LECTURE 2

Introduction to Econometrics

INTRODUCTION TO LINEAR REGRESSION ANALYSIS I.

October 6, 2017

Previous lecture...

- Introduction, organization, review of statistical background

Previous lecture...

- Introduction, organization, review of statistical background
- random variables

Previous lecture...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation

Previous lecture...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation
- covariance, correlation, independence

Previous lecture...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation
- covariance, correlation, independence
- normal distribution

Previous lecture...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation
- covariance, correlation, independence
- normal distribution
- standardized random variables

PREVIOUS LECTURE...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation
- covariance, correlation, independence
- normal distribution
- standardized random variables

Sauage Chickens
by Doug Savage

love letter from a statistician

PREVIOUS LECTURE...

- Introduction, organization, review of statistical background
- random variables
- mean, variance, standard deviation
- covariance, correlation, independence
- normal distribution
- standardized random variables

Sauage Chickens
by Doug Savage

love letter from a statistician

WARM-UP EXERCISE

WARM-UP EXERCISE

- What is the correlation between X and Y ?

$$
\left(\begin{array}{cc}
X & Y \\
5 & 10 \\
3 & 6 \\
-1 & -4 \\
6 & 8 \\
2 & 5
\end{array}\right)
$$

WARM-UP EXERCISE

- What is the correlation between X and Y ?

$$
\left(\begin{array}{cc}
X & Y \\
5 & 10 \\
3 & 6 \\
-1 & -4 \\
6 & 8 \\
2 & 5
\end{array}\right)
$$

- Correlation: $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$

WARM-UP EXERCISE

- What is the correlation between X and Y ?

$$
\left(\begin{array}{cc}
X & Y \\
5 & 10 \\
3 & 6 \\
-1 & -4 \\
6 & 8 \\
2 & 5
\end{array}\right)
$$

- Correlation: $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
- Covariance:

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

WARM-UP EXERCISE

- What is the correlation between X and Y ?

$$
\left(\begin{array}{cc}
X & Y \\
5 & 10 \\
3 & 6 \\
-1 & -4 \\
6 & 8 \\
2 & 5
\end{array}\right)
$$

- Correlation: $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
- Covariance:

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

- Standard deviation : $\sigma_{X}=\sqrt{\operatorname{Var}[X]}$

WARM-UP EXERCISE

- What is the correlation between X and Y ?

$$
\left(\begin{array}{cc}
X & Y \\
5 & 10 \\
3 & 6 \\
-1 & -4 \\
6 & 8 \\
2 & 5
\end{array}\right)
$$

- Correlation: $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
- Covariance:

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

- Standard deviation : $\sigma_{X}=\sqrt{\operatorname{Var}[X]}$
- Variance: $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$

LECTURE 2.

- Introduction to simple linear regression analysis

LECTURE 2.

- Introduction to simple linear regression analysis
- Sampling and estimation

LECTURE 2.

- Introduction to simple linear regression analysis
- Sampling and estimation
- OLS principle

LECTURE 2.

- Introduction to simple linear regression analysis
- Sampling and estimation
- OLS principle
- Readings:
- Studenmund, A. H., Using Econometrics: A Practical Guide, Chapters 1, 2.1, 17.2, 17.3
- Wooldridge, J. M., Introductory Econometrics: A Modern Approach, Chapters 2.1, 2.2

SAMPLING

- Population: the entire group of items that interests us

SAMPLING

- Population: the entire group of items that interests us
- Sample: the part of the population that we actually observe

SAMPLING

- Population: the entire group of items that interests us
- Sample: the part of the population that we actually observe
- Statistical inference: use of the sample to draw conclusion about the characteristics of the population from which the sample came

SAMPLING

- Population: the entire group of items that interests us
- Sample: the part of the population that we actually observe
- Statistical inference: use of the sample to draw conclusion about the characteristics of the population from which the sample came
- Examples: medical experiments, opinion polls

Random sampling vs selection bias

RANDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population

RaNDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population
- Biased sample: any sample that differs systematically from the population that it is intended to represent

RaNDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population
- Biased sample: any sample that differs systematically from the population that it is intended to represent
- Selection bias: occurs when the selection of the sample systematically excludes or under represents certain groups

RaNDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population
- Biased sample: any sample that differs systematically from the population that it is intended to represent
- Selection bias: occurs when the selection of the sample systematically excludes or under represents certain groups
- Example: opinion poll about tuition payments among undergraduate students vs all citizens

RaNDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population
- Biased sample: any sample that differs systematically from the population that it is intended to represent
- Selection bias: occurs when the selection of the sample systematically excludes or under represents certain groups
- Example: opinion poll about tuition payments among undergraduate students vs all citizens
- Self-selection bias: occurs when we examine data for a group of people who have chosen to be in that group

RaNDOM SAMPLING VS SELECTION BIAS

- Correct statistical inference can be performed only on a random sample - a sample that reflects the true distribution of the population
- Biased sample: any sample that differs systematically from the population that it is intended to represent
- Selection bias: occurs when the selection of the sample systematically excludes or under represents certain groups
- Example: opinion poll about tuition payments among undergraduate students vs all citizens
- Self-selection bias: occurs when we examine data for a group of people who have chosen to be in that group
- Example: accident records of people who buy collision insurance

EXERCISE 1

- American Express and the French tourist office sponsored a survey that found that most visitors to France do not consider the French to be especially unfriendly.

EXERCISE 1

- American Express and the French tourist office sponsored a survey that found that most visitors to France do not consider the French to be especially unfriendly.
- The sample consisted of 1,000 Americans who have visited France more than once for pleasure over the past two years.

EXERCISE 1

- American Express and the French tourist office sponsored a survey that found that most visitors to France do not consider the French to be especially unfriendly.
- The sample consisted of 1,000 Americans who have visited France more than once for pleasure over the past two years.
- Is this survey unbiased?

Estimation

EstimATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated

EsTIMATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated
- Example: population mean $E[X]$

EstimATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated
- Example: population mean $E[X]$
- Estimator: a sample statistic that is used to estimate the value of the parameter

EstimATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated
- Example: population mean $E[X]$
- Estimator: a sample statistic that is used to estimate the value of the parameter
- Example: sample mean \bar{X}_{n}

EstimATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated
- Example: population mean $E[X]$
- Estimator: a sample statistic that is used to estimate the value of the parameter
- Example: sample mean \bar{X}_{n}
- Note that the estimator is a random variable (it has a probability distribution, mean, variance,...)

EsTIMATION

- Parameter: a true characteristic of the distribution of a variable, whose value is unknown, but can be estimated
- Example: population mean $E[X]$
- Estimator: a sample statistic that is used to estimate the value of the parameter
- Example: sample mean \bar{X}_{n}
- Note that the estimator is a random variable (it has a probability distribution, mean, variance,...)
- Estimate: the specific value of the estimator that is obtained on a specific sample

Properties of an estimator

Properties of an estimator

- An estimator is unbiased if the mean of its distribution is equal to the value of the parameter it is estimating

Properties of an estimator

- An estimator is unbiased if the mean of its distribution is equal to the value of the parameter it is estimating
- An estimator is consistent if it converges to the value of the true parameter as the sample size increases

Properties of an estimator

- An estimator is unbiased if the mean of its distribution is equal to the value of the parameter it is estimating
- An estimator is consistent if it converges to the value of the true parameter as the sample size increases
- An estimator is efficient if the variance of its sampling distribution is the smallest possible

EXERCISE 2

- A young econometrician wants to estimate the relationship between foreign direct investments (FDI) in her country and firm profitability.

EXERCISE 2

- A young econometrician wants to estimate the relationship between foreign direct investments (FDI) in her country and firm profitability.
- Her reasoning is that better managerial skills introduced by foreign owners increase firms' profitability.

