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Unraveling in Guessing Games: An Experimental Study

By ROSEMARIE NAGEL *

Consider the following game: a large num-
ber of players have to state simultaneously a
number in the closed interval [0, 100]. The
winner is the person whose chosen number is
closest to the mean of all chosen numbers mul-
tiplied by a parameter p, where p is a prede-
termined positive parameter of the game; p is
common knowledge. The payoff to the winner
is a fixed amount, which is independent of the
stated number and p. If there is a tie, the prize
is divided equally among the winners. The
other players whose chosen numbers are fur-
ther away receive nothing.'

The game is played for four rounds by the
same group of players. After each round, all
chosen numbers, the mean, p times the mean,
the winning numbers, and the payoffs are pre-
sented to the subjects. For 0 = p < 1, there
exists only one Nash equilibrium: all players
announce zero. Also for the repeated super-
game, all Nash equilibria induce the same an-
nouncements and payoffs as in the one-shot
game. Thus, game theory predicts an unam-
biguous outcome.

The structure of the game is favorable for
investigating whether and how a player’s men-
tal process incorporates the behavior of the
other players in conscious reasoning. An ex-
planation proposed, for out-of-equilibrium be-
havior involves subjects engaging in a finite
depth of reasoning on players’ beliefs about

* Department of Economics, Universitat Pompeu Fa-
bra, Balmes 132, Barcelona 08008, Spain. Financial sup-
port from Deutsche Forschungsgemeinschaft (DFG)
through Sonderforschungsbereich 303 and a postdoctoral
fellowship from the University of Pittsburgh are grate-
fully acknowledged. I thank Reinhard Selten, Dieter
Balkenborg, Ken Binmore, John Duffy, Michael Mitzkewitz,
Alvin Roth, Karim Sadrieh, Chris Starmer, and two anon-
ymous referees for helpful discussions and comments. I
learned about the guessing game in a game-theory class
given by Roger Guesnerie, who used the game as a dem-
onstration experiment.

' The game is mentioned, for example, by Hervé
Moulin (1986), as an example to explain rationalizability,
and by Mario H. Simonsen (1988).
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one another. In the simplest case, a player se-
lects a strategy at random without forming be-
liefs or picks a number that is salient to him
(zero-order belief). A somewhat more so-
phisticated player forms first-order beliefs on
the behavior of the other players. He thinks
that others select a number at random, and he
chooses his best response to this belief. Or he
forms second-order beliefs on the first-order
beliefs of the others and maybe nth order be-
liefs about the (n — 1)th order beliefs of the
others, but only up to a finite n, called the n-
depth of reasoning.

The idea that players employ finite depths
of reasoning has been studied by various
theorists (see e.g., Kenneth Binmore, 1987,
1988; Reinhard Selten, 1991; Robert Aumann,
1992; Michael Bacharach, 1992; Cristina
Bicchieri, 1993; Dale O. Stahl, 1993). There
is also the famous discussion of newspaper
competitions by John M. Keynes (1936 p.
156) who describes the mental process of
competitors confronted with picking the face
that is closest to the mean preference of all
competitors.”> Keynes’s game, which he con-
sidered a Gedankenexperiment, has p = 1.
However, with p = 1, one cannot distinguish
between different steps of reasoning by actual
subjects in an experiment.

There are some experimental studies in
which reasoning processes have been analyzed
in ways similar to the analysis in this paper.
Judith Mehta et al. (1994), who studied be-
havior in two-person coordination games, sug-
gest that players coordinate by either applying
depth of reasoning of order 1 or by picking a
focal point (Thomas C. Schelling, 1964),
which they call ‘‘Schelling salience.”” Stahl
and Paul W. Wilson (1994 ) analyzed behavior
in symmetric 3 X 3 games and concluded that
subjects were using depths of reasoning of or-
ders 1 or 2 or a Nash-equilibrium strategy.

2 This metaphor is frequently mentioned in the mac-
roeconomic literature (see e.g., Roman Frydman, 1982).
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Both of these papers concentrated on several
one-shot games. In my experiments, the deci-
sions in first period indicate that depths of
reasoning of order 1 and 2 may be playing a
significant role. In periods 2—4, for p < 1, 1
find that the modal depth of reasoning does not
increase, although the median choice de-
creases over time.* A simple qualitative learn-
ing theory based on individual experience is
proposed as a better explanation of behavior
over time than a model of increasing depth of
reasoning. This is the kind of theory that
Selten and Joachim Buchta (1994) call a
“‘learning direction theory,”” which has been
successfully applied in several other studies.

