Home assignment # 2

(Deadline: Friday, November 10, 11:00 a.m., by email or a hard-copy in class, absolutely no late submissions will be accepted)

In this assignment, there is one computer exercise that is to be computed using Gretl. No other statistical software is allowed. You should present your results as a printout from the program (e.g. copy the output from Gretl to MS Word and print it out, or print it out directly from Gretl). When you are asked to comment your results, you can do so in the printout or on a separate sheet. Do not forget that when you are asked to test a hypothesis, it is not sufficient to present just the result of the test as it is presented in Gretl: you have to provide a clear conclusion whether you reject or not the null hypothesis, which has to be formally stated.

1. Your are given the following model

$$y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \varepsilon$$

Assume that you want to test the following set of restrictions:

- (a) $\beta_2 \beta_3 = 1$
- (b) $\beta_4 = \beta_6$ and $\beta_5 = 0$

Construct models that incorporate restrictions (a) and (b), separately and together. Describe what test you will use to test the restrictions, including its distribution and parameters (i.e., describe how would you test: the restriction (a), the restrictions (b), and all of them together).

2. Imagine you are interested in the determinants of the revenues in shoe stores in Prague. Suppose you have specified the following model:

$$Rev_t = \alpha + \beta Inc_t + \delta Price_t + \theta Popul_t + \eta Weekend_t + \varepsilon_t ,$$

where Rev_t denotes the amount of revenues in the Prague shoe stores on a particular day t, Inc_t is per capita income in Prague, $Price_t$ is a price index for shoes relative to other goods in Prague, $Popul_t$ is number of people living in Prague, and $Weekend_t$ is a dummy variable for weekend days.

- (a) This specification recognizes that people might go shopping for shoes more often on weekends than on working days. Explain how would you test for such a hypothesis.
- (b) What are the predicted revenues (in terms of the coefficients of the model) for weekends and for working days?

- (c) Explain how would you alter the specification to account for the fact that people may buy more shoes during the sales period, which is in January and July.
- (d) If people have higher income, they buy more shoes on weekends (i.e., the effect of per capita income on revenues is larger on weekends compared to working days). Is this incorporated in your specification? If not, how would you do it? How would you test for the hypothesis that if people have higher income, they buy more shoes on weekends?
- 3. Use data *ceosal2.gdt* for this exercise. Consider an equation to explain salaries of CEOs in terms of annual firm sales:

$$\ln(salary) = \beta_0 + \beta_1 \ln(sales) + \beta_2 roe + \beta_3 neg_ros + \varepsilon ,$$

where

salary	 CEO's salary in thousands USD
sales	 firm's sales in millions USD
roe	 firm's return on equity
neg_ros	 dummy, equal to 1 if return on firm's stock is negative

- (a) Define the variables you need and estimate the equation.
- (b) What is the interpretation of the coefficients β_1 , β_2 , and β_3 ?
- (c) Test for the presence of a significant impact of firm's sales on CEO's salary by hand (using only the estimated coefficient and the standard error from the Gretl output) and then compare your results to the results of this test in Gretl. Define the null and alternative hypothesis, the test statistic, its distribution, and interpret the results of the test.
- (d) You wonder if the impact of firm's return on equity on the CEO's salary is indeed linear. You decide to test for the presence of a non-linear relationship, which you approximate by a third order polynomial of roe (i.e., $\alpha_1 roe + \alpha_2 roe^2 + \alpha_3 roe^3$).
 - i. Define the null and alternative hypothesis, the test statistics and its distribution. Describe all specifications you need to be able to conduct the test, construct the necessary variables, and estimate these specifications in Gretl.
 - ii. Calculate the test statistics by hand, compare to the critical value at 99% significance level, and interpret the results.
 - iii. Conduct the test in Gretl and compare the results.
- 4. Suppose that you have a sample of n individuals who apart from their mother tongue (Czech) can speak English, German, or are trilingual (i.e., all individuals in your

sample speak in addition to their mother tongue at least one foreign language). You estimate the following model:

 $wage = \beta_0 + \beta_1 educ + \beta_2 IQ + \beta_3 exper + \beta_4 DM + \beta_5 Germ + \beta_6 Engl + \varepsilon ,$

where

educ	 years of education
IQ	 IQ level
exper	 years of on-the-job experience
DM	 dummy, equal to one for males and zero for females
Germ	 dummy, equal to one for German speakers and zero otherwise
Engl	 dummy, equal to one for English speakers and zero otherwise

- (a) Explain why a dummy equal to one for trilingual people and zero otherwise is not included in the model.
- (b) Explain how you would test for discrimination against females (in the sense that *ceteris paribus* females earn less than males). Be specific: state the hypothesis, give the test statistic and its distribution.
- (c) Explain how you would measure the payoff (in term of wage) to someone of becoming trilingual given that he can already speak (i) English, (ii) German.
- (d) Explain how you would test if the influence of on-the-job experience is greater for males than for females. Be specific: specify the model, state the hypothesis, give the test statistic and its distribution.
- 5. Your aim is to estimate how the number of prenatal examinations and several other characteristics influence the birth weight of a baby. Your initial hypothesis is that more responsible pregnant women visit the doctor more often and this leads to health-ier and thus also bigger babies.
 - (a) In your first specification, you run the following model:

$$bwght = \beta_0 + \beta_1 \ npvis + \beta_2 \ npvis^2 + \beta_3 \ monpre + \beta_4 \ male + \varepsilon$$
,

where bwght is birth weight of the baby (in grams), npvis is the number of prenatal doctor's visits, *monpre* is the month on pregnancy in which the prenatal care began and *male* is a dummy, equal to one if the baby is a boy and zero if it is a girl. You obtain the following results form Stata:¹

¹Stata is a statistical software, which can be used to for econometric purposes. The Stata output is quite similar to the Gretl output you are familiar with. In particular, *Coef.* denotes the estimated coefficients, *Std.Err.* denotes the standard errors of these coefficients, *t* denotes the *t*-statistic of the test of significance of the coefficients, P > |t| denotes the corresponding *p*-value.

Source Model Residual	SS 12848047.5 570003184	df 4 1721	MS 3212011 331204.	. 87 639		Number of obs F(4, 1721) Prob > F R-squared	= = =	1726 9.70 0.0000 0.0220
Total	582851231	1725	337884.	772		Adj K-squared Root MSE	=	575.5
bwght	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
npvis npvissq monpre male _cons	53.50974 -1.173175 30.47033 76.69243 2853.196	11.41 .3591 12.40 27.76 101.3	313 552 - 794 083 073 2	4.69 3.27 2.46 2.76 8.16	0.000 0.001 0.014 0.006 0.000	31.12468 -1.877601 6.134091 22.24391 2654.498	 5 3	75.8948 4687481 4.80657 131.141 051.895

- i. Is there strong evidence that npvissq (stands for $npvis^2$) should be included in the model?
- ii. How do you interpret the negative coefficient of *npvissq*?
- iii. Holding *npvis* and *monpre* fixed, test the hypothesis that newborn boys weight by 100 grams more than newborn girls (at 95% confidence level).
- (b) A friend of yours, student of medicine, reminds you of the fact that the age of the parents (especially of the mother) might be a decisive factor for the health and for the weight of the baby. Therefore, in your second specification, you decide to include in your model also the age of the mother (*mage*) and of the father (*fage*). The results of your estimation are now the following:

