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Anomalous Behavior in a Traveler’s Dilemma?

By C. Monica CAPRra, JacoB K. GOEREE, RosARI0O GOMEZ, AND CHARLES A. HoLt*

The notion of a Nash equilibrium has joined
supply and demand as one of the two or three
techniques that economists instinctively try to
use first in the analysis of economic interac-
tions. Moreover, the Nash equilibrium and
closely related game-theoretic concepts are be-
ing widely applied in other social sciences and
even in biology, where evolutionary stability
often selects a subset of the Nash equilibria.
Many people are uneasy about the stark predic-
tions of the Nash equilibrium in some contexts
where the extreme rationality assumptions seem
implausible. Kaushik Basu’s (1994) “traveler’s
dilemma” is a particularly convincing example
of a case where the unrelenting logic of game
theory is at odds with intuitive notions about
human behavior. The story associated with the
dilemma is that two travelers purchase identical
antiques while on a tropical vacation. Their
luggage is lost on the return trip, and the airline
asks them to make independent claims for com-
pensation. In anticipation of excessive claims,
the airline representative announces:

We know that the bags have identical
contents, and we will entertain any claim
between $2 and $100, but you will each
be reimbursed at an amount that equals
the minimum of the two claims submitted.
If the two claims differ, we will also pay
a reward of $2 to the person making the
smaller claim and we will deduct a pen-
alty of $2 from the reimbursement to the
person making the larger claim.

Notice that, irrespective of the actual value of
the lost luggage, there is a unilateral incentive to
“undercut” the other’s claim. It follows from
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this logic that the only Nash equilibrium is for
both to make the minimum claim of $2. As
Basu (1994) notes, this is also the unique strict
equilibrium, and the only rationalizable equilib-
rium when claims are discrete. When one of us
recently described this dilemma to an audience
of physicists, someone asked incredulously: “Is
this what economists think the equilibrium is? If
so, then we should shut down all economics
departments.”

The implausibility of the Nash equilibrium
prediction is based on doubts that a small pen-
alty and/or reward can drive claims all the way
to an outcome that minimizes the sum of the
players’ payoffs. Indeed, the Nash equilibrium
in a traveler’s dilemma is independent of the
size of the penalty or reward. Economic intu-
ition suggests that behavior conforms closely to
the Nash equilibrium when the penalty or re-
ward is high, but that claims rise to the maxi-
mum level as the penalty/reward parameter
approaches $0.

This paper uses laboratory experiments to eval-
uate whether average claims are affected by (the-
oretically irrelevant) changes in the penalty/
reward parameter. The laboratory procedures are
described in Section I. The second and third sec-
tions contain analyses of aggregate and individual
data. Section IV presents a learning model that is
used to obtain maximum likelihood estimates of
the learning and decision error parameters. The
fifth section considers behavior in the final periods
after most learning has occurred, i.e., when aver-
age claims stabilize and behavior converges to a
type of noisy equilibrium which combines a stan-
dard logit probabilistic choice rule with a Nash-
like consistency-of-actions-and-beliefs condition.
The learning/adjustment and equilibrium models
are complementary, and together they are capable
of explaining some key features of the data. Sec-
tion VI concludes.

I. Procedures

The data were collected from groups of 912
subjects, with each group participating in a
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series of traveler’s dilemma games during a
session that lasted about an hour and a half. This
type of experiment had not been done before,
and we felt that more would be learned from
letting the penalty/reward parameter, R, vary
over a wide range of values. Therefore, we used
two high values of R ($0.50 and $0.80), two
intermediate values of R ($0.20 and $0.25), and
two low values of R ($0.05 and $0.10). The
penalty/reward parameter alternated between
high and low values in parts A and B of the
experiment. For example, session 1 began with
R = $0.80 in part A, which lasted for 10
periods. Then R was lowered to $0.10 in part B.