Other games with unique subgame-perfect
equilibria that have been explored in the ex-
perimental literature include Robert Rosen-
thal’s (1981) ‘‘centipede game,”” a market
game with ten buyers and one seller studied
experimentally by Roth et al. (1991), a public-
goods-provision game studied by Vesna
Prasnikar and Roth (1992), and the finitely
repeated prisoner’s dilemma studied experi-
mentally by Selten and Rolf Stoecker (1986).
In the experimental work on the centipede
game by Richard McKelvey and Thomas
Palfrey (1992) and on the prisoner’s dilemma
supergame, the outcomes are quite different
from the Nash equilibrium point in the open-
ing rounds, as well as over time. While the
outcomes in Roth et al. (1991), Prasnikar and
Roth (1992), and my experiments are also far
from the equilibrium in the opening round,
they approach the equilibrium in subsequent
rounds. Learning models have been proposed
to explain such phenomena (see e.g., Roth and
Ido Erev, 1995).

I. The Game-Theoretic Solutions

For 0 = p < 1, there exists only one Nash
equilibrium at which all players choose 0.* All

* This kind of unraveling is similar to the naturally oc-
curring phenomena observed by Alvin E. Roth and
Xiaolin Xing (1994) in many markets in which it is important
to act just a little earlier in time than the competition.

* Assume that there is an equilibrium at which at least
one player chooses a positive number with positive prob-
ability. Let k be the highest number chosen with positive
probability, and let m be one of the players who chooses
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announcing O is also the only strategy com-
bination that survives the procedure of infi-
nitely repeated simultaneous elimination of
weakly dominated strategies.” For p = 1 and
more than two players, the game is a coordi-
nation game, and there are infinitely many
equilibrium points in which all players choose
the same number (see Jack Ochs [1995] for a
survey). For p > 1 and 2p < M (M is the
number of players), all choosing O and all
choosing 100 are the only equilibrium points.
Note that for p > 1 there are no dominated
strategies. The subgame-perfect equilibrium
play (Selten, 1975) does not change for the
finitely repeated game.

II. A Model of Boundedly Rational Behavior

In the first period a player has no informa-
tion about the behavior of the other players.
He has to form expectations about choices of
the other players on a different basis than in
subsequent periods. In the subsequent periods
he gains information about the actual behavior
of the others and about his success in earlier
periods. Therefore, in the analysis of the data
I make a distinction between the first period
and the remaining periods.

k with positive probability. Obviously, in this equilibrium
p times the mean of the numbers chosen is smaller than k.
Therefore, player m can improve his chances of winning
by replacing k by a smaller number with the same prob-
ability. Therefore no equilibrium exists in which a positive
number is chosen with positive probability.

* Numbers in (100p, 100] are weakly dominated by
100p; in the two-player game, O is a weakly dominant
strategy. The interpretation of the infinite iteration process
might be: it does not harm a rational player to exclude
numbers in the interval (100p, 100]. If this player also
believes that all other players are rational, he consequently
believes that nobody will choose from (100p, 100], and
therefore he excludes (100p?, 100]; if he thinks that the
others believe the same, (100p®, 100] is excluded, and
so on. Thus, 0 remains the only nonexcluded strategy
based on common knowledge of rationality. If choices
were restricted to integers, all choosing 1 is also an
equilibrium.

It is straightforward to show that all choosing 0 and
all choosing 100 are equilibria: it does not pay to deviate
from 0 (100) if all other players choose 0 (100) and the
number of players is sufficiently large. There is no other
symmetric equilibrium since with a unilateral small in-
crease a player improves his payoff. Also, other asym-
metric equilibria or equilibria in mixed strategies cannot
exist for analogous reasons, as in the case p < 1.
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The model of first-period behavior is as fol-
lows: a player is strategic of degree 0 if he
chooses the number 50. (This can be inter-
preted as the expected choice of a player who
chooses randomly from a symmetric distribu-
tion or as a salient number a la Schelling
[1960]). A person is strategic of degree n if
he chooses the number 50p”, which I will call
iteration step n. A person whose behavior is
described by n = 1 just makes a naive best
reply to random behavior.” However, if he be-
lieves that the others also employ this reason-
ing process, he will choose a number smaller
than 50p, say 50p?, the best reply to all other
players using degree-1 behavior. A higher
value of n indicates more strategic behavior
paired with the belief that the other players are
also more strategic; the choice converges to
the equilibrium play in the limit as » increases.

For periods 2—4, the reasoning process of
period 1 can be modified by replacing the ini-
tial reference point r = 50 by a reference point
based on the information from the preceding
period. A natural candidate for such a refer-
ence point is the mean of the numbers named
in the previous period. With this initial refer-
ence point, iteration step 1, which is the prod-
uct of p and the mean of the previous period,
is similar to Cournot behavior (Antoine A.
Cournot, 1838) in the sense of giving a best
reply to the strategy choices made by the oth-
ers in the previous period (assuming that the
behavior of the others does not change from
one period to the next).®

I can also consider ‘‘anticipatory learning,”’
in which an increase in iteration steps is ex-

" If the mean choice of the others is 50, the number that
really comes nearest to p times the mean is a little lower
since this player’s choice also influences p times the mean.
My interpretation of iteration step 1 is comparable to the
definition of secondary salience introduced by Mehta et
al. (1994) or the level-1 type in Stahl and Wilson (1994).

