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A LITTLE REVISION: OLS CLASSICAL ASSUMPTIONS

1. The regression model is linear in coefficients, is correctly
specified, and has an additive error term

2. The error term has a zero population mean

3. Observations of the error term are uncorrelated with each
other

4. The error term has a constant variance

5. All explanatory variables are uncorrelated with the error
term

6. No explanatory variable is a perfect linear function of any
other explanatory variable(s)

7. The error term is normally distributed
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ON PREVIOUS LECTURES

I We discussed what happens if some of the assumptions are
violated

I Linearity of coefficients and no perfect multicollinearity
are essential for the definition of OLS estimator

I Zero mean of the error term is always ensured by the
inclusion of intercept

I Normality of the error term is needed for statistical
inference, but it can be shown that if the number of
observations is sufficiently high, the OLS estimate will
have asymptotically normal distribution even if the
stochastic error term is not normal

I Heteroskedasticity and serial correlation lead to incorrect
statistical inference, but we have studied a set of
techniques to overcome this problem
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ON TODAY’S LECTURE

I The assumption of no correlation between explanatory
variables and the error term is crucial

I Variables that are correlated with the error term are called
endogenous variables (as opposed to exogenous variables)

I We will show that the estimated coefficients of endogenous
variables are inconsistent and biased

I We will explain in which situations we may encounter
endogenous variables

I We will define the concept of instrumental variables

I We will derive the 2SLS technique to deal with
endogeneity
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ENDOGENOUS VARIABLES

I Notation: E[xiεi] = Cov(xi, εi) 6= 0 or E[X′ε] 6= 0

I Intuition behind the bias:
I If an explanatory variable x and the error term ε are

correlated with each other, the OLS estimate attributes to x
some of the variation in y that actually came form the error
term ε

I Example: Analysis of household consumption patterns
I Households with lower income may indicate higher

consumption (because of shame)

I Leads to inconsistent estimates
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GRAPHICAL REPRESENTATION

X

Y

True model

Estimated model
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INCONSISTENCY OF ESTIMATES

I We can express

β̂ =
(
X′X

)−1 X′y = β +
(
X′X

)−1 X′ε

= β +

(
1
n

X′X
)−1 1

n
X′ε

I We assume that there exists a finite matrix Q so that
1
n X′X n→∞−→ Q

I It can be shown that 1
n X′ε n→∞−→ E [X′ε]

endogeneity

6= 0

I This implies:

β̂
n→∞−→ β + Q−1 · E

[
X′ε
]
= β + bias
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TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias

I An explanatory variable is omitted from the equation and
makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias

I An unobservable characteristic has influence on both
dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity

I The causal relationship between the dependent variable
and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error

I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



TYPICAL CASES OF ENDOGENEITY

1. Omitted variable bias
I An explanatory variable is omitted from the equation and

makes part of the error term

2. Selection bias
I An unobservable characteristic has influence on both

dependent and explanatory variables

3. Simultaneity
I The causal relationship between the dependent variable

and the explanatory variable goes in both directions

4. Measurement error
I Some of the variables are measured with error

I In all 4 cases, the sign of the bias is given by the sign of
Cov(εi, xi)

8 / 26



OMITTED VARIABLE BIAS

I Studied on lecture 7
I True model: yi = βxi + γzi + ui

I Model as it looks when we omit variable z:

yi = βxi + ũi implying ũi = γzi + ui

I This gives

Cov(ũi, xi) = Cov(γzi + ui, xi) = γCov(zi, xi) 6= 0

I It can be remedied by including the variable in question,
but sometimes we do not have data for it

I We can include some proxies for such variable, but this
may not reduce the bias completely and some endogeneity
remains in the equation
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SELECTION BIAS

I Very similar to omitted variable bias

I We suppose there is some unobservable characteristic that
influences both the level of the dependent variable y and of
the explanatory variable x

I This unobservable characteristic forms part of the error
term ε, causing Cov(ε, x) 6= 0 (in the same manner as an
omitted variable)

