LECTURE 7

Introduction to Econometrics

Nonlinear specifications and dummy variables

October 27, 2017

On the previous lecture

ON THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models

ON THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test

ON THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression

ON THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit $-R^{2}$

On THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit $-R^{2}$
- We showed how the F-test and the R^{2} are related

On today's lecture

On TODAY's LECTURE

- We will discuss different specifications nonlinear in dependent and independent variables and their interpretation

On TODAY's LECTURE

- We will discuss different specifications nonlinear in dependent and independent variables and their interpretation
- We will define the notion of a dummy variable and we will show its different uses in linear regression models

Nonlinear specification

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables

Nonlinear specification

- There is not always a linear relationship between dependent variable and explanatory variables
- The use of OLS requires that the equation be linear in coefficients

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables
- The use of OLS requires that the equation be linear in coefficients
- However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables
- The use of OLS requires that the equation be linear in coefficients
- However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!
- We have to choose carefully the functional form of the relationship between the dependent variable and each explanatory variable

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables
- The use of OLS requires that the equation be linear in coefficients
- However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!
- We have to choose carefully the functional form of the relationship between the dependent variable and each explanatory variable
- The choice of a functional form should be based on the underlying economic theory and/or intuition

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables
- The use of OLS requires that the equation be linear in coefficients
- However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!
- We have to choose carefully the functional form of the relationship between the dependent variable and each explanatory variable
- The choice of a functional form should be based on the underlying economic theory and/or intuition
- Do we expect a curve instead of a straight line? Does the effect of a variable peak at some point and then start to decline?

LINEAR FORM

LINEAR FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

LINEAR FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- Assumes that the effect of the explanatory variable on the dependent variable is constant:

LINEAR FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- Assumes that the effect of the explanatory variable on the dependent variable is constant:

$$
\frac{\partial y}{\partial x_{k}}=\beta_{k} \quad k=1,2
$$

LINEAR FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- Assumes that the effect of the explanatory variable on the dependent variable is constant:

$$
\frac{\partial y}{\partial x_{k}}=\beta_{k} \quad k=1,2
$$

- Interpretation: if x_{k} increases by 1 unit (in which x_{k} is measured), then y will change by β_{k} units (in which y is measured)

LINEAR FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- Assumes that the effect of the explanatory variable on the dependent variable is constant:

$$
\frac{\partial y}{\partial x_{k}}=\beta_{k} \quad k=1,2
$$

- Interpretation: if x_{k} increases by 1 unit (in which x_{k} is measured), then y will change by β_{k} units (in which y is measured)
- Linear form is used as default functional form until strong evidence that it is inappropriate is found

DOUBLE-LOG FORM

DOUBLE-LOG FORM

$$
\ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

DOUBLE-LOG FORM

$$
\ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

DOUBLE-LOG FORM

$$
\ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

$$
\frac{\partial \ln y}{\partial \ln x_{k}}=\frac{\partial y / y}{\partial x_{k} / x_{k}}=\beta_{k} \quad k=1,2
$$

DOUBLE-LOG FORM

$$
\ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

$$
\frac{\partial \ln y}{\partial \ln x_{k}}=\frac{\partial y / y}{\partial x_{k} / x_{k}}=\beta_{k} \quad k=1,2
$$

- Interpretation: if x_{k} increases by 1 percent, then y will change by β_{k} percents

DOUBLE-LOG FORM

$$
\ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

$$
\frac{\partial \ln y}{\partial \ln x_{k}}=\frac{\partial y / y}{\partial x_{k} / x_{k}}=\beta_{k} \quad k=1,2
$$

- Interpretation: if x_{k} increases by 1 percent, then y will change by β_{k} percents
- Before using a double-log model, make sure that there are no negative or zero observations in the data set

EXAMPLE

EXAMPLE

- Estimating the production function of Indian sugar industry:

EXAMPLE

- Estimating the production function of Indian sugar industry:

$$
\widehat{\ln Q}=2.70+\underset{(0.14)}{0.59} \ln L+\underset{(0.17)}{0.33} \ln K
$$

Q ... output
L ... labor
K ... capital employed

EXAMPLE

- Estimating the production function of Indian sugar industry:

$$
\begin{aligned}
& \widehat{\ln Q}=2.70+\underset{(0.14)}{0.59} \ln L+\underset{(0.17)}{0.33} \ln K \\
& \text { Q ... output } \\
& \text { L ... labor } \\
& \text { K ... capital employed }
\end{aligned}
$$

- Interpretation: if we increase the amount of labor by 1%, the production of sugar will increase by 0.59%, ceteris paribus.