¥ Actually, Cournot behavior in response to an assumed
mean choice x_; of the other players would not lead to p
times the mean, but to

M-1_
X
pM—p

where M is the number of players. However, there is no
indication that subjects try to compute this best reply.
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pected of the other players. Specifically, one
can ask whether, with increasing experience,
higher and higher iteration steps will be ob-
served. I will show, however, that the modal
frequency, polled over all sessions, remains at
iteration step 2 in all periods. In Section V-C
a quite different adjustment behavior is ex-
amined, which does not involve anything
similar to the computation of a best reply
to expected behavior. Instead of this, a behav-
ioral parameter—the adjustment factor—is
changed in the direction indicated by the in-
dividual experience in the previous period.

III. The Experimental Design

I conducted three sessions with the param-
eter p = '/, (sessions 1-3), four sessions with
p =% (4=7), and three sessions with p = %,
(8—10).° I will refer to these as '/, %4, or
sessions, respectively. A subject could partic-
ipate in only one session.

The design was the same for all sessions:
1518 subjects were seated far apart in a large
classroom so that communication was not pos-
sible. The same group played for four periods;
this design was made known in the written in-
structions. At each individual’s place were an
instruction sheet, one response card for each
period, and an explanation sheet on which the
subjects were invited to give written explana-
tions or comments on their choices after each
round. The instructions were read aloud, and
questions concerning the rules of the game
were answered.'’

After each round the response cards were
collected. All chosen numbers, the mean, and

Moreover, for M between 15 and 18, the number of sub-
jects in my experiments, the difference between this best
reply and p times the mean is not large.

“Tuse p = '/, because it reduces calculation difficul-
ties. With p = %, I am able to distinguish between the
hypothesis that a thought process starts with the reference
point 50 and the game-theoretic hypothesis that a rational
person will start the iterated elimination of dominated
strategies with 100. For p > 1, p = */; is used to analyze
behavior. There are no sessions with p = 1; this game is
similar to a coordination game with many equilibria,
which has already been studied experimentally (e.g., John
Van Huyck et al., 1990).

' A copy of the instructions used in the experiment
may be obtained from the author upon request.
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the product of p and the mean were written on
the blackboard (the anonymity of the players
was maintained). The number closest to the
optimal number and the resulting payoffs were
announced. The prize to the winner of each
round was 20 DM (about $13). If there was a
tie, the prize was split between those who tied.
All other players received nothing.'' After four
rounds, each player received the sum of his
gains of each period and an additional fixed
amount of 5 DM (approximately $3) for
showing up. Each session lasted about 45
minutes, including the instruction period.

IV. The Experimental Results

The raw data can be found in Nagel (1993)
and are also available from the author upon
request. Whereas I use only nonparametric
tests in the following sections, Stahl (1994)
applies parametric tests to these data and con-
firms most of the conclusions.

A. First-Period Choices

Figure 1 displays the relative frequencies of
all first-period choices for each value of p,
separately. The means and medians are also
given in the figure. All but four choices are
integers. No subject chose 0 in the %; and '/,
sessions, and only 6 percent chose numbers
below 10. In the *; sessions, only 10 percent
chose 99, 100, or 1. Thus, the sessions with
different parameters do not differ significantly
with respect to frequencies of equilibrium
strategies and choices near the equilibrium
strategies. Weakly dominated choices, choices
larger than 100p, were also chosen infre-
quently: in the '/, sessions, 6 percent of the

"' This all-or-nothing payoff structure might trigger un-
reasonable behavior by some subjects which in turn im-
pedes quicker convergence. In John Duffy and Nagel
(1995), the behavior in p-times-the-median game was
studied, in an effort to weaken the influence of outliers.
While first round behavior in both the mean- and median-
treatments was not significantly different, fourth round
choices in p-times-the-median game were slightly lower
than those in p-times-the-mean game. Changes in the pay-
off structure, for example, negative payoffs to losers,
might affect the evolution of behavior on the guessing
game in a different way.

DECEMBER 1995

0.15

A. .
median 17
mean 27.05
8
G 0.101
[=
3
p=)
o
o
w
[}
2
5 0.051
i
0.00% 10 20 30 40 50 60 70 80 90 100
Chosen Numbers
0.15
B. .
median 33
mean 36.73
3
‘G 0.10-
C
[
3
o
(4
w
[}
2
T 0.051
[}
o
0005 10 20 30 40 50 60 70 80 90 100
Chosen Numbers
0.15
C. .
median 66
mean 60.12
(%]
2
S 0.104
[
3
o
()
i
[}
2
< 0.05]
o
0.00

