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REVISION: THE PREVIOUS LECTURE

I (Desired) properties of an estimator:

I An estimator is unbiased if the mean of its distribution is
equal to the value of the parameter it is estimating

I An estimator is consistent if it converges to the value of the
true parameter as the sample size increases

I An estimator is efficient if the variance of its sampling
distribution is the smallest possible

2 / 38



REVISION: THE PREVIOUS LECTURE

I (Desired) properties of an estimator:

I An estimator is unbiased if the mean of its distribution is
equal to the value of the parameter it is estimating

I An estimator is consistent if it converges to the value of the
true parameter as the sample size increases

I An estimator is efficient if the variance of its sampling
distribution is the smallest possible

2 / 38



REVISION: THE PREVIOUS LECTURE

I (Desired) properties of an estimator:

I An estimator is unbiased if the mean of its distribution is
equal to the value of the parameter it is estimating

I An estimator is consistent if it converges to the value of the
true parameter as the sample size increases

I An estimator is efficient if the variance of its sampling
distribution is the smallest possible

2 / 38



REVISION: THE PREVIOUS LECTURE

I (Desired) properties of an estimator:

I An estimator is unbiased if the mean of its distribution is
equal to the value of the parameter it is estimating

I An estimator is consistent if it converges to the value of the
true parameter as the sample size increases

I An estimator is efficient if the variance of its sampling
distribution is the smallest possible

2 / 38



REVISION: THE PREVIOUS LECTURE

I We explained the principle of OLS estimator: minimizing
the sum of squared differences between the observation
and the regression line yi = β0 + β1xi + εi

I We found the formulae for the estimates:

β̂1 =

n∑
i=1

(xi − xn)
(
yi − yn

)
n∑

i=1
(xi − xn)

2
β̂0 = yn − β̂1xn
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REVISION: THE PREVIOUS LECTURE

I We explained that the stochastic error term must be
present in a regression equation because of:

1. omission of many minor influences (unavailable data)
2. measurement error
3. possibly incorrect functional form
4. stochastic character of unpredictable human behavior

I Remember that all of these factors are included in the error
term and may alter its properties

I The properties of the error term determine the properties
of the estimates
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WARM-UP EXERCISE

I You receive a unique dataset that includes wages of all
citizens of Brno as well as their experience (number of
years spent working). Obviously, you are very curious
about what is the effect of experience on wages.

I You run an OLS regression of monthly wage in CZK on the
number of years of experience and obtain the following
results:

ŵagei = 14450 + 1135 · experi

1. Interpret the meaning of the coefficient of experi.
2. Use the estimates to determine the average wage of a

person with 1, 5, 20, and 40 years of experience.
3. Do the predicted wages seem realistic? Explain your

answer.
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ON TODAY’S LECTURE

I We will derive estimation formulas for multivariate OLS

I We will list the assumptions about the error term and the
explanatory variables that are required in classical
regression models

I We will show that under these assumptions, OLS is the
best estimator available for regression models

I The rest of the course will mostly deal in one way or
another with the question what to do when one of the
classical assumptions is not met

I Readings:
I Studenmund - chapter 4
I Wooldridge - chapters 5, 8, 9, 12
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ORDINARY LEAST SQUARES WITH SEVERAL

EXPLANATORY VARIABLES

I Usually, there are more than one explanatory variables in
regression models

I Multivariate model with k explanatory variables:

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi

I For observations 1, 2, . . . ,n, we have:

y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k + ε1

y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k + ε2

...
...

yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk + εn
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MATRIX NOTATION

I We can write in matrix form:
y1
y2
...

yn

 =


1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
...

...
...

...
1 xn1 xn2 · · · xnk




β0
β1
β2
...
βk

+


ε1
ε2
...
εn



or in a simplified notation:

y = Xβ + ε
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OLS - DERIVATION UNDER MATRIX NOTATION
I We have to find

β̂ = argmin
β

(y− Xβ)′ (y− Xβ)

= argmin
β

y′y− y′Xβ − β′X′y + β′X′Xβ

I FOC:
∂

∂β
: −

(
y′X
)′ − X′y + X′Xβ̂ + (X′X)′β̂ = 0

X′Xβ̂ = X′y

I This gives us
β̂ =

(
X′X

)−1 X′y
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MEANING OF REGRESSION COEFFICIENT

I Consider the multivariate model

Q = β0 + β1P + β2Ps + β3Y + ε

estimated as Q̂ = 31.50− 0.73P + 0.11Ps + 0.23Y

Q . . . quantity demanded
P . . . commodity’s price

Ps . . . price of substitute
Y . . . disposable income

I Meaning of β1 is the impact of a one unit increase in P on
the dependent variable Q, holding constant the other
included independent variables Ps and Y

I When price increases by 1 unit (and price of substitute
good and income remain the same), quantity demanded
decreases by 0.73 units
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EXERCISE

I Remember the unique dataset that includes wages of all
citizens of Brno as well as their experience (number of
years spent working).

