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Department of Economics and Finance
Institute for Advanced Studies

Stumpergasse 56
1060 Wien

soegner@ihs.ac.at

November, 2014

mailto:L. S\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor gner subject=IHS-ma


Course Outline (1)

Microeconomics

Learning Objectives:

• This course covers key concepts of microeconomic theory. The
main goal of this course is to provide students with both, a basic
understanding and analytical traceability of these concepts.

• The main concepts are discussed in detail during the lectures. In
addition students have to work through the textbooks and have
to solve problems to improve their understanding and to acquire
skills to apply these tools to related problems.
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Course Outline (2)

Microeconomics

Literature:

• Gravelle, H. and Rees, R., Microeconomics, 3rd edition, Prentice
Hall, 2004. (GR in the following)

Supplementary Literature:

• Gilboa, I., Theory of Decision under Uncertainty, Cambridge
University Press, 2009.

• Gollier C., The Economics of Risk and Time, Mit Press, 2004.

• Ritzberger, K., Foundations of Non-Cooperative Game Theory,
Oxford University Press, 2002.
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Course Outline (3)

Microeconomics

Supplementary Literature:

• Andreu Mas-Colell, A., Whinston, M.D., Green, J.R.,
Microeconomic Theory, Oxford University Press, 1995. (MWG in
the following)

• Jehle G.A. and P. J. Reny, Advanced Microeconomic Theory,
Addison-Wesley Series in Economics, Longman, Amsterdam,
2000.

• Simon, C.P., Blume, L., Mathematics for Economists, Norton,
1994.
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Course Outline (4)

Microeconomics

1. Decision theory and the theory of the consumer:

– Rationality, preference primitives and axioms, preference
representations and utility (GR 2A-B).

– Utility maximization, Walrasian (Marshallian) demand and
comparative statics (GR 2C-D).

– Indirect utility, expenditure function, Hicksian demand (GR
3A).

– Slutsky equation, substitution and wealth effect (GR 3B).

2. Production and cost:

– Production functions, returns to scale (GR 5).
– Cost minimization, conditional factor demands, cost function

(GR 6.A,B,C).
– Profit maximization, input demands, profit function (GR 7.A).
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Course Outline (5)

Microeconomics

3. General Equilibrium:

– Introduction, Walrasian equilibrium (GR 12.A-D).
– The Edgeworth box (GR 12.E).
– One Consumer-one producer economy.
– General vs. partial equilibrium.
– Welfare theorems (GR 13).

4. Decisions under uncertainty:

– Expected utility theorem (GR 17 A-D).
– Risk aversion (GR 17 A-D).
– Stochastic dominance.
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Course Outline (6)

Microeconomics

• Time schedule: November 6 & 7, 2014; November 27 & 28,
2015, December 11 & 12, 2014.

• Practice session organized by Rostislav Staněk.

• Final Exam: t.b.a
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Consumer Theory (1)
Rationality (1)

Microeconomics

• We consider agents/individuals and goods that are available for
purchase in the market.

• Definition: The set X of all possible mutually exclusive
alternatives (complete consumption plans) is called
consumption set or choice set.

• ”Simplest form of a consumption set”: We assume that each
good, xl ∈ X, l = 1, . . . , L can be consumed in infinitely
divisible units, i.e. xl ∈ R+. With L goods we get the
commodity vector x in the commodity space RL+.
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Consumer Theory (1)
Rationality (2)

Microeconomics

• Approach I: describe behavior by means of preference relations;
preference relation is the primitive characteristic of the individual.

• Approach II: the choice behavior is the primitive behavior of an
individual see MWG, Chapters 1-3 and [GR, Chapter 4].
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Consumer Theory 1
Rationality (3)

Microeconomics

• Consider the binary relation “at least good as”, abbreviated by
the symbol �.

• For x, y ∈ X, x � y implies that from a particular consumer’s
point of view x is preferred to y or that he/she is indifferent
between consuming x and y.

• From � we derive the strict preference relation �: x � y if
x � y but not y � x and the indifference relation ∼ where
x � y and y � x.
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Consumer Theory 1
Rationality (4)

Microeconomics

• Often we require that pair-wise comparisons of consumption
bundles are possible for all elements of X.

• Completeness: For all x, y ∈ X either x � y, y � x or both.
[GR, Chapter 2, Assumption 1].

• Transitivity: For the elements x, y, z ∈ X: If x � y and y � z,
then x � z. [GR, Chapter 2, Assumption 2].

• Definition [D 1.B.1]: The preference relation � is called
rational if it is complete and transitive.

• Remark: Reflexive x � x follows from completeness [D 1.B.1],
see [GR, Chapter 2, Assumption 3].
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Consumer Theory 1
Rationality (5)

Microeconomics

• Gravelle and Rees (2004)[Chapter 1.5] provide a discussion on
rationality:

– The decision-taker set out all the feasible alternatives,
rejecting any which are not feasible.

– He takes into account whatever information is readily
available, or worth collecting, to assess the consequences of
choosing each of the alternatives.

– In the light of their consequences he ranks the alternatives in
order of preference, where this ordering satisfies certain
assumptions of completeness and consistency (see Gravelle and
Rees (2004)[Chapter 2], no exact specification in textbook).

– He chooses the alternative highest in this ordering. That is, he
chooses the alternative with the consequences he prefers over
all others available to him.
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Consumer Theory 1
Remark: Partial Order (1)

Microeconomics

• Strict Partial Order: A relation is called strict partial ordering if
it is irreflexive and transitive.

• Weak Partial Order: A relation is called non-strict or weak partial
ordering if it is reflexive and transitive.

• Order Relation: A relation is called strict ordering if it is
comparable, irreflexive and transitive.

• Weak Order: A relation is a weak order if it is complete, reflexive
and transitive.

• Equivalence Relation: A relation is called equivalence relation if
is reflexive, symmetric and transitive.
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Consumer Theory 1
Remark: Partial Order (2)

Microeconomics

• � is irreflexive and transitive such that it fulfills the requirements
of a strict partial order.

• � is reflexive and transitive and fulfills the requirements of a
weak partial Order.

• ∼ is reflexive and transitive and fulfills the requirement of an
equivalence relation.

Chains: all elements of X are comparable, i.e. xRy or yRx.
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Consumer Theory 1
Remark: Partial Order (3)

Microeconomics

• Definition - Partition of a Set S: A decomposition of S into
nonempty and disjoint subsets such that each element is exactly
in one subset is called partition. These subsets are called cells.

• Theorem - Partition and Equivalence Relation: If S is not
empty and ∼ is an equivalence relation on S, then ∼ yields a
partition with cells ∼ (x0) = {x|x ∈ S , x ∼ x0}.

• Proof: Since ∼ is reflexive, every element x is at least contained in one cell,

e.g. ∼ (xA). We have to show that if x ∈∼ (xA) and x ∈∼ (xB) then

∼ (xA) =∼ (xB). If x ∈∼ (xA) and x ∈∼ (xB), transitivity results in

x ∼ xA ∼ xB, for all x in ∼ (xA). Therefore ∼ (xA) ⊆∼ (xB).

∼ (xB) ⊆∼ (xA) is derived in the same way.
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Consumer Theory 1
Rationality (6)

Microeconomics

• Based on these remarks it follows that:

Proposition [P 1.B.1]: If � is rational then,

– � is transitive and irreflexive.
– ∼ is transitive, reflexive and symmetric.
– If x � y � z then x � z.

• Remark: A rational preference relation can also be defined in
terms of �. If � is comparable, irreflexive and transitive and the
condition ”if y � x and y 6� z, then z � x” holds, then the a
strict preference relation is called rational. ”if y � x and y 6� z,
then z � x” is called the no money pump requirement. When
starting with � fulfilling these requirements it can be shown that
� is complete, transitive and reflexive. For more details see
Ritzberger (2000) [Section 2.1].
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Consumer Theory 1
Utility (1)

Microeconomics

• Definition : A function X → R is a utility function
representing � if for all x, y ∈ X x � y ⇔ u(x) ≥ u(y).
[D 1.B.2], [GR p. 16-17]

• Does the assumption of a rational consumer imply that the
preferences can be represented by means of a utility function and
vice versa?

• Theorem: If there is a utility function representing �, then �
must be complete and transitive. [P 1.B.2]

• The other direction requires more assumptions on the preferences
- this comes later!
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Consumer Theory 2
Consumption Set (1)

Microeconomics

• We have already defined the consumption set: The set of all
alternatives (complete consumption plans). We assumed
X = RL+.

• Each x represents a different consumption plan.

• Physical restrictions: divisibility, time constraints, survival needs,
etc. might lead to a strict subset of RL+ as consumption set X.
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Consumer Theory 2
Budget Set (1)

Microeconomics

Definition - Budget Set: B

• Due to constraints (e.g. income) we cannot afford all elements in
X, problem of scarcity.

• The budget set B is defined by the elements of X, which are
achievable given the economic realities.

• B ⊂ X.
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Consumer Theory 2
Budget Set (2)

Microeconomics

• By the consumption set and the budget set we can describe a
consumer’s alternatives of choice.

• These sets do not tell us what x is going to be chosen by the
consumer.

• To describe the choice of the consumer we need a theory to
model or describe the preferences of a consumer (or the choice
structure).
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Consumer Theory 2
Competitive Budgets (1)

Microeconomics

• Assumption: All L goods are traded in the market (principle of completeness),

the prices are given by the price vector p, pl > 0 for all l = 1, . . . , L.

Notation: p� 0. Assumption - the prices are constant and not affected by

the consumer.

• Given a wealth level M ≥ 0, the set of affordable bundles is described by

p · x = p1x1 + · · ·+ pLxL ≤M.

• Definition - Walrasian Budget Set/Feasible Set: The set

Bp,M = {x ∈ RL+|p · x ≤M} is called Walrasian or competitive budget
set. [D 2.D.1]. [GR, p. 22]

• Definition - Consumer’s problem: Given p and M choose the optimal

bundle x from Bp,M .
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Consumer Theory 2
Competitive Budgets (2)

Microeconomics

• Definition - Relative Price: The ratios of prices pj/pi are
called Relative Prices.

• Here the price of good j is expressed in terms of good i. In other
words: The price of good xi is expressed in the units of good xj.

• On the market we receive for one unit of xj, pj/pi · 1 units of xi.

• Example: pj = 4, pi = 2. Then pj/pi = 2 and we get two units
of xi for one unit of xj.
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Consumer Theory 2
Competitive Budgets (3)

Microeconomics

• The budget set B describes the goods a consumer is able to buy
given wealth level M .

• Definition - Numeraire Good: If all prices pj are expressed in
the prices of good n, then this good is called numeraire. pj/pn,
j = 1, . . . , L. The relative price of the numeraire is 1.

• There are L− 1 relative prices.
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Consumer Theory 2
Competitive Budgets (4)

Microeconomics

• The set {x ∈ RL+|p · x = M} is called budget hyperplane, for
L = 2 it is called budget line.

• Given x and x′ in the budget hyperplane, p · x = p · x′ = M
holds. This results in p · (x− x′) = 0, i.e. p and (x− x′) are
orthogonal - see MWG, Figure 2.D.3, page 22.

• The budget hyperplane is a convex set. In addition it is closed
and bounded ⇒ compact. 0 ∈ Bp,M (given the assumption that
p� 0).

• See also [GR, Chapter 2.B].
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Consumer Theory 2
Demand Functions (1)

Microeconomics

• Definition - Walrasian demand correspondence: The
correspondence assigning to a pair (p,M) a set of consumption
bundles is called Walrasian demand correspondence D(p,M);
i.e. (p,M) � D(p,M). If D(p,M) is single valued for all p,M ,
D(., .) is called Walrasian or Marshallian demand function.

• Definition - Homogeneity of degree zero: D(., .) is
homogeneous of degree zero if D(αp, αM) = D(p,M) for all
p,M and α > 0. [D 2.E.1]

• Definition - Walras law, budget balancedness: D(., .)
satisfies Walras law if for every p� 0 and M > 0, we get
p · x = M for all x ∈ x(p,M). That is, the consumer spends all
income M with her/his optimal consumption decision. [D 2.E.2]
[GR, p. 257], written in terms of excess demand.
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Correspondences (1)

Microeconomics

• Generalized concept of a function.

• Definition - Correspondence: Given a set A ∈ Rn, a
correspondence f : A� Rk is a rule that assigns a set
f(x) ⊆ Y ⊂ Rk to every x ∈ A.

• If f(x) contains exactly one element for every x ∈ A, then (up to
abuse of notation) f is a function.

• A ⊆ Rn and Y ⊆ Rk are the domain and the codomain.

• Literture: e.g. MWG, chapter M.H, page 949.
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Correspondences (2)

Microeconomics

• With Walrasian/Marshallian demand and L goods we have:

– A = RL++ × R++. Elements of A are the pairs p,M .
– The demand correspondence assigns to each pair p,M a set
A′ ⊂ RL+. In less formal terms, for each pair of prices and
wealth, the correspondence assigns a set of consumption
bundles C chosen by a consumer.

– x ∈ D(p,M) stands for consumption bundles in A′, i.e.
chosen by the consumer with p and M .

• If the correspondence is single valued, that is for each p,M the
sets A′ contain exactly one element x, then D(p,M) is a
function. In this case, D(p,M) assigns to each p,M exactly one
consumption bundle x. We also write x = D(p,M) if D(., .) is a
function.
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Correspondences (3)

Microeconomics

• The set {(x, y)|x ∈ A , y ∈ Rk , y ∈ f(x)} is called graph of
the correspondence.

• Definition - Closed Graph: A correspondence has a closed
graph if for any pair of sequences x(m) → x ∈ A, with x(m) ∈ A
and y(m) → y, with y(m) ∈ f(x(m)), we have y ∈ f(x).
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Correspondences (4)

Microeconomics

• Regarding continuity there are two concepts with
correspondences.

• Definition - Upper Hemicontinuous: A correspondence is
UHC if the graph is closed and the images of compact sets are
bounded. That is, for every compact set B ⊆ A, the set
f(B) = {y ∈ Rk : y ∈ f(x) for some x ∈ B} is bounded.

• Definition - Lower Hemicontinuous: Given A ⊆ Rn and a
compact set Y ⊆ Rk, the correspondence is LHC if for every
sequence x(m) → x, x(m), x ∈ A for all m, and every y ∈ f(x),
we can find a sequence y(m) → y and an integer M such that
y(m) ∈ f(x(m)) for m > M .
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Consumer Theory 2
Demand Functions (2)

Microeconomics

• Assume that D(., .) is a function:

• With p fixed at p̄, the function D(p̄, .) is called Engel function.

• If the demand function is differentiable we can derive the gradient
vector: DMD(p,M) = (∂D1(p,M)/∂M, . . . ,DL(p,M)/∂M). If
∂Dl(p,M)/∂M ≥ 0, Dl is called normal or superior, otherwise
it is inferior.

• See MWG, Figure 2.E.1, page 25

• Notation: DMx(p,M) results in a 1× L row matrix,

DMD(p,M) = (∇MD(p,M))
>.
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Consumer Theory 2
Demand Functions (3)

Microeconomics

• With M fixed, we can derive the L× L matrix of partial
derivatives with respect to the prices: DpD(p,M).

• ∂Dl(p,M)/∂pk = [DpD(p,M)]l,k is called the price effect.

• A Giffen good is a good where the own price effect is positive,
i.e. ∂Dl(p,M)/∂pl > 0

• See MWG, Figure 2.E.2-2.E.4, page 26, [GR, p. 30, 33].

30



Consumer Theory 2
Demand Functions (4)

Microeconomics

• Proposition: If a Walrasian demand function D(., .) is
homogeneous of degree zero and differentiable, then for all p and
M :

∑L
k=1

∂Dl(p,M)
∂pk

pk + ∂Dl(p,M)
∂M M = 0 for l = 1, . . . , L;, or in

matrix notation DpD(p,M)p+DwD(p,M) = 0. [P 2.E.1]

• Proof: By the Euler theorem (if g(.) is homogeneous of degree r,
then

∑
∂g(x)/∂x · x = rg(x), see [MWG, Theorem M.B.2,

p. 929]), the result follows directly when using the stacked vector
x = (p>,M)>. Apply this to x1(p,M), . . . , xL(p,M).
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Consumer Theory 2
Demand Functions (5)

Microeconomics

• Definition - Price Elasticity of Demand:
ηij = ∂Di(p,M)

∂pj

pj
Di(p,M) .

• Definition - Income Elasticity: ηiw = ∂Di(p,M)
∂M

M
Di(p,M) .

• Definition - Income Share:

si =
piDi(p,M)

M
,

where si ≥ 0 and
∑n
i=1 si = 1.
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Consumer Theory 3
The Axiomatic Approach (1)

Microeconomics

• Axioms on preferences.

• Preference relations, behavioral assumptions and utility (axioms,
utility functions).

• The consumer’s problem.

• Walrasian/Marshallian Demand.

• Offer curves and net demand.

MWG, Chapter 3.A-3.D, GR, Chapter 2.
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Consumer Theory 3
The Axiomatic Approach (2)

Microeconomics

• Axiom 1 - Completeness: For all x, y ∈ X either x � y, y � x
or both.

• Axiom 2 - Transitivity: For the elements x, y, z ∈ X: If x � y
and y � z, then x � z.

• We have already defined a rational preference relation by
completeness and transitivity [D 3.B.1].

• If the number of elements is finite it is easy to see that one can
describe a preference relation by means of a function.
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Consumer Theory 3
The Axiomatic Approach (3)

Microeconomics

Sets arising from the preference relations:

• � (x) := {y|y ∈ X, y � x} - at least as good (sub)set

• � (x) := {y|y ∈ X, y � x} - the no better set

• � (x) := {y|y ∈ X, y � x} - at preferred to set

• ≺ (x) := {y|y ∈ X, y ≺ x} - worse than set

• ∼ (x) := {y|y ∈ X, y ∼ x} - indifference set
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Consumer Theory 3
The Axiomatic Approach (4)

Microeconomics

• Axiom 3.A - Local Nonsatiation: For all x ∈ X and for all
ε > 0 there exists some y ∈ X such that ||x− y|| ≤ ε and y � x.
[D 3.B.3],

• This assumptions implies that for every small distance ε there
must exist at least one y, which is preferred to x.

• Indifference “zones” are excluded by this assumption. See MWG,
Figure 3.B.1 on page 43.
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Consumer Theory 3
The Axiomatic Approach (5)

Microeconomics

• Axiom 3.B - Monotonicity: For all x, y ∈ RL
+: If x ≥ y then

x � y while if x� y then x � y (weakly monotone). It is
strongly/strict monotone if x ≥ y and x 6= y imply x � y.
[D 3.B.2]

• Here ≥ means that at least one element of x is larger than the
elements of y, while x� y implies that all elements of x are
larger than the elements of y.

• Remark: Local nonsatiation vs. monotonicity: The latter implies
that more is always better, while Axiom 3.A only implies that in
a set described by ||x− y|| ≤ ε there has to exist a preferred
alternative.

• [GR, Assumption 4] is equal to weak monotonicity.
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Consumer Theory 3
The Axiomatic Approach (6)

Microeconomics

• Discuss the differences of Axioms 3.A and 3.B (what are their
impacts on indifference sets?), e.g. by means of MWG, Figures
3.B.1 and 3.B.2, page 43.

38



Consumer Theory 3
The Axiomatic Approach (7)

Microeconomics

• Last assumption on taste - “mixtures are preferred to extreme
realizations”

• See Figure 3.B.3, page 44.

• Axiom 4.A - Convexity: For every x ∈ X, if y � x and z � x
then νy + (1− ν)z � x for ν ∈ [0, 1]. [D 3.B.4]

• Axiom 4.B - Strict Convexity: For every x ∈ X, y � x, z � x
and y 6= z then νy + (1− ν)z � x for ν ∈ (0, 1). [D 3.B.5]

• Given these assumptions, indifference curves become (strict)
convex.
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Consumer Theory 3
The Axiomatic Approach (8)

Microeconomics

• After we have arrived at our indifference sets we can describe a
consumer’s willingness to substitute good xi against xj (while
remaining on an equal level of satisfaction).

• Definition: Marginal rate of substitution: MRSij = |dxjdxi
| or

(MRSij =
dxj
dxi

) is an agent’s willingness to give up dxj units of
xj for receiving dxi of good xi.

• MRS corresponds to the slope of the indifference curve.

• By Axiom 4.B, the MRS is a strictly decreasing function, i.e. less
units of xj have to be given up for receiving an extra unit of xi,
the higher the level of xi (Principle of diminishing marginal
rate of substitution).
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Consumer Theory 3
The Axiomatic Approach (9)

Microeconomics

• With the next axiom we regularize our preference order by
making it continuous:

• Axiom 5 - Continuity: A preference order � is continuous if it
is preserved under limits. For any sequence (x(n), y(n)) with
x(n) � y(n) for all n, and limits x, y (x = limn→∞ x

(n) and
y = limn→∞ y

(n)) we get x � y. [D 3.C.1]

• Equivalently: For all x ∈ X the set “least as good as” (� (x))
and the set “no better than” (� (x)) are closed in X. [GR,
Assumption 3] is equal to Axiom 5. You find this definition in the
Appendix of Chapter 2, p. 43.
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Consumer Theory 3
The Axiomatic Approach (10)

Microeconomics

• Topological property of the preference relation (important
assumption in the existence proof of a utility function).

• By this axiom the set ≺ (x) and � (x) are open sets (the
complement of a closed set is open ...). � (x) is the complement
of X\ ≺ (x).

• The intersection of � (x)∩ � (x) is closed (intersection of closed
sets). Hence, indifference sets are closed.

• Consider a sequence of bundles y(n) fulfilling y(n) � x, for all n.
For y(n) converging to y, Axiom 5 imposes that y � x.
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Consumer Theory 3
The Axiomatic Approach (11)

Microeconomics

Lexicographic order/dictionary order:

• Given two partially order sets X1 and X2, an order is called
lexicographical on X1 ×X2 if (x1, x2) ≺ (x′1, x

′
2) if and only if

x1 < x′1 (or x1 = x′1, x2 < x′2). That is, “good 1 is infinitely
more desired than good 2”.

• Example in R2
+ (Example of Debreu): x = (0, 1) and

y(n) = (1/n, 0), y = (0, 0). For all n, y(n) � x, while for
n→∞: y(n) → y= (0, 0) ≺(0, 1) = x.

• The lexicographic ordering is a rational (strict) preference
relation (we have to show completeness and transitivity).
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Consumer Theory 3
The Axiomatic Approach (12)

Microeconomics

• Axioms 1 and 2 guarantee that an agent is able to make
consistent comparisons among all alternatives.

• Axiom 5 imposes the restriction that preferences do not exhibit
“discontinuous behavior”; mathematically important

• Axioms 3 and 4 make assumptions on a consumer’s taste
(satiation, mixtures).
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Consumer Theory 3
Utility Function (1)

Microeconomics

• Definition: Utility Function: A real-valued function
u : RL+ → R is called utility function representing the preference
relation � if for all x, y ∈ RL+ u(x) ≥ u(y) if and only if x � y.

• I.e. a utility function is a mathematical device to describe the
preferences of a consumer.

• Pair-wise comparisons are replaced by comparing real valued
functions evaluated for different consumption bundles.

• Function is of no economic substance (for its own).
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Consumer Theory 3
Utility Function (2)

Microeconomics

• First of all we want to know if such a function exists.

• Theorem: Existence of a Utility Function: If a binary relation
� is complete, transitive and continuous, then there exists a
continuous real valued function function u(x) representing the
preference ordering �. [P 3.C.1]

• Proof: by assuming monotonicity see MWG, p. 47 or [GR, p. 43].
The proof of Debreu (1959) is more advanced.
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Consumer Theory 3
Utility Function (3)

Microeconomics

• Consider y = u(x) and the transformations v = g(u(x));
v = log y, v = y2, v = a+ by, v = −a− by (see MWG, page
49). Do these transformations fulfill the properties of a utility
function?

• Theorem: Invariance to Positive Monotonic
Transformations: Consider the preference relation � and the
utility function u(x) representing this relation. Then also v(x)
represents � if and only if v(x) = g(u(x)) is strictly increasing
on the set of values taken by u(x).
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Consumer Theory 3
Utility Function (4)

Microeconomics

Proof:

• ⇒ Assume that x � y with u(x) ≥ u(y): A strictly monotone
transformation g(.) then results in g(u(x) ≥ g(u(y)). I.e. v(x) is
a utility function describing the preference ordering of a
consumer.
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Consumer Theory 3
Utility Function (5)

Microeconomics

Proof:

• ⇐ Now assume that g(u(x)) is a utility representation, but g is
not strictly positive monotonic on the range of u(.): Then
g(u(x)) is not > to g(u(y)) for some pair x, y where
u(x) > u(y). Hence, for the pair x, y we have x � y since
u(x) > u(y), but g(u(x)) ≤ g(u(y)).

This contradicts the assumption that v(.) = g(u(.)) is a utility
representation of �.
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Consumer Theory 3
Utility Function (6)

Microeconomics

• By Axioms 1,2,5 the existence of a utility function is guaranteed.
By the further Axioms the utility function exhibits the following
properties.

• Theorem: Preferences and Properties of the Utility
Function:

– u(x) is strictly increasing if and only if � is strictly monotonic.
– u(x) is quasiconcave if and only if � is convex:
u(xν) ≥ min{u(x), u(y)}, where xν = νx+ (1− ν)y.

– u(x) is strictly quasiconcave if and only if � is strictly convex.
That is, u(xν) > min{u(x), u(y)} for xν = νx+ (1− ν)y,
x 6= y and ν ∈ (0, 1).