0O 10 20 30 40 50 60 70 80 90 100
Chosen Numbers

FIGURE 1. CHOICES IN THE FIRST PERIOD: A) SESSIONS
1-3 (p = '1,); B) SESSIONS 4-7 (p = /,);
C) SESSIONS 8—10 (p = */3)

subjects chose numbers greater than 50 and 8
percent chose 50; in the %, sessions, 10 percent
of the chosen numbers were greater than 67,
and 6 percent were 66 or 67. From these results
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one might infer that either dominated choices
are consciously eliminated or reference points
are chosen that preclude dominated choices.
For p > 1, dominated strategies do not exist.
Apart from the similarities just mentioned,
there are noticeable differences between the
distributions of choices in sessions with dif-
ferent values of p. When p was increased, the
mean of the chosen numbers was higher. I can
reject the null hypothesis that the data from the
'/, and %} sessions are drawn from the same
distribution, in favor of the alternative hypoth-
esis that most of the chosen numbers in the
'/, sessions tend to be smaller, at the 0.001
level of statistical significance, according to a
Mann-Whitney U test. The same holds for a
test of the data from the %; sessions against
those of the “/ sessions: the chosen numbers
in the former tend to be smaller than those in
the latter; the null hypothesis is rejected at the
0.0001 level. This result immediately suggests
that many players do not choose numbers at
random but instead are influenced by the pa-
rameter p of the game.

I also tested whether the data exhibit the
structure suggested by the simple model given
in Section III, that is, taking 50 as an initial
reference point and considering several itera-
tion steps from this point (50p”). Figure 1
shows that the data do not correspond exactly
to these iteration steps. However, are the data
concentrated around those numbers? In order
to test this possibility, I specify neighborhood
intervals of 50p", for whichnis 0, 1,2, ....
Intervals between two neighborhood intervals
of 50p”"* "' and 50p" are called interim inter-
vals. I use the geometric mean to determine
the boundaries of adjacent intervals. This ap-
proach captures the idea that the steps are cal-
culated by powers of n. The interim intervals
are on a logarithmic scale approximately as
large as the neighborhood intervals, if round-
ing effects are ignored.'?

"> In general, the neighborhood interval of 50p’ has the
boundaries 50p'*'"* and 50p’ ', rounded to the nearest
integers, since mostly integers were observed. Note that
the neighborhood of 50p° is bounded from the right side
by 50 for p < 1 and bounded to the left side by 50 for
p > 1. (The results we present would not change if we
had included a right-hand-side neighborhood for p < 1,
or a left-hand-side neighborhood for p > 1).
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FIGURE 2. RELATIVE FREQUENCIES OF CHOICES IN THE
FIRST PERIOD ACCORDING TO THE INTERVAL
CLASSIFICATION WITH REFERENCE POINT 50:

A) SESSIONS 1-3 (p = 'h); B) SESSIONS 4-7
(p = *); C) SESSIONS 8—10 (p = %/3)

Figure 2 shows the number of observations
in each of these neighborhood and interim in-
tervals for the respective sessions. The neigh-
borhood and interim intervals are stated on the
horizontal axis. Note the similarity between
Figure 2A and Figure 2B. In the '/, and %4
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sessions, almost 50 percent of the choices are
in the neighborhood interval of either iteration
step 1 or 2, and there are few observations in
the interim interval between them. In all ses-
sions only 6—10 percent are at step 3 and
higher steps (the aggregation of the two left-
hand columns in Figure 2A and Figure 2B
[p = ', and p = ?4], respectively, and the
right-hand column of Figure 2C [p = “4]).
(Choices above 50 in the '/, and ?/; sessions
and choices below 50 in the % sessions are
graphed only in aggregate.) The choices are
mostly below 50 in the '/, and %, sessions and
mostly above 50 in the ; sessions; this
difference is statistically significant at the
1-percent level, based on the binomial test.

To test whether there are significantly more
observations within the neighborhood inter-
vals than in the interim intervals I consider
only observations between step 0 and step 3.
Hence, the expected proportion within the
neighborhood interval under the null hypoth-
esis (that choices are randomly distributed be-
tween interim and neighborhood intervals) is
then the sum of the neighborhood intervals di-
vided by the interval between step O and step
3. Note that this is a stronger test than taking
the entire interval 0—100. The one-sided bi-
nomial test, taking into consideration the pro-
portion of observations in the neighborhood
intervals, rejects the null hypothesis in favor
of the hypothesis that the pooled observations
are more concentrated in the neighborhood in-
tervals (the null hypothesis is rejected at the
1-percent level, both for the '/, sessions and
for the %, sessions; it is rejected at the 5-
percent level for the */; sessions).'*'*

Note that over all '/, sessions, the optimal
choice (given the data) is about 13.5, which

'* Since the iterated elimination of dominated strategies
starts the reasoning process at 100, I also tested whether
that initial reference point would structure the data in a
coherent way for the different parameters. For p = ¥/, all
iteration steps collapse into 100; thus spikes cannot be
explained. For the */; sessions the data are not only con-
centrated around 100 X (2/3)". On the other hand, the pat-
tern of the '/>-session data is similar to the pattern in Figure
3A, except that step n becomes step n + 1. Hence, 100 is
not a plausible initial reference point for most subjects.

