## LECTURE 8

## Introduction to Econometrics

## Choosing explanatory variables

November 3, 2017

## What We have Learned so far

- We know what a linear regression model is and how its parameters are estimated by OLS
- We know what the properties of OLS estimator are
- We know how to test single and multiple hypotheses in linear regression models
- We know how to asses the goodness of fit using $R^{2}$
- We started to talk about the specification of a regression equation


## Specification of a regression equation

- Specification consists of choosing:

1. correct independent variables
2. correct functional form
3. correct form of the stochastic error term

- We discussed the choice of functional form on the previous lecture
- We will discuss the choice of independent variables today
- We will study the form of the error term on the next two lectures


## On TODAY's LECTURE

- We will learn that
- omitting a relevant variable from an equation is likely to bias remaining coefficients
- including an irrelevant variable in an equation leads to higher variance of estimated coefficients
- our choice should be led by the economic theory and confirmed by a set of statistical tools


## Omitted variables

- We omit a variable when we
- forget to include it
- do not have data for it
- This misspecification results in
- not having the coefficient for this variable
- biasing estimated coefficients of other variables in the equation $\longrightarrow$ omitted variable bias


## Omitted variables

- Where does the omitted variable bias come from?
- True model:

$$
y_{i}=\beta x_{i}+\gamma z_{i}+u_{i}
$$

- Model as it looks when we omit variable $z$ :

$$
y_{i}=\beta x_{i}+\tilde{u}_{i}
$$

implying

$$
\tilde{u}_{i}=\gamma z_{i}+u_{i}
$$

- We assume that $\operatorname{Cov}\left(u_{i}, x_{i}\right)=0$, but:

$$
\operatorname{Cov}\left(\tilde{u}_{i}, x_{i}\right)=\operatorname{Cov}\left(\gamma z_{i}+u_{i}, x_{i}\right)=\gamma \operatorname{Cov}\left(z_{i}, x_{i}\right) \neq 0
$$

- The classical assumption is violated $\Rightarrow$ biased (and inconsistent) estimate!!!


## Omitted variables

- For the model with omitted variable:

$$
\begin{gathered}
E\left(\widehat{\beta}^{\text {omitted model }}\right)=\beta+\text { bias } \\
\text { bias }=\gamma * \alpha
\end{gathered}
$$

- Coefficients $\beta$ and $\gamma$ are from the true model

$$
y_{i}=\beta x_{i}+\gamma z_{i}+u_{i}
$$

- Coefficient $\alpha$ is from a regression of $z$ on $x$, i.e.

$$
z_{i}=\alpha x_{i}+e_{i}
$$

- The bias is zero if $\gamma=0$ or $\alpha=0$ (not likely to happen)


## OMitted Variables

- Intuitive explanation:
- if we leave out an important variable from the regression $(\gamma \neq 0)$, coefficients of other variables are biased unless the omitted variable is uncorrelated with all included dependent variables $(\alpha \neq 0)$
- the included variables pick up some of the effect of the omitted variable (if they are correlated), and the coefficients of included variables thus change causing the bias
- Example: what would happen if you estimated a production function with capital only and omitted labor?


## Omitted variables

- Example: estimating the price of chicken meat in the US

$$
\begin{gathered}
\hat{Y}_{t}=31.5-\underset{(0.08)}{0.73} P C_{t}+\underset{(0.05)}{0.11} P B_{t}+\underset{(0.02)}{0.23} Y D_{t} \\
R^{2}=0.986 \quad, \quad n=44
\end{gathered}
$$

$Y_{t} \quad$... per capita chicken consumption
$P C_{t} \quad \ldots$ price of chicken
$P B_{t} \quad \ldots$ price of beef
$Y D_{t} \quad \ldots$ per capita disposable income

## Omitted variables

- When we omit price of beef:

$$
\begin{gathered}
\hat{Y}_{t}=32.9-\underset{(0.08)}{0.70} P C_{t}+\underset{(0.01)}{0.27} Y D_{t} \\
R^{2}=0.895 \quad, \quad n=44
\end{gathered}
$$

- Compare to the true model:

$$
\begin{gathered}
\hat{Y}_{t}=31.5-\underset{(0.08)}{0.73} P C_{t}+\underset{(0.05)}{0.11} P B_{t}+\underset{(0.02)}{0.23} Y D_{t} \\
R^{2}=0.986 \quad, \quad n=44
\end{gathered}
$$

- We observe positive bias in the coefficient of PC (was it expected?)


