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Abstract

We present a theoretical model of noisy introspection designed to explain behavior in
played only once. The model determines layers of beliefs about others’ beliefs about. . . , etc., but
allows for surprises by relaxing the equilibrium requirement that belief distributions coincide
decision distributions. Noise is injected into iterated conjectures about others’ decisions and
which causes the predictions to differ from those of deterministic models of iterated thinking
rationalizability. The paper contains a convergence proof that implies existence and uniquenes
outcome of the iterated thought process. In addition, estimated introspection and noise par
for data from 37 one-shot matrix games are reported. The accuracy of the model is compar
that of several alternatives.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Game theory is a collection of mathematical models that are used to predic
explain behavior in strategic situations where players’ optimal decisions depend on
other players are expected to do. A Nash equilibrium in a game is a state of rest
sense that no player would want to change their own strategy unilaterally, knowing
strategies others are using. This notion of equilibrium is appropriate when decision m
have learned from repeated interactions what others can be expected to do. Many
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applications of game theory outside of economics, however, are more accurately m
as games played only once, e.g., legal disputes, election campaigns, and intern
conflicts. If game theory is to become a unifying theory of social science, we must de
models that predict behavior in one-shot interactions where it is not possible for p
to learn what to expect. In such cases, it may or may not be appropriate to assum
some process of introspection leads players to a Nash equilibrium. Humans are c
of many layers of speculation about possible actions and reactions, like the inspe
Edgar Allen Poe’sThe Purloined Letter who tries to think about where the thief thin
the inspector will look, and where the thief thinks the inspector thinks the thief will
the letter, etc. Iterated reasoning of this type corresponds to considering a seque
best responses to best responses. It is well known that this sequence converges to
equilibrium, if it converges at all. More analysis is needed, however, if there are mu
Nash equilibria, or if people are more and more uncertain about what others think,
what others think they think, etc. This paper presents a new model of noisy introsp
designed to explain behavior in single-shot games.

2. Some simple games

Since game theory makes precise predictions on the basis of the payoffs and
structure, it is natural to test this theory in controlled experiments where the players’ m
payoffs depend on their own and others’ decisions. Many of the initial tests of the N
theory involved repeated plays of a game for which the outcome with the highes
payoffs for both players is not an equilibrium. In Table 1, for example, each player ch
between decisions labeledR or S, with Row’s payoffs listed on the left. The lower-rig
box shows three variations of Row’s payoffs that do not alter the fact that this out
maximizes the sum of the players’ payoffs. This(R,R) outcome is risky in the sense tha
unilateral deviation by Row would increase Row’s payoffs to 25. Anticipating that, Col
may also consider switching toS, and(S,S) is the only equilibrium with no unilatera
incentive to deviate. Notice that iterated thinking in this manner focuses attention o
Nash equilibrium. In experiments with repeated plays of games like this, it is comm
observe a significant amount of cooperative(R,R) outcomes. Nash criticized initial tes
of his theory using repeated plays with the same individuals, arguing that the theory
be applied to the whole multiple-round interaction (Nasar, 1998).

In this paper, we will calibrate our analysis using data from 37 one-shot games re
by the psychologists Guyer and Rapoport (1972), including seven asymmetric pris

Table 1
A one-sided prisoner’s dilemma game (Row payoff, Column pay-
off): three variations affecting Row’s “incentive to defect”

Column player’s decision

Row player’s decision S R

S 6, 12 25,−4
R −4, 18 9/18/24, 25
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Table 2
A coordination game with multiple equilibria: three variations that reduce
the risk for Row to “force” Column

Column player’s decision

Row player’s decision S R

S 10, 19 4,−7
R −14/−7/−1, 4 19, 10

dilemma games, three of which are shown in Table 1. The changes in Row’s payoff
9 to 18 to 24 successively increase the attractiveness of the joint-maximizing ou
for Row, without changing the location of the unique Nash equilibrium at(S,S). These
changes caused a sharp reduction in the incidence ofS choices by Row players, from 90%
to 84% to 71%. While the best responses that determine a Nash equilibrium only d
on the signs, not the magnitudes, of payoff differences, the data seem to be affec
magnitudes in an intuitive manner.

Much recent work in game theory pertains to games with multiple equilibria, as in
of the three variations of the “coordination game” in Table 2, also taken from Guye
Rapoport (1972). TheS decision is the “maximin” strategy; it maximizes the minimu
payoff, so we will sometimes refer toS as “safe” andR as “risky.” The risky decisionR
is best for each if the other will also chooseR, butS is best if the probability of the othe
playingS is sufficiently high. These best response functions for the first variation o
game are shown in Fig. 1 as dark lines, with Row’s probability ofS on the vertical axis
and Column’s probability ofS on the horizontal axis (please ignore the dotted lines
now). Row’s best response stays on the bottom of the figure on the left side, but jum
1 as soon as Column’s probability ofS exceeds 0.39. The crossings of the best resp

Fig. 1. A coordination game: best responses (dark lines) and logit stochastic responses (dotted line
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functions at(0,0) and(1,1) represent Nash equilibria in pure strategies, and the cros
at (0.39,0.19) is an equilibrium in randomized strategies.

