The next section presents a model of noisy introspection that formalizes the intuition
from these examples. This model is essentially a noisy version of the Bernheim (1984)
and Pearce (1984) notion of rationalizability, as explained in Section 4. We used data from
one-shot games to estimate the model parameters, and Section 5 contains an assessment of
how the model compares with the Nash and logit quantal response predictions. The final
section concludes.

3. Iterated noisy introspection

Play in many types of one-shot games is likely to contain surprises, no matter
how carefully players think about the payoffs before deciding. We therefore relax the
equilibrium condition of consistency of actions and beliefs by introducing a process of
iterated conjectures. Consider the one-sided prisoner’s dilemma game in Table 1, where
Row’'s R decision is never a best response for any beliefs about Column’s decision.
Assuming that Row is rational, Column anticipates Row choosiragnd hence Column
also chooses. Stated differently, the unique “rationalizable” outcome of this game is
the Nash outcomé&s, S). In more complicated games, the notion of rationalizability
corresponds to an iterated process of eliminating strategies that are never best responses
for any beliefs (Bernheim, 1984: Pearce, 198%ye will also consider iterated reasoning
of this type but the noise observed in laboratory data motivates us to incorporate stochastic

5 These slope effects may be either negated or reinforced if the relevant values afifferent for the logit
and introspection model, since lower error rates will push the logit intersection closer to a Nash equilibrium.
Estimates fon. are reported in Section 5 below.

6 Another well known model of introspection is Harsanyi and Selten’s (1988) “tracing procedure.” This
procedure involves an axiomatic determination of players’ common priors (the “preliminary theory”) and the
construction of a modified game with payoffs for each decision that are weighted averages of those in the original
game and of the expected payoffs determined by the prior distribution. By varying the weight on the original
game, a sequence of best responses for the modified game are generated. This process is used to select one of
the Nash equilibria of the original game. Olcina and Urbano (1994) also use an axiomatic approach to select a
prior distribution, which is then revised by a simulated learning process that is essentially a partial adjustment
from current beliefs to best responses to current beliefs. The model has the attractive theoretical property that it
selects the risk-dominant Nash equilibrium ik2 games. Since the simulated learning process has no noise,
it will converge to the Nash equilibrium in games with a unique equilibrium, which is an undesirable feature in
light of the one-shot data reported below. For an alternative approach, see Capra (1998) who introduces stochastic
elements. In her model, beliefs are represented by degenerate distributions that put all probability mass at a single
point, and the introspective process stops when a point is mapped into itself by a linked pair of stochastic best
response functions. Our model, first described in Goeree and Holt (1999), is closer in spirit to the one considered
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elements into the best responéé&his is done by injecting some noise into the system via
the logit choice function in (1).

To illustrate our “noisy introspection” model we start by considering symmetsc22
games. This has the advantage that a player's choice can be represented by a single
probability, e.g., the probability of choosirfg Moreover the symmetry assumption allows
us to drop the player-specific subscripts in (1). The expected payoffs in (1) depend on
a player’s belief about the other’s play, i.e., the probability,with which the other
choosesS. We write rrse(q) andw§(g) to make this dependence more clear. {é¢(q)
denote a player’s logit best response given the player’s betief,

exp(s(q)/ o)
exp(r(q)/ o) + exprg(q)/io)’

whereug is the error rate associated with a player’s decision. Equation (2) determines a
player’s choice probability for decisiofi as a function of the player’s “first-order” belief
about the other’s decision. The other’s decision, in turn, depends on the other’s belief about
the player's own decision, etc. This naturally leads us to consider higher-order beliefs,
denoted byB, B, B2, ..., where:

M (q) = (2)

o B represents a player’s choice probability,

o Blrepresents a player’s (first-order) belief about the other’s choice,

e B? represents a player's (second-order) belief about the other’'s belief about the
player’s own choice, etc.