'* The written comments of the subjects also seem to
support our model. For details see Nagel (1993).

DECEMBER 1995

belongs to iteration step 2, which is also where
we observe the modal choice, with nearly 30
percent of all observations. Over all *; ses-
sions, the optimal choice is about 25, which
also belongs to iteration step 2 with about 25
percent of all observations, the second-highest
frequency of a neighborhood interval. Thus,
many players are observed to be playing ap-
proximately optimally, given the behavior of
the others.

B. The Behavior in Periods 2, 3, and 4

To provide an impression of the behavior
over time, Figures 3—5 show plots of pooled
data from sessions with the same p for each
period; the plots show the choices of each sub-
ject from round ¢ to ¢ + 1. In the '/, and %
sessions, 135 out of 144 (3 transition periods X
48 subjects) and 163 out of 201 observations
(3 X 67 subjects), respectively, are below the
diagonal, which indicates that most subjects
decrease their choices over time. In all ses-
sions with p < 1, the medians decrease over
time (see Table 1); this is also true for the
means except in the last period of the '/, ses-
sions. In the ¥/, sessions, the reverse is true:
133 out of 153 observations (3 X 51 subjects)
are above the diagonal and the medians in-
crease and are 100 in the third and fourth pe-
riods. Thus from round to round, the observed
behavior moves in a consistent direction, to-
ward an equilibrium. (It is this movement that
is reminiscent of the unraveling in time ob-
served in many markets by Roth and Xing
[1994].)

In the '/, sessions, more than half of the ob-
servations were less than 1 in the fourth round.
However, only three out of 48 chose 0. In the
’/; sessions, only one player chose a number
less than 1. On the other hand, in the */; ses-
sions, 100 was already the optimal choice in
the second period, being chosen by 16 percent
of the subjects; and in the third and fourth pe-
riod, it was chosen by 59 percent and 68 per-
cent, respectively. Thus, for the */; sessions I
conclude that the behavior of the majority of
the subjects can be simply described as the
best reply (100) to the behavior observed in
the previous period. (Some of the subjects
who deviated from this behavior argued that
they tried to influence the mean [to bring it



VOL. 85 NO. 5

Choices in Second Period
g

o +
2 S
0 10 20 30 40 50 60 70 8 90 100
Choices in First Period

Choices in Third Period
8

+ o+
+

o 4 *«-4,* + +
0 10 20 30 40 50 60 70 8 90 100
Choices in Second Period

Choices in Fourth Period
g

+
¥

20 30 40 50 60 70 80 90 100
Choices in Third Period

%
] 10

FIGURE 3. OBSERVATIONS OVER TIME FOR SESSIONS 1-3
(p = 'h): A) TRANSITION FROM FIRST TO SECOND
PERIOD; B) TRANSITION FROM SECOND TO THIRD PERIOD;
C) TRANSITION FROM THIRD TO FOURTH PERIOD

down again] or wrote that the split prize was
too small to state the obvious right answer.)
The adjustment process toward the equilibri-
um in the '/, and %; sessions is quite different
from that in the “/; sessions. Zero is never the
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best reply in the '/, and %; sessions, given the
actual strategies. Instead the best reply is a
moving target that approaches 0. The adjust-
ment process is thus more complicated. Com-
paring Figures 3 and 4, one can see that the
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choices in '/, sessions converge faster toward
0 than those in %; sessions. However, the
reason might be that the initial distribution is
at lower choices in the former sessions than in
the latter. Therefore, to investigate whether the
actual choices decrease faster for p = '/, than
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for p = %, I define a rate of decrease of the
means and medians from period 1 to period 4
within a session by

(mean),_, — (mean),_,
(la) wmc'dn =
(mean)r=l
(1b)  w,, = (median), — (median), _,
(median), _

The rates of decrease of the single sessions are
shown in Table 1, in the last lines of panels A
and B. The rates of decrease of the session
medians in the '/, sessions are higher than
those in the %; sessions, and the difference is
statistically significant at the 5-percent level
(one-tailed), based on a Mann-Whitney U
test. There is no significant difference in the
rates of decrease of the means. The median
seems more informative than the mean, since
the mean may be strongly influenced by a sin-
gle deviation to a high number. Thus, I con-
clude that the rate of decrease depends on the
parameter p.

Analyzing the behavior in the first period, I
found some evidence that r = 50 was a plau-
sible initial reference point. Below, I classify
the data of each of the subsequent periods ac-
cording to the reference point r (mean of the
previous period) and iteration steps n: rp".
Numbers above the mean are aggregated to
‘‘above mean,_,”’ (see Table 2)."