• Differentiability - [GR, Chapter 2, Assumption 7]. Conditions see
literature, in particular Debreu (1972) and Debreu (1976).
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Consumer Theory 3
Utility Function (7)

Microeconomics

• Definition: Indifference Curve: Bundles where utility is constant (in R2).

• Marginal rate of substitution and utility: Assume that u(x) is differentiable,

then

du(x1, x2) =
∂u(x1, x2)

∂x1

dx1 +
∂u(x1, x2)

∂x2

dx2 = 0

dx2

dx1

= −
∂u(x1, x2)/∂x1

∂u(x1, x2)/∂x2

MRS12 =
∂u(x1, x2)/∂x1

∂u(x1, x2)/∂x2

.

• The marginal rate of substitution describes the trade-off between goods 1 and

2 that marginally keep the consumer indifferent at a given consumption bundle

(x1, x2). That is, the “amount of good 2” the consumer has to obtain for

giving up “one unit of good 1” while staying at the same utility level.

51



Consumer Theory 3
Utility Function (8)

Microeconomics

• If u(x) is differentiable and the preferences are strictly
monotonic, then marginal utility is strictly positive.

• With strictly convex preferences the marginal rate of substitution
is a strictly decreasing function (i.e. in R2 the slope of the
indifference curve becomes flatter).

• For a quasiconcave utility function (i.e.
u(xν) ≥ min{u(x1), u(x2)}, with xν = νx1 + (1− ν)x2) and its
Hessian H(u(x)) = D2(u(x)) we get: yH(u(x))y> ≤ 0 for all
vectors y, where grad(u(x)) · y = 0. That is, when moving from
x to y that is tangent to the indifference surface at x utility does
not increase (decreases if the equality is strict).
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Consumer Theory 3
Consumer’s Problem (1)

Microeconomics

• The consumer is looking for a bundle x∗ such that x∗ ∈ B and
x∗ � x for all x in the feasible set B.

• Assume that the preferences are complete, transitive, continuous,
strictly monotonic and strictly convex. Then � can be
represented by a continuous, strictly increasing and strictly
quasiconcave utility function. Moreover we can assume that we
can take first and second partial derivatives of u(x). These are
usual assumptions, we can also solve the utility maximization
problem (UMP) with less stringent assumptions.
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Consumer Theory 3
Consumer’s Problem (1)

Microeconomics

• We assume prices pi > 0, p = (p1, . . . , pL) is the vector of prices.
We assume that the prices are fixed from the consumer’s point of
view. (Notation: p� 0 means that all coordinates of p are
strictly larger than zero.)

• The consumer is endowed with wealth M .

54



Consumer Theory 3
Consumer’s Problem (2)

Microeconomics

• Budget set induced by M : Bp,M = {x|x ∈ RL+ ∧ p · x ≤M}.

• With the constant M and the consumption of the other goods
constant, we get:

dM = p1dx1 + p2dx2 = 0

dx2

dx1
= −p1

p2
with other prices constant .

• Budget line with two goods; slope −p1/p2. See Figure 2.D.1,
page 21, MWG.
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Consumer Theory 3
Consumer’s Problem (3)

Microeconomics

• Definition - Utility Maximization Problem [UMP]: Find the
optimal solution for:

max
x

u(x) s.t. xi ≥ 0 , p · x ≤M.

The solution D(p,M) is called Walrasian demand or
Marshallian demand.

• Remark: Some textbooks call the UMP also Consumer’s
Problem.

56



Consumer Theory 3
Consumer’s Problem (4)

Microeconomics

• Proposition - Existence: If p� 0, M > 0 and u(x) is
continuous, then the utility maximization problem has a solution.
[P 3.D.1]

• Proof: By the assumptions Bp,M is compact. u(x) is a
continuous function. By the Weierstraß theorem (Theorem
M.F.2(ii), p. 945, MWG; maximum value theorem in calculus;
see Munkres (2000)), there exists an x ∈ Bp,M maximizing u(x).

57



Consumer Theory 3
Consumer’s Problem (5)

Microeconomics

• Suppose u(x) is differentiable. Find x∗ by means of Kuhn-Tucker
conditions for the Lagrangian:

L(x, λ) = u(x) + λ(M − p · x)

∂L

∂xi
=

∂u(x)

∂xi
− λpi ≤ 0

∂L

∂xi
xi = 0

∂L

∂λ
= M − p · x ≥ 0

∂L

∂λ
λ = 0
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Consumer Theory 3
Consumer’s Problem (6)

Microeconomics

• By altering the price vector p and income M , the consumer’s maximization

provides us with the correspondence D(p,M), which is called

Walrasian/Marshallian demand correspondence. If preferences are strictly

convex we get Walrasian/Marshallian demand functions D(p,M).

• What happens to the function if M or pj changes? See MWG, Figure 3.D.1 -

3.D.4.

• [GR, Chapter 2.D]: If M varies and p is fixed, we obtain the income
consumption curve, see [GR, Figure 2.10, p. 30].

• If M and p− are fixed and pl varies, we obtain the price consumption
curve, see [GR, Figure 2.11, p. 31].

• [GR, Figure 2.15, p. 35] obtains Walrasian/Marshallian demand in graphical

terms (in addition, the textbook derives Hicksian demand, which will be

discussed later).
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Consumer Theory 3
Consumer’s Problem (7)

Microeconomics

• In a general setting demand need not be a smooth function.

• Theorem - Differentiable Walrasian Demand Function: Let
x∗ � 0 solve the consumers maximization problem at price
p0 � 0 and M0 > 0. If u(x) is twice continuously differentiable,
∂u(x)/∂xi > 0 for some i = 1, . . . , n and the bordered Hessian
of u(x), (

D2u(x) ∇u(x)
∇u(x)> 0

)
,

has a non-zero determinant at x∗, then D(p,M) is differentiable
at p0,M0.

• More details are provided in MWG, p. 94-95.
60



Consumer Theory 3
Consumer’s Problem (8)

Microeconomics

• Theorem - Properties of D(p,M): Consider a continuous
utility function u(x) representing a rational locally nonsatiated
preference relation � defined on the consumption set X = RL+.
Then D(p,M) has the following properties: [P 3.D.2]

– Homogeneity of degree zero in (p,M).
– Walras’ law: p · x = M for all x ∈ D(p,M).
– Convexity/uniqueness: If � is convex, so that u(x) is

quasiconcave, then D(p,M) is a convex set. If � is strictly
convex, where u(x) is strictly quasiconcave, then D(p,M)
consists of a single element.
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Consumer Theory 3
Consumer’s Problem (9)

Microeconomics

Proof:

• Property 1 - Homogeneity in p,M : We have to show that
D(µp, µM) = µ0D(p,M). Plug in µp and µM in the
optimization problem ⇒ Bp,M = Bµp,µM . The result follows
immediately.
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Consumer Theory 3
Consumer’s Problem (10)

Microeconomics

Proof:

• Property 2- Walras’ law: If x ∈ D(p,M) and p · x < M , then
there exists a y in the neighborhood of x, with y � x and
p · y < M by local nonsatiation. Therefore x cannot be an
optimal bundle. This argument holds for all interior points of
Bp,M .
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Consumer Theory 3
Consumer’s Problem (11)

Microeconomics

Proof:

• Property 3 - D(p,M) is a convex set: If preferences are convex
then u(xν) ≥ min{u(x), u(y)}, where xν = νx+ (1− ν)y;
replace ≥ by > if � is strictly convex. I.e. u(x) is quasiconcave.
We have to show that if x, y ∈ D(p,M), then xν ∈ D(p,M).
From the above property x, y and xν have to be elements of the
budget hyperplane {x|x ∈ X and p · x = M}.

Since x and y solve the UMP we get u(x) = u(y), therefore
u(xν) ≤ u(x) = u(y). By quasiconcavity of u(x) we get
u(xν) ≥ u(x) = u(y), such that u(xν) = u(x) = u(y) holds for
arbitrary x, y ∈ D(p,M). I.e. the set D(p,M) has to be convex.
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Consumer Theory 3
Consumer’s Problem (12)

Microeconomics

Proof:

• Property 3 - D(p,M) is single valued if preferences are strictly
convex: Assume, like above, the x and y solve the UMP; x 6= y.
Then u(x) = u(y) ≥ u(z) for all z ∈ Bp,M . By the above result
x, y are elements of the budget hyperplane.

• Since preferences are strictly convex, u(x) is strictly quasiconcave
⇒ u(xν) > min{u(x), u(y)}. xν = νx′ + (1− ν)y′ and x′, y′ are
some arbitrary elements of the budget hyperplane; (a
contradiction to strict convexity).

• Now u(xν) > min{u(x), u(y)}, also for x, y. Therefore the pair
x, y cannot solve the UMP. Therefore, D(p,M) has to be single
valued.
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Consumer Theory 3
Offer Curves and Net Demand (1)

Microeconomics

• On the former slides we obtained the budget constraint by means
of p · x ≤M .

• Suppose now that a consumer is equipped with an initial
endowment x̄ = (x̄1, . . . , x̄L).

• Then, the wealth measured in monetary units is given by
W = p · x̄ =

∑L
l=1 plx̄l.

• Hence the budget constraint is given by

p · x =

L∑
l=1

plxl ≤
L∑
l=1

plx̄l = p · x̄
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Consumer Theory 3
Offer Curves and Net Demand (2)

Microeconomics

• Definition - Net Demand: x̂i := xi − x̄i is called net demand
for commodity i. [MWG, p. 581], [GR, p. 37].

• If xi − x̄i > 0 the consumer buys commodity i, while if
xi − x̄i < 0 good i is sold.

• To plot the budget line for the L = 2 good case, we observe that
(see [GR, Figure, 2.17, p. 38]):

– The point x̄ = (x̄1, x̄2) be consumed for all price vectors p,
p� 0.

– If the (relative) price changes, the budget line is rotated
around x̄.

– Let p′ = λp, λ > 0. Then the nominal value of x̄ changes to
λW , however the budget line is not affected.
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Consumer Theory 3
Offer Curves and Net Demand (3)

Microeconomics

• Given the endowment x̄, the utility maximization problem

becomes ÛMP :

max
x

u(x) s.t. xi ≥ 0 , p · x ≤ p · x̄ = W.

• Definition - Offer Curve: Suppose that for any x̄, p, the
solution of the utility maximization problem admits a unique
solution. The solution OC(p, x̄) is called offer curve. [MWG,
p. 582], [GR, p. 39].

• [GR, Figure, 2.17, p. 38] obtains the offer curve (FF).

• MWG, Example 17.B.1 obtains the offer curve for L = 2 and
Cobb-Douglas preferences.
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Consumer Theory 3
Offer Curves and Net Demand (4)

Microeconomics

• From x̄ and the offer curve OC(p, x̄) we are able to obtain the
net demand D̂(p, x̄) = OC(p, x̄)− x̄.

• [GR, p. 39-40] write the utility function u(x) in terms of net
demands. That is, û(x̂) = u(x), where x̂ = x− x̄.

• Then ÛMP can be rewritten as follows:

max
x̂

û(x̂) s.t. x̂i ≥ −x̄i , p · x̂ = p · (x− x̄) ≤ 0.
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Consumer Theory 4
Duality

Microeconomics

• Instead of looking at u(x), we’ll have an alternative look on
utility via prices, income and the utility maximization problem ⇒
indirect utility.

• Expenditure function, the dual problem and Hicksian demand.

• Income- and substitution effects, Slutsky equation.

MWG, Chapter 3.D-3.H, GR, Chapter 3.
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Consumer Theory 4
Indirect Utility (1)

Microeconomics

• We have already considered the direct utility function u(x) in the
former parts.

• Start with the utility maximization problem

max
x

u(x) s.t. p · x ≤M

x∗ ∈ D(p,M) solves this problem for (p,M)� 0.

• Definition - Indirect Utility: By the highest levels of utility
attainable with p,M , we define a maximal value function. This
function is called indirect utility function v(p,M). It is the
maximum value function corresponding to the consumer’s
optimization problem (utility maximization problem).
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Consumer Theory 4
Indirect Utility (2)

Microeconomics

• v(p,M) is a function, by Berge’s theorem of the maximum
D(p,M) is upper hemicontinuous and v(p,M) is continuous (see
MWG, page 963, [M.K.6]).

• If u(x) is strictly quasiconcave such that maximum x∗ is unique,
we derive the demand function x∗ = D(p,M).

• In this case the indirect utility function is the composition of the
direct utility function and the demand function D(p,M), i.e.
v(p,M) = u(x∗) = u(D(p,M)). This have been done in [GR,
p. 52].
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Consumer Theory 4
Indirect Utility (3)

Microeconomics

• Theorem: Properties of the Indirect Utility Function
v(p,M): [P 3.D.3] Suppose that u(x) is a continuous utility
function representing a locally nonsatiated preference relation �
on the consumption set X = RL+. Then the indirect utility
function v(p,M) is

– Continuous in p and M .
– Homogeneous of degree zero in p,M .
– Strictly increasing in M .
– Nonincreasing in pl, l = 1, . . . , L.
– Quasiconvex in (p,M).

73



Consumer Theory 4
Indirect Utility (4)

Microeconomics

Proof:

• Property 1 - Continuity: follows from Berge’s theorem of the
maximum.

• Property 2 - Homogeneous in (p,M): We have to show that
v(µp, µM) = µ0v(p,M) = v(p,M); µ > 0. Plug in µp and µM
in the optimization problem ⇒
v(µp, µM) = {maxx u(x) s.t. µp · x ≤ µM} ⇔
{maxx u(x) s.t. p · x ≤M} = v(p,M).
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Consumer Theory 4
Indirect Utility (5)

Microeconomics

Proof:

• Property 3 - increasing in M : Given the solutions of the UMP
with p and M,M ′, where M ′ > M : D(p,M) and D(p,M ′).

• The corresponding budget sets are Bp,M and Bp,M ′, by
assumption Bp,M ⊂ Bp,M ′ (here we have a proper subset).

• Define Sp,M = {x ∈ X|p · x = M} (Walrasian budget
hyperplane). Then Bp,M is still contained in Bp,M ′ \ Sp,M ′.

• Therefore also Sp,M ∈ (Bp,M ′ \ Sp,M ′). From the above
consideration we know that for any y ∈ Sp,M , we have
p · y < M ′. By local nonsatiation there are better bundles in
Bp,M ′.
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Consumer Theory 4
Indirect Utility (6)

Microeconomics

Proof:

• Since v(p,M) is a maximal value function, it has to increase if
M increases.

• In other words: By local nonsatiation Walras law has to hold, i.e.
D(p,M) and D(p,M ′) are subsets of the budget hyperplanes
{x|x ∈ X and p · x = M}, {x|x ∈ X and p · x = M ′},
respectively. We know where we find the optimal bundles. The
hyperplane for M is a subset of Bp,M and Bp,M ′ (while the
hyperplane for M ′ is not contained in Bp,M). Interior points
cannot be an optimum under local nonsatiation.

• If v(p,M) is differentiable this result can be obtained by means
of the envelope theorem.

76



Consumer Theory 4
Indirect Utility (7)

Microeconomics

Proof:

• Property 4 - non-increasing in pl: W.l.g. p′l > pl, then we get
Bp,M and Bp′,M , where Bp′,M ⊆ Bp,M . But Sp′,M is not fully
contained in Bp,M \ Sp,M . (Observe the ”common point” in R2.)
The rest is similar to Property 3.
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Consumer Theory 4
Indirect Utility (8)

Microeconomics

Proof:

• Property 5 - Quasiconvex: Consider two arbitrary pairs p1, x1 and
p2, x2 and the convex combinations pν = νp1 + (1− ν)p2 and
Mν = νM1 + (1− ν)M2; ν ∈ [0, 1].

• v(p,M) would be quasiconvex if
v(pν,Mν) ≤ max{v(p1,M1), v(p2,M2)}.

• Define the consumption sets: Bj = {x|p(j) · x ≤Mj} for
j = 1, 2, ν.
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Consumer Theory 4
Indirect Utility (9)

Microeconomics

Proof:

• First we show: If x ∈ Bν, then x ∈ B1 or x ∈ B2.

This statement trivially holds for ν equal to 0 or 1.

For ν ∈ (0, 1) we get: Suppose that x ∈ Bν but x ∈ B1 or
x ∈ B2 is not true (then x 6∈ B1 and x 6∈ B2), i.e.

p1 · x > M1 ∧ p2 · x > M2

Multiplying the first term with ν and the second with 1− ν
results in

νp1 · x > νM1 ∧ (1− ν)p2 · x > (1− ν)M2 79



Consumer Theory 4
Indirect Utility (10)

Microeconomics

Proof:

• Summing up both terms results in:

(νp1 + (1− ν)p2) · x = pν · x > νM1 + (1− ν)M2 = Mν

which contradicts our assumption that x ∈ Bν.

• From the fact that xν ∈ D(pν,Mν) is either ∈ B1 or ∈ B2, it
follows that v(pν,Mν) ≤ max{v(p1,M1), v(p2,M2)}. The last
expression corresponds to the definition of a quasiconvex
function.

• For a graphical illustration of quasiconvexity in p and M see [GR,
Figure 3.4, p. 53].
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Consumer Theory 4
Expenditure Function (1)

Microeconomics

• With indirect utility we looked at maximized utility levels given
prices and income.

• Now we raise the question a little bit different: what expenditures
e are necessary to attain an utility level u given prices p.

• Expenditures m can be described by the function m = p · x.

81



Consumer Theory 4
Expenditure Function (2)

Microeconomics

• Definition - Expenditure Minimization Problem [EMP]:
minx p · x s.t. u(x) ≥ u, x ∈ X = RL+, p� 0. (We only look at
u ≥ u(0). U = {u|u ≥ u(0) ∧ u ∈ Range(u(x))} )

• It is the dual problem of the utility maximization problem. The
solution of the EMP H(p, u) will be called Hicksian demand
correspondence.

• Definition - Expenditure Function: The minimum value
function m(p, u) solving the expenditure minimization problem
minx p · x s.t. u(x) ≥ u, p� 0, is called expenditure function.

• Existence: The Weierstraß theorem guarantees the existence of
an x∗ s.t. p · x∗ are the minimal expenditures necessary to attain
an utility level u.
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Consumer Theory 4
Expenditure Function (3)

Microeconomics

• Theorem: Properties of the Expenditure Function m(p, u):
[P 3.E.2], [GR, p. 48-50].

If u(x) is continuous utility function representing a locally
nonsatiated preference relation. Then the expenditure function
m(p, u) is

– Continuous in p, u domain Rn++ × U .
– ∀p� 0 strictly increasing in u.
– Non-decreasing in pl for all l = 1, . . . , L.
– Concave in p.
– Homogeneous of degree one in p.
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Consumer Theory 4
Expenditure Function (5)

Microeconomics

Proof:

• Property 1 - continuous: Apply the theorem of the maximum.
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Consumer Theory 4
Expenditure Function (6)

Microeconomics

Proof:

• Property 2 - increasing in u: We have to show that is u2 > u1

then m(p, u2) > m(p, u1).

• Suppose that h1 ∈ H(p, u1) and h2 ∈ H(p, u2) solve the EMP
for u2 and u1, but m(p, u2) ≤ m(p, u1). We show that this result
in a contradiction. I.e. u2 > u1 but 0 ≤ p · h2 ≤ p · h1.

• Then by continuity of u(x) and local nonsatiation we can find an
α ∈ (0, 1) such that αh2 is preferred to h1 (remember u2 > u1 is
assumed) with expenditures αp · h2 < p · h1. This contradicts
that h1 solves the EMP for p, u1.
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Consumer Theory 4
Expenditure Function (7)

Microeconomics

Proof:

• Property 2 - with calculus: From
minx p · x s.t. u(x) ≥ u , x ≥ 0 we derive the Lagrangian:

L(x, λ) = p · x+ λ(u− u(x)) .

• From this Kuhn-Tucker problem we get:

∂L

∂xi
= pi − λ

∂u(x)

∂xi
≥ 0 ,

∂L

∂xi
xi = 0

∂L

∂λ
= u− u(x) ≤ 0 ,

∂L

∂λ
λ = 0
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Consumer Theory 4
Expenditure Function (8)

Microeconomics

Proof:

• λ = 0 would imply that utility could be increased without
increasing the expenditures (in an optimum) ⇒ u = u(x) and
λ > 0.

• Good xi is demanded if the price does not exceed λ∂u(x)
∂xi

for all
xi > 0.

• The envelope theorem tells us that

∂m(p, u)

∂u
=
∂L(x, u)

∂u
= λ > 0

• Since u(x) is continuous and increasing the expenditure function
has to be unbounded.
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Consumer Theory 4
Expenditure Function (9)

Microeconomics

Proof:

• Property 3 - non-decreasing in pl: similar to property 3.
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Consumer Theory 4
Expenditure Function (10)

Microeconomics

Proof:

• Property 4 - concave in p: Consider an arbitrary pair p1 and p2

and the convex combination pν = νp1 + (1− ν)p2. The
expenditure function is concave if
m(pν, u) ≥ νm(p1, u) + (1− ν)m(p2, u).

• For minimized expenditures it has to hold that p1x1 ≤ p1x and
p2x2 ≤ p2x for all x fulfilling u(x) ≥ u.

• x∗ν minimizes expenditure at a convex combination of p1 and p2.

• Then p1x1 ≤ p1x∗ν and p2x2 ≤ p2x∗ν have to hold.
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Consumer Theory 4
Expenditure Function (11)

Microeconomics

Proof:

• Multiplying the first term with ν and the second with 1− ν and
taking the sum results in νp1x1 + (1− ν)p2x2 ≤ pνx∗ν.

• Therefore the expenditure function is concave in p.
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Consumer Theory 4
Expenditure Function (12)

Microeconomics

Proof:

• Property 5 - homogeneous of degree one in p: We have to show
that m(µp, u) = µ1m(p, u); µ > 0. Plug in µp in the
optimization problem ⇒
m(µp, u) = {minx µp · x s.t. u(x) ≥ u}. Objective function is
linear in µ, the constraint is not affected by µ. With calculus we
immediately see the µ cancels out in the first order conditions ⇒
H(p, u) remains the same ⇒
µ{minx p · x s.t. u(x) ≥ u} = µm(p, u).
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Consumer Theory 4
Hicksian Demand (1)

Microeconomics

• Theorem: Hicksian demand: [P 3.E.3] Let u(x) be continuous
utility function representing a locally nonsatiatated preference
order; p� 0. Then the Hicksian demand correspondence has the
following properties:

– Homogeneous of degree zero in p.
– No excess utility u(x) = u.
– Convexity/uniqueness: If � is convex, then H(p, u) is a convex

set. If � is strictly convex, then H(p, u) is single valued.
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Consumer Theory 4
Hicksian Demand (2)

Microeconomics

Proof:

• Homogeneity follows directly from the EMP.
min{p · x s.t. u(x) ≥ u} ⇔ αmin{p · x s.t. u(x) ≥ u} ⇔
min{αp · x s.t. u(x) ≥ u} for α > 0.

• Suppose that there is an x ∈ H(p, u) with u(x) > u. By the
continuity of u we find an α ∈ (0, 1) such that x′ = αx and
u(x′) > u. But with x′ we get p · x′ < p · x. A contradiction that
x solves the EMP.

• For the last property see the theorem on Walrasian demand or
apply the forthcoming theorem.
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Consumer Theory 4
Expenditure vs. Indirect Utility (1)

Microeconomics

• With (p,M) the indirect utility function provides us with the
maximum of utility u. Suppose M = m(p, u). By this definition
v(p,m(p, u)) ≥ u.

• Given p, u and an the expenditure function, we must derive
m(p, v(p,M)) ≤M .

• Given an x∗ solving the utility maximization problem, i.e.
x∗ ∈ D(p,M). Does x∗ solve the EMP if u = v(p,M)?

• Given an h∗ solving the EMP, i.e. h∗ ∈ H(p, u). Does h∗ solve
the UMP if M = m(p, u)?
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Consumer Theory 4
Expenditure vs. Indirect Utility (2)

Microeconomics

• Theorem: Equivalence between Indirect Utility and
Expenditure Function: [P 3.E.1] Let u(x) be continuous utility
function representing a locally nonsatiatated preference order;
p� 0.

– If x∗ is optimal in the UMP with M > 0, then x∗ is optimal in
the EMP when u = u(x∗). m(p, u(x∗)) = M .

– If h∗ is optimal in the EMP with u > u(0), then h∗ is optimal
in the UMP when M = m(p, u). v(p,m(p, u)) = u.
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Consumer Theory 4
Expenditure vs. Indirect Utility (3)

Microeconomics

Proof:

• We prove m(p, v(p,M)) = M by means of a contradiction. p,M

∈ Rn++ × R++. By the definition of the expenditure function we get

m(p, v(p,M)) ≤M . In addition h∗ ∈ H(p, u).

To show equality assume that m(p, u) < M , where u = v(p,M) and x∗

solves the UMP: m(p, u) is continuous in u. Choose ε such that

m(p, u+ ε) < M and m(p, u+ ε) =: Mε.

The properties of the indirect utility function imply v(p,Mε) ≥ u+ ε. Since

Mε < M and v(p,M) is strictly increasing in M (by local nonstatiation)

we get: v(p,M) > v(p,Mε) ≥ u+ ε but u = v(p,M), which is a

contradiction. Therefore m(p, v(p,M)) = M and x∗ also solves the EMP,

such that x∗ ∈ H(p, u) when u = v(p, u).
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Consumer Theory 4
Expenditure vs. Indirect Utility (4)

Microeconomics

Proof:

• Next we prove v(p,m(p, u)) = u in the same way. p, u
∈ Rn++ × U . By the definition of the indirect utility function we
get v(p,m(p, u)) ≥ u.