(Note thatB® and B! correspond t@*°(g) andg in (2).) The logit best response function
can be used iteratively to construct a player’s higher-order beliefs. In particular, we model
a player’s first-order belief as the other’s logit best respopse(B?), given the player’s
second-order belief32. In other words, the thought process that produces a player’s first-
order belief about what the other will do is modeled as the other’s noisy best response
given what the player thinks the other thinks the player will do. This second level of
introspection about what the other person is thinking is likely to be somewhat imprecise,
so we assume that the error rate associated with the transformatig#(B2) is larger
than the error parameter for the transformatiog*o(B1) that determines a player own
choice probabilities.

To define a player’s higher-order beliefs it will prove useful to introduce the following
composition of logit best responses fot k:

®r]: =M o pttlo. ..o phn, (3)

by Kubler and Weizsécker (2000), which has two error parameters, one pertaining to decisions and one pertaining
to beliefs.

7 One important use of introspective theories is to model beliefs in the first period of an experiment. In some
papers, we have initialized computer simulations and learning models by assuming that players make stochastic
best responses to uniform distributions of others decisions. Alternatively, one could assume that others are making
stochastic responses to uniform distributions.



372 J.K. Goeree, C.A. Holt / Games and Economic Behavior 46 (2004) 365-382

which maps a player’sth order belief into hekth order belief:BX = ®*(B™). Presumably,

noise in successive iterations increases since there is likely to be more error associated
with beliefs about others’ beliefs about., etc. We therefore assume that the error
rates associated with higher levels of iterated reasoning form an increasing sequence
(mo < m1 < w2 < --+), which diverges as the number of iterations increases to infinity:
oo = 00. A player’skth order belief BX, can now be defined as the limit:

BY = lim @} (po) = lim ¢ o ¢H<+1 o 0" (po). (4)
n—o0 n—oo

The probability, po, that appears on the right side of (4) is the starting point of the
iterative thought process, which can be chosen arbitrarily. The reason is that logit best
responseé* for u = co mapsany initial belief probability to a uniform probability of one-
half (perfectly noisy behavior). In other words, the assumption that the sequence of error
rates diverges to infinity implies that higher-order beliefs become more and more diffuse,
i.e., players effectively “start out” reasoning from a uniform pAd.

The noisy introspection model defined by (4) is flexible and allows many special cases.
For instance, ifug = oo (and, henceu; = oo for all k), the model produces uniform
choice probabilities as is the case for Stahl and Wilson’s (1995) “level-0 rationality.” This
case corresponds to the left-most vertical line in Fig. 2. The second vertical line in the
figure represents the cagg® = 0 andu; = oo for k > 1, which is “level-1 rationality,”

noise
parameter

level O level 1 level 2 level 3

introspection

—/

e J
0 1 2 3 4
number of iterations

Fig. 2. A representation of models of noisy iteration.

8 The assumption that the error rate diverges to infinity may not be reasonable for all games, e.g., the prisoner’s
dilemma where arbitrarily high-order beliefs may still put more weight on the “defect” strategy.

9 An alternative approach would be to let individuals have probability distributions over the distributions that
characterize others’ beliefs, etc. This “distributions over distributions” approach is theoretically appealing but
intractable for all but the simplest games.
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corresponding to a rational best response to uniform beliefs. Higher levels of rationality
can be generated similarl{.

Rather than assuming a fixed number of iterations with extreme values of the error
parameters, the error rates could be increasing smoothly as shown by the curved line in
Fig. 2. In Section 5 below, we report estimatesuaf= 4.4, up = 17.6, anduz = 53.8,
which produce a pattern of increases that roughly corresponds to that shown in Fig. 2.
To obtain a parsimonious specification, we assume that the error rates grow geometrically
with each iterationyu; = t* o, where the “telescoping” parameter; 1, determines how
fast the noise parameter blows up with further iterations. This geometric series allows for
a wide range of rationality levels, as shown by the smooth increasing line in Fig. 2.