EXERCISE 2

- A young econometrician wants to estimate the relationship between foreign direct investments (FDI) in her country and firm profitability.
- Her reasoning is that better managerial skills introduced by foreign owners increase firms' profitability.
- She collects a random sample of 8,750 firms and finds that one sixth of the firms were entered within last few years by foreign investors. The rest of the firms are owned domestically.

EXERCISE 2

- A young econometrician wants to estimate the relationship between foreign direct investments (FDI) in her country and firm profitability.
- Her reasoning is that better managerial skills introduced by foreign owners increase firms' profitability.
- She collects a random sample of 8,750 firms and finds that one sixth of the firms were entered within last few years by foreign investors. The rest of the firms are owned domestically.
- When she compares indicators of profitability, such as ROA and ROE, between the domestic and foreign-owned firms, she finds significantly better outcomes for foreign-owned firms.

EXERCISE 2

- A young econometrician wants to estimate the relationship between foreign direct investments (FDI) in her country and firm profitability.
- Her reasoning is that better managerial skills introduced by foreign owners increase firms' profitability.
- She collects a random sample of 8,750 firms and finds that one sixth of the firms were entered within last few years by foreign investors. The rest of the firms are owned domestically.
- When she compares indicators of profitability, such as ROA and ROE, between the domestic and foreign-owned firms, she finds significantly better outcomes for foreign-owned firms.
- She concludes that FDI increase firms' profitability. Is this conclusion correct?

Econometric models

ECONOMETRIC MODELS

- Econometric model is an estimable formulation of a theoretical relationship

ECONOMETRIC MODELS

- Econometric model is an estimable formulation of a theoretical relationship
- Theory says: $\quad Q=f\left(P, P_{s}, Y\right)$
- Q... quantity demanded
- P ... commodity's price
- $P_{s} \ldots$ price of substitute good
- Y ... disposable income

ECONOMETRIC MODELS

- Econometric model is an estimable formulation of a theoretical relationship
- Theory says: $\quad Q=f\left(P, P_{s}, Y\right)$
- Q ... quantity demanded
- P ... commodity's price
- $P_{s} \ldots$ price of substitute good
- Y ... disposable income
- We simplify: $\quad Q=\beta_{0}+\beta_{1} P+\beta_{2} P_{s}+\beta_{3} Y$

ECONOMETRIC MODELS

- Econometric model is an estimable formulation of a theoretical relationship
- Theory says: $\quad Q=f\left(P, P_{s}, Y\right)$
- Q... quantity demanded
- P ... commodity's price
- $P_{s} \ldots$ price of substitute good
- Y ... disposable income
- We simplify: $\quad Q=\beta_{0}+\beta_{1} P+\beta_{2} P_{s}+\beta_{3} Y$
- We estimate:
$Q=31.50-0.73 P+0.11 P_{s}+0.23 Y$

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models
- During the course we will cover just linear regression models

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models
- During the course we will cover just linear regression models
- We will see how these models are estimated by

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models
- During the course we will cover just linear regression models
- We will see how these models are estimated by
- Ordinary Least Squares (OLS)

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models
- During the course we will cover just linear regression models
- We will see how these models are estimated by
- Ordinary Least Squares (OLS)
- Generalized Least Squares (GLS)

ECONOMETRIC MODELS

- Today's econometrics deals with different, even very general models
- During the course we will cover just linear regression models
- We will see how these models are estimated by
- Ordinary Least Squares (OLS)
- Generalized Least Squares (GLS)
- We will perform estimation on different types of data

DATA USED IN ECONOMETRICS

DATA USED IN ECONOMETRICS

cross-section
sample of units
(eg. firms, individuals) taken at a given point in time
time-series
observations of variable(s) in different points in time
repeated cross-section
several independent samples of units (eg. firms, individuals) taken at different points in time

Data used in econometrics - Examples

DATA USED IN ECONOMETRICS - EXAMPLES

- Country's macroeconomic indicators (GDP, inflation rate, net exports, etc.) month by month

DATA USED IN ECONOMETRICS - EXAMPLES

- Country's macroeconomic indicators (GDP, inflation rate, net exports, etc.) month by month
- Data about firms' employees or financial indicators as of the end of the year