In the first variation of this game, the percentages ofS choices were 89% and 92
for Row and Column players respectively in the one-shot games reported by Guy
Rapoport (1972). These proportions are graphed as an “×” in the upper-right part of the
figure. This outcome is near the(S,S) Nash outcome that is “risk-dominant” in the sense
Harsanyi and Selten (1988). This risk dominance criterion is based on the intuitive n
that it is more risky to deviate from the(S,S) outcome: in the first variation a unilater
deviation costs 24 for Row and 26 for Column, whereas unilateral deviations from
(R,R) outcome only cost 15 for Row and 6 for Column. The three variations of this g
going from top to bottom, reduce Row’s “deviation loss” at the(S,S) equilibrium, but it is
still the risk dominant outcome in all cases.1 These payoff changes do reduce the riskin
of Row’sR decision, and not surprisingly, the incidence ofS play falls from 89% to 88%
to 75%. Again we see that magnitudes of payoff differences seem to matter, even wh
“preferred” Nash equilibrium is unaffected.

Theoretical justifications for payoff-magnitude effects can be devised by introd
some random noise into the decision-making process. Without such noise, the prob
of choosing a decision jumps “sharply” from 0 to 1 as soon as its expected payoff
highest available. Following Luce (1959), suppose instead that the probability of cho
each decision is a smoothly increasing function of the expected payoff for that dec
Luce provided an axiomatic derivation of the popular “logit” rule, which is based
exponential functions.2 Suppose there are only two possible options,S andR, which yield
expected payoffsπe

i,S andπe
i,R to playeri. Then the logit probability of choosing strate

S is given by

pi(S)=
exp(πe

i,S/µ)

exp(πe
i,S/µ)+ exp(πe

i,R/µ)
, (1)

and the probability that playeri choosesR is simply 1 minus the probability in (1). Th
denominator in (1) ensures that probabilities lie between 0 and 1, andµ is a “noise”
or “error” parameter. Asµ goes to zero, the decision with the highest expected pa
is selected with probability one. The slight rounding off of the corners of the resp
functions in Fig. 1 is due to the fact that these were drawn for a lowµ value of 0.1 (instead
of 0). A further increase inµ softens the corners even more, and the dotted lines ar
logit stochastic responses withµ= 6.6, which we estimated from the Guyer and Rapop
data as explained below. With this higher amount of noise, the lines only intersect
close to the risk-dominant Nash equilibrium. This intersection at(0.97,0.98) is aquantal

1 Risk dominance selects the equilibrium for which the product of Row’s and Column’s deviation los
greatest.

2 The necessary axioms are that choice probabilities be unaffected by adding a constant to all payo
that ratios of probabilities for two decisions be independent of the payoffs associated with any other d
An alternative derivation of the logit rule is based on an assumption that the payoffs for each decis
augmented by an unobserved preference shock, with a double exponential distribution. This random-pr
model was used by Harsanyi (1967–1968) in an equilibrium analysis, which is closely related to the
response equilibrium discussed below.
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response equilibrium proposed by McKelvey and Palfrey (1995); it is an equilibrium
the sense that each of these probabilities is a logit stochastic response to the oth
This equilibrium is a generalization of the Nash equilibrium, and it converges to a
outcome asµ goes to zero (perfect rationality). In the other extreme, as the noise para
µ goes to infinity (perfect randomness), the intersection of the logit stochastic res
lines converges to the centroid, with probabilities of 0.5 for each decision.3

In some cases, laboratory experiments produce outcomes that are reasonably
Nash predictions, both in one-shot play as for the coordination game discussed
and in settings where players are randomly rematched with each other for a se
(approximately) one-shot interactions. There are many situations, however, in
observed play shows systematic deviations from Nash, and these are often tracked
by the quantal response equilibrium (see McKelvey and Palfrey, 1995; and for conti
games, Goeree and Holt, 1999).4 For the middle variation of the asymmetric prisone
dilemma in Table 1, the unique Nash outcome is(S,S), but the percentage ofS choices
(84% for Row and 82% for Column) are quite close to the logit quantal resp
predictions (81% for Row and 85% for Column).

Both the Nash equilibrium and its quantal response generalization areequilibrium
concepts, e.g., fixed point intersections in Fig. 3, that map belief probabilities
actions that occur with the same probability. In all but the simplest games, equilib
concepts will have the most explanatory power when people have the opportun
learn about others’ decision probabilities through experience. Such “rational expecta
assumptions may not be appropriate in one-shot interactions with no chance for le
and adaptation.

To see why surprises may occur in disequilibrium situations, consider again the
stochastic response lines for the coordination game in Fig. 1. The logit quantal res
equilibrium (for the pooled estimate,µ = 6.6) is almost at an extreme corner where
probabilities ofS are essentially 1. Prior to the first and only play of a game like thi
may be the case that players are not so sure about others’ decisions. If the Row
thinks that Column will only playS with a probability of about 0.7, for example, then t
logit response is represented by the asterisk on the dotted line for Row. A similar a
is shown on Column’s stochastic response line, and together these beliefs produce
probabilities that are somewhat smaller than the logit and Nash predictions. In fact, b
of about 0.7 produce stochastic responses that are close to the actual choice perc
marked with the “×.” Since these two asterisk points do not coincide, the expecta
are not in equilibrium, e.g., Row expects a 0.7 chance ofS, whereas Column playsS
with probability 0.92. Notice that the asterisk points pull decisions away from the

3 In fact, there is a locus of quantal response equilibria, connecting the center of Fig. 1 with the upp
corner, where each point on the locus corresponds to a quantal response equilibrium for a particular vaµ.
This locus will pass very close to the “×” that represents the data average, and in this sense, a quantal re
model can explain the data in this game. The approach taken in Section 5, however, is to estimate a sin
of µ using data from 37 different games.