EXAMPLE

- Estimating the production function of Indian sugar industry:

$$
\widehat{\ln Q}=2.70+\underset{(0.14)}{0.59} \ln L+\underset{(0.17)}{0.33} \ln K
$$

$$
\begin{array}{lll}
Q & \ldots & \text { output } \\
L & \ldots & \text { labor } \\
K & \ldots & \text { capital employed }
\end{array}
$$

- Interpretation: if we increase the amount of labor by 1%, the production of sugar will increase by 0.59%, ceteris paribus.
- Ceteris paribus is a Latin phrase meaning 'other things being equal'.

SEMILOG FORMS

SEMILOG FORMS

- Linear-log form:

$$
y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

SEMILOG FORMS

- Linear-log form:

$$
y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Interpretation: if x_{k} increases by 1 percent, then y will change by $\left(\beta_{k} / 100\right)$ units $(k=1,2)$

SEMILOG FORMS

- Linear-log form:

$$
y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Interpretation: if x_{k} increases by 1 percent, then y will change by $\left(\beta_{k} / 100\right)$ units $(k=1,2)$
- Log-linear form:

$$
\ln y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

SEMILOG FORMS

- Linear-log form:

$$
y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon
$$

- Interpretation: if x_{k} increases by 1 percent, then y will change by $\left(\beta_{k} / 100\right)$ units $(k=1,2)$
- Log-linear form:

$$
\ln y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- Interpretation: if x_{k} increases by 1 unit, then y will change by $\left(\beta_{k} * 100\right)$ percent $(k=1,2)$

EXAMPLES OF SEMILOG FORMS

EXAMPLES OF SEMILOG FORMS

- Estimating demand for chicken meat:

$$
\widehat{Y}=-6.94-\underset{(0.19)}{0.57} P C+\underset{(0.11)}{0.25} P B+\underset{(2.81)}{12.2} \ln Y D
$$

$Y \quad \ldots$ annual chicken consumption (kg.)
PC ... price of chicken
PB ... price of beef
YD ... annual disposable income

EXAMPLES OF SEMILOG FORMS

- Estimating demand for chicken meat:

$$
\widehat{Y}=-6.94-\underset{(0.19)}{0.57} P C+\underset{(0.11)}{0.25} P B+\underset{(2.81)}{12.2} \ln Y D
$$

$Y \quad \ldots$ annual chicken consumption (kg.)
PC ... price of chicken
$P B \quad .$. price of beef
YD ... annual disposable income

- Interpretation: An increase in the annual disposable income by 1% increases chicken consumption by 0.12 kg per year, ceteris paribus.

EXAMPLES OF SEMILOG FORMS

EXAMPLES OF SEMILOG FORMS

- Estimating the influence of education and experience on wages:

$$
\begin{aligned}
& \widehat{\ln \text { wage }}=0.217+\underset{(0.008)}{0.098} \text { educ }+\underset{(0.002)}{0.010} \text { exper } \\
& \text { wage ... annual wage (USD) } \\
& \text { educ ... years of education } \\
& \text { exper ... years of experience }
\end{aligned}
$$

EXAMPLES OF SEMILOG FORMS

- Estimating the influence of education and experience on wages:

$$
\begin{aligned}
\widehat{\ln \text { wage }}=0.217 & +\underset{(0.008)}{0.098} \text { educ }+\underset{(0.002)}{0.010} \text { exper } \\
& \\
\text { wage } & \ldots
\end{aligned} \text { annual wage (USD) }
$$

- Interpretation: An increase in education by one year increases annual wage by 9.8%, ceteris paribus. An increase in experience by one year increases annual wage by 1%, ceteris paribus.

