INTERMEDIATE

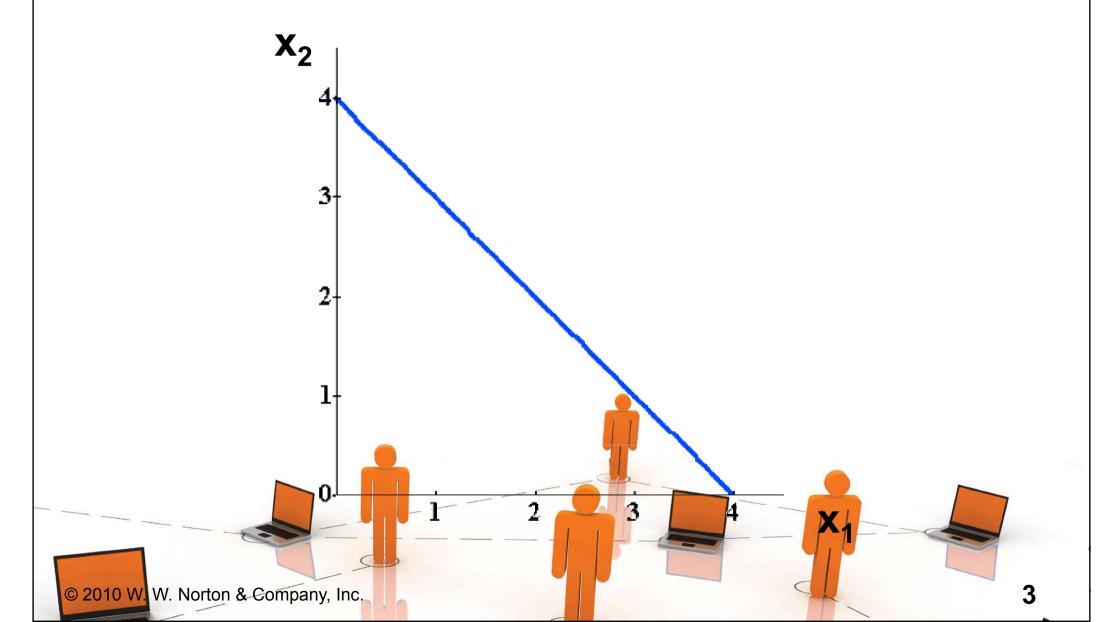
MICROECONOMICS HALR, VARIAN

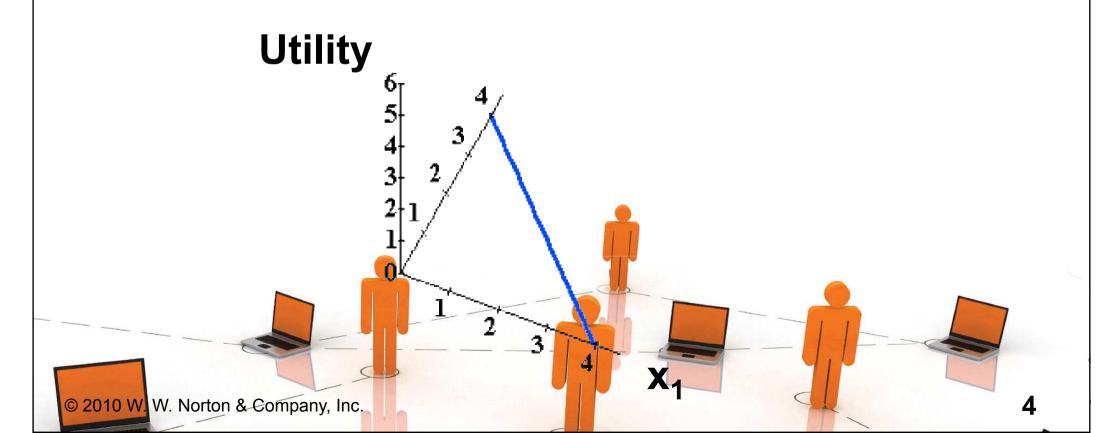
Choice

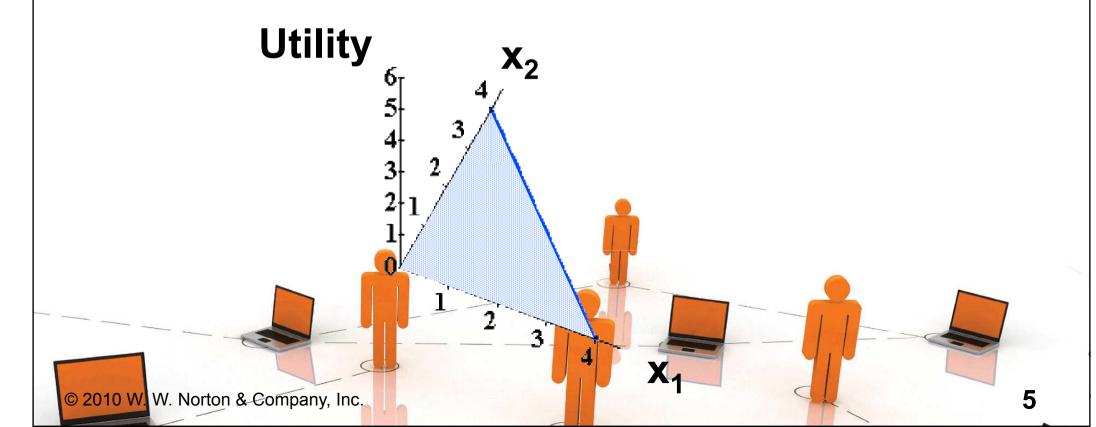
© 2010 W. W. Norton & Company, Inc.

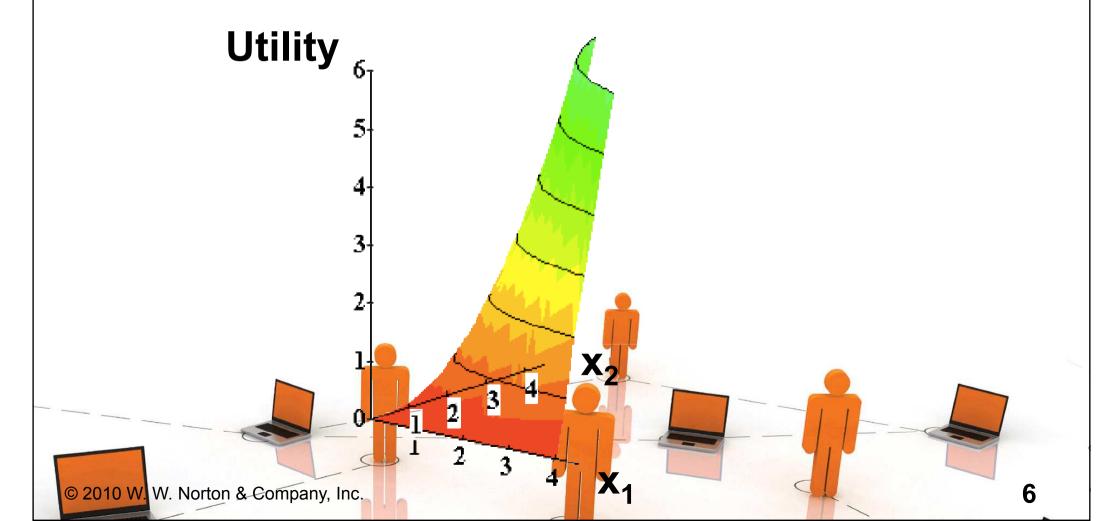
Economic Rationality

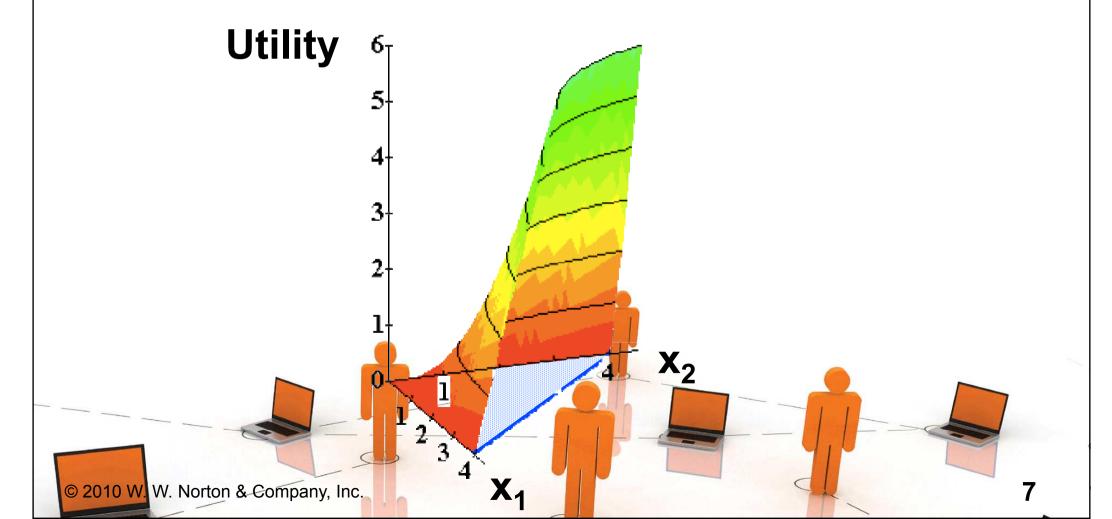
- ◆ The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.
- ◆ The available choices constitute the choice set.
- ♦ How is the most preferred bundle in the choice set located?