I Example: unobserved ability in the regression estimating
the impact of education on wages
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SIMULTANEITY

I Occurs in models where variables are jointly determined

y1i = α0 + α1y2i + ε1i

y2i = β0 + β1y1i + ε2i

I Intuitively: change in y1i will cause a change in y2i, which
will in turn cause y1i to change again

I Technically:

Cov(ε1i, y2i) = Cov(ε1i, β0 + β1y1i + ε2i)

= β1Cov(ε1i, yi1)

= β1Cov(ε1i, α0 + α1y2i + ε1i)

= β1 (α1Cov(ε1i, y2i) + Var(ε1i))

Cov(ε1i, y2i) =
β1

1− α1β1
Var(ε1i) 6= 0
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= β1Cov(ε1i, α0 + α1y2i + ε1i)

= β1 (α1Cov(ε1i, y2i) + Var(ε1i))

Cov(ε1i, y2i) =
β1

1− α1β1
Var(ε1i) 6= 0

11 / 26



SIMULTANEITY
I Occurs in models where variables are jointly determined

y1i = α0 + α1y2i + ε1i

y2i = β0 + β1y1i + ε2i

I Intuitively: change in y1i will cause a change in y2i, which
will in turn cause y1i to change again

I Technically:

Cov(ε1i, y2i) = Cov(ε1i, β0 + β1y1i + ε2i)

= β1Cov(ε1i, yi1)

= β1Cov(ε1i, α0 + α1y2i + ε1i)

= β1 (α1Cov(ε1i, y2i) + Var(ε1i))

Cov(ε1i, y2i) =
β1

1− α1β1
Var(ε1i) 6= 0

11 / 26



SIMULTANEITY
I Occurs in models where variables are jointly determined

y1i = α0 + α1y2i + ε1i

y2i = β0 + β1y1i + ε2i

I Intuitively: change in y1i will cause a change in y2i, which
will in turn cause y1i to change again

I Technically:

Cov(ε1i, y2i) = Cov(ε1i, β0 + β1y1i + ε2i)

= β1Cov(ε1i, yi1)

= β1Cov(ε1i, α0 + α1y2i + ε1i)

= β1 (α1Cov(ε1i, y2i) + Var(ε1i))

Cov(ε1i, y2i) =
β1

1− α1β1
Var(ε1i) 6= 0

11 / 26



SIMULTANEITY
I Occurs in models where variables are jointly determined

y1i = α0 + α1y2i + ε1i

y2i = β0 + β1y1i + ε2i

I Intuitively: change in y1i will cause a change in y2i, which
will in turn cause y1i to change again

I Technically:

Cov(ε1i, y2i) = Cov(ε1i, β0 + β1y1i + ε2i)

= β1Cov(ε1i, yi1)

= β1Cov(ε1i, α0 + α1y2i + ε1i)

= β1 (α1Cov(ε1i, y2i) + Var(ε1i))

Cov(ε1i, y2i) =
β1

1− α1β1
Var(ε1i) 6= 0

11 / 26



SIMULTANEITY

I Example:

QDi = α0 + α1Pi + α2Ii + ε1i

QSi = β0 + β1Pi + ε2i

QDi = QSi

where
QD . . . quantity demanded
QS . . . quantity supplied
P . . . price
I . . . income

I Endogeneity of price: it is determined from the interaction
of supply and demand
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MEASUREMENT ERROR I

I Measurement error in the dependent variable
I Measurement error is correlated with an explanatory

variable

y∗i = yi + νi where Cov(νi, xi) 6= 0

I True regression model: yi = β0 + β1xi + εi

I Estimated regression: y∗i = β0 + β1xi + ui where

ui = εi + νi and so

Cov(xi,ui) = Cov(xi, εi + νi) = Cov(νi, xi) 6= 0

I Example: analysis of household consumption patterns
(above)
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MEASUREMENT ERROR II

