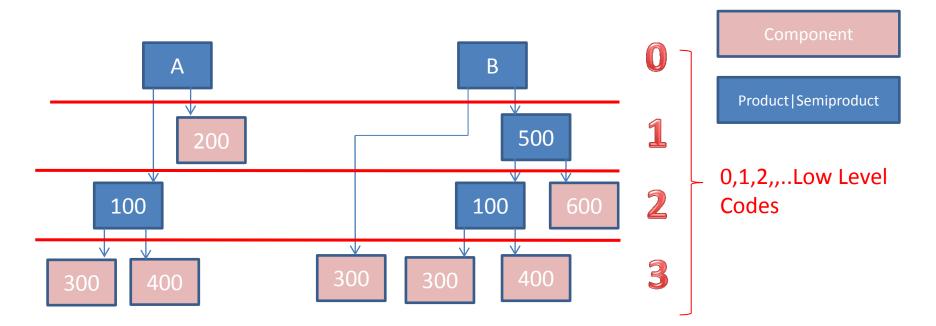
Basic production algorithms and its main concepts

Ing.J.Skorkovský,CSc.

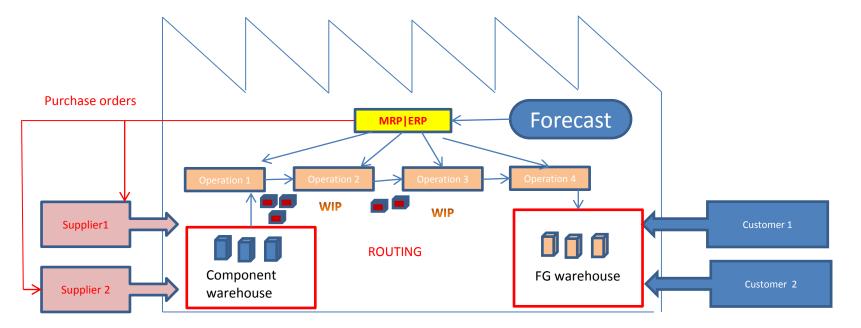
and various listed resources

Department of Corporate Economy


Main concepts

- MRP=Material Requirements Planning (push)
- MRP_II=Manufacturin Resource Planning (push)
- APS = Advanced Planning and Scheduling
- JIT = Just In Time (pull)
- TOC (Drum Buffer Rope) (push-pull->combined) will be prezented in

another session of this course



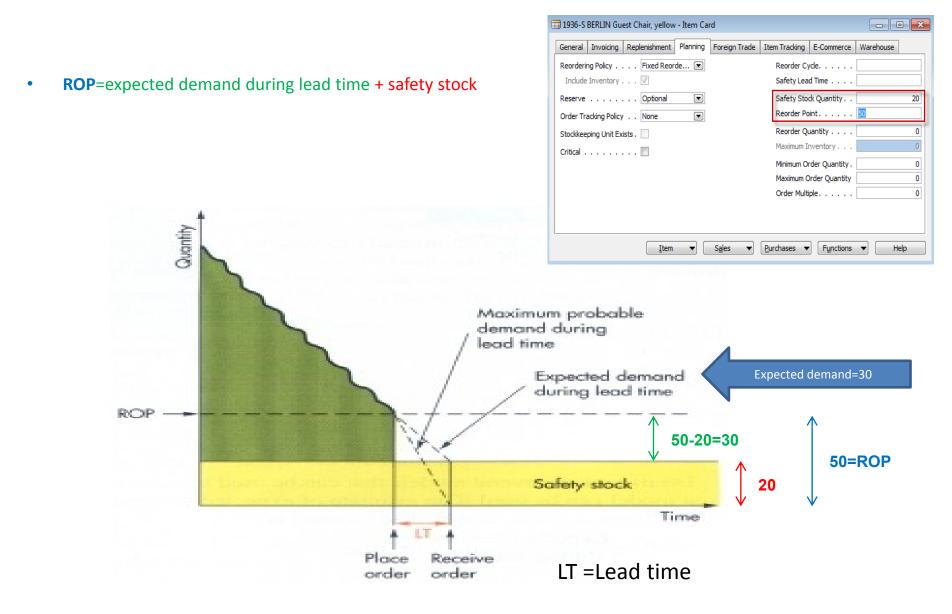
BOM=Bill Of Material (structure of the product)

- Independent demand for products and semi-products and dependent for components
- Planning backwards from production schedule (independent) to dependent- demand components -without statistically calculated Reorder Point (ROP) – see next lesson and next slide as well
- IF ROP is not taken into consideration MRP is PUSH system -> it computes schedule of what should be started (pushed) into system, that authorize production as inventory is consumed (ROP will be explained later in this session)