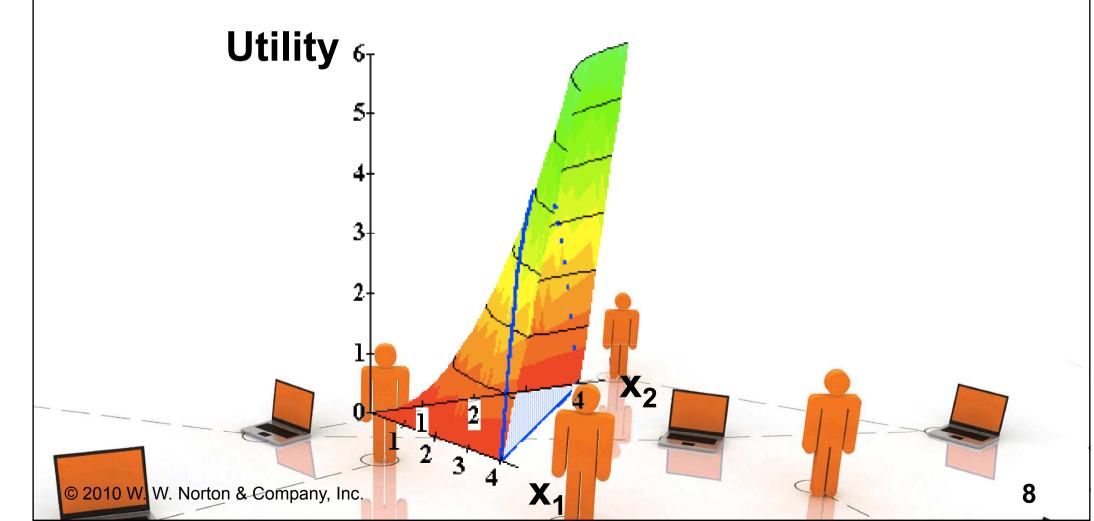


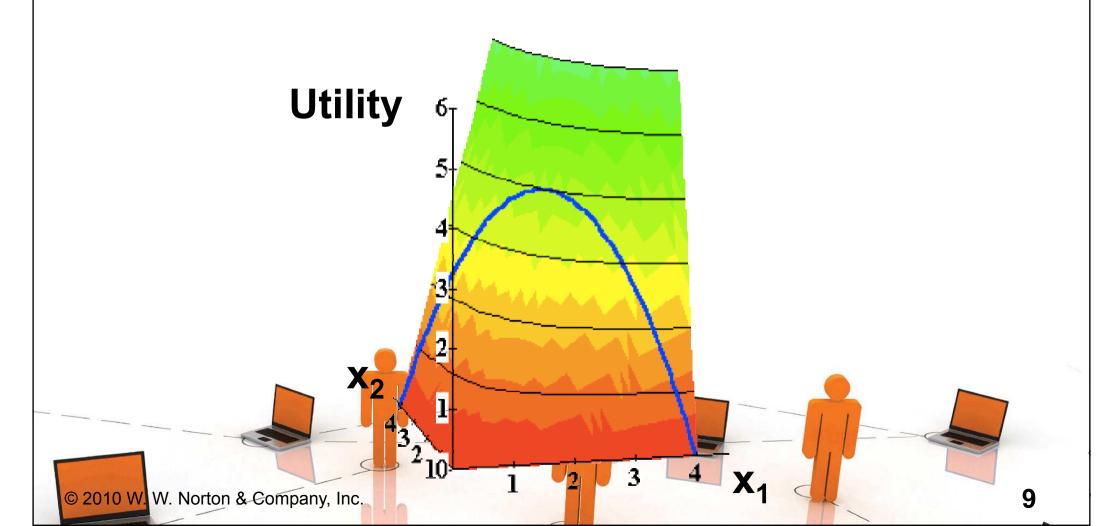


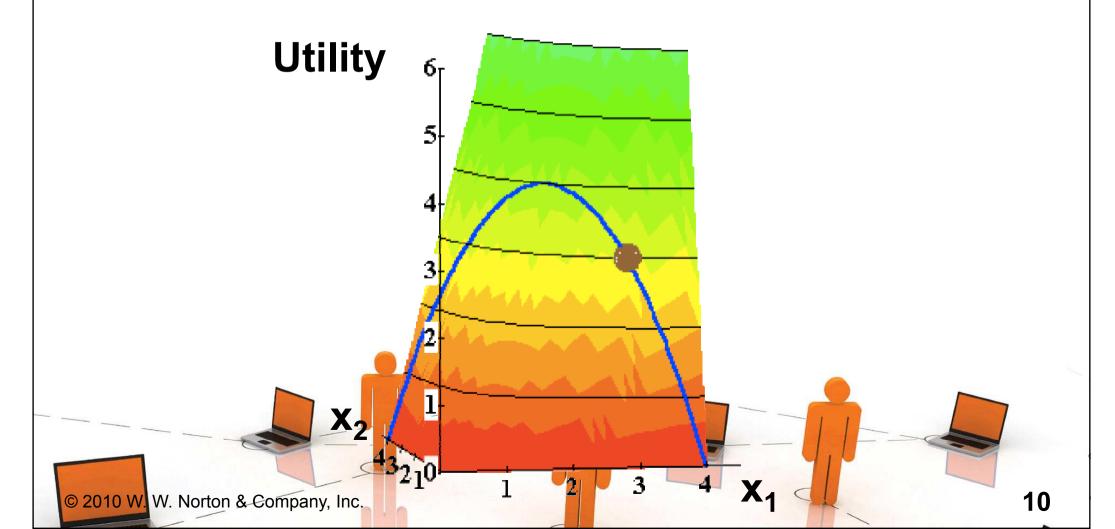


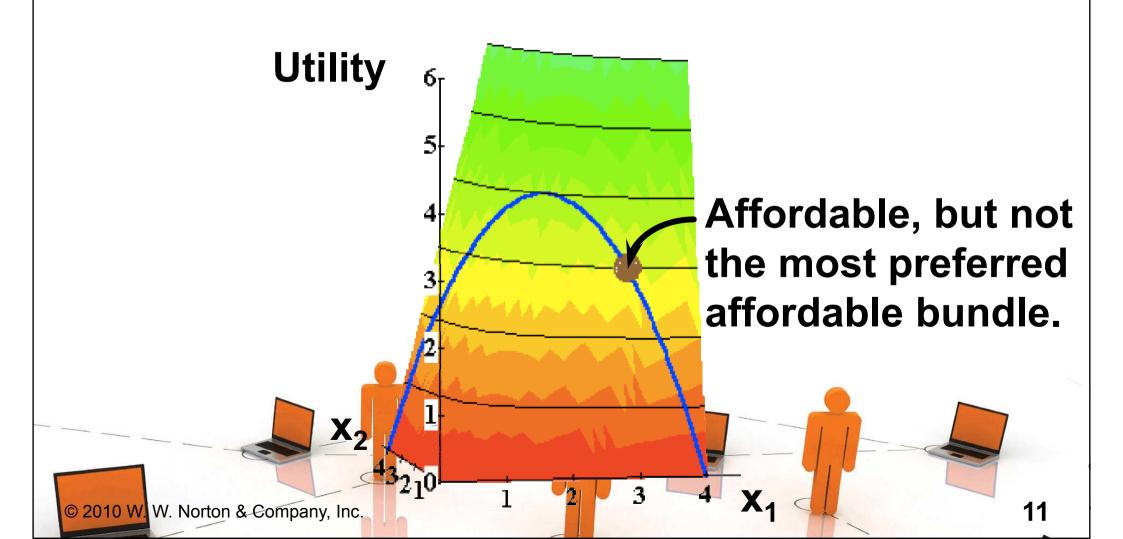


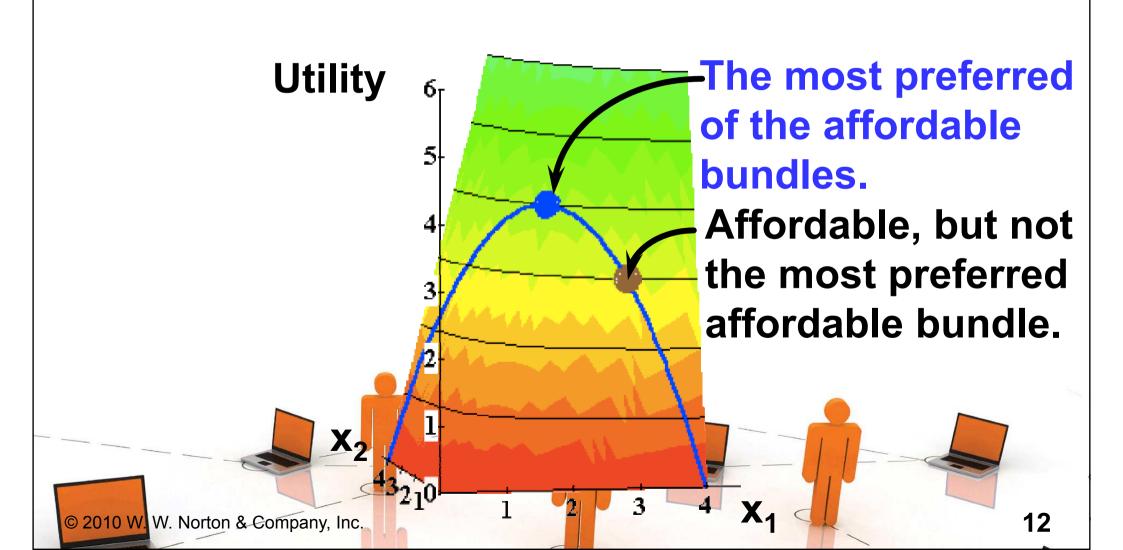


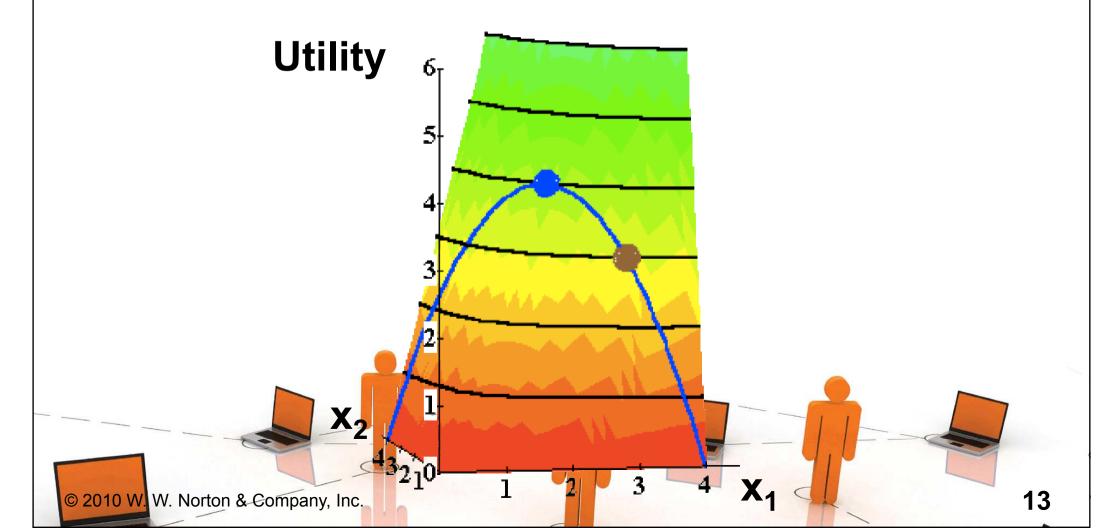


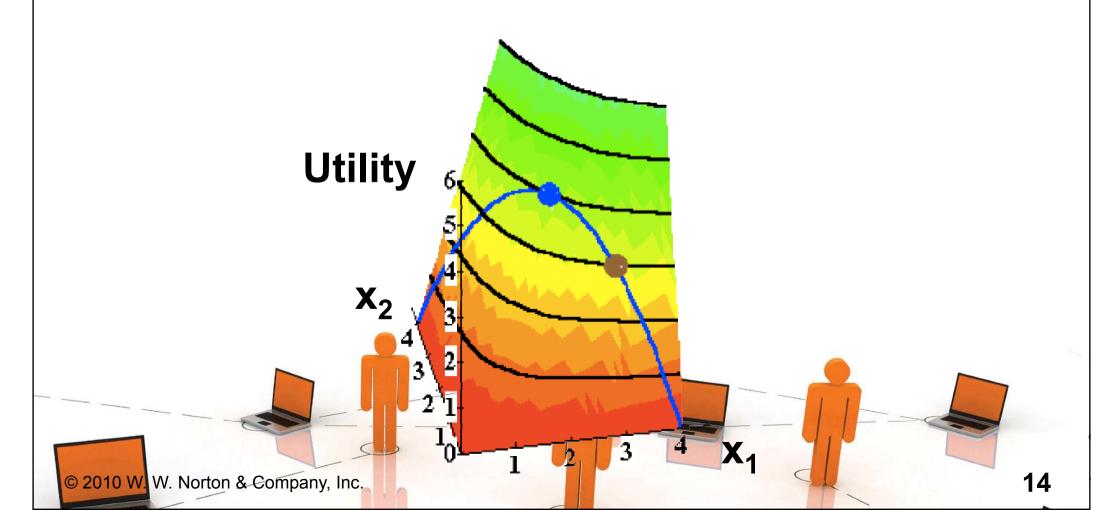


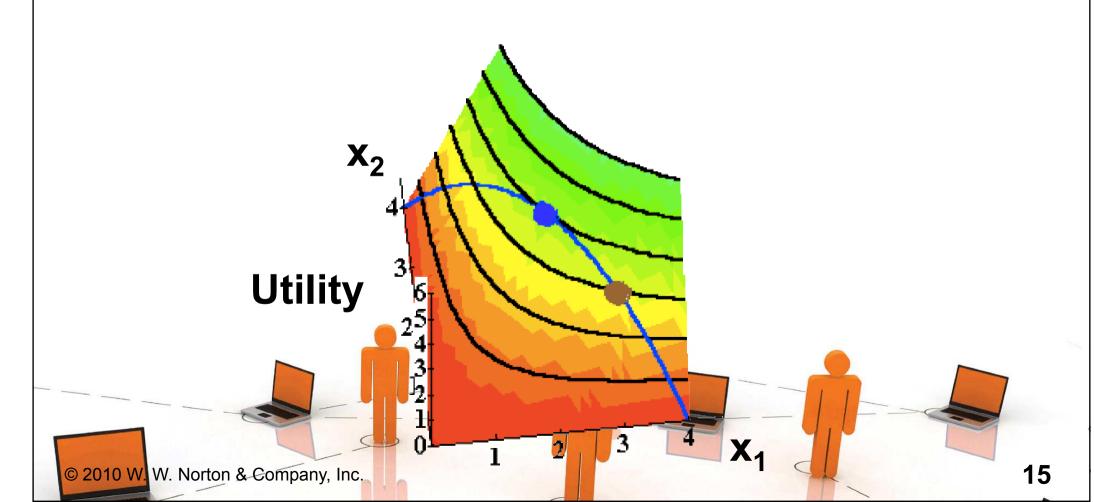


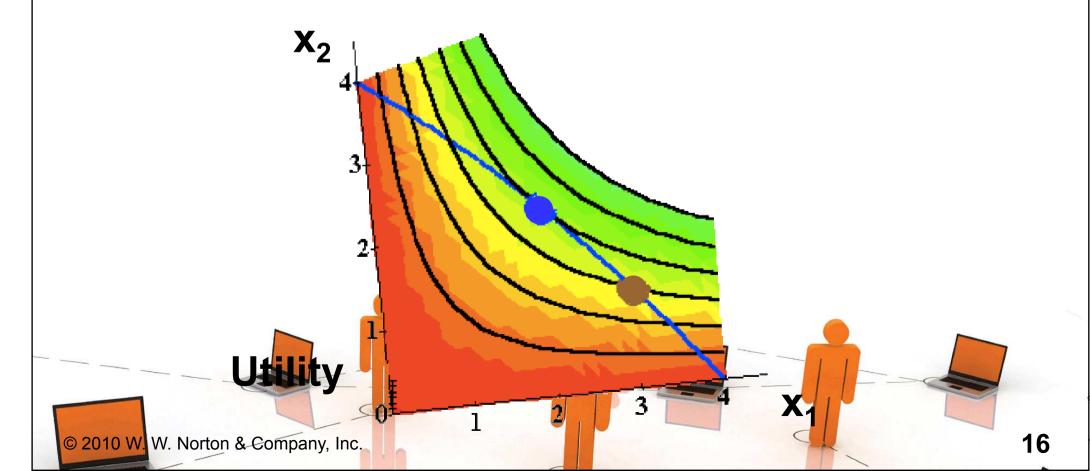


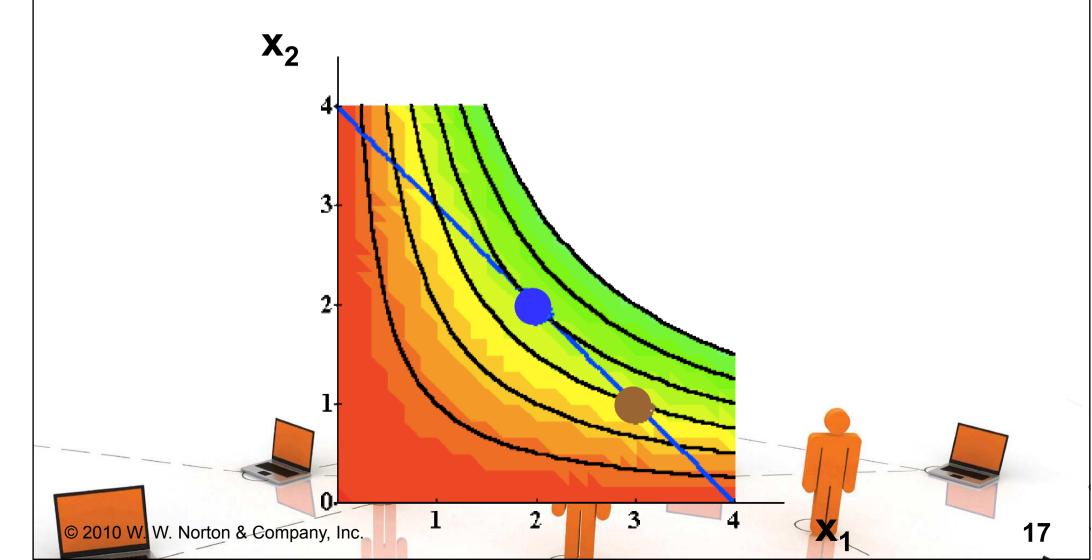


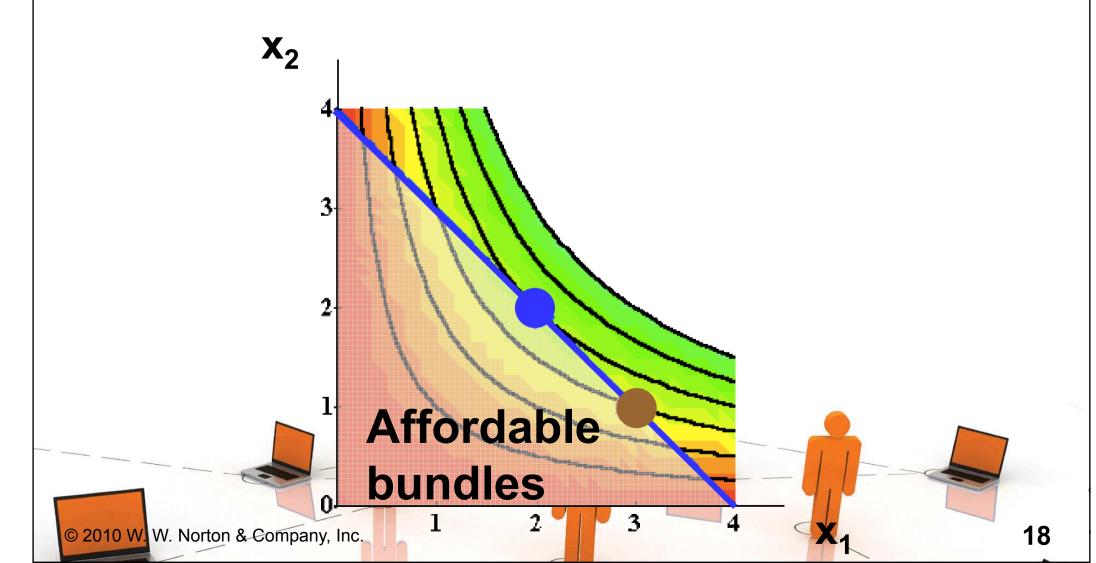


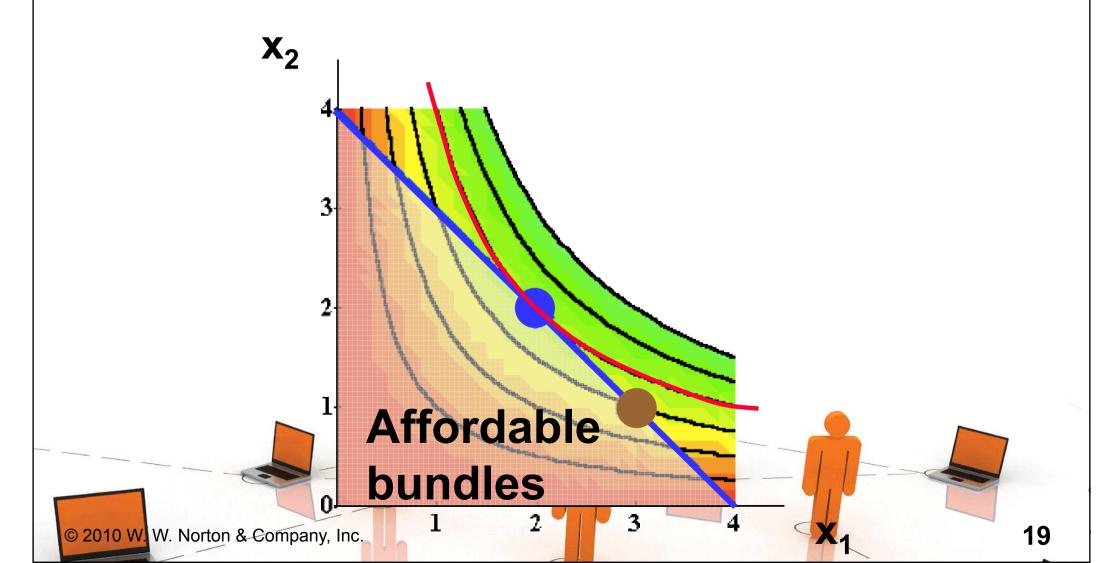


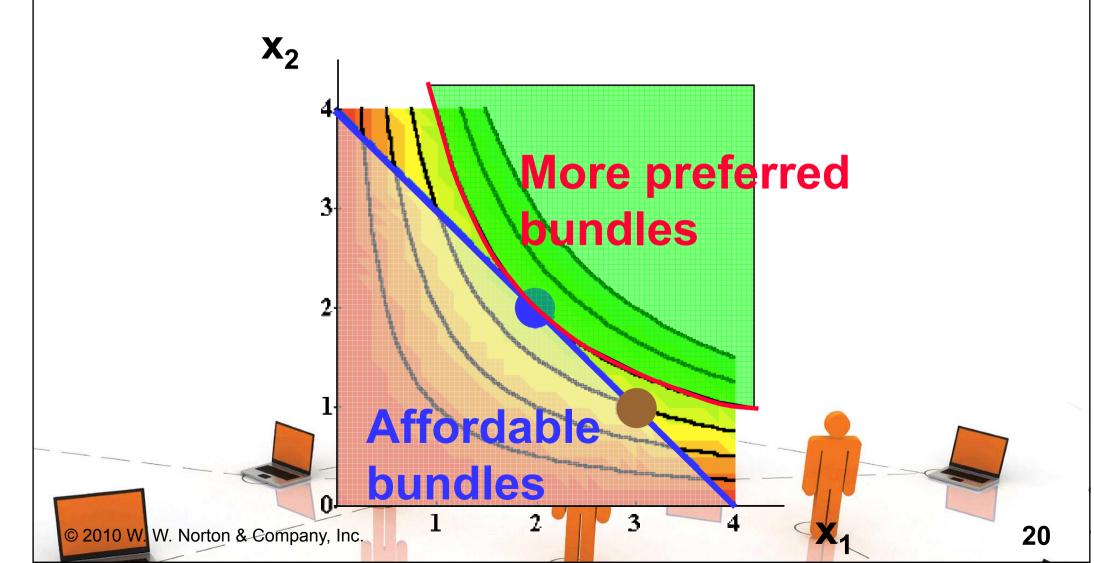


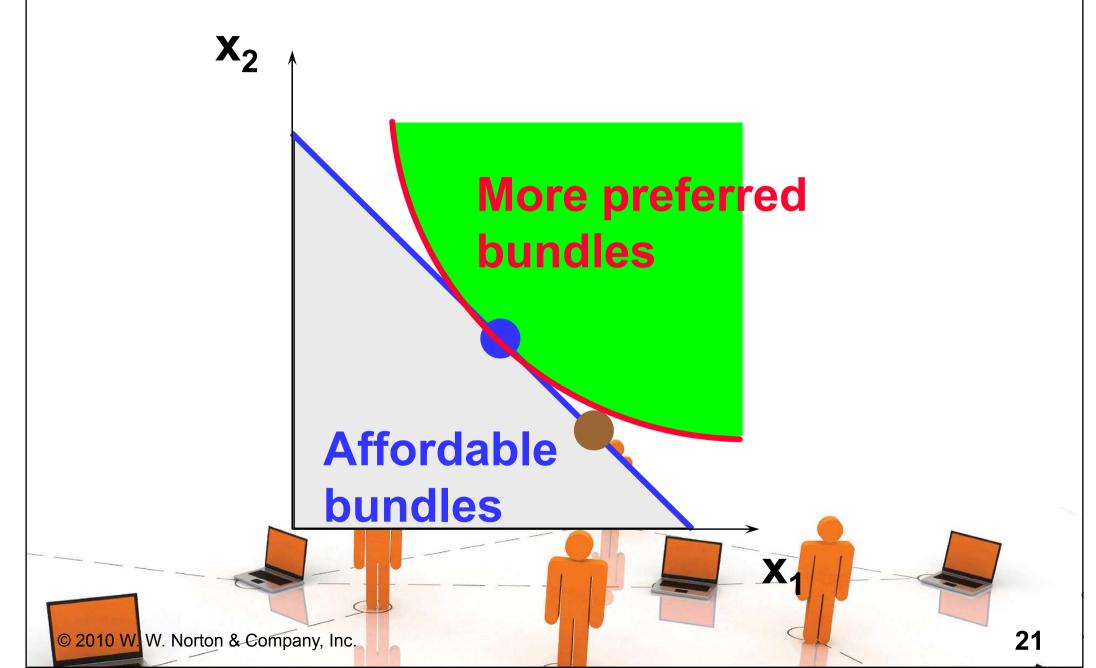


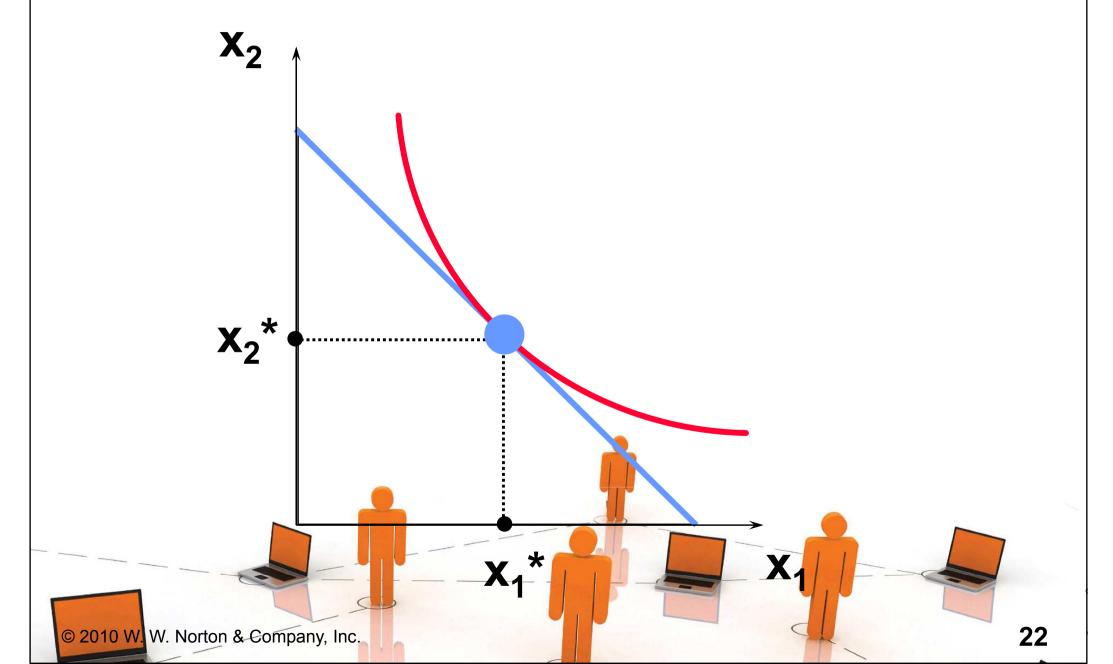


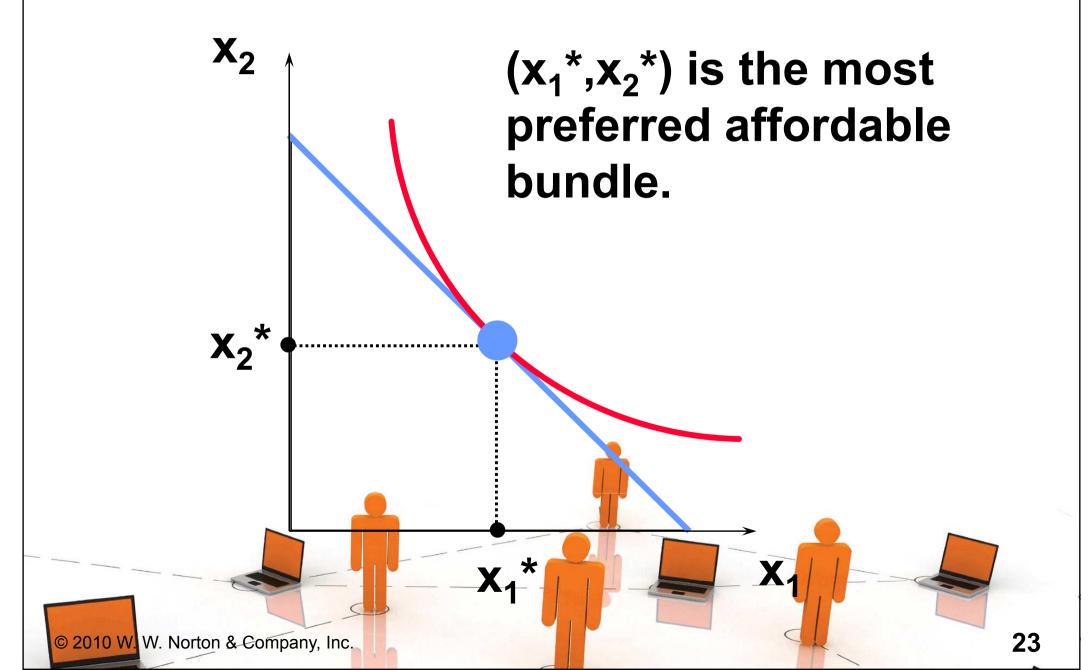




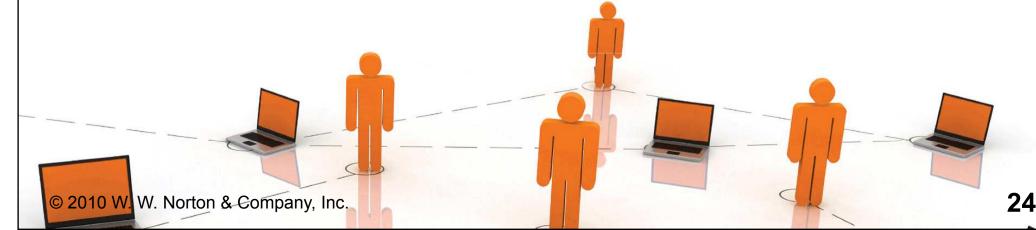




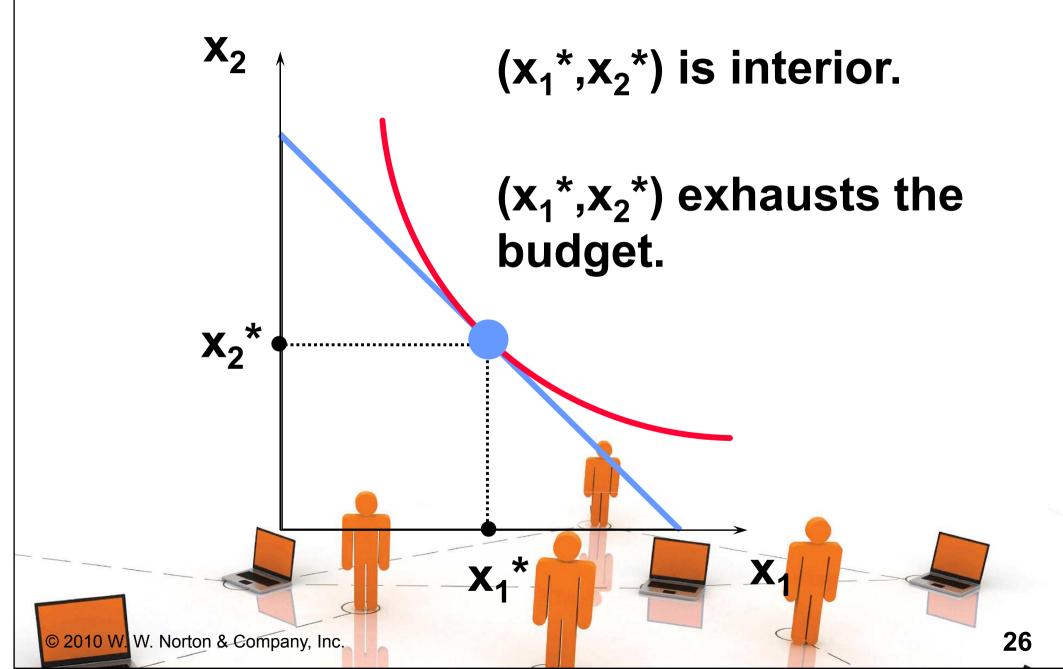


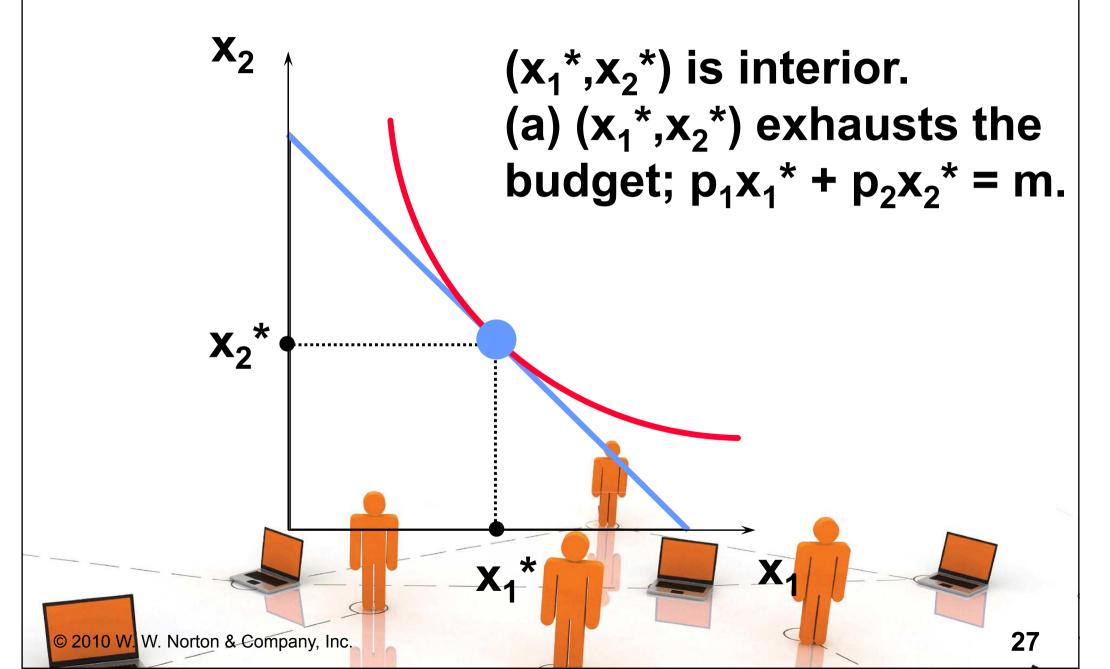


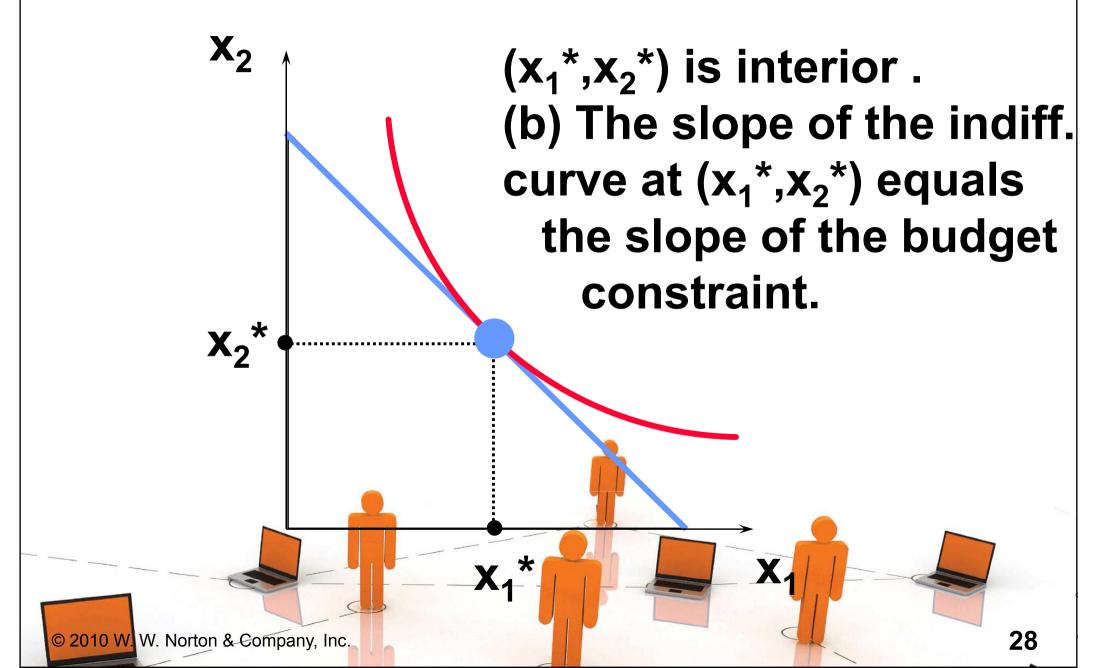
- ◆ The most preferred affordable bundle is called the consumer's ORDINARY DEMAND at the given prices and budget.
- ◆ Ordinary demands will be denoted by x₁*(p₁,p₂,m) and x₂*(p₁,p₂,m).