I Classical measurement error in the explanatory variable

x∗i = xi + νi where Cov(νi, xi) = 0

I True regression model: yi = β0 + β1xi + εi

I Estimated regression: yi = β0 + β1x∗i + ui where

ui = εi − β1νi and so

Cov(x∗i ,ui) = Cov(xi + νi, εi − β1νi) = −β1Var(νi) 6= 0

I Causes attenuation bias (estimated coefficient is smaller in
absolute value than the true one)
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INSTRUMENTAL VARIABLES (IV)

I Answer to the situation when Cov(x, ε) 6= 0

I Instrumental variable (or instrument) should be a variable
z such that

1. z is uncorrelated with the error term: Cov(z, ε) = 0
2. z is correlated with the explanatory variable x: Cov(x, z) 6= 0

I Intuition behind instrumental variables approach:
I project the endogenous variable x on the instrument z
I this projection is uncorrelated with the error term and can

be used as an explanatory variable instead of x
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INSTRUMENTAL VARIABLES

I Suppose the equation we want to estimate is:

y = Xβ + η

I We can have several instruments for several endogenous
variables - we will use the matrix notation Z and X

I X denotes endogenous variable(s)
I Z denotes instrumental variable(s)

I Assume that we have at least as many instruments as
endogenous variables
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TWO STAGE LEAST SQUARES

I 2SLS is a method of implementing instrumental variables
approach

I Consists of two steps:

1. Regress the endogenous variables on the instruments

X = Zδ + ν ,

get predicted values

X̂ = Zδ̂ = Z (Z′Z)−1 Z′X ,

2. Use these predicted values instead of X in the original
equation:

y = X̂β + η
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TWO STAGE LEAST SQUARES

I The estimate is

β̂
2SLS

=
(

X̂′X̂
)−1

X̂′y

=
(

X′Z
(
Z′Z

)−1 Z′X
)−1

X′Z
(
Z′Z

)−1 Z′y

I This estimate is consistent, but it has higher variance than
OLS (it is not efficient)

I Intuitively:
I Only part of the variation in X that is uncorrelated with the

error term is used for the estimation.
I This ensures consistency (X̂ that is uncorrelated with error

term).
I But it makes the estimate less precise (higher variance of β̂),

because not all variation in X is used.
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EXAMPLE

I Estimating the impact of education on the number of
children for a sample of women in Botswana

I OLS:

                                                                              
       _cons    -4.138307   .2405942   -17.20   0.000    -4.609994    -3.66662
       agesq    -.0026308   .0002726    -9.65   0.000    -.0031652   -.0020964
         age     .3324486   .0165495    20.09   0.000     .3000032     .364894
        educ    -.0905755   .0059207   -15.30   0.000     -.102183   -.0789679
                                                                              
    children        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    21527.1763  4360  4.93742577           Root MSE      =  1.4597
                                                       Adj R-squared =  0.5684
    Residual    9284.14679  4357  2.13085765           R-squared     =  0.5687
       Model    12243.0295     3  4081.00985           Prob > F      =  0.0000
                                                       F(  3,  4357) = 1915.20
      Source         SS       df       MS              Number of obs =    4361
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EXAMPLE

I Education may be endogenous - both education and
number of children may be influenced by some
unobserved socioeconomic factors

I Omitted variable bias: family background is an unobserved
factor that influences both the number of children and
years of education

I Finding possible instrument:
I Something that explains education
I But is not correlated with the family background

I A dummy variable

frsthalf =


1 if the woman was born in the first

six months of a year
0 otherwise
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EXAMPLE

I Intuition behind the instrument:

I The first condition - instrument explains education:
I School year in Botswana starts in January
⇒ Thus, women born in the first half of the year start
school when they are at least six and a half.

I Schooling is compulsory till the age of 15
⇒ Thus, women born in the first half of the year get less
education if they leave school at the age of 15.

