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Questions

7.3.1. Show directly—without appealing to the fact that
χ 2

n is a gamma random variable—that fU (u) as stated in
Definition 7.3.1 is a true probability density function.

7.3.2. Find the moment-generating function for a chi
square random variable and use it to show that E

(
χ 2

n

)= n
and Var

(
χ 2

n

)= 2n.

7.3.3. Is it believable that the numbers 65, 30, and 55 are
a random sample of size 3 from a normal distribution with
μ = 50 and σ = 10? Answer the question by using a chi
square distribution. [Hint: Let Zi = (Yi − 50)/10 and use
Theorem 7.3.1.]

7.3.4. Use the fact that (n − 1)S2/σ 2 is a chi square
random variable with n − 1 df to prove that

Var(S2)= 2σ 4

n − 1

(Hint: Use the fact that the variance of a chi square
random variable with k df is 2k.)

7.3.5. Let Y1,Y2, . . . ,Yn be a random sample from a nor-
mal distribution. Use the statement of Question 7.3.4 to
prove that S2 is consistent for σ 2.

7.3.6. If Y is a chi square random variable with n degrees
of freedom, the pdf of (Y −n)/

√
2n converges to fZ (z) as n

goes to infinity (recall Question 7.3.2). Use the asymptotic
normality of (Y − n)/

√
2n to approximate the fortieth per-

centile of a chi square random variable with 200 degrees
of freedom.

7.3.7. Use Appendix Table A.4 to find

(a) F.50,6,7

(b) F.001,15,5

(c) F.90,2,2

7.3.8. Let V and U be independent chi square random
variables with 7 and 9 degrees of freedom, respectively. Is
it more likely that V/7

U/9
will be between (1) 2.51 and 3.29 or

(2) 3.29 and 4.20?

7.3.9. Use Appendix Table A.4 to find the values of x that
satisfy the following equations:

(a) P(0.109 < F4,6 < x)= 0.95
(b) P(0.427 < F11,7 < 1.69)= x
(c) P(Fx,x > 5.35)= 0.01

(d) P(0.115 < F3,x < 3.29)= 0.90

(e) P
(

x <
V/2
U/3

)
= 0.25, where V is a chi square random

variable with 2 df and U is an independent chi square
random variable with 3 df.

7.3.10. Suppose that two independent samples of size n
are drawn from a normal distribution with variance σ 2.
Let S2

1 and S2
2 denote the two sample variances. Use the

fact that (n−1)S2

σ 2 has a chi square distribution with n − 1 df
to explain why

lim
n→∞
m→∞

Fm,n = 1

7.3.11. If the random variable F has an F distribution
with m and n degrees of freedom, show that 1/F has an
F distribution with n and m degrees of freedom.

7.3.12. Use the result claimed in Question 7.3.11 to
express percentiles of fFn,m (r) in terms of percentiles from
fFm,n (r). That is, if we know the values a and b for which
P(a ≤ Fm,n ≤ b) = q , what values of c and d will satisfy the
equation P(c ≤ Fn,m ≤ d) = q? “Check” your answer with
Appendix Table A.4 by comparing the values of F.05,2,8,
F.95,2,8, F.05,8,2, and F.95,8,2.

7.3.13. Show that as n →∞, the pdf of a Student t random
variable with n df converges to fZ (z). (Hint: To show that
the constant term in the pdf for Tn converges to 1/

√
2π ,

use Stirling’s formula,

n! .= √
2πn nne−n)

Also, recall that lim
n→∞
(
1 + a

n

)n = ea .

7.3.14. Evaluate the integral∫ ∞

0

1

1 + x2
dx

using the Student t distribution.

7.3.15. For a Student t random variable Y with n degrees
of freedom and any positive integer k, show that E(Y 2k)

exists if 2k < n. (Hint: Integrals of the form∫ ∞

0

1

(1 + yα)β
dy

are finite if α > 0, β > 0, and αβ > 1.)

7.4 Drawing Inferences About μ

One of the most common of all statistical objectives is to draw inferences about the
mean of the population being represented by a set of data. Indeed, we already took
a first look at that problem in Section 6.2. If the Yi ’s come from a normal distibution
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where σ is known, the null hypothesis H0 : μ = μ0 can be tested by calculating a Z

ratio, Y−μ

σ/
√

n
(recall Theorem 6.2.1).

Implicit in that solution, though, is an assumption not likely to be satisfied:
rarely does the experimenter actually know the value of σ . Section 7.3 dealt
with precisely that scenario and derived the pdf of the ratio Tn−1 = Y−μ

S/
√

n
, where

σ has been replaced by an estimator, S. Given Tn−1 (which we learned has a
Student t distribution with n − 1 degrees of freedom), we now have the tools nec-
essary to draw inferences about μ in the all-important case where σ is not known.
Section 7.4 illustrates these various techniques and also examines the key assump-
tion underlying the “t test” and looks at what happens when that assumption is not
satisfied.

t Tables

We have already seen that doing hypothesis tests and constructing confidence inter-
vals using Y−μ

σ/
√

n
or some other Z ratio requires that we know certain upper and/or

lower percentiles from the standard normal distribution. There will be a similar need
to identify appropriate “cutoffs” from Student t distributions when the inference
procedure is based on Y−μ

S/
√

n
, or some other t ratio.

Figure 7.4.1 shows a portion of the t table that appears in the back of every
statistics book. Each row corresponds to a different Student t pdf. The column
headings give the area to the right of the number appearing in the body of the
table.

Figure 7.4.1 α

df .20 .15 .10 .05 .025 .01 .005

1 1.376 1.963 3.078 6.3138 12.706 31.821 63.657
2 1.061 1.386 1.886 2.9200 4.3027 6.965 9.9248
3 0.978 1.250 1.638 2.3534 3.1825 4.541 5.8409
4 0.941 1.190 1.533 2.1318 2.7764 3.747 4.6041
5 0.920 1.156 1.476 2.0150 2.5706 3.365 4.0321
6 0.906 1.134 1.440 1.9432 2.4469 3.143 3.7074

30 0.854 1.055 1.310 1.6973 2.0423 2.457 2.7500
----------------------------------------------------------------------------------------
∞ 0.84 1.04 1.28 1.64 1.96 2.33 2.58

For example, the entry 4.541 listed in the α = .01 column and the d f = 3 row has
the property that P(T3 ≥ 4.541)= 0.01.

More generally, we will use the symbol tα,n to denote the 100(1−α)th percentile
of fTn (t). That is, P(Tn ≥ tα,n)=α (see Figure 7.4.2). No lower percentiles of Student
t curves need to be tabulated because the symmetry of fTn (t) implies that P(Tn ≤
−tα,n)=α.

The number of different Student t pdfs summarized in a t table varies consid-
erably. Many tables will provide cutoffs for degrees of freedom ranging only from 1
to 30; others will include df values from 1 to 50, or even from 1 to 100. The last row
in any t table, though, is always labeled “∞”: Those entries, of course, correspond
to zα .
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Figure 7.4.2
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Constructing a Confidence Interval for μ

The fact that Y−μ

S/
√

n
has a Student t distribution with n −1 degrees of freedom justifies

the statement that

P

(
−tα/2,n−1 ≤ Y −μ

S/
√

n
≤ tα/2,n−1

)
= 1 −α

or, equivalently, that

P

(
Y − tα/2,n−1 · S√

n
≤μ≤ Y + tα/2,n−1 · S√

n

)
= 1 −α (7.4.1)

(provided the Yi ’s are a random sample from a normal distribution).
When the actual data values are then used to evaluate Y and S, the lower

and upper endpoints identified in Equation 7.4.1 define a 100(1 − α)% confidence
interval for μ.

Theorem
7.4.1

Let y1, y2, . . . , yn be a random sample of size n from a normal distribution with
(unknown) mean μ. A 100(1 −α)% confidence interval for μ is the set of values(

y − tα/2,n−1 · s√
n
, y + tα/2,n−1 · s√

n

)
�

Case Study 7.4.1

To hunt flying insects, bats emit high-frequency sounds and then listen for their
echoes. Until an insect is located, these pulses are emitted at intervals of from
fifty to one hundred milliseconds. When an insect is detected, the pulse-to-pulse
interval suddenly decreases—sometimes to as low as ten milliseconds—thus
enabling the bat to pinpoint its prey’s position. This raises an interesting ques-
tion: How far apart are the bat and the insect when the bat first senses that
the insect is there? Or, put another way, what is the effective range of a bat’s
echolocation system?