POLYNOMIAL FORM

POLYNOMIAL FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\varepsilon
$$

POLYNOMIAL FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\varepsilon
$$

- To determine the effect of x_{1} on y, we need to calculate the derivative:

$$
\frac{\partial y}{\partial x_{1}}=\beta_{1}+2 \cdot \beta_{2} \cdot x_{1}
$$

POLYNOMIAL FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\varepsilon
$$

- To determine the effect of x_{1} on y, we need to calculate the derivative:

$$
\frac{\partial y}{\partial x_{1}}=\beta_{1}+2 \cdot \beta_{2} \cdot x_{1}
$$

- Clearly, the effect of x_{1} on y is not constant, but changes with the level of x_{1}

POLYNOMIAL FORM

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\varepsilon
$$

- To determine the effect of x_{1} on y, we need to calculate the derivative:

$$
\frac{\partial y}{\partial x_{1}}=\beta_{1}+2 \cdot \beta_{2} \cdot x_{1}
$$

- Clearly, the effect of x_{1} on y is not constant, but changes with the level of x_{1}
- We might also have higher order polynomials, e.g.:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{1}^{3}+\beta_{4} x_{1}^{4}+\varepsilon
$$

EXAMPLE OF POLYNOMIAL FORM

EXAMPLE OF POLYNOMIAL FORM

- The impact of the number of hours of studying on the grade from Introductory Econometrics:

$$
\widehat{\text { grade }}=30+1.4 \cdot \text { hours }-0.009 \cdot \text { hours }^{2}
$$

EXAMPLE OF POLYNOMIAL FORM

- The impact of the number of hours of studying on the grade from Introductory Econometrics:

$$
\widehat{\text { grade }}=30+1.4 \cdot \text { hours }-0.009 \cdot \text { hours }^{2}
$$

- To determine the effect of hours on grade, calculate the derivative:

$$
\frac{\partial y}{\partial x}=\frac{\partial g \text { rade }}{\partial \text { hours }}=1.4-2 \cdot 0.009 \cdot \text { hours }=1.4-0.018 \cdot \text { hours }
$$

EXAMPLE OF POLYNOMIAL FORM

- The impact of the number of hours of studying on the grade from Introductory Econometrics:

$$
\widehat{\text { grade }}=30+1.4 \cdot \text { hours }-0.009 \cdot \text { hours }^{2}
$$

- To determine the effect of hours on grade, calculate the derivative:

$$
\frac{\partial y}{\partial x}=\frac{\partial \text { grade }}{\partial \text { hours }}=1.4-2 \cdot 0.009 \cdot \text { hours }=1.4-0.018 \cdot \text { hours }
$$

- Decreasing returns to hours of studying: more hours implies higher grade, but the positive effect of additional hour of studying decreases with more hours

CHOICE OF CORRECT FUNCTIONAL FORM

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
- Remember that one of the OLS assumptions is that the model is correctly specified

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
- Remember that one of the OLS assumptions is that the model is correctly specified
- Ideally: the specification is given by underlying theory of the equation

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
- Remember that one of the OLS assumptions is that the model is correctly specified
- Ideally: the specification is given by underlying theory of the equation
- In reality: underlying theory does not give precise functional form

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
- Remember that one of the OLS assumptions is that the model is correctly specified
- Ideally: the specification is given by underlying theory of the equation
- In reality: underlying theory does not give precise functional form
- In most cases, either linear form is adequate, or common sense will point out an easy choice from among the alternatives

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables

Choice of correct functional form

- Nonlinearity of explanatory variables
- often approximated by polynomial form

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
- often approximated by polynomial form
- missing higher powers of a variable can be detected as omitted variables (see next lecture)

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
- often approximated by polynomial form
- missing higher powers of a variable can be detected as omitted variables (see next lecture)
- Nonlinearity of dependent variable

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
- often approximated by polynomial form
- missing higher powers of a variable can be detected as omitted variables (see next lecture)
- Nonlinearity of dependent variable
- harder to detect based on statistical fit of the regression

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
- often approximated by polynomial form
- missing higher powers of a variable can be detected as omitted variables (see next lecture)
- Nonlinearity of dependent variable
- harder to detect based on statistical fit of the regression
- R^{2} is incomparable across models where the y is transformed

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
- often approximated by polynomial form
- missing higher powers of a variable can be detected as omitted variables (see next lecture)
- Nonlinearity of dependent variable
- harder to detect based on statistical fit of the regression
- R^{2} is incomparable across models where the y is transformed
- dependent variables are often transformed to log-form in order to make their distribution closer to the normal distribution

DUMMY VARIABLES

DUMMY VARIABLES

- Dummy variable - takes on the values of 0 or 1, depending on a qualitative attribute