I The second condition - instrument is uncorrelated with the
error term:

I Being born in the first half of the year is uncorrelated with
the unobserved socioeconomic factors that influence
education and number of children (family background etc.)
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EXAMPLE

                                                                              
       _cons     9.692864   .5980686    16.21   0.000     8.520346    10.86538
    frsthalf    -.8522854   .1128296    -7.55   0.000    -1.073489   -.6310821
       agesq    -.0005056   .0006929    -0.73   0.466    -.0018641    .0008529
         age    -.1079504   .0420402    -2.57   0.010    -.1903706   -.0255302
                                                                              
        educ        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

                                                  Root MSE        =     3.7110
                                                  Adj R-squared   =     0.1070
                                                  R-squared       =     0.1077
                                                  Prob > F        =     0.0000
                                                  F(   3,   4357) =     175.21
                                                  Number of obs   =       4361

                       
First-stage regressions
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EXAMPLE

Instruments:   age agesq frsthalf
Instrumented:  educ
                                                                              
       _cons    -3.387805   .5478988    -6.18   0.000    -4.461667   -2.313943
       agesq    -.0026723   .0002796    -9.56   0.000    -.0032202   -.0021244
         age     .3236052   .0178514    18.13   0.000     .2886171    .3585934
        educ    -.1714989   .0531553    -3.23   0.001    -.2756813   -.0673165
                                                                              
    children        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                       Root MSE      =    1.49
                                                       R-squared     =  0.5502
                                                       Prob > chi2   =  0.0000
                                                       Wald chi2(3)  = 5300.22
Instrumental variables (2SLS) regression               Number of obs =    4361
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2SLS

I Note that the endogenous variable has to be instrumented
by the instrument and by all other exogenous variables
included in the regression

I Think about why:

I In the first stage, we run X = Zδ + ν = X̂ + ν̂ ,

I True model: y = Xβ + ε =
(

X̂ + ν̂
)
β + ε

I Model estimated in the second stage: y = X̂β + η

I This implies: η = ν̂β + ε

I Including all exogenous variables in the first stage make
them orthogonal to the residual ν̂ and hence uncorrelated
to the error term η in the second stage
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BACK TO THE EXAMPLE

I Compare the estimates from OLS and 2SLS:

I OLS:

                                                                              
       _cons    -4.138307   .2405942   -17.20   0.000    -4.609994    -3.66662
       agesq    -.0026308   .0002726    -9.65   0.000    -.0031652   -.0020964
         age     .3324486   .0165495    20.09   0.000     .3000032     .364894
        educ    -.0905755   .0059207   -15.30   0.000     -.102183   -.0789679
                                                                              
    children        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    21527.1763  4360  4.93742577           Root MSE      =  1.4597
                                                       Adj R-squared =  0.5684
    Residual    9284.14679  4357  2.13085765           R-squared     =  0.5687
       Model    12243.0295     3  4081.00985           Prob > F      =  0.0000
                                                       F(  3,  4357) = 1915.20
      Source         SS       df       MS              Number of obs =    4361

I 2SLS:

Instruments:   age agesq frsthalf
Instrumented:  educ
                                                                              
       _cons    -3.387805   .5478988    -6.18   0.000    -4.461667   -2.313943
       agesq    -.0026723   .0002796    -9.56   0.000    -.0032202   -.0021244
         age     .3236052   .0178514    18.13   0.000     .2886171    .3585934
        educ    -.1714989   .0531553    -3.23   0.001    -.2756813   -.0673165
                                                                              
    children        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                       Root MSE      =    1.49
                                                       R-squared     =  0.5502
                                                       Prob > chi2   =  0.0000
                                                       Wald chi2(3)  = 5300.22
Instrumental variables (2SLS) regression               Number of obs =    4361

I Is the bias reduced by IV?

I Are these results statistically different?
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SUMMARY

I We showed that the estimated coefficients of endogenous
variables are inconsistent and biased

I In which situations we may encounter endogenous
variables

I Omitted variable (omitting important variable which is
correlated to independent variable)

I Selection bias (unobserved factors influencing both
dependent and independent variable)

I Simultaneity (causality goes both ways)
I Measurement error (in either dependent or independent

variable)

I We can deal with endogeneity by using instrumental
variables (2SLS technique)
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