4 These papers report situations in which both quantal response equilibria and the observed choice d
be located far from Nash outcomes, in some cases on the opposite side of the set of feasible decisions
Goeree and Holt (2001).
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intersection toward lower probabilities ofS. This “pull to the center” is caused by (1) th
tendency for uncertainty about other’s actions to push beliefs towards 0.5, and (2) t
that the dotted line logit response functions in Fig. 1 have positive slopes. In games
the logit response functions have negative slopes, however, the effect is reversed:
uncertainty about other’s decisions will pull decisions toward higher probabilities ofS than
are implied by the logit equilibrium. This “push to the edge” effect is revisited belo
the context of “chicken” games where it is best to playS (safe) when the other player
playingR (risky) and vice versa.5

The next section presents a model of noisy introspection that formalizes the int
from these examples. This model is essentially a noisy version of the Bernheim (
and Pearce (1984) notion of rationalizability, as explained in Section 4. We used dat
one-shot games to estimate the model parameters, and Section 5 contains an asses
how the model compares with the Nash and logit quantal response predictions. Th
section concludes.

3. Iterated noisy introspection

Play in many types of one-shot games is likely to contain surprises, no m
how carefully players think about the payoffs before deciding. We therefore rela
equilibrium condition of consistency of actions and beliefs by introducing a proce
iterated conjectures. Consider the one-sided prisoner’s dilemma game in Table 1,
Row’s R decision is never a best response for any beliefs about Column’s dec
Assuming that Row is rational, Column anticipates Row choosingS and hence Column
also choosesS. Stated differently, the unique “rationalizable” outcome of this gam
the Nash outcome(S,S). In more complicated games, the notion of rationalizab
corresponds to an iterated process of eliminating strategies that are never best re
for any beliefs (Bernheim, 1984; Pearce, 1984).6 We will also consider iterated reasonin
of this type but the noise observed in laboratory data motivates us to incorporate sto

5 These slope effects may be either negated or reinforced if the relevant value ofµ is different for the logit
and introspection model, since lower error rates will push the logit intersection closer to a Nash equil
Estimates forµ are reported in Section 5 below.

6 Another well known model of introspection is Harsanyi and Selten’s (1988) “tracing procedure.”
procedure involves an axiomatic determination of players’ common priors (the “preliminary theory”) an
construction of a modified game with payoffs for each decision that are weighted averages of those in the
game and of the expected payoffs determined by the prior distribution. By varying the weight on the o
game, a sequence of best responses for the modified game are generated. This process is used to se
the Nash equilibria of the original game. Olcina and Urbano (1994) also use an axiomatic approach to
prior distribution, which is then revised by a simulated learning process that is essentially a partial adju
from current beliefs to best responses to current beliefs. The model has the attractive theoretical proper
selects the risk-dominant Nash equilibrium in 2× 2 games. Since the simulated learning process has no n
it will converge to the Nash equilibrium in games with a unique equilibrium, which is an undesirable feat
light of the one-shot data reported below. For an alternative approach, see Capra (1998) who introduces s
elements. In her model, beliefs are represented by degenerate distributions that put all probability mass a
point, and the introspective process stops when a point is mapped into itself by a linked pair of stochas
response functions. Our model, first described in Goeree and Holt (1999), is closer in spirit to the one con
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elements into the best responses.7 This is done by injecting some noise into the system
the logit choice function in (1).

To illustrate our “noisy introspection” model we start by considering symmetric 2× 2
games. This has the advantage that a player’s choice can be represented by
probability, e.g., the probability of choosingS. Moreover the symmetry assumption allo
us to drop the player-specific subscripts in (1). The expected payoffs in (1) depe
a player’s belief about the other’s play, i.e., the probability,q , with which the other
choosesS. We writeπe

S(q) andπe
R(q) to make this dependence more clear. Letφµ0(q)

denote a player’s logit best response given the player’s belief,q :

φµ0(q)= exp(πe
S(q)/µ0)

exp(πe
S(q)/µ0)+ exp(πe

R(q)/µ0)
, (2)

whereµ0 is the error rate associated with a player’s decision. Equation (2) determ
player’s choice probability for decisionS as a function of the player’s “first-order” belie
about the other’s decision. The other’s decision, in turn, depends on the other’s belie
the player’s own decision, etc. This naturally leads us to consider higher-order b
denoted byB0,B1,B2, . . . , where:

• B0 represents a player’s choice probability,
• B1 represents a player’s (first-order) belief about the other’s choice,
• B2 represents a player’s (second-order) belief about the other’s belief abo

player’s own choice, etc.

(Note thatB0 andB1 correspond toφµ0(q) andq in (2).) The logit best response functio
can be used iteratively to construct a player’s higher-order beliefs. In particular, we
a player’s first-order belief as the other’s logit best response,φµ1(B2), given the player’s
second-order belief,B2. In other words, the thought process that produces a player’s
order belief about what the other will do is modeled as the other’s noisy best res
given what the player thinks the other thinks the player will do. This second lev
introspection about what the other person is thinking is likely to be somewhat impr
so we assume that the error rateµ1 associated with the transformationφµ1(B2) is larger
than the error parameterµ0 for the transformationφµ0(B1) that determines a player ow
choice probabilities.

To define a player’s higher-order beliefs it will prove useful to introduce the follow
composition of logit best responses forn > k:

Φkn = φµk ◦ φµk+1 ◦ · · · ◦ φµn, (3)

by Kübler and Weizsäcker (2000), which has two error parameters, one pertaining to decisions and one p
to beliefs.