Subjects were recruited from economics
classes at the University of Virginia, with the
promise that they would be paid a $6 participa-
tion fee plus all additional money earned during
the experiment. Individual earnings ranged
from about $24.00 to $44.00 for a session. We
began by reading the instructions for part A
(these instructions are available from the au-
thors on request). Although decisions were re-
ferred to as “claims,” the earnings calculations
were explained without reference to the context,
i.e., without mentioning luggage, etc. In each
period, subjects would record their claim on
their decision sheets, which were collected and
randomly matched (with draws of numbered
ping-pong balls) to determine the “other’s
claim” and “your earnings,” and the sheets were
then returned. Claims were required to be any
number of cents between and including 80 and
200, with decimals being used to indicate frac-
tions of cents. Subjects only saw the claim
decision made by the person with whom they
were matched in a given period. They were told
that part A would be followed by “another de-
cision-making experiment” but were not given
additional information about part B. The pen-
alty/reward parameter was changed in part B, and
random pairwise matchings were made as before.
Part B lasted for 10 periods, except in the first two
sessions where it lasted for 5 periods.

II. Data

The part A data are summarized in Fig-
ure 1. Each line connects the period-by-period
averages of the 9-12 subjects in each group.
There is a different penalty/reward parameter
for each cohort, as indicated by the labels on the
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right. The data plots are bounded by horizontal
dashed lines that show the maximum and min-
imum claims of 200 and 80. The Nash equilib-
rium prediction is 80 for all treatments. The two
highest lines in Figure 1 plot the average claims
for low reward/penalty parameters of 5 and 10
(cents). The first-period averages are close to
180, and they stay high in all subsequent peri-
ods, well away from the Nash equilibrium. The
two lowest lines represent the average claims
for the higher penalty/reward parameters of 50
and 80. Note that with these parameters, the
average claims quickly fall toward the Nash
equilibrium. For intermediate reward/penalty
parameters of 20 and 25, the average claims
level off at about 120 and 145 respectively. The
averages in the last five periods are clearly
inversely related to the magnitude of the penal-
ty/reward parameter, and the null hypothesis of
no relation can be rejected at the 1-percent
level.'

For some sessions, the switch in treatments
between parts A and B caused a dramatic
change in behavior. In the two sessions using
R = 80 and R = 10, for example, the
behavior is agproximately reversed, as shown
in Figure 2.° There is some evidence of a
sequence effect, since the average claims
were higher for R = 10 when this treatment
came first than when it followed the R = 80
treatment that “locked” onto a Nash equilib-
rium. In fact, the sequence effect was so
strong in one session, with a treatment switch
from R = 50 to R = 20, that the data did not
rise in part B after converging to the Nash
outcome in part A. In all other sessions, the
high-R treatment resulted in lower average
claims, as shown in Table 1.

Consider again the null hypothesis of no treat-
ment effect, under which higher average claims
are equally likely in both treatments. The alterna-
tive hypothesis is that average claims are higher

' Of the 720 (=6!) ways that the 6 session averages
could have been ranked, there are only 6 possible outcomes
that are as extreme as the one observed (i.e., with zero or
one reversals between adjacent R values). Under the null
hypothesis the probability of obtaining a ranking this ex-
treme is: 6/720, so the null hypothesis can be rejected
(one-tailed test) at the 1-percent level.

2 Obviously, the part B data have not settled down yet
after 5 periods, and therefore we decided to extend part B to
10 periods in subsequent sessions.
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FIGURE 1. DATA FOR PART A FOR VARIOUS VALUES OF THE REWARD/PENALTY PARAMETER

for the treatments with a low value of R. The null
hypothesis can be rejected at a 3-percent signifi-
cance level using a standard Wilcoxon (signed-
rank) nonparametric test. Thus the treatment effect
is significant, even though it does not affect the
Nash equilibrium.

Basically, the Nash equilibrium provides
good predictions for high incentives (R = 80
and R = 50), but behavior is quite different
from the Nash prediction under the treatments
with low and intermediate values of R. In par-
ticular, as shown in Figure 1, the data for the
low-R treatments is concentrated at the opposite
end of the range of feasible decisions. Basu’s
(1994) presentation of the traveler’s dilemma
involved low incentives relative to the range of
choices so, in this sense, the intuition behind the
dilemma is confirmed.® To summarize, the Nash

3 Basu (1994) does not claim to offer a resolution of the
paradox, but he suggests several directions of attack.
Loosely speaking, these approaches involve restricting in-
dividual decisions to sets, T, and T, for players 1 and 2
respectively, where each set contains all best responses to
claims in the other person’s set. Such sets may exist if open
sets are allowed, or if some notion of “ill-defined catego-

equilibrium prediction of 80 for all treatments
fails to account for the most salient feature of
the data, the intuitive inverse relationship be-
tween average claims and the parameter that
determines the relative cost of having the higher
claim.