Assume that v(p,M) > u, where M = m(p, u) and h∗ solves the
EMP: v(p,M) is continuous in M . Choose ε such that
v(p,M − ε) > u and v(p,M − ε) =: uε.

The properties of the expenditure function imply
m(p, uε) ≤M − ε. Since uε > u and m(p, u) is strictly
increasing in u we get: m(p, u) < m(p, uε) ≤M − ε but
M = m(p, u), which is a contradiction. Therefore
v(p,m(p, u)) = u. In addition h∗ also solves the UMP.
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Consumer Theory 4
Hicksian Demand (3)

Microeconomics

• Theorem: Hicksian/ Compensated law of demand:
[P 3.E.4], [GR, p. 56] Let u(x) be continuous utility function
representing a locally nonsatiatated preference order and H(p, u)
consists of a single element for all p� 0. Then the Hicksian
demand function satisfies the compensated law of demand: For
all p′ and p′′:

(p′′ − p′)[H(p′′, u)−H(p′, u)] ≤ 0.
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Consumer Theory 4
Hicksian Demand (4)

Microeconomics

Proof:

• By the EMP: p′′ ·H(p′′, u)− p′′ ·H(p′, u) ≤ 0 and
p′ ·H(p′, u)− p′ ·H(p′′, u) ≤ 0 have to hold.

• Adding up the inequalities yields the result.
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Consumer Theory 4
Shephard’s Lemma (1)

Microeconomics

• Investigate the relationship between a Hicksian demand function
and the expenditure function.

• Theorem - Shephard’s Lemma: [P 3.G.1], [GR, p. 49]. Let
u(x) be continuous utility function representing a locally
nonsatiatated preference order and H(p, u) consists of a single
element. Then for all p and u, the gradient vector of the
expenditure function with respect to p gives Hicksian demand,
i.e.

∇pm(p, u) = H(p, u).
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Consumer Theory 4
Shephard’s Lemma (2)

Microeconomics

Proof by means of calculus:

• Suppose that the envelope theorem can be applied (see e.g.
MWG [M.L.1], page 965):

• Then the Lagrangian is given by: L(x, λ) = p · x+ λ(u− u(x)).

• λ > 0 follows from u = u(x).
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Consumer Theory 4
Shephard’s Lemma (3)

Microeconomics

Proof with calculus:

• The Kuhn-Tucker conditions are:

∂L

∂xi
= pi − λ

∂u(x)

∂xi
≥ 0

∂L

∂xi
xi = 0

∂L

∂λ
= u− u(x) ≥ 0

∂L

∂λ
λ = 0
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Consumer Theory 4
Shephard’s Lemma (4)

Microeconomics

Proof with calculus:

• Good xi is demanded if the price does not exceed λ∂u(x)
∂xi

for all
xi > 0.

• The envelope theorem tells us that

∂m(p, u)

∂pl
=
∂L(x, u)

∂pl
= hl(p, u)

for l = 1, . . . , L.
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Consumer Theory 4
Shephard’s Lemma (5)

Microeconomics

Proof:

• The expenditure function is the support function µk of the
non-empty and closed set K = {x|u(x) ≥ u}. Since the solution
is unique by assumption, ∇µK(p) = ∇pm(p, u) = H(p, u) has to
hold by the Duality theorem.

• Alternatively: Assume differentiability and apply the envelope
theorem.
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Consumer Theory 4
Expenditure F. and Hicksian Demand (1)

Microeconomics

• Furthermore, investigate the relationship between a Hicksian
demand function and the expenditure function.

• Theorem:: [P 3.E.5] Let u(x) be continuous utility function
representing a locally nonsatiatated and strictly convex
preference relation on X = RL+. Suppose that H(p, u) is
continuously differentiable, then

– DpH(p, u) = D2
pm(p, u)

– DpH(p, u) is negative semidefinite
– DpH(p, u) is symmetric.
– Dph(p, u)p = 0.
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Consumer Theory 4
Expenditure F. and Hicksian Demand (2)

Microeconomics

Proof:

• To show Dph(p, u)p = 0, we can use the fact that h(p, u) is
homogeneous of degree zero in prices (r = 0).

• By the Euler theorem [MWG, Theorem M.B.2, p. 929] we get

L∑
l=1

∂H(p, u)

∂pl
pl = rH(p, u).
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Consumer Theory 4
Walrasian vs. Hicksian Demand (1)

Microeconomics

• Here we want to analyze what happens if income M changes:
normal vs. inferior good.

• How is demand effected by prices changes: change in relative
prices - substitution effect, change in real income - income effect

• Properties of the demand and the law of demand.

• How does a price change of good i affect demand of good j.

• Although utility is continuous and strictly increasing, there might
be goods where demand declines while the price falls.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (2)

Microeconomics

• Definition - Substitution Effect, Income Effect: We split up
the total effect of a price change into

– an effect accounting for the change in the relative prices pi/pj
(with constant utility or real income) ⇒ substitution effect.
Here the consumer will substitute the relatively more expensive
good by the cheaper one.

– an effect induced by a change in real income (with constant
relative prices) ⇒ income/wealth effect.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (3)

Microeconomics

• Hicksian decomposition - keeps utility level constant to identify
the substitution effect.

• The residual between the total effect and the substitution effect
is the income effect.

• See Figures in Chapter 2 and [GR, Figures 2.12-2.14, p. 32-34].
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Consumer Theory 4
Walrasian vs. Hicksian Demand (4)

Microeconomics

• Here we observe that the Hicksian demand function exactly
accounts for the substitution effect.

• The difference between the change in Walrasian (total effect)
demand induced by a price change and the change in Hicksian
demand (substitution effect) results in the income effect.

• Note that the income effect need not be positive.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (5)

Microeconomics

• Formal description of these effects is given by the Slutsky
equation.

• Theorem - Slutsky Equation: [P 3.G.3] [GR, p. 55] Assume
that the consumer’s preference relation � is complete, transitive,
continuous, locally nonsatiated and strictly convex defined on
X = RL+. Then for all (p,M) and u = v(p,M) we have

∂Dl(p,M)

∂pj︸ ︷︷ ︸
TE

=
∂Hl(p, u)

∂pj︸ ︷︷ ︸
SE

−Dj(p,M)
∂Dl(p,M)

∂M︸ ︷︷ ︸
IE

l, j = 1, . . . , L.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (6)

Microeconomics

• Equivalently:

Dph(p, u) = DpD(p,M) +DMD(p,M)D(p,M)>

• Remark: In the following proof we shall assume that H(p, u) and
D(p,M) are differentiable. (Differentiability of H(p, u) follows
from duality theory presented in MWG, Section 3.F.)
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Consumer Theory 4
Walrasian vs. Hicksian Demand (7)

Microeconomics

Proof:

• First, we use the Duality result on demand:
Hl(p, u) = Dl(p,m(p, u)) and take partial derivatives with
respect to pj:

∂Hl(p, u)

∂pj
=
∂Dl(p,m(p, u))

∂pj
+
∂Dl(p,m(p, u))

∂M

∂m(p, u)

∂pj
.

• Second: By the relationship between the expenditure function
and the indirect utility it follows that u = v(p,M) and
m(p, u) = m(p, v(p,M)) = M .
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Consumer Theory 4
Walrasian vs. Hicksian Demand (8)

Microeconomics

Proof:

• Third: Shephard’s Lemma tells us that ∂m(p,u)
∂pj

= Hj(p, u), this

gives

∂Hl(p, u)

∂pj
=
∂Dl(p,M)

∂pj
+
∂Dl(p,M)

∂M
Hj(p, u)
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Consumer Theory 4
Walrasian vs. Hicksian Demand (9)

Microeconomics

Proof:

• Forth: Duality between Hicksian and Walrasian demand implies
that H(p, v(p,M)) = D(p,M) with v(p,M) = u. Thus
∂m(p,u)
∂pj

= Dj(p,M).

• Arranging terms yields:

∂Dl(p,M)

∂pj
=
∂Hl(p, u)

∂pj
−Dj(p,M)

∂Dl(p,M)

∂M
.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (10)

Microeconomics

• From the Sultsky equation we can construct the following matrix:
Definition - Slutsky Matrix:

S(p,M) :=


∂D1(p,M)

∂p1
+D1(p,M)

∂D1(p,M)
∂M · · · ∂D1(p,M)

∂pL
+DL(p,M)

∂D1(p,M)
∂M

. . . . . . . . .
∂DL(p,M)

∂p1
+D1(p,M)

∂DL(p,M)
∂M · · · ∂DL(p,M)

∂pL
+DL(p,M)

∂DL(p,M)
∂M
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Consumer Theory 4
Walrasian vs. Hicksian Demand (11)

Microeconomics

• Theorem Suppose that m(p, u) is twice continuously
differentiable. Then the Slutsky Matrix S(p,M) is negative
semidefinite, symmetric and satisfies S(p,M)p = 0.
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Consumer Theory 4
Walrasian vs. Hicksian Demand (12)

Microeconomics

Proof:

• Negative semidefiniteness follows from the negative
semidefiniteness of DpH(p, u) which followed from the concavity
of the expenditure function.

• Symmetry follows from the existence of the expenditure function
and Young’s theorem.

• S(p,M) · p = 0 follows from an Euler theorem (see [MWG,
Theorem M.B.2, p. 929]) argument already used in [P 3.G.2]
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Consumer Theory 4
Roy’s Identity (1)

Microeconomics

• Goal is to connect Walrasian demand with the indirect utility
function.

• Theorem - Roy’s Identity: [P 3.G.4], [GR, p. 52] Let u(x) be
continuous utility function representing a locally nonsatiatated
and strictly convex preference relation � defined on X = RL+.
Suppose that the indirect utility function v(p,M) is differentiable
for any p,M � 0, then

D(p,M) = − 1

∇wv(p,M)
∇pv(p,M),

i.e.

Dl(p,M) = − ∂v(p,M)/∂pl
∂v(p,M)/∂M

.
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Consumer Theory 4
Roy’s Identity (1)

Microeconomics

Proof:

• Roy’s Identity: Assume that the envelope theorem can be applied
to v(p,M).

• Let (x∗, λ∗) maximize {maxx u(x) s.t. p · x ≤M} then the
partial derivatives of the Lagrangian L(x, λ) with respect to pl
and M provide us with:

∂v(p,M)

∂pl
=
∂L(x∗, λ∗)

∂pl
= −λ∗x∗l , l = 1, . . . , L.

∂v(p,M)

∂M
=
∂L(x∗, λ∗)

∂M
= λ∗.
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Consumer Theory 2
Indirect Utility (11)

Microeconomics

Proof:

• Plug in −λ from the second equation results in

∂v(p,M)

∂pl
= −∂v(p,M)

∂M
D∗l

such that

− ∂v(p,M)/∂pl
∂v(p,M)/∂M

= Dl(p,M).

• Note that ∂v(p,M)/∂M by our properties on the indirect utility
function.
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Theorem of the Maximum (1)

Microeconomics

• Consider a constrained optimization problem:

max f(x) s.t. g(x, q) = 0

where q ∈ Q is a vector of parameters. Q ∈ RS and x ∈ RN .
f(x) is assumed to be continuous. C(q) is the constraint set
implied by g.
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Theorem of the Maximum (1)

Microeconomics

• Definition: x(q) is the set of solutions of the problem, such that
x(q) ⊂ C(q) and v(q) is the maximum value function, i.e. f(x)
evaluated at an optimal x ∈ x(q).

• Theorem of the Maximum: Suppose that the constraint
correspondence is continuous and f is continuous. Then the
maximizer correspondence x : Q→ RN is upper hemicontinuous
and the value function v : Q→ R is continuous. [T M.K.6], page
963.
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Duality Theorem (1)

Microeconomics

• Until now we have not shown that c(M,y) or m(p, u) is
differentiable when u(x) is strictly quasiconcave.

• This property follows from the Duality Theorem.

• MWG, Chapter 3.F, page 63.
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Duality Theorem (2)

Microeconomics

• A set is K ∈ Rn is convex if αx+ (1− α)y ∈ K for all x, y ∈ K
and α ∈ [0, 1].

• A half space is a set of the form {x ∈ Rn|p · x ≥ c}.

• p 6= 0 is called the normal vector: if x and x′ fulfill
p · x = p · x′ = c, then p · (x− x′) = 0.

• The boundary set {x ∈ Rn|p · x = c} is called hyperplane. The
half-space and the hyperplane are convex.
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Duality Theorem (3)

Microeconomics

• Assume that K is convex and closed. Consider x̄ /∈ K. Then
there exists a half-space containing K and excluding x̄. There is
a p and a c such that p · x̄ < c ≤ p · x for all x ∈ K (separating
hyperplane theorem).

• Basic idea of duality theory: A closed convex set can be
equivalently (dually) described by the intersection of half-spaces
containing this set.

• MWG, figure 3.F.1 and 3.F.2 page 64.
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Duality Theorem (4)

Microeconomics

• If K is not convex the intersection of the half-spaces that
contain K is the smallest, convex set containing K. (closed
convex hull of K, abbreviated by K̄).

• For any closed (but not necessarily convex) set K we can define
the support function of K:

µK(p) = inf{p · x|x ∈ K}

• When K is convex the support function provides us with the dual
description of K.

• µK(p) is homogeneous of degree one and concave in p.
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Duality Theorem (5)

Microeconomics

• Theorem - Duality Theorem: Let K be a nonempty closed set
and let µK(p) be its support function. Then there is a unique
x̄ ∈ K such that p̄ · x̄ = µK(p̄) if and only if µK(p) is
differentiable at p̄. In this case ∇pµK(p̄) = x̄.

• Proof see literature. E.g. see section 25 in Rockafellar (1970).
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Consumer Theory 5
Welfare Analysis (1)

Microeconomics

• Measurement of Welfare

• Concept of the Equivalent Variation, the Compensating Variation
and the Consumer Surplus.

• Pareto improvement and Pareto efficient

Literature: MWG, Chapter 3.I, page 80-90, [GR, Chapter 3.C]
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Consumer Theory 5
Welfare Analysis (2)

Microeconomics

• From a social point of view - can we judge that some market
outcomes are better or worse?

• Positive question: How will a proposed policy affect the welfare
of an individual?

• Normative question: How should we weight different effects on
different individuals?
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Consumer Theory 5
Welfare Analysis (3)

Microeconomics

• Definition - Pareto Improvement: When we can make
someone better off and no one worse off, then a Pareto
improvement can be made.

• Definition - Pareto Efficient: A situation where there is no way
to make somebody better off without making someone else worth
off is called Pareto efficient. I.e. there is no way for Pareto
improvements.

• Strong criterion.
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Consumer Theory 5
Consumer Welfare Analysis (1)

Microeconomics

• Preference based consumer theory investigates demand from a
descriptive perspective.

• Welfare Analysis can be used to perform a normative analysis.

• E.g. how do changes of prices or income affect the well being of
a consumer.
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Consumer Theory 5
Consumer Welfare Analysis (2)

Microeconomics

• Given a preference relation � and Walrasian demand D(p,M), a
price change from p0 to p1 increases the well-being of a
consumer if indirect utility increases. I.e. v(p1,M) > v(p0,M).

• Here we are interested in so called money metric indirect
utility functions. E.g. expressing indirect utility in terms of
monetary units.
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Consumer Theory 5
Consumer Welfare Analysis (3)

Microeconomics

• Suppose u1 > u0, u1 = v(p1,M) arises from p1,M and
u0 = v(p0,M) from p0,M .

• With p fixed at p̄, the property of the expenditure function that
m(p, u) is increasing in u yields: m(p̄, u1)) = m(p̄, v(p̄, M̃1)) =
M̃1 > m(p̄, v(p̄, M̃0)) = m(p̄, u0) = M̃0 - i.e. it is an indirect
utility function which measures the degree of well-being in money
terms.

• See MWG, Figure 3.I.1, page 81.
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Consumer Theory 5
Consumer Welfare Analysis (4)

Microeconomics

• Based on these considerations we set p̄ = p0 or p1 and
M = m(p0, u0) = m(p1, u1); we define:

– Definition - Equivalent Variation: “old prices”

EV (p0, p1,M) = m(p0, u1)−m(p0, u0)

= m(p0, u1)−m(p1, u1) = m(p0, u1)−M .

– Definition - Compensating Variation: “new prices”

CV (p0, p1,M) = m(p1, u1)−m(p1, u0)

= m(p0, u0)−m(p1, u0) = M −m(p1, u0) .
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Consumer Theory 5
Consumer Welfare Analysis (5)

Microeconomics

• EV measures the money amount that a consumer is indifferent
between accepting this amount and the status after the price
change (i.e. to attain a utility level u1).

• CV measures the money amount a consumer is willing to pay to
induce the price change from p0 to p1 (i.e. to obtain utility level
u0 at the new price p1). This money amount can be negative as
well.

• Discuss MWG, Figure 3.1.2, page 82; , [GR, Figure 3.6, p. 59]. if
p1 falls then the consumer is prepared to pay the amount CV ,
i.e. CV > 0.
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Consumer Theory 5
Consumer Welfare Analysis (6)

Microeconomics

• Both measures are associated with Hicksian demand.

• Suppose the only p1 changes, then p0
1 6= p1

1 and p0
l = p1

l for
l ≥ 2. With M = m(p0, u0) = m(p1, u1) and
h1(p, u) = ∂m(p, u)/∂p1 we get

EV (p0, p1,M) =

∫ p0
1

p1
1

h1((p1, p−), u1)dp1

CV (p0, p1,M) =

∫ p0
1

p1
1

h1((p1, p−), u0)dp1
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Consumer Theory 5
Consumer Welfare Analysis (7)

Microeconomics

• Discuss these integrals - MWG, Figure 3.1.3, page 83; [GR, Figure 3.6, p. 59].

Here the following case is considered. p0 and p1 are L dimensional price

vectors. Only the first component p1 is changed. The other prices

p− := (p2, . . . , pL) are kept constant. M is constant as well.

• EV,CV increase if utility increases and vice versa.

• If x1 is a normal good, then the slope of the Walrasian demand function

x1(p,M) is smaller than the slopes of h1(p, .) (in absolute terms).

• We get EV (p0, p1,M) > CV (p0, p1,M) if the good is normal (in

absolute value), the converse is true for inferior goods.

• EV (p0, p1,M) = CV (p0, p1,M) with zero income effect for good 2. This

is the case with quasilinear preferences for good two (see [D 3.B.7]).
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Consumer Theory 5
Consumer Welfare Analysis (8)

Microeconomics

• EV (p0, p1,M) = CV (p0, p1,M) with zero income effect for
good 1.

In this case EV (p0, p1,M) = CV (p0, p1,M) is also equal to the
change in Marshallian Consumer Surplus.

• Definition - Marshallian Consumer Surplus:
MCSl(p,M) =

∫∞
p
xl((pl, p−),M)dpl

• Definition - Area Variation:

AV (p0, p1,M) =
∫ p0

l

p1
l

x(pl, p−,M)dpl.
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Consumer Theory 5
Area Variation Measure (1)

Microeconomics

• Definition - Area Variation:

AV (p0, p1,M) =
∫ p0

1

p1
1
x(p1, p−,M)dp1.

• It measures the change in Marshallian consumer surplus.

• If the income effect is zero this measure corresponds to EV and
CV . (see Marshallian Consumer Surplus)

• The argument that AV provides are good approximation of EV
or CV can but need not hold. See MWG, Figure 3.1.8, page 90.

Jehle/Reny, 1st edition, Theorem 6.3.2, page 278: Willing’s
upper and lower bounds on the difference between CS and CV.
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Consumer Theory 5
Partial Information (1)

Microeconomics

• Consider a bundle x0, price vectors p0, p1 and wealth M . Often
a complete Walrasian demand function cannot be observed,
however:

• Theorem - Welfare and Partial Information I: Consider a
consumer with complete, transitive, continuous, and locally
non-satiated preferences. If (p1− p0) · x0 < 0, then the consumer
is strictly better of with (p1,M) compared to (p0,M). [P 3.I.1]
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Consumer Theory 5
Partial Information (2)

Microeconomics

Proof:

• With non-satiation the consumer chooses a set on the boundary
of the budget set, such that p0 · x = M . Then p1 · x < M .

• ⇒ x is affordable within the budget set under p1. By the
assumption of local non-satiation, there exists a closed set with
distance ≤ ε including a better bundle which remains within the
budget set. Then the consumer is strictly better off with p1.
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Consumer Theory 5
Partial Information (3)

Microeconomics

• What happens if (p1 − p0) · x0 > 0 ? This implies
(αp1 + (1− α)p0 − p0) · x0 > 0 for α > 0.

• Theorem - Welfare and Partial Information II: Consider a
consumer with a twice differentiable expenditure function. If
(p1 − p0) · x0 > 0, then there exists an ᾱ ∈ (0, 1) such that for
all 0 < α ≤ ᾱ, we have m((1− α)p0 + αp1), u0) > M the
consumer is strictly better off under p0,M than under
(1− α)p0 + αp1,M . [P 3.I.2]
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Consumer Theory 5
Partial Information (4)

Microeconomics

Proof:

• We want to show that CV is negative, if we move from p0 to p1.
Let pα = (1− α)p0 + αp1. We want to show that
CV = m(p0, u0)−m(pα, u0) < 0 for some ᾱ ≥ α > 0. In other
words m(pα, u0)−m(p0, u0) > 0.

• Taylor expand m(p, u) at p0, u0:

m(pα, u0) = m(p0, u0) + (pα − p0)>∇pm(p0, u0) +R(p0, pα)

where R(p0, pα)/||pα − p0|| → 0 if pα → p0. m(., .) has to be at
least C1. (fulfilled since second derivatives are assumed to exist).
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Consumer Theory 5
Partial Information (5)

Microeconomics

Proof:

• By the properties of this approximation, there has to exist an ᾱ,
where the Lagrange residual can be neglected. Then
sgn(m(pα, u0)−m(p0, u0)) = sgn

(
(pα − p0)>∇pm(p0, u0)

)
for

all α ∈ [0, ᾱ].

• This results in m(pα, u0)−m(p0, u0) > 0 by the assumption that
(pα − p0)>∇pm(p0, u0) > 0 and the fact that
∇pm(p0, u0) = h(p0, u0) = x(p0,m(p0, u0)).
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Consumer Theory 5
Partial Information (6)

Microeconomics

• Remark: Note that with a differentiable expenditure function the
second order term is non-positive, since the expenditure function
is concave.

• Remark: We can show the former theorem also in this way
(differentiability assumptions have to hold in addition). There
the non-positive second order term does not cause a problem,
since there we wanted to show that m(p1, u0)−m(p0, u0) < 0 if
(p1 − p0) · x0 < 0.
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Production 1
Motivation

Microeconomics

• Production

• Production possibility sets and the production function

• Marginal product, marginal rate of substitution and returns to
scale.

MasColell, Chapter 5, GR, Chapters 5-6.
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Production 1
Firms (1)

Microeconomics

• In this section we treat the firm as a black box. We abstract
from ownership, management, organization, etc.

• Assumption: A firm maximizes its profit.

• How can we justify this assumption?

• Definition - Production: The process of transforming inputs to
outputs is called production.

• The state of technology restricts what is possible in combining
inputs to produce output (technological feasibility).
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Production 1
Production Function (1)

Microeconomics

• Often it is sufficient to work with an output yq ≥ 0 and inputs
z = (z1, . . . , zm) where zi ≥ 0.

• Definition - Production Function: A function describing the
the relationship between yq and z is called production function f .
[GR, p. 97]

• Remark: The production functions assigns the maximum of
output yq that can be attained to an input vector z.
f(z) = max{yq ≥ 0|z ∈ Rm+}; (output efficient production).
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Production 1
Production Function (2)

Microeconomics

• Assumption PF on Production Function: The production
function f : Rm+ → R+ is continuous, strictly increasing and
strictly quasiconcave on Rm+ ; f(0) = 0.

• Assumption PF’ - Production Function: The production
function f : Rm+ → R+ is continuous, increasing and
quasiconcave on Rm+ ; f(0) = 0.
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Production 1
Production Function (3)

Microeconomics

• Considering production functions two approaches are common:
(i) variation one factor, (ii) variation all factors in the same
proportion. To do this we define:

• Definition - Marginal Product: If f is differentiable then
∂f(z)
∂zi

= MPi(z) is called marginal product of the input factor zi.

• By Assumption PF all marginal products are strictly larger than
zero, with PF’ MPi(z) ≥ 0.

• Definition - Average Product: The fraction f(z)/zi = APi(z)
is called average product of the input factor zi.

• [GR, Chapter 5.B], discuss [GR, Figure 5.6, p. 106].
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Production 1
Production Function (4)

Microeconomics

• The assumption that f(z) is strictly increasing in each zi results
in MPi > 0 for all i = 1, . . . ,m.

• Definition - Isoquant: The set Q(yq) where output is constant
is called yq-level isoquant. I.e. Q(yq) = {z ≥ 0|f(z) = yq}.

• In addition to Q(yq) we can define the the contour set
S̄(yq) = {z ≥ 0|f(z) ≥ yq}. Since f is quasiconcave, this set is
convex ⇒ isoquants are convex curves and the contour set or
input requirement set is a convex set. [GR, Figure 5.1, p. 107]

• With a strictly quasiconcave f(z) as assumed in Assumption PF
we obtain a strictly convex input requirement set.
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Production 1
Production Function (5)

Microeconomics

• In addition, by means of the isoquant we can observe how input
factors can be substituted to remain on the same level of output.

• Definition - Marginal Rate of Technical Substitution:

MRTSij(z) =
MPi
MPj

• The slope of the isoquant is given by −dzjdzi = MPi
MPj

• Discuss: MPi
MPj

> 0 (≥ 0) and the concept of technical

efficiency: To remain on the same level of output at least one
input has to be increased if one input factor has been decreased;
see [GR, p. 98]
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Production 1
Production Function (6)

Microeconomics

• In general the MRTS of two input depends on all other inputs
(note that the MPi depends on z).