7 One important use of introspective theories is to model beliefs in the first period of an experiment. In
papers, we have initialized computer simulations and learning models by assuming that players make s
best responses to uniform distributions of others decisions. Alternatively, one could assume that others ar
stochastic responses to uniform distributions.
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which maps a player’snth order belief into herkth order belief:Bk =Φkn(Bn). Presumably
noise in successive iterations increases since there is likely to be more error ass
with beliefs about others’ beliefs about. . . , etc. We therefore assume that the er
rates associated with higher levels of iterated reasoning form an increasing se
(µ0 � µ1 � µ2 � · · ·), which diverges as the number of iterations increases to infi
µ∞ = ∞. A player’skth order belief,Bk , can now be defined as the limit:

Bk = lim
n→∞Φ

k
n(p0)= lim

n→∞φ
µk ◦ φµk+1 ◦ · · · ◦ φµn(p0). (4)

The probability,p0, that appears on the right side of (4) is the starting point of
iterative thought process, which can be chosen arbitrarily. The reason is that log
responseφµ for µ= ∞ mapsany initial belief probability to a uniform probability of one
half (perfectly noisy behavior). In other words, the assumption that the sequence o
rates diverges to infinity implies that higher-order beliefs become more and more d
i.e., players effectively “start out” reasoning from a uniform prior.8,9

The noisy introspection model defined by (4) is flexible and allows many special c
For instance, ifµ0 = ∞ (and, hence,µk = ∞ for all k), the model produces uniform
choice probabilities as is the case for Stahl and Wilson’s (1995) “level-0 rationality.”
case corresponds to the left-most vertical line in Fig. 2. The second vertical line
figure represents the caseµ0 = 0 andµk = ∞ for k � 1, which is “level-1 rationality,”

Fig. 2. A representation of models of noisy iteration.

8 The assumption that the error rate diverges to infinity may not be reasonable for all games, e.g., the p
dilemma where arbitrarily high-order beliefs may still put more weight on the “defect” strategy.

9 An alternative approach would be to let individuals have probability distributions over the distribution
characterize others’ beliefs, etc. This “distributions over distributions” approach is theoretically appeal
intractable for all but the simplest games.
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corresponding to a rational best response to uniform beliefs. Higher levels of ratio
can be generated similarly.10

Rather than assuming a fixed number of iterations with extreme values of the
parameters, the error rates could be increasing smoothly as shown by the curved
Fig. 2. In Section 5 below, we report estimates ofµ1 = 4.4, µ2 = 17.6, andµ3 = 53.8,
which produce a pattern of increases that roughly corresponds to that shown in
To obtain a parsimonious specification, we assume that the error rates grow geome
with each iteration:µk = tkµ0, where the “telescoping” parameter,t > 1, determines how
fast the noise parameter blows up with further iterations. This geometric series allo
a wide range of rationality levels, as shown by the smooth increasing line in Fig. 2.

The limit caset = 1 is of special interest. This would correspond to a flat line in Fi
at heightµ0. For some games (e.g., matching pennies) the process will not converge
t = 1, but when it does, the limit probabilities,p∗, must be invariant under the logit ma
φµ0(p∗)= p∗. A fixed point of this type constitutes a “logit equilibrium,” which is a spec
case of the quantal response equilibrium defined in McKelvey and Palfrey (1995). I
this sense that the logit equilibrium arises as a limit of the noisy introspective proc
(4) ast → 1. Whent > 1, the choice probabilities on the left side of (4) generally do
match the belief probabilities at any stage of the iterative process on the right. In
words, the introspective process allows for surprises, which are likely to occur in on
games.

For a t value between 2 and 4, say, the process converges quickly and the it
probabilities remain more or less the same after several steps. Given the payoff para
of the game, the introspective process in (4) predicts the probability with whi
player chooses strategyS, and this prediction will vary systematically with the valu
of the error and telescope parameters. In Section 5 we use experimental data f
different matrix games to obtain maximum-likelihood estimates of the error and tele
parameters. These “pooled estimates” allow us to compare the introspective mod
two equilibrium theories, i.e., logit and Nash equilibria. First, we extend the model to
for generalN -person games and discuss its relation with the notion of rationalizabilit

4. Noisy rationalizability

We start by reviewing the concept of rationalizability, which requires some nota
Consider the normal-form game,G, which can be represented by the triplet(N,S,π),
whereN is a finite set of players indexed byi, each of whom chooses from a pure-strate
setSi , with |Si | elements denoted bysi,k , wherek = 1, . . . , |Si |. Playeri ’s payoff is given
by theith component of the payoff mapping,π(.), which maps players’ strategies into v
Neumann–Morgenstern utilities,π :S → RN , whereS = ∏

k Sk is the Cartesian produc
of the strategy spaces. Playeri ’s opponents are denoted−i andP−i denotes the projectio
from S to S−i = ∏

k �=i Sk .

