1 Interest and Tax

- Consider that you deposit on your saving account $\$ 1,000.00$. The interest rate is $4 \% \mathrm{p}$. a. The interest period is
one year. Every year you have to pay the tax from earned interest (at the end of the year). The tax rate is 15%.

What is the value on your bank account after 5 years?
Note! Tax is paid only from received interest, NO FROM THE PRINCIPAL!
$F V=1000 *(1+0,04 * 0,85)^{5}$
$F V=1181.95977$

$$
F V=P V(1+r(1-T))^{n}
$$

- Take the same example if the interest periodis quarterly.
$F V_{1}=1000 *\left(\left(1+\frac{0.04}{4}\right)^{4}-1000\right) * 0.85+1000 \ldots$ after one year the FV will be 1034.51341
$F V_{2}=1034.51341 *\left(\left(1+\frac{0.04}{4}\right)^{4}-1000\right) * 0.85+1000 \ldots$ after second year the FV will be 1070.21799
$F V_{3}=1034.51341 *\left(\left(1+\frac{0.04}{4}\right)^{4}-1000\right) * 0.85+1000 \ldots$ after third year the FV will be 1107.15486
$F V_{4}=1034.51341 *\left(\left(1+\frac{0.04}{4}\right)^{4}-1000\right) * 0.85+1000 \ldots$ after fourth year the FV will be 1145.36665
$F V_{5}=1034.51341 *\left(\left(1+\frac{0.04}{4}\right)^{4}-1000\right) * 0.85+1000 \ldots$ after fifth year the FV will be 1184.89705
or an easier way:

$$
\begin{aligned}
& \left.F V_{0,5}=1000 *\left(\left(\left(1+\frac{0.04}{4}\right)^{4}-1\right) * 0.85+1\right)^{5} \ldots \text { is } ;\right) \\
& F V=P V\left(\left(\left(1+\frac{r_{\text {annual }}}{m}\right)^{m}-1\right)(1-T)+1\right)^{n}
\end{aligned}
$$

T...Tax rate
$m \ldots$ number of interest periods in one year (in one Tax pariod)
$n \ldots$ number of years (number of Tax periods)
Note! The effect of the number of interest periods (more IPs generate greater $F V)$.

2 Effective Interest Rate

In order to have the same impact on the future value of capital at varying interest periods, we use the EFFECTIVE INTEREST RATE.

- The annual interest rate is 5%. Your bank calculates the interest on the monthly basis. What is the future value of
your $10,000.00$ after one year?
$F V=10000 *\left(1+\frac{0.05}{12}\right)^{12}=10511.619$
The same effect on the future value must be reached if we use the effective interest rate.

The calculation of effective interest rate:

$$
\left.r_{e f}=\left(1+\frac{r_{\text {annual }}}{m}\right)^{m}-1\right)
$$

Proof:
$\left.r_{e f}=\left(1+\frac{0.05}{12}\right)^{12}-1\right)=0.0511619$
$F V_{r_{e f}}=10000 *(1+0.0511619)=10511.619$

3 Continuous Interest

If the number of interest periods goes to infinity then we speak about continuous interest calculation.

The expression is:
Let PV=1, than the FV in one year will be if $\operatorname{Lim}_{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m} \longrightarrow$ $\operatorname{Lim}_{m \rightarrow \infty}\left\{\left(1+\frac{1}{\frac{m}{r}}\right)^{\frac{r}{m}}\right\}^{r}=e^{r}$

Through the usage of the effective interest rate we can achieve the same effect on the FV, as in the discrete
calculation (simple, compound).
$F V=P V e^{f t}$
Note. Instead of interest rate, we use the term interest intensity (f).
The relation between the effective interest rate and the interest intensity is following:

$$
\begin{gathered}
r_{e f}=e^{f}-1 \rightarrow \text { then, } \\
f=\ln \left(r_{e f}+1\right)
\end{gathered}
$$

In our example:
$f=\ln (1.0511619)=0.0489612$
$\mathrm{FV}_{\text {contInt }}=10000 * e^{0.0489612}=10511.619$

4 Tax payment by the continuous interest

$$
F V_{\text {contInt }}=P V *\left(\left(e^{f}-1\right) *(1-T)+1\right)^{n}
$$

5 Effect of inflation

The Purchasing Power Parity of our money will be lower. To take the effect of inflation in account we use it as a discounting factor.

1. Situation when inflation is constant in average

$$
d f=\frac{1}{\left(1+\pi_{\text {averagen }}\right)^{n}}
$$

2. inflation is different every year

$$
d f=\frac{1}{\left(1+\pi_{0,1}\right)\left(1+\pi_{0,2}\right)\left(1+\pi_{0,3}\right) * \ldots *\left(1+\pi_{0, n}\right)}
$$

3. Inflation is constant and we use the concept of continuous calculation.

Inflationintensity $\ldots f_{\Pi}=\ln ($ AnnualAverInflation +1$)$, then

$$
d f=\frac{1}{e^{f_{\pi}}}
$$

Our pevious example with 4 Interest Periods in one year, interest rate 4% p. a., 5 years to maturity and continuous interest + continuous inflation (if the approximation of an annual average inflation is 1.7%) will be:
$f_{\Pi}=\ln (1,017)=0.01685712$
$r_{e f}=\left(1+\frac{0.04}{4}\right)^{4}-1=0.04060401$
$f=\ln (1,04060401)=0.03980132$
$F V_{\Pi}=1000 * e^{(0.03980132-0.01685712) * 5}=1121.56051$

6 The effect of Tax and Inflation

Note! Tax is paid from the nominal interes, first then the effect of inflation can be considered.
$F V_{\text {conTaxInfla }}=1000 *\left(\left(e^{0.03980132}-1\right) * 0.85+1\right)^{5} * e^{-0.01685712 * 5}=$ 1089.12031