• In applied work it is often assumed that inputs can be classified,
such that the MRTS within a class is not affected by inputs
outside this class.
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Production 1
Production Function (7)

Microeconomics

• Since MRTSij is sensitive to the dimension of the
measurements of zi and zj an elasticity can be used.

• Definition - Elasticity of Substitution: For a differentiable
production function the elasticity of substitution between inputs
zi and zj is defined by

σij :=
d(zj/zi)

d(MPi/MPj)

(MPi/MPj)

(zj/zi)
=

d log(zj/zi)

d log(MPi/MPj)
.

• With a quasiconcave production function σij ≥ 0. [GR, p. 99]
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Production 1
Production Function (8)

Microeconomics

• Suppose that zi/zj remains constant for all i, j = 1, . . . ,m.

• Now we consider variations in scale. That is we consider z,
where zi/zj remains constant for all i, j = 1, . . . ,m, and consider
output yq = f(z′) where z′ = µz and µ > 0.

• Discuss: This analysis is of interest especially for the long run
behavior of a firm.

• [GR, Chapter 5.C]
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Production 1
Production Function (9)

Microeconomics

• Definition - Returns to Scale. A production function f(z)
exhibits

– Constant returns to scale if f(µz) = µf(z) for µ > 0 and all z.
– Increasing returns to scale if f(µz) > µf(z) for µ > 1 and all
z.

– Decreasing returns to scale if f(µz) < µf(z) for µ > 1 and all
z.
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Production 1
Production Function (10)

Microeconomics

• With constant returns the scale the production function has to
be homogeneous of degree one.

• Homogeneity larger than one is sufficient for increasing returns to
scale but not necessary.

• Most production function/technologies often exhibit regions with
constant, increasing and decreasing returns to scale.
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Production 1
Production Function (11)

Microeconomics

• Suppose that zi is varied, while z− = (zj)j=1,...,m, j 6=i remains
constant.

• This is called variations in input proportions. [GR, Chapter
5.D]

• To investigate variations in input proportions we are already
equipped with the marginal MPi and the average product APi.
In particular discuss [GR, Figure 5.6, p. 106]
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Production 1
Production Possibility Set (1)

Microeconomics

• The state of technology restricts what is possible in combining
inputs to produce output (technological feasibility).

• Definition - Production Possibility Set: A set Y ∈ RL
describing possible production plans is called production
possibility set, Y = {y ∈ RL| y is a feasible production plan}.
yi < 0 are called inputs, yi > 0 outputs. [MWG p.128], [GR,
p. 107]
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Production 1
Production Possibility Set (2)

Microeconomics

• Often the production possibility set is described by a function
F (.) called transformation function. This function has the
property Y = {y ∈ RL|F (y) ≤ 0} and F (y) = 0 if and only if we
are on the boundary of the set Y . {y ∈ RL|F (y) = 0} is called
transformation frontier.

• Definition - Marginal Rate of Transformation: If F (.) is
differentiable and F (ȳ) = 0, then for commodities k and l the
ration

MRTlk(ȳ) =
∂F (ȳ)/∂yl
∂F (ȳ)/∂yk

is called marginal rate of transformation of good l for good k.
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Production 1
Production Possibility Set (3)

Microeconomics

• If l and k are outputs we observe how output of l increases if k is
decreases.

• With inputs .... In this case the marginal rate of transformation
is called marginal rate of technical substitution.

• With a single output yq, production is often described by means
of a production function yq = f(z1, . . . , zm), where the inputs
zi ≥ 0, i = 1, . . . ,m. In this case
Y = {(−z1, . . . ,−zm, yq)>|yq − f(z1, . . . , zm) ≤
0 and z1, . . . , zm ≥ 0}.
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Production 1
Production Possibility Set (4)

Microeconomics

• Assumption and Properties of production possibility sets

P1 Y is non-empty.
P2 Y is closed. I.e. Y includes its boundary, if yn ∈ Y converges

to y then y ∈ Y .
P3 No free lunch. If yl ≥ 0 for l = 1, . . . , L, then y = 0. It is not

possible to produce something from nothing. Therefore
Y ∩RL

+ = 0 ∈ Y (note that 0 ∈ Y has to be assumed here).
See Figure MWG, 5.B.2, page 131.
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Production 1
Production Possibility Set (5)

Microeconomics

P4 Possibility of inaction: 0 ∈ Y . This assumption holds at least
ex-ante, before the setup of the firm. If we have entered into
some irrevocable contracts, then a sunk cost might arise.

P5 Free Disposal: New inputs can be acquired without any reduction
of output. If y ∈ Y and y′ ≤ y then y′ ∈ Y . For any y ∈ Y and
x ∈ RL+, we get y − x ∈ Y . See MWG, Figure 5.B.4, page 132.

P6 Irreversibility: If y ∈ Y and y 6= 0, then −y /∈ Y . It is impossible
to reverse a possible production vector. We do not come from
output to input.
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Production 1
Production Possibility Set (6)

Microeconomics

P7 Nonincreasing returns to scale: If y ∈ Y , then αy ∈ Y for all
α ∈ [0, 1]. I.e. any feasible input-output vector y can be scaled
down. See Figure 5.B.5.

P8 Nondecreasing returns to scale: If y ∈ Y , then αy ∈ Y for any
scale α ≥ 1. I.e. any feasible input-output vector y can be scaled
up. See Figure 5.B.6.

P9 Constant returns to scale: If y ∈ Y , then αy ∈ Y for any scale
α ≥ 0. I.e. any feasible input-output vector y can be scaled up
and down.
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Production 1
Production Possibility Set (7)

Microeconomics

P10 Additivity - free entry: If y ∈ Y and y′ ∈ Y , then y + y′ ∈ Y .
This implies that ky ∈ Y for any positive integer k.

• Example: Output is an integer. If y and y′ are possible, additivity
means that y + y′ is still possible and the production of y has no
impact on y′ and vice versa. E.g. we have two independent
plants.

• As regards free-entry: If the aggregate production set Y is
additive, then unrestricted entry is possible. To see this, if y ∈ Y
is produced by firm A and y′ ∈ Y by firm B, then y + y′ ∈ Y if
additivity holds. That is, the production plans of firm A do not
interfere with the production plans of firm B (and vice versa). In
other words, the aggregate production set has to satisfy
additivity whenever unrestricted entry is possible.
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Production 1
Production Possibility Set (8)

Microeconomics

P11 Convexity: Y is a convex set. I.e. if y ∈ Y and y′ ∈ Y , then
αy + (1− α)y′ ∈ Y .

• Convexity implies nonincreasing returns to scale.

• We do not increase productivity by using unbalanced input
combinations. If y and y′ produce the same output, then a
convex combination of the correspond inputs must at least
produce an output larger or equal to the output with y and y′.
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Production 1
Production Possibility Set (9)

Microeconomics

P12 Y is convex cone: Y is a convex cone if for any y, y′ ∈ Y and
constants α, β ≥ 0, αy + βy′ ∈ Y . Conjunction between
convexity and constant returns to scale property.
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Production 2
Profits and Cost (1)

Microeconomics

• Profit Maximization

• Cost minizitation

• Price taking

• Cost, profit and supply function

MasColell, Chapter 5.C, [GR, Chapters 6-7]
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Theory of the Firm
Profits and Cost (2)

Microeconomics

• Assume that the prices (p1, . . . , pL) are larger than zero and
fixed (price taking assumption).

• We assume that firms maximize profits.

• The price of the output yq is pq, the price vector of the inputs z
is pz = (pz1, . . . , pzm)T . pq and pz are contained in (p1, . . . , pL),
i.e. m+ 1 ≤ L; yq and −z are contained in y.

• The profit is given by revenue minus cost, that is

pqyq − pz · z = pqyq −
m∑
i=1

pzizi

.
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Production 2
Cost Function (1)

Microeconomics

• Profit maximization implies cost minimization!

• Production does not tell us anything about the minimal cost to
get output.

• On the other hand side - if the firm is not a price taker in the
output market, we cannot use the profit function, however the
results on the cost function are still valid.

• With increasing returns to scale where the profit function can
only take the values 0 or +∞, the cost function is better
behaved since the output is kept fixed there.
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Production 2
Cost Function (2)

Microeconomics

• Assume that the input factor prices pz � 0 are constant. In
addition we assume that the production function is at least
continuous.

• Definition - Cost: Expenditures to acquire input factors z to
produce output yq; i.e. pz · z.

• Definition - Cost Minimization Problem (CMP): minz pz · z
s.t. f(z) ≥ yq. The minimal value function C(pz, yq) is called
cost function. The optimal input factor choices are called
conditional factor demand correspondence z(pz, yq). [GR,
Chapter 6.B]
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Production 2
Cost Function (3)

Microeconomics

• Existence: Construct the set {z|f(z) ≥ yq}. Under the usual
assumptions on the production function the set is closed. By
compactifying this set by means of {z|f(z) ≥ yq, zi ≤ pz · z̄/wi}
for some z̄ with f(z̄) = yq we can apply the Weierstraß theorem.

• By Berge’s theorem of the maximum we get a continuous cost
function C(pz, yq) if constraint correspondence is continuous.
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Production 2
Cost Function (4)

Microeconomics

• Suppose the f(z) is differentiable and the second order
conditions are met. We z∗ by means of Kuhn-Tucker conditions
for the Lagrangian:

L(x, λ) = pz · z + λ(yq − f(z))

∂L

∂zi
= pzi − λ

∂f(z)

∂zi
= pzi − λMPi ≥ 0

∂L

∂zi
pzi = 0

∂L

∂λ
= yq − f(z) ≤ 0 ,

∂L

∂λ
λ = 0 .
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Production 2
Cost Function (5)

Microeconomics

• By the no-free-production assumption at least one z > 0 to get
yq > 0. Therefore the constraint yq ≤ f(z) has to be binding
and ∂L/∂λ = 0, such that λ > 0.

• At least one ∂L/∂zi = 0 with zi > 0.

• For all zi > 0 we get: λ = pzi/MPi for all i where zi > 0.
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Production 2
Cost Function (6)

Microeconomics

• By the envelope theorem we observe that:

∂C(pz, yq)

∂yq
=
∂L

∂yq
= λ

• Definition - Marginal Cost: LMC(yq) =
∂C(pz,yq)

∂yq
is called (long run)

marginal cost.

• Definition - Average Cost: LAC(yq) =
C(pz,yq)

yq
is called (long run)

average cost.

• Sometimes the dependence on the prices is neglected, therefore the notion

C(yq), etc.

• Discuss the long run cost function, the marginal cost and average cost in

graphical terms. [GR, Figure 6.5, p. 120]
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Production 2
Cost Function (7)

Microeconomics

• Theorem: Properties of the Cost Function C(pz, yq):
[P 5.C.2] Suppose that C(pz, yq) is a cost function of a single
output technology Y with production function f(z) and z(pz, yq)
is the associated conditional factor demand correspondence.
Assume that Y is closed and satisfies the free disposal property.
Then

(i) C(pz, yq) is homogeneous of degree one and pz and
nondecreasing in yq.

(ii) Concave in pz.
(iii) If the set {z ≥ 0|f(z) ≥ yq} is convex for every yq, then

Y = {(−z, yq)|pz · z ≥ C(pz, yq)} for all pz � 0.
(iv) z(pz, yq) is homogeneous of degree zero in pz.
(v) If the set {z ≥ 0|f(z) ≥ yq} is convex then z(pz, yq) is a

convex set, with strict convexity z(pz, yq) is a function.
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Production 2
Cost Function (8)

Microeconomics

• Theorem: Properties of the Cost Function C(pz, yq): [P 5.C.2] Suppose

that C(pz, yq) is a cost function of a single output technology Y with

production function f(z) and z(pz, yq) is the associated conditional factor

demand correspondence. Assume that Y is closed and satisfies the free

disposal property. Then

(vi) Shepard’s lemma: If z(p̄z, yq) consists of a single point, then C(.) is

differentiable with respect to pz at p̄z and ∇pzc(p̄z, yq) = z(p̄z, yq).

(vii) If z(.) is differentiable at p̄z then Dwz(p̄z, yq) = D2
wC(p̄z, yq) is

symmetric and negative semidefinite with DwC(p̄z, yq) · p̄z = 0.

(viii) If f(.) is homogeneous of degree one, then C(.) and z(.) are

homogeneous of degree one in yq.

(ix) If f(.) is concave, then C(.) is a convex function of yq (marginal costs are

nondecreasing in yq).
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Theory of the Firm
Cost Function (9)

Microeconomics

• If some inputs are fixed, then we derive the so called short run
cost function .

• Definition - Fixed Cost: Consider the variable inputs zv and
the fixed inputs zf . The fixed cost is given by FC = pzf · zf .
SC(pz, yq, z

f) is the minimal value function we obtain with the
fixed inputs. The difference SC(pz, yq, z

f)− FC is called
variable cost V C(pz, yq, z

f).

• The short run marginal cost is SMC(pz, yq, z
f) =

∂SC(pz,yq,z
f)

∂yq
,

the short run average cost is SAC(pz, yq, z
f) =

SC(pz,yq,z
f)

yq
.

• C(pz, yq, z
f)/yq = AV C(pz, yq, z

f) is called average variable
cost.
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Theory of the Firm
Cost Function (10)

Microeconomics

• Discuss the long run cost function, the marginal cost and average
cost in graphical terms.

• Envelope property of the long run cost, [GR, Figure 6.11,
p. 130]
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Production 2
Profits - Single Output Case (1)

Microeconomics

• Suppose the there is only one output yq ≥ 0 and input z ≥ 0.
The relationship between yq and z is described by a differentiable
production function. The price of yq is pq > 0. Input factor prices
are pz � 0. We assume that the second order conditions are met.

• The profit maximization problem now reads as follows:

π(pq, pz) := { max
z,yq≥0

pqf(z)− pz · z s.t. f(z) ≥ yq}

• The input factor demand arising from this problem z = z(pq, pz)
is called input factor demand, while yq = yq(pq, pz) is called
supply function/correspondence.

• [GR, Chapter 7.A]
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Production 2
Profits - Single Output Case (2)

Microeconomics

• Is the profit function well defined?

• What happens if f(z) exhibits increasing returns to scale?

• Here pqf(µz)− pz · µz > pqµf(z)− pz · µz for all µ > 1.

• I.e. the profit can always be increased when increasing µ.

• With constant returns to scale no problem arises when
π(pz, pq) = 0. Then pqf(µz)− pz · µz = pqµf(z)− pz · µz = 0
for all µ.
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Production 2
Profits - Single Output Case (3)

Microeconomics

• From these remarks we get the (long run) problem:

max{pqyq − pz · z} s.t f(z) ≥ yq

• The Lagrangian is now given by:

L(yq, z, λ) = pqyq − pz · z + λ(f(z)− yq)

• The marginal product will be abbreviated by MPi = ∂f(z)
∂zi

.
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Production 2
Profits - Single Output Case (4)

Microeconomics

• Then the Kuhn-Tucker conditions are given by:

∂L

∂yq
= pq + λ ≤ 0 ,

∂L

∂yq
yq = 0

∂L

∂zi
= −pzi − λMPi ≤ 0 ,

∂L

∂zi
zi = 0

∂L

∂λ
= f(z)− yq ≥ 0 ,

∂L

∂λ
λ = 0
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Production 2
Profits - Single Output Case (5)

Microeconomics

• This yields:

pzi = pq
∂f(z)

∂zi
, ∀zi > 0

• Definition - Marginal Revenue Product: pq
∂f(z)
∂zi

.

• For inputs i and j we derive:

∂f(z)/∂zi
∂f(z)/∂zj

=
pzi
pzj
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Production 2
Profits - Single Output Case (6)

Microeconomics

• By means of the cost function we can restate the PMP:

max
yq≥0

pqyq − C(pz, yq)

• The first order condition becomes:

pq −
∂C(pz, yq)

∂yq
≤ 0

with (pq − ∂C(pz,yq)
∂yq

) = 0 if yq > 0.

• [GR, Chapter 7.A and Figure 7.1, p. 145]
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Production 2
Profits - Single Output Case (6)

Microeconomics

• If some inputs zf are fixed we obtain the short run profit
maximization problem. By means of the short run cost function
we get:

max
yq≥0

pqyq − SC(pz, yq, z
f)

• The first order condition becomes:

pq −
∂SC(pz, yq, z

f)

∂yq
≤ 0

with (pq − ∂SC(pz,yq,z
f)

∂yq
) = 0 if yq > 0.

• [GR, Chapter 7.A and Figure 7.1, p. 148]
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Theory of the Firm 3
Profit Maximization & Shut Down (1)

Microeconomics

• Suppose that the second order conditions are met for the short
and the long run maximization problem.

• From the profit maximization problems we observe that when
yq = 0 then π(pq, pz) = 0 and π(pq, pz, z

f) = −pfz · zf .

• I.e. the firm has the fall-back to produce nothing.

• Then yq > 0 requires that π(pq, pz) ≥ 0 and
π(pq, pz, z

f) ≥ −pfz · zf participation constraint.

• [GR, Chapter 7.A and Figure 7.1, p. 145]
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Theory of the Firm 3
Profit Maximization & Shut Down (2)

Microeconomics

• When we apply the naive rule: choose yq such that
pq = MC(pz, yq) or SMC(pz, yq, z

f) the above requirements
have not to be satisfied.

• The individual rationality constraints imply: pq ≥ AC(pz, yq) and
pq ≥ AV C(pz, yq, z

f).

• Long run supply function: yq(pq, pz) = MC(pz, yq) for yq where
pq ≥ AC(pz, yq) holds, else yq(pq, pz) = 0.

• Short run supply functions yq(pq, pz, z
f) = SMC(pz, yq, z

f) for
yq where pq ≥ AV C(pz, yq, z

f) holds, else y(pq, pz, z
f) = 0.

• [GR, Chapter 7.A and Figure 7.2, p. 148]
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Theory of the Firm 3
Profit Maximization & Shut Down (3)

Microeconomics

• From the analysis on the last slides it follows that: Neither the
long run supply function yq(pq, pz) nor the short run supply
function yq(pq, pz, z

f) has to be continuous in pq.

• This discontinuity arises because of a non-convexity in the
production set.
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Theory of the Firm 3
Profit Maximization & Shut Down (4)

Microeconomics

• For the short run problem we get:

max{pqyq − pz · u} s.t f(z) ≥ yq , pqyq − pz · z ≥ −pfzzf

• The Lagrangian of (i) is now given by:

L(yq, z, λ) = pqyq − pz · z + λ(f(z)− yq) + λπ(pqyq − pvz · zv)

191



Production 2
Profits (1)

Microeconomics

• Assume that p = (p1, . . . , pL) are larger than zero and fixed
(price taking assumption).

• We assume that firms maximize profits.

• Given an Input-Output vector y, the profit generated by a firm is
p · y.

• We assume that Y is non-empty, closed and free disposal holds.

192



Production 2
Profits (2)

Microeconomics

• Definition: Given the production possibility set Y , we get the
profit maximization problem

max
y

p · y s.t. y ∈ Y.

• If Y can be described by a transformation function F , this
problem reads as follows:

max
y

p · y s.t. F (y) ≤ 0.

• Define π(p) = supy p · y s.t. y ∈ Y .
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Production 2
Profits (3)

Microeconomics

• Definition - Profit function π(p): The maximum value
function associated with the profit maximization problem is
called profit function. The firm’s supply correspondence y(p)
is the set of profit maximizing vectors {y ∈ Y |p · y = π(p)}.

• The value function π(p) is defined on extended real numbers

(R̄ = R ∪ {−∞,+∞}). The set Sp = {p · y|y ∈ Y } is a subset of R.

{p · y|y ∈ Y } has an upper bound in R̄. For p where Sp is unbounded

(from above) in R we set π(p) =∞.

• If Y is compact a solution (and also the max) for the profit maximization

problem exits. If this is not the case π(p) =∞ is still possible. The profit

function exists by Bergs theorem of the maximum if the constraint

correspondence is continuous.

• We follow MWG and write maxy p · y s.t. y ∈ Y , although ....; Jehle/Reny

call π(p, pz) well defined if π(p, pz) <∞.
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Production 2
Profits (4)

Microeconomics

• Suppose that F (.) is differentiable, then we can formulate the
profit maximization problem as a Kuhn-Tucker problem:

• The Lagrangian is given by: L(y, λ) = p · y − λF (y)

• Then the Kuhn-Tucker conditions are given by:

∂L

∂yl
= pl − λ

∂F (y)

∂yl
≤ 0 ,

∂L

∂yl
yl = 0

∂L

∂λ
= −F (y) ≥ 0

∂L

∂λ
λ = 0
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Production 2
Profits (5)

Microeconomics

• For those inputs and output different from zero we get:

p = λ∇yF (y)

This implies that

pl
pk

=
∂F/∂yl
∂F/∂yk

= MRTlk.

• Since the left hand side is positive by assumption, the fraction of
the right hand side and λ have to be positive.
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Production 2
Profits (6)

Microeconomics

• If yl, yk > 0, i.e. both goods are outputs, then yl, yk have to be
chosen such that the fraction of marginal rates of transformation
is equal to the ratio of prices.

• If yl, yk < 0, i.e. both goods are inputs, then yl, yk have to be
chosen such that the fraction of marginal rates of transformation
(= marginal rate of technical substitution) is equal to the
ratio of prices.

• If yl > 0, yk < 0, i.e. yl is an output and yk is an input, then
pl = ∂F/∂yl

∂F/∂yk
pk. Later on we shall observe that ∂F/∂yl

∂F/∂yk
pk is the

marginal cost of good l. See Figure 5.C.1. page 136.
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Production 2
Profit Function (1)

Microeconomics

• By means of π(p) we can reconstruct −Y , if −Y is a convex set.

• That is to say: π(p) follows from {maxy p · y s.t. y ∈ Y }, which
is equivalent to {miny − p · y s.t. y ∈ Y } and
{min−y p · (−y) s.t. (−y) ∈ −Y }.

• Remember the concept of a support function: By means of the
support function µX(p) we get by means of {x|p · x ≥ µX(p)} a
dual representation of the closed and convex set X.

• Here −π(p) = µ−Y (p) where µ−Y (p) = miny{p · (−y)|y ∈ Y }
such that −π(p) is a support function of −Y .
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Production 2
Profit Function (2)

Microeconomics

• Proposition: [5.C.1] Suppose that π(p) is the profit function of
the production set Y and y(p) is the associated supply
correspondence. Assume that Y is closed and satisfies the the
free disposal property. Then

1. π(p) is homogeneous of degree one.
2. π(p) is convex.
3. If Y is convex, then Y = {y ∈ RL|p · y ≤ π(p) , ∀p� 0}
4. y(p) is homogeneous of degree zero.
5. If Y is convex, then y(p) is convex for all p. If Y is strictly

convex, then y(p) is single valued.
6. Hotelling’s Lemma: If y(p̄) consists of a single point, then
π(p) is differentiable at p̄ and ∇pπ(p̄) = y(p̄).

7. If y is differentiable at p̄, then Dpy(p̄) = D2
pπ(p̄) is a

symmetric and positive semidefinite matrix with Dpy(p̄)p̄ = 0.
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Production 2
Profit Function (3)

Microeconomics

Proof:

• π(p) is homogeneous of degree one and y(p) is homogeneous of
degree zero follow from the structure of the optimization
problem. If y ∈ y(p) solves {max p · y s.t. F (y) ≤ 0} then it also
solves α{max p · y s.t. F (y) ≤ 0} and
{maxαp · y s.t. F (y) ≤ 0}, such that y ∈ y(αp) for any α > 0.

• This hold for every y ∈ y(p) ⇒ y(p) is homogeneous of degree
zero and π(p) is homogeneous of degree one by the structure of
the profit equation.
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Production 2
Profit Function (4)

Microeconomics

Proof:

• π(p) is convex: Consider p1 and p2 and the convex combination
pν. y1, y2 and yν are arbitrary elements of the optimal supply
correspondences.

• We get p1y1 ≥ p1yν and p2y2 ≥ p2yν

• Multiplying the first term with ν and the second with 1− ν,
where ν ∈ [0, 1] results in
νp1y1 + (1− ν)p2y2 ≥ νp1yν + (1− ν)p2yν ≥ pνyν which implies

νπ(p1) + (1− ν)π(p2) ≥ π(pν)
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Production 2
Profit Function (5)

Microeconomics

Proof:

• If Y is convex then Y = {y ∈ RL|p · y ≤ π(p)} for all p� 0: If
Y is convex, closed and free disposal holds, then π(p) provides a
dual description of the production possibility set.

202



Production 2
Profit Function (6)

Microeconomics

Proof:

• If Y is convex then y(p) is a convex, with strict convexity y(p) is
a function: If Y is convex then yν = νy1 + (1− ν)y2 ∈ Y .

• If y1 and y2 solve the PMP for p, then π(p) = p · y1 = p · y2. A
rescaling of the production vectors has to result in
yν = νy1 + (1− ν)y2 where p · yν has to hold.

This follows from p · y1 = p · y2 = π(p)= νπ(p) + (1− ν)π(p)=
νp ·y1+(1−ν)p ·y2= pν ·y1+p(1−ν) ·y2= p(ν ·y1+(1−ν) ·y2).
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Production 2
Profit Function (7)

Microeconomics

Proof:

• Suppose that yα solves the PMP and Y is strictly convex (every
point on the boundary is an extreme point, i.e. this point is not a
convex combination of other points in Y ). yα is an element of
Y ∩H(p, π(p)). H(p, π(p)) stands for an isoprofit hyperplane.
Suppose that there is another solution y′ solving the profit
maximization problem (PMP). So y, y′ are elements of this
hyperplane. Since y, y′ ∈ Y this implies that Y cannot be strictly
convex.