The limit caser = 1 is of special interest. This would correspond to a flat line in Fig. 2
at heightuo. For some games (e.g., matching pennies) the process will not converge when
t =1, but when it does, the limit probabilitieg;’, must be invariant under the logit map:
oMo (p*) = p*. Afixed point of this type constitutes a “logit equilibrium,” which is a special
case of the quantal response equilibrium defined in McKelvey and Palfrey (1995). It is in
this sense that the logit equilibrium arises as a limit of the noisy introspective process in
(4) ast — 1. Whent > 1, the choice probabilities on the left side of (4) generally do not
match the belief probabilities at any stage of the iterative process on the right. In other
words, the introspective process allows for surprises, which are likely to occur in one-shot
games.

For ar value between 2 and 4, say, the process converges quickly and the iterated
probabilities remain more or less the same after several steps. Given the payoff parameters
of the game, the introspective process in (4) predicts the probability with which a
player chooses strategy, and this prediction will vary systematically with the values
of the error and telescope parameters. In Section 5 we use experimental data from 37
different matrix games to obtain maximume-likelihood estimates of the error and telescope
parameters. These “pooled estimates” allow us to compare the introspective model with
two equilibrium theories, i.e., logit and Nash equilibria. First, we extend the model to allow
for generalN -person games and discuss its relation with the notion of rationalizability.

4. Noisy rationalizability

We start by reviewing the concept of rationalizability, which requires some notation.
Consider the normal-form game;, which can be represented by the trip{&t, S, ),
whereN is a finite set of players indexed byeach of whom chooses from a pure-strategy
setsS;, with |S;| elements denoted by, wherek =1, ..., |S;|. Playeri's payoff is given
by theith component of the payoff mapping(.), which maps players’ strategies into von
Neumann—Morgenstern utilities,: S — RV, whereS§ = [1; Sk is the Cartesian product
of the strategy spaces. Play& opponents are denoted and P_; denotes the projection
fromStoS_; = ]_[k# Sk.

10 selten’s (1991) model of “anticipatory learning” applies the notion of different levels of rationality to a
dynamic learning process in the context of a repeated, large-population game.
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Rationalizability is based on the idea of iteratively eliminating those strategies that
are never best responses for any (consistent) set of beliefs (Bernheim, 1984; Pearce,
1984). The set of rationalizable strategies can be constructed by definfhg> S as
A(S) =T1; fi(P=i(S)), wheref;(s_;) is playeri’s rational best response to her opponents’
strategys_;. Bernheim shows that the set of (point-) rationalizable strategigscan be
obtained by recursively applying themapping. In other words, the (point-) rationalizable
strategies are given by the limit set

RS= lim A"(9), %)
n—oo

where)” is defined recursively ag' () = A(A"~1(.)).1

The outcomes of the noisy introspection model can be defined analogously by replacing
players’ rational best responsgs, by logit best response@f‘. Whenu > 0, the logit best
responses assign non-zero probabilities to all pure strategies so we are naturally led to
consider the extension ¢fto mixed strategies. Le¥; denote playei’s mixed-strategies,
i.e., the set of all probability distributions ovSy, and letM =[], M. Suppose players
first-order belief about rivals’ play is given bﬁ}fll € M_;. The expected payoff of choosing
pure-strategy; x is given bynfk(Bl.l) and the probability of selecting  follows from a
generalization of (2):

exprs (BH/ 1)
¢fk(Bil): S - e' o k=118 (6)
Zl:l eX[Xn’i!l(Bl. )/ 1)
The |S;| dimensional vectop!’, with elementsp!’, for k =1,...,|S:|, maps elements

from M_; to M;. Define¢” (M) to be the Cartesian produff; ¢f‘(P_,~ (M)); it is this
¢*-mapping that replaces themapping used by Bernheim (1984) in the construction of
rationalizable strategies.