Push system

PUSH and **PULL**

- **PUSH**: production jobs (production orders) are scheduled: MRP and MRP_II= Manufacturing Resource Planning
 - often not feasible plans are generated and problems are often detected too late (rejects, lack of components,..)
 - used fixed lead times=LT (see next slide) do not depend on capacity utilization
 - Having in mind , that production is random process, Lead Time is very pessimistic constant

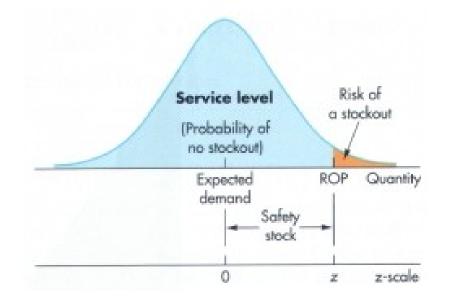

→ Black box →

t=start of the job

t+LT=end time of the job (where LT=constant)

• **PULL**: production jobs (production orders) starts are triggered by completion of another job (JIT-see later in this session)

Determination of the Reorder Point (ROP)


Determination of the Reorder Point (ROP)

(home study)

• **ROP** = expected demand during lead time + $z^* \sigma_{dit}$

where **Z** = number of standard deviations and

 σ_{dLT} = the standard deviation of lead time demand and $z^* \sigma_{dLT}$ =Safety Stock

Example

(home study- also Pareto analysis and ABC model simplified- PWP will be shown later)

- The manager of a construction supply house determined knows that demand for sand during lead time averages is 50 tons.
- The manager knows, that demand during lead time could be described by a normal distribution that has a mean of 50 tons and a Standard Deviation of 5 tons (σ_{dLT})
- The manager is willing to accept a stock out risk of no more than 3 percent

Example-data


(home study)

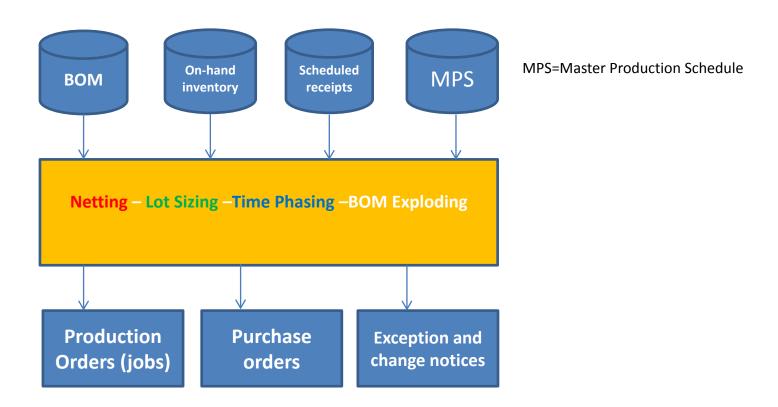
- **Expected lead time averages** = 50 tons.
- **σ**_{dLT} = 5 tons
- **Risk** = 3 % max
- Questions :
 - What value of **z** (number of standard deviations) is appropriate?
 - How much safety stock should be held?
 - What reorder point should be used?

Example-solution

(home study)

 Service level =1,00-0,03 (risk) =0,97 and from probability tables you will get z= +1,88

Probability table


Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	. <mark>97062</mark>
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670

Example-solution

(home study)

- Service level =1,00-0,03 =0,97 and from probability tables we have got : z= +1,88
- Safety stock = $z * \sigma_{dLT} = 1,88 * 5 = 9,40$ tons
- ROP = expected lead time demand + safety stock = 50 + 9.40 = 59.40 tons
- For z=1 service level =84,13 %
- For z=2 service level= 97,72 %
- For z=3 service level = 99,87% (see six sigma)

Schematic of MRP

Net requirement = Gross requirement – Stock in hand – Purchases + Sales + Safety Stock

Lot sizing= divide netted demand into appropriate lot sizes to form jobs (see LLC) and EOQ PWP show (later)

Time Phasing = offset the due dates of the jobs with lead times to determine start times (*Due Date-Lead time = Start of the job*)

MRP matrix calculation (see related xls file in study material)