The technical problems that had to be overcome in measuring the bat-to-
insect detection distance were far more complex than the statistical problems
involved in analyzing the actual data. The procedure that finally evolved was
to put a bat into an eleven-by-sixteen-foot room, along with an ample supply

(Continued on next page)
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of fruit flies, and record the action with two synchronized sixteen-millimeter
sound-on-film cameras. By examining the two sets of pictures frame by frame,
scientists could follow the bat’s flight pattern and, at the same time, monitor its
pulse frequency. For each insect that was caught (65), it was therefore possible
to estimate the distance between the bat and the insect at the precise moment
the bat’s pulse-to-pulse interval decreased (see Table 7.4.1).

Table 7.4.1

Catch Number Detection Distance (cm)

1 62
2 52
3 68
4 23
5 34
6 45
7 27
8 42
9 83

10 56
11 40

Define μ to be a bat’s true average detection distance. Use the eleven
observations in Table 7.4.1 to construct a 95% confidence interval for μ.

Letting y1 = 62, y2 = 52, . . . , y11 = 40, we have that

11∑
i=1

yi = 532 and
11∑

i=1

y2
i = 29,000

Therefore,

y = 532

11
= 48.4 cm

and

s =
√

11(29,000)− (532)2

11(10)
= 18.1 cm

If the population from which the yi ’s are being drawn is normal, the
behavior of

Y −μ

S/
√

n

will be described by a Student t curve with 10 degrees of freedom. From
Table A.2 in the Appendix,

P(−2.2281 < T10 < 2.2281)= 0.95

(Continued on next page)
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(Case Study 7.4.1 continued)

Accordingly, the 95% confidence interval for μ is[
y − 2.2281

(
s√
11

)
, y + 2.2281

(
s√
11

)]
=
[

48.4 − 2.2281

(
18.1√

11

)
,48.4 + 2.2281

(
18.1√

11

)]
= (36.2 cm, 60.6 cm).

Example
7.4.1

The sample mean and sample standard deviation for the random sample of size
n = 20 given in the following list are 2.6 and 3.6, respectively. Let μ denote the true
mean of the distribution being represented by these yi ’s.

2.5 0.1 0.2 1.3
3.2 0.1 0.1 1.4
0.5 0.2 0.4 11.2
0.4 7.4 1.8 2.1
0.3 8.6 0.3 10.1

Is it correct to say that a 95% confidence interval for μ is the set of following values?(
y − t.025,n−1 · s√

n
, y + t.025,n−1 · s√

n

)
=
(

2.6 − 2.0930 · 3.6√
20

,2.6 + 2.0930 · 3.6√
20

)
= (0.9,4.3)

No. It is true that all the correct factors have been used in calculating (0.9, 4.3),
but Theorem 7.4.1 does not apply in this case because the normality assumption
it makes is clearly being violated. Figure 7.4.3 is a histogram of the twenty yi ’s. The
extreme skewness that is so evident there is not consistent with the presumption that
the data’s underlying pdf is a normal distribution. As a result, the pdf describing the
probabilistic behavior of Y−μ

S/
√

20
would not be fT19(t).
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Figure 7.4.3
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Comment To say that Y−μ

S/
√

20
in this situation is not exactly a T19 random vari-

able leaves unanswered a critical question: Is the ratio approximately a T19 ran-
dom variable? We will revisit the normality assumption—and what happens when
that assumption is not satisfied—later in this section when we discuss a critically
important property known as robustness.

Questions

7.4.1. Use Appendix Table A.2 to find the following
probabilities:

(a) P(T6 ≥ 1.134)

(b) P(T15 ≤ 0.866)

(c) P(T3 ≥ −1.250)

(d) P(−1.055 < T29 < 2.462)

7.4.2. What values of x satisfy the following equations?

(a) P(−x ≤ T22 ≤ x)= 0.98
(b) P(T13 ≥ x)= 0.85
(c) P(T26 < x)= 0.95
(d) P(T2 ≥ x)= 0.025

7.4.3. Which of the following differences is larger?
Explain.

t.05,n − t.10,n or t.10,n − t.15,n

7.4.4. A random sample of size n = 9 is drawn from a nor-
mal distribution with μ = 27.6. Within what interval (−a,
+a) can we expect to find Y−27.6

S/
√

9
80% of the time? 90% of

the time?

7.4.5. Suppose a random sample of size n = 11 is drawn
from a normal distribution with μ = 15.0. For what value
of k is the following true?

P

(∣∣∣∣∣Y − 15.0

S/
√

11

∣∣∣∣∣≥ k

)
= 0.05

7.4.6. Let Y and S denote the sample mean and sam-
ple standard deviation, respectively, based on a set of
n = 20 measurements taken from a normal distribution
with μ = 90.6. Find the function k(S) for which

P[90.6 − k(S)≤ Y ≤ 90.6 + k(S)]= 0.99

7.4.7. Cell phones emit radio frequency energy that is
absorbed by the body when the phone is next to the ear
and may be harmful. The table in the next column gives
the absorption rate for a random sample of twenty cell
phones. (The Federal Communication Commission sets a
maximum of 1.6 watts per kilogram for the absorption rate
of such energy.) Construct a 90% confidence interval for
the true average cell phone absorption rate.

0.87 0.72
1.30 1.05
0.79 0.61
1.45 1.01
1.15 0.20
1.31 0.67
1.09 1.35
0.66 1.27
0.49 1.28
1.40 1.55

Source: reviews.cnet.com/cell-phone-radiation-levels/

7.4.8. The following table lists the typical cost of repairing
the bumper of a moderately priced midsize car damaged
by a corner collision at 3 mph. Use these observations
to construct a 95% confidence interval for μ, the true
average repair cost for all such automobiles with similar
damage. The sample standard deviation for these data is
s = $369.02.

Make/Model
Repair
Cost Make/Model

Repair
Cost

Hyundai Sonata $1019 Honda Accord $1461
Nissan Altima $1090 Volkswagen Jetta $1525
Mitsubishi Galant $1109 Toyota Camry $1670
Saturn AURA $1235 Chevrolet Malibu $1685
Subaru Legacy $1275 Volkswagen Passat $1783
Pontiac G6 $1361 Nissan Maxima $1787
Mazda 6 $1437 Ford Fusion $1889
Volvo S40 $1446 Chrysler Sebring $2484

Source: www.iihs.org/ratings/bumpersbycategory.aspx?

7.4.9. Creativity, as any number of studies have shown, is
very much a province of the young. Whether the focus is
music, literature, science, or mathematics, an individual’s
best work seldom occurs late in life. Einstein, for example,
made his most profound discoveries at the age of twenty-
six; Newton, at the age of twenty-three. The following are
twelve scientific breakthroughs dating from the middle of
the sixteenth century to the early years of the twentieth
century (205). All represented high-water marks in the
careers of the scientists involved.

www.iihs.org/ratings/bumpersbycategory.aspx?


400 Chapter 7 Inferences Based on the Normal Distribution

Discovery Discoverer Year Age, y

Earth goes around sun Copernicus 1543 40
Telescope, basic laws of

astronomy
Galileo 1600 34

Principles of motion,
gravitation, calculus

Newton 1665 23

Nature of electricity Franklin 1746 40
Burning is uniting with

oxygen
Lavoisier 1774 31

Earth evolved by gradual
processes

Lyell 1830 33

Evidence for natural
selection controlling
evolution

Darwin 1858 49

Field equations for light Maxwell 1864 33
Radioactivity Curie 1896 34
Quantum theory Planck 1901 43
Special theory of relativity,

E = mc2
Einstein 1905 26

Mathematical foundations
for quantum theory

Schrödinger 1926 39

(a) What can be inferred from these data about the
true average age at which scientists do their best
work? Answer the question by constructing a 95%
confidence interval.