Recall that the notion of rationalizability assumes perfectly rational decision-making at
any level of introspection, i.e., irrespective of the number of iterations. For this reason, the
rationalizable strategies follow from applying the sammapping recursively in (5). In
contrast, we assume that higher levels of introspection become increasingly more noisy.
The set of noisy rationalizable strategi®RS, is obtained by recursively applying the
¢*-mapping toM, using a higher error rate at every step:

NRS= lim ¢/ 0" o 0 ¢ (M), 7)

where the{u,};°, form in increasing sequence witli, = co. The latter assumption
implies that the set of noisy rationalizable outcomes consists of a single elemght of
since ¢* for u = co maps M into a single point, corresponding to uniform belief
probabilities for all players. The interpretation is that players’ higher-order beliefs about
what others think about what others think aboutetc, become more and more diffuse
and their (infinite) thought processes start out with uniform beliefs. diiteome of

11 Bernheim (1984) and Pearce (1984) also extend the notion of rationalizability to include mixed strategies. We
focus on the pure-strategy or point-rationalizable strategy set, to clarify the relation with our noisy introspection
model.
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their thought processes, however, generally corresponds to a different elendént. ef,
players’ choice probabilities are not uniform. To summarize, while the set of rationalizable
strategies generally consists of more than one point, the noisy rationalizable (mixed-)
strategy is always unique, even in games with multiple Nash equilibria.

So far, we have implicitly assumed that the iterative process in (7) converges. The next
theorem, which summarizes the main result of this section, establishes that this is indeed
the case (see Appendix A for a prod).

Theorem. Let o, 1, 12, ... denote a sequence of increasing and strictly positive error
ratesthat divergestoinfinity, andlet ¢** bethe vector of logit best response mapping whose
componentsare defined in (6). The sequence ¢#°(po), ¢*°(¢"1(po)), $"°(¢"1(¢"2(p0))),
... convergesto a unique point (the noisy rationalizable strategy) independent of theinitial
starting point po.

5. Experimental evidence

Guyer and Rapoport (1972) report an experiment in which 214 subjects played a large
number of 2x 2 matrix games, without feedback, in order to preserve the “one-shot”
nature of the interaction. There were 37 basic games, six of which are shown in Tables 1
and 213 In each game, stratedyis the maximin strategy, and the proportionssafhoices
for the games are shown by the dark lines in Fig. 3 for Row (top panel) and Column
(bottom panel). The first three games, shown on the left side of each panel, are labeled
DS at the bottom, which refers to the fact tifats a dominant strategy for these games.
The dots at the top indicate théitis a Nash equilibrium for these three games. The next
group of games also have dominant strategies, but these are asymmetric games, and hence
are labeled as ADS at the bottom. Notice that the proportiofi ofioices (dark line) is
high but not equal to 1 when it is a dominant strategy. The third group of games, labeled
APD, are asymmetric prisoner’s dilemma games, three of which are shown in Table 1.
The payoffs that result from playing the dominant strategies are Pareto dominated by
those of the “cooperative” outcome, which is not the case for the ADS games. The three
coordination game variations in Table 2 are among those in the next group of asymmetric
coordination games, labeled ACG. Recall that the coordination games have symmetric
Nash equilibria at s, S), (R, R), and a mixed equilibrium at an intermediate probability,

12 The convergence proof is quite different from the fully rational case (e.g., Bernheim, 1984) where the
recursive application of the-mapping produces a sequence of nested setsl'¢s) € A"~ 1(§) c ...
A(S) € S. This is not the case for the recursive applicationgéf-mapping in (7) where the error ratg,,
changes with each iteration. Instead we show in Appendix A that the sequéttdgqg), ¢"0(¢*1(pg)),
PHO(pH1(pH2(pp))), ... is a Cauchy sequence.

13 Each game was permuted in all possible ways, by changing the labeling of players and decisions, for a total
of 244 permutations. These were presented to subjects in a random order, by shuffling a deck of game cards for
each person. Subjects made a decision for each of the 244 permutations, yielding a totak &42t4 52,216
decisions. After all decisions were made, subjects were paired, and their “point” earnings were determined by
matching up the decisions for each of the games. Final earnings were determined by a $2.50 fixed payment and a
conversion of points into cash, with the conversion factor unreported.
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Fig. 3. Choice probabilities for Row (top) and Column (bottom): Guyer and Rapoport data (dark line),
introspection (thin line), logit (dashed line), Nash (dots).

so there are black dots at the top, middle, and bottom parts of the graph for this series
of games. The remaining games (discussed below), include games of “chicken” (CK) and
“reverse chicken” (RCK). These games only have a single symmetric Nash equilibrium,
which is in mixed strategies (indicated by the dots). Finally, the asymmetric matching
pennies (AMP) games have a unique Nash equilibrium in mixed strategies.