• Remark by Proposition P 5.F.1, page 150, y(p) cannot be an
interior point of y. Suppose that an interior point y′′ solves the
PMP then π(p) = p · y′′. For any interior point, there is an y
such that y ≥ y′′ and y 6= y′′. Since p� 0 this implies
p · y > p · y′′ such that an interior point cannot be optimal.
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Production 2
Profit Function (8)

Microeconomics

Proof:

• Hotellings lemma: Follows directly from the duality theorem:
∇pπ(p̄) = y(p̄); (see [P 3.F.1], page 66).

• Assume that the envelope-theorem can be applied, then

∂π(p̄)

∂pi
=
∂L(y, λ)

∂pi
= yi(p̄).
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Production 2
Profit Function (9)

Microeconomics

Proof:

• Property 7: If y(p) and π are differentiable, then
Dpy(p̄) = D2

pπ(p). By Young’s theorem this matrix is symmetric,
since π(p) is convex in p the matrix has to be positive
semidefinite (see Theorem M.C.2).

• Dpy(p)p = 0 follows from the Euler theorem (see [MWG,
Theorem M.B.2, p. 929]).
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Production 2
Profit Function (10)

Microeconomics

• By Hotellings lemma inputs and outputs react in the same
direction as the price change: Output increases is output prices
in increase, while inputs decrease if its prices increase (law of
supply), i.e.:

(p− p′)[y(p)− y(p′)] ≥ 0

• This law holds for any price change (there is no budget
constraint, therefore any form of compensation is not necessary.
We have no wealth effect but only substitution effects).

• We can also show that the law of supply holds also for the
non-differentiable case. (We know that p1y1 ≥ p1y for any
y1 ∈ y(p1) and p2y2 ≥ p2y for any y2 ∈ y(p1), sum up ....)
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Production 3
Efficiency (1)

Microeconomics

• We want to check whether or what production plans are wasteful.

• Definition:[D 5.F.1] A production vector is efficient if there is
no y′ ∈ Y such that y′ ≥ y and y′ 6= y.

• There is no way to increase output with given inputs or to
decrease input with given output (sometimes called technical
efficiency).

• Discuss MWG, Figure 5.F.1, page 150.

208



Production 3
Efficiency (2)

Microeconomics

• Proposition[P 5.F.1] If y ∈ Y is profit maximizing for some
p� 0, then y is efficient.

• Version of the fundamental theorem of welfare economics. See
Chapter 16.

• It also tells us that a profit maximizing firm does not choose
interior points in the production set.
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Production 3
Efficiency (3)

Microeconomics

Proof:

• We show this by means of a contradiction: Suppose that there is
a y′ ∈ Y such that y′ 6= y and y′ ≥ y. Because p� 0 we get
p · y′ > p · y, contradicting the assumption that y solves the PMP.

• For interior points suppose that y′′ is the interior. By the same
argument we see that this is neither efficient nor optimal.

210



Production 3
Efficiency (4)

Microeconomics

• This result implies that a firm chooses y in the convex part of Y
(with a differentiable transfer function F (.) this follows
immediately from the first order conditions; otherwise we choose
0 or ∞).

• The result also holds for nonconvex production sets - see Figure
5.F.2, page 150.

• Generally it is not true that every efficient production vector is
profit maximizing for some p ≥ 0, this only works with convex Y .
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Production 3
Efficiency (6)

Microeconomics

• Proposition[P 5.F.2] Suppose that Y is convex. Then every
efficient production y ∈ Y is profit maximizing for some p ≥ 0
and p 6= 0.
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Production 3
Efficiency (7)

Microeconomics

Proof:

• Suppose that y is efficient. Construct the set
Py = {y′ ∈ RL|y′ � y}. This set has to be convex. Since y is
efficient the intersection of Y and Py has to be empty.

• This implies that we can use the separating hyperplane theorem
[T M.G.2], page 948: There is some p 6= 0 such that
p · y′ ≥ p · y′′ for every y′ ∈ Py and y′′ ∈ Y . This implies
p · y′ ≥ p · y for every y′ � y. Therefore, we also must have
p ≥ 0. If some pl < 0 then we could have p · y′ < p · y for some
y′ � y with y′l − yl sufficiently large. This procedure works for
each arbitrary y. p 6= 0.
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Production 3
Efficiency (8)

Microeconomics

Proof:

• It remains to show that y maximizes the profit: Take an arbitrary
y′′ ∈ Y , y was fixed, p has been derived by the separating
hyperplane theorem. Then p · y′ ≥ p · y′′ for every y′ ∈ Py.
y′ ∈ Py can be chosen arbitrary close to y, such that
p · y ≥ p · y′′ still has to hold. I.e. y maximizes the profit given p.

214



Production 4
Objectives of the Firm (1)

Microeconomics

• Until now we have assumed that the firm maximizes its profit.

• The price vector p was assumed to be fixed.

• We shall see that although preference maximization makes sense
when we consider consumers, this need not hold with profit
maximization with firms.

• Only if p is fixed we can rationalize profit maximization.
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Production 4
Objectives of the Firm (2)

Microeconomics

• The objectives of a firm should be a result of the objectives of the
owners controlling the firm. That is to say firm owners are also
consumers who look at their preferences. So profit maximization
need not be clear even if the firm is owned by one individual.

• MWG argue (”optimistically”) that the problem of profit
maximization is resolved, when the prices are fixed. This arises
with firms with no market power.
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Production 4
Objectives of the Firm (3)

Microeconomics

• Consider a production possibility set Y owned by consumers
i = 1, . . . , I. The consumers own the shares θi, with∑I
i=1 θi = 1. y ∈ Y is a production decision. w is non-profit

wealth.

• Consumer i maximizes utility maxxi≥0 u(xi), s.t.
p · xi ≤ wi + θip · y.

• With fixed prices the budget set described by p · xi ≤ wi + θip · y
increases if p · y increases.

• With higher p · y each consumer i is better off. Here maximizing
profits p · y makes sense.
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Production 4
Objectives of the Firm (4)

Microeconomics

• Problems arise (e.g.) if

– Prices depend on the action taken by the firm.
– Profits are uncertain.
– Firms are not controlled by its owners (see also [GR, Chapter

20]).
– See also micro-textbook of David Kreps.
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Production 4
Objectives of the Firm (5)

Microeconomics

• Suppose that the output of a firm is uncertain. It is important to
know whether output is sold before or after uncertainty is
resolved.

• If the goods are sold on a spot market (i.e. after uncertainty is
resolved), then also the owner’s attitude towards risk will play a
role in the output decision. Maybe less risky production plans are
preferred (although the expected profit is lower).

• If there is a futures market the firm can sell the good before
uncertainty is resolved the consumer bears the risk. Profit
maximization can still be optimal.
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Production 4
Objectives of the Firm (6)

Microeconomics

• Consider a two good economy with goods x1 and x2; L = 2,
wi = 0. Suppose that the firm can influence the price of good 1,
p1 = p1(x1). We normalize the price of good 2, such that
p2 = 1. z units of x2 are used to produce x1 with production
function x1 = f(z). The cost is given by p2z = z.

• We consider the maximization problem maxxi≥0 u(xi1, xi2), s.t.
p · xi ≤ wi + θip · y.

Given the above notation p = (p1(x1), 1)>, y = (f(z),−z)>.
wi = 0 by assumption. The profit is
p · y = p1(x1)x1 − p2z = p1(f(z))f(z)− z.
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Production 4
Objectives of the Firm (7)

Microeconomics

• Assume that the preferences of the owners are such that they are
only interested in good 2.

• The aggregate amount of x2 the consumers can buy is
1
p2

(p1(f(z))f(z)− z) = p1(f(z))f(z)− z.

• Hence, maxxi≥0 u(xi2), s.t. p · xi ≤ wi + θip · y results in
max p(f(z))f(z)− z.
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Production 4
Objectives of the Firm (8)

Microeconomics

• Assume that the preferences of the owners are such that they
only look at good 1.

• The aggregate amount of x1 the consumers can buy is
1

p1(.) (p1(f(z))f(z)− z) = f(z)− z/p1(f(z)).

• Then maxxi≥0 u(xi1), s.t. p · xi ≤ wi + θip · y results in
max f(z)− z/p1(f(z)).

• We have two different optimization problems - solutions are
different.
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Production 4
Objectives of the Firm (9)

Microeconomics

• Example: Let p1(f(z)) =
√
z, then the first order conditions are

different, i.e. 1
2
√
z
f(z) +

√
zf ′(z)− 1 = 0 and f ′(z)− 1

2
√
z

= 0.

• We have considered two extreme cases: all owners prefer (i)
good 2, (ii) good 1. There is no unique output decision based on
max p · y.

• If the preferences become heterogeneous things do not become
better.
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General Equilibrium
Outline

Microeconomics

• Motivation and main questions to be investigated:

– Does a competitive economy result in a Pareto efficient
allocation?

– Can any Pareto efficient allocation be obtained by means of a
price system in a competitive economy?

• Walrasian equilibrium

• Edgeworth Box

• Robinson Crusoe economies

• General vs. partial equilibrium

MWG, Chapter 15; GR, Chapter 12
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General Equilibrium
Motivation (1)

Microeconomics

• Consider the economy as a closed and interrelated system.

• With the partial equilibrium approach these interrelations are
mainly ignored.

• The exogenous variables in general equilibrium theory are
reduced to a small number of physical realities (number of
agents, technologies available, preferences of the agents,
endowments of various agents).
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General Equilibrium
Motivation (2)

Microeconomics

• First we investigate the Walrasian/Competitive Equilibrium.

• Then we consider

– A pure exchange economy: no production is possible,
commodities are ultimately consumed, the individuals are
permitted to trade the commodities among themselves. With
two consumers and two goods this can be represented in the
Edgeworth box.

– One consumer - one firm economy, to get a first impression
on the impacts of production.
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General Equilibrium
Walrasian Equilibrium (1)

Microeconomics

• Consider I consumers, indexed i = 1, . . . , I. Xi ⊂ RL are the
consumption sets. Each consumer chooses a consumption bundle
xi, the utility is given by ui(xi). The preferences are �i.

• J firms, indexed j = 1, . . . , J . The production possibility sets are
Yj ∈ RL. The production vectors are yj.

• L goods, indexed ` = 1, . . . , L.
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General Equilibrium
Walrasian Equilibrium (2)

Microeconomics

• Total endowments of good ` is e` ≥ 0. The total net amount of
good ` available is e` +

∑
j y`j, ` = 1, . . . , L.

• We assume that the initial endowments and technological
possibilities (i.e. the firms) are owned by consumers. The

consumers’ shares are θij, where
∑I
i=1 θij = 1 for all

j = 1, . . . , J .

• The wealth of consumer i is wi(p) = p · ei.

• Remark: often the endowments are abbreviated by e`. MWG
and use ω`.
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General Equilibrium
Walrasian Equilibrium (3)

Microeconomics

• Definition - Economic Allocation [D 10.B.1]: An economic
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is a specification of a
consumption vector xi ∈ Xi for each consumer i = 1, . . . , I and
a production vector yj ∈ Yj for each firm j = 1, . . . , J . The
allocation is feasible if

I∑
i=1

x`i ≤ e` +

J∑
j=1

y`j for ` = 1, . . . , L.
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General Equilibrium
Walrasian Equilibrium (4)

Microeconomics

• Definition - Competitive Economy

– Suppose that consumer i initially owns e`i, where
e` =

∑I
i=1 e`i for ` = 1, . . . , L, ei = (ei1, . . . , eiL).

– Consumers i owns the shares θi = (θi1, . . . , θij, . . . , θiJ),

where
∑I
i=1 θij = 1 for j = 1, . . . , J .

– Markets exist for all L goods and all firms are price takers; the
prices are p = (p1, . . . , pL).
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General Equilibrium
Walrasian Equilibrium (5)

Microeconomics

• Definition - Walrasian/Competitive Equilibrium [D 10.B.3] The allocation

(x, y) and the price vector p ∈ RL constitute a competitive (Walrasian)

equilibirium if the following conditions are met:

– Profit maximization: each firm j solves maxyj∈Yj p · yj where yj ∈ Yj.
– Utility maximization: each consumer i solves

max
xi∈Xi

u(xi) s.t. p · xi ≤ p · ei +

J∑
j=1

θij(p · yj).

– Market clearing: For each good ` = 1, . . . , L:

I∑
i=1

x`i = e` +

J∑
j=1

y`j.
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General Equilibrium
Walrasian Equilibrium (6)

Microeconomics

• Definition - Pareto Optimality [D 10.B.2]: A feasible
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is Pareto optimal
(efficient) if there is no other feasible allocation
(x′1, . . . , x

′
I, y
′
1, . . . , y

′
J) such that ui(x

′
i) ≥ ui(xi) for all

i = 1, . . . , I and ui(x
′
i) > ui(xi) for some i.

• Definition - Utility Possibility Set: ”The set of attainable
utility levels”.

U = {(u1, . . . , uI) ∈ RI|∃ feasible allocation (x, y): ui ≤ ui(xi) for i = 1, . . . , I}

• Pareto efficient allocations are on the north-east boundary of this
set. See MWG, Figure 10.B.1.
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General Equilibrium
Walrasian Equilibrium (7)

Microeconomics

• Definition - Pareto Optimality [D 10.B.2]: A feasible
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is Pareto optimal
(efficient) if there is no other feasible allocation
(x′1, . . . , x

′
I, y
′
1, . . . , y

′
J) such that ui(x

′
i) ≥ ui(xi) for all

i = 1, . . . , I and ui(x
′
i) > ui(xi) for some i.

• Definition - Utility Possibility Set: ”The set of attainable
utility levels”.

U = {(u1, . . . , uI) ∈ RI|∃ feasible allocation (x, y): ui ≤ ui(xi) for i = 1, . . . , I}

• Pareto efficient allocations are on the north-east boundary of this
set. See MWG, Figure 10.B.1.
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Edgeworth Box (1)

Microeconomics

• We consider a pure exchange economy.

• Consumers posses initial endowments of commodities. Economic
activity consists of trading and consumption.

• Now we restrict to a two good - two consumer exchange
economy. Then, L = 2, X1 = X2 = R2

+, Y1 = Y2 = −R2
+ (the

free disposal technology). i is the index of the consumer, ` the
index of our goods.

• xi = (x1i, x2i) ∈ Xi. �i are the preferences of consumer i.

• The initial endowments are e`i ≥ 0. The endowment vector of
consumer i is ei = (e1i, e2i). The total endowments of good `
are ē` = e`1 + e`2. We assume that ē` > 0 for ` = 1, 2.
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Edgeworth Box (2)

Microeconomics

• From the above Definition [D 10.B.1] it follow that an economic
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is a specification of a
consumption vector xi ∈ Xi for each consumer i = 1, . . . , I and
a production vector yj ∈ Yj for each firm j = 1, . . . , J . It is
feasible if

I∑
i=1

x`i ≤ ē` +

J∑
j=1

y`j for ` = 1, . . . , L.

• For the Edgeworth Box an allocation is some consumption vector
x = (x11, x21, x21, x22) ∈ R4

+.

• An allocation is feasible if x`1 + x`2 ≤ ē` for ` = 1, 2.
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Edgeworth Box (3)

Microeconomics

• Definition - Nonwasteful allocation: If x`1 + x`2 = ē` for
` = 1, 2, then the allocation is called nonwasteful.

• Nonwasteful allocations can be described by means of an
Edgeworth box.

• See MWG, Figure 15.B.1.

• For a given price vector p = (p1, p2) the budget line intersects
the initial endowment point ei = (e1i, e2i). The slope is −p1

p2
.

Note that only the relative price −p1
p2

matters, with −λp1
λp2

,
λ ∈ R++, we get the same Edgeworth box with the same budget
sets.

• See MWG, Figure 15.B.2.
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Edgeworth Box (4)

Microeconomics

• Next we assume that the preferences of both consumers are
strongly monotone and strictly convex.

• For each price p consumer i obtains the budget set Bi(p). By
solving the utility maximization problem

maxx1i,x2i
u(xi) s.t. p · xi ≤ wi(p)

we obtain the optimal quantities x1i(p), x2i(p). By collecting
x1i(p), x2i(p) for different p, we obtain the mapping
OCi : R2

+ → R2
+, p 7→ (x1i(p), x2i(p)). This mapping is called

offer curve.

• By the assumptions on the preferences the solution of the UMP
is unique, hence here we obtain a function.
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Edgeworth Box (5)

Microeconomics

• The consumer’s offer curve lies within the upper contour set of
ei.

• See MWG, Figures 15.B.3.-15.B.5.
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Edgeworth Box (6)

Microeconomics

• Definition [D 15.B.1] A Walrasian/Competivie Equilibrium for
an Edgeworth box economy is a price vector p∗ and an allocation
x∗ = (x∗1, x

∗
2) in the Edgeworth box such that for i = 1, 2,

x∗i �i x′i for all x′i ∈ Bi(p∗).

• At any equilibrium the offer curves intersect.

• Consumer’s demand is homogeneous of degree zero in p, i.e. only
the relative price matters.

• See MWG, Figures 15.B.7 and 15.B.8.
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Edgeworth Box (7)

Microeconomics

• A Walrasian equilibrium need not be unique.

• See MWG, Figure 15.B.9.

• This could already happen with quasilinear preferences, where
the preferences are such that different numeraire goods are used.

• MWG, Chapter 10 constructs a model where all agents have
quasilinear preferences with respect to the same numeraire good.
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Edgeworth Box (8)

Microeconomics

• Recall: Definition - Quasilinear Preferences: A monotone
preference relation � on X = (−∞,∞)× RL−1 is quasilinear
with respect to commodity one (the numeraire good) if : (i) all
indifference sets are parallel displacements of each other along
the axis of commodity one. I.e. x ∼ y then x+ αe1 ∼ y + αe1

and e1 = (1, 0, . . . ). (ii) Good one is desirable: x+ αe1 � x for
all α > 0. [D 3.B.7]

• A Walrasian equilibrium need not exist.

• This happens e.g. if (i) one consumer only desires only one good
or (ii) preferences are non-convex.

• See MWG, Figure 15.B.10.
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Edgeworth Box (9)

Microeconomics

• Definition - Pareto Optimality [D 15.B.2]: A allocation x in
the Edgeworth box is Pareto optimal (or Pareto efficient) if there
is no other allocation x′ in the Edgeworth box with x′i � xi for
i = 1, 2 and x′i �i xi for some i. The set of all Pareto optimal
allocations is called Pareto set. The contract curve is the part
of the Pareto set where both consumers do at least as well as at
their initial endowments.

• See MWG, Figures 15.B.11 and 15.B.12.
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Edgeworth Box (10)

Microeconomics

• We observe in the Edgeworth box that ”every Walrasian
equilibrium allocation x∗ belongs to the Pareto set”. This
corresponds to the first theorem of welfare economics.

• Regarding the second theorem: a planner can (under convexity
assumptions, see MWG, Chapter 16) achieve any desired Pareto
efficient allocation.

• Hence we define:
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Edgeworth Box (11)

Microeconomics

• Definition - Equilibrium with Transfers [D 15.B.3]: An
allocation x in the Edgeworth box is supportable as an
equilibrium with transfers, if there is a price system p∗ and
wealth transfers T1 and T2 satisfying T1 + T2 = 0, such that for
each consumer i we have

x∗i � x′i for all x′i ∈ R2
+ such that p∗ · x′i ≤ p∗ · ei + Ti.

• In the Edworth box we observe that with continuous, strongly
monotone and strictly convex preferences any Pareto optimal
allocation is supportable.

• See MWG, Figure 15.B.13.

• See MWG, Figure 15.B.14 - to observe how the second theorem
fails with non-convex preferences.
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One-Consumer, One-Producer (1)

Microeconomics

• We introduce production in the most simple way.

• There are two price taking agents, a single consumer and a single
firm.

• There are two goods, labor (or leisure) of the consumer and the
consumption good produced by the firm.

• The preferences � defined over leisure x1 and the consumption
good x2 are continuous, strongly monotone and strictly convex.
The initial endowment consists of L̄ units of leisure and no
endowment of the consumption good.
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One-Consumer, One-Producer (2)

Microeconomics

• The firm uses labor to produce the consumption good under the
increasing and strictly concave production function yq = f(z),
where z is labor input and yq the amount of x2 produced.

• The firm maximizes its profit:

max
z≥0

pf(z)− wz

given the prices (p, w). This optimization problem results in the
optimal labor demand z(p, w) and output yq(p, w). The profit is
π(p, w).
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One-Consumer, One-Producer (3)

Microeconomics

• The consumer maximizes the utility function u(x1, x2):

max
x1,x2≥0

u(x1, x2) s.t. px2 ≤ w(L̄− x1) + π(p, w).

This results in the Walrasian demand x1(p, w) and x2(p, w).
Labor supply corresponds to L̄− x1(p, w).

• See MWG, Figure 15.C.1 on these optimization problems.
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One-Consumer, One-Producer (4)

Microeconomics

• Walrasian equilibrium is attained at a pair (p∗, w∗) where

x2(p∗, w∗) = yq(p
∗, w∗) and z(p∗, w∗) = L̄− x1(p∗, w∗).

• See MWG, Figure 15.C.1 on these optimization problems. See
MWG, Figure 15.C.2 for an equilibrium.
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One-Consumer, One-Producer (5)

Microeconomics

• Remark: A particular consumption-leisure combination can arise
in a competitive equilibrium if and only if it maximizes the
consumer’s utility subject to the technological and endowment
constraints.

• ⇒ A Walrasian equilibrium allocation is the same as if a social
planner would maximize the consumer’s utility given the
technological constraints of the economy. A Walrasian
equilibrium is Pareto optimal.
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One-Consumer, One-Producer (6)

Microeconomics

• Remark on Non-convexity: Suppose the the production set is not
convex, then we can construct examples where the price system
does not support the allocation x∗.

• See MWG, Figure 15.C.3 (a).
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General vs. Partial Equilibrium (1)

Microeconomics

• Bradford’s (1978) example on taxation:

• Consider an economy with N large towns. Each town has a
single price taking firm producing a consumption good by means
of a strictly concave production function f(z). The consumption
good is identical.

• The overall economy has M units of labor, inelastically supplied.
Utility is derived from consuming the output.

• Workers are free to move to another town. Hence the equilibrium
wage must be the same, i.e. w1, . . . , wN = w̄.

• Without loss of generality the price of the output is normalized,
i.e. p = 1.
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General vs. Partial Equilibrium (2)

Microeconomics

• By the symmetric construction of the model we get: each firm
hires M/N workers, the output of each firm is f(M/N).

• Due to price taking we get w̄ = f ′ = ∂f(M/N)
∂(M/N) .

• The equilibrium profits are: f(M/N)− ∂f(M/N)
∂(M/N) (M/N).
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General vs. Partial Equilibrium (3)

Microeconomics

• Suppose that town 1 levies a tax on labor, the tax rate is t > 0.

• Given the wage w1 and the tax rate t we arrive at a labor
demand z1, which is implicitly given by f ′(z1) = t+ w1.
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General vs. Partial Equilibrium (4)

Microeconomics

• Partial equilibrium argument: N is large, an impact on the other
wage rates can be neglected. Hence w̄ remains the same.

• Since labor moves freely, we get w1 = w̄. The supply
correspondence is 0 at w1 < w̄ and ∞ at w1 > w̄. It is [0,∞] at
w1 = w̄.

• Then f ′(z1) = t+ w̄. z1 falls by our assumptions on f(.), labor
moves to other towns.

• The incomes of the workers and the profits in towns 2, . . . , N
remain the same. The profit of firm 1 decreases, the firms
completely bear the tax burden.
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General vs. Partial Equilibrium (5)

Microeconomics

• General equilibrium argument: Since labor moves freely,
w1, . . . , wN = w still has to hold. All M units of labor are
employed by the structure of f(.).

• w(t) denotes the equilibrium wage rate when the tax rate is t.
By symmetry z2(t) = · · · = zN(t) = z(t). z1(t) is the labor
demand in town 1.

• Then equilibrium demands for:

z1(t)+(N−1)z(t) = M , f ′(z(t)) = w(t) , f ′(z1(t)) = w(t)+t.
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General vs. Partial Equilibrium (6)

Microeconomics

• Next, f ′(z1(t)) = w(t) + t = f ′(M − (N − 1)z(t)) = w(t) + t.
Taking the first derivative w.r.t. to t and evaluating at t = 0
(where z1(0) = z(0) = M/N) yields

f
′′
(M/N)[−(N − 1)]z′(0) = w′(0) + 1.

256



General vs. Partial Equilibrium (7)

Microeconomics

• The derivative of f ′(z(t)) = w(t) w.r.t. to t yields

f
′′
(M/N)z′(0) = w′(0) such that

w′(0) = − 1

N
.

• Hence, the wage rates in all towns decrease due to the tax in
town 1. Only if N goes to infinity this effect becomes zero.
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General vs. Partial Equilibrium (8)

Microeconomics

• In addition, when we consider the profits of the firms, we observe:

π
′
(w̄)(w

′
(0) + 1) + (N − 1)π

′
(w̄)w

′
(0) = π

′
(w̄)

(
−
N − 1

N
+
N − 1

N

)
= 0.

• Hence, aggregate profit remains constant. The complete burden
is attributed to the workers.