10 Selten’s (1991) model of “anticipatory learning” applies the notion of different levels of rationality
dynamic learning process in the context of a repeated, large-population game.
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Rationalizability is based on the idea of iteratively eliminating those strategies
are never best responses for any (consistent) set of beliefs (Bernheim, 1984; P
1984). The set of rationalizable strategies can be constructed by definingλ :S → S as
λ(S)= ∏

i fi (P−i (S)), wherefi(s−i ) is playeri ’s rational best response to her opponen
strategys−i . Bernheim shows that the set of (point-) rationalizable strategies,RS, can be
obtained by recursively applying theλmapping. In other words, the (point-) rationalizab
strategies are given by the limit set

RS = lim
n→∞λ

n(S), (5)

whereλn is defined recursively asλn(.)= λ(λn−1(.)).11

The outcomes of the noisy introspection model can be defined analogously by rep
players’ rational best responses,fi , by logit best responses,φµi . Whenµ> 0, the logit best
responses assign non-zero probabilities to all pure strategies so we are naturally
consider the extension ofS to mixed strategies. LetMi denote playeri ’s mixed-strategies
i.e., the set of all probability distributions overSi , and letM = ∏

k Mk . Suppose playeri ’s
first-order belief about rivals’ play is given byB1

i ∈M−i . The expected payoff of choosin
pure-strategysi,k is given byπe

i,k(B
1
i ) and the probability of selectingsi,k follows from a

generalization of (2):

φ
µ
i,k

(
B1
i

) = exp(πe
i,k(B

1
i )/µ)∑|Si |

l=1 exp(πe
i,l (B

1
i )/µ)

, k = 1, . . . , |Si |. (6)

The |Si | dimensional vectorφµi , with elementsφµi,k for k = 1, . . . , |Si |, maps element
from M−i to Mi . Defineφµ(M) to be the Cartesian product

∏
i φ
µ
i (P−i (M)); it is this

φµ-mapping that replaces theλ-mapping used by Bernheim (1984) in the construction
rationalizable strategies.

Recall that the notion of rationalizability assumes perfectly rational decision-mak
any level of introspection, i.e., irrespective of the number of iterations. For this reaso
rationalizable strategies follow from applying the sameλ-mapping recursively in (5). In
contrast, we assume that higher levels of introspection become increasingly more
The set of noisy rationalizable strategies,NRS, is obtained by recursively applying th
φµ-mapping toM, using a higher error rate at every step:

NRS = lim
n→∞φ

µ0 ◦ φµ1 ◦ · · · ◦ φµn(M), (7)

where the{µn}∞n=0 form in increasing sequence withµ∞ = ∞. The latter assumptio
implies that the set of noisy rationalizable outcomes consists of a single elementM,
since φµ for µ = ∞ mapsM into a single point, corresponding to uniform bel
probabilities for all players. The interpretation is that players’ higher-order beliefs a
what others think about what others think about. . . etc, become more and more diffu
and their (infinite) thought processes start out with uniform beliefs. Theoutcome of

11 Bernheim (1984) and Pearce (1984) also extend the notion of rationalizability to include mixed strateg
focus on the pure-strategy or point-rationalizable strategy set, to clarify the relation with our noisy introsp
model.
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their thought processes, however, generally corresponds to a different element ofM, i.e.,
players’ choice probabilities are not uniform. To summarize, while the set of rationali
strategies generally consists of more than one point, the noisy rationalizable (m
strategy is always unique, even in games with multiple Nash equilibria.

So far, we have implicitly assumed that the iterative process in (7) converges. Th
theorem, which summarizes the main result of this section, establishes that this is
the case (see Appendix A for a proof).12

Theorem. Let µ0,µ1,µ2, . . . denote a sequence of increasing and strictly positive error
rates that diverges to infinity, and let φµ be the vector of logit best response mapping whose
components are defined in (6). The sequence φµ0(p0), φµ0(φµ1(p0)), φµ0(φµ1(φµ2(p0))),
. . . converges to a unique point (the noisy rationalizable strategy) independent of the initial
starting point p0.

5. Experimental evidence

Guyer and Rapoport (1972) report an experiment in which 214 subjects played a
number of 2× 2 matrix games, without feedback, in order to preserve the “one-s
nature of the interaction. There were 37 basic games, six of which are shown in Ta
and 2.13 In each game, strategyS is the maximin strategy, and the proportions ofS choices
for the games are shown by the dark lines in Fig. 3 for Row (top panel) and Co
(bottom panel). The first three games, shown on the left side of each panel, are l
DS at the bottom, which refers to the fact thatS is a dominant strategy for these gam
The dots at the top indicate thatS is a Nash equilibrium for these three games. The n
group of games also have dominant strategies, but these are asymmetric games, an
are labeled as ADS at the bottom. Notice that the proportion ofS choices (dark line) is
high but not equal to 1 when it is a dominant strategy. The third group of games, la
APD, are asymmetric prisoner’s dilemma games, three of which are shown in Ta
The payoffs that result from playing the dominant strategies are Pareto domina
those of the “cooperative” outcome, which is not the case for the ADS games. The
coordination game variations in Table 2 are among those in the next group of asym
coordination games, labeled ACG. Recall that the coordination games have sym
Nash equilibria at(S,S), (R,R), and a mixed equilibrium at an intermediate probabil

12 The convergence proof is quite different from the fully rational case (e.g., Bernheim, 1984) whe
recursive application of theλ-mapping produces a sequence of nested sets, i.e.,λn(S) ⊆ λn−1(S) ⊆ · · · ⊆
λ(S) ⊆ S. This is not the case for the recursive application ofφµ-mapping in (7) where the error rate,µ,
changes with each iteration. Instead we show in Appendix A that the sequenceφµ0(p0), φ

µ0(φµ1(p0)),
φµ0(φµ1(φµ2(p0))), . . . is a Cauchy sequence.