Since the Nash equilibrium works well in
some contexts, what is needed is not a radi-
cally different alternative, but rather, a gen-
eralization that conforms to Nash predictions
in some situations (e.g., with high-R values)
and not in others. In addition, it would be
interesting to consider dynamic theories to
explain the patterns of adjustment in initial
periods when the data have not yet stabilized.
Many adjustment theories in the literature are
based on the idea of movement toward a best
response to previously observed decisions.
The next section evaluates some of these ad-
justment theories and shows that they explain
a high proportion of the directions of changes

ries” is introduced. Without further refinement these ap-
proaches do not predict the effects of the penalty/reward
parameter on claim levels.
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FIGURE 2. AVERAGE CLAIMS FOR PARTS A AND B OF SESSION 1 (DARK LINE) AND SESSION 2 (DASHED LINE)

in individual claims, but not the strong effect
of the penalty/reward parameter on the levels
of average claims. Then in Sections IV and V
we present both dynamic and equilibrium the-
ories that are sensitive to the magnitude of the
penalty/reward parameter.

III. Patterns of Individual Adjustment

One approach to data analysis is based on
the perspective that people react to previous
experience via what is called reinforcement
learning in the psychology literature. In this
spirit, Reinhard Selten and Joachim Buchta
(1994) consider a model of directional adjust-
ment in response to immediate past experi-
ence. The prediction is that changes are more
likely to be made in the direction of what
would have been a best response to others’
decisions in the previous period. The predic-
tions of this “learning direction theory” are,
therefore, qualitative and probabilistic. The
theory is useful in that it provides the natural
hypothesis that changes in the “wrong” direc-
tion are just as likely as changes in the “right”
direction. This null hypothesis is decisively
rejected for data from auctions (Selten and
Buchta, 1994).

To evaluate learning direction theory, we cat-

egorize all individual claims after the first pe-
riod as either being consistent with the theory,
“+”, or inconsistent, “—”". Excluded from con-
sideration are cases of no change, irrespective
of whether or not these are Nash equilibrium
decisions. These cases of no change are classi-
fied as “na” (for not applicable). Table 2 shows
the data classification counts by treatment. The
(79, 21, 80) entry under the R = 5 column
heading, for example, means that there were 79
“+” classifications, 21 “—” classifications, and
80 “na” classifications. The percentage given
just below this entry indicates that 79 percent of
the “+” and “—” changes were actually “+”.
The percentages exclude the “na” cases from
the denominator. The “percentage of +” row
indicates that significantly more than half of the
classifications were consistent with the learning
direction theory. Therefore, the null hypothesis
of no difference can be rejected in all treat-
ments, as indicated by the “p-value” row.
Note, however, that at least part of the
success of learning direction theory may be
due to a statistical artifact if subjects’ deci-
sions are draws from a random distribution, as
described for instance by the equilibrium
model in Section V. With random draws, the
person who has the lower claim in a given
period is more likely to be near the bottom of
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TABLE 1-—AVERAGE CLAIMS IN THE LAST FIVE PERIODS FOR ALL SESSIONS

Session 1 2 3 4 5 6

High-R treatment 82 99 92 82 146 170

Low-R treatment 162 186 86 116 171 196

the distribution, and hence to draw a higher
claim in the next period. Similarly, the person
with the higher claim is more likely to draw a
lower claim in the following period. In fact, it
can be shown that if claims are drawn from
any stationary distribution, the probability is
%5 that changes are in the direction predicted
by learning direction theory.® But even the
null hypothesis that the fraction of predicted
changes is %3 rejected by our data at low
levels of significance.

One feature of learning direction theory in
this context is that noncritical changes in the
penalty/reward parameter R do not change the
directional predictions of the theory. This is
because R affects the magnitude of the incen-
tive to change one’s claim, but not the direc-
tion of the best response. This feature is
shared by several other directional best-
response models of evolutionary adjustment
that have been proposed recently, admittedly
in different contexts. For example, Vincent P.
Crawford (1995) considered an evolutionary
adjustment mechanism for coordination
games that was operationalized by assuming
that individuals switch to a weighted average
of their previous decision and the best re-
sponse to all players’ decisions in the previ-
ous period. This adaptive learning model,
which explains some key elements of adjust-
ments in coordination game experiments, is
similar to directional learning with the extent
of directional movements determined by
the relative weights placed on the previous
decision and on the best response in the ad-
justment function. Another evolutionary for-