• For N large the partial equilibrium approximation regarding
prices and quantities is correct. However, the distributional
effects remain wrong.
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General Equilibrium

Microeconomics

• First Fundamental Theorem of Welfare Economics

• Second Fundamental Theorem of Welfare Economics

MWG, Chapter 16
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Notation (1)

Microeconomics

• Consider I consumers, indexed i = 1, . . . , I. Xi ⊂ RL are the
consumption sets. The preferences are �i. �i is complete and
transitive (rationale consumers).

• J firms, indexed j = 1, . . . , J . The production possibility sets are
Yj ∈ RL. Yj is non-empty and closed. The production vectors
are yj.

• L goods, indexed ` = 1, . . . , L.
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Notation (2)

Microeconomics

• The initial endowment of good ` is ē` ∈ RL. The total
endowments are ē = (ē1, . . . , ēL) ∈ RL.

• Basis data of the economy: ([Xi,�i]Ii=1, [Yj]
J
j=1, ē).

• The wealth of consumer i is wi(p) = p · ei.
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Notation (3)

Microeconomics

• Definition - Economic Allocation [D 16.B.1]: An economic
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is a specification of a
consumption vector xi ∈ Xi for each consumer i = 1, . . . , I and
a production vector yj ∈ Yj for each firm j = 1, . . . , J . The
allocation is feasible if

I∑
i=1

x`i = ē` +

J∑
j=1

y`j for ` = 1, . . . , L.

This is
∑I
i=1 xi = ē` +

∑J
j=1 yj. We denote the set of feasible

allocations by

A := {(x, y) ∈ X1×· · ·×XI×Y1×· · ·×YJ :
I∑
i=1

xi = ē`+
J∑
j=1

yj} ⊂ RL(I+J)
.
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Notation (4)

Microeconomics

• Definition - Pareto Optimality [D 16.B.2]: A feasible
allocation (x, y) = (x1, . . . , xI, y1, . . . , yJ) is Pareto optimal
(efficient) if there is no other feasible allocation (x′, y′) ∈ A that
Pareto dominates it. This is, if there is no feasible allocation
(x′, y′) such that x′i �i xi for all i = 1, . . . , I and and x′i �i xi
for some i.
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Notation (5)

Microeconomics

• Suppose that consumer i initially owns e`i, where ē` =
∑I
i=1 e`i

for ` = 1, . . . , L, ei = (ei1, . . . , eiL).

• Consumers i owns the shares θi = (θi1, . . . , θij, . . . , θiJ), where∑I
i=1 θij = 1 for j = 1, . . . , J .

• Markets exist for all L goods and all firms are price takers; the
prices are p = (p1, . . . , pL).
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Notation (6)

Microeconomics

• Definition [D 16.B.3] (Walrasian/Competitive Equilibrium)

– Given a private ownership economy by ([Xi,�i]Ii=1, [Yj]
J
j=1, ē, θ). An

allocation (x∗, y∗) and the price vector p ∈ RL constitute a competitive
(Walrasian) equilibrium if the following conditions are met:

∗ Profit maximization: For each firm j, y∗j solves the profit maximization

problem, i.e.

p · yj ≤ p · y∗j for all yj ∈ Yj.
∗ Preference maximization: For each consumer i, x∗i is maximal for �i in

the budget set

{xi ∈ Xi : p · xi ≤ p · ei +

J∑
j=1

θijp · y∗j}.

∗ Market clearing: For each good ` = 1, . . . , L:

I∑
i=1

x
∗
`i = ē` +

J∑
j=1

y
∗
`i or

I∑
i=1

x
∗
i = ē +

J∑
j=1

y
∗
j .
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Notation (7)

Microeconomics

• Definition [D 16.B.4] (Price Equilibrium with Transfers)

– Given a private ownership economy by ([Xi,�i]Ii=1, [Yj]
J
j=1, ē, θ). An

allocation (x∗, y∗) and the price vector p ∈ RL constitute a price
equilibrium with transfers if there is an assignment of wealth levels

(w1, . . . , wI) with
∑I

i=1 wi = p · ē+
∑

j p · y
∗
j such that

∗ For each firm j, y∗j solves the profit maximization problem, i.e.

p · yj ≤ p · y∗j for all yj ∈ Yj.

∗ For each consumer i, x∗i is maximal for �i in the budget set

{xi ∈ Xi : p · xi ≤ p · wi}.

∗ Market clearing:
∑I

i=1 x
∗
i = ē +

∑J
j=1 y

∗
j .
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First Fundamental Theorem of Welfare
Economics (1)

Microeconomics

• Proposition [16.C.1] (First Fundamental Theorem of Welfare
Economics)

– If the preference relation �i are locally nonsatiated and if
(x∗, y∗, p) is a price equilibrium with transfers, then the
allocation x∗, y∗ is Pareto optimal. In particular, any
Walrasian equilibrium is Pareto optimal.

• Proof: See MWG page 549.
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First Fundamental Theorem of Welfare
Economics (2)

Microeconomics

• The First Fundamental Theorem of Welfare Economics is on
Pareto optimality.

• Recall - Local Nonsatiation: For all x ∈ X and for all ε > 0 there
exists some y ∈ X such that ||x− y|| ≤ ε and y � x. [D 3.B.3]

• Note that markets are complete and price taking is assumed.
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Second Fundamental Theorem of Welfare
Economics (1)

Microeconomics

• First theorem: Given some assumptions and a price equilibrium
with transfers ⇒ Pareto.

• Consider a competitive economy with transfers. Given some
Pareto efficient allocation (x, y). Does there exist a price system
p which supports this Pareto efficient allocation?

• Problem I: Convexity - see MWG, Figure 15.C.3 (a).

• Problem II: Minimum wealth problem - see MWG, Figure
15.B.10 (a).

• First investigate convexity. To do this we consider the concept of
a quasi-equilibrium.
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Second Fundamental Theorem of Welfare
Economics (2)

Microeconomics

• Definition [16.D.1] (Price Quasi-equilibrium with Transfers)

– Given a private ownership economy by ([Xi,�i]Ii=1, [Yj]
J
j=1, ē).

An allocation (x∗, y∗) and the price vector p 6= 0 constitute a
price quasi-equilibrium with transfers if there is an
assignment of wealth levels (w1, . . . , wI) with∑

wi = p · ē+
∑
j p · y∗j such that

∗ For each firm j, y∗j solves the profit maximization problem,
i.e.

p · yj ≤ p · y∗j for all yj ∈ Yj.
∗ For each consumer i: If xi �i x∗i , then p · xi ≥ wi.

∗ Market clearing:
∑I
i=1 x

∗
i = ē +

∑J
j=1 y

∗
j .
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Second Fundamental Theorem of Welfare
Economics (3)

Microeconomics

• With local nonsatiation the second condition becomes: If xi � x∗i
then p · xi ≥ p · x∗i .

• I.e. with local non-satiation, x∗i minimizes the expenditures given
{xi : xi � x∗i }.
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Second Fundamental Theorem of Welfare
Economics (4)

Microeconomics

• Proposition [16.D.1] (Second Fundamental Theorem of Welfare
Economics)

– Consider an economy specified by ([Xi,�i]Ii=1, [Yj]
J
j=1, ē), and

suppose that every Yj is convex and every preference relation
�i is convex (the set {xi ∈ Xi : x′i �i xi} is convex for every
xi ∈ Xi) and locally non-satiated.
Then for every Pareto optimal allocation (x∗, y∗) there exists a
price vector p 6= 0 such that (x∗, y∗, p) is a price
quasi-equilibrium with transfers.

• Proof: See MWG, page 553.
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Second Fundamental Theorem of Welfare
Economics (5)

Microeconomics

• When is a price quasi-equilibrium with transfers a price
equilibrium with transfers?

• The example considered in MWG, Figure 15.B.10 (a) and on
page 554, is a quasi-equilibrium but not an equilibrium.

• In this example the wealth of consumer 1 is zero (hence, zero
wealth problem).

• We need a sufficient condition under which which
”xi � x∗i ⇒ p · xi ≥ wi” implies ”xi � x∗i ⇒ p · xi>wi”.
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Second Fundamental Theorem of Welfare
Economics (6)

Microeconomics

• Proposition [16.D.2]

– Assume that Xi is convex and �i is continuous. Suppose also
that the consumption vector x∗i ∈ Xi, the price vector p and
the wealth level wi are such that xi �i x∗i implies p · xi≥wi.
Then, if there is a consumption vector x′i ∈ Xi such that
p · x′i < wi [a cheaper consumption for (p, wi)], it follows that
xi � x∗i implies p · xi>wi.

• Proof: See MWG page 555. See also MWG, Figure 16.D.3
(right).
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Second Fundamental Theorem of Welfare
Economics (7)

Microeconomics

• Proposition [16.D.3]

– Suppose that for every i = 1, . . . , L, Xi is convex and �i is
continuous. Then, any price quasi-equilibrium with transfers
that has (w1, . . . , wL)� 0 is a price equilibrium with transfers.

• Proof: See MWG page 556.
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General Equilibrium
Walrasian Equilibrium - Existence (1)

Microeconomics

• GR, Chapter 12.B assume a strictly quasi-concave utility
functions (preferences are strictly convex; in addition, although
not explicitly stated at least local non-satiation is assumed). This
implies that we obtain Walrasian/Marshallian demand functions
D(p,M).

• Consider an exchange economy. If each consumer i, where
i = 1, . . . , I, has a vector of endowments ei = x̄i, we obtain
net-demand x̂i(p, x̄i) = D̂i(p, x̄i)− x̄i. x̂i : RL+ → RL for all

i = 1, . . . , I. D̂(p, x̄i) or OCi(p, x̄i) was called offer curve.
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General Equilibrium
Walrasian Equilibrium - Existence (2)

Microeconomics

• Let ei stand for the initial endowment of consumer i. In the case
of a production economy the wealth of consumer i, measured
in monetary units is p · ei +

∑J
j=1 θijπj(p). In this case demand

is described by Di(p, p · ei +
∑J
j=1 θijπj(p)), while net-demand is

given by x̂i(p) = Di(p, p · ei +
∑J
j=1 θijπj(p))− ei. Since ei and

θij are exogenous we suppress the dependence on ei and θij, for
i = 1, . . . , L, in the following.

• Each firm j, where j = 1, . . . , J , is equipped with a strictly
convex production technology, resulting in the net supply yj(p),
where yj : RL+ → RL+ for all j = 1, . . . , J .
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General Equilibrium
Walrasian Equilibrium - Existence (3)

Microeconomics

• The definition of a Walrasian/Competitive Equilibrium ([D 10.B.3]) can be

rewritten in terms of net-demand functions:

– Profit maximization: maxyj∈Yj p · yj where yj ∈ Yj.
– Utility maximization: each consumer i solves

max
x̂i∈X̂i

u(xi) s.t. p · x̂i ≤
J∑
j=1

θij(p · yj).

– Market clearing: For each good ` = 1, . . . , L:

I∑
i=1

x̂`i =

J∑
j=1

y`j.

• Note that x̂i = xi − ei yields p · x̂i = p · (xi − ei) ≤
∑J

j=1 θij(p · yj)
and p · xi ≤ p · ei +

∑J
j=1 θij(p · yj).
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General Equilibrium
Walrasian Equilibrium - Existence (4)

Microeconomics

• Questions:

– Does there exist a p ≥ 0, i.e. p` ≥ 0 for ` = 1, . . . , L, such
that the requirements for a competitive equilibrium are met?

– Is the solution unique?
– Is the solution stable?
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General Equilibrium
Walrasian Equilibrium - Existence (5)

Microeconomics

• Definition - Excess Demand Function: Let x̂i(p) stand for
net-demands functions of the consumers i = 1, . . . , I, and yj(p)
is the supply functions of the firms j = 1, . . . , J . Then
z(p) =

∑I
i=1 x̂i(p)−

∑J
j=1 yj(p) is called excess-demand.

• This yields, z` = 0 if p` > 0 and z` ≤ 0 if p` = 0 for each good
` = 1, . . . , L in equilibrium.
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General Equilibrium
Walrasian Equilibrium - Existence (6)

Microeconomics

• GR, Chapter 12.C, Appendix K apply Brouwer’s Fixed point
theorem: “a continuous mapping of a closed, bounded, convex
set into itself always has a fixed point”.

• For more details see Rudin (1993)[Theorem 5.28], for the more
general Theorem of Kakutani see e.g. Rudin
(1993)[Theorem 5.23].
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General Equilibrium
Walrasian Equilibrium - Existence (7)

Microeconomics

• To obtain a closed and bounded set of prices, the prices are
normalized as follows: Consider p = (p1, . . . , pL), then

p′` =
p′`∑L
`=1 p

′
`

∈ [0, 1] for all ` = 1, . . . , L or p is contained in the

L− 1 dimensional simplex ∆L−1.

• Since yj(p) and x̂i(p) are homogeneous of degree zero in p, this
is not a restriction.

• By this, we also observe that if p′ is a vector of equilibrium
prices, then p = λp′, for any λ > 0, is a vector of equilibrium
prices. These prices are on the same ray. See GR, Figure 12.2.
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General Equilibrium
Walrasian Equilibrium - Existence (8)

Microeconomics

• The next problem is the continuity of the z(p): Given the
assumptions on the preferences and production in GR, Chapter
12 (especially strict convexity), x̂(p) =

∑I
i=1 x̂i(p),

y(p) =
∑J
j=1 yj(p) and z(p) =

∑I
i=1 x̂i(p)−

∑J
j=1 yj(p) are

continuous functions for any p ∈ RL++.

• A problem can occur if some p` are zero. Here we assume that
there is always a finite excess-demand if p` = 0. A more
mathematical treatment of the problem is provided in MWG,
[P. 17.B.2] and Chapter 17.B,C.
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General Equilibrium
Walrasian Equilibrium - Existence (9)

Microeconomics

• Given our non-satiation assumption on preferences Walras’ law
has to hold. Now this implies

p · x̂(p) = p · y(p) and p · z(p) = 0

see also GR, C.12

• That is, given a continuous and degree-zero homogeneous excess
demand z(p), and Walras’ law, then a mapping z : from ∆L−1 to
the set of excess demand vectors Z can be constructed.

• In addition, by increasing prices if excess demand is positive and
vice versa, a second mapping k : from Z to the set of normalized
price vectors can be constructed; see also GR, C.16-C.17.

284



General Equilibrium
Walrasian Equilibrium - Existence (10)

Microeconomics

• By the composition k ◦ p we obtain a mapping from ∆L−1 to
∆L−1. ∆L−1 is convex, closed and bounded. By the fixed point
theorem of Brouwer a fixed point p∗ exists.

• GR, C.20-C.25 show that this p∗ is an equilibrium price vector. In
particular, z`(p

∗) = 0 if p∗` > 0.

• A graphical treatment for the two good case is provided in GR,
Figure 12.3
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General Equilibrium
Walrasian Equilibrium

Microeconomics

• Ad uniqueness see MWG, Chapter 17.D

• Ad stability see GR, Section 12.D and MWG, Chapter 17.H

• In the competitive equilibrium we assumed price taking behavior.

GR, Section 12.F and MWG, Chapter 18, discuss how this can be
justified, especially if I becomes large. See concept of the core.
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Expected Utility
Uncertainty (1)

Microeconomics

• Preferences and Lotteries.

• Von Neumann-Morgenstern Expected Utility Theorem.

• Attitudes towards risk.

• State Dependent Utility, Subjective Utility

MWG, Chapter 6.
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Expected Utility
Lotteries (1)

Microeconomics

• A risky alternative results in one of a number of different states
of the world, ωi.

• The states are associated with consequences or outcomes, zn.
Each zn involves no uncertainty.

• Outcomes can be money prices, wealth levels, consumption
bundles, etc.

• Assume that the set of outcomes is finite. Then
Z = {z1, . . . , zN}.

• E.g. flip a coin: States {H,T} and outcomes Z = {−1, 1}, with
head H or tail T.
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Expected Utility
Lotteries (2)

Microeconomics

• Definition - Simple Gamble/Simple Lottery: [D 6.B.1] With the

consequences {z1, . . . , zN} ⊆ Z and N finite. A simple gamble assigns a

probability pn to each outcome zn. pn ≥ 0 and
∑N

n=1 pn = 1.

• Notation: L = (p1, . . . , pN). pi ≥ 0 is the probability of consequence zi,

for i = 1, . . . , N .

• Let us fix the set of outcomes Z: Different lotteries correspond to a different

set of probabilities.

• Definition - Set of Simple Gambles: The set of simple gambles on Z is

given by

LS = {(p1, . . . , pN)|pn ≥ 0 ,
N∑
n=1

pn = 1} = {L|pn ≥ 0 ,
N∑
N=1

pn = 1}
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Expected Utility
Lotteries (3)

Microeconomics

• Definition - Degenerated Lottery:
L̃n = (0, . . . , 1, . . . , 0) = en.

• ’Z ⊆ LS’, since one can identify zn with L̃n.
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Expected Utility
Lotteries (4)

Microeconomics

• With N consequences, every simple lottery can be represented by
a point in a N − 1 dimensional simplex

∆(N−1) = {p ∈ RN+ |
∑

pn = 1} .

• At each corner n we have the degenerated case that pn = 1.

• With interior points pn > 0 for all i.

• See Ritzberger, p. 36,37, Figures 2.1 and 2.2 or MWG, Figure
6.B.1, page 169.

• Equivalent to Machina’s triangle; with N = 3;
{(p1, p3) ∈ [0, 1]2|0 ≤ 1− p1 − p3 ≤ 1}.
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Expected Utility
Lotteries (5)

Microeconomics

• The consequences of a lottery need not be a z ∈ Z but can also
be a further lottery.

• Definition - Compound Lottery:[D 6.B.2] Given K simple
lotteries Lk and probabilities αk ≥ 0 and

∑
αk = 1, the

compound lottery
LC = (L1, . . . , Lk, . . . , LK;α1, . . . , αk, . . . , αK). It is the risky
alternative that yields the simple lottery Lk with probability αk.

• The support of the compound lottery (the set of consequences
with positive probability) is the union of the supports generating
this lotteries.
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Expected Utility
Lotteries (6)

Microeconomics

• Definition - Reduced Lottery: For any compound lottery LC
we can construct a reduced lottery/simple gamble L′ ∈ LS.
With the probabilities pk for each Lk we get p′ =

∑
αkp

k, such

that probabilities for each zn ∈ Z are p′n =
∑K
k=1αkp

k
n.

• Examples: Example 2.5, Ritzberger p. 37

• A reduced lottery can be expressed by a convex combination of
elements of compound lotteries (see Ritzberger, Figure 2.3, page
38). I.e. αpl1 + (1− α)pl2 = plreduced.
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Expected Utility
von Neumann-Morgenstern Utility (1)

Microeconomics

• Here we assume that any decision problem can be expressed by
means of a lottery (simple gamble).

• Only the outcomes matter.

• Consumers are able to perform calculations like in probability
theory, gambles with the same probability distribution on Z are
equivalent.
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Expected Utility
von Neumann-Morgenstern Utility (2)

Microeconomics

• Axiom vNM1 - Completeness: For two gambles L1 and L2 in
LS either L1 � L2, L2 � L1 or both.

• Here we assume that a consumer is able to rank lotteries (risky
alternatives). I.e. Axiom vNM1 is stronger than Axiom 1 under
certainty.

• Axiom vNM2 - Transitivity: For three gambles L1, L2 and L3:
L1 � L2 and L2 � L3 implies L1 � L3.
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Expected Utility
von Neumann-Morgenstern Utility (3)

Microeconomics

• Axiom vNM3 - Continuity: [D 6.B.3] The preference relation
on the space of simple lotteries is continuous if for any L1, L2, L3

the sets {α ∈ [0, 1]|αL1 + (1− α)L2 � L3} ⊂ [0, 1] and
{α ∈ [0, 1]|L3 � αL1 + (1− α)L2} ⊂ [0, 1] are closed.

• Later we show: for any gambles L ∈ LS, there exists some
probability α such that L ∼ αL̄+ (1− α)L, where L̄ is the most
preferred and L the least preferred lottery.

• This assumption rules out a lexicographical ordering of
preferences (safety first preferences).
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Expected Utility
von Neumann-Morgenstern Utility (4)

Microeconomics

• Consider the outcomes Z = {1000, 10, death}, where
1000 � 10 � death. L1 gives 10 with certainty.

• If vNM3 holds then L1 can be expressed by means of a linear
combination of 1000 and death. If there is no α ∈ [0, 1] fulfilling
this requirement vNM3 does not hold.
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Expected Utility
von Neumann-Morgenstern Utility (5)

Microeconomics

• Monotonicity: For all probabilities α, β ∈ [0, 1],

αL̄+ (1− α)L � βL̄+ (1− β)L

if and only if α ≥ β.

• Monotonicity is implied by the axioms vNM1-vNM4.
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Expected Utility
von Neumann-Morgenstern Utility (6)

Microeconomics

• Axiom vNM4 - Independence, Substitution: For all
probabilities L1, L2 and L3 in LS and α ∈ (0, 1):

L1 � L2 ⇔ αL1 + (1− α)L3 � αL2 + (1− α)L3 .

• This axiom implies that the preference orderings of the mixtures
are independent of the third lottery.

• This axiom has no parallel in consumer theory under certainty.
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Expected Utility
von Neumann-Morgenstern Utility (7)

Microeconomics

• Example: consider a bundle x1 consisting of 1 cake and 1 bottle
of wine x1 = (1, 1), x2 = (3, 0); x3 = (3, 3). Assume that
x1 � x2.

Axiom vNM4 requires that αx1 + (1− α)x3 � αx2 + (1− α)x3;
here α > 0.
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Expected Utility
von Neumann-Morgenstern Utility (8)

Microeconomics

• Lemma - vNM1-4 imply monotonicity: Moreover, if L1 � L2

then αL1 + (1− α)L2 � βL1 + (1− β)L2 for arbitrary
α, β ∈ [0, 1] where α ≥ β. For every L1 � L � L2, there is
unique γ ∈ [0, 1] such that γL1 + (1− γ)L2 ∼ L.

• See steps 2-3 of the vNM existence proof.
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Expected Utility
von Neumann-Morgenstern Utility (9)

Microeconomics

• Definition - von Neumann Morgenstern Expected Utility
Function: [D 6.B.5] A real valued function U : LS → R has
expected utility form if there is an assignment of numbers
(u1, . . . , uN) (with un = u(zn)) such that for every lottery
L ∈ LS we have U(L) =

∑
zn∈Z p(zn)u(zn). A function of this

structure is said to satisfy the expected utility property - it is
called von Neumann-Morgenstern (expected) utility function.

• Note that this function is linear in the probabilities pn.

• u(zn) is called Bernoulli utility function.
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Expected Utility
von Neumann-Morgenstern Utility (10)

Microeconomics

• Proposition - Linearity of the von Neumann Morgenstern
Expect Utility Function: [P 6.B.1] A utility function has
expected utility form if and only if it is linear. That is to say:

U

(
K∑
k=1

αkLk

)
=

K∑
k=1

αkU(Lk)
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Expected Utility
von Neumann-Morgenstern Utility (11)

Microeconomics

Proof:

• Suppose that U(
∑K
k=1αkLk) =

∑K
k=1αkU(Lk) holds. We have

to show that U has expected utility form, i.e. if
U(
∑
k αkLk) =

∑
k αkU(Lk) then U(L) =

∑
pnu(zn).

• If U is linear then we can express any lottery L by means of a
compound lottery with probabilities αn = pn and degenerated
lotteries L̃n. I.e. L =

∑
pnL̃

n. By linearity we get
U(L) = U(

∑
pnL̃

n) =
∑
pnU(L̃n).

• Define u(zn) = U(L̃n). Then
U(L) = U(

∑
pnL̃

n) =
∑
pnU(L̃n) =

∑
pnu(zn). Therefore

U(.) has expected utility form.
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Expected Utility
von Neumann-Morgenstern Utility (12)

Microeconomics

Proof:

• Suppose that U(L) =
∑N
n=1 pnu(zn) holds. We have to show

that utility is linear, i.e. if U(L) =
∑
pnu(zn) then

U(
∑
k αkLk) =

∑
k αkU(Lk)

• Consider a compound lottery (L1, . . . , LK, α1, . . . , αK). Its
reduced lottery is L′ =

∑
k αkLk.

• Then U(
∑
k αkLk) =

∑
n

(∑
k αkp

k
n

)
u(zn) =∑

k αk
(∑

n p
k
nu(zn)

)
=
∑
k αkU(Lk).
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Expected Utility
von Neumann-Morgenstern Utility (13)

Microeconomics

• Proposition - Existence of a von Neumann Morgenstern
Expect Utility Function: [P 6.B.3] If the Axioms vNM 1-4 are
satisfied for a preference ordering � on LS. Then � admits an
expected utility representation. I.e. there exists a real valued
function u(.) on Z which assigns a real number to each outcome
zn, n = 1, . . . , N , such that for any pair of lotteries
L1 = (p1, . . . , pN) and L2 = (p′1, . . . , p

′
N) we get

L1 � L2 if and only if

U(L1) :=

N∑
n=1

pnu(zn) ≥ U(L2) :=

N∑
n=1

p′nu(zn) .
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Expected Utility
von Neumann-Morgenstern Utility (14)

Microeconomics

Proof:

• Suppose that there is a best and a worst lottery. With a finite set
of outcomes this can be easily shown by means of the
independence axiom. In addition L̄ � L.

• By the definition of L̄ and L we get: L̄ � Lc � L, L̄ � L1 � L
and L̄ � L2 � L.

• We have to show that (i) u(zn) exists and (ii) that for any
compound lottery Lc = βL1 + (1− β)L2 we have
U(βL1 + (1− β)L2) = βU(L1) + (1− β)U(L2) (expected utility
structure).
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Expected Utility
von Neumann-Morgenstern Utility (15)

Microeconomics

Proof:

• Step 1: By the independence Axiom vNM4 we get if L1 � L2

and α ∈ (0, 1) then L1 � αL1 + (1− α)L2 � L2.