DATA USED IN ECONOMETRICS - EXAMPLES

- Country's macroeconomic indicators (GDP, inflation rate, net exports, etc.) month by month
- Data about firms' employees or financial indicators as of the end of the year
- Records of bank clients who were given a loan

DATA USED IN ECONOMETRICS - EXAMPLES

- Country's macroeconomic indicators (GDP, inflation rate, net exports, etc.) month by month
- Data about firms' employees or financial indicators as of the end of the year
- Records of bank clients who were given a loan
- Annual social security or tax records of individual workers

Steps of an econometric analysis

STEPS OF AN ECONOMETRIC ANALYSIS

1. Formulation of an economic model (rigorous or intuitive)

STEPS OF AN ECONOMETRIC ANALYSIS

1. Formulation of an economic model (rigorous or intuitive)
2. Formulation of an econometric model based on the economic model

STEPS OF AN ECONOMETRIC ANALYSIS

1. Formulation of an economic model (rigorous or intuitive)
2. Formulation of an econometric model based on the economic model
3. Collection of data

STEPS OF AN ECONOMETRIC ANALYSIS

1. Formulation of an economic model (rigorous or intuitive)
2. Formulation of an econometric model based on the economic model
3. Collection of data
4. Estimation of the econometric model

STEPS OF AN ECONOMETRIC ANALYSIS

1. Formulation of an economic model (rigorous or intuitive)
2. Formulation of an econometric model based on the economic model
3. Collection of data
4. Estimation of the econometric model
5. Interpretation of results

EXAMPLE - ECONOMIC MODEL

EXAMPLE - ECONOMIC MODEL

- Denote:
- p ... price of the good
- c ... firm's average cost per one unit of output
- $q(p) \ldots$ demand for firm's output

ExAMPLE - ECONOMIC MODEL

- Denote:
- p ... price of the good
- c ... firm's average cost per one unit of output
- $q(p) \ldots$ demand for firm's output

Firm profit:

$$
\pi=q(p) \cdot(p-c)
$$

Example - Economic model

- Denote:
- p ... price of the good
- c ... firm's average cost per one unit of output
- $q(p) \ldots$ demand for firm's output

Firm profit:
Demand for good:

$$
\pi=q(p) \cdot(p-c)
$$

$$
q(p)=a-b \cdot p
$$

ExAMPLE - ECONOMIC MODEL

- Denote:
- p... price of the good
- c ... firm's average cost per one unit of output
- $q(p) \ldots$ demand for firm's output

Firm profit:
Demand for good:

$$
\pi=q(p) \cdot(p-c)
$$

$$
q(p)=a-b \cdot p
$$

- Derive:

$$
q=\frac{a}{2}-\frac{b}{2} \cdot c
$$

EXAMPLE - ECONOMIC MODEL

- Denote:
- p ... price of the good
- c ... firm's average cost per one unit of output
- $q(p) \ldots$ demand for firm's output

Firm profit:

$$
\pi=q(p) \cdot(p-c)
$$

$$
q(p)=a-b \cdot p
$$

- Derive:

$$
q=\frac{a}{2}-\frac{b}{2} \cdot c
$$

- We call q dependent variable and c explanatory variable

Example - ECONOMETRIC MODEL

- Write the relationship in a simple linear form

$$
q=\beta_{0}+\beta_{1} c
$$

Example - Econometric model

- Write the relationship in a simple linear form

$$
q=\beta_{0}+\beta_{1} c
$$

(have in mind that $\beta_{0}=\frac{a}{2}$ and $\beta_{1}=-\frac{b}{2}$)

EXAMPLE - ECONOMETRIC MODEL

- Write the relationship in a simple linear form

$$
q=\beta_{0}+\beta_{1} c
$$

(have in mind that $\beta_{0}=\frac{a}{2}$ and $\beta_{1}=-\frac{b}{2}$)