4 Suppose that a player’s draw, x,, is less than the other
player’s draw, y. Then the probability that a next draw, x,,
is higher than x, is given by: P[x, > xly > x,] =
P{x, > x,, ¥y > x,}/P[y > x,]. The numerator is equal to
the probability that x, is the lowest of three draws, which is
Y4, and the denominator is equal to the probability that x, is
the lowest of 2 draws, which is '4. So the relevant proba-
bility is %5.

mulation that is independent of the magnitude
of R is that of imitation models in which
individuals are assumed to copy the decision
of the person who made the highest payoff.
With two-person matchings in a traveler’s
dilemma, the high-payoff person is always the
person with the lower claim, regardless of the
R parameter, so that imitation (with a little
exogenous randomness) will result in deci-
sions that are driven to near-Nash levels.® To
conclude, individual changes tend to be in the
direction of a best response to the other’s
action in the previous period, but the strong
effect of the penalty/reward parameter on
the average claims cannot be explained by
directional learning, adaptive learning (par-
tial adjustment to a best response), and imi-
tation-based learning models.

IV. A Dynamic Learning Model with Logit
Decision Error

In this section we present a dynamic model in
which players use a simple counting rule to
update their (initially diffuse) beliefs about oth-
ers’ claims. The modeling of beliefs is impor-
tant because people will wish to make high
claims if they come to expect that others will do
the same. Although the only set of internally
consistent beliefs and perfectly rational actions
is at the unique Nash equilibrium claim of 80
for all values of R, the costs of increasing
claims above 80 depend on the size of the
penalty/reward parameter. For small values of R
such deviations are relatively costless and some
noise in decision-making may result in claims
that are well above 80. As subjects en.ounter
higher claims, the (noisy) best responses to ex-
pected claims may become even higher. In this
manner, a relatively small amount of noise may

5 Paul Rhode and Mark Stegeman (1995) and Fernando
Vega-Redondo (1997) have shown that this type of imita-
tion dynamic will drive outputs in a Cournot model up to the
Walrasian levels.



VOL. 89 NO. 3 CAPRA ET AL.: ANOMALOUS BEHAVIOR IN A TRAVELER’S DILEMMA? 683
TABLE 2—CONSISTENCY OF CLAIM CHANGES WITH LEARNING DIRECTION THEORY
All
R=5 R =10 R =20 R =25 R = 50 R = 80 treatments

Numbers

of +,

—, na 79, 21, 80 62, 15, 43 50, 7, 123 94, 23, 63 65, 12, 103 50, 3, 87 400, 81, 499
Percentage

of +2 79 81 88 80 84 94 83
p-value® <0.00003 <0.00003 <0.00003 <0.00003 <0.00003 <0.00003 <0.00003

* The percentage of “+” calculations excluded the nonapplicable “na” cases.

® Denotes the p-value for a one-tailed test.

move claims well above the Nash prediction
when beliefs evolve endogenously over time in
a sequence of random matchings.

This section begins with a relatively standard
experience-based learning model.® There is
clearly noise in the data, even in the final peri-
ods for some treatments, so for estimation pur-
poses it is necessary to introduce a stochastic
element. Noisy behavior is modeled with a
probabilistic choice rule that specifies the prob-
abilities of various decisions as increasing func-
tions of the expected payoffs associated with
those decisions. For low values of R, the “mis-
takes” in the direction of higher claims will be
relatively less costly and, hence, more probable.
Our analysis will be based on the standard logit
model for which decision probabilities are pro-
portional to exponential functions of expected
payoffs. The logit model is equivalent to assum-
ing that expected payoffs are subjected to
shocks that have an extreme value distribution.
These errors can be interpreted either as unob-
served random changes in preferences or as
errors in responding to expected payoffs.” The

6 This model builds on the work of Jordi Brandts
and Holt (1996), David J. Cooper et al. (1997), Dilip
Mookherjee and Barry Sopher (1997), Yan Chen and Fang-
Fang Tang (1998), Drew Fudenberg and David K. Levine
(1998), Colin Camerer and Teck-Hua Ho (1999), and others.

