SAVING

(Interest period $=$ payment period)

- How much you will have on your saving account in 12 years, if you will regularly save at the beginning of each month 100.00? The annually interest rate is 6% and the bank calculate the interest every month (Interest period is one month).

$$
S=100 *\left(1+\frac{0.06}{12}\right) * \frac{\left(1+\frac{0.06}{12}\right)^{(12 * 12)}-1}{\frac{0.06}{12}}
$$

After payment:

$$
S=100 * \frac{\left(1+\frac{0.06}{12}\right)^{(12 * 12)}-1}{\frac{0.06}{12}}
$$

(Interest period $>$ payment period)

- How much you will have on your saving account in 12 years, if you will regularly save at the beginning of each month 100.00 ? The annually interest rate is 6% and the bank calculate the interest once a year (Interest period is one year).

$$
S=100 * 12 *\left(1+\frac{12+1}{2 * 12} * 0.06\right) * \frac{(1+0.06)^{12}-1}{0.06}
$$

After payment:

$$
S=100 * 12 *\left(1+\frac{12-1}{2 * 12} * 0.06\right) * \frac{(1+0.06)^{12}-1}{0.06}
$$

(Interest period < payment period)

- How much you will have on your saving account in 12 years, if you will regularly save at the beginning of a year? The annually interest rate is 6% and the bank calculate the interest monthly (Interest period is one month).

$$
S=100 *\left(1+\frac{0.06}{12}\right)^{12} * \frac{\left(1+\frac{0.06}{12}\right)^{(12 * 12)}-1}{\left(1+\frac{0.06}{12}\right)^{12}-1}
$$

After payment:

$$
S=100 * \frac{\left(1+\frac{0.06}{12}\right)^{(12 * 12)}-1}{\left(1+\frac{0.06}{12}\right)^{12}-1}
$$

ANNUITY INCOME

(Intrest period $=$ payment period)

- How much do you need to put on your bank account if you like to provide a regularly income at the end of every month in the amount of 500.00 for 17 years? The bank assures you an interest rate of 5% p. a. (annually interest rate) and the bank calculate the interest every month (Interest period is one month).

$$
R=500 * \frac{1-\left(\frac{1}{1+\frac{0.05}{1.25}}\right)^{(12 * 17)}}{\frac{0.05}{12}}
$$

Ahead payment:

$$
R=500 * \frac{1-\left(\frac{1}{1+\frac{0.05}{12}}\right)^{(12 * 17)}}{1-\frac{1}{1+\frac{0.05}{12}}}
$$

(Intrest period $>$ payment period)

- How much do you need to put on your bank account if you like to provide a regularly income at the end of every month in the amount of 500.00 for 17 years? The bank assures you an interest rate of 5% p. a. (annually interest rate) and the bank calculates the interest once a year (Interest period is one year).

$$
R=500 * 12 *\left(1+\frac{12+1}{2 * 12} * 0.05\right) * \frac{1-\left(\frac{1}{1+0.05}\right)^{17}}{0.05}
$$

Ahead payment:

$$
R=500 * 12 *\left(1+\frac{12-1}{2 * 12} * 0.05\right) * \frac{1-\left(\frac{1}{1+0.05}\right)^{17}}{0.05}
$$

(Intrest period $<$ payment period)

- How much do you need to put on your bank account if you like to provide a regularly income at the end of a year (Payment period is one year, just once a year you will obtain 500.00) in the amount of 500.00 for 17 years? The bank assures you an interest rate of $5 \% \mathrm{p}$. a. (annually interest rate) and the bank calculates the interest every month (Interest period is one month).

$$
R=500 *\left(\frac{1}{1+\frac{0.05}{12}}\right)^{12} * \frac{1-\left(\frac{1}{1+\frac{0.05}{12}}\right)^{(12 * 17)}}{1-\left(\frac{1}{1+\frac{1.05}{12}}\right)^{12}}
$$

Ahead payment:

$$
R=500 * \frac{1-\left(\frac{1}{1+\frac{0.05}{12}}\right)^{(12 * 17)}}{1-\left(\frac{1}{1+\frac{0.05}{12}}\right)^{12}}
$$