The general picture that emerges from Fig. 3 is that choice proportions fall short of Nash
predictions in the first three series of games, and choice proportions generally exceed Nash
predictions in the final matching pennies games. In the two series of chicken games, the
mixed-strategy Nash points are remarkably close to the data averages, a fact that seems to
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have gone unnoticed by Guyer and Rapoport, who focused instead on the proportions of
maximin choices. In the other games behavior seems to be sensitive to changes in payoff
asymmetries. For example, the large drop in the proportios cfioices by Row for the
APD games occurs for the three variations in Table 1 that increase the attractiveness of
the (R, R) outcome for Row. Similarly, the large drop in the incidence of safe choices in
the first three ACG games is caused by the reduction in the riskiness & foeRow,
as shown in Table 2. Also notice that Column choices are relatively stable for these two
series, which reflects the fact that “own payoff” effects seem to be more important.

The Nash equilibrium, strictly speaking, allows for no error, so any deviation is
a rejection in an uninteresting technical sense. In order to evaluate the Nash concept
statistically, it is necessary to append some randomness, and this was done with the logit
formulation in (1). In the logit equilibrium, the probabilities that go into the expected
payoffs on the right side of (1) should match the probabilities that come out on the left.
Therefore, in asymmetric 2 games, there are two fixed-point equations (one for each
player’s probability of choosing), which have to be solved, givem. Therefore, each
specific value of the error parametgr, produces equilibrium probabilitieprow(t) and
pcol(i), and the product of the equilibrium probabilities for each observed decision is
used to form the likelihood function. Taking logs, the products become sums and the
loglikelihood becomes:

37
logL = Z Ng (Péowbg(péow(ﬂ)) + (1 - Péow) lOg(l - péow(“‘)))
g=1
37
+ Z Ng(Péol lOg(péol(V‘)) + (1 - Péol) lOg(l - péol(“)))’ (8)
g=1

where N, is the number of decisions made by Row and Column in gamel, ..., 37,
the capitalP notation refers to the observed proportionsahoices for Row and Column
players, and the lower cageg ) notation refers to logit equilibrium probabilities.

The error parameter estimate is obtained by maximizing (8) with respectwhich
yields theu estimate of 6.6 that was used to construct the logit response lines in Fig. 1. The
standard error of this estimate is 0.1, which allows rejection of the null hypothesis-df
(Nash). The logit predictions for the 37 games are plotted in Fig. 3 as dashed lines. One
way to measure how well the logit equilibrium tracks the observed data is to compute the
mean of the squared distances between logit predictions and data averages (for both Row
and Column, using all game¥}.Using percentages rather than probabilities, this mean-
squared distance (MSD) is 379 for logit as compared to 490 for Nash (see also Table 3).
Even though the MSD for the logit predictions is lower than for Nash, the logit predictions
are consistently too high or too low relative to the data in each of the game series, with the
exception of the APD games.

14 some of the games with multiple Nash equilibria in the ACG, CK, and RCK series also have multiple logit
equilibria for theu value we estimated. We only plot the symmetric logit equilibria in these cases.

15 This measure is calculated by adding the squared deviations (in percentages) for both Row and Column, and
averaging across games.
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Table 3
Mean-squared distances and loglikelihoods for alternative models
Estimate MSB Loglikelihood?
Nash ¢ =0,t=1) NA 490 NA
Logit QRE(r =1) u=6.6(0.1) 379 —25,165
Introspection n=44(0.1) 168 —23,603
t=4.1(0.1)

& Mean of squared distances between predicted and actual percentages.