• This follows directly from the independence axiom.

L1 ∼ αL1+(1−α)L1 � αL1+(1−α)L2 � αL2+(1−α)L2 = L2
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Expected Utility
von Neumann-Morgenstern Utility (16)

Microeconomics

Proof:

• Step 2: Want to show that β > α , if and only if
βL̄+ (1− β)L � αL̄+ (1− α)L (monotonicity):

• Define γ = (β − α)/(1− α); the assumptions imply γ ∈ [0, 1].
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Expected Utility
von Neumann-Morgenstern Utility (17)

Microeconomics

Proof:

• Then

βL̄+ (1− β)L = γL̄+ (1− γ)(αL̄+ (1− α)L)

� γ(αL̄+ (1− α)L) + (1− γ)(αL̄+ (1− α)L)

∼ αL̄+ (1− α)L
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Expected Utility
von Neumann-Morgenstern Utility (18)

Microeconomics

Proof:

• Step 2: For the converse we have to show that
βL̄+ (1− β)L � αL̄+ (1− α)L results in β > α. We show this
by means of the contrapositive: If β 6> α then
βL̄+ (1− β)L 6� αL̄+ (1− α)L.

• Thus assume β ≤ α, then αL̄+ (1− α)L � βL̄+ (1− β)L
follows in the same way as above. If α = β indifference follows.
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Expected Utility
von Neumann-Morgenstern Utility (19)

Microeconomics

Proof:

• Step 3: There is a unique αL such that L ∼ αLL̄+ (1− αL)L.

• Existence follows from L̄ � L and the continuity axiom:

• Ad existence: define the sets {α ∈ [0, 1]|αL̄+ (1− α)L � L}
and {α ∈ [0, 1]|L � αL̄+ (1− α)L}. Both sets are closed. Any
α belongs to at least one of these two sets. Both sets are
nonempty. Their complements are open and disjoint. The set
[0, 1] is connected ⇒ there is at least one α belonging to both
sets.

• Uniqueness follows directly from step 2.
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Expected Utility
Excursion: Connected Sets

Microeconomics

• Definition: Let Ω 6= ∅ be an arbitrary set. A class τ ⊂ 2Ω of
subsets of Ω is called a topology on Ω if it has the three
properties:

– ∅,Ω ∈ τ
– A ∩B ∈ τ for any two sets A,B ∈ τ .
–
⋃
A∈F A ∈ τ for any F ⊂ τ .

• The pair (Ω, τ) is called a topological space. The sets A ∈ τ
are called open sets, and the sets A ⊂ Ω with Ac ∈ τ are called
closed sets; Ac stands for complementary set.
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Expected Utility
Excursion: Connected Sets

Microeconomics

• Consider the family τR of subsets of R: O ∈ τR if and only if for
each x ∈ O, there is an ε > 0 such that (x− ε, x+ ε) ⊂ O.
That is, elements of O are arbitrary unions of open intervals.

• Fact from Math: τR forms a topology on R. It is called
Euclidean topology.

• We consider the closed interval [0, 1] with the following topology:
A ⊂ [0, 1] is open if and only if there is an O ∈ τR such that
A = O ∩ [0, 1]. This topology is induced by τR.
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Expected Utility
Excursion: Connected Sets

Microeconomics

• Definition: Let (X, τ) be a topological space. The space is said
to be connected, if for any two non-empty closed subsets
A,B ⊂ X, A ∪B = X implies A ∩B 6= ∅.

• Fact from Math: [0, 1] with by τR the induced topology is
connected.
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Expected Utility
von Neumann-Morgenstern Utility (20)

Microeconomics

Proof:

• Step 4: The function U(L) = αL represents the preference
relations �.

• Consider L1, L2 ∈ LS: If L1 � L2 then α1 ≥ α2. If α1 ≥ α2 then
L1 � L2 by steps 2-3.

• It remains to show that this utility function has expected utility
form.
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Expected Utility
von Neumann-Morgenstern Utility (21)

Microeconomics

Proof:

• Step 5: U(L) is has expected utility form.

• We show that the linear structure also holds for the compound
lottery Lc = βL1 + (1− β)L2.

• By using the independence we get:

βL1 + (1− β)L2 ∼ β(α1L̄+ (1− α1)L) + (1− β)L2

∼ β(α1L̄+ (1− α1)L) + (1− β)(α2L̄+ (1− α2)L)

∼ (βα1 + (1− β)α2)L̄+ (β(1− α1) + (1− β)(1− α2))L

• By the rule developed in step 4, this shows that
U(Lc) = U(βL1 + (1− β)L2) = βU(L1) + (1− β)U(L2).
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Expected Utility
von Neumann-Morgenstern Utility (22)

Microeconomics

• Proposition - von Neumann Morgenstern Expect Utility
Function are unique up to Positive Affine Transformations:
[P 6.B.2] If U(.) represents the preference ordering �, then V
represents the same preference ordering if and only if
V = α+ βU , where β > 0.
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Expected Utility
von Neumann-Morgenstern Utility (23)

Microeconomics

Proof:

• Note that if V (L) = α+ βU(L), V (L) fulfills the expected
utility property (see also MWG p. 174).

• We have to show that if U and V represent preferences, then V
has to be an affine linear transformation of U .

• If U is constant on LS, then V has to be constant. Both
functions can only differ by a constant α.
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Expected Utility
von Neumann-Morgenstern Utility (24)

Microeconomics

Proof:

• Alternatively, for any L ∈ LS and L̄ � L, we get

f1 :=
U(L)− U(L)

U(L̄)− U(L)

and

f2 :=
V (L)− V (L)

V (L̄)− V (L)
.

• f1 and f2 are linear transformations of U and V that satisfy the
expected utility property.

• fi(L) = 0 and fi(L̄) = 1, for i = 1, 2.
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Expected Utility
von Neumann-Morgenstern Utility (25)

Microeconomics

Proof:

• L ∼ L then f1 = f2 = 0; if L ∼ L̄ then f1 = f2 = 1.

• By expected utility U(L) = γU(L̄) + (1− γ)U(L) and
V (L) = γV (L̄) + (1− γ)V (L).

• If L̄ � L � L then there has to exist a unique γ, such that
L ≺ L ∼ γL̄+ (1− γ)L ≺ L̄. Therefore

γ =
U(L)− U(L)

U(L̄)− U(L)
=
V (L)− V (L)

V (L̄)− V (L)
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Expected Utility
von Neumann-Morgenstern Utility (26)

Microeconomics

Proof:

• Then V (L) = α+ βU(L) where

α = V (L)− U(L)
V (L̄)− V (L)

U(L̄)− U(L)

and

β =
V (L̄)− V (L)

U(L̄)− U(L)
.
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Expected Utility
von Neumann-Morgenstern Utility (27)

Microeconomics

• The idea of expected utility can be extended to a set of
distributions F (x) where the expectation of u(x) exists, i.e.∫
u(x)dF (x) <∞.

• For technical details see e.g. Robert (1994), The Bayesian
Choice and DeGroot, Optimal Statistical Decisions.

• Note that expected utility is a probability weighted combination
of Bernoulli utility functions. I.e. the properties of the random
variable z, described by the lottery l(z), are separated from the
attitudes towards risk.
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Expected Utility
VNM Indifference Curves (1)

Microeconomics

• Indifferences curves are straight lines; see Ritzberger, Figure 2.4,
page 41.

• Consider a VNM utility function and two indifferent lotteries L1

and L2. It has to hold that U(L1) = U(L2).

• By the expected utility theorem
U(αL1 + (1− α)L2) = αU(L1) + (1− α)U(L2).

• If U(L1) = U(L2) then U(αL1 + (1− α)L2) = U(L1) = U(L2)
has to hold and the indifferent lotteries is linear combinations of
L1 and L2.
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Expected Utility
VNM Indifference Curves (2)

Microeconomics

• Indifference curves are parallel; see Ritzberger, Figure 2.5, 2.6,
page 42.

• Consider L1 ∼ L2 and a further lottery L3 � L1 (w.l.g.).

• From βL1 + (1− β)L3 and βL2 + (1− β)L3 we have received
two compound lotteries.

• By construction these lotteries are on a line parallel to the line
connecting L1 and L2.
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Expected Utility
VNM Indifference Curves (3)

Microeconomics

• The independence axiom vNM4 implies that
βL1 + (1− β)L3 ∼ βL2 + (1− β)L3 for β ∈ [0, 1].

• Therefore the line connecting the points βL1 + (1− β)L3 and
βL2 + (1− β)L3 is an indifference curve.

• The new indifference curve is a parallel shift of the old curve; by
the linear structure of the expected utility function no other
indifference curves are possible.
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Expected Utility
Allais Paradoxon (1)

Microeconomics

Lottery 0 1-10 11-99
pz 1/100 10/100 89/100
La 500,000 500,000
Lb 0 2,500,000 500,000
Ma 500,000 500,000 0
Mb 0 2,500,000 0
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Expected Utility
Allais Paradoxon (2)

Microeconomics

• Most people prefer La to Lb and Mb to Ma.

• This is a contradiction to the independence axiom G5.

• Allais paradoxon in the Machina triangle, Gollier, Figure 1.2,
page 8.
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Expected Utility
Allais Paradoxon (3)

Microeconomics

• Expected utility theory avoids problems of time inconsistency.

• Agents violating the independence axiom are subject to Dutch
book outcomes (violate no money pump assumption).
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Expected Utility
Allais Paradoxon (4)

Microeconomics

• Three lotteries: La � Lb and La � Lc.

• But Ld = 0.5Lb + 0.5Lc � La.

• Gambler is willing to pay some fee to replace La by Ld.
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Expected Utility
Allais Paradoxon (5)

Microeconomics

• After nature moves: Lb or Lc with Ld.

• Now the agents is once again willing to pay a positive amount for
receiving La

• Gambler starting with La and holding at the end La has paid two
fees!

• Dynamically inconsistent/Time inconsistent.

• Discuss Figure 1.3, Gollier, page 12.
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Expected Utility
Risk Attitude (1)

Microeconomics

• For the proof of the vNM-utility function we did not place any
assumptions on the Bernoulli utility function u(z).

• For applications often a Bernoulli utility function has to be
specified.

• In the following we consider z ∈ R and u′(z) > 0; abbreviate
lotteries with money amounts l ∈ LS.

• There are interesting interdependences between the Bernoulli
utility function and an agent’s attitude towards risk.

332



Expected Utility
Risk Attitude (2)

Microeconomics

• Consider a nondegenerated lottery l ∈ LS and a degenerated lottery l̃.

Assume that El(z) = z̃l holds. I.e. the degenerated lottery l̃ pays the

expectation z̃l of l for sure.

• Definition - Risk Aversion: A consumer is risk averse if for any lottery l, z̃l
is at least as good as l. A consumer is strictly risk averse if for any lottery l, z̃

is strictly preferred to l, whenever l is non-degenerate.

• Definition - Risk Neutrality: A consumer is risk neutral if z̃l ∼ l for all l.

• Definition - Risk Loving: A consumer is risk loving if for any lottery l, z̃l is

at most as good as l. A consumer is strictly risk loving if for any lottery l, l is

strictly preferred to z̃l, whenever l is non-degenerate.
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Expected Utility
Risk Attitude (3)

Microeconomics

• By the definition of risk aversion, we see that the utility function u(.) has to

satisfy for any non-degenerate distribution F ,

u(E(z)) = u(
∫
zdF (z)) ≥ E(u(z)) =

∫
u(z)dF (z).

• If u(z) is a concave function and z is distributed according to F (z) (such

that the expectations exist), then∫
u(z)dF (z) ≤ u(

∫
zdF (z))

Jensen’s inequality. In addition, if
∫
u(z)dF (z) ≤ u(

∫
zdF (z)) holds

for any distribution F , then u(z) is concave.

• For sums this implies: ∑
pzu(z) ≤ u(

∑
pzz) .

For strictly concave function, < has to hold whenever F is nondegenerate, for

convex functions we get ≥; for strictly convex functions > whenever F is

non-degenerate.
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Expected Utility
Risk Attitude (4)

Microeconomics

• For a lottery l where E(u(z)) <∞ and E(z) <∞ we can
calculate the amount C where a consumer is indifferent between
receiving C for sure and the lottery l. I.e. l ∼ C and
E(u(z)) = u(C) hold.

• In addition we are able to calculate the maximum amount π an
agent is willing to pay for receiving the fixed amount E(z) for
sure instead of the lottery l. I.e. l ∼ E(z)− π or
E(u(z)) = u(E(z)− π).
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Expected Utility
Risk Attitude (5)

Microeconomics

• Definition - Certainty Equivalent [D 6.C.2]: The fixed amount
C where a consumer is indifferent between C an a gamble l is
called certainty equivalent.

• Definition - Risk Premium: The maximum amount π a
consumer is willing to pay to exchange the gamble l for a sure
state with outcome E(z) is called risk premium.

• Note that C and π depend on the properties of the random
variable (described by l) and the attitude towards risk (described
by u).
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Expected Utility
Risk Attitude (6)

Microeconomics

• Remark: the same analysis can also be performed with risk
neutral and risk loving agents.

• Remark: MWG defines a probability premium, which is
abbreviated by π in the textbook. Given a degenerated lottery
and some ε > 0. The probability-premium πR is defined as
u(l̃z) = (1

2 + πR)u(z + ε) + (1
2 − π

R)u(z − ε). I.e.
mean-preserving spreads are considered here.
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Expected Utility
Risk Attitude (7)

Microeconomics

• Proposition - Risk Aversion and Bernoulli Utility: Consider
an expected utility maximizer with Bernoulli utility function u(.).
The following statements are equivalent:

– The agent is risk averse.
– u(.) is a (strictly) concave function.
– C ≤ E(z). (< with strict version)
– π ≥ 0. (> with strict version)
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Expected Utility
Risk Attitude (8)

Microeconomics

Proof: (sketch)

• By the definition of risk aversion: for a lottery l where E(z) = zl̃,

a risk avers agent l̃ � l.

• I.e. E(u(z)) ≤ u(zl̃) = u(E(z)) for a VNM utility maximizer.

• (ii) follows from Jensen’s inequality.

• (iii) If u(.) is (strictly) concave then E(u(z)) = u(C) ≤ u(E(z))
can only be matched with C ≤ E(z).

• (iv) With a strictly concave u(.),
E(u(z)) = u(E(z)− π) ≤ u(E(z)) can only be matched with
π ≥ 0.
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Expected Utility
Arrow Pratt Coefficients (1)

Microeconomics

• Using simply the second derivative u′′(z) of the Bernoulli utility
function, causes problems with affine linear transformations.

• Definition - Arrow-Pratt Coefficient of Absolute Risk
Aversion: [D 6.C.3] Given a twice differentiable Bernoulli utility
function u(.), the coefficient of absolute risk aversion is defined
by A(z) = −u′′(z)/u′(z).

• Definition - Arrow-Pratt Coefficient of Relative Risk
Aversion: [D 6.C.5] Given a twice differentiable Bernoulli utility
function u(.), the coefficient of relative risk aversion is defined by
R(z) = −zu′′(z)/u′(z).
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Expected Utility
Comparative Analysis (1)

Microeconomics

• Consider two agents with Bernoulli utility functions u1 and u2.
We want to compare their attitudes towards risk.

• Definition - More Risk Averse: Agent 1 is more risk averse
than agent 2: Whenever agent 1 finds a lottery F at least good
as a riskless outcome x̃, then agent 2 finds F at least good as x̃.
I.e. if F �1 L̃x̃ then F �2 L̃x̃.

In terms of a VNM-ultility maximizer: If
EF (u1(z)) =

∫
u1(z)dF (z) ≥ u1(x̃) then

EF (u2(z)) =
∫
u2(z)dF (z) ≥ u2(x̃) for any F (.) and x̃.
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Expected Utility
Comparative Analysis (2)

Microeconomics

• Define a function φ(x) = u1(u−1
2 (x)). Since u2(.) is an

increasing function this expression is well defined. We, in
addition, assume that the first and the second derivatives exist.

• By construction with x = u2(z) we get:
φ(x) = u1(u−1

2 (x)) = u1(u−1
2 (u2(z))) = u1(z). I.e. φ(x)

transforms u2 into u1, such that u1(z) = φ(u2(z)).

• In the following we assume that ui and φ are differentiable. In
the following theorem we shall observe that φ′ > 0 for u′1 and
u′2 > 0.
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Expected Utility
Comparative Analysis (3)

Microeconomics

• Proposition - More Risk Averse Agents [P 6.C.2]: Assume
that the first and second derivatives of the Bernoulli utility
functions u1 and u2 exist (u′ > 0 and u′′ < 0). Then the
following statements are equivalent:

– Agent 1 is (strictly) more risk averse than agent 2.
– u1 is a (strictly) concave transformation of u2 (that is, there

exists a (strictly) concave φ such that u1(.) = φ(u2(.)))
– A1(z) ≥ A2(z) (> for strict) for all z.
– C1 ≤ C2 and π1 ≥ π2; (<> for strict).
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Expected Utility
Comparative Analysis (4)

Microeconomics

Proof:

• Step 1: (i) follows from (ii): We have to show that if φ is concave, then if

EF (u1(z)) =
∫
u1(z)dF (z) ≥ u1(x̃)⇒

EF (u2(z)) =
∫
u2(z)dF (z) ≥ u2(x̃) has to follow.

• Suppose that for some lottery F the inequality

EF (u1(z)) =
∫
u1(z)dF (z) ≥ u1(x̃) holds. This implies

EF (u1(z)) =
∫
u1(z)dF (z) ≥ u1(x̃) = φ(u2(x̃)).

• By means of Jensen’s inequality we get for a concave φ(.); (with strict

concave we get <) E(u1(z)) = E(φ(u2(z)) ≤ φ(E(u2(z))).

• Then φ(E(u2(z))) ≥ E(u1(z)) and E(u1(z)) ≥ u1(x̃) = φ(u2(x̃))

implies φ(E(u2(z))) ≥ φ(u2(x̃)).

• Since φ is increasing this implies E(u2(z)) ≥ u2(x̃).
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Expected Utility
Comparative Analysis (5)

Microeconomics

Proof:

• (ii) follows from (i): Suppose that
EF (u1(z)) =

∫
u1(z)dF (z) ≥ u1(x̃) ⇒

EF (u2(z)) =
∫
u2(z)dF (z) ≥ u2(x̃) for any F (.) and x̃ holds

and φ is not concave.

• Then EF (u1(z)) = u1(CF1) has to hold as well with x̃ = CF1.
This implies EF (u1(z)) = EF (φ(u2(z))) = φ(u2(CF1)) for
lottery F .

• Since φ is not concave, there exits a lottery where
φ(EF (u2(z))) < EF (φ(u2(z))) = φ(u2(CF1)). This yields
EF (u2(z)) < u2(CF1). Contradiction!
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Expected Utility
Comparative Analysis (6)

Microeconomics

Proof:

• Step 2 (iii)∼ (ii): By the definition of φ and our assumptions we
get

u′1(z) =
dφ((u2(z)))

dz
= φ′(u2(z))u′2(z) .

(since u′1, u
′
2 > 0 ⇒ φ′ > 0) and

u′′1(z) = φ′(u2(z))u′′2(z) + φ′′(u2(z))(u′2(z))2 .

346



Expected Utility
Comparative Analysis (7)

Microeconomics

Proof:

• Divide both sides by −u′1(z) < 0 and using u′1(z) = ... yields:

−u
′′
1(z)

u′1(z)
= A1(z) = A2(z)− φ

′′(u2(z))

φ′(u2(z))
u′2(z) .

• Since A1, A2 > 0 due to risk aversion, φ′ > 0 and φ′′ ≤ 0 (<)
due to its concave shape we get A1(z) ≥ A2(z) (>) for all z.
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Expected Utility
Comparative Analysis (8)

Microeconomics

Proof:

• Step 3 (iv)∼ (ii): Jensen’s inequality yields (with strictly concave
φ)

u1(C1) = E(u1(z)) = E(φ(u2(z)) < φ(E(u2(z))) = φ(u2(C2)) = u1(C2)

• Since u′1 > 0 we get C1 < C2.

• π1 > π2 works in the same way.

• The above considerations also work in both directions, therefore
(ii) and (iv) are equivalent.
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Expected Utility
Comparative Analysis (9)

Microeconomics

Proof:

• Step 4 (vi)∼ (ii): Jensen’s inequality yields (with strictly concave
φ)

u1(E(z)−π1) = E(u1(z)) = E(φ(u2(z)) < φ(E(u2(z))) = φ(u2(E(z)−π2)) = u1(E(z)−π2)

• Since u′1 > 0 we get π1 > π2.
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Expected Utility
Stochastic Dominance (1)

Microeconomics

• In an application, do we have to specify the Bernoulli utility
function?

• Are there some lotteries (distributions) such that F (z) is
(strictly) preferred to G(z)?

• E.g. if X(ω) > Y (ω) a.s.?

• YES ⇒ Concept of stochastic dominance.

• MWG, Figure 6.D.1., page 196.
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Expected Utility
Stochastic Dominance (2)

Microeconomics

• Definition - First Order Stochastic Dominance: [D 6.D.1] A
distribution F (z) first order dominates the distribution G(z) if
for every nondecreasing function u : R→ R we have∫ ∞

−∞
u(z)dF (z) ≥

∫ ∞
−∞

u(z)dG(z).

• Definition - Second Order Stochastic Dominance: [D 6.D.2]
A distribution F (z) second order dominates the distribution G(z)
if EF (z) = EG(z) and for every nondecreasing concave function
u : R+ → R the inequality

∫∞
0
u(z)dF (z) ≥

∫∞
0
u(z)dG(z)

holds.
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Expected Utility
Stochastic Dominance (3)

Microeconomics

• Proposition - First Order Stochastic Dominance: [P 6.D.1]
F (z) first order dominates the distribution G(z) if and only if
F (z) ≤ G(z).

• Proposition - Second Order Stochastic Dominance: [D
6.D.2] F (z) second order dominates the distribution G(z) if and
only if ∫ z̄

0

F (z)dz ≤
∫ z̄

0

G(z)dz for all z̄ in R+ .

• Remark: I.e. if we can show stochastic dominance we do not
have to specify any Bernoulli utility function!
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Expected Utility
Stochastic Dominance (4)

Microeconomics

Proof:

• Assume that u is differentiable and u′ ≥ 0

• Step 1: First order, if part: If F (z) ≤ G(z) integration by parts
yields:∫ ∞

−∞
u(z)dF (z)−

∫ ∞
−∞

u(z)dG(z) =

∫ ∞
−∞

u(z)F
′
(z)dz −

∫ ∞
−∞

u(z)G
′
(z)dz

= u(z)(F (z)−G(z))|∞−∞ −
∫ ∞
−∞

u
′
(z)(F (z)−G(z))dz

= −
∫ ∞
−∞

u
′
(z)(F (z)−G(z))dz ≥ 0 .

• The above inequality holds since the terms inside the integral
(F (z)−G(z)) ≤ 0. In addition, limt→∞ F (t) = 1 and
limt→−∞ F (t) = 0 and likewise for G(.).
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Expected Utility
Stochastic Dominance (5)

Microeconomics

Proof:

• Step 2: First order, only if part: If FOSD then F (z) ≤ G(z) holds. Proof by

means of contradiction.

• Assume there is a z̄ ∈ R such that F (z̄) > G(z̄). z̄ > −∞ by

construction. Set u(z) = 0 for z ≤ z̄ and u(z) = 1 for z > z̄. Here we get∫ ∞
−∞

u(z)dF (z)−
∫ ∞
−∞

u(z)dG(z)

=

∫ ∞
−∞

u(z)F
′
(z)dz −

∫ ∞
−∞

u(z)G
′
(z)dz

=

∫ ∞
z̄

F
′
(z)dz −

∫ ∞
z̄

G
′
(z)dz

= (1− F (z̄))− (1−G(z̄)) = −F (z̄) +G(z̄) < 0
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Expected Utility
Stochastic Dominance (6)

Microeconomics

Proof:

• Second Order SD: Assume that u is twice continuously differentiable, such

that u′′(z) ≤ 0, w.l.g. u(0) = 0.

• Remark: The equality of means implies:

0 =

∫ ∞
0

zdF (z)−
∫ ∞

0

zdG(z)

=

∫ ∞
0

zF
′
(z)dz −

∫ ∞
0

zG
′
(z)dz

= z(F (z)−G(z))|∞0 −
∫ ∞

0

(F (z)−G(z))dz

= −
∫ ∞

0

(F (z)−G(z))dz .
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Expected Utility
Stochastic Dominance (7)

Microeconomics

Proof:

• Step 3: Second order, if part: Integration by parts yields:∫ ∞
0

u(z)dF (z)−
∫ ∞

0
u(z)dG(z)

= u(z)(F (z)−G(z))|∞0 −
∫ ∞

0
u
′
(z)(F (z)−G(z))dz

= −
∫ ∞

0
u
′
(z)(F (z)−G(z))dz

= −u′(z)
∫ z

0
(F (x)−G(x))dx|∞0 −

∫ ∞
0
−u′′(z)

(∫ z

0
(F (x)−G(x))dx

)
dz

=

∫ ∞
0

u
′′
(z)

(∫ z

0
(F (x)−G(x))dx

)
dz ≥ 0

• Note that u′′ ≤ 0 by assumption.
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Expected Utility
Stochastic Dominance (8)

Microeconomics

Proof:

• Step 4: Second order, only if part: Consider a z̄ such that
u(z) = z̄ for all z > z̄ and u(z) = z for all z ≤ z̄. This yields:

∫ ∞
0

u(z)dF (z)−
∫ ∞

0

u(z)dG(z)

=

∫ z̄

0

zdF (z)−
∫ z̄

0

zdG(z) + z̄ ((1− F (z̄))− (1−G(z̄)))

= z (F (z)−G(z)) |z̄0 −
∫ z̄

0

(F (z)−G(z)) dz − z̄ (F (z̄)−G(z̄))

= −
∫ z̄

0

(F (z)−G(z)) dz ≥ 0 .
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Expected Utility
Stochastic Dominance (9)

Microeconomics

• Definiton - Monotone Likelihood Ratio Property: The
distributions F (z) and G(z) fulfill, the monotone likelihood rate
property if G(z)/F (z) is non-increasing in z.