(b) Before constructing a confidence interval for a set of
observations extending over a long period of time,
we should be convinced that the yi ’s exhibit no biases
or trends. If, for example, the age at which scien-
tists made major discoveries decreased from century
to century, then the parameter μ would no longer
be a constant, and the confidence interval would
be meaningless. Plot “date” versus “age” for these
twelve discoveries. Put “date” on the abscissa. Does
the variability in the yi ’s appear to be random with
respect to time?

7.4.10. How long does it take to fly from Atlanta to New
York’s LaGuardia airport? There are many components
of the time elapsed, but one of the more stable measure-
ments is the actual in-air time. For a sample of sixty-one
flights between these destinations on Sundays in April, the
time in minutes (y) gave the following results:

61∑
i=1

yi = 6450 and
61∑

i=1

y2
i = 684,900

Find a 99% confidence interval for the average flight time.

Source: www.bts.gov/xml/ontimesummarystatistics/src/
dstat/OntimeSummaryDepaturesData.xml.

7.4.11. In a nongeriatric population, platelet counts
ranging from 140 to 440 (thousands per mm3 of blood)

are considered “normal.” The following are the platelet
counts recorded for twenty-four female nursing home
residents (169).

Subject Count Subject Count

1 125 13 180
2 170 14 180
3 250 15 280
4 270 16 240
5 144 17 270
6 184 18 220
7 176 19 110
8 100 20 176
9 220 21 280

10 200 22 176
11 170 23 188
12 160 24 176

Use the following sums:
24∑

i=1

yi = 4645 and
24∑

i=1

y2
i = 959,265

How does the definition of “normal” above compare with
the 90% confidence interval?

7.4.12. If a normally distributed sample of size n =16 pro-
duces a 95% confidence interval for μ that ranges from
44.7 to 49.9, what are the values of y and s?

7.4.13. Two samples, each of size n, are taken from a
normal distribution with unknown mean μ and unknown
standard deviation σ . A 90% confidence interval for μ is
constructed with the first sample, and a 95% confidence
interval for μ is constructed with the second. Will the 95%
confidence interval necessarily be longer than the 90%
confidence interval? Explain.

7.4.14. Revenues reported last week from nine boutiques
franchised by an international clothier averaged $59,540
with a standard deviation of $6860. Based on those figures,
in what range might the company expect to find the
average revenue of all of its boutiques?

7.4.15. What “confidence” is associated with each of the
following random intervals? Assume that the Yi ’s are
normally distributed.

(a)
[

Y − 2.0930

(
S√
20

)
,Y + 2.0930

(
S√
20

)]
(b)
[

Y − 1.345

(
S√
15

)
,Y + 1.345

(
S√
15

)]
(c)
[

Y − 1.7056

(
S√
27

)
,Y + 2.7787

(
S√
27

)]
(d)
[
−∞,Y + 1.7247

(
S√
21

)]

www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryDepaturesData.xml
www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryDepaturesData.xml
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7.4.16. The weather station at Dismal Swamp,
California, recorded monthly precipitation (y) for twenty-

eight years. For these data,
336∑
i=1

yi = 1392.6 and
336∑
i=1

y2
i =

10,518.84.

(a) Find the 95% confidence interval for the mean
monthly precipitation.

(b) The table on the right gives a frequency ditri-
bution for the Dismal Swamp precipitation data.
Does this distribution raise questions about using
Theorem 7.4.1?

Rainfall in inches Frequency

0–1 85
1–2 38
2–3 35
3–4 41
4–5 28
5–6 24
6–7 18
7–8 16
8–9 16

9–10 5
10–11 9
11–12 21

Source: www.wcc.nrcs.usda.gov.

Testing H0 :μ = μo (The One-Sample t Test)

Suppose a normally distributed random sample of size n is observed for the purpose
of testing the null hypothesis that μ = μo. If σ is unknown—which is usually the
case—the procedure we use is called a one-sample t test. Conceptually, the latter is
much like the Z test of Theorem 6.2.1, except that the decision rule is defined in
terms of t = y−μo

s/
√

n
rather than z = y−μo

σ/
√

n
[which requires that the critical values come

from fTn−1(t) rather than fZ (z)].

Theorem
7.4.2

Let y1, y2, . . . , yn be a random sample of size n from a normal distribution where σ is
unknown. Let t = y−μo

s/
√

n
.

a. To test H0 : μ = μo versus H1 : μ > μo at the α level of significance, reject H0 if
t ≥ tα,n−1.

b. To test H0 : μ = μo versus H1 : μ < μo at the α level of significance, reject H0 if
t ≤ −tα,n−1.

c. To test H0 : μ = μo versus H1 : μ �= μo at the α level of significance, reject H0 if t is
either (1)≤ −tα/2,n−1 or (2)≥ tα/2,n−1.

Proof Appendix 7.A.3 gives the complete derivation that justifies using the proce-
dure described in Theorem 7.4.2. In short, the test statistic t = y−μo

s/
√

n
is a monotonic

function of the λ that appears in Definition 6.5.2, which makes the one-sample t test
a GLRT. �

Case Study 7.4.2

Not all rectangles are created equal. Since antiquity, societies have expressed
aesthetic preferences for rectangles having certain width (w) to length (l) ratios.

One “standard” calls for the width-to-length ratio to be equal to the ratio
of the length to the sum of the width and the length. That is,

(Continued on next page)

www.wcc.nrcs.usda.gov


402 Chapter 7 Inferences Based on the Normal Distribution

(Case Study 7.4.2 continued)

w

l
= l

w + l
(7.4.2)

Equation 7.4.2 implies that the width is 1
2 (

√
5−1), or approximately 0.618, times

as long as the length. The Greeks called this the golden rectangle and used it
often in their architecture (see Figure 7.4.4). Many other cultures were similarly
inclined. The Egyptians, for example, built their pyramids out of stones whose
faces were golden rectangles. Today in our society, the golden rectangle remains
an architectural and artistic standard, and even items such as driver’s licenses,
business cards, and picture frames often have w/ l ratios close to 0.618.

w

l

Figure 7.4.4 A golden rectangle
(

w

l
= l

w+l

)
The fact that many societies have embraced the golden rectangle as an aes-

thetic standard has two possible explanations. One, they “learned” to like it
because of the profound influence that Greek writers, philosophers, and artists
have had on cultures all over the world. Or two, there is something unique about
human perception that predisposes a preference for the golden rectangle.

Researchers in the field of experimental aesthetics have tried to test the
plausibility of those two hypotheses by seeing whether the golden rectangle is
accorded any special status by societies that had no contact whatsoever with
the Greeks or with their legacy. One such study (37) examined the w/ l ratios
of beaded rectangles sewn by the Shoshoni Indians as decorations on their
blankets and clothes. Table 7.4.2 lists the ratios found for twenty such rectangles.

If, indeed, the Shoshonis also had a preference for golden rectangles, we
would expect their ratios to be “close” to 0.618. The average value of the entries
in Table 7.4.2, though, is 0.661. What does that imply? Is 0.661 close enough
to 0.618 to support the position that liking the golden rectangle is a human
characteristic, or is 0.661 so far from 0.618 that the only prudent conclusion is
that the Shoshonis did not agree with the aesthetics espoused by the Greeks?

Table 7.4.2 Width-to-Length Ratios of Shoshoni Rectangles

0.693 0.749 0.654 0.670
0.662 0.672 0.615 0.606
0.690 0.628 0.668 0.611
0.606 0.609 0.601 0.553
0.570 0.844 0.576 0.933

(Continued on next page)



7.4 Drawing Inferences About μ 403

Let μ denote the true average width-to-length ratio of Shoshoni rectangles.
The hypotheses to be tested are

H0 :μ= 0.618

versus

H1 :μ �= 0.618

For tests of this nature, the value of α = 0.05 is often used. For that value of
α and a two-sided test, the critical values, using part (c) of Theorem 7.4.2 and
Appendix Table A.2, are t.025,19 = 2.0930 and −t.025,19 =−2.0930.

The data in Table 7.4.2 have y = 0.661 and s = 0.093. Substituting these
values into the t ratio gives a test statistic that lies just inside of the interval
between −2.0930 and 2.0930:

t = y −μ0

s/
√

n
= 0.661 − 0.618

0.093/
√

20
= 2.068

Thus, these data do not rule out the possibility that the Shoshoni Indians also
embraced the golden rectangle as an aesthetic standard.

