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3. Under what conditions can we solve (3:2) and be sure to have solved (3:1);
i.e. under what conditions do we have v = w and equivalence between the
optimal sequential allocation fkt+1g

1
t=0 and allocations generated by the

optimal recursive policy g(k)

4. Can we say something about the qualitative features of v and g?

The answers to these questions will be given in the next two sections: the
answers to 1. and 2. will come from the Contraction Mapping Theorem, to
be discussed in Section 4.3. The answer to the third question makes up what
Richard Bellman called the Principle of Optimality and is discussed in Section
5.1. Finally, under more restrictive assumptions we can characterize the solution
to the functional equation (v; g) more precisely. This will be done in Section 5.2.
In the remaining parts of this section we will look at speci�c examples where we
can solve the functional equation by hand. Then we will talk about competitive
equilibria and the way we can construct prices so that Pareto optimal alloca-
tions, together with these prices, form a competitive equilibrium. This will be
our versions of the �rst and second welfare theorem for the neoclassical growth
model.

3.2.3 An Example

Consider the following example. Let the period utility function be given by
U(c) = ln(c) and the aggregate production function be given by F (k; n) =
k�n1�� and assume full depreciation, i.e. � = 1: Then f(k) = k� and the
functional equation becomes

v(k) = max
0�k0�k�

fln (k� � k0) + �v(k0)g

Remember that the solution to this functional equation is an entire function
v(:): Now we will apply several methods to solve this functional equation.

Guess and Verify

We will guess a particular functional form of a solution and then verify that the
solution has in fact this form (note that this does not rule out that the functional
equation has other solutions). This method works well for the example at hand,
but not so well for most other examples that we are concerned with. Let us
guess

v(k) = A+B ln(k)

where A and B are coe¢cients that are to be determined. The method consists
of three steps:

1. Solve the maximization problem on the right hand side, given the guess
for v; i.e. solve

max
0�k0�k�

fln (ka � k0) + � (A+B ln(k0))g
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Obviously the constraints on k0 never bind and the objective function is
strictly concave and the constraint set is compact, for any given k: The
�rst order condition is su¢cient for the unique solution. The FOC yields

1

k� � k0
=

�B

k0

k0 =
�Bk�

1 + �B

2. Evaluate the right hand side at the optimum k0 = �Bk�

1+�B
: This yields

RHS = ln (ka � k0) + � (A+B ln(k0))

= ln

�

k�

1 + �B

�

+ �A+ �B ln

�

�Bk�

1 + �B

�

= � ln(1 + �B) + � ln(k) + �A+ �B ln

�

�B

1 + �B

�

+ ��B ln (k)

3. In order for our guess to solve the functional equation, the left hand side of
the functional equation, which we have guessed to equal LHS= A+B ln(k)
must equal the right hand side, which we just found. If we can �nd
coe¢cients A;B for which this is true, we have found a solution to the
functional equation. Equating LHS and RHS yields

A+B ln(k) = � ln(1 + �B) + � ln(k) + �A+ �B ln

�

�B

1 + �B

�

+ ��B ln (k)

(B � �(1 + �B)) ln(k) = �A� ln(1 + �B) + �A+ �B ln

�

�B

1 + �B

�

(3.3)

But this equation has to hold for every capital stock k. The right hand
side of (3:3) does not depend on k but the left hand side does. Hence
the right hand side is a constant, and the only way to make the left hand
side a constant is to make B � �(1 + �B) = 0: Solving this for B yields
B = �

1��� : Since the left hand side of (3:3) is 0; the right hand side better
is, too, for B = �

1��� : Therefore the constant A has to satisfy

0 = �A� ln(1 + �B) + �A+ �B ln

�

�B

1 + �B

�

= �A� ln

�

1

1� ��

�

+ �A+
��

1� ��
ln(��)

Solving this mess for A yields

A =
1

1� �

�

��

1� ��
ln(��) + ln(1� ��)

�

We can also determine the optimal policy function k0 = g(k) as

g(k) =
�Bk�

1 + �B

= ��k�
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Hence our guess was correct: the function v�(k) = A+B ln(k); with A;B as
determined above, solves the functional equation, with associated policy func-
tion g(k) = ��k�: Note that for this speci�c example the optimal policy of the
social planner is to save a constant fraction �� of total output k� as capital stock
for tomorrow and and let the household consume a constant fraction (1 � ��)
of total output today. The fact that these fractions do not depend on the level
of k is very unique to this example and not a property of the model in general.
Also note that there may be other solutions to the functional equation; we have
just constructed one (actually, for the speci�c example there are no others, but
this needs some proving). Finally, it is straightforward to construct a sequence
fkt+1g

1
t=0 from our policy function g that will turn out to solve the sequential

problem (3:1) (of course for the speci�c functional forms used in the example):

start from k0 = �k0; k1 = g(k0) = ��k
�
0 ; k2 = g(k1) = ��k

�
1 = (��)

1+�k�
2

0 and

in general kt = (��)
Pt�1

j=0
�j

k�
t

0 : Obviously, since 0 < � < 1 we have that

lim
t!1

kt = (��)
1

1��

for all initial conditions k0 > 0 (which, not surprisingly, is the unique solution
to g(k) = k).