- ♦ When x₁* > 0 and x₂* > 0 the demanded bundle is INTERIOR.
- ♦ If buying (x₁*,x₂*) costs \$m then the budget is exhausted.



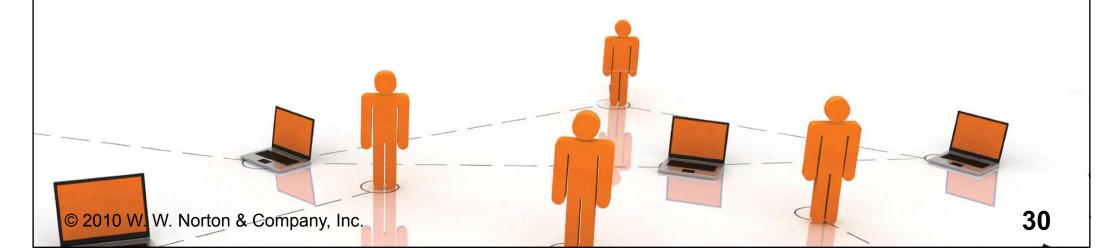




- ♦ (x₁*,x₂*) satisfies two conditions:
- ♦ (a) the budget is exhausted;
 p₁x₁* + p₂x₂* = m
- ♦ (b) the slope of the budget constraint, -p₁/p₂, and the slope of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

Computing Ordinary Demands

♦ How can this information be used to locate (x₁*,x₂*) for given p₁, p₂ and m?



◆ Suppose that the consumer has Cobb-Douglas preferences.

$$U(x_1,x_2) = x_1^a x_2^b$$

◆ Suppose that the consumer has Cobb-Douglas preferences.

$$U(x_1,x_2) = x_1^a x_2^b$$

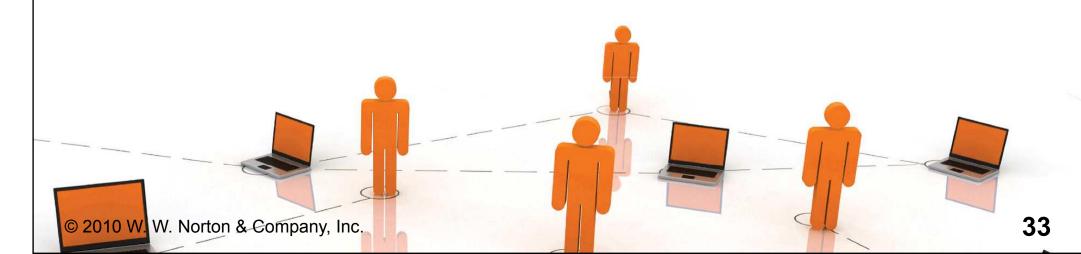
♦ Then
$$MU_1 = \frac{\partial U}{\partial x_1} = ax_1^{a-1}x_2^b$$

© 2010 W. W. Norton & Company, Inc.

$$\mathbf{MU}_{2} = \frac{\partial \mathbf{U}}{\partial \mathbf{x}_{2}} = \mathbf{b} \mathbf{x}_{1}^{a} \mathbf{x}_{2}^{b-1}$$

♦ So the MRS is