Source Model Residual Total	SS 16270165.8 563258231 579528396	df 27 1713 328 1719 337	MS /11694.3 /813.912 /131.121		Number of obs F(6, 1713) Prob > F R-squared Adj R-squared Root MSE	= 1720 = 8.25 = 0.0000 = 0.0281 = 0.0247 = 573.42
bwght	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
npvis npvissq monpre male mage fage _cons	52.43859 -1.138545 34.35661 74.45482 .5285275 8.697342 2592.813	11.40558 .3585648 12.69477 27.75247 4.218069 3.465973 139.6173	4.60 -3.18 2.71 2.68 0.13 2.51 18.57	0.000 0.002 0.007 0.007 0.900 0.012 0.000	30.06826 -1.841816 9.457725 20.02252 -7.744582 1.899357 2318.974	74.80891 4352743 59.2555 128.8871 8.801637 15.49533 2866.651

i. Comment on the significance of the coefficients on *mage* and *fage* separately: are they in line with your friend's claim?

- ii. Test the hypothesis that mage and fage are jointly significant (at 95% confidence level). Is the result in line with your friend's claim?
- iii. How can you reconcile you findings from the two previous questions?

(c) In your third specification, you decide to drop *fage* and you get the following results:

Source Model Residual	SS 14451685.6 568399545	df 5 1720	MS 2890337.13 330464.852		Number of obs F(5, 1720) Prob > F R-squared Adj R-squared	= = =	1726 8.75 0.0000 0.0248 0.0220
Total	582851231	1725	337884.772		Root MSE	=	574.86
bwght	Coef.	Std. E	Err. t	P> t	[95% Conf.	In	terval]
npvis npvissq monpre male mage _cons	52.27885 -1.142647 35.25912 79.38175 -6.91257 2648.851	11.414 .35902 12.583 27.756 3.1379 137.27	406 4.5 214 -3.1 328 2.8 567 2.8 572 -2.2 778 19.3	8 0.000 8 0.001 0 0.005 6 0.004 0 0.028 0 0.000	29.89196 -1.846811 10.57898 24.94136 -13.06721 2379.602	7 5 1 -	4.66575 4384821 9.93927 33.8221 .757928 2918.1

Comment on the significance of the coefficient on *mage*, compared to the results from part (b). Is your finding in line with your reasoning in part (b)? Does it confirm your friend's claim?

(d) Having regained trust in your friend, you consult your results once more with him. Together, you come up with an interesting question: whether smoking during pregnancy can affect the weight of the baby. Fortunately, you have at your disposition the variable *cigs*, standing for the average number of cigarettes each woman in your sample smokes per day during the pregnancy, and so you can include it in your model. However, your friend warns you that women who smoke during pregnancy are in general less responsible than those who do not smoke, and that these women also tend to visit the doctor less often. (In other words, the more the women smokes, the less prenatal doctor's visits she has). This is an important fact that you have to take into consideration while interpreting your final results, which are:

Source Model Residual	SS 14560828.9 523281374	df 6 1615	MS 2426804.8 324013.23	- 1 5	Number of obs F(6, 1615) Prob > F R-squared	= = =	1622 7.49 0.0000 0.0271
Total	537842203	1621	331796.54	7	Root MSE	=	569.22
bwght	Coef.	Std. I	Err.	t P> t	[95% Conf.	In	terval]
npviss npvissq monpre male cigs _cons	42.43442 8948737 31.77658 82.39438 -6.980738 -10.209 2748.856	11.59 .3624 12.78 28.34 3.227 3.398 141.8	582 3.1 432 -2.2 156 2.5 937 2.5 181 -2.3 309 -3.6 868 19.7	66 0.000 47 0.014 49 0.013 91 0.004 16 0.031 20 0.003 38 0.000	19.68999 -1.605782 6.706395 26.78897 -13.31064 -16.87456 2470.591	6 5 1 	5.17885 1839653 6.84676 37.9998 6508356 3.54344 3027.12

- i. Interpret the coefficient on *cigs*.
- ii. What evidence do you find that *cigs* really should be included in the model? List at least two arguments.
- iii. Compare the coefficient on *npvis* with the one you obtained in part (c). Do you think there was a bias? If yes, explain where it came from and interpret its sign.