Value Function Iteration: Analytical Approach

In the last section we started with a clever guess, parameterized it and used the
method of undetermined coe¢cients (guess and verify) to solve for the solution
v� of the functional equation. For just about any other than the log-utility,
Cobb-Douglas production function case this method would not work; even your
most ingenious guesses would fail when trying to be veri�ed.

Consider the following iterative procedure for our previous example

1. Guess an arbitrary function v0(k): For concreteness let�s take v0(k) = 0
for all

2. Proceed recursively by solving

v1(k) = max
0�k0�k�

fln (k� � k0) + �v0(k
0)g

Note that we can solve the maximization problem on the right hand side
since we know v0 (since we have guessed it). In particular, since v0(k

0) = 0
for all k0 we have as optimal solution to this problem

k0 = g1(k) = 0 for all k

Plugging this back in we get

v1(k) = ln (k
� � 0) + �v0(0) = ln k

� = � ln k
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3. Now we can solve

v2(k) = max
0�k0�k�

fln (k� � k0) + �v1(k
0)g

since we know v1 and so forth.

4. By iterating on the recursion

vn+1(k) = max
0�k0�k�

fln (k� � k0) + �vn(k
0)g

we obtain a sequence of value functions fvng
1
n=0 and policy functions

fgng
1
n=1: Hopefully these sequences will converge to the solution v

� and
associated policy g� of the functional equation. In fact, below we will
state and prove a very important theorem asserting exactly that (under
certain conditions) this iterative procedure converges for any initial guess
and converges to the correct solution, namely v�:

In the �rst homework I let you carry out the �rst few iterations in this
procedure. Note however, that, in order to �nd the solution v� exactly you
would have to carry out step 2: above a lot of times (in fact, in�nitely many
times), which is, of course, infeasible. Therefore one has to implement this
procedure numerically on a computer.

Value Function Iteration: Numerical Approach

Even a computer can carry out only a �nite number of calculation and can
only store �nite-dimensional objects. Hence the best we can hope for is a
numerical approximation of the true value function. The functional equa-
tion above is de�ned for all k � 0 (in fact there is an upper bound, but
let�s ignore this for now). Because computer storage space is �nite, we will
approximate the value function for a �nite number of points only.4 For the
sake of the argument suppose that k and k0 can only take values in K =
f0:04; 0:08; 0:12; 0:16; 0:2g: Note that the value functions vn then consists of
5 numbers, (vn(0:04); vn(0:08); vn(0:12); vn(0:16); vn(0:2))

Now let us implement the above algorithm numerically. First we have to pick
concrete values for the parameters � and �: Let us pick � = 0:3 and � = 0:6:

1. Make an initial guess v0(k) = 0 for all k 2 K

2. Solve
v1(k) = max

0�k0�k0:3

k02K

�

ln
�

k0:3 � k0
�

+ 0:6 � 0
	

4 In this course I will only discuss so-called �nite state-space methods, i.e. methods in
which the state variable (and the control variable) can take only a �nite number of values.
Ken Judd, one of the world leaders in numerical methods in economics teaches an exellent
second year class in computational methods, in which much more sophisticated methods for
solving similar problems are discussed. I strongly encourage you to take this course at some
point of your career here in Stanford.
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This obviously yields as optimal policy k0(k) = g1(k) = 0:04 for all k 2 K
(note that since k0 2 K is required, k0 = 0 is not allowed). Plugging this
back in yields

v1(0:04) = ln(0:040:3 � 0:04) = �1:077

v1(0:08) = ln(0:080:3 � 0:04) = �0:847

v1(0:12) = ln(0:120:3 � 0:04) = �0:715

v1(0:16) = ln(0:160:3 � 0:04) = �0:622

v1(0:2) = ln(0:20:3 � 0:04) = �0:55

3. Let�s do one more step by hand

v2(k) =

8

>

<

>

:

max
0�k0�k0:3

k02K

ln
�

k0:3 � k0
�

+ 0:6v1(k
0)

9

>

=

>

;

Start with k = 0:04 :

v2(0:04) = max
0�k0�0:040:3

k02K

�

ln
�

0:040:3 � k0
�

+ 0:6v1(k
0)
	