• For x→∞ G(z)/F (z) = 1 has to hold. This and the fact that
G(z)/F (z) is non-increasing implies G(z)/F (z) ≥ 1 for all z.

• Proposition - First Order Stochastic Dominance follows
from MLP: MLP results in F (z) ≤ G(z).
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Expected Utility
Arrow-Pratt Approximation (1)

Microeconomics

• By means of the Arrow-Pratt approximation we can express the
risk premium π in terms of the Arrow-Pratt measures of risk.

• Assume that z = w + kx, where w is a fixed constant (e.g.
wealth), x is a mean zero random variable and k ≥ 0. By this
assumption the variance of z is given by
V(z) = k2V(x) = k2E(x2).

• Proposition - Arrow-Pratt Risk Premium with respect to
Additive risk: If risk is additive, i.e. z = w + kx, then the risk
premium π is approximately equal to 0.5A(w)V(z).
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Expected Utility
Arrow-Pratt Approximation (2)

Microeconomics

Proof:

• By the definition of the risk premium we have
E(u(z)) = E(u(w + kx)) = u(w − π(k)).

• For k = 0 we get π(k) = 0. For risk averse agents dπ(k)/dk ≥ 0.

• Use the definition of the risk premium and take the first derivate
with respect to k on both sides:

E(xu′(w + kx)) = −π′(k)u′(w − π(k)) .

360



Expected Utility
Arrow-Pratt Approximation (3)

Microeconomics

Proof:

• For the left hand side we get at k = 0:
E(xu′(w + 0x)) = u′(w)E(x) = 0 since E(x) = 0 by assumption.

• Matching LHS with RHS results in π′(k) = 0 at k = 0, while
u′(.) > 0 by assumption.
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Expected Utility
Arrow-Pratt Approximation (4)

Microeconomics

Proof:

• Taking the second derivative with respect to k yields:

E(x2u′′(w + kx)) = (π′(k))2u′′(w − π(k))− π′′(k)u′(w − π(k))

• At k = 0 this results in (note that π′(0) = 0):

π′′(0) = −u
′′(w)

u′(w)
E(x2) = A(w)E(x2)
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Expected Utility
Arrow-Pratt Approximation (5)

Microeconomics

• A second order Taylor expansion of π(k) around k = 0 results in

π(k) ≈ π(0) + π′(0)k +
π′′(0)

2
k2

• Thus
π(k) ≈ 0.5A(w)E(x2)k2

• Since E(x) = 0 by assumption, the risk premium is proportional
to the variance of x, that is V(z) = k2E(x2).
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Expected Utility
Arrow-Pratt Approximation (6)

Microeconomics

• For multiplicative risk we can proceed as follows: z = w(1 + kx)
where E(x) = 0.

• Proceeding the same way results in:

π(k)

w
≈ −wu

′′(w)

u′(w)
k2E(x2) = 0.5R(w)E(x2)k2

• Proposition - Arrow-Pratt Relative Risk Premium with
respect to Multiplicative risk: If risk is multiplicative, i.e.
z = w(1 + kx), then the relative risk premium π/w is
approximately equal to 0.5R(w)k2V(x).

• Interpretation: Risk premium per monetary unit of wealth.
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Expected Utility
Decreasing Absolute Risk Aversion (1)

Microeconomics

• It is widely believed that the more wealthy an agent, the smaller
his/her willingness to pay to escape a given additive risk.

• Definition - Decreasing Absolute Risk Aversion[D 6.C.4]:
The Bernoulli utility function for money exhibits decreasing
absolute risk aversion if the Arrow-Pratt coefficient of absolute
risk aversion −u

′′(.)
u′(.) is a decreasing function of wealth w.
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Expected Utility
Decreasing Absolute Risk Aversion (2)

Microeconomics

• Proposition - Decreasing Absolute Risk Aversion: [P 6.C.3]
The following statements are equivalent

– The risk premium is a decreasing function in wealth w.
– Absolute risk aversion A(w) is decreasing in wealth.
– −u′(z) is a concave transformation of u. I.e. u′ is sufficiently

convex.
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Expected Utility
Decreasing Absolute Risk Aversion (3)

Microeconomics

Proof: (sketch)

• Step 1, (i) ∼ (iii): Consider additive risk and the definition of
the risk premium. Treat π as a function of wealth:

E(u(w + kx)) = u(w − π(w)) .

• Taking the first derivative yields:

E(1u′(w + kx)) = (1− π′(w))u′(w − π(w)) .
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Expected Utility
Decreasing Absolute Risk Aversion (4)

Microeconomics

Proof: (sketch)

• This yields:

π′(w) = −E(u′(w + kx))− u′(w − π(w))

u′(w − π(w))
.

• π′(w) decreases if E(u′(w + kx))− u′(w − π(w)) ≥ 0.

• This is equivalent to E(−u′(w + kx)) ≤ −u′(w − π(w)).

• Note that we have proven that if E(u2(z)) = u2(z − π2) then
E(u1(z)) ≤ u1(z − π2) if agent 1 were more risk averse.
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Expected Utility
Decreasing Absolute Risk Aversion (5)

Microeconomics

Proof: (sketch)

• Here we have the same mathematical structure (see slides on
Comparative Analysis): set z = w + kx, u1 = −u′ and u2 = u.

• ⇒ −u′ is more concave than u such that −u′ is a concave
transformation of u.
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Expected Utility
Decreasing Absolute Risk Aversion (6)

Microeconomics

Proof: (sketch)

• Step 2, (iii) ∼ (ii): Next define P (w) := −u
′′′

u′′ which is often
called degree of absolute prudence.

• From our former theorems we get: P (w) ≥ A(w) has to be
fulfilled (see A1 and A2).

• Take the first derivative of the Arrow-Pratt measure yields:

A
′
(w) = −

1

(u′(w))2
(u
′′′

(w)u
′
(w)− (u

′′
(w))

2
)

= −
u′′(w)

(u′(w))
(u
′′′

(w)/u
′′
(w)− u′′(w)/u

′
(w))

=
u′′(w)

(u′(w))
(P (w)− A(w))
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Expected Utility
Decreasing Absolute Risk Aversion (7)

Microeconomics

Proof: (sketch)

• A decreases in wealth if A′(w) ≤ 0.

• We get A′(w) ≤ 0 if P (w) ≥ A(w).
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Expected Utility
HARA Utility (1)

Microeconomics

• Definition - Harmonic Absolute Risk Aversion: A Bernoulli
utility function exhibits HARA if its absolute risk tolerance (=
inverse of absolute risk aversion) T (z) := 1/A(z) is linear in
wealth z.

• I.e. T (z) = −u′(z)/u′′(z) is linear in z

• These functions have the form u(z) = ζ (η + z/γ)
1−γ.

• Given the domain of z, η + z/γ > 0 has to hold.
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Expected Utility
HARA Utility (2)

Microeconomics

• Taking derivatives results in:

u′(z) = ζ
1− γ
γ

(η + z/γ)
−γ

u′′(z) = −ζ1− γ
γ

(η + z/γ)
−γ−1

u′′′(z) = ζ
(1− γ)(γ + 1)

γ2
(η + z/γ)

−γ−2
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Expected Utility
HARA Utility (3)

Microeconomics

• Risk aversion: A(z) = (η + z/γ)
−1

• Risk Tolerance is linear in z: T (z) = η + z/γ

• Absolute Prudence: P (z) = γ+1
γ (η + z/γ)

−1

• Relative Risk Aversion: R(z) = z (η + z/γ)
−1
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Expected Utility
HARA Utility (4)

Microeconomics

• With η = 0, R(z) = γ: Constant Relative Risk Aversion

Utility Function: u(z) = log(z) for γ = 1 and u(z) = z1−γ

1−γ for
γ 6= 1.

• This function exhibits DARA; A′(z) = −γ2/z2 < 0.
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Expected Utility
HARA Utility (5)

Microeconomics

• With γ →∞: Constant Absolute Risk Aversion Utility
Function: A(z) = 1/η.

• Since u′′(z) = Au′(z) we get u(z) = − exp(−Az)/A.

• This function exhibits increasing relative risk aversion.

376



Expected Utility
HARA Utility (6)

Microeconomics

• With γ = −1: Quadratic Utility Function:

• This functions requires z < η, since it is decreasing over η.

• Increasing absolute risk aversion.
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Expected Utility
State Dependent Utility (1)

Microeconomics

• With von Neumann Morgenstern utility theory only the
consequences and their corresponding probabilities matter.

• I.e. the underlying cause of the consequence does not play any
role.

• If the cause is one’s state of health this assumption is unlikely to
be fulfilled.

• Example car insurance: Consider fair full cover insurance. Under
VNM utility U(l) = pu(w − P ) + (1− p)u(w − P ), etc. If
however it plays a role whether we have a wealth of w − P in the
case of no accident or getting compensated by the insurance
company such the wealth is w − P , the agent’s preferences
depend on the states accident and no accident.
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Expected Utility
State Dependent Utility (2)

Microeconomics

• With VNM utility theory we have considered the set of simple
lotteries LS over the set of consequences Z. Each lottery li
corresponds to a probability distribution on Z.

• Assume that Ω has finite states. Define a random variable f
mapping from Ω into LS. Then f(ω) = lω for all ω of Ω. I.e. f
assigns a simple lottery to each state ω.

• If the probabilities of the states are given by π(ω), we arrive at
the compound lotteries lSDU =

∑
π(ω)lω.

• I.e. we have calculated probabilities of compound lotteries.

379



Expected Utility
State Dependent Utility (3)

Microeconomics

• The set of lSDU will be called LSDU . Such lotteries are also
called horse lotteries.

• Note that also convex combinations of lSDU are ∈ LSDU .

• Definition - Extended Independence Axiom: The preference
relation � satisfies extended independence if for all
l1SDU , l

2
SDU , lSDU ∈ LSDU and α ∈ (0, 1) we have l1SDU � lSDU

if and only if αl1SDU + (1− α)l2SDU � αlSDU + (1− α)l2SDU .
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Expected Utility
State Dependent Utility (4)

Microeconomics

• Proposition - Extended Expected Utility/State Dependent
Utility: Suppose that Ω is finite and the preference relation �
satisfies continuity and in independence on LSDU . Then there
exists a real valued function u : Z × Ω→ R such that

l1SDU � l2SDU

if and only if ∑
ω∈Ω

π(ω)
∑

z∈supp(l1
SDU

(ω))

pl1(z|ω)u(z, ω) ≥

∑
ω∈Ω

π(ω)
∑

z∈supp(l2
SDU

(ω))

pl2(z|ω)u(z, ω) .
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Expected Utility
State Dependent Utility (4)

Microeconomics

• u is unique up to positive linear transformations.

• Proof: see Ritzberger, page 73.

• If only consequences matter such that u(z, ω) = u(z) then state
dependent utility is equal to VNM utility.
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Quasiconcave Functions
Motivation (1)

Microeconomics

• Jehle and Reny (2001), Chapter A 1.4.

• Mas-Colell et al. (1995), Chapter M.C

• Simon and Blume (1994)
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Quasiconcave Functions
Concave Functions (1)

Microeconomics

• Consider a convex subset A of Rn.

• Definition - Concave Function: A function f : A→ R is
concave if

f(νx′ + (1− ν)x) ≥ νf(x′) + (1− ν)f(x) , ν ∈ [0, 1].

If strict > holds then f is strictly concave; ν ∈ (0, 1) and x 6= x′.

This last equation can be rewritten with z = x′ − x and α = ν:

f(x+ αz) ≥ αf(x′) + (1− α)f(x) .

• If f is (strictly) concave then −f is (strictly) convex.
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Quasiconcave Functions
Concave Functions (2)

Microeconomics

• Theorem - Tangents and Concave Functions: If f is
continuously differentiable and concave, then
f(x′) ≤ f(x) +∇f(x)) · (x′ − x) (and vice versa). < holds if f
is strict concave for all x 6= x′. [Theorem M.C.1]

• For the univariate case this implies that the tangent line is above
the function graph of f(x); strictly for x′ 6= x with strict concave
functions.
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Quasiconcave Functions
Concave Functions (3)

Microeconomics

Proof:

• ⇒: For α ∈ (0, 1] the definition of a concave function implies:

f(x′) = f(x+ z) ≤ f(x) +
f(x+ αz)− f(x)

α

If f is differentiable the limit of the last term exists such that

f(x+ z) ≤ f(x) +∇f(x) · z
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Quasiconcave Functions
Concave Functions (4)

Microeconomics

Proof:

• ⇐: Suppose that f(x+ z)− f(x) ≤ ∇f(x) · z for any
non-concave function. Since f(.) is not concave

f(x+ z)− f(x) >
f(x+ αz)− f(x)

α

for some x, z and α ∈ (0, 1].

• Taking the limit results in f(x+ z)− f(x) > ∇f(x) · z, i.e. we
arrive at a contradiction.
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Quasiconcave Functions
Concave Functions (5)

Microeconomics

• Theorem - Hessian and Concave Functions: If f is twice
continuously differentiable and concave, then the Hessian matrix
D2f(x) is negative semidefinite; negative definite for strict
concave functions (and vice versa). [Theorem M.C.2]
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Quasiconcave Functions
Concave Functions (6)

Microeconomics

Proof:

• ⇒: A Taylor expansion of f(x′) around the point α = 0 results in

f(x+ αz) = f(x) +∇f(x) · (αz) +
α2

2
(z> ·D2(f(x+ β(α)z))z)

By the former theorem we know that
f(x+ αz)− f(x)−∇f(x) · (αz) ≤ 0 for concave functions ⇒
z>D2(f(x+ β(α)z))z ≤ 0. For arbitrary small α we get
z>D2(f(x))z ≤ 0.
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Quasiconcave Functions
Concave Functions (7)

Microeconomics

Proof:

• ⇐: If the right hand side of
f(x+αz)− f(x)−∇f(x) · (αz) = 0.5α2(z>D2(f(x+β(α)z))z)
is ≤ 0 then the left hand side. By the former theorem f is
concave.
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Quasiconcave Functions
Quasiconcave Functions (1)

Microeconomics

• Definition - Quasiconcave Function: A function f : A→ R is
quasiconcave if

f(νx′ + (1− ν)x) ≥ min{f(x′), f(x)} , ν ∈ [0, 1].

If > holds it is said to be strict quasiconcave; ν ∈ (0, 1) and
x 6= x′.

• Quasiconvex is defined by f(νx′+ (1− ν)x) ≤ max{f(x′), f(x)}.
If f is quasiconcave than −f is quasiconvex.

• If f is concave then f is quasiconcave but not vice versa. E.g.
f(x) =

√
x for x > 0 is concave and also quasiconcave. x3 is

quasiconcave but not concave.
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Quasiconcave Functions
Quasiconcave Functions (2)

Microeconomics

• Transformation property: Positive monotone transformations of
quasiconcave functions result in a quasiconcave function.

• Definition - Superior Set: S(x) := {x′ ∈ A|f(x′) ≥ f(x)} is
called superior set of x (upper contour set of x).

• Note that if f(xν) ≥ min{f(x′), f(x′′)}, then if f(x′) ≥ t and
f(x′′) ≥ t this implies that f(xν) ≥ t; where t = f(x).
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Quasiconcave Functions
Quasiconcave Functions (3)

Microeconomics

• Theorem - Quasiconcave Function and Convex Sets: The
function f is quasiconcave if and only if S(x) is convex for all
x ∈ A.
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Quasiconcave Functions
Quasiconcave Functions (4)

Microeconomics

Proof:

• Sufficient condition ⇒: If f is quasiconcave then S(x) is convex.
Consider x1 and x2 in S(x). We need to show that f(xν) in
S(x); f(x) = t.

• Since f(x1) ≥ t and f(x2) ≥ t, the quasiconcave f implies
f(xν) ≥ min{f(x1), f(x2)} ≥ t.

• Therefore f(xν) ∈ S(x); i.e. the set S(x) is convex.
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Quasiconcave Functions
Quasiconcave Functions (5)

Microeconomics

Proof:

• Necessary condition ⇐: If S(x) is convex then f(x) has to be
quasiconcave. W.l.g. assume that f(x1) ≥ f(x2), x1 and x2 in
A.

• By assumption S(x) is convex, such that S(x2) is convex. Since
f(x1) ≥ f(x2), we get x1 ∈ S(x2) and xν ∈ S(x2).

• From the definition of S(x2) we conclude that
f(xν) ≥ f(x2) = min{f(x1), f(x2)}.

• Therefore f(x) has to be quasiconcave.
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Quasiconcave Functions
Quasiconcave Functions (6)

Microeconomics

• Theorem - Gradients and Quasiconcave Functions: If f is
continuously differentiable and quasiconcave, then
∇f(x) · (x′ − x) ≥ 0 whenever f(x′) ≥ f(x) (and vice versa).
[Theorem M.C.3]

• If ∇f(x) · (x′ − x) > 0 whenever f(x′) ≥ f(x) and x 6= x′ then
f(x) is strictly quasiconcave. If f(x) is strictly quasiconcave and
if ∇f(x) 6= 0 for all x ∈ A, then ∇f(x) · (x′ − x) > 0 whenever
f(x′) ≥ f(x) and x 6= x′.
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Quasiconcave Functions
Quasiconcave Functions (7)

Microeconomics

Proof:

• ⇒: For f(x′) ≥ f(x) and α ∈ (0, 1] the definition of a
quasiconcave function implies:

f(x+ α(x′ − x))− f(x)

α
≥ 0

If f is differentiable, then the limit exists such that

∇f(x) · z ≥ 0
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Quasiconcave Functions
Quasiconcave Functions (8)

Microeconomics

Proof:

• ⇐: Suppose that ∇f(x) · z ≥ 0 holds but f is not quasiconcave.
Then f(x+ αz)− f(x) < 0 for some x, z and α ∈ (0, 1]. Such
that (f(x+ αz)− f(x))/α < 0. Taking the limit results in a
contradiction.
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Quasiconcave Functions
Quasiconcave Functions (9)

Microeconomics

• Theorem - Hessian Matrix and Quasiconcave Functions:
Suppose f is twice continuously differentiable. f(x) is
quasiconcave if and only if D2(f(x)) is negative semidefinite in
the subspace {z|∇f(x) · z = 0}. I.e. z>D2(f(x))z ≤ 0 whenever
∇f(x) · z = 0. [Theorem M.C.4]

• If the Hessian D2(f(x)) is negative definite in the subspace
{z|∇f(x) · z = 0} for every x ∈ A then f(x) is strictly
quasiconcave.
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Quasiconcave Functions
Quasiconcave Functions (10)

Microeconomics

Proof:

• ⇒: If f is quasiconcave then whenever f(xν) ≥ f(x), so
∇f(x) · (αz) ≥ 0 has to hold.

• Thus f(x1)− f(x) ≤ 0 and the above theorem imply:
∇f(x) · (z) ≤ 0, where z = x1 − x.

• A first order Taylor series expansion of f in α (at α = 0) results
in

f(x+ αz) = f(x) +∇f(x)αz +
α2

2
·
(
z>D2f(x+ β(α)z)z

)
.

400



Quasiconcave Functions
Quasiconcave Functions (11)

Microeconomics

Proof:

• Apply this to x1, x with f(x1) ≤ f(x):

f(x+ αz)− f(x)−∇f(x)αz =
α2

2
· z>D2f(x+ β(α)z)z.

• If z = x1 − x fulfills ∇f(x)(x1 − x) = 0 the above inequality still
has to hold.

• This implies α2/2z>D2f(x+ β(α)z)z ≤ 0.
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Quasiconcave Functions
Quasiconcave Functions (12)

Microeconomics

Proof:

• To fulfill this requirement on the subspace {z|∇f(x) · z = 0},
where ∇f(x)αz = 0, this requires a negative definite Hessian of
f(x).

• ⇐: In the above equation a negative semidefinite Hessian implies
that . . . .
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Envelope Theorem (1)

Microeconomics

• Consider f(x; q), x are variables in RN and q are parameters in
RS.

• We look at the constrained maximization problem

max
x

f(x; q) s.t.gm(x; q) ≤ bm

m = 1, . . . ,M .

• Assume that the solution of this optimization problem x∗ = x(q)
is at least locally differentiable function (in a neighborhood of a q̄
considered).

• v(q) = f(x(q); q) is the maximum value function associated with
this problem.
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Envelope Theorem (2)

Microeconomics

• With no constraints (M = 0) and S,N = 1 the chain rule yields:

d

dq
v(q̄) =

∂f(x(q̄); q̄)

∂x

∂x(q̄)

∂q
+
∂f(x(q̄); q̄)

∂q
.

• With an unconstrained maximization problem the first order
condition ∂f(x(q̄);q̄)

∂x = 0 results in

d

dq
v(q̄) =

∂f(x(q̄); q̄)

∂q
.
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Envelope Theorem (3)

Microeconomics

[T. M.L.1] Consider the value function v(q) for the above
constrained maximization problem. Assume that v(q) is
differentiable at q̄ ∈ RS and (λ1, . . . , λM) are the Lagrange
multipliers associated with the maximizer solution x(q) at q̄. In
addition the inequality constraints are remain unaltered in a
neighborhood of q̄. Then

∂v(q̄)

∂qs
=
∂f(x(q̄); q̄)

∂qs
−

M∑
m=1

λm
∂gm(x(q̄); q̄)

∂qs
.

For s = 1, . . . , S.
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Envelope Theorem (4)

Microeconomics

Proof:

• With no constraints (M = 0) and S,N = 1 the chain rule yields:

∂v(q̄)

dqs
=

N∑
n=1

∂f(x(q̄); q̄)

∂xn

∂xn(q̄)

∂qs
+
∂f(x(q̄); q̄)

∂qs
.

• The first order conditions tell us

∂f(x(q̄); q̄)

∂xn
=

M∑
m=1

λm
∂gm(x(q̄); q̄)

∂xn
.
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Envelope Theorem (5)

Microeconomics

Proof:

• In addition we observe

N∑
n=1

∂gm(x(q̄); q̄)

∂xn

∂xn(q̄)

∂qs
+
∂gm(q̄)

∂qs
= 0.

if a constraint is binding; if not the multiplier λm is zero.
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Envelope Theorem (6)

Microeconomics

Proof:

• Plugging in and changing the order of summation results in :

∂v(q̄)

dqs
=

M∑
m=1

λm

N∑
n=1

∂gm(x(q̄); q̄)

∂xn

∂xn(q̄)

∂qs
+
∂f(x(q̄); q̄)

∂qs
.

• and
∂v(q̄)

dqs
= −

M∑
m=1

λm
∂gm(x(q̄); q̄)

∂qs
+
∂f(x(q̄); q̄)

∂qs
.

• Remark: remember that the Lagrangian of the problem is
L(x, λ; q) = f(x; q)−

∑
m λmgm(x; q). Hence we get ∂v(q̄)

dqs
by

means of the partial derivative of the Lagrangian with respect to
ql, evaluated at q̄.
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Consumer Theory
Abbreviations

Microeconomics

Slides GR MWG Comments
X X consumption space
x x x bundle of L goods (row vector)
xl component l of x
p p p vector of L prices (row vector)
pl price of good l
u(x) u(x) u(x) utility function
M M w wealth/wealth measures in monetary units
m(p, u) m(p, u) e(p, u) expenditure function
v(p,M) v(p,M) v(p, w) indirect utility
D(p,M) D(p,M) x(p, w) Walrasian/Marshallian demand
Dl(p,M) Dl(p,M) xl(p, w) Walrasian/Marshallian demand for good l
H(p, u) H(p, u) h(p, u) Hicksian demand
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Consumer Theory
Abbreviations

Microeconomics

Slides GR MWG Comments
∇xf(x) gradient vector of f(x) (column vector)
Dxf(x) row vector of partial derivatives
D2
xf(x) matrix of second order partial derivatives
· · inner product
x̄ x̄ w̄ initial endowment
OC(p, x̄) FF OC(p, w̄) offer curve

D̂(p, x̄) DD net demand
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Theory of the Firm
Abbreviations

Microeconomics

Slides GR MWG Comments
∂f(z)
∂zi

= MPi marginal product of input i
∂f(z)
∂zi

= APi average product of input i

C(pz, yq) C(y) c(w, y) cost function
FC fixed cost
SC(pz, yq, z

f) S short run cost function
SAC(pz, yq, z

f) SAC short run average cost
SMC(pz, yq, z

f) SMC short run marginal cost
∂C(pw,yq)

∂yq
= MC MC(y) marginal cost

C(pz,yq)
yq

= AC(pz, yq) AC(y) average cost
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Theory of the Firm
Abbreviations

Microeconomics

Slides GR MWG Comments
FC FC fixed cost
zv zv variable input
zf zk fixed input
V C(pz, yq, z

f) VC (short run) variable cost
AV C(pz, yq, z

f) AVC average variable cost
z(pz, yq) z(pz, y) z(w, q) conditional input demand
z(pz, yq, z

f) z(pz, y, zk) short run cond. input demand
yq(pz, pq) supply function for good q
yq(pz, pq, z

f) short run supply function
π(p) Π π(p) profit function
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