$$\text{MRS} = \frac{\text{dx}_2}{\text{dx}_1} = -\frac{\partial \text{U}/\partial x_1}{\partial \text{U}/\partial x_2} = -\frac{\text{ax}_1^{a-1}x_2^b}{\text{bx}_1^ax_2^{b-1}} = -\frac{\text{ax}_2}{\text{bx}_1}.$$



♦ So the MRS is

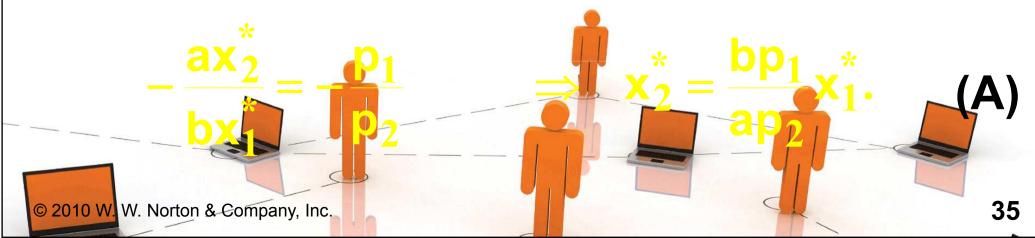
$$\text{MRS} = \frac{\text{dx}_2}{\text{dx}_1} = -\frac{\partial \text{U}/\partial x_1}{\partial \text{U}/\partial x_2} = -\frac{\text{ax}_1^{a-1} \text{x}_2^b}{\text{bx}_1^a \text{x}_2^{b-1}} = -\frac{\text{ax}_2}{\text{bx}_1}.$$

 $At (x_1^*, x_2^*), MRS = -p_1/p_2 so$

♦ So the MRS is

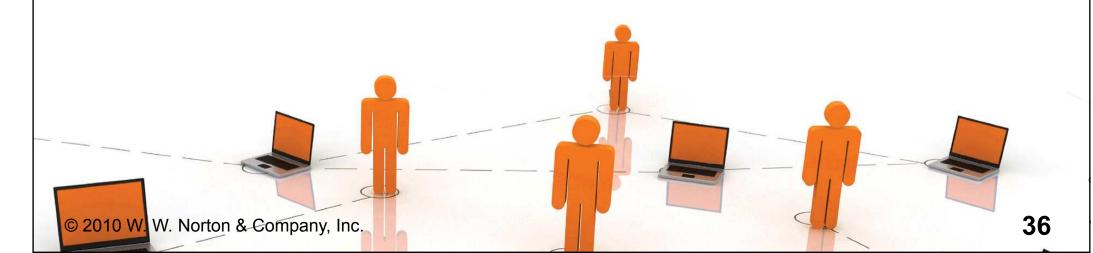
$$\text{MRS} = \frac{\text{dx}_2}{\text{dx}_1} = -\frac{\partial \text{U}/\partial x_1}{\partial \text{U}/\partial x_2} = -\frac{\text{ax}_1^{a-1}x_2^b}{\text{bx}_1^ax_2^{b-1}} = -\frac{\text{ax}_2}{\text{bx}_1}.$$

 $At (x_1^*, x_2^*), MRS = -p_1/p_2 so$



♦ (x₁*,x₂*) also exhausts the budget so

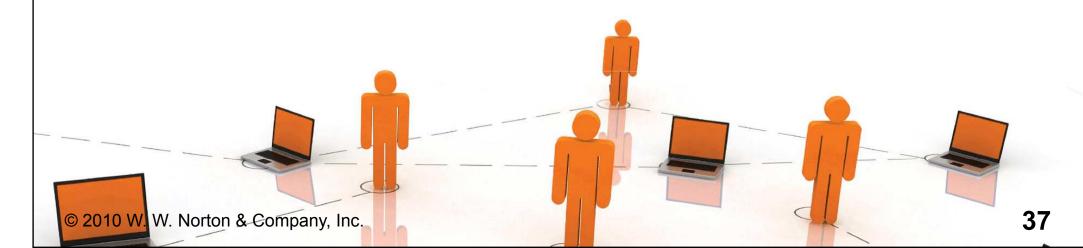
$$p_1x_1^* + p_2x_2^* = m.$$
 (B)



◆ So now we know that

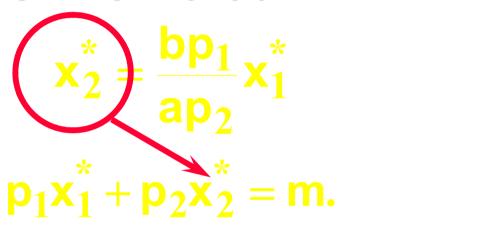
$$x_2^* = \frac{bp_1}{ap_2}x_1^* \tag{A}$$

$$p_1x_1^* + p_2x_2^* = m.$$
 (B)