- There are other (unpredictable) things that influence firms' sales \Rightarrow add disturbance term

$$
q=\beta_{0}+\beta_{1} c+\varepsilon
$$

EXAMPLE - ECONOMETRIC MODEL

- Write the relationship in a simple linear form

$$
q=\beta_{0}+\beta_{1} c
$$

(have in mind that $\beta_{0}=\frac{a}{2}$ and $\beta_{1}=-\frac{b}{2}$)

- There are other (unpredictable) things that influence firms' sales \Rightarrow add disturbance term

$$
q=\beta_{0}+\beta_{1} c+\varepsilon
$$

- Find the value of parameters β_{1} (slope) and β_{0} (intercept)

EXAMPLE - DATA

- Ideally: investigate all firms in the economy

EXAMPLE - DATA

- Ideally: investigate all firms in the economy
- Really: investigate a sample of firms
- We need a random (unbiased) sample of firms

Example - Data

- Ideally: investigate all firms in the economy
- Really: investigate a sample of firms
- We need a random (unbiased) sample of firms
- Collect data:

Firm	1	2	3	4	5	6
q	15	32	52	14	37	27
c	294	247	153	350	173	218

Example - Data

Example - Estimation

Example - Estimation

OLS method:

Example - Estimation

OLS method:

Make the fit as good as possible

Example - Estimation

OLS method:

Make the fit as good as possible \Downarrow
Make the misfit as low as possible

Example - Estimation

OLS method:

Make the fit as good as possible \Downarrow
Make the misfit as low as possible \Downarrow
Minimize the (vertical) distance between data points and regression line

ExAMPLE - ESTIMATION

OLS method:

Make the fit as good as possible \Downarrow
Make the misfit as low as possible
\Downarrow
Minimize the (vertical) distance between data points and regression line
\Downarrow
Minimize the sum of squared deviations

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

$y_{i} \ldots$ dependent/explained variable (i-th observation)

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

$y_{i} \ldots$ dependent/explained variable (i-th observation)
$x_{i} \ldots$ independent/explanatory variable (i-th observation)

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

$y_{i} \ldots$ dependent/explained variable (i-th observation)
$x_{i} \ldots$ independent/explanatory variable (i-th observation)
$\varepsilon_{i} \ldots$ random error term/disturbance (of i-th observation)

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

$y_{i} \ldots$ dependent/explained variable (i-th observation)
$x_{i} \ldots$ independent/explanatory variable (i-th observation)
$\varepsilon_{i} \ldots$ random error term/disturbance (of i-th observation)
$\beta_{0} \ldots$ intercept parameter ($\widehat{\beta}_{0} \ldots$ estimate of this parameter)

TERMINOLOGY

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \ldots \text { regression line }
$$

$y_{i} \ldots$ dependent/explained variable (i-th observation)
$x_{i} \ldots$ independent/explanatory variable (i-th observation)
$\varepsilon_{i} \ldots$ random error term/disturbance (of i-th observation)
$\beta_{0} \ldots$ intercept parameter ($\widehat{\beta}_{0} \ldots$ estimate of this parameter)
$\beta_{1} \ldots$ slope parameter ($\widehat{\beta}_{1} \ldots$ estimate of this parameter)

Ordinary Least Squares

- OLS = fitting the regression line by minimizing the sum of vertical distance between the regression line and the observed points

Ordinary Least Squares

- OLS = fitting the regression line by minimizing the sum of vertical distance between the regression line and the observed points

Ordinary Least Squares - principle

Ordinary Least Squares - PRinciple

- Take the squared differences between observed point y_{i} and regression line $\beta_{0}+\beta_{1} x_{i}$:

$$
\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Ordinary Least Squares - PRinciple

- Take the squared differences between observed point y_{i} and regression line $\beta_{0}+\beta_{1} x_{i}$:

$$
\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- Sum them over all n observations:

$$
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Ordinary Least SQuares - Principle

- Take the squared differences between observed point y_{i} and regression line $\beta_{0}+\beta_{1} x_{i}$:

$$
\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- Sum them over all n observations:

$$
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- Find $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ such that they minimize this sum

$$
\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Ordinary Least SQuares - DERIVATION