13 Each game was permuted in all possible ways, by changing the labeling of players and decisions, fo
of 244 permutations. These were presented to subjects in a random order, by shuffling a deck of game
each person. Subjects made a decision for each of the 244 permutations, yielding a total of 214× 244= 52,216
decisions. After all decisions were made, subjects were paired, and their “point” earnings were determ
matching up the decisions for each of the games. Final earnings were determined by a $2.50 fixed paym
conversion of points into cash, with the conversion factor unreported.
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Fig. 3. Choice probabilities for Row (top) and Column (bottom): Guyer and Rapoport data (dark
introspection (thin line), logit (dashed line), Nash (dots).

so there are black dots at the top, middle, and bottom parts of the graph for this
of games. The remaining games (discussed below), include games of “chicken” (CK
“reverse chicken” (RCK). These games only have a single symmetric Nash equilib
which is in mixed strategies (indicated by the dots). Finally, the asymmetric mat
pennies (AMP) games have a unique Nash equilibrium in mixed strategies.

The general picture that emerges from Fig. 3 is that choice proportions fall short of
predictions in the first three series of games, and choice proportions generally excee
predictions in the final matching pennies games. In the two series of chicken gam
mixed-strategy Nash points are remarkably close to the data averages, a fact that s
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have gone unnoticed by Guyer and Rapoport, who focused instead on the proport
maximin choices. In the other games behavior seems to be sensitive to changes in
asymmetries. For example, the large drop in the proportion ofS choices by Row for the
APD games occurs for the three variations in Table 1 that increase the attractiven
the (R,R) outcome for Row. Similarly, the large drop in the incidence of safe choice
the first three ACG games is caused by the reduction in the riskiness of theR for Row,
as shown in Table 2. Also notice that Column choices are relatively stable for thes
series, which reflects the fact that “own payoff” effects seem to be more important.

The Nash equilibrium, strictly speaking, allows for no error, so any deviatio
a rejection in an uninteresting technical sense. In order to evaluate the Nash c
statistically, it is necessary to append some randomness, and this was done with t
formulation in (1). In the logit equilibrium, the probabilities that go into the expe
payoffs on the right side of (1) should match the probabilities that come out on the
Therefore, in asymmetric 2× 2 games, there are two fixed-point equations (one for e
player’s probability of choosingS), which have to be solved, givenµ. Therefore, each
specific value of the error parameter,µ, produces equilibrium probabilities,pRow(µ) and
pCol(µ), and the product of the equilibrium probabilities for each observed decisi
used to form the likelihood function. Taking logs, the products become sums an
loglikelihood becomes:

logL=
37∑

g=1

Ng
(
P
g
Rowlog

(
p
g
Row(µ)

) + (
1− PgRow

)
log

(
1− pgRow(µ)

))

+
37∑

g=1

Ng
(
P
g

Col log
(
p
g

Col(µ)
) + (

1−PgCol

)
log

(
1− pgCol(µ)

))
, (8)

whereNg is the number of decisions made by Row and Column in gameg = 1, . . . ,37,
the capitalP notation refers to the observed proportions ofS choices for Row and Colum
players, and the lower casep(µ) notation refers to logit equilibrium probabilities.

The error parameter estimate is obtained by maximizing (8) with respect toµ, which
yields theµ estimate of 6.6 that was used to construct the logit response lines in Fig. 1
standard error of this estimate is 0.1, which allows rejection of the null hypothesis ofµ= 0
(Nash). The logit predictions for the 37 games are plotted in Fig. 3 as dashed line
way to measure how well the logit equilibrium tracks the observed data is to compu
mean of the squared distances between logit predictions and data averages (for bo
and Column, using all games).14 Using percentages rather than probabilities, this me
squared distance (MSD) is 379 for logit as compared to 490 for Nash (see also Tab15

Even though the MSD for the logit predictions is lower than for Nash, the logit predic
are consistently too high or too low relative to the data in each of the game series, w
exception of the APD games.

14 Some of the games with multiple Nash equilibria in the ACG, CK, and RCK series also have multipl
equilibria for theµ value we estimated. We only plot the symmetric logit equilibria in these cases.

15 This measure is calculated by adding the squared deviations (in percentages) for both Row and Colu
averaging across games.
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Table 3
Mean-squared distances and loglikelihoods for alternative models

Estimate MSDa Loglikelihoodb

Nash (µ= 0, t = 1) NA 490 NA
Logit QRE(t = 1) µ= 6.6 (0.1) 379 −25,165
Introspection µ= 4.4 (0.1) 168 −23,603

t = 4.1 (0.1)

a Mean of squared distances between predicted and actual percentages.
b The loglikelihood is given in (8) withNg the number of decisions made in gameg (

∑
g Ng = 52,216),

P is the observed frequency of choiceS, andp is the frequency ofS predicted by the model. For compariso
the highest possible value of the loglikelihood is obtained whenP = p (i.e., the observed frequency equals
theoretical prediction), and equals−22,460. The random model, in which each decision is equally likely, res
in a loglikelihood of−33,193.