About the Data Like π and e, the ratio w/ l for golden rectangles (more commonly
referred to as either phi or the golden ratio), is an irrational number with all sorts of
fascinating properties and connections.

Algebraically, the solution of the equation

w

l
= l

w + l

is the continued fraction

w

l
= 1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·
Among the curiosities associated with phi is its relationship with the Fibonacci series.
The latter, of course, is the famous sequence in which each term is the sum of its two
predecessors—that is,

1 1 2 3 5 8 13 21 34 55 89 . . .

Example
7.4.2

Three banks serve a metropolitan area’s inner-city neighborhoods: Federal Trust,
American United, and Third Union. The state banking commission is concerned
that loan applications from inner-city residents are not being accorded the same con-
sideration that comparable requests have received from individuals in rural areas.
Both constituencies claim to have anecdotal evidence suggesting that the other
group is being given preferential treatment.

Records show that last year these three banks approved 62% of all the home
mortgage applications filed by rural residents. Listed in Table 7.4.3 are the approval
rates posted over that same period by the twelve branch offices of Federal Trust
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Table 7.4.3

Bank Location Affiliation Percent Approved

1 3rd & Morgan AU 59
2 Jefferson Pike TU 65
3 East 150th & Clark TU 69
4 Midway Mall FT 53
5 N. Charter Highway FT 60
6 Lewis & Abbot AU 53
7 West 10th & Lorain FT 58
8 Highway 70 FT 64
9 Parkway Northwest AU 46

10 Lanier & Tower TU 67
11 King & Tara Court AU 51
12 Bluedot Corners FT 59

(FT), American United (AU), and Third Union (TU) that work primarily with the
inner-city community. Do these figures lend any credence to the contention that
the banks are treating inner-city residents and rural residents differently? Analyze
the data using an α = 0.05 level of significance.

As a starting point, we might want to test

H0 :μ= 62

versus

H1 :μ �= 62

where μ is the true average approval rate for all inner-city banks. Table 7.4.4 summa-
rizes the analysis. The two critical values are ± t.025,11 =±2.2010, and the observed t

ratio is −1.66
(
= 58.667−62

6.946/
√

12

)
, so our decision is “Fail to reject H0.”

Table 7.4.4

Banks n y s t Ratio Critical Value Reject H0?

All 12 58.667 6.946 −1.66 ±2.2010 No

About the Data The “overall” analysis of Table 7.4.4, though, may be too simplis-
tic. Common sense would tell us to look also at the three banks separately. What
emerges, then, is an entirely different picture (see Table 7.4.5). Now we can see
why both groups felt discriminated against: American United (t =−3.63) and Third

Table 7.4.5

Banks n y s t Ratio Critical Value Reject H0?

American United 4 52.25 5.38 −3.63 ±3.1825 Yes
Federal Trust 5 58.80 3.96 −1.81 ±2.7764 No
Third Union 3 67.00 2.00 +4.33 ±4.3027 Yes
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Union (t =+4.33) each had rates that differed significantly from 62%—but in oppo-
site directions! Only Federal Trust seems to be dealing with inner-city residents and
rural residents in an even-handed way.

Questions

7.4.17. Recall the Bacillus subtilis data in Question 5.3.2.
Test the null hypothesis that exposure to the enzyme does
not affect a worker’s respiratory capacity (as measured by
the FEV1/VC ratio). Use a one-sided H1 and let α = 0.05.
Assume that σ is not known.

7.4.18. Recall Case Study 5.3.1. Assess the credibility of
the theory that Etruscans were native Italians by test-
ing an appropriate H0 against a two-sided H1. Set α

equal to 0.05. Use 143.8 mm and 6.0 mm for y and s,
respectively, and let μo = 132.4. Do these data appear to
satisfy the distribution assumption made by the t test?
Explain.

7.4.19. MBAs R Us advertises that its program increases
a person’s score on the GMAT by an average of forty
points. As a way of checking the validity of that claim, a
consumer watchdog group hired fifteen students to take
both the review course and the GMAT. Prior to starting
the course, the fifteen students were given a diagnos-
tic test that predicted how well they would do on the
GMAT in the absence of any special training. The fol-
lowing table gives each student’s actual GMAT score
minus his or her predicted score. Set up and carry out
an appropriate hypothesis test. Use the 0.05 level of
significance.

Subject yi = act. GMAT − pre. GMAT y2
i

SA 35 1225
LG 37 1369
SH 33 1089
KN 34 1156
DF 38 1444
SH 40 1600
ML 35 1225
JG 36 1296
KH 38 1444
HS 33 1089
LL 28 784
CE 34 1156
KK 47 2209
CW 42 1764
DP 46 2116

7.4.20. In addition to the Shoshoni data of Case
Study 7.4.2, a set of rectangles that might tend to the
golden ratio are national flags. The table below gives the
width-to-length ratios for a random sample of the flags of
thirty-four countries. Let μ be the width-to-length ratio
for national flags. At the α = 0.01 level, test H0 : μ = 0.618
versus H1 :μ �= 0.618.

Ratio Ratio
Country Width to Height Country Width to Height

Afghanistan 0.500 Iceland 0.720
Albania 0.714 Iran 0.571
Algeria 0.667 Israel 0.727
Angola 0.667 Laos 0.667
Argentina 0.667 Lebanon 0.667
Bahamas 0.500 Liberia 0.526
Denmark 0.757 Macedonia 0.500
Djibouti 0.553 Mexico 0.571
Ecuador 0.500
Egypt 0.667 Monaco 0.800
El
Salvador

0.600 Namibia 0.667

Nepal 1.250
Estonia 0.667 Romania 0.667
Ethiopia 0.500 Rwanda 0.667
Gabon 0.750 South

Africa
0.667

Fiji 0.500 St.
Helena

0.500

France 0.667 Sweden 0.625
Honduras 0.500 United

Kingdom
0.500

Source: http://www.anyflag.com/country/costaric.php.

7.4.21. A manufacturer of pipe for laying underground
electrical cables is concerned about the pipe’s rate of
corrosion and whether a special coating may retard that
rate. As a way of measuring corrosion, the manufac-
turer examines a short length of pipe and records the
depth of the maximum pit. The manufacturer’s tests have
shown that in a year’s time in the particular kind of soil
the manufacturer must deal with, the average depth of
the maximum pit in a foot of pipe is 0.0042 inch. To
see whether that average can be reduced, ten pipes are

http://www.anyflag.com/country/costaric.php
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coated with a new plastic and buried in the same soil.
After one year, the following maximum pit depths are
recorded (in inches): 0.0039, 0.0041, 0.0038, 0.0044, 0.0040,
0.0036, 0.0034, 0.0036, 0.0046, and 0.0036. Given that the
sample standard deviation for these ten measurements is
0.00383 inch, can it be concluded at the α = 0.05 level of
significance that the plastic coating is beneficial?

7.4.22. The first analysis done in Example 7.4.2 (using all
n = 12 banks with y = 58.667) failed to reject H0:μ = 62
at the α = 0.05 level. Had μo been, say, 61.7 or 58.6, the
same conclusion would have been reached. What do we
call the entire set of μo’s for which H0:μ = μo would not
be rejected at the α = 0.05 level?

Testing H0: μ = μo When the Normality Assumption Is Not Met

Every t test makes the same explicit assumption—namely, that the set of n yi ’s is
normally distributed. But suppose the normality assumption is not true. What are
the consequences? Is the validity of the t test compromised?

Figure 7.4.5 addresses the first question. We know that if the normality assump-
tion is true, the pdf describing the variation of the t ratio, Y−μo

S/
√

n
, is fTn−1(t). The

latter, of course, provides the decision rule’s critical values. If H0 : μ = μo is to be
tested against H1 : μ �= μo, for example, the null hypothesis is rejected if t is either
(1)≤−tα/2,n−1 or (2)≥ tα/2,n−1 (which makes the Type I error probability equal to α).