Ordinary Least Squares - derivation

$$
\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Ordinary Least Squares - derivation

$$
\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- FOC:

$$
\begin{array}{ll}
\frac{\partial}{\partial \beta_{0}}: & -2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0 \\
\frac{\partial}{\partial \beta_{1}}: & -2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0
\end{array}
$$

Ordinary Least SQuares - DERIVATION

$$
\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- FOC:

$$
\begin{array}{ll}
\frac{\partial}{\partial \beta_{0}}: & -2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0 \\
\frac{\partial}{\partial \beta_{1}}: & -2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0
\end{array}
$$

- We express (on the lecture):

$$
\widehat{\beta}_{0}=\bar{y}_{n}-\widehat{\beta}_{1} \bar{x}_{n}
$$

Ordinary Least SQuares - DERIVAtion

$$
\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- FOC:

$$
\begin{array}{ll}
\frac{\partial}{\partial \beta_{0}}: & -2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0 \\
\frac{\partial}{\partial \beta_{1}}: & -2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0
\end{array}
$$

- We express (on the lecture):

$$
\widehat{\beta}_{0}=\bar{y}_{n}-\widehat{\beta}_{1} \bar{x}_{n}
$$

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)\left(y_{i}-\bar{y}_{n}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}}
$$

Residual

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points
- OLS minimizes the sum of squares of all residuals

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points
- OLS minimizes the sum of squares of all residuals
- It is the difference between the true value y_{i} and the estimated value $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}$

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points
- OLS minimizes the sum of squares of all residuals
- It is the difference between the true value y_{i} and the estimated value $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}$
- We define:

$$
e_{i}=y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}
$$

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points
- OLS minimizes the sum of squares of all residuals
- It is the difference between the true value y_{i} and the estimated value $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}$
- We define:

$$
e_{i}=y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}
$$

- Residual e_{i} (observed) is not the same as the disturbance ε_{i} (unobserved)!!!

RESIDUAL

- Residual is the vertical difference between the estimated regression line and the observation points
- OLS minimizes the sum of squares of all residuals
- It is the difference between the true value y_{i} and the estimated value $\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}$
- We define:

$$
e_{i}=y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}
$$

- Residual e_{i} (observed) is not the same as the disturbance ε_{i} (unobserved)!!!
- Residual is an estimate of the disturbance: $e_{i}=\widehat{\varepsilon}_{i}$

RESIDUAL VS. DISTURBANCE

Getting back to the example

- We have the economic model

$$
q=\frac{a}{2}-\frac{b}{2} \cdot c
$$

Getting back to the example

- We have the economic model

$$
q=\frac{a}{2}-\frac{b}{2} \cdot c
$$

- We estimate

$$
q_{i}=\beta_{0}+\beta_{1} c_{i}+\varepsilon_{i}
$$

(having in mind that $\beta_{0}=\frac{a}{2}$ and $\beta_{1}=-\frac{b}{2}$)

Getting back to the example

- We have the economic model

$$
q=\frac{a}{2}-\frac{b}{2} \cdot c
$$

- We estimate

$$
q_{i}=\beta_{0}+\beta_{1} c_{i}+\varepsilon_{i}
$$

(having in mind that $\beta_{0}=\frac{a}{2}$ and $\beta_{1}=-\frac{b}{2}$)

- Over data:

Firm	1	2	3	4	5	6
q	15	32	52	14	37	27
c	294	247	153	350	173	218

Getting back to the example

- When we plug in the formula:

Getting back to the example

- When we plug in the formula:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)\left(q_{i}-\bar{q}\right)}{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)^{2}}=-1.77
$$

Getting back to the example

- When we plug in the formula:

$$
\begin{aligned}
& \widehat{\beta}_{1}=\frac{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)\left(q_{i}-\bar{q}\right)}{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)^{2}}=-1.77 \\
& \widehat{\beta}_{0}=\bar{q}-\widehat{\beta}_{1} \bar{c}=71.74
\end{aligned}
$$