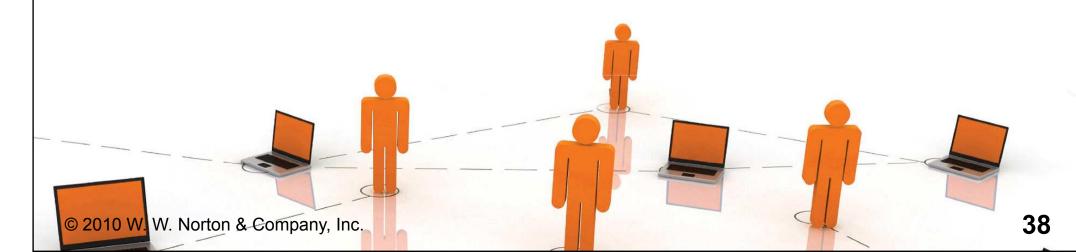
◆ So now we know that

Substitute



(A)

(B)



♦ So now we know that

Substitute

$$(x_{2}^{*}) = \frac{bp_{1}}{ap_{2}} x_{1}^{*}$$

$$p_{1}x_{1}^{*} + p_{2}x_{2}^{*} = m.$$

(A)

(B)

and get

$$p_1x_1^* + p_2\frac{bp_1}{ap_2}x_1^* = m$$

This simplifies to

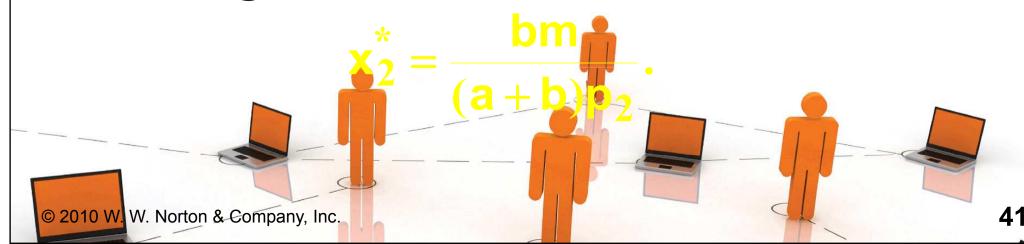
$$x_1^* = \frac{am}{(a+b)p_1}.$$

$$x_1^* = \frac{am}{(a+b)p_1}.$$

Substituting for x₁* in

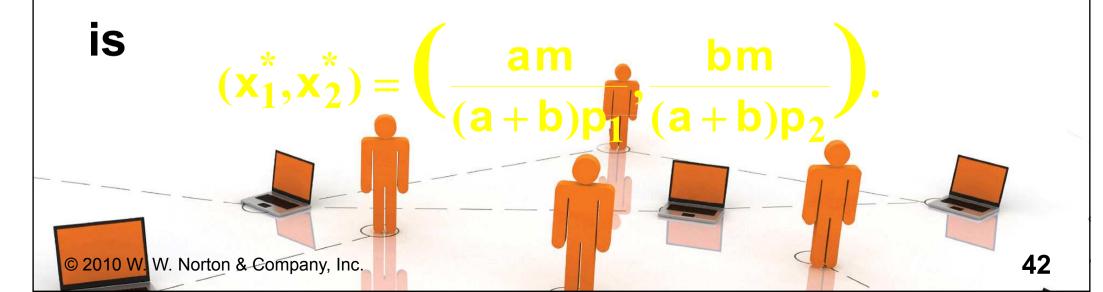
$$p_1x_1^* + p_2x_2^* = m$$

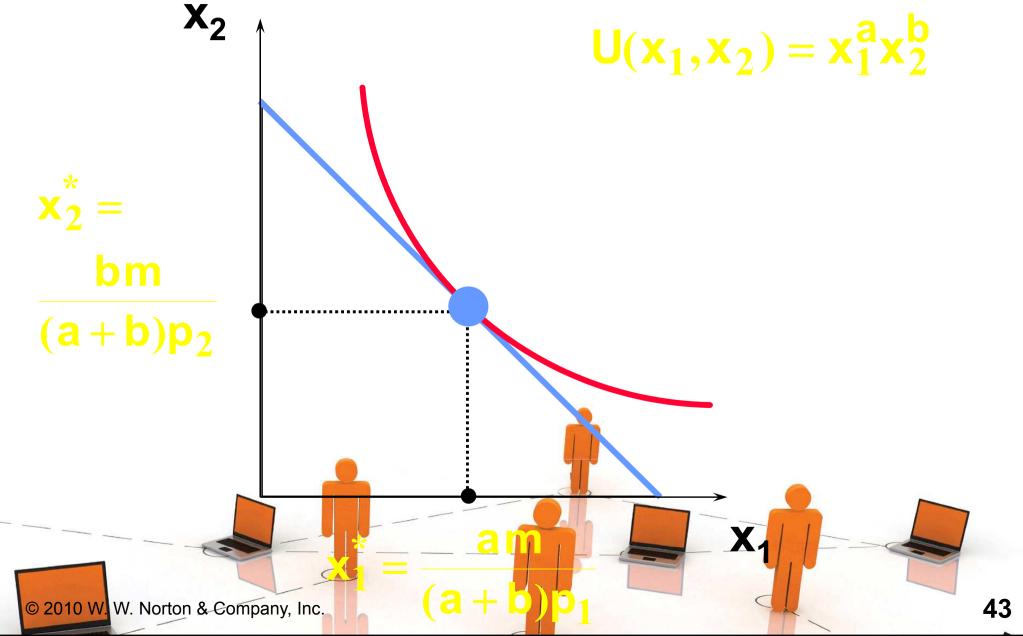
then gives



So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences

$$U(x_1,x_2) = x_1^a x_2^b$$



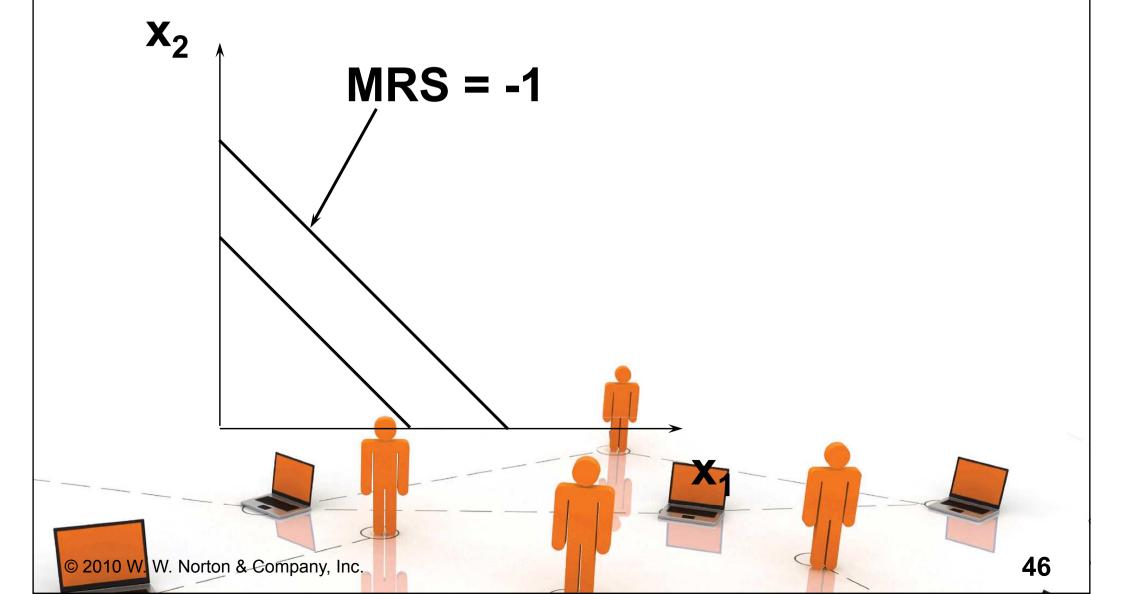


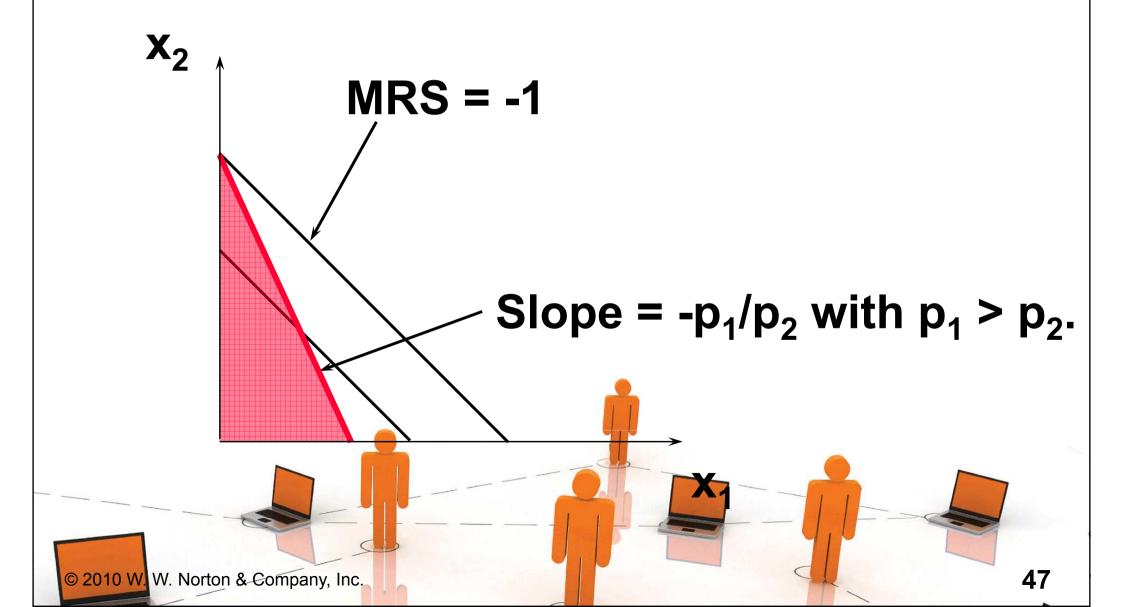
Rational Constrained Choice

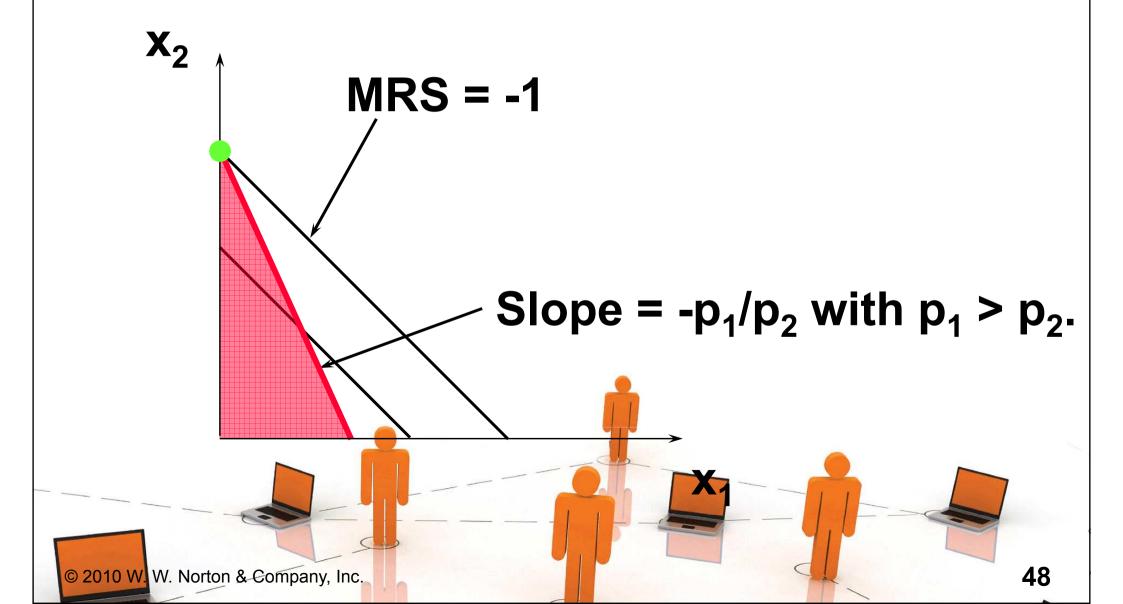
- ♦ When x₁* > 0 and x₂* > 0 and (x₁*,x₂*) exhausts the budget, and indifference curves have no 'kinks', the ordinary demands are obtained by solving:
- ♦ (b) the slopes of the budget constraint,
 -p₁/p₂, and of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