As was the case for the first-period behav-
ior, one cannot expect that exactly these steps
are chosen. Grouping the data of the subse-
quent periods and sessions in the same way as
in the first period, namely, in neighborhood
intervals of the iteration steps and interim in-

"> The chosen numbers tend to be below the mean of
the previous period, and the difference is significant at the
5-percent level for all '/, and */; sessions and all periods
t = 2-4, according to the binomial test. The same test
does not reject the null hypothesis for p times the mean
of the previous period, for periods 2 and 3. In the fourth
period the chosen numbers are significantly (at the 1-
percent level) below p X r, in six out of seven sessions.
Note that if I had analyzed the data starting from reference
point ‘‘naive best reply of the previous period’” (p X r),
instead of starting from the mean, step n would become
step n — 1, and all choices above the naive best reply
would be aggregated to one category.
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TaBLE 1—MEANS AND MEDIANS OF PERIODS 1 -4, AND RATE OF DECREASE FROM PERIOD 1 TO PERIOD 4

A. Sessions withp = '/,:

Session 1 Session 2 Session 3
Period Mean Median Mean Median Mean Median
1 23.7 17 33.2 30 24.2 14
2 10.9 7 12.1 10 10.2 6
3 53 3 3.8 33 24 2.1
4 8.1 2 13.0 0.57 0.4 0.33
Rate of decrease:" 0.66 0.88 0.61 0.98 0.98 0.97
B. Sessions with p = */;:
Session 4 Session 5 Session 6 Session 7
Period Mean Median Mean Median Mean Median Mean Median
1 39.7 33 37.7 35 32.9 28 36.4 33
2 28.6 29 20.2 17 20.3 18 26.5 20
3 20.2 14 10.0 9 16.7 10 16.7 12.5
4 16.7 10 32 3 8.3 8 8.7 8
Rate of decrease:* 0.58 0.7 0.92 0.91 0.75 0.71 0.76 0.76

* Rate of decrease w from period 1 to 4 (see formula 1).

tervals between two steps, I find no significant
difference between the frequencies of obser-
vations in the neighborhood intervals and the
frequencies of observations in the interim in-
tervals. Note also that as the mean decreases,
the interval between two steps becomes rather
small.'® However, I would like to know within
which iteration steps the numbers are located
in the different periods; therefore, I divide the
interval between steps i and i + 1 geometri-
cally into two intervals."’

Parts A and B of Table 2 present the fre-
quencies of observations for each iteration
step, pooled over the '/, and ?/; sessions, re-
spectively. I also state the mean area of each
iteration step over all sessions, separately for
each period. In most sessions and periods, at

'“ Most of the subjects just mentioned in their com-
ments that the mean will decrease. There were less precise
calculations than in the first period.

'" If one normalizes the mean of the previous period to
1, the boundaries of step n are (p" * ', p"~ '] As in period
1, step O has its right-hand boundary at 1. Table 2 reports
the unnormalized length (called ‘‘area’’) of an iteration
step. For example, for p = '/,, in period 2, the area of
numbers above the mean is 73, since on average, over all
'/, sessions the mean of the previous period (r) is 27.

least 80 percent of the observations remain
within the bounds of iteration step 0 and iter-
ation step 3, with the modal frequency (30 per-
cent or more) at iteration step 2 when the
previous period’s mean is the reference point.'®
In fact, in periods 1-3, the best reply is within
step 2 in at least five of the seven sessions.
Within the neighborhood of the mean of the
previous period (step 0) there are only a few
observations, and those frequencies decrease
in the %; sessions. The frequency of choices’
around iteration step 1, corresponding to the
Cournot process, also declines to less than 15
percent in the third and fourth periods. The
frequencies with more than three steps are be-
low 10 percent, except in period 4 of the '/,
sessions. I interpret these results to mean that
there is no support for the hypothesis of in-
creasing depth of reasoning, since there is no
tendency for the majority of the subjects to
increase the depth of reasoning beyond step

'® This corresponds to what we called the anticipatory
learning process in Section II. Hence, one might infer that
a substantial proportion of subjects believe that the aver-
age behavior in period ¢ will be around p times the mean
of period 7 — 1.
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TABLE 2—RELATIVE FREQUENCIES AND AREAS OF PERIODS 2—4 ACCORDING TO THE STEP-MODEL
FOR AGGREGATED DATA

Period 2 Period 3 Period 4

Classification Relative frequency Area Relative frequency Area Relative frequency Area
A. Sessions 1-3 (p = '1,):

Higher steps 42 24 4.2 1.0 20.8 0.3
Step 3 25.0 24 12.5 1.0 22.9 0.3
Step 2 31.3 49 60.4 2.0 29.2 0.7
Step 1 27.0 9.6 12.5 39 14.5 1.4
Step 0 2.1 79 4.1 3.2 4.2 1.1
Above mean,_, 104 73.0 6.3 88.9 8.3 96.2
All 100.0 100.0 100.0 100.0 100.0 100.0
B. Sessions 4—7 (p = *1;):

Higher steps 7.5 8.9 1.5 5.8 7.5 3.8
Step 3 11.9 4.4 17.9 2.9 25.3 1.9
Step 2 31.3 6.7 46.2 4.3 47.8 2.9
Step 1 20.9 10.0 16.4 6.5 10.4 43
Step 0 14.9 6.7 7.5 4.4 3.0 2.9
Above mean,_, 13.4 63.3 10.5 76.1 6.0 84.1
All 100.0 100.0 100.0 100.0 100.0 100.0

2." In the next section I describe the observed
behavior from period 2 to period 4 in a differ-
ent way—by a qualitative learning-direction
theory. This theory might explain why the mo-
dal frequency of depth of reasoning does not
increase.

