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Economic Rationality

¢ The principal behavioral postulate is
that a decisionmaker chooses its
most preferred alternative from those
available to it.

¢ The available choices constitute the
choice set.

¢ How is the most preferred bundle in
iset locate '
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Rational Constrained Choice

Utility s | 77 z==The most preferred
of the affordable
bundles.
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Rational Constrained Choice

X2 (X.*,X,*) is the most

preferred affordable
bundle.




Rational Constrained Choice

¢ The most preferred affordable bundie
is called the consumer’s ORDINARY
DEMAND at the given prices and
budget.

¢ Ordinary demands will be denoted by
X1*(p1,p2,m) and XZ*(1!p2!m)'




Rational Constrained Choice

¢ When x,;* > 0 and x,* > 0 the
demanded bundle is INTERIOR.

¢ If buying (x,*,x,*) costs $m then the
budget is exhausted.
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Rational Constrained Choice

X2 (x4%,%,%) is Interior.

(a) (x4*,x,*) exhausts the
budget; p.x,* + p,X,* = m.




Rational Constrained Choice

X2 (x4%,%,¥) Is interior .

(b) The slope of the indiff.
curve at (x,*,x,*) equals
the slope of the budget
constraint.




Rational Constrained Choice

* (X,*,x,*) satisfies two conditions:
¢ (a) the budget is exhausted;
P1X;™ + PoXy" = m
¢ (b) the slope of the budget constraint,
-p+/p,, and the slope of the

indifference curve containing (x,*,x,*)
are equal at (x,*,x,¥).




Computing Ordinary Demands

¢ How can this information be used to
locate (x,*,x,*) for given p,, p, and
m?




Computing Ordinary Demands -
a Cobb-Douglas Example.

¢ Suppose that the consumer has
Cobb-Douglas preferences.
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Computing Ordinary Demands -
a Cobb-Douglas Example.

¢ (X,%,X,*) also exhausts the budget so

(B)
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¢ So now we know that

(A)
Substitute

(B)
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¢ So now we know that

(A)
Substitute

(B)

and get
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Computing Ordinary Demands -
a Cobb-Douglas Example.

Substituting for x,* In

then gives




Computing Ordinary Demands -
a Cobb-Douglas Example.

So we have discovered that the most
preferred affordable bundle for a consumer
with Cobb-Douglas preferences




Computing Ordinary Demands -
a Cobb-Douglas Example.
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Rational Constrained Choice

¢ When x,* >0 and x,* > 0
and (Xx,*,x,*) exhausts the budget,
and indifference curves have no
‘kinks’, the ordinary demands are
obtained by solving:

¢ (a) P1Xy" + PX" =y
¢ (b) the slopes of the budget constraint,
-p1/p2, and of the in mlfference curve
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Rational Constrained Choice

¢ But what if x,* = 0?

¢Orifx,*=07?

¢ If either x,* = 0 or x,* = 0 then the
ordinary demand (x,*,x,*) is at a
corner solution to the problem of
maximizing utility subject to a budget
constraint. !




Examples of Corner Solutions --
the Perfect Substitutes Case
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Examples of Corner Solutions --
the Perfect Substitutes Case

So when U(x,,X,) = X, + X,, the most
preferred affordable bundle is (x,*,x,¥)
where

if p; < p,

and




Examples of Corner Solutions --
the Perfect Substitutes Case

X,

A

MRS = -1
Slope = -p,/p, with p, = p..




Examples of Corner Solutions --
the Perfect Substitutes Case

X2
All the bundles in the
constraint are equally the
most preferred affordable
when p, = p,.




Examples of Corner Solutions --
the Non-Convex Prefterences Case
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the Non-Convex Prefterences Case

X,

Which is the most preferred
affordable bundle?
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Examples of Corner Solutions --
the Non-Convex Prefterences Case

X,

A

Notice that the “tangency solution”
is not the most preferred affordable
bundle.

The most preferred
affordable bundle




Examples of ‘Kinky’ Solutions --
the Perfect Complements Case

U (x1 !XZ) = mi n{ax1 ,X2}
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Examples of ‘Kinky’ Solutions --
the Perfect Complements Case

X,

A

\

U (x1 !XZ) = mi n{ax1 ,Xz}

MRS = - o0
/ MRS is undefined
X, = ax,

- _MRS=0
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X,

A

\

U (x1 !XZ) = mi n{ax1 ,Xz}

Which is the most
preferred affordable bundle?

W. Norton & Company, Inc.
Al

—




Examples of ‘Kinky’ Solutions --
the Perfect Complements Case

X,

A

U (x1 !XZ) = mi n{ax1 ,Xz}
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X,

A

\

U (x1 !XZ) = mi n{ax1 ,Xz}

(@) P1x4™ + pXy" = m
(b) X5™ = ax,”
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Examples of ‘Kinky’ Solutions --
the Perfect Complements Case

(@) p1X* + pX,* =m; (b) x,* = ax,*.
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the Perfect Complements Case

(a) px * + pzxm = ax,”.

Substitution from (b) for x,* In
(a) gives p.x;” + p,ax,” =m
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(@) p1X* + pX,* =m; (b) x,* = ax,*.

Substitution from (b) for x,* In
(a) gives p;x;” + p,ax,* =m
which gives

A bundle of 1 commodit 1 unit and
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Examples of ‘Kinky’ Solutions --
the Perfect Complements Case
X5 U(X1,X2) = min{ax1,x2}
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