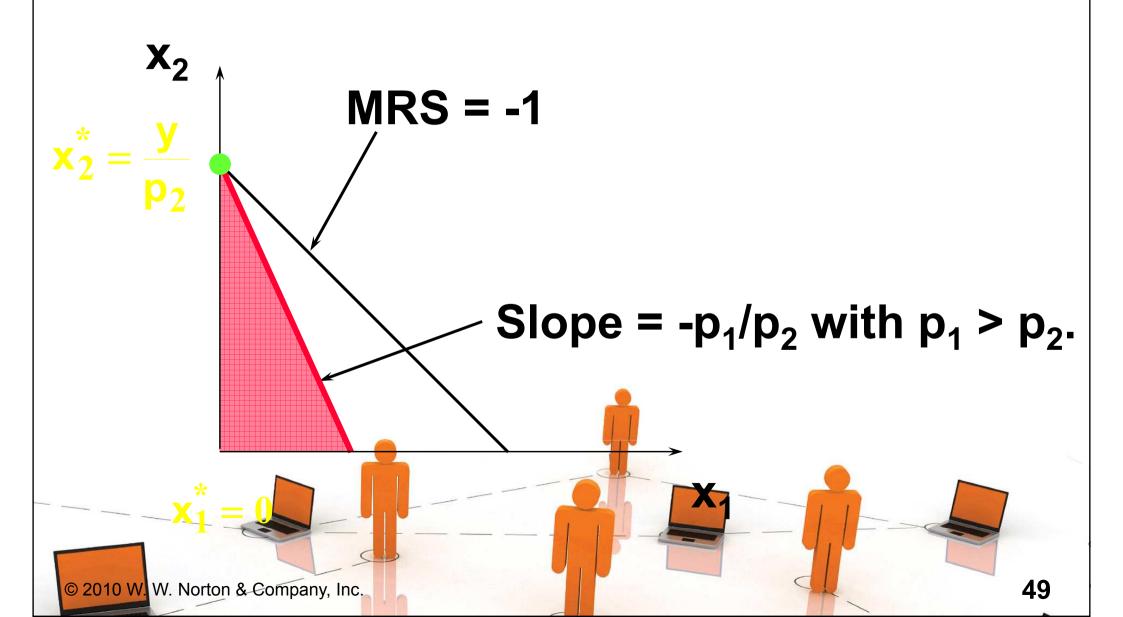
Rational Constrained Choice

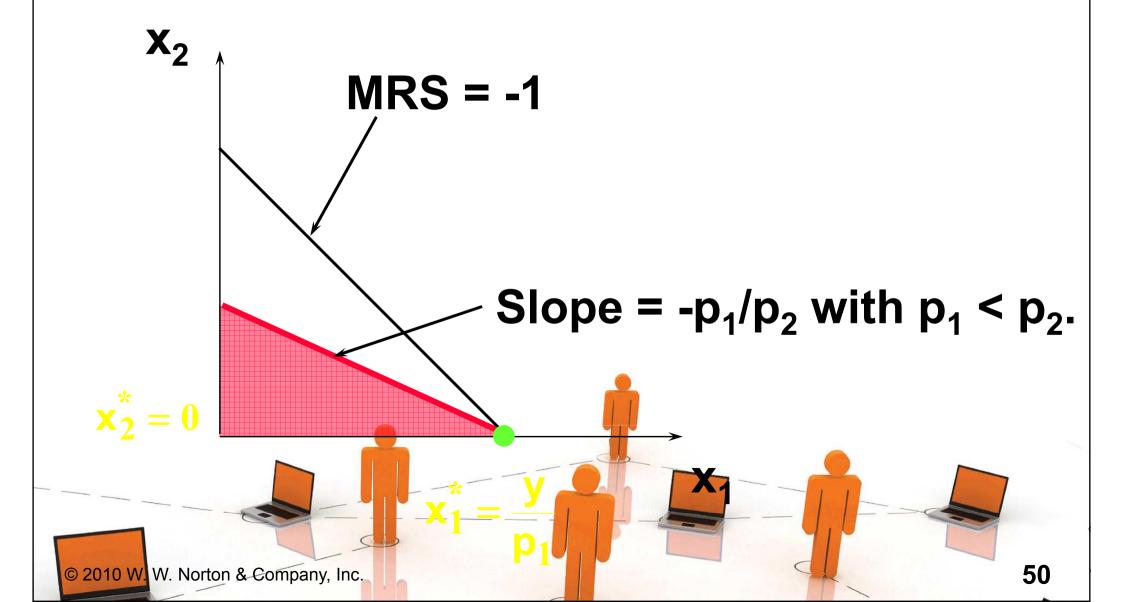
- ♦ But what if $x_1^* = 0$?
- ♦ Or if $x_2^* = 0$?
- ♦ If either $x_1^* = 0$ or $x_2^* = 0$ then the ordinary demand (x_1^*, x_2^*) is at a corner solution to the problem of maximizing utility subject to a budget constraint.







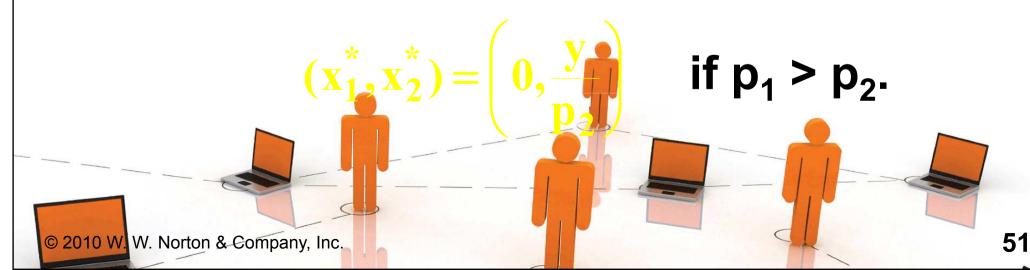


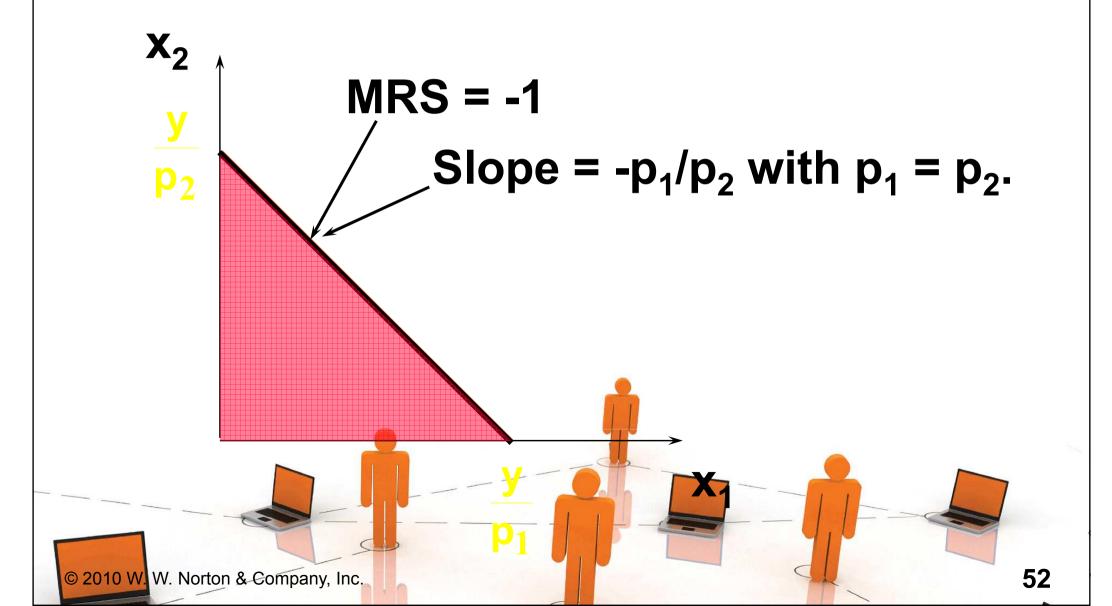


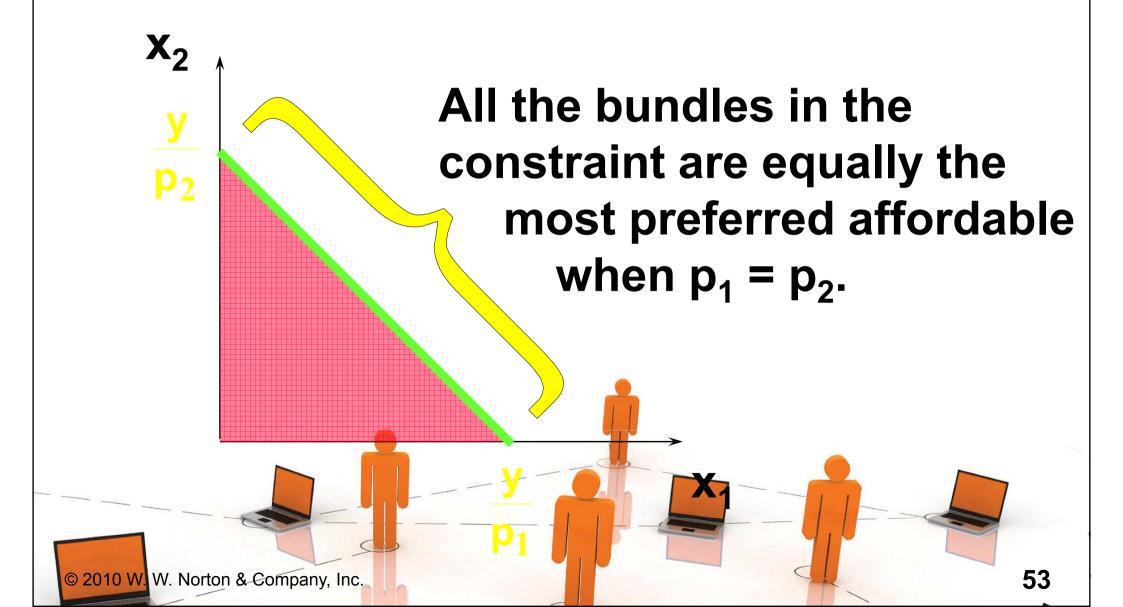
Examples of Corner Solutions -the Perfect Substitutes Case So when $U(x_1,x_2) = x_1 + x_2$, the most preferred affordable bundle is (x_1^*,x_2^*) where

$$(x_1^*, x_2^*) = \left(\frac{y}{p_1}, 0\right)$$
 if $p_1 < p_2$

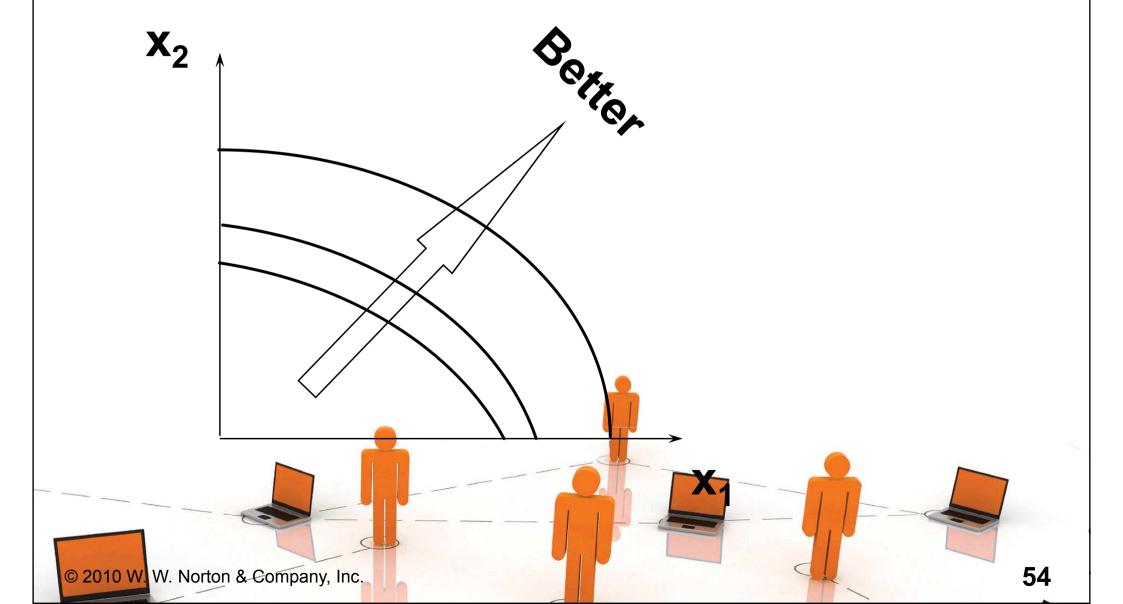
and



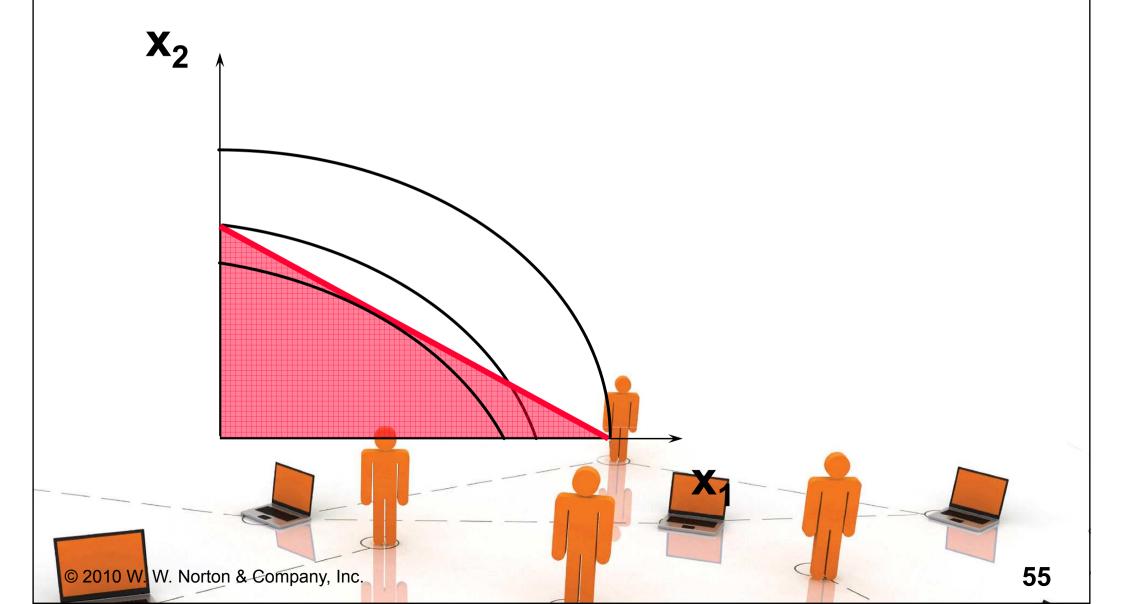




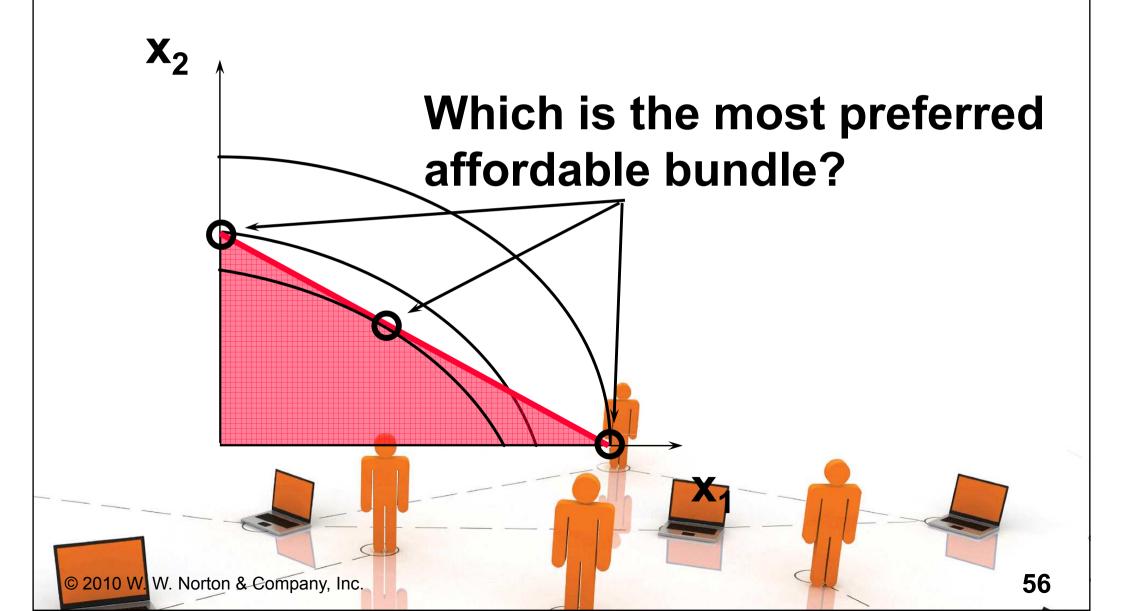
Examples of Corner Solutions -- the Non-Convex Preferences Case