Since 0:040:3 = 0:381 all k0 2 K are possible. If the planner chooses
k0 = 0:04; then

v2(0:04) = ln
�

0:040:3 � 0:04
�

+ 0:6 � (�1:077) = �1:723

If he chooses k0 = 0:08; then

v2(0:04) = ln
�

0:040:3 � 0:08
�

+ 0:6 � (�0:847) = �1:710

If he chooses k0 = 0:12; then

v2(0:04) = ln
�

0:040:3 � 0:12
�

+ 0:6 � (�0:715) = �1:773

If k0 = 0:16; then

v2(0:04) = ln
�

0:040:3 � 0:16
�

+ 0:6 � (�0:622) = �1:884

Finally, if k0 = 0:2; then

v2(0:04) = ln
�

0:040:3 � 0:2
�

+ 0:6 � (�0:55) = �2:041

Hence for k = 0:04 the optimal choice is k0(0:04) = g2(0:04) = 0:08 and
v2(0:04) = �1:710: This we have to do for all k 2 K: One can already see
that this is quite tedious by hand, but also that a computer can do this
quite rapidly. Table 1 below shows the value of

�

k0:3 � k0
�

+ 0:6v1(k
0)

for di¤erent values of k and k0: A � in the column for k0 that this k0 is
the optimal choice for capital tomorrow, for the particular capital stock k
today
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Table 1

k0

k
0:04 0:08 0:12 0:16 0:2

0:04 �1:7227 �1:7097� �1:7731 �1:8838 �2:0407
0:08 �1:4929 �1:4530� �1:4822 �1:5482 �1:6439
0:12 �1:3606 �1:3081� �1:3219 �1:3689 �1:4405
0:16 �1:2676 �1:2072� �1:2117 �1:2474 �1:3052
0:2 �1:1959 �1:1298 �1:1279� �1:1560 �1:2045

Hence the value function v2 and policy function g2 are given by

Table 2

k v2(k) g2(k)

0:04 �1:7097 0:08
0:08 �1:4530 0:08
0:12 �1:3081 0:08
0:16 �1:2072 0:08
0:2 �1:1279 0:12

In Figure 3.2.3 we plot the true value function v� (remember that for this ex-
ample we know to �nd v� analytically) and selected iterations from the numerical
value function iteration procedure. In Figure 3.2.3 we have the corresponding
policy functions.

We see from Figure 3.2.3 that the numerical approximations of the value
function converge rapidly to the true value function. After 20 iterations the
approximation and the truth are nearly indistinguishable with the naked eye.
Looking at the policy functions we see from Figure 2 that the approximating
policy function do not converge to the truth (more iterations don�t help). This is
due to the fact that the analytically correct value function was found by allowing
k0 = g(k) to take any value in the real line, whereas for the approximations
we restricted k0 = gn(k) to lie in K: The function g10 approximates the true
policy function as good as possible, subject to this restriction. Therefore the
approximating value function will not converge exactly to the truth, either.
The fact that the value function approximations come much closer is due to the
fact that the utility and production function induce �curvature� into the value
function, something that we may make more precise later. Also note that we we
plot the true value and policy function only on K, with MATLAB interpolating
between the points in K, so that the true value and policy functions in the plots
look piecewise linear.
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3.2.4 The Euler Equation Approach and Transversality

Conditions

We now relate our example to the traditional approach of solving optimization
problems. Note that this approach also, as the guess and verify method, will
only work in very simple examples, but not in general, whereas the numerical
approach works for a wide range of parameterizations of the neoclassical growth
model. First let us look at a �nite horizon social planners problem and then at
the related in�nite-dimensional problem

The Finite Horizon Case

Let us consider the social planner problem for a situation in which the repre-
sentative consumer lives for T < 1 periods, after which she dies for sure and
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the economy is over. The social planner problem for this case is given by

wT (�k0) = max
fkt+1gTt=0

T
X

t=0

�tU(f(kt)� kt+1)

0 � kt+1 � f(kt)

k0 = �k0 > 0 given

Obviously, since the world goes under after period T; kT+1 = 0. Also, given
our Inada assumptions on the utility function the constraints on kt+1 will never
be binding and we will disregard them henceforth. The �rst thing we note is
that, since we have a �nite-dimensional maximization problem and since the set
constraining the choices of fkt+1g

T
t=0 is closed and bounded, by the Bolzano-

Weierstrass theorem a solution to the maximization problem exists, so that
wT (�k0) is well-de�ned. Furthermore, since the constraint set is convex and
we assumed that U is strictly concave (and the �nite sum of strictly concave
functions is strictly concave), the solution to the maximization problem is unique
and the �rst order conditions are not only necessary, but also su¢cient.