Parameters

Gross requirements

- Derivied from Master Production Scheduled or Planned order releases of the parent BON (finished good)
- Scheduled receipts
 - On order (issued) and scheduled to be received
- Projected on hand
 - Anticipated quantity on hand at the end of the period
- Net requirement
 - Net requirement = Gross requirement Stock in hand Purchases + Sales + Safety Stock
- Planned order receipts
 - When order need to be received (documents are not issued)
- Planned order releases
 - When order need to be placed to be received on time

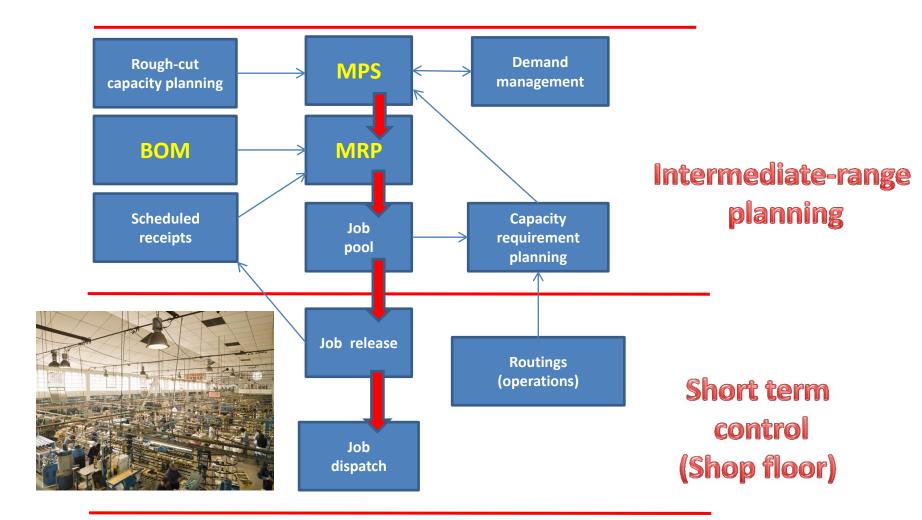
MRP matrix example 1

(home study)

MRP basic calculations		Lot-for lot -	ordering ex	act quntity nee	eded							
		Lead Time =	=1 - time to §	get item from t	the moment	the purcha	ase order is i	ssued or to r	nake it			
Master Production Sched	ule											
Part A	Projected on hand	1	2	3	4	5		period				
Gross Requirements		85	95	120	100	100						
VIRP							4					
art A		1	2	3	4	5		period				
Gross Requirements		85	95	120	100	100						
cheduled Receipts	Is already issued	175										
Projected on hand (POH)	25	115	20	0	0	0						
Net requirements		0	0	100	100	100						
Planned order receipts				100	100	100						
Planned order releases			100	100	100							
		Period	Action									
		1	25+175-85=	115=POH								
		2	POH=115-95	5=20								
		3	Cannot cove	er GR, so we hav	e to release o	one PO for 10	one period	earlier in orde	r to get it i	n period 3		
		3	Net req=120	0-20 =100, POH ii	n period 3=12	0-20-100=0						
		4	Net req =10	0-0=100-POH=10	00, so we heav	ve to release	one PO one p	eriod earlier i	n order to	cover dema	nd in period	4
		5	Similar to pe	eriod 4								

MRP matrix example 2

(home study)


MRP														
Part A		1	2	3	4	5	6	7	8					
Gross Requirements		20	30	50	50	60	90	40	60					
Scheduled Receipts	Is already issued		50											
Projected on hand (POH)	40	20	40	40	40	30	0	10	0					
Net requirements				10	10	20	60	40	50					
Planned order receipts		_		-> 50	50	50	60	50	50					
Planned order releases		50	50	50	60	50	50							
		Period	Action											
		1	Can be cover	ed from POH an	d new POH=4	40-20=POH-G	R=20							
		2	In period 2	GR can be cover	ed by POH ar	nd SR, but nex	t period whe	ere GR=50 wi	ll be not cove	red, so POR	must be rele	ased in per 1	(LT=2)	
		3	We have got	50, POH=40, so	altogether w	e have 90 na	d after dema	nd is covered	l only 90-50=	40=POH				
		3	Net req=50-4	10=10 in order to	o cover dema	nd in period	4, but we can	released on	ly 50 or more	, so in perio	d 2 another 5	50 is released		
		4	Demand is co	overed by receip	t 50 and POH	I =10 but for t	the next peri	od net req=6	0-40=20					
		5	Net req= 60-	40=20, so demai	nd in period 5	5 can be cove	red by POH=	40+ quantity	X, which hav	e to be orde	red 2 period	earlier		
		5	Quantity X c	an 50 or more. S	So take it 50 a	as sufficient q	juantity, and	POH =30=40	+50-60					
		6	To cover den	nand in period 6	5 we need at	least 90 and v	we have only	30 in POH, s	o 90-POH=90	-30=60 have	to ordered 2	2 period earlie	er	
		6	POH-90-60-3	0=0; Ner req=9	0-30=GR-POH	l=60 , which i	s reason why	we have or	dered 60 two	period earli	er			
		7	Net req= 40	because 40-0=G	R-POH=40. To	o cover it we	have to orde	r two period	earlier 50					
		8	and so on											