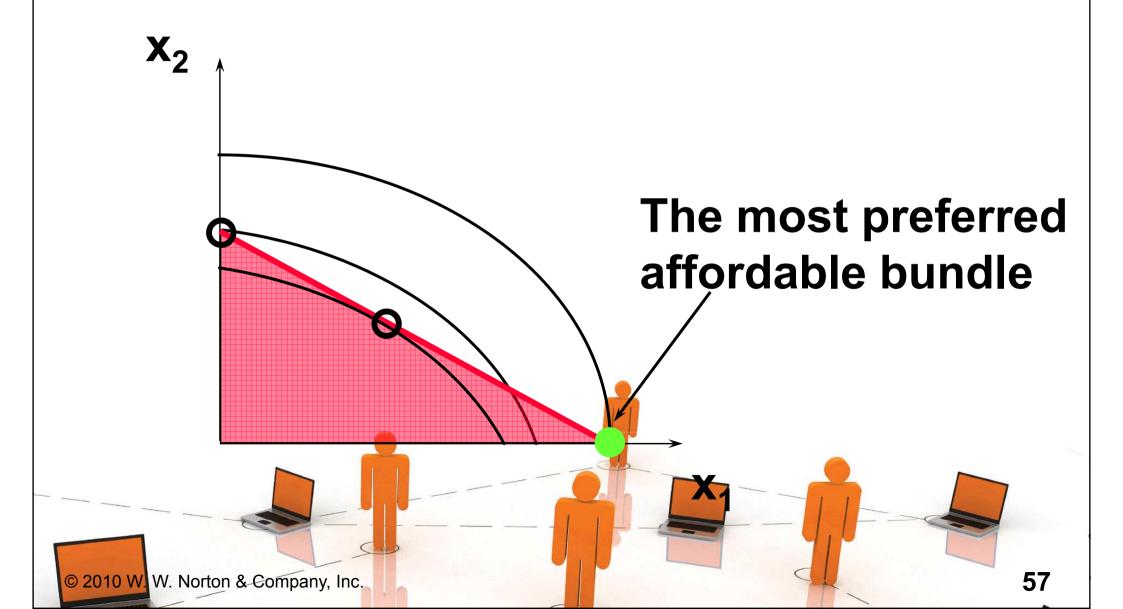
Examples of Corner Solutions -- the Non-Convex Preferences Case



Examples of Corner Solutions --the Non-Convex Preferences Case

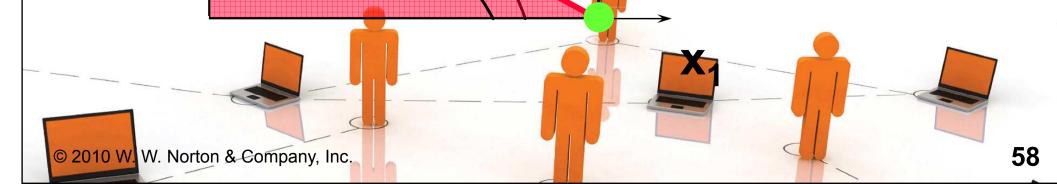


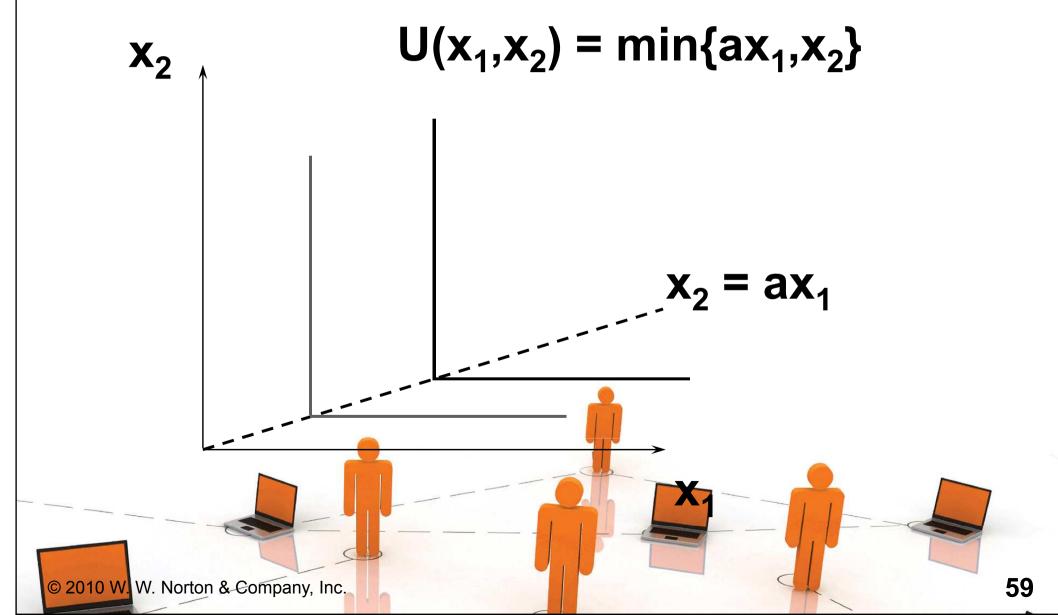
Examples of Corner Solutions --the Non-Convex Preferences Case

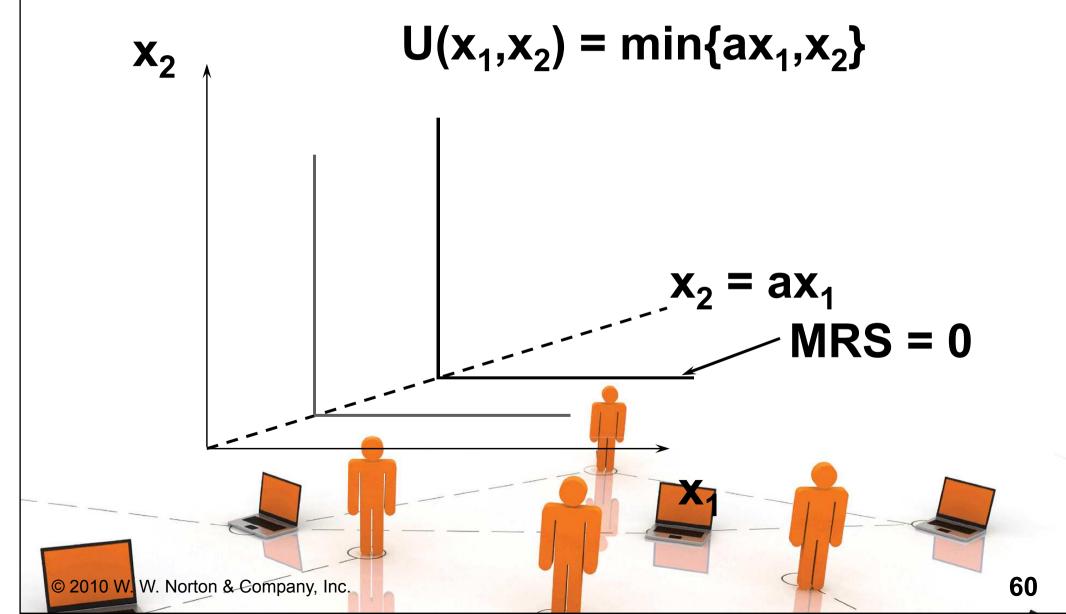


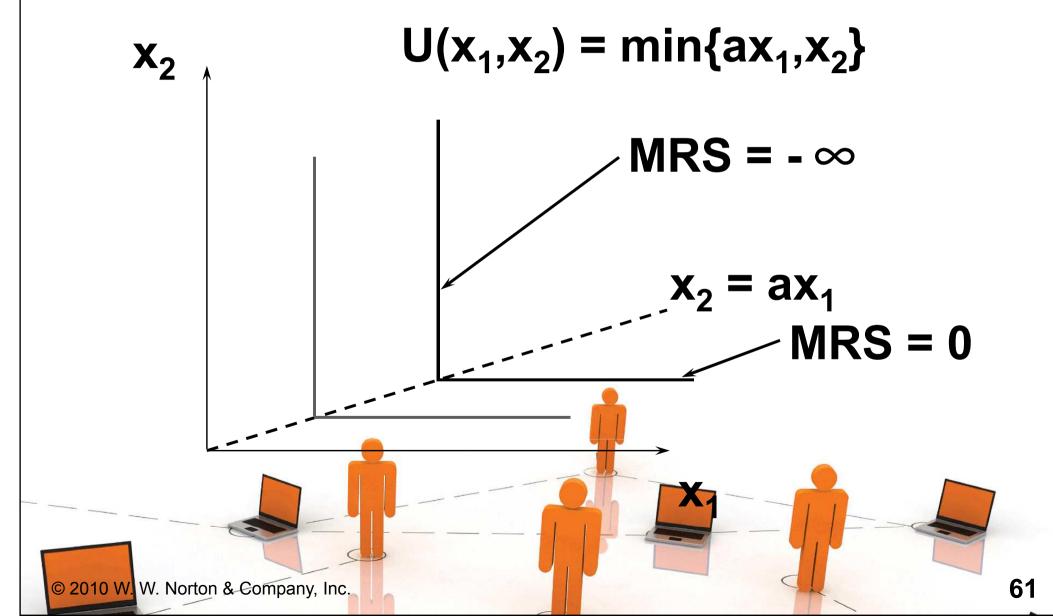
Examples of Corner Solutions -- the Non-Convex Preferences Case

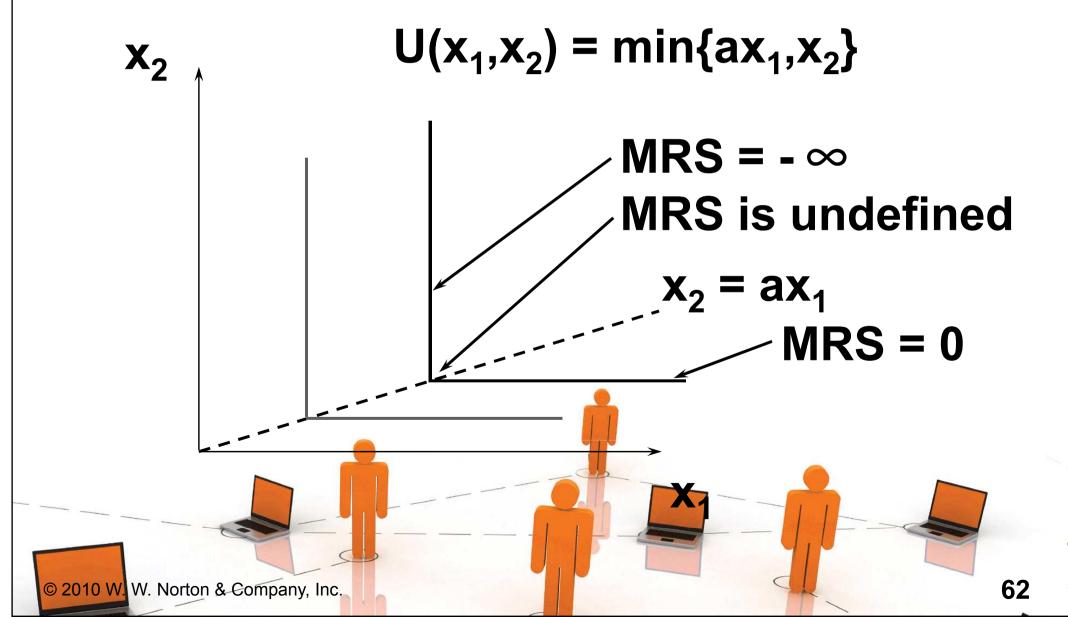
Notice that the "tangency solution" X_2 is not the most preferred affordable bundle. The most preferred affordable bundle