7 R. Duncan Luce (1959) provides an alternative, axiom-
atic derivation of this type of decision rule; he showed that
if the ratio of probabilities associated with any two deci-
sions is independent of the payoffs for all other decisions,
then the choice probability for decision i can be expressed
as a ratio: u/3u;, where u, is a “scale value” number
associated with decision i. When scale values are functions
of expected payoffs, and one adds the assumption that
choice probabilities are unaffected by adding a constant to
all expected payoffs, then it can be shown that the scale
values are exponential functions of expected payoffs. There-

logit formulation is convenient in that it is char-
acterized by a single error parameter, which
allows the consideration of perfect rationality in
the limit as the error parameter goes to zero.
Maximum likelihood techniques will be used to
estimate the error and learning parameters for
the data from the traveler’s dilemma experi-
ment.

To obtain a tractable econometric learning
model, the feasible range of claims (between 80
and 200) is divided into n = 121 intervals or
categories of a cent. A choice that falls in cat-
egory j corresponds to a claim of 80 + j — 1
cents. Players’ initial beliefs, prior to the first
period, are represented by a uniform distribu-
tion with weights of 1/n. Hence, all categories
are thought to be equally likely in the first
period.® Players update their beliefs using a
simple counting rule that is best explained by
assigning weights to all categories. Let w,(j, 1)
denote the weight that player i assigns to cate-
gory j in period . If, in period ¢, player i
observes a rival’s price that falls in the mth
category, player i’s weights are updated as fol-
lows: w,(m, t + 1) = w,(m, t) + p, while all

fore, any ratio-based probabilistic choice rule that general-
izes the exponential form would allow the possibility that
decision probabilities would be changed by adding a con-
stant to all payoffs. While there is some experimental evi-
dence that multiplicative increases in payoffs reduce noise
in behavior (Vernon L. Smith and James M. Walker, 1997),
we know of no evidence that behavior is affected by addi-
tive changes, except when subtracting a constant converts
some gains into (focal) losses.

8 Alternatively, the first-period data can be used to esti-
mate initial beliefs. The assumption of a uniform prior is
admittedly a simplification, but allows us to explain why the
penalty/reward parameter has a strong effect even on deci-
sions in the first period.
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other weights remain unchanged. These weights
translate into belief probabilities, P,(j, t), by
dividing the weight of each category by the sum
of all weights. The model is one of “fictitious
play” in which a new observation is weighted
by a learning parameter, p, that determines the
importance of a new observation relative to the
initial prior. A low value of p indicates “con-
servative” behavior in that new information has
little impact on a player’s beliefs, which are
mainly determined by the initial prior.

Once beliefs are formed, they can be used to
determine the expected payoffs of all the op-
tions available. Since in our model each player
chooses among n possible categories, the ex-
pected payoffs are given by the sum

n

(1) @G, =2 7(, )Pk, 1), j=1,..,n,

k=1

where ,(j, k) is player i’s payoff from choos-
ing a claim equal to j when the other player
claims k.

In a standard model of best-reply dynamics, a
player simply chooses the category that maxi-
mizes the expected payoff in (1). However, as
we discussed above, the adjustments in such a
model will be independent of the magnitude of
the key incentive parameter, R. We will there-
fore allow players to make nonoptimal deci-
sions, or “mistakes,” with the probability of a
mistake being inversely related to its severity.
The specific parameterization that we use is the
logit rule, for which player i’s decision proba-
bilities, D,(j, t), are proportional to an expo-
nential function of expected payoffs:

exp(m(j, 1)/ 1)
exp(mi(k, t)/w)

1

@ D, =

T M=

The denominator ensures that the choice prob-
abilities add up to 1, and w is an error parameter
that determines the effect of payoff differences
on choice probabilities. When w is small, the
decision with the highest payoff is very likely to
be selected, whereas all decisions become
equally likely (i.e., behavior becomes purely
random) in the limit as w tends to infinity. To

JUNE 1999

summarize the key ingredients of our dynamic
model: (i) players start with a uniform prior and
use a simple counting rule to update their be-
liefs; (ii) these beliefs determine expected pay-
offs by (1); and (iii) the expected payoffs in turn
determine players’ choice probabilities by (2).”