Figure 7.4.5
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If the normality assumption is not true, the pdf of Y−μo
S/

√
n

will not be fTn−1(t) and

P

(
Y −μo

S/
√

n
≤−tα/2,n−1

)
+ P

(
Y −μo

S/
√

n
≥ tα/2,n−1

)
�=α

In effect, violating the normality assumption creates two α’s: The “nominal” α is the
Type I error probability we specify at the outset—typically, 0.05 or 0.01. The “true”
α is the actual probability that Y−μo

S/
√

n
falls in the rejection region (when H0 is true).

For the two-sided decision rule pictured in Figure 7.4.5,

trueα =
∫ −tα/2,n−1

−∞
fT ∗(t)dt +

∫ ∞

tα/2,n−1

fT ∗(t)dt

Whether or not the validity of the t test is “compromised” by the normality
assumption being violated depends on the numerical difference between the two
α’s. If fT ∗(t) is, in fact, quite similar in shape and location to fTn−1(t), then the true α

will be approximately equal to the nominal α. In that case, the fact that the yi ’s are
not normally distributed would be essentially irrelevant. On the other hand, if fT ∗(t)
and fTn−1(t) are dramatically different (as they appear to be in Figure 7.4.5), it would
follow that the normality assumption is critical, and establishing the “significance”
of a t ratio becomes problematic.
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Unfortunately, getting an exact expression for fT ∗(t) is essentially impossible,
because the distribution depends on the pdf being sampled, and there is seldom any
way of knowing precisely what that pdf might be. However, we can still meaningfully
explore the sensitivity of the t ratio to violations of the normality assumption by
simulating samples of size n from selected distributions and comparing the resulting
histogram of t ratios to fTn−1(t).

Figure 7.4.6 shows four such simulations, using Minitab; the first three consist
of one hundred random samples of size n = 6. In Figure 7.4.6(a), the samples come
from a uniform pdf defined over the interval [0, 1]; in Figure 7.4.6(b), the underlying
pdf is the exponential with λ = 1; and in Figure 7.4.6(c), the data are coming from a
Poisson pdf with λ = 5.

If the normality assumption were true, t ratios based on samples of size 6 would
vary in accordance with the Student t distribution with 5 df. On pp. 407–408, fT5(t)
has been superimposed over the histograms of the t ratios coming from the three
different pdfs. What we see there is really quite remarkable. The t ratios based on
yi ’s coming from a uniform pdf, for example, are behaving much the same way as
t ratios would vary if the yi ’s were normally distributed—that is, fT ∗(t) in this case
appears to be very similar to fT5(t). The same is true for samples coming from a
Poisson distribution (see Theorem 4.2.2). For both of those underlying pdfs, in other
words, the true α would not be much different from the nominal α.

Figure 7.4.6(b) tells a slightly different story. When samples of size 6 are drawn
from an exponential pdf, the t ratios are not in particularly close agreement with

Figure 7.4.6 (a)
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Figure 7.4.6 (Continued) (b)
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fT5(t). Specifically, very negative t ratios are occurring much more often than the
Student t curve would predict, while large positive t ratios are occurring less often
(see Question 7.4.23). But look at Figure 7.4.6(d). When the sample size is increased
to n = 15, the skewness so prominent in Figure 7.4.6(b) is mostly gone.

Figure 7.4.6 (Continued)
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Reflected in these specific simulations are some general properties of the t
ratio:

1. The distribution of Y−μ

S/
√

n
is relatively unaffected by the pdf of the yi ’s [provided

fY (y) is not too skewed and n is not too small].
2. As n increases, the pdf of Y−μ

S/
√

n
becomes increasingly similar to fTn−1(t).

In mathematical statistics, the term robust is used to describe a procedure that is not
heavily dependent on whatever assumptions it makes. Figure 7.4.6 shows that the t
test is robust with respect to departures from normality.

From a practical standpoint, it would be difficult to overstate the importance
of the t test being robust. If the pdf of Y−μ

S/
√

n
varied dramatically depending on the

origin of the yi ’s, we would never know if the true α associated with, say, a 0.05
decision rule was anywhere near 0.05. That degree of uncertainty would make the t
test virtually worthless.
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Questions

7.4.23. Explain why the distribution of t ratios calcu-
lated from small samples drawn from the exponential
pdf, fY (y) = e−y, y ≥ 0, will be skewed to the left [recall
Figure 7.4.6(b)]. [Hint: What does the shape of fY (y) imply
about the possibility of each yi being close to 0? If the
entire sample did consist of yi ’s close to 0, what value
would the t ratio have?]

7.4.24. Suppose one hundred samples of size n = 3 are
taken from each of the pdfs

(1) fY (y)= 2y, 0 ≤ y ≤ 1

and

(2) fY (y)= 4y3, 0 ≤ y ≤ 1

and for each set of three observations, the ratio

y −μ

s/
√

3

is calculated, where μ is the expected value of the par-
ticular pdf being sampled. How would you expect the

distributions of the two sets of ratios to be different? How
would they be similar? Be as specific as possible.

7.4.25. Suppose that random samples of size n are drawn
from the uniform pdf, fY (y) = 1,0 ≤ y ≤ 1. For each sam-
ple, the ratio t = y−0.5

s/
√

n
is calculated. Parts (b) and (d) of

Figure 7.4.6 suggest that the pdf of t will become increas-
ingly similar to fTn−1(t) as n increases. To which pdf is
fTn−1(t), itself, converging as n increases?

7.4.26. On which of the following sets of data would you
be reluctant to do a t test? Explain.

y(a)

y(b)

y(c)

7.5 Drawing Inferences About σ 2

When random samples are drawn from a normal distribution, it is usually the case
that the parameter μ is the target of the investigation. More often than not, the mean
mirrors the “effect” of a treatment or condition, in which case it makes sense to
apply what we learned in Section 7.4—that is, either construct a confidence interval
for μ or test the hypothesis that μ=μo.

But exceptions are not that uncommon. Situations occur where the “precision”
associated with a measurement is, itself, important—perhaps even more important
than the measurement’s “location.” If so, we need to shift our focus to the scale
parameter, σ 2. Two key facts that we learned earlier about the population variance
will now come into play. First, an unbiased estimator for σ 2 based on its maximum
likelihood estimator is the sample variance, S2, where

S2 = 1

n − 1

n∑
i=1

(Yi − Y )2

And, second, the ratio
(n − 1)S

σ 2

2

= 1

σ 2

n∑
i=1

(Yi − Y )2

has a chi square distribution with n − 1 degrees of freedom. Putting these two pieces
of information together allows us to draw inferences about σ 2—in particular, we can
construct confidence intervals for σ 2 and test the hypothesis that σ 2 = σ 2

o .

Chi Square Tables

Just as we need a t table to carry out inferences about μ (when σ 2 is unknown), we
need a chi square table to provide the cutoffs for making inferences involving σ 2. The
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layout of chi square tables is dictated by the fact that all chi square pdfs (unlike Z
and t distributions) are skewed (see, for example, Figure 7.5.1, showing a chi square
curve having 5 degrees of freedom). Because of that asymmetry, chi square tables
need to provide cutoffs for both the left-hand tail and the right-hand tail of each chi
square distribution.

Figure 7.5.1
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Figure 7.5.2 shows the top portion of the chi square table that appears in
Appendix A.3. Successive rows refer to different chi square distributions (each hav-
ing a different number of degrees of freedom). The column headings denote the
areas to the left of the numbers listed in the body of the table.

Figure 7.5.2
p

df .01 .025 .05 .10 .90 .95 .975 .99

1 0.000157 0.000982 0.00393 0.0158 2.706 3.841 5.024 6.635
2 0.0201 0.0506 0.103 0.211 4.605 5.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345
4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277
5 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666

10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209
11 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725
12 3.571 4.404 5.226 6.304 18.549 21.026 23.336 26.217

We will use the symbol χ2
p,n to denote the number along the horizontal axis that

cuts off, to its left, an area of p under the chi square distribution with n degrees of
freedom. For example, from the fifth row of the chi square table, we see the num-
bers 1.145 and 15.086 under the column headings .05 and .99, respectively. It follows
that

P
(
χ2

5 ≤ 1.145
)= 0.05

and

P
(
χ2

5 ≤ 15.086
)= 0.99

(see Figure 7.5.1). In terms of the χ2
p,n notation, 1.145 = χ2

.05,5 and 15.086 = χ2
.99,5.

