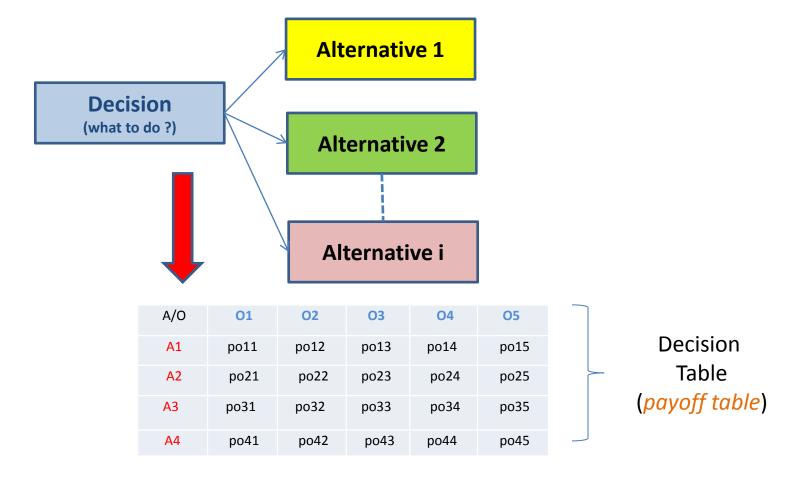
Hurwitz score related decision making methods

Skorkovský

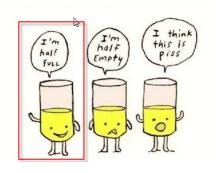
Department of business economy

Uncertainty-Risk


Although the possible returns of the investment are beyond the control of the decision maker, the decision maker might or might not be able or willing to assign probabilities to them.

If no probabilities are assigned to the possible consequences, then the decision situation is called "decision under uncertainty".

If probabilities are assigned then the situation is called "decision under risk".


This is a basic distinction in decision theory, and different analyses are in order.

First approach

Where: A=alternative(action); O=Outcome; po=payoff (benefits), (přínosy, prospěch)

A=(A1,A2,...Ai) = inventory of viable options=vector, O=(O1,O2,...Ok)= outcome vector

Chosen criteria I

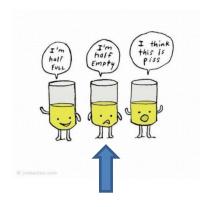
MaxiMax

 MaxiMax is the rule for the optimist. A slogan for MaxiMax might be "best of the best" - a decision maker considers the best possible outcome for each course of action, and chooses the course of action that corresponds to the best of the best possible outcomes

Example of the decision table I (best of the vector {800,400,200,100} is 800!!

Choices	Profit						
	Strong market Fair market Poor market						
invest \$8000	\$800	\$200	-\$400				
invest \$4000	\$400	\$100	-\$200				
invest \$2000	\$200	\$50	-\$100				
invest \$1000	\$100	\$25	-\$50				

MaxiMax Payoff


Select the alternative which results in the maximum of maximum payoffs; an optimistic criterion

Payoff Table

-		Outcomes			
Alternatives	01	O2	О3	Maximum Payoff	
A	\$1,000	\$1,000	\$1,000	\$1,000	
\bigcirc B	\$10,000	-\$7,000	\$500	\$10,000	
\mathbf{C}	\$5,000	\$0	\$800	\$5,000	
D	\$8,000	-\$2,000	\$700	\$8,000	

Alternatives (invested amount, expectant spouse inheritance, type of the car,..)

Chosen criteria II

MaxiMin

The MaxiMin decision rule is used by a pessimistic decision maker who wants to make a conservative decision. Basically, the decision rule is to consider the worst consequence of each possible course of action and chooses the one that has the least worst consequence (in our case= -50). So it is better to invest nothing !!!!

Choices	Profit				
	Strong market	Fair market	Poor market		
invest \$8000	\$800	\$200	-\$400		
invest \$4000	\$400	\$100	-\$200		
invest \$2000	\$200	\$50	-\$100		
invest \$1000	\$100	\$25	-\$50		

Example II

MaxiMin Payoff

Select the alternative which results in the maximum of minimum payoffs; a pessimistic criterion

Pay	off	Tab	le
		1000	

Alternatives	01	O2	О3	Minimum Payoff
$\overline{\mathbf{A}}$	\$1,000	\$1,000	\$1,000	\$1,000
B	\$10,000	-\$7,000	\$500	-\$7,000
C	\$5,000	\$0	\$800	\$0
D	\$8,000	-\$2,000	\$700	-\$2,000

Decision Strategy I

(Hurwitz criterion allows to choose strategies depending on propensity (inclination, tendency) to risk)

A/O	01	02	03	04	05
A1	po11	po12	po13	po14	po15
A2	po21	po22	po23	po24	po25
A3	po31	po32	po33	po34	po35
A4	po41	po42	po43	po44	po45

Where : A=alternative(action, strategy); O=Outcome; po=payoff (benefits, profits); winning score, A=(A1,A2,...Ai) = inventory of viable options=vector, O=(O1,O2,...Ok)= outcome vector, α = risk parameter (if 100 % optimistic -> α =1, if 100 % pesimistic -> α =0)

 $P^* = \max \{\alpha * \max (pi,Ok)\} + (1 - \alpha) * \min(pi,Ok) \}$

Decision Strategy II

A/O	01	02	03	а	b
A1	1	5	7	7	1
A2	3	2	6	6	2
A3	5	4	3	5	3

Where **ai** = max (pi,Ok) and **bi**= min(pi,Ok)

$$p^* = max \{\alpha * ai + (1 - \alpha) * bi \}$$
 - calculation of payoff (benefit, profit)

E.g. If
$$\alpha = 0.8$$
, and max ai=7 and min bi=1 then $p^* = \max\{5.8; 5.2; 4.6\} = 5.8$

Thanks for Your attention