C. Adjustment Process Due to Individual
Experience (forp < 1)

So far, I have categorized behavior into
classes based on the deviation from the mean
of the previous period. I now analyze individ-
ual adjustments due to individual experience.
There are two possible experiences due to pay-
offs a player obtained:

(1) the player gained a share or all of the prize
in the previous period, because his an-
nouncement was closest to the product of
p and the mean; or

' In periods 2 and 3, step 2 is the modal choice in six
out of seven sessions; in period 4, this holds in four ses-
sions, and in three sessions, the modal choice is step 3,
tied with step 2 or 4.

(ii) he earned nothing in the previous period,
because his chosen number was either be-
low or above p times the mean (and not
the closest to it).

Since there are only a few winners in each
period, data on having chosen the winning
number are scarce. Therefore, I exclude those
choices that led to a positive payoff (19 out of
144 [13 percent] in the '/, sessions and 23 out
of 201 [9 percent] in the %; sessions) and pro-
pose a simple qualitative learning theory for
the change of behavior after having faced zero
payoffs.?

For this purpose, 1 introduce a parameter
called the adjustment factor:

X
= fort =1
50
2) a,=
Xyt
—_— fort=2,3,4
(mean),

% Stahl (1994) compares several learning models. I ap-
ply only one learning model, a kind of model that has been
successfully used in different experimental settings (see
e.g., Selten and Buchta, 1994).
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where x; is the number chosen by player i in
period . Hence, a, is the relative deviation from
the mean of the previous period ¢ — 1; the mean
is the initial reference point. The adjustment fac-
tor for period 1 is the choice in period 1 divided
by 50, where 50 is the initial reference point, as
mentioned in Subsection IV-A. The retrospec-
tive ‘‘optimal’’ adjustment factor in period ¢ is
defined as the optimal deviation from the mean
of period ¢+ — 1 that leads to p times the mean
of period :

( Xopis _ P X (mean),
50 50

fort =1

3 opts =
(3) o, _ p X (mean),

(mean), _

xopl,r
(mean),_,

fort=2,3, 4.

The idea of this simple learning-direction
theory is that in an ex post reasoning process
a player compares his adjustment factor a, with
the optimal adjustment factor a,,,. In the next
period he most likely adapts in the direction of
the optimal adjustment factor. Thus, he reflects
which deviation from the previous initial ref-
erence point would have been better:

(4) lf a, > aopl.r = iy < a,
ifa, < agy, = a;41 > a,.

In words, if he observed that his chosen num-
ber was above p-times the mean in the previ-
ous period (i.e., his adjustment factor was
higher than the optimal adjustment factor),
then he should decrease his rate; if his number
was below p times the mean (i.e., his adjust-
ment factor was lower than the optimal ad-
justment factor), he should increase his
adjustment factor.

Figure 6 shows the changes of behavior due
to experience from period to period, pooled
over all '/, sessions (Fig. 6A—C) and over all
%/, sessions (Fig. 6D—F). The bars within each
histogram sum to 100 percent. The two left-
hand bars in a histogram depict the relative
frequencies after the experience that the ad-
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justment factor was higher than the optimal
adjustment factor, and the two right-hand bars
show the frequencies when the factor was
lower. The striped bars show the frequencies
of increased adjustment factors, and the white
bars show the frequencies of decreased ad-
justment factors from period ¢ to period ¢ + 1.

In each session, pooling the data over the
three transition periods, the majority of behav-
ior (between 67 percent and 78 percent, with
a mean of 73 percent over all sessions) is in
accordance with the learning-direction theory.
Thus, taking each session as an independent
observation, the null hypothesis that experi-
ence is irrelevant can be rejected at the 1-
percent level, based on the binomial test. One
may also ask whether the frequencies of de-
creases in adjustment factors independent of
experience are higher than the frequencies of
increases.”' In each session, a majority of sub-
jects decrease the factor; however, the per-
centage who do so is only between 51 percent
and 69 percent, with a mean of 58 percent for
all sessions. Comparing the two findings, in
each session the frequency in accordance with
the learning-direction theory is higher than the
frequency of decreases, independent of expe-
rience. I interpret this result as indicating that
the learning theory provides a better explana-
tion than the hypothesis of decreasing adjust-
ment factor.