## OMitted Variables

- Determining the direction of bias: bias $=\gamma * \alpha$
- Where $\gamma$ is a correlation between the omitted variable and the dependent variable (the price of beef and chicken consumption)
- $\gamma$ is likely to be positive
- Where $\alpha$ is a correlation between the omitted variable and the included independent variable (the price of beef and the price of chicken)
- $\alpha$ is likely to be positive
- Conclusion: Bias in the coefficient of the price of chicken is likely to be positive if we omit the price of beef from the equation.


## Omitted variables

- In reality, we usually do not have the true model to compare with
- Because we do not know what the true model is
- Because we do not have data for some important variable
- We can often recognize the bias if we obtain some unexpected results
- We can prevent omitting variables by relying on the theory
- If we cannot prevent omitting variables, we can at least determine in what way this biases our estimates


## IRRELEVANT VARIABLES

- A second type of specification error is including a variable that does not belong to the model
- This misspecification
- does not cause bias
- but it increases the variances of the estimated coefficients of the included variables


## Irrelevant variables

- True model:

$$
\begin{equation*}
y_{i}=\beta x_{i}+u_{i} \tag{1}
\end{equation*}
$$

- Model as it looks when we add irrelevant $z$ :

$$
\begin{equation*}
y_{i}=\beta x_{i}+\gamma z_{i}+\tilde{u}_{i} \tag{2}
\end{equation*}
$$

- We can represent the error term as $\tilde{u}_{i}=u_{i}-\gamma z_{i}$
- but since from the true model $\gamma=0$, we have $\tilde{u}_{i}=u_{i}$ and there is no bias


## IRRELEVANT VARIABLES

- True model:

$$
\begin{gathered}
\hat{Y}_{t}=31.5-\underset{(0.08)}{0.73} P C_{t}+\underset{(0.05)}{0.11} P B_{t}+\underset{(0.02)}{0.23} Y D_{t} \\
R^{2}=0.986 \quad, \quad n=44
\end{gathered}
$$

- If we include interest rate $R_{t}$ (irrelevant variable)

$$
\begin{gathered}
\hat{Y}_{t}=30.0-\underset{(0.10)}{0.73} P C_{t}+\underset{(0.06)}{0.12} P B_{t}+\underset{(0.03)}{0.22} Y D_{t}+\underset{(0.21)}{0.17} R_{t} \\
R^{2}=0.987 \quad, \quad n=44
\end{gathered}
$$

- We observe that $R_{t}$ is insignificant and standard errors of other variables increase


## SUMMARY OF THE THEORY

- Bias - efficiency trade-off:

|  | Omitted variable | Irrelevant variable |
| :--- | :---: | :---: |
| Bias | Yes* $^{*}$ | No |
| Variance | Decreases * | Increases* |

* As long as we have correlation between $x$ and $z$


## FOUR IMPORTANT SPECIFICATION CRITERIA

Does a variable belong to the equation?

1. Theory: Is the variable's place in the equation unambiguous and theoretically sound? Does intuition tells you it should be included?
2. $t$-test: Is the variable's estimated coefficient significant in the expected direction?
3. $R^{2}$ : Does the overall fit of the equation improve (enough) when the variable is added to the equation?
4. Bias: Do other variables' coefficients change significantly when the variable is added to the equation?

## FOUR IMPORTANT SPECIFICATION CRITERIA

- If all conditions hold, the variable belongs in the equation
- If none of them holds, the variable is irrelevant and can be safely excluded
- If the criteria give contradictory answers, most importance should be attributed to theoretical justification
- Therefore, if theory (intuition) says that variable belongs to the equation, we include it (even though its coefficients might be insignificant!).