Maximum likelihood techniques were also used to obtain parameter estimat
the introspection model. As before the loglikelihood is given by (8), where the
equilibrium probabilities are replaced by introspection predictions,pRow(µ, t) and
pCol(µ, t). These introspection probabilities are calculated by taking the limit of
composition of functions on the right side of (7) as the number of iterations goes to in
We approximate this by truncating the right side of (7) at ten iterations, which is jus
by the fact that the introspection probabilities are virtually the same for every numb
iterations greater than 5 for values oft that are greater than two. Using this procedure
obtain estimates ofµ = 4.4 (0.1) andt = 4.1 (0.1).16 The standard errors in parenthes
are small enough to allow rejection of the special cases of Nash (µ= 0) and logit (t = 1).17

The introspection model further reduces the mean squared distance from 379
logit model to 168 for the introspection model. In addition, the introspection model
much higher loglikelihood (see Table 3).18 This improvement in fit is apparent in Fig.
whenever the logit predictions are too low, the introspection predictions tend to be h
(DS, ADS, CK, RCK, and AMP), and when the logit predictions are too high (ACG)
introspection predictions are lower. These qualitative comparisons are consistent w
intuition from Fig. 1: introspection predictions are generally lower than logit when
response functions are positively sloped and are higher when they are negatively

16 Notice that these estimates imply thatµ0 = 4.4, µ1 = 18.0, andµ2 = 73.8. We also estimated a thre
parameter model in which the levels ofµ were not constrained to increase geometrically. The resulting estim
were somewhat similarµ0 = 4.4, µ1 = 17.6, andµ2 = 53.8, and these estimates yield essentially the sa
predicted introspection probabilities. Moreover, the loglikelihood of the three-parameter model,−23,602, is not
significantly higher than the loglikelihood obtained from the two-parameter introspection model in the b
row of Table 3.

17 We also estimate the model separately for the three categories of games: games with a dominant
solution (games 1–17), games with multiple Nash equilibria (games 18–32), and games with a unique
strategy equilibrium (games 33–37). Theµ-estimates for these three categories of games are: 4.7 (0.1), 4.0
and 3.4 (0.1), respectively. Thet-estimates are 4.2 (0.3), 4.3 (0.1), and 3.9 (0.3), respectively.

18 A standard loglikelihood ratio test involves computing twice the difference between the loglikelihoo
the nested models in Table 3. The test statistic associated with adding the introspection parameter,t , is greater
than 3000, which exceeds the critical value for a chi-square test at any standard level of significance.
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Table 4
A game of chicken (Row payoff, Column payoff)

Column player’s decision

Row player’s decision S R

S 12, 12 15, 32
R 32, 15 −5, −5

In addition, the introspection predictions match the accuracy of the Nash predictions
chicken games, but like logit, generally do better than Nash in the other games.

One of the games where the introspection model predicts poorly is the first ch
game, shown just to the right of the dotted line that separates ACG and CK in F
Consider the chicken game with payoffs shown in Table 4.19 For both players the sum
of payoffs for either decision is 27, so the mixed-strategy Nash equilibrium is to ch
each decision with probability 1/2. In this case, the best response functions interse
the center of a graph like Fig. 1, at(0.5,0.5). The effect of adding noise is to round o
the corners, leaving S-shaped logit response functions that still intersect in the cente
symmetry causes the symmetric logit and introspection equilibria to also be at 0.5
Nash equilibrium produces an expected payoff of 14.5 for each decision, despite th
that the payoff variance would be much higher for the risky decision. The data, in co
to all three predictions, reveal that 67% of the choices were the safe decision. This su
that the high rate of safe choices may be due to risk aversion.20

Finally, consider the data for the five asymmetric matching pennies games sho
the right side of Fig. 3. In the first three games, only Row’s payoffs were chan
The Nash predictions are constant for Row, since Row’s probability is determine
the requirement that Column be indifferent. Therefore, the dots that show Row’s
predictions for the first three AMP games are on a horizontal line. The dark data lin
Row is sharply increasing for these games, indicating that Row’s choice probabiliti
sensitive to “own-payoff” effects. Since Row’s stochastic best-response function sh

19 The chicken and reverse-chicken games are similar in that the best response to aggressive behavR) is
passive (S) and vice versa, so there are asymmetric Nash equilibria(S,R) and(R,S), and there is a symmetri
equilibrium in mixed strategies that is shown by the solid dots in Fig. 2. The only difference is that for eacR/S

outcome, the player choosingR earns more in the chicken game and the person choosingS earns more in the
reverse chicken game.

20 To test this conjecture we incorporated risk aversion into the noisy introspection model. We assumed
relative risk aversion so that the utility of an amountx is x1−r , where the risk aversion parameter,r , satisfies
0< r < 1. We added a constant (17) to all payoffs to ensure that the lowest payoff for any of the 37 game
be at least 1. The results of this estimation are:r = 0.46 (0.02),µ= 0.62 (0.05), andt = 4.6 (0.1). (The estimated
error parameter is lower than the risk-neutral estimate because the power function expected utility num
much lower than the expected payoffs.) The hybrid introspection/risk-aversion model has a much lowe
squared deviation of 78, as compared with 168 for the model without risk aversion. (We also estimate
aversion parameter for the logit model:r = 0.45, which reduces the mean squared deviation from 379 with
neutrality to 343 with risk aversion.) The improved fit is largely in the first chicken game and the asym
matching pennies (AMP) games. Of course, adding an extra parameter increases the danger of “data
and the reader will have to decide whether the improved fit is worth the cost.
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the direction of the safe strategy when one of the payoffs for that strategy is increas
logit predictions determined by the intersection of the smooth stochastic best res
also shifts towards higher probability ofS. It is apparent from the top part of Fig. 3 that t
introspection predictions also track these own-payoff effects, which is not surprising
these predictions are determined by the iteration of stochastic best responses. Si
the payoff changes in the second, fourth, and fifth AMP games affect only Column
therefore the Nash predictions for Column are constant. Again the logit and introsp
model correctly predict the own-payoff effects observed in the data for Column sho
the bottom part of Fig. 3.