P The loglikelihood is given in (8) withV, the number of decisions made in garg\e{zg Ng =52,216),
P is the observed frequency of choiSeand p is the frequency of predicted by the model. For comparison,
the highest possible value of the loglikelihood is obtained whea p (i.e., the observed frequency equals the
theoretical prediction), and equai22,460. The random model, in which each decision is equally likely, results
in a loglikelihood of—33,193.

Maximum likelihood techniques were also used to obtain parameter estimates for
the introspection model. As before the loglikelihood is given by (8), where the logit
equilibrium probabilities are replaced by introspection predictiopgew(it,?) and
pcol(it, t). These introspection probabilities are calculated by taking the limit of the
composition of functions on the right side of (7) as the number of iterations goes to infinity.
We approximate this by truncating the right side of (7) at ten iterations, which is justified
by the fact that the introspection probabilities are virtually the same for every number of
iterations greater than 5 for valuesrathat are greater than two. Using this procedure we
obtain estimates qf = 4.4 (0.1) ands = 4.1 (0.1).16 The standard errors in parentheses
are small enough to allow rejection of the special cases of Nash@) and logit ¢ = 1).17

The introspection model further reduces the mean squared distance from 379 for the
logit model to 168 for the introspection model. In addition, the introspection model has a
much higher loglikelihood (see Table ¥ This improvement in fit is apparent in Fig. 3;
whenever the logit predictions are too low, the introspection predictions tend to be higher
(DS, ADS, CK, RCK, and AMP), and when the logit predictions are too high (ACG) the
introspection predictions are lower. These gualitative comparisons are consistent with the
intuition from Fig. 1: introspection predictions are generally lower than logit when logit
response functions are positively sloped and are higher when they are negatively sloped.

16 Notice that these estimates imply thay = 4.4, uq = 180, andup = 73.8. We also estimated a three-
parameter model in which the levels pfwere not constrained to increase geometrically. The resulting estimates
were somewhat similang = 4.4, u1 = 17.6, andup = 53.8, and these estimates yield essentially the same
predicted introspection probabilities. Moreover, the loglikelihood of the three-parameter m@8602, is not
significantly higher than the loglikelihood obtained from the two-parameter introspection model in the bottom
row of Table 3.

17 We also estimate the model separately for the three categories of games: games with a dominant strategy
solution (games 1-17), games with multiple Nash equilibria (games 18-32), and games with a unique mixed-
strategy equilibrium (games 33-37). Theestimates for these three categories of games are: 4.7 (0.1), 4.0 (0.1),
and 3.4 (0.1), respectively. Theestimates are 4.2 (0.3), 4.3 (0.1), and 3.9 (0.3), respectively.

18 A standard loglikelihood ratio test involves computing twice the difference between the loglikelihoods of
the nested models in Table 3. The test statistic associated with adding the introspection paraiseferater
than 3000, which exceeds the critical value for a chi-square test at any standard level of significance.
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Table 4
A game of chicken (Row payoff, Column payoff)

Column player’s decision

Row player’s decision S R
S 12,12 15, 32
R 32,15 —-5,-5

In addition, the introspection predictions match the accuracy of the Nash predictions in the
chicken games, but like logit, generally do better than Nash in the other games.

One of the games where the introspection model predicts poorly is the first chicken
game, shown just to the right of the dotted line that separates ACG and CK in Fig. 2.
Consider the chicken game with payoffs shown in Tabl€ Bor both players the sum
of payoffs for either decision is 27, so the mixed-strategy Nash equilibrium is to choose
each decision with probability/2. In this case, the best response functions intersect in
the center of a graph like Fig. 1, &.5, 0.5). The effect of adding noise is to round off
the corners, leaving S-shaped logit response functions that still intersect in the center. This
symmetry causes the symmetric logit and introspection equilibria to also be at 0.5. The
Nash equilibrium produces an expected payoff of 14.5 for each decision, despite the fact
that the payoff variance would be much higher for the risky decision. The data, in contrast
to all three predictions, reveal that 67% of the choices were the safe decision. This suggests
that the high rate of safe choices may be due to risk avefSion.