Getting back to the example

- When we plug in the formula:

$$
\begin{aligned}
& \widehat{\beta}_{1}=\frac{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)\left(q_{i}-\bar{q}\right)}{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)^{2}}=-1.77 \\
& \widehat{\beta}_{0}=\bar{q}-\widehat{\beta}_{1} \bar{c}=71.74
\end{aligned}
$$

- The estimated equation is

$$
\widehat{q}=71.74-1.77 c
$$

Getting back to the example

- When we plug in the formula:

$$
\begin{aligned}
& \widehat{\beta}_{1}=\frac{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)\left(q_{i}-\bar{q}\right)}{\sum_{i=1}^{6}\left(c_{i}-\bar{c}\right)^{2}}=-1.77 \\
& \widehat{\beta}_{0}=\bar{q}-\widehat{\beta}_{1} \bar{c}=71.74
\end{aligned}
$$

- The estimated equation is

$$
\widehat{q}=71.74-1.77 c
$$

and so

$$
\widehat{a}=2 \widehat{\beta}_{0}=143.48 \quad \text { and } \quad \widehat{b}=-2 \widehat{\beta}_{1}=3.54
$$

Meaning of regression coefficient

Meaning of regression coefficient

- Consider the model

$$
q=\beta_{0}+\beta_{1} c
$$

estimated as

$$
\widehat{q}=71.74-1.77 c
$$

q ... demand for firm's output
c ... firm's average cost per unit of output

Meaning of regression coefficient

- Consider the model

$$
q=\beta_{0}+\beta_{1} c
$$

estimated as

$$
\widehat{q}=71.74-1.77 c
$$

q ... demand for firm's c... firm's average cost per output unit of output

- Meaning of β_{1} is the impact of a one unit increase in c on the dependent variable q

Meaning of regression coefficient

- Consider the model

$$
q=\beta_{0}+\beta_{1} c
$$

estimated as

$$
\widehat{q}=71.74-1.77 c
$$

q ... demand for firm's output
c ... firm's average cost per unit of output

- Meaning of β_{1} is the impact of a one unit increase in c on the dependent variable q
- When average costs increase by 1 unit, quantity demanded decreases by 1.77 units

Behind the error term

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error
3. possibly incorrect functional form

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error
3. possibly incorrect functional form
4. stochastic character of unpredictable human behavior

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error
3. possibly incorrect functional form
4. stochastic character of unpredictable human behavior

- Remember that all of these factors are included in the error term and may alter its properties

BEHIND THE ERROR TERM

- The stochastic error term must be present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error
3. possibly incorrect functional form
4. stochastic character of unpredictable human behavior

- Remember that all of these factors are included in the error term and may alter its properties
- The properties of the error term determine the properties of the estimates

SUMMARY

SUMMARY

- We have learned that an econometric analysis consists of

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model
2. estimation

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model
2. estimation
3. interpretation

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model
2. estimation
3. interpretation

- We have explained the principle of OLS: minimizing the sum of squared differences between the observations and the regression line

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model
2. estimation
3. interpretation

- We have explained the principle of OLS: minimizing the sum of squared differences between the observations and the regression line
- We have derived the formulas of the estimates:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)\left(y_{i}-\bar{y}_{n}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}}
$$

SUMMARY

- We have learned that an econometric analysis consists of

1. definition of the model
2. estimation
3. interpretation

- We have explained the principle of OLS: minimizing the sum of squared differences between the observations and the regression line
- We have derived the formulas of the estimates:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)\left(y_{i}-\bar{y}_{n}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}} \quad \widehat{\beta}_{0}=\bar{y}_{n}-\widehat{\beta}_{1} \bar{x}_{n}
$$

What's next

What's next

- In the next lectures, we will

What's next

- In the next lectures, we will
- derive estimation formulas for multivariate models

What's NEXT

- In the next lectures, we will
- derive estimation formulas for multivariate models
- specify properties of the OLS estimator

WHAT'S NEXT

- In the next lectures, we will
- derive estimation formulas for multivariate models
- specify properties of the OLS estimator
- start using Gretl for data description and estimation