6. Conclusion

Many strategic encounters are unique, non-repeated interactions. Equilibrium co
that build in “rational expectations” about others’ decisions may not be appropriate in
cases. Without an opportunity to learn, players must think about others’ decisions, o
theories of one’s own decisions, etc., but such speculation is likely to become increa
noisy with successive iterations. In this paper we propose a general model of iterate
introspection and prove convergence (existence and uniqueness). Parsimonious ver
this model were estimated using data from thirty-seven 2× 2 matrix games, and the mod
predictions are more accurate than those of equilibrium theories, both with noise
and without noise (Nash).

The mixed-strategy Nash equilibrium is remarkably accurate in symmetric games
chicken), but it is quite inaccurate in some matching pennies games where the onl
equilibrium is mixed. The reason for this difference is that human subjects do not
to follow the mixed-strategy prediction that decision probabilities depend only onother’s
payoffs. In the symmetric chicken games, this asymmetry bias does not occur beca
parameter changes affect both players in the same manner. Moreover, Nash pre
do not pick up systematic “own-payoff” effects that alter quantitative but not qualit
payoff comparisons. In contrast, the logit (quantal response) equilibrium is sensit
magnitudes of payoff differences. The logit equilibrium has provided remarkably acc
predictions of behavior in games with learning opportunities (McKelvey and Palfrey, 1
Goeree and Holt, 1999). In one-shot games, however, the logit predictions te
be systematically biased: above the data for games with negatively sloped sto
response functions and below the data for games with positively sloped stochastic re
functions. The model of noisy introspection follows the Nash predictions in games w
they are on track, and it is generally much closer to the data in other games.
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Appendix A. Existence and uniqueness

Theorem. Let µ0,µ1,µ2, . . . denote a sequence of increasing and strictly positive error
rates that diverges to infinity, and let φµ be the vector of logit best response mapping whose
components are defined in (6). The sequence φµ0(p0), φµ0(φµ1(p0)), φµ0(φµ1(φµ2(p0))),
. . . converges to a unique point (the noisy rationalizable strategy) independent of the initial
starting point p0.

Proof. Define

Φn ≡ φµ0 ◦ φµ1 ◦ · · · ◦ φµn,
where {µn}∞n=0 is an increasing sequence of error rates that diverges to infinity,
φµ :M →M is defined byφµ(M)= ∏

i φ
µ
i (P−i (M)), whereP−i is the projection fromS

to S−i = ∏
k �=i Sk and playeri ’s noisy best responseφµi has components:

φ
µ
i,k

(
B1
i

) = g(πe
i,k(B

1
i )/µ)∑|Si |

l=1g(π
e
i,l (B

1
i )/µ)

, k = 1, . . . , |Si |, (A.1)

whereπe
i,k(B

1
i ) is playeri ’s expected payoff from choosing the pure strategysi,k when her

beliefs about the others’ play are given by (some arbitrary)B1
i ∈M−i . Theg(.) function on

the right-side of (A.1) is some strictly positive, strictly increasing, differentiable func
on R. Note that (A.1) reduces to the logit rule discussed in the main text wheng(x) =
exp(x).

We have to show that the sequence{Φn(p0)}∞n=0 converges and that the limit poin
is independent ofp0. The latter claim follows from the assumption that the error ra
diverge to infinity andφµi for µ= ∞ maps playeri ’s entire probability simplex,Mi , into a
single point, i.e., the centroidCi corresponding to uniform probabilities:Ci,k = 1/|Si |
for k = 1, . . . , |Si |. Let C denote the vector that results by concatenating theCi for
i = 1, . . . ,N . The limit point of {Φn(C)}∞n=0 (if it exists) will thus be the same as th
of {Φn(p0)}∞n=0 for all p0.

We prove convergence of{Φn(C)}∞n=0 by showing that it is a Cauchy sequence, i.e.,
all ε > 0 there existn such that the distanced(Φn(C),Φm(C)) < ε for all m> n. Here the
distance between two points inM can be defined as:d(p,q)= ∑N

i=1 maxi=1,...,K |pi−qi|.
Note that form> n we can writeΦm(C)=Φn(c(n,m)), where the lower casec(n,m) is
defined as

c(n,m)= φµn+1 ◦ · · · ◦ φµm(C).
SinceΦn is a composition of continuous functions it is itself continuous. Hence fo
ε > 0 there existδ such thatd(Φn(C),Φn(c(n,m))) < ε if d(C, c(n,m)) < δ. So the proof
follows if we can show that for allδ > 0 there exist ann such thatd(C, c(n,m)) < δ for
all m> n.

Let Ci , ci(n,m) denote the projection ofC, c(n,m) ontoMi , and letci,max(n,m) and
ci,min(n,m) be the largest and smallest element ofci(n,m), respectively. The distanc
betweenCi andci(n,m) is the greater ofci,max(n,m)− 1/|Si | and 1/|Si | − ci,min(n,m).
Hence, the distanced(Ci, ci(n,m)) is no greater than the sum of these two expressi
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which equals:ci,max(n,m)− ci,min(n,m). Denote the highest and lowest possible pay
for player i by πi,max and πi,min, respectively (which are assumed to be finite), th
d(C, c(n,m)) can be bounded by

d
(
C,c(n,m)

) =
N∑

i=1

d
(
Ci, ci(n,m)

)

�
N∑

i=1

g(πi,max/µn+1)− g(πi,min/µn+1)

|Si |g(πi,min/µn+1)
, (A.2)

for all m> n. Sinceg(.) is continuous and the error rateµn+1 diverges asn grows large,
the numerator on the far right side of (A.2) can be made arbitrarily small (while
denominator limits to|Si |g(0) > 0) by choosingn large enough. ✷
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