Finally, consider the data for the five asymmetric matching pennies games shown on
the right side of Fig. 3. In the first three games, only Row’s payoffs were changed.
The Nash predictions are constant for Row, since Row’'s probability is determined by
the requirement that Column be indifferent. Therefore, the dots that show Row’s Nash
predictions for the first three AMP games are on a horizontal line. The dark data line for
Row is sharply increasing for these games, indicating that Row’s choice probabilities are
sensitive to “own-payoff” effects. Since Row’s stochastic best-response function shifts in

19 The chicken and reverse-chicken games are similar in that the best response to aggressive Btavior (
passive §) and vice versa, so there are asymmetric Nash equiliisti&) and (R, S), and there is a symmetric
equilibrium in mixed strategies that is shown by the solid dots in Fig. 2. The only difference is that foR g&ch
outcome, the player choosing earns more in the chicken game and the person chodsigyns more in the
reverse chicken game.

20 Totest this conjecture we incorporated risk aversion into the noisy introspection model. We assumed constant
relative risk aversion so that the utility of an amounis x1~", where the risk aversion parameter,satisfies
0 <r < 1. We added a constant (17) to all payoffs to ensure that the lowest payoff for any of the 37 games would
be at least 1. The results of this estimation are:0.46 (0.02),u = 0.62 (0.05), and = 4.6 (0.1). (The estimated
error parameter is lower than the risk-neutral estimate because the power function expected utility numbers are
much lower than the expected payoffs.) The hybrid introspection/risk-aversion model has a much lower mean
squared deviation of 78, as compared with 168 for the model without risk aversion. (We also estimated a risk
aversion parameter for the logit model:= 0.45, which reduces the mean squared deviation from 379 with risk
neutrality to 343 with risk aversion.) The improved fit is largely in the first chicken game and the asymmetric
matching pennies (AMP) games. Of course, adding an extra parameter increases the danger of “data-mining,”
and the reader will have to decide whether the improved fit is worth the cost.
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the direction of the safe strategy when one of the payoffs for that strategy is increased, the
logit predictions determined by the intersection of the smooth stochastic best responses
also shifts towards higher probability §f It is apparent from the top part of Fig. 3 that the
introspection predictions also track these own-payoff effects, which is not surprising since
these predictions are determined by the iteration of stochastic best responses. Similarly,
the payoff changes in the second, fourth, and fifth AMP games affect only Column, and
therefore the Nash predictions for Column are constant. Again the logit and introspection
model correctly predict the own-payoff effects observed in the data for Column shown in
the bottom part of Fig. 3.

6. Conclusion

Many strategic encounters are unique, non-repeated interactions. Equilibrium concepts
that build in “rational expectations” about others’ decisions may not be appropriate in such
cases. Without an opportunity to learn, players must think about others’ decisions, others’
theories of one’s own decisions, etc., but such speculation is likely to become increasingly
noisy with successive iterations. In this paper we propose a general model of iterated noisy
introspection and prove convergence (existence and uniqueness). Parsimonious versions of
this model were estimated using data from thirty-severZZmatrix games, and the model
predictions are more accurate than those of equilibrium theories, both with noise (logit)
and without noise (Nash).

The mixed-strategy Nash equilibrium is remarkably accurate in symmetric games (e.g.,
chicken), but it is quite inaccurate in some matching pennies games where the only Nash
equilibrium is mixed. The reason for this difference is that human subjects do not seem
to follow the mixed-strategy prediction that decision probabilities depend onbthen’'s
payoffs. In the symmetric chicken games, this asymmetry bias does not occur because the
parameter changes affect both players in the same manner. Moreover, Nash predictions
do not pick up systematic “own-payoff” effects that alter quantitative but not qualitative
payoff comparisons. In contrast, the logit (quantal response) equilibrium is sensitive to
magnitudes of payoff differences. The logit equilibrium has provided remarkably accurate
predictions of behavior in games with learning opportunities (McKelvey and Palfrey, 1995;
Goeree and Holt, 1999). In one-shot games, however, the logit predictions tend to
be systematically biased: above the data for games with negatively sloped stochastic
response functions and below the data for games with positively sloped stochastic response
functions. The model of noisy introspection follows the Nash predictions in games where
they are on track, and it is generally much closer to the data in other games.
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Appendix A. Existence and uniqueness