DUMMY VARIABLES

- Dummy variable - takes on the values of 0 or 1, depending on a qualitative attribute
- Examples of dummy variables:

DUMMY VARIABLES

- Dummy variable - takes on the values of 0 or 1, depending on a qualitative attribute
- Examples of dummy variables:

$$
\begin{aligned}
\text { Male } & = \begin{cases}1 & \text { if the person is male } \\
0 & \text { if the person is female }\end{cases} \\
\text { Weekend } & = \begin{cases}1 & \text { if the day is on weekend } \\
0 & \text { if the day is a work day }\end{cases} \\
\text { NewStadium } & = \begin{cases}1 & \text { if the team plays on new stadium } \\
0 & \text { if the team plays on old stadium }\end{cases}
\end{aligned}
$$

INTERCEPT DUMMY

INTERCEPT DUMMY

- Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy

INTERCEPT DUMMY

- Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy
- It changes the intercept for the subset of data defined by a dummy variable condition:

$$
y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} x_{i}+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

INTERCEPT DUMMY

- Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy
- It changes the intercept for the subset of data defined by a dummy variable condition:

$$
y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} x_{i}+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

- We have

$$
\begin{aligned}
& y_{i}=\left(\beta_{0}+\beta_{1}\right)+\beta_{2} x_{i}+\varepsilon_{i} \text { if } D_{i}=1 \\
& y_{i}=\beta_{0}+\beta_{2} x_{i}+\varepsilon_{i} \text { if } D_{i}=0
\end{aligned}
$$

INTERCEPT DUMMY

EXAMPLE

EXAMPLE

- Estimating the determinants of wages:

EXAMPLE

- Estimating the determinants of wages:

$$
{\widehat{\operatorname{wage}_{i}}}_{i}=-3.890+\underset{(0.270)}{2.156} M_{i}+\underset{(0.051)}{0.603 \text { educ }_{i}}+\underset{(0.064)}{0.010} \text { exper }_{i}
$$

where $\quad M_{i}= \begin{cases}1 & \text { if the } i \text {-th person is male } \\ 0 & \text { if the } i \text {-th person is female }\end{cases}$
wage ... average hourly wage in USD

EXAMPLE

- Estimating the determinants of wages:

$$
{\widehat{\text { wage }_{i}}}_{i}=-3.890+\underset{(0.270)}{2.156} M_{i}+\underset{(0.051)}{0.603 \text { educ }_{i}}+\underset{(0.064)}{0.010} \text { exper }_{i}
$$

where $\quad M_{i}= \begin{cases}1 & \text { if the } i \text {-th person is male } \\ 0 & \text { if the } i \text {-th person is female }\end{cases}$
wage ... average hourly wage in USD

- Interpretation of the dummy variable M : men earn on average $\$ 2.156$ per hour more than women, ceteris paribus

SLOPE DUMMY

Slope dummy

- If a dummy variable is interacted with another variable (x), it is a slope dummy.

SLOPE DUMMY

- If a dummy variable is interacted with another variable (x), it is a slope dummy.
- It changes the relationship between x and y for a subset of data defined by a dummy variable condition:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2}\left(x_{i} \cdot D_{i}\right)+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

SLOPE DUMMY

- If a dummy variable is interacted with another variable (x), it is a slope dummy.
- It changes the relationship between x and y for a subset of data defined by a dummy variable condition:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2}\left(x_{i} \cdot D_{i}\right)+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

- We have

$$
\begin{aligned}
& y_{i}=\beta_{0}+\left(\beta_{1}+\beta_{2}\right) x_{i}+\varepsilon_{i} \text { if } D_{i}=1 \\
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \text { if } D_{i}=0
\end{aligned}
$$

Slope dummy

$20 / 25$

EXAMPLE

EXAMPLE

- Estimating the determinants of wages:

EXAMPLE

- Estimating the determinants of wages:
${\widehat{\text { wage }_{i}}}_{i}=-2.620+\underset{(0.054)}{0.450}$ educ $_{i}+\underset{(0.021)}{0.170} M_{i} \cdot$ educ $_{i}+\underset{(0.065)}{0.010}$ exper $_{i}$
where $\quad M_{i}= \begin{cases}1 & \text { if the } i \text {-th person is male } \\ 0 & \text { if the } i \text {-th person is female }\end{cases}$ wage ... average hourly wage in USD