This “logit learning model” can be used to
estimate the error parameter, u, and the learning
parameter, p. Recall that the probability that
player i chooses a claim in the jth category in
period ¢ is given by D(j, f), and the likelihood
function is simply the product of the decision
probabilities of the actual decisions made for all
subjects and all 10 periods. The maximum likeli-
hood estimates of the error and learning parame-
ters of the dynamic learning model are: u = 10.9
(0.6) and p = 0.75 (0.12), with standard errors
shown in parentheses. The error parameter is sig-
nificantly different from the value of zero implied
by perfect rationality, which is not surprising in
light of the clear deviations from the Nash predic-
tions.'® If the learning parameter were equal to
1.0, each observation of another person’s decision
would be as informative as prior information, so a
value of 0.7 means that the prior information is

° An alternative approach would specify that the proba-
bility of a given decision is an increasing function of pay-
offs that have been earned when that decision was made in
the past. Thus high-payoff outcomes are “reinforced.” See
Alvin E. Roth and Ido Erev (1995) and Erev and Roth
(1998) for a simulation-based analysis of reinforcement
models in other contexts.

10 We also estimated the learning model for each session
separately, and in all cases the error parameter estimates
were significantly different from zero, except for the R =
20 session where the program did not converge. Recall that
this treatment was the only one with an average claim that
was out of the order that corresponds to the magnitude of
the R parameter. The error parameter estimates (with stan-
dard errors) for R = 5, 10, 25, 50, and 80 were 6.3 (1.0),
4.0 (1.0), 16.7 (5.1), 6.8 (0.9), and 9.5 (0.7) respectively.
These estimates are of approximately the same magnitude,
but some of the differences are statistically significant at
normal levels, which indicates that the learning model does
not account for all of the “cohort effects.” These estimates
are, however, of roughly the same magnitude as those we
have obtained in other contexts. Capra et al. (1998) estimate
an error parameter of 8.1 in an experimental study of im-
perfect price competition. The estimates for the Lisa
Anderson and Holt (1997) information cascade experiments
imply an error parameter of about 12.5 (when payoffs are
measured in cents as in this paper). Richard D. McKelvey
and Thomas R. Palfrey (1998) use the Brandts and Holt
(1996) signaling game data to estimate u = 10 (they report
1/ = 0.1).
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TABLE 3—PREDICTED AND ACTUAL AVERAGE CLAIMS
R=35 R =10 R =20 R =25 R =50 R =80

Average claim in period 1 180 177 131 150 155 120
Average claim for periods 8-10 195 186 119 138 85 81
Average simulated claim for

period 1 171 166 156 150 118 97
Average simulated claims for

periods 8-10 178 170 155 148 107 85
Logit equilibrium prediction 183 174 149 133 95 88
Nash equilibrium prediction 80 80 80 80 80 80

slightly stronger than the information conveyed in
a single observation.

Table 3 shows the relationship between av-
erage claims and simulation-based predictions
of the logit learning model. The first row shows
average claims observed in the first period of
the experiment, where claims are highest for
R = 5 and R = 10, and lowest for R = 80.
The second row shows the average observed
claims for the final three periods; we see that
claims rise slightly for the two low-R treatments
and fall for the high-R treatments. The third row
shows the first-period predictions of the dy-
namic model, based on the estimated error rate
and the assumption of uniform initial priors.
These predictions are also inversely related to
the level of R. The predictions of the dynamic
model for periods 8-10, shown in the fourth
row, are obtained by letting a computer program
keep track of 10 cohorts of 10 simulated sub-
jects which begin with flat priors, make error-
prone decisions, “see” the other’s decision, and
update beliefs before being rematched ran-
domly with another simulated subject. The sim-
ulated claims also show a tendency for claims to
increase for low-R values and decrease for
high-R values, but the treatment effect is a little
too flat relative to the actual data. To summa-
rize, the parameter estimates for the logit learn-
ing model can be used in simulations to
reproduce the qualitative features of observed
adjustment patterns and the inverse relation-
ship between the penalty/reward parameter and
average claims.

V. A Logit Equilibrium Analysis

As players gain experience during the exper-
iment, the prior information becomes consider-