(The area to the right of 15.086, of course, must be 0.01.)
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Constructing Confidence Intervals for σ 2

Since (n−1)S2

σ 2 has a chi square distribution with n − 1 degrees of freedom, we can
write

P

[
χ2

α/2,n−1 ≤ (n − 1)S2

σ 2
≤χ2

1−α/2,n−1

]
= 1 −α (7.5.1)

If Equation 7.5.1 is then inverted to isolate σ 2 in the center of the inequalities,
the two endpoints will necessarily define a 100(1 − α)% confidence interval for the
population variance. The algebraic details will be left as an exercise.

Theorem
7.5.1

Let s2 denote the sample variance calculated from a random sample of n observations
drawn from a normal distribution with mean μ and variance σ 2. Then

a. a 100(1 −α)% confidence interval for σ 2 is the set of values[
(n − 1)s2

χ2
1−α/2,n−1

,
(n − 1)s2

χ2
α/2,n−1

]

b. a 100(1 −α)% confidence interval for σ is the set of values[√
(n − 1)s2

χ2
1−α/2,n−1

,

√
(n − 1)s2

χ2
α/2,n−1

]
�

Case Study 7.5.1

The chain of events that define the geological evolution of the Earth began
hundreds of millions of years ago. Fossils play a key role in documenting the
relative times those events occurred, but to establish an absolute chronology,
scientists rely primarily on radioactive decay.

One of the newest dating techniques uses a rock’s potassium-argon ratio.
Almost all minerals contain potassium (K) as well as certain of its isotopes,
including 40K. The latter, though, is unstable and decays into isotopes of argon
and calcium, 40Ar and 40Ca. By knowing the rates at which the various daughter
products are formed and by measuring the amounts of 40Ar and 40K present in
a specimen, geologists can estimate the object’s age.

Critical to the interpretation of any such dates, of course, is the precision
of the underlying procedure. One obvious way to estimate that precision is to
use the technique on a sample of rocks known to have the same age. Whatever
variation occurs, then, from rock to rock is reflecting the inherent precision (or
lack of precision) of the procedure.

Table 7.5.1 lists the potassium-argon estimated ages of nineteen mineral
samples, all taken from the Black Forest in southeastern Germany (111).
Assume that the procedure’s estimated ages are normally distributed with
(unknown) mean μ and (unknown) variance σ 2. Construct a 95% confidence
interval for σ .

(Continued on next page)
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Table 7.5.1

Specimen Estimated Age (millions of years)

1 249
2 254
3 243
4 268
5 253
6 269
7 287
8 241
9 273

10 306
11 303
12 280
13 260
14 256
15 278
16 344
17 304
18 283
19 310

Here

19∑
i=1

yi = 5261

19∑
i=1

y2
i = 1,469,945

so the sample variance is 733.4:

s2 = 19(1,469,945)− (5261)2

19(18)
= 733.4

Since n = 19, the critical values appearing in the left-hand and right-hand limits
of the σ confidence interval come from the chi square pdf with 18 df. According
to Appendix Table A.3,

P
(
8.23 <χ2

18 < 31.53
)= 0.95

so the 95% confidence interval for the potassium-argon method’s precision is
the set of values[√

(19 − 1)(733.4)

31.53
,

√
(19 − 1)(733.4)

8.23

]
= (20.5 million years, 40.0 million years)
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Example
7.5.1

The width of a confidence interval for σ 2 is a function of both n and S2:

Width = upper limit − lower limit

= (n − 1)S2

χ2
α/2,n−1

− (n − 1)S2

χ2
1−α/2,n−1

= (n − 1)S2

(
1

χ2
α/2,n−1

− 1

χ2
1−α/2,n−1

)
(7.5.2)

As n gets larger, the interval will tend to get narrower because the unknown σ 2 is
being estimated more precisely. What is the smallest number of observations that
will guarantee that the average width of a 95% confidence interval for σ 2 is no
greater than σ 2?

Since S2 is an unbiased estimator for σ 2, Equation 7.5.2 implies that the
expected width of a 95% confidence interval for the variance is the expression

E(width)= (n − 1)σ 2

(
1

χ2
.025,n−1

− 1

χ2
.975,n−1

)

Clearly, then, for the expected width to be less than or equal to σ 2, n must be chosen
so that

(n − 1)

(
1

χ2
.025,n−1

− 1

χ2
.975,n−1

)
≤ 1

Trial and error can be used to identify the desired n. The first three columns in
Table 7.5.2 come from the chi square distribution in Appendix Table A.3. As the
computation in the last column indicates, n = 39 is the smallest sample size that will
yield 95% confidence intervals for σ 2 whose average width is less than σ 2.

Table 7.5.2

n χ 2
.025,n−1 χ 2

.975,n−1 (n − 1)
(

1
χ2

.025,n−1
− 1

χ2
.975,n−1

)
15 5.629 26.119 1.95
20 8.907 32.852 1.55
30 16.047 45.722 1.17
38 22.106 55.668 1.01
39 22.878 56.895 0.99

Testing H0: σ 2 = σ 2

o

The generalized likelihood ratio criterion introduced in Section 6.5 can be used to
set up hypothesis tests for σ 2. The complete derivation appears in Appendix 7.A.4.
Theorem 7.5.2 states the resulting decision rule. Playing a key role—just as it did
in the construction of confidence intervals for σ 2—is the chi square ratio from
Theorem 7.3.2.
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Theorem
7.5.2

Let s2 denote the sample variance calculated from a random sample of n observa-
tions drawn from a normal distribution with mean μ and variance σ 2. Let χ2 =
(n − 1)s2/σ 2

o .

a. To test H0 : σ 2 = σ 2
o versus H1 : σ 2 > σ 2

o at the α level of significance, reject H0 if
χ2 ≥ χ2

1−α,n−1.
b. To test H0 : σ 2 = σ 2

o versus H1 : σ 2 < σ 2
o at the α level of significance, reject H0 if

χ2 ≤ χ2
α,n−1.

c. To test H0 :σ 2 =σ 2
o versus H1 :σ 2 �=σ 2

o at the α level of significance, reject H0 if χ2

is either (1)≤ χ2
α/2,n−1 or (2)≥χ2

1−α/2,n−1. �

Case Study 7.5.2

Mutual funds are investment vehicles consisting of a portfolio of various types
of investments. If such an investment is to meet annual spending needs, the
owner of shares in the fund is interested in the average of the annual returns of
the fund. Investors are also concerned with the volatility of the annual returns,
measured by the variance or standard deviation. One common method of evalu-
ating a mutual fund is to compare it to a benchmark, the Lipper Average being
one of these. This index number is the average of returns from a universe of
mutual funds.

The Global Rock Fund is a typical mutual fund, with heavy investments in
international funds. It claimed to best the Lipper Average in terms of volatility
over the period from 1989 through 2007. Its returns are given in the table below.

Investment Investment
Year Return % Year Return %

1989 15.32 1999 27.43
1990 1.62 2000 8.57
1991 28.43 2001 1.88
1992 11.91 2002 −7.96
1993 20.71 2003 35.98
1994 −2.15 2004 14.27
1995 23.29 2005 10.33
1996 15.96 2006 15.94
1997 11.12 2007 16.71
1998 0.37

The standard deviation for these returns is 11.28%, while the correspond-
ing figure for the Lipper Average is 11.67%. Now, clearly, the Global Rock Fund
has a smaller standard deviation than the Lipper Average, but is this small dif-
ference due just to random variation? The hypothesis test is meant to answer
such questions.

Let σ 2 denote the variance of the population represented by the return
percentages shown in the table above. To judge whether the observed standard
deviation less than 11.67 is significant requires that we test

(Continued on next page)
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(Case Study 7.5.2 continued)

H0 : σ 2 = (11.67)2

versus

H1 : σ 2 <(11.67)2

Let α = 0.05. With n = 19, the critical value for the chi square ratio [from
part (b) of Theorem 7.5.2] is χ2

1−α,n−1 =χ2
.05,18 = 9.390 (see Figure 7.5.3). But

χ2 = (n − 1)s2

σ 2
0

= (19 − 1)(11.28)2

(11.67)2
= 16.82

so our decision is clear: Do not reject H0.
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Figure 7.5.3

Questions

7.5.1. Use Appendix Table A.3 to find the following
cutoffs and indicate their location on the graph of the
appropriate chi square distribution.