EXAMPLE

- Estimating the determinants of wages:
$\widehat{\text { wage }}_{i}=-2.620+\underset{(0.054)}{0.450}$ educ $_{i}+\underset{(0.021)}{0.170} M_{i} \cdot$ educ $_{i}+\underset{(0.065)}{0.010}$ exper $_{i}$
where $\quad M_{i}= \begin{cases}1 & \text { if the } i \text {-th person is male } \\ 0 & \text { if the } i \text {-th person is female }\end{cases}$
wage ... average hourly wage in USD
- Interpretation: men gain on average 17 cents per hour more than women for each additional year of education, ceteris paribus

SLOPE AND INTERCEPT DUMMIES

SLOPE AND INTERCEPT DUMMIES

- Allow both for different slope and intercept for two subsets of data distinguished by a qualitative condition:

SLOPE AND INTERCEPT DUMMIES

- Allow both for different slope and intercept for two subsets of data distinguished by a qualitative condition:

$$
y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} x_{i}+\beta_{3}\left(x_{i} \cdot D_{i}\right)+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

SLOPE AND INTERCEPT DUMMIES

- Allow both for different slope and intercept for two subsets of data distinguished by a qualitative condition:

$$
y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} x_{i}+\beta_{3}\left(x_{i} \cdot D_{i}\right)+\varepsilon_{i}
$$

where
$D_{i}= \begin{cases}1 & \text { if the } i \text {-th observation meets a particular condition } \\ 0 & \text { otherwise }\end{cases}$

- We have

$$
\begin{aligned}
& y_{i}=\left(\beta_{0}+\beta_{1}\right)+\left(\beta_{2}+\beta_{3}\right) x_{i}+\varepsilon_{i} \text { if } D_{i}=1 \\
& y_{i}=\beta_{0}+\beta_{2} x_{i}+\varepsilon_{i} \text { if } D_{i}=0
\end{aligned}
$$

SLOPE AND INTERCEPT DUMMIES

$23 / 25$

DUMMY VARIABLES - MULTIPLE CATEGORIES

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?
- Example: level of education - elementary school, high school, and college

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?
- Example: level of education - elementary school, high school, and college
- Define and use a set of dummy variables:

$$
H=\left\{\begin{array}{ll}
1 & \text { if high school } \\
0 & \text { otherwise }
\end{array} \text { and } C= \begin{cases}1 & \text { if college } \\
0 & \text { otherwise }\end{cases}\right.
$$

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?
- Example: level of education - elementary school, high school, and college
- Define and use a set of dummy variables:

$$
H=\left\{\begin{array}{ll}
1 & \text { if high school } \\
0 & \text { otherwise }
\end{array} \text { and } C= \begin{cases}1 & \text { if college } \\
0 & \text { otherwise }\end{cases}\right.
$$

- Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?
- Example: level of education - elementary school, high school, and college
- Define and use a set of dummy variables:

$$
H=\left\{\begin{array}{ll}
1 & \text { if high school } \\
0 & \text { otherwise }
\end{array} \text { and } C= \begin{cases}1 & \text { if college } \\
0 & \text { otherwise }\end{cases}\right.
$$

- Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?
- No, unless we exclude the intercept!

DUMMY VARIABLES - MULTIPLE CATEGORIES

- What if a variable defines three or more qualitative attributes?
- Example: level of education - elementary school, high school, and college
- Define and use a set of dummy variables:

$$
H=\left\{\begin{array}{ll}
1 & \text { if high school } \\
0 & \text { otherwise }
\end{array} \text { and } C= \begin{cases}1 & \text { if college } \\
0 & \text { otherwise }\end{cases}\right.
$$

- Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?
- No, unless we exclude the intercept!
- Using full set of dummies leads to perfect multicollinearity (dummy variable trap, see next lectures)

SUMMARY

SUMMARY

- We discussed different nonlinear specifications of a regression equation and their interpretation

SUMMARY

- We discussed different nonlinear specifications of a regression equation and their interpretation
- We defined the concept of a dummy variable and we showed its use

SUMMARY

- We discussed different nonlinear specifications of a regression equation and their interpretation
- We defined the concept of a dummy variable and we showed its use
- Further readings:
- Studenmund, Chapter 7
- Wooldridge, Chapters 6 \& 7