## Estimating price elasticity of Brazilian coffee

- Should we include the price of Brazilian coffee into the equation?

$$
\begin{array}{cc}
\widehat{\text { COF }}=9.3 & +\underset{(1.0)}{2.6} P_{T}+\underset{(0.0009)}{0.0036} Y \\
t= & 2.6 \\
R^{2}=0.58, & n=25 \\
\widehat{\text { COF }}= & 9.1+\underset{(15.0)}{7.8} P_{B C}+\underset{(1.2)}{2.4} P_{T}+\underset{(0.0010)}{0.0035 Y} \\
t=0.5 & 2.0 \\
R^{2}=0.60, & n=25.5
\end{array}
$$

- The three criteria does not hold (theory is inconclusive) $\Rightarrow$ the price of Brazilian coffee does not belong to the equation (Brazilian coffee is price inelastic)


## Estimating price elasticity of Brazilian coffee

- Really???
- What if we add price of Colombian coffee $\left(P_{C C}\right)$ ?

$$
\begin{aligned}
& \widehat{C O F}=10.0+\underset{(4.0)}{8.0} P_{B C}-\underset{(2.0)}{5.6} P_{C C}+\underset{(1.3)}{2.6} P_{T}+\underset{(0.0010)}{0.0030 ~ Y} \\
& \begin{array}{llll}
t=2.0 & -2.8 & 2.0 & 3.0
\end{array} \\
& R^{2}=0.70 \quad, \quad n=25 \\
& \widehat{C O F}=9.1 \quad+\underset{(15.6)}{7.8} P_{C C}+\underset{(1.2)}{2.4} P_{T}+\underset{(0.0010)}{0.0035 Y} \\
& \begin{array}{rlrlr}
t & = & 0.5 & 2.0 & 3.5 \\
R^{2} & =0.60 \quad, & n=25 & &
\end{array}
\end{aligned}
$$

- The three criteria hold $\Rightarrow$ the price of Brazilian coffee belongs to the equation!!! (Brazilian coffee is price elastic)


## THE DANGER OF SPECIFICATION SEARCHES

- "If you just torture the data long enough, they will confess."
- If too many specifications are tried:
- The final result has desired properties only by chance
- The statistical significance of the results is overestimated because the estimations of the previous regressions are ignored
- How to proceed:
- Keep the number of regressions estimated low
- Focus on theoretical considerations: leave the insignificant variables in the equation if the theory predicts they should be included
- Document all specifications investigated


## ADDITIONAL SPECIFICATION TEST

- Ramsey's Regression Specification Error Test (RESET)
- allows to detect possible misspecification - tells you if all important variables are included or not
- unfortunately does not allow to detect its source
- There are two forms of this test, both based on similar intuition:
- If the equation is correctly specified, nothing is missing in the equation and the residuals are a white noise.
- We will derive the test for the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}
$$

## RESET I

1. We run the regression $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}$
2. We save the predicted values $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}$
3. We run an augmented regression

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\gamma_{1} \widehat{y}_{i}^{2}+\gamma_{2} \widehat{y}_{i}^{3}+\varepsilon_{t}
$$

(more powers of $\widehat{y}$ can be included)
4. We test $H_{0}: \gamma_{1}=\gamma_{2}=0$ using a standard $F$-test.
5. If we reject $H_{0}$, there is a misspecification problem in our model.

- Intuition: If the model is correct, $y$ is well explained by $x_{1}$ and $x_{2}$ and the predicted values of $y$ (raised to higher powers) should not be significant.


## RESET II

1. We run the regression $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}$
2. We save the predicted values $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}$ and the residuals $e_{i}=y_{i}-\widehat{y}_{i}$
3. We run the regression

$$
e_{i}=\alpha_{0}+\alpha_{1} \widehat{y}_{i}+\alpha_{2} \widehat{y}_{i}^{2}+\varepsilon_{i}
$$

(more powers of $\widehat{y}$ can be included)
4. We test $H_{0}: \alpha_{1}=\alpha_{2}=0$ using a standard $F$-test.
5. If we reject $H_{0}$, there is a misspecification problem in our model.

- Intuition: if the model is correct, residuals should not display any pattern depending on the explanatory variables.


## SUMMARY

- Omitted variable causes bias (and decreases variance)
- sign of this bias can be predicted
- Included irrelevant variable increases variance (but does not cause bias)
- such variable is insignificant in the regression
- it does not contribute to the overall fit of the regression
- There is a set of criteria that help us to recognize correct specification
- these criteria have to be applied with caution - theoretical justification has always priority over statistical properties
- Readings:
- Studenmund Chapter 6, Wooldridge Chapter 9