(a) χ 2
.95,14

(b) χ 2
.90,2

(c) χ 2
.025,9

7.5.2. Evaluate the following probabilities:

(a) P
(
χ 2

17 ≥ 8.672
)

(b) P
(
χ 2

6 < 10.645
)

(c) P
(
9.591 ≤ χ 2

20 ≤ 34.170
)

(d) P
(
χ 2

2 < 9.210
)

7.5.3. Find the value y that satisfies each of the following
equations:

(a) P
(
χ 2

9 ≥ y
)= 0.99

(b) P
(
χ 2

15 ≤ y
)= 0.05

(c) P
(
9.542 ≤χ 2

22 ≤ y
)= 0.09

(d) P
(
y ≤ χ 2

31 ≤ 48.232
)= 0.95

7.5.4. For what value of n is each of the following state-
ments true?

(a) P
(
χ 2

n ≥ 5.009
)= 0.975

(b) P
(
27.204 ≤χ 2

n ≤ 30.144
)= 0.05

(c) P
(
χ 2

n ≤ 19.281
)= 0.05

(d) P
(
10.085 ≤χ 2

n ≤ 24.769
)= 0.80
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7.5.5. For df values beyond the range of Appendix
Table A.3, chi square cutoffs can be approximated by
using a formula based on cutoffs from the standard nor-
mal pdf, fZ (z). Define χ 2

p,n and z∗
p so that P

(
χ 2

n ≤χ 2
p,n

)= p
and P(Z ≤ z∗

p)= p, respectively. Then

χ 2
p,n

.= n

(
1 − 2

9n
+ z∗

p

√
2

9n

)3

Approximate the 95th percentile of the chi square dis-
tribution with 200 df. That is, find the value of y for
which

P
(
χ 2

200 ≤ y
) .= 0.95

7.5.6. Let Y1,Y2, . . . ,Yn be a random sample of size n from
a normal distribution having mean μ and variance σ 2.
What is the smallest value of n for which the following is
true?

P

(
S2

σ 2
< 2

)
≥ 0.95

(Hint: Use a trial-and-error method.)

7.5.7. Start with the fact that (n − 1)S2/σ 2 has a chi
square distribution with n − 1 df (if the Yi ’s are normally
distributed) and derive the confidence interval formulas
given in Theorem 7.5.1.

7.5.8. A random sample of size n =19 is drawn from a nor-
mal distribution for which σ 2 = 12.0. In what range are we
likely to find the sample variance, s2? Answer the question
by finding two numbers a and b such that

P(a ≤ S2 ≤ b)= 0.95

7.5.9. How long sporting events last is quite variable.
This variability can cause problems for TV broadcast-
ers, since the amount of commercials and commentator
blather varies with the length of the event. As an exam-
ple of this variability, the table below gives the lengths
for a random sample of middle-round contests at the 2008
Wimbledon Championships in women’s tennis.

Match Length (minutes)

Cirstea-Kuznetsova 73
Srebotnik-Meusburger 76
De Los Rios-V. Williams 59
Kanepi-Mauresmo 104
Garbin-Szavay 114
Bondarenko-Lisicki 106
Vaidisova-Bremond 79
Groenefeld-Moore 74
Govortsova-Sugiyama 142
Zheng-Jankovic 129

Perebiynis-Bammer 95
Bondarenko-V. Williams 56
Coin-Mauresmo 84
Petrova-Pennetta 142
Wozniacki-Jankovic 106
Groenefeld-Safina 75

Source: 2008.usopen.org/en_US/scores/cmatch/index.html?promo=t.

(a) Assume that match lengths are normally distributed.
Use Theorem 7.5.1 to construct a 95% confi-
dence interval for the standard deviation of match
lengths.

(b) Use these same data to construct two one-sided 95%
confidence intervals for σ .

7.5.10. How much interest certificates of deposit (CDs)
pay varies by financial institution and also by length of
the investment. A large sample of national one-year CD
offerings in 2009 showed an average interest rate of 1.84
and a standard deviation σ = 0.262. A five-year CD ties
up an investor’s money, so it usually pays a higher rate
of interest. However, higher rates might cause more vari-
ability. The table lists the five-year CD rate offerings from
n = 10 banks in the northeast United States. Find a 95%
confidence interval for the standard deviation of 5-year
CD rates. Do these data suggest that interest rates for
five-year CDs are more variable than those for one-year
certificates?

Bank Interest Rate (%)

Domestic Bank 2.21
Stonebridge Bank 2.47
Waterfield Bank 2.81
NOVA Bank 2.81
American Bank 2.96
Metropolitan National Bank 3.00
AIG Bank 3.35
iGObanking.com 3.44
Discover Bank 3.44
Intervest National Bank 3.49

Source: Company reports.

7.5.11. In Case Study 7.5.1, the 95% confidence inter-
val was constructed for σ rather than for σ 2. In practice,
is an experimenter more likely to focus on the standard
deviation or on the variance, or do you think that both
formulas in Theorem 7.5.1 are likely to be used equally
often? Explain.

7.5.12. (a) Use the asymptotic normality of chi square
random variables (see Question 7.3.6) to derive
large-sample confidence interval formulas for σ

and σ 2.
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(b) Use your answer to part (a) to construct an approxi-
mate 95% confidence interval for the standard devi-
ation of estimated potassium-argon ages based on
the 19 yi ’s in Table 7.5.1. How does this confidence
interval compare with the one in Case Study 7.5.1?

7.5.13. If a 90% confidence interval for σ 2 is reported to
be (51.47, 261.90), what is the value of the sample standard
deviation?

7.5.14. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf

fY (y)=
(

1

θ

)
e−y/θ , y > 0; θ > 0

(a) Use moment-generating functions to show that the
ratio 2nY/θ has a chi square distribution with 2n df.

(b) Use the result in part (a) to derive a 100(1 − α)%
confidence interval for θ .

7.5.15. Another method for dating rocks was used before
the advent of the potassium-argon method described in
Case Study 7.5.1. Because of a mineral’s lead content,
it was capable of yielding estimates for this same time
period with a standard deviation of 30.4 million years. The
potassium-argon method in Case Study 7.5.1 had a smaller
sample standard deviation of

√
733.4 = 27.1 million years.

Is this “proof” that the potassium-argon method is more
precise? Using the data in Table 7.5.1, test at the
0.05 level whether the potassium-argon method has a
smaller standard deviation than the older procedure using
lead.

7.5.16. When working properly, the amounts of cement
that a filling machine puts into 25-kg bags have a stan-
dard deviation (σ ) of 1.0 kg. In the next column are the
weights recorded for thirty bags selected at random from
a day’s production. Test H0: σ 2 = 1 versus H1: σ 2 > 1 using

the α = 0.05 level of significance. Assume that the weights
are normally distributed.

26.18 24.22 24.22
25.30 26.48 24.49
25.18 23.97 25.68
24.54 25.83 26.01
25.14 25.05 25.50
25.44 26.24 25.84
24.49 25.46 26.09
25.01 25.01 25.21
25.12 24.71 26.04
25.67 25.27 25.23

Use the following sums:
30∑

i=1

yi = 758.62 and
30∑

i=1

y2
i = 19,195.7938

7.5.17. A stock analyst claims to have devised a mathe-
matical technique for selecting high-quality mutual funds
and promises that a client’s portfolio will have higher aver-
age ten-year annualized returns and lower volatility; that
is, a smaller standard deviation. After ten years, one of the
analyst’s twenty-four-stock portfolios showed an average
ten-year annualized return of 11.50% and a standard devi-
ation of 10.17%. The benchmarks for the type of funds
considered are a mean of 10.10% and a standard deviation
of 15.67%.

(a) Let μ be the mean for a twenty-four-stock portfo-
lio selected by the analyst’s method. Test at the 0.05
level that the portfolio beat the benchmark; that is,
test H0:μ= 10.1 versus H1:μ> 10.1.