ably less important. With more experience,
there are fewer surprises on average, and this
raises the issue of what happens if decisions
stabilize, as indicated by the relatively flat
trends in the final periods of part A for each
treatment in Figure 1. An equilibrium is a state
in which the beliefs reach a point where the
decision distributions match the belief distribu-
tions, which is the topic of this section. Recall
that in the previous section’s logit learning
model, player i’s belief probabilities, P;(j, t)
for the jth category in period ¢, are used in the
probabilistic choice function (2) to calculate the
corresponding choice probabilities, D;(j, t). A
symmetric logit equilibrium is a situation where
all players’ beliefs have stabilized at the same
distributions, so that we can drop the i and ¢
arguments and simply equate the corresponding
decision and belief probabilities: D,(j, t) =
PJj, t) = P(j) for decision category j. In
such an equilibrium, the equations in (2) deter-
mine the equilibrium probabilities (McKelvey
and Palfrey, 1995, 1998)‘11 The probabilities
that solve these equations will, of course, de-
pend on the penalty/reward parameter, which is
desirable given the fact that this parameter has
such a strong effect on the levels at which
claims stabilize in the experiments. The equi-
librium probabilities will also depend on the
error parameter in (2), which can be estimated

' The logit equilibrium has been used to explain devi-
ations from Nash behavior in some matrix games (Robert
W. Rosenthal, 1989; McKelvey and Palfrey, 1995; Jack
Ochs, 1995), in other games with a continuum of decisions,
e.g., the “all-pay” auction (Simon P. Anderson et al.,
1998a), public-goods games (Anderson et al., 1998b), and
price-choice games (Gladys Lopez, 1995; Capra et al,,
1998).
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as before by maximizing the likelihood func-
tion. Instead of being determined by learning
experience, beliefs are now determined by equi-
librium consistency conditions.'?

It is clear from the data patterns in Figure
1 that the process is not in equilibrium in the
early periods, as average claims fall for some
treatments and rise for others. Therefore, it
would be inappropriate to estimate the logit
equilibrium model with all data as was done for
the logit learning model. We used the last three
periods of data to estimate pu = 8.3 with a
standard error of 0.5. This error parameter esti-
mate for the equilibrium model is somewhat
lower than the estimate for the logit learning
model (10.9). This difference may be due to the
fact that the learning model was estimated with
data from all periods, including the initial peri-
ods where decisions show greater variability.
Despite the difference in the treatment of be-
liefs, the logit learning and equilibrium models
have similar structures, and are complementary
in the sense that the equilibrium corresponds to
the case where learning would stop having
much effect, i.e., where decision and belief dis-
tributions are identical.

Once the error and penalty/reward parame-
ters are specified, the logit equilibrium equa-
tions in (2) can be solved using Mathematica.
Figure 3 shows the equilibrium probability dis-
tributions for all treatments with u = 8.3.

12 A theoretical analysis of the effect of R on equilibrium
claims can be based on a continuous formulation in which
probabilities arc replaced by a continuous density, f(x),
with a distribution function, F(x). In equilibrium, these
represent players’ beliefs about others’ claims, which de-
termine the expected payoff from choosing a claim of x,
denoted by 7°(x). The expected payoffs determine the
claim density via a continuous logit choice function: f(x) =
k exp(7°(x)/n), where k is a constant of integration. This
is not a closed-form solution for f(x), since the claim
distribution affects the expected payoff function. Neverthe-
less, it is possible to derive a number of theoretical proper-
ties of the equilibrium claim distribution. Anderson et al.
(1998c¢) consider a class of auction-like games that includes
the traveler’s dilemma as a special case. For this class, the
logit equilibrium exists, and is unique and symmetric across
players. Moreover, it is shown that, for any u > 0, an
increase in the R parameter results in a stochastic reduction
in claims, in the sense of first-degree stochastic dominance.

'3 The density for R = 80 seems to lie below that for
R = 50. What the figure does not show is that the density
for R = 80 puts most of its mass at claims that are very
close to 80 and has a much higher vertical intercept.
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These plots reveal a clear inverse relationship
between predicted claims and the magnitude of
the penalty/reward parameter, as observed in
the experiment. In particular, notice that the
noise introduced in the logit equilibrium model
does more than spread the predictions away
from a central tendency at the Nash equilibrium.
In fact, for low values of R, the claim distribu-
tions are centered well away from the Nash
prediction, at the opposite end of the range of
feasible choices.

We can use the logit equilibrium model (for
w1 = 8.3) to obtain predictions for the last three
periods. These predictions, calculated from the
equilibrium probability distributions in Figure
3, are found in the fifth row in Table 3. The
closeness of the logit equilibrium predictions
and the actual averages (row 2) for the final
three periods is remarkable. In all cases, the
predictions are much better than those of the
Nash equilibrium, which is 80 for all treatments
(row 6 in Table 3).'* To summarize, the esti-
mated error parameter of the logit equilibrium
model can be used to derive predicted average
claims that track the salient treatment effect on
claim data in the final three periods, an effect
that is not explained by the Nash equilibrium.