Benefits of MRP

- Low levels of in process inventories
- The Ability to keep track of material requirements
- A means of allocating production time
- The ability to easily determine inventory usage by backflushing (see explanantion below)

Process of determining the number of parts that must be subtracted from inventory records. This number is computed by referring to the number of parts withdrawn from the inventory (and delivered to the shop-floor) and the number of parts assumed (according to the BOM) to have been consumed in a manufacturing line at one or more deduct points.

MRP_II = MRP + resource capacity planning

BOM in MS Dynamics NAV

D		1000 📖 🥒	Search	Name	BICYCLE	
escription .	Вісус	le	Version	Nos		(
nit of Measur	e Code PCS	٦	Active	/ersion		
atus	Certi	ified 💌	Last Da	te Modified .	11.12.1	10
Туре	No.	Description	Quantity	Unit of Measu	Scrap Rou	uting Li
Item	1100	Front Wheel		PCS	0	
Item	1200	Back Wheel	1	PCS	0	
Item	1300	Chain Assy	1	PCS	0	
Item	1400	Mudguard front	1	PCS	0	
Item	1450	Mudguard back	1	PCS	0	
Item	1500	Lamp	1	PCS	0	
Item	1600	Bell	1	PCS	0	
Item	1700	Brake	1	PCS	0	
Item	1800	Handlebars	1	PCS	0	
Item	1850	Saddle	1	PCS	0	
Item	1900	Frame	1	PCS	0	
1						•

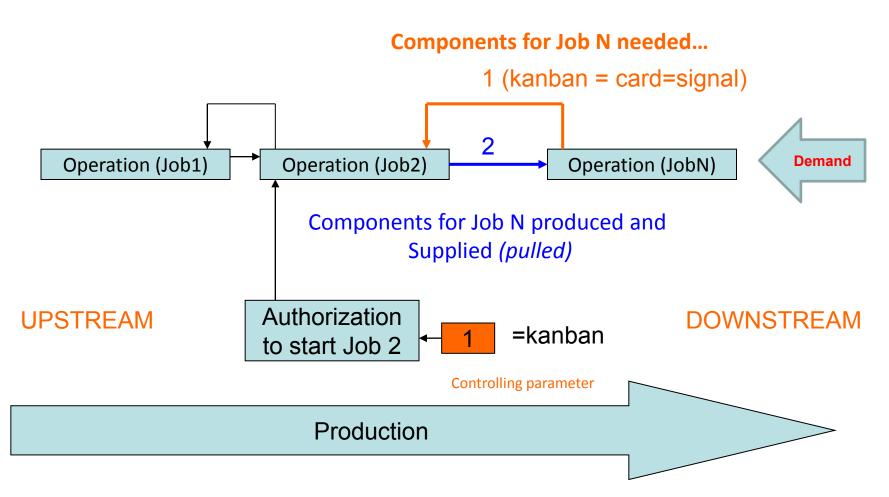
Routings in MS Dynamics NAV

<u> </u>) Bicycle -	Routing											[23
Gener	ral															
Descr		Bicyde	1000		Search Description Version Nos Active Version	[
Statu	s	Certific	ed 💌		Last Date Modified	11	1.12.10									
Op	peration	Туре	No.	Description		Setup Time	Run Time	Wait Time	Move Time	Fixed Scrap Quantity		Concurrent Capacities		l Unit Co per	st	
•	10	Work Center	100	Wheel assembly		110					0	1	0	1	0,00	*
		Machine Center		Chain assembly		15									0,00	
\square		Machine Center		Final assembly		10				-		-			0,00	
H	40	Machine Center	110	Control		10	8	0	0 0	0	0	1	. 0	1	0,00	
\square																
																Ŧ
									Routin	g 🔻 🖸	peration	▼ F <u>u</u> n	ctions 🔻	H	lelp	