(b) Let σ be the standard deviation for a twenty-four-
stock portfolio selected by the analyst’s method.
Test at the 0.05 level that the portfolio beat the
benchmark; that is, test H0:σ = 15.67 versus H1:σ <

15.67.

7.6 Taking a Second Look at Statistics (Type II Error)
For data that are normal, and when the variance σ 2 is known, both Type I errors and
Type II errors can be determined, staying within the family of normal distributions.
(See Example 6.4.1, for instance.) As the material in this chapter shows, the situation
changes radically when σ 2 is not known. With the development of the Student t
distribution, tests of a given level of significance α can be constructed. But what is
the Type II error of such a test?

To answer this question, let us first recall the form of the test statistic and critical
region testing, for example,

H0 :μ=μ0 versus H1 :μ>μ0
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The null hypothesis is rejected if

Y −μ0

S/
√

n
≥ tα,n−1

The probability of the Type II error, β, of the test at some value μ1 >μ0 is

P

(
Y −μ0

S/
√

n
< tα,n−1

)

However, since μ0 is not the mean of Y under H1, the distribution of Y−μ0
S/

√
n

is not
Student t . Indeed, a new distribution is called for.

The following algebraic manipulations help to place the needed density into a
recognizable form.

Y −μ0

S/
√

n
= Y −μ1 + (μ1 −μ0)

S/
√

n
=

Y−μ1
σ

+ (μ1−μ0)

σ

S/
√

n
σ

=
Y−μ1
σ/

√
n

+ (μ1−μ0)

σ/
√

n

S/σ

=
Y−μ1
σ/

√
n

+ (μ1−μ0)

σ/
√

n√
(n−1)S2/σ 2

n−1

=
Y−μ1
σ/

√
n

+ δ√
(n−1)S2/σ 2

n−1

= Z + δ√
U

n−1

where Z = Y−μ1
σ/

√
n

is normal, U = (n−1)S2

σ 2 is a chi square variable with n − 1 degrees of

freedom, and δ = (μ1−μ0)

σ/
√

n
is an (unknown) constant. Note that the random variable

Z+δ√
U

n−1

differs from the Student t with n − 1 degrees of freedom Z√
U

n−1

only because of

the additive term δ in the numerator. But adding δ changes the nature of the pdf
significantly.

An expression of the form Z+δ√
U

n−1

is said to have a noncentral t distribution with

n − 1 degrees of freedom and noncentrality parameter δ.
The probability density function for a noncentral t variable is now well known

(97). Even though there are computer approximations to the distribution, not know-
ing σ 2 means that δ is also unknown. One approach often taken is to specify the
difference between the true mean and the hypothesized mean as a given proportion
of σ . That is, the Type II error is given as a function of μ1−μ0

σ
rather than μ1. In some

cases, this quantity can be approximated by μ1−μ0
s .

The following numerical example will help to clarify these ideas.

Example
7.6.1

Suppose we wish to test H0 : μ = μ0 versus H1 : μ > μ0 at the α = 0.05 level of sig-
nificance. Let n = 20. In this case the test is to reject H0 if the test statistic y−μ0

s/
√

n
is

greater than t.05,19 = 1.7291. What will be the Type II error if the mean has shifted
by 0.5 standard deviation to the right of μ0?

Saying that the mean has shifted by 0.5 standard deviation to the right of μ0

is equivalent to setting μ1−μ0
σ

= 0.5. In that case, the noncentrality parameter is
δ = μ1−μ0

σ/
√

n
= (0.5) ·√20 = 2.236.

The probability of a Type II error is

P(T19,2.236 ≤ 1.7291)

where T19,2.236 is a noncentral t variable with 19 degrees of freedom and noncentral-
ity parameter 2.236.
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To calculate this quantity, we need the cdf of T19,2.236. Fortunately, many statis-
tical software programs have this function. The Minitab commands for calculating
the desired probability are

MTB > CDF 1.7291;
SUBC > T 19 2.236

with output

Cumulative Distribution Function

Student’s t distribution with 19 DF and noncentrality parameter 2.236

x P(X <= x)
1.7291 0.304828

The sought-after Type II error to three decimal places is 0.305.

Simulations

As we have seen, with enough distribution theory, the tools for finding Type II errors
for the Student t test exist. Also, there are noncentral chi square and F distributions.

However, the assumption that the underlying data are normally distributed is
necessary for such results. In the case of Type I errors, we have seen that the t test is
somewhat robust with regard to the data deviating from normality. (See Section 7.4.)
In the case of the noncentral t , dealing with departures from normality presents
significant analytical challenges. But the empirical approach of using simulations
can bypass such difficulties and still give meaningful results.

To start, consider a simulation of the problem presented in Example 7.6.1. Sup-
pose the data have a normal distribution with μ0 = 5 and σ = 3. The sample size is
n = 20. Suppose we want to find the Type I error when the true δ = 2.236. For the
given σ = 3, this is equivalent to

2.236 = μ1 −μ0

σ/
√

n
= μ1 − 5

3/
√

20

or μ1 = 6.5.
A Type II error occurs if the test statistic is less than 1.7291. In this case, H0

would be accepted when rejection is the proper decision.
Using Minitab, two hundred samples of size 20 from the normal distribution

with μ = 6.5 and σ 2 = 9 are generated: Minitab produces a 200 × 20 array. For each
row of the array, the test statistic y−5

s/
√

20
is calculated and placed in Column 21. If this

value is less than 1.7291, a 1 is placed in that row of Column 22; otherwise a 0 goes
there. The sum of the entries in Column 22 gives the observed number of Type II
errors. Based on the computed value of the Type II error, 0.305, for the assumed
value of δ, this observed number should be approximately 200(0.305)= 61.

The Minitab simulation gave sixty-four observed Type II errors—a very close
figure to what was expected.

The robustness for Type II errors can lead to analytical thickets. However, sim-
ulation can again shed some light on Type II errors in some cases. As an example,
suppose the data are not normal, but gamma with r = 4.694 and λ = 0.722. Even
though the distribution is skewed, these values make the mean μ= 6.5 and the vari-
ance σ 2 = 9, as in the normal case above. Again relying on Minitab to give two
hundred random samples of size 20, the observed number of Type II errors is sixty,
so the test has some robustness for Type II errors in that case. Even though the data



Appendix 7.A.1 Minitab Applications 421

are not normal, the key statistic in the analysis, y, will be approximately normal by
the central limit theorem.

If the distribution of the underlying data is unknown or extremely skewed,
nonparametric tests, like the ones covered in Chapter 14 and in (28) are advised.

Appendix 7.A.1 Minitab Applications

Many statistical procedures, including several featured in this chapter, require
that the sample mean and sample standard deviation be calculated. Minitab’s
DESCRIBE command gives y and s, along with several other useful numerical char-
acteristics of a sample. Figure 7.A.1.1 shows the DESCRIBE input and output for
the twenty observations cited in Example 7.4.1.

Figure 7.A.1.1 MTB > set c1
DATA > 2.5 3.2 0.5 0.4 0.3 0.1 0.1 0.2 7.4 8.6 0.2 0.1
DATA > 0.4 1.8 0.3 1.3 1.4 11.2 2.1 10.1
DATA > end
MTB > describe c1

Descriptive Statistics: C1

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

C1 20 0 2.610 0.809 3.617 0.100 0.225 0.900 3.025 11.200

Here,

N = sample size
N* = number of observations missing from c1 (that is, the
number of “interior” blanks)

Mean = sample mean = y
SE Mean = standard error of the mean = s√

n
StDev = sample standard deviation = s
Minimum = smallest observation
Q1 = first quartile = 25th percentile
Median = middle observation (in terms of magnitude), or
average of the middle two if n is even

Q3 = third quartile = 75th percentile
Maximum = largest observation

Describing Samples Using Minitab Windows

1. Enter data under C1 in the WORKSHEET. Click on STAT, then on BASIC
STATISTICS, then on DISPLAY DESCRIPTIVE STATISTICS.

2. Type C1 in VARIABLES box; click on OK.

Percentiles of chi square, t , and F distributions can be obtained using the
INVCDF command introduced in Appendix 3.A.1. Figure 7.A.1.2 shows the syntax
for printing out χ2

.95,6(= 12.5916) and F.01,4,7(= 0.0667746).