The theory of adjustment due to experience
is similar to the findings on changes of behav-
ior in other experimental studies. Gerard P.
Cachon and Colin Camerer (1991) studied be-
havior in a coordination game, the so-called
median-effort-game. They mention that a
player who observed that he was below the
median in the previous period would most
likely increase his effort level and vice versa.
Over time, the median effort level remains
constant and does not converge to the efficient
equilibrium. Also, in Michael Mitzkewitz and
Nagel (1993) a simple learning theory related
to ours is studied in a completely different set-
ting, with similar results. Selten and Stoecker
(1986) analyzed in great detail the influence
of experience on end-effect behavior in finite

*''This question is related to increasing steps of
reasoning.



1324

0.6

o
®

Relative Frequencies
o (=]
Ld i

0.17

THE AMERICAN ECONOMIC REVIEW

DECEMBER 1995

./

decrease
3

increase

0.6

o
>
vy

Relative Frequencies
o o
n w
hd A

1
...higher than optimal ...lower than optimal

Adjustment factor in period 1 was ...

A

0.6+

o o
® @

Relative Frequencies
o
@

Z % 1 %,
...higher than optimal ...lower than optimal

Adjustment factor in period 2 was ...

'/f

7

... higher than optimal ... lower than optimal

Adjustment factor in period 3 was ...

Relative Frequencies Relative Frequencies

Relative Frequencies

0.47
0.3
0.2

O.H

_

0.6

0.5

0.4

0377

0.2

0.11

T —L -
...lower than optimal

Adjustment factor in period 1 was ...

7 7
...higher than optimal

0.6+

0.57

0.4+

0.31

0.2

0.17

...higher than optimal
Adjustment factor in period 2 was ...

L %
... higher than optimal ... lower than optimal

Adjustment factor in period 3 was ...

FIGURE 6. RELATIVE FREQUENCIES OF CHANGES IN ADJUSTMENT FACTORS DUE TO INDIVIDUAL EXPERIENCE IN THE
PRECEDING PERIOD: A) p = '/,, TRANSITION FROM FIRST TO SECOND PERIOD; B) p = '/,, TRANSITION FROM SECOND
TO THIRD PERIOD; C) p = '/,, TRANSITION FROM THIRD TO FOURTH PERIOD; D) p = /5, TRANSITION
FROM FIRST TO SECOND PERIOD; E) p = /3, TRANSITION FROM SECOND TO THIRD PERIOD;
F) p = %3, TRANSITION FROM THIRD TO FOURTH PERIOD



VOL. 85 NO. 5

prisoner’s-dilemma supergames. Thus for
different games, similar kinds of adjustment
processes have been used to explain behavior.
However, the dynamics of the behavior can be
quite different: in some games there is a con-
vergence toward an equilibrium, whereas in
others, the adjustment process may not lead to
an (efficient) equilibrium.

V. Summary

My analysis of behavior in an abstract game
leads me to believe that the structure of the
game is favorable for the study of thought pro-
cesses of actual players. In the first period
the behavior deviates strongly from game-
theoretic solutions. Furthermore, the distribu-
tion of the chosen numbers over the [0, 100]
interval in sessions with different parameters
were significantly different. I have proposed a
theory of boundedly rational behavior in
which the ‘‘depths of reasoning’” are of im-
portance. The results indicate that, starting
from initial reference point 50, iteration steps
1 and 2 play a significant role, that is, most of
the observations are in the neighborhood of
50p or 50p?, independent of the parameter p.
This result accounts for the difference of the
distributions of the chosen numbers for differ-
ent parameter values p.

Thus, the theory of boundedly rational be-
havior for the first period deviates in several
ways from the game-theoretic reasoning:

(i) I'suggested that the ‘‘reference point’’ or

starting point for the reasoning process is
50 and not 100. The process is driven by
iterative, naive best replies rather than by
an elimination of dominated strategies.

(ii) The process of iteration is finite and not
infinite.

(iii) I apply the same theory for p > 1 and
p < 1, whereas game-theoretic reasoning
is different for those parameter sets.

Over time the chosen numbers approach an
equilibrium or converge to it. In the *; ses-
sions, the choice 100 is the best reply in all
periods but the first. In the third and fourth
period more than 50 percent of the subjects
choose this strategy. In the sessions with p <
1, there is a moving target, which approaches
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zero. I apply the theory of first-round behav-
ior also to the subsequent periods 2—4, using
as the initial reference point the mean of the
previous period. I find that the modal choices
are around iteration step 2, and the majority
of observations remain below step 3. In most
sessions, the best reply is within step 2 in
periods 1-3. I cannot accept the hypothesis
of increasing iteration steps, and I suggest
that another explanation of the observed be-
havior may be more adequate for periods
2—-4. 1 propose a qualitative learning-
direction theory which predicts that a subject
tends to increase his adjustment factor in the
direction of the optimal adjustment factor if
it was below the optimal one and tends to
decrease the adjustment factor if it was
above the optimal one. A similar kind of
simple learning theory has been applied suc-
cessfully in other experiments.
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