Theorem. Let o, 1, 12, ... denote a sequence of increasing and strictly positive error
ratesthat divergestoinfinity, andlet ¢ be the vector of logit best response mapping whose
componentsare defined in (6). The sequence ¢#°(po), ¢*°(¢"1(po)), $"°(¢"1(¢"2(p0))),
... convergesto a unique point (the noisy rationalizable strategy) independent of theinitial
starting point po.

Proof. Define
(an¢MOO¢U10,,,O¢IMI’

where {u,};°, is an increasing sequence of error rates that diverges to infinity, and
¢": M — M is defined byp* (M) = [T, ¢ (P_;(M)), whereP_; is the projection frons
toS_; = ]_[k# Sx and playet’s noisy best respons@“ has components:

g (BH/W
Y86 (BY/1)

wherenfk(Bl.l) is playeri’s expected payoff from choosing the pure strategywhen her

beliefs about the others’ play are given by (some arbitrﬂfﬁ M_;. Theg(.) function on

the right-side of (A.1) is some strictly positive, strictly increasing, differentiable function
on R. Note that (A.1) reduces to the logit rule discussed in the main text wlen=
exp(x).

We have to show that the sequen@®, (po)};>, converges and that the limit point
is independent opg. The latter claim follows from the assumption that the error rates
diverge to infinity and;b;‘ for u = oo maps playei’s entire probability simplex}/;, into a
single point, i.e., the centroid; corresponding to uniform probabilitie€’; ; = 1/|S;|
for k =1,...,|S;]. Let C denote the vector that results by concatenating @hdor
i=1,...,N. The limit point of {®,(C)}>2 , (if it exists) will thus be the same as that
of {an(PO)}Zo:o for all Po-

We prove convergence ¢, (C)}:° ; by showing that it is a Cauchy sequence, i.e., for
all ¢ > 0 there exist: such that the distane&®,(C), ®,,(C)) < ¢ for all m > n. Here the

¢;,Lk (Bil)

k=1,...,18] (A.1)

.....

Note that form > n we can write®,,, (C) = @, (c(n, m)), where the lower cas@n, m) is
defined as

c(n,m) =@gM+lo...0phm(C).

Since ®,, is a composition of continuous functions it is itself continuous. Hence for all
& > 0 there exist such that/(®, (C), @,(c(n,m))) < ¢ if d(C, c(n, m)) < §. So the proof
follows if we can show that for all > 0 there exist am such thatd(C, c(n,m)) < é for

all m > n.

Let C;, ci(n, m) denote the projection af, c¢(n, m) onto M;, and letc; max(n, m) and
ci.min(n, m) be the largest and smallest elementcofz, m), respectively. The distance
betweenC; andc;(n, m) is the greater o&; max(n, m) — 1/S;| and ¥|S;| — ¢i min(n, m).
Hence, the distanc&(C;, ¢;(n, m)) is no greater than the sum of these two expressions,
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which equalsit; max(n, m) — ci min(n, m). Denote the highest and lowest possible payoffs
for playeri by m; max and z; min, respectively (which are assumed to be finite), then
d(C, c(n,m)) can be bounded by

N
d(C, c(n, m)) = Zd(ch ci(n, m))

i=1

< i 8(7i,max/ n+1) — &(7Ti,min/ “n+1)’ (A.2)
i=1

|Si g (7wi min/ tn+1)

for all m > n. Sinceg(.) is continuous and the error ratg 1 diverges as grows large,
the numerator on the far right side of (A.2) can be made arbitrarily small (while the
denominator limits tgdS;|g(0) > 0) by choosing: large enough. O
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