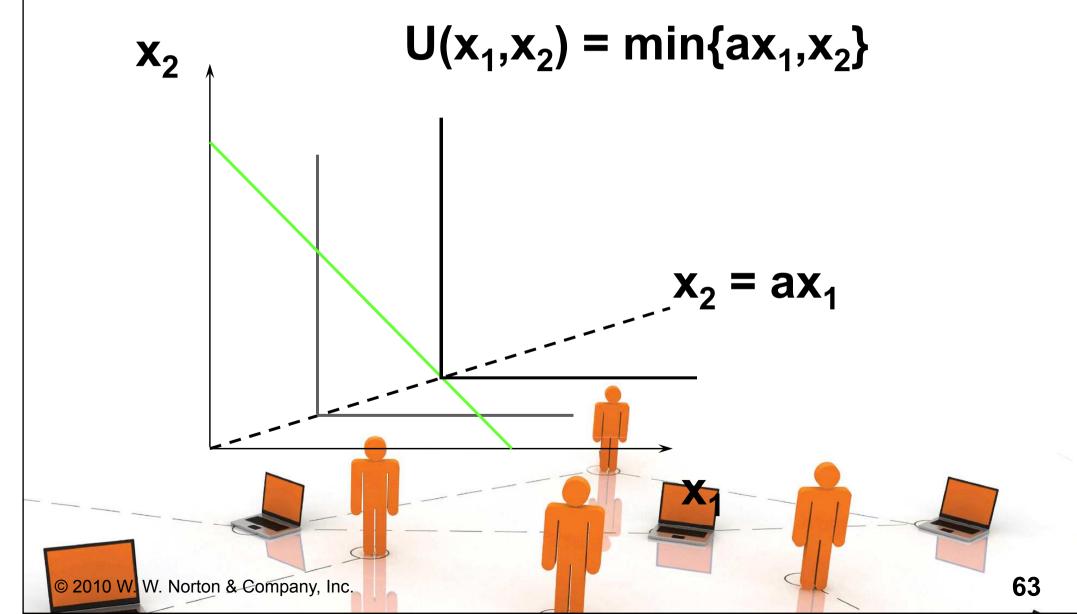


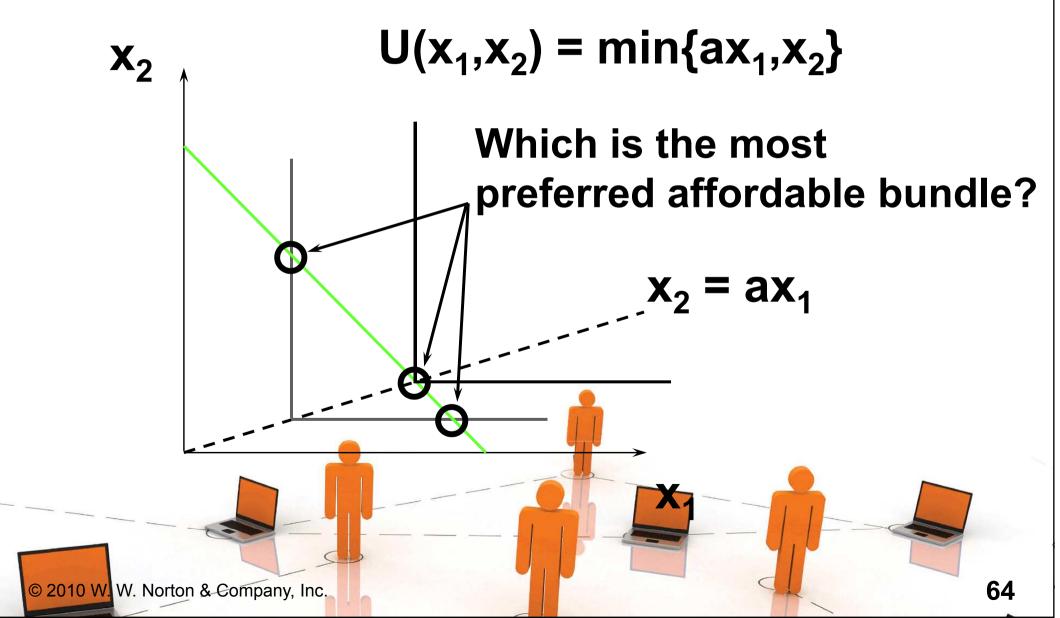


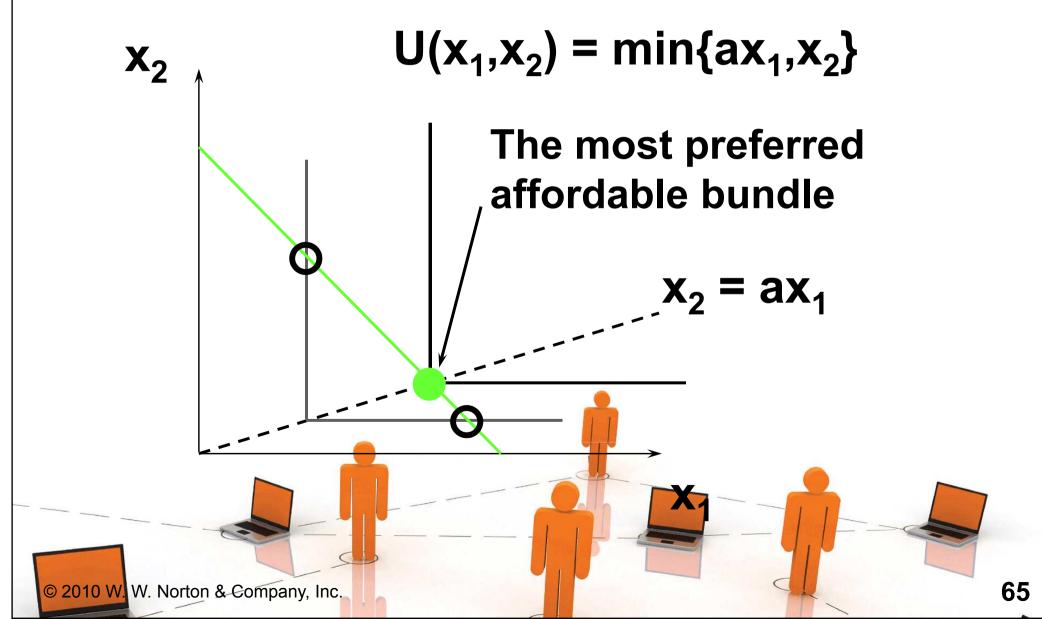


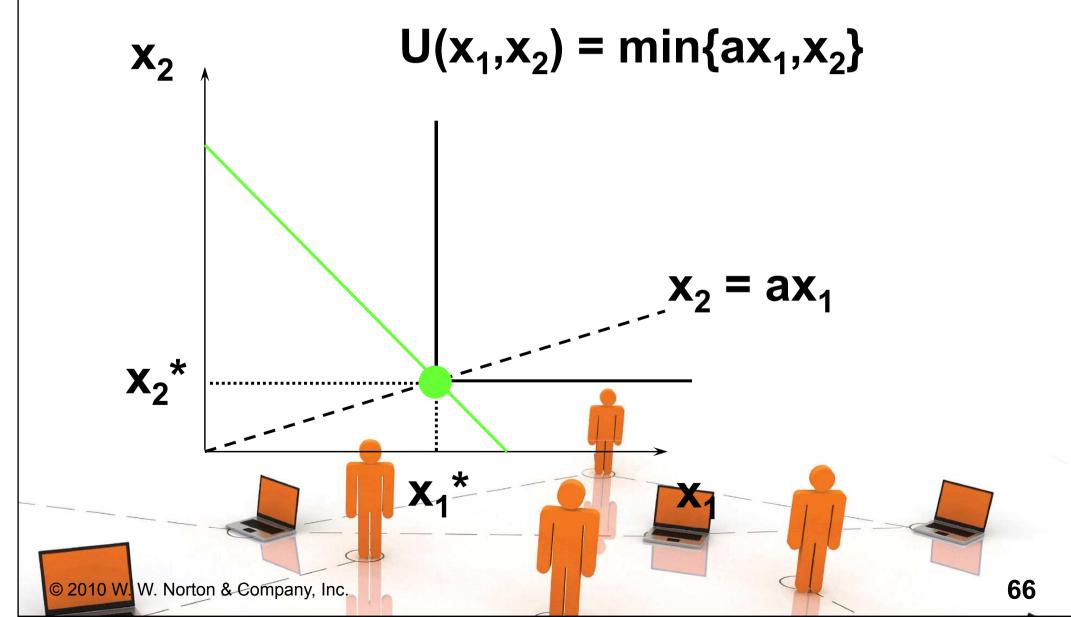


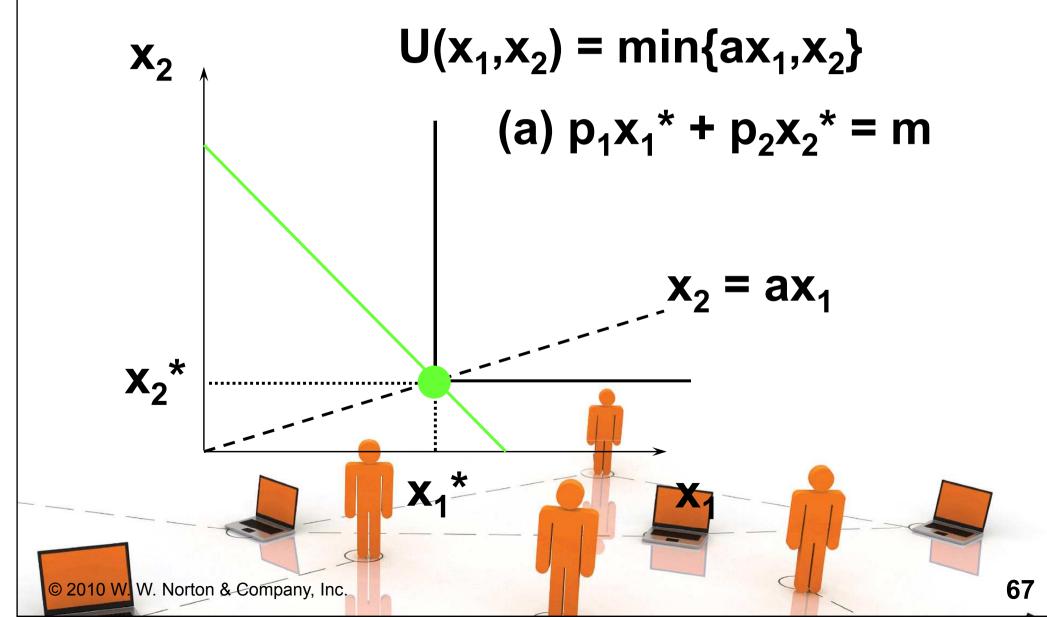


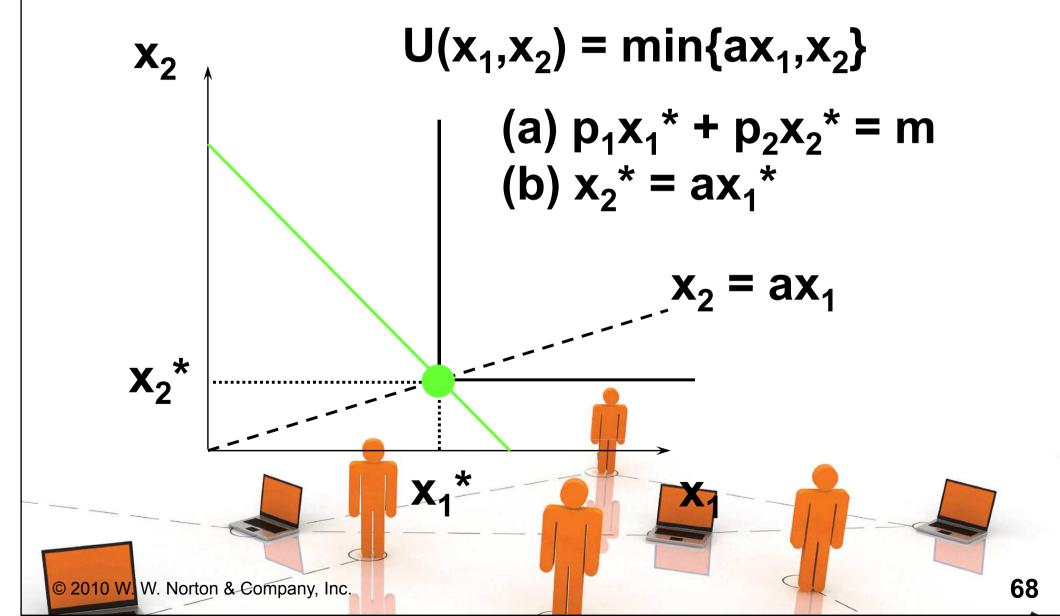




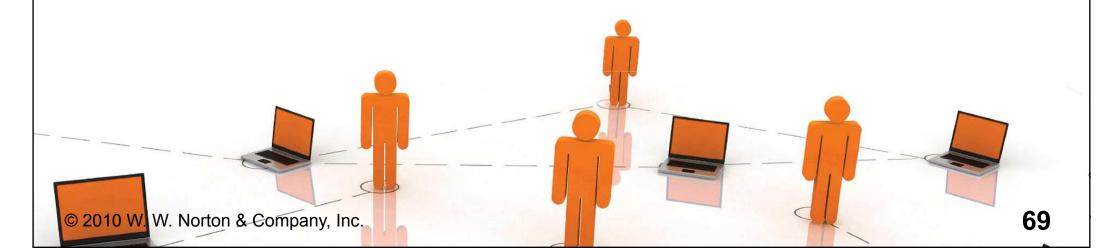






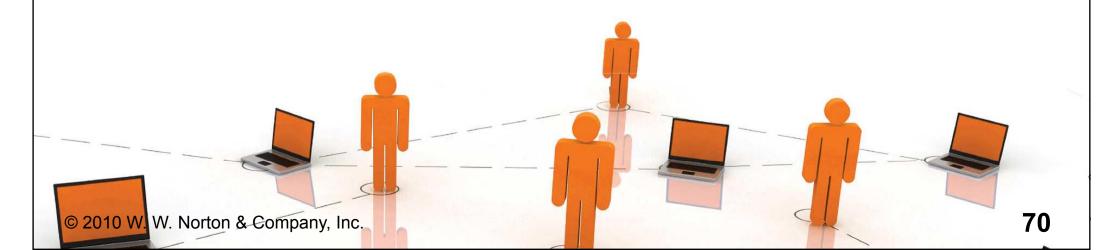


(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.



(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.

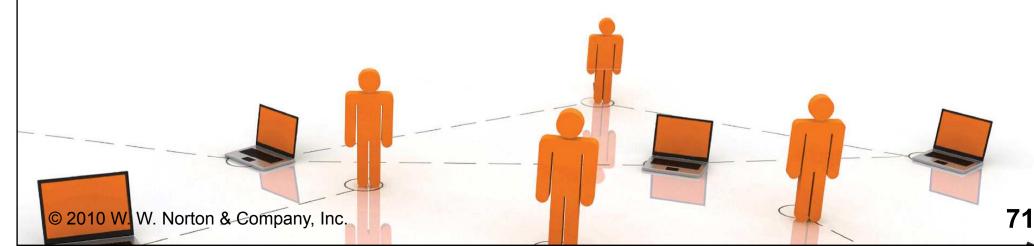
Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$



(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $\frac{*}{2}$

 $p_1 + ap_2$



(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_1^* = \frac{m}{x_2^*} = \frac{am}{x_2^*}$

(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_1^* = \frac{m}{p_1 + ap_2}$; $x_2^* = \frac{am}{p_1 + ap_2}$.

A bundle of 1 commodity 1 unit and a commodity 2 units costs $p_1 + ap_2$; $m/(p_1 + ap_2)$ such bundles are affordable.

