Interest calculation

(Interest paid after)

Simple interest $-F V=P V *\left(1+r^{*} t\right)==>P V=F V /\left(1+r^{*} t\right)$
Amount of interest $-I=P V^{*} r^{*} t$
Compound interest $-F V=P V^{*}(1+r)^{\wedge} n$, certainly PV $=F V{ }^{*}(1+r)^{\wedge}-n$
Combined interest $-F V=P V^{*}(1+r)^{\wedge} n^{*}\left(1+r^{*} t\right)$
, where $n . . .$. number of whole interest periods
Continuous interest $-F V=P V^{*} e^{\wedge}\left(f^{*} t\right)$
$(1+r e)=(1+r(m) / m)^{\wedge} m \rightarrow r e=(1+r(m) / m)^{\wedge} m-1$
$e^{\wedge} f \rightarrow f=\ln (1+r e)$
(Interest paid ahead)
$P V=F V-D, D=F V^{*} d^{*} t \rightarrow P V=F V^{*}\left(1-d^{*} t\right) ; d=r /(1+r)$ and analogous $r=d /(1-d)$, always must be $d<r$ Compound discount $\ldots P V=F V^{*}(1-d)^{\wedge} n, P V=F V^{*}(1-d / m)^{\wedge}\left(m^{*} n\right)$
$(1-d e)=(1-d(m) / m)^{\wedge} m=1 / e^{\wedge f}\left(\right.$ calculation for PV...), obviously it must be true de $=1-e^{\wedge}-f$

Note 1: Discounting = using the discount factor to calculate PV in contrary to use a COMERCIAL DISCOUNT $-D=F V$.d. $\rightarrow P V=F V^{*}\left(1-d^{*} t\right)$

Note 2: You pay tax just from the obtained interest!!! (do not tax the principal)
PV.... Present Value

FV.... Future Value

D Commercial discount (similar to Interest amount I)
r.... Interest rate
e... 2,182818....
d.... discount rate
de.... Effective discount rate
$d(m)$... nominal discount rate with m-conversions

TO UNDERSTAND THE INTEREST CALCULATION IT IS NOT IMPORTANT (and useful) DO A MECHANICAL MEMORIZATION, but understand the logic of each approach!!!

1. Decide which of the four investments is the best...?
($\mathrm{t} 1=88,000.00, \mathrm{t} 3=107,000.00, \mathrm{t} 5=129,300.00, \mathrm{t} 6=132,064.00$)
(risk = 2 \% p. a., Opportunity costs 3 \% p. a., Inflation = 1,5 \%)
$r=0,02+0,03+0,015=6,5 \%$
$\operatorname{PV}(1)=88000 / 1,065=82629,11$
PV(2) = 107000/1,065^3 = 88579,85
$\operatorname{PV}(3)=129300 / 1,065^{\wedge} 5=94372,59$ $P V(4)=132064 / 1,065^{\wedge} 6=90507,97$

With cost (-800, - 3000, - 4000, - 7000)
$P V(1)=(88000-800) / 1,065=81877,93$
$\mathrm{PV}(2)=(107000-3000) / 1,065^{\wedge} 3=86096,31$
$\operatorname{PV}(3)=(129300-4000) / 1,065^{\wedge} 5=91454,07$
$\mathrm{PV}(4)=(132064-7000) / 1,065^{\wedge} 6=85710,63$
2.

What is better choice of this two: pay the car in 6 months $460,000.00$ or pay it in 3 days with 5% reduction of price? A bank offers you 6% p. a., but the fee for opening the account is 1.300,--

PV (in 3 days) rebate $=460000-0,05 * 460000=437000$
$\mathrm{PV}(\mathrm{t}=0)=437000 /(1+0.06 * 3 / 360)=436781.6$
PV (of 460000) $=460000 /(1+0.06 / 2)=446601.9$
You prefer the first offer! PV1<PV2
3.

FV $=758,000.00$, PV $=550,000.00, T=5$ years. Use continuous interest... What will be the effective discount rate:
$758000=550000 * \mathrm{e}^{\wedge}\left(\mathrm{f}^{*} 5\right)$
$\mathrm{f}=(\ln (758 / 550)) / 5=0,064153$
$\mathrm{de}=1-\mathrm{e}^{\wedge}(-0,064153)=0,062139$
Proof:
$P V=758000 *(1-0,062139)^{\wedge} 5=550000$

2 optional points - what is the nominal discount rate $\mathbf{- d (1 2)}$ if you have 12 conversion in one year? For the calculation use parameters from continuous interest - " f ".