Capacity of resources in MS Dynamics NAV

	Period Start	Period Name	Capacity	Allocated Qty.	Availability After Orders	Load
►	01.11.11	November	10 560	0	10 560	0
	01.12.11	December	10 560	0	10 560	
	01.01.12	January	10 560	392	10 168	3,7
	01.02.12	February	10 080	0	10 080	(
	01.03.12	March	10 560	0	10 560	0
	01.04.12	April	10 080	0	10 080	0
	01.05.12	May	11 040	0	11 040	0
	01.06.12	June	10 080	0	10 080	0
	01.07.12	July	10 560	0	10 560	0
	01.08.12	August	11 040	0	11 040	0
	01.09.12	September	9 600	34	9 566	0,4
	01.10.12	October	11 040	0	11 040	0
	01.11.12	November	10 560	0	10 560	0
_	01 12 12	December	10 080	0	10 080	0

JIT=Just In Time

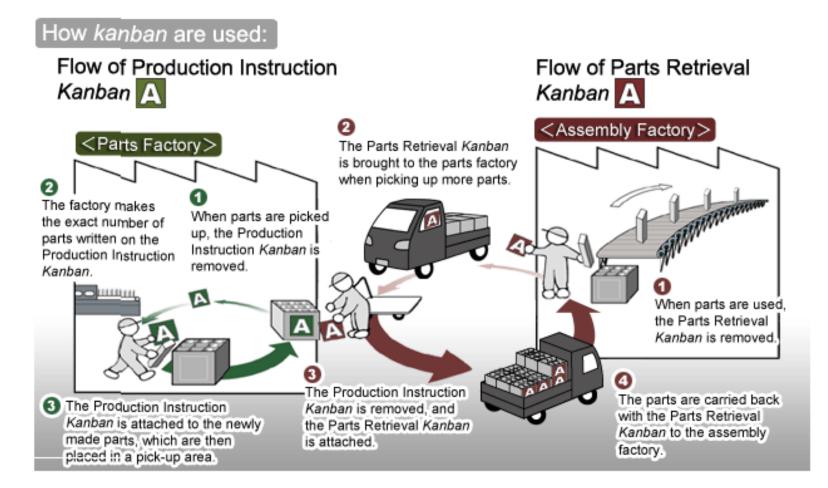

- Toyota Motors and Taiichi Ohno
- Production based only on demand
- Lower inventory costs

• The concept behind it is that a company can save money on parts and components---by not have having to store them--- if they are delivered to the assembly line just in time to be installed on the car as it is being built.

JIT=Just In Time

The number of kanban cards in the system determines the WIP levels in the plant

JIT (manufacturing philosophy)

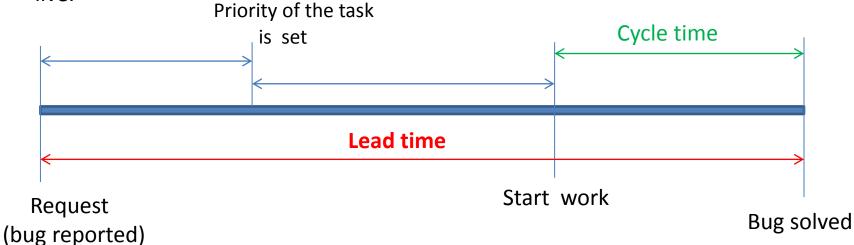

- Kanban is not JIT !!!
- JIT encompasses :
 - kanban cards (kan=card, ban=signal)
 - total quality control (TQM) e.g. scrap loss not tolerated....
 - setup reduction
 - worker participation
 - lean production (low level of waste)

• Advantages of JIT philosophy :

- reduced WIP (Work in Progress)->higher Throughput (see Little's lawwill be presented later)
- shorter production times
- lower production costs
- greater customer responsiveness

Kanban principle

(home study)



Some units (not for BPH_PIS2)

- Will be presented later in sections such as :
 - Little's law (LT=WIP*CT=WIP/Throughput)
 - Theory of Constraint...
- Cycle Time (CT)— time to complete task (time/unit)
- Takt Time (TT) rhythm in which we have to produce in order to satisfy customer demand (demand is 240 toaster ovens and we can produce these in 480 minutes ->TT= 480/240=2
- Lead Time (LT) Number of minutes, hours, or days that must be allowed for the completion of an operation or process, or must elapse before a desired action takes place –see next slide
- Comment : CT<>LT !!

Lead time (not for BPH_PIS2)

The lead time is the time and not the effort. You may have a lead time of 100 days and only have to work 1 hour to fix the bug. Sometime you start working on the bug. The *cycle time* is the time from the start of the work until the bugfix is live.