The logit-equilibrium approach in this sec-
tion does not explain all aspects of the data. For
example, the claims in part B are generally
lower when preceded by very low claims in a
competitive part A treatment, as can be seen in
Figure 2. This cross-game learning, which has
been observed in other experiments, is difficult
to model, and is not surprising. After all, the
optimal decision depends on beliefs about oth-
ers’ behavior, and low claims in a previous
treatment can affect these beliefs. Beliefs would
also be influenced by knowing the true price of
the item that was lost in the traveler’s dilemma
game. This true value might be a focal point for
claims made in early periods. Another aspect of
the data that is not explained by the logit equi-
librium model is the tendency for a significant

14 We have no formal proof that the belief distributions
in the logit learning model will converge to the equilibrium
distributions, but notice that the simulated average claims in
row 4 end up being reasonably close to the predicted equi-
librium claims in row 5, even after as few as 8-10 simulated
matchings, and the difference is largely due to the higher
error parameter estimate for the dynamic model.
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fraction of the subjects to use the same decision
as in the previous period. Other subjects change
their decisions frequently, even when average
decisions have stabilized. There seems to be
some inertia in decision-making that is not cap-
tured by the logit model. Finally, separate esti-
mates of the logit error parameter for each
treatment reveal some differences. However,
the estimates are, with one exception, of the
same order of magnitude and are similar to
estimates that we have found for other games.

VI. Conclusion

Basu’s traveler’s dilemma is of interest because
the stark predictions of the unique Nash equilib-
rium are at odds with most economists’ intuition
about how people would behave in such a situa-
tion. This conflict between theory and intuition is
especially sharp for low values of the penalty/
reward parameter, since upward deviations from

the low Nash equilibrium claims are relatively
costless. The experiment reported here is designed
to exploit the invariance of the Nash prediction
with respect to changes in the penalty/reward pa-
rameter. The behavior of financially motivated
subjects confirmed our expectation that the Nash
prediction would fail on two counts: claims were
well above the Nash prediction for some treat-
ments, and average claims were inversely related
to the value of the penalty/reward parameter.
Moreover, these results cannot be explained by
any theory, static or dynamic, that is based on
(perfectly rational) best responses to a previously
observed claim, since the best response to a given
claim is independent of the penalty/reward param-
eter in the traveler’s dilemma game. In particular,
the strong treatment effects are not predicted by
learning direction theory, imitation theories, or
evolutionary models that specify partial adjust-
ments to best responses to the most recent out-
come.
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Note: Dots represent average claims for each of the treatments.

The Nash equilibrium is the central organiz-
ing concept in game theory, and has been for
over 25 years. This approach should not be
discarded; it has worked well in many contexts,
and here it works well for high values of the
penalty/reward parameter. Rather, what is
needed is a generalization that includes the
Nash equilibrium as a special case, and that can
explain why it predicts well in some contexts
and not others. One alternative approach is to
model the formation of beliefs about others’
decisions, and we implement this by estimating
a dynamic learning model in which players
make noisy best responses to beliefs that
evolve, using a standard logit probabilistic

choice rule. In an equilibrium where beliefs
stabilize, the belief and decision distributions
are identical, although the probabilistic choice
function will keep injecting some noise into the
system.

The logit equilibrium model uses the
logit probabilistic choice function to deter-
mine decisions, while keeping a Nash-like
consistency-of-actions-and-beliefs condition.
This model performs particularly well in the
traveler’s dilemma game, where the Nash pre-
dictions are at odds with both data and intu-
ition about average claims and incentive
effects. Consider the results for each treat-
ment, as shown by the dark dots in Figure
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4 that represent average claims for the final
three periods plotted above the corresponding
penalty/reward parameter on the horizontal
axis. If one were to draw a freehand line
through these dots, it would look approxi-
mately like the dark curved line, which is in
fact the graph of the logit equilibrium predic-
tion as a function of the R parameter (calcu-
lated on basis of the estimated value of the
logit error parameter for the equilibrium
model).! Even the treatment reversal between
R values of 20 and 25 seems unsurprising given
the closeness of these two treatments on the
horizontal axis and the flatness of the densities
for these treatments in Figure 3. Recall that the
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