I Because you realize that wages may not be linearly
dependent on experience, you add an additional variable
exper2

i into your model and you obtain the following
results:

ŵagei = 14450 + 1160 · experi − 25 · exper2
i

1. What is the overall impact of increasing the number of
years of experience by 1 year?

2. Use the estimates to determine the average wage of a
person with 1, 5, 20, and 40 years of experience.

3. Do the predicted wages seem realistic now? Explain your
answer.
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THE CLASSICAL ASSUMPTIONS

1. The regression model is linear in the coefficients, is
correctly specified, and has an additive error term

2. The error term has a zero population mean

3. Observations of the error term are uncorrelated with each
other

4. The error term has a constant variance

5. All explanatory variables are uncorrelated with the error
term

6. No explanatory variable is a perfect linear function of any
other explanatory variable(s)

7. The error term is normally distributed

12 / 38
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GRAPHICAL REPRESENTATION

X

Y

13 / 38



1. LINEARITY IN COEFFICIENTS

The regression model is linear in the coefficients, is correctly specified,
and has an additive error term.

I Linearity in variables is not required

I Example: production function Y = AKβ1Lβ2 for which
we suppose A = expβ0+ε can be transformed so that

lnY = β0 + β1 lnK + β2 lnL + ε

and the linearity in coefficients is restored

I Note that it is the linearity in coefficients that allows us to
rewrite the general regression model in matrix form
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EXERCISE

Which of the following models is/are linear?

I y = β0 + β1x + ε

I ln y = β0 + β1 ln x + β2
√

z + ε

I y = xβ1 + ε

15 / 38
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√

z + ε is a linear model

I y = xβ1 + ε is NOT a linear model

I Regression models are linear in parameters, but they do
not need to be linear in variables
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2. ZERO MEAN OF THE ERROR TERM

The error term has a zero population mean.

I Notation: E[εi] = 0 or E[ε] = 0

I Idea: observations are distributed around the regression
line, the average of deviations is zero

I In fact, the mean of εi is forced to be zero by the existence
of the intercept (β0) in the equation

I Hence, this assumption is satisfied as long as there is an
intercept included in the equation
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3. ERRORS UNCORRELATED WITH EACH OTHER

Observations of the error term are uncorrelated with each other.

I If there is a systematic correlation between one observation
of the error term and another (serial correlation), it is more
difficult for OLS to get precise estimates of the coefficients
of the explanatory variables

I Technically: the OLS estimate will be consistent, but not
efficient

I Often happens in time series data, where a random shock
in one time period affects the random shock in another
time period

I We will solve this problem using Generalized Least
Squares estimator
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4. CONSTANT VARIANCE OF THE ERROR TERM

The error term has a constant variance.

I This property is called homoskedasticity; if it is not satisfied,
we talk about heteroskedasticity

I It states that each observation of the error is drawn from a
distribution with the same variance and thus varies in the
same manner around the regression line

I If the error term is heteroskedastic, it is more difficult for
OLS to get precise estimates of the coefficients of the
explanatory variables

I Technically: the OLS estimate will be consistent, but not
efficient
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4. CONSTANT VARIANCE OF THE ERROR TERM

I Heteroskedasticity is often present in cross-sectional data

I Example: Analysis of household consumption patterns
I Variance of the consumption of certain goods might be

greater for higher-income households
I These have more discretionary income than do

lower-income households

I We will solve this problem using Hull-White robust
standard errors
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3. NO CORRELATION + 4. HOMOSKEDASTICITY

I Notation:
I no correlation: corr(εiεj)⇒ E[εiεj] = 0 for each i, j
I homoskedasticity: E[ε2

i ] = σ2 for each i

I Matrix notation:

Var[ε] =


σ2 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ2 · · · 0

...
. . .

...
0 0 0 · · · σ2

 = σ2I
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5. VARIABLES UNCORRELATED WITH THE ERROR

TERM
All explanatory variables are uncorrelated with the error term.

I Notation: E[xiεi] = 0 or E[X′ε] = 0

I If an explanatory variable and the error term were
correlated with each other, the OLS estimates would be
likely to attribute to the x some of the variation in y that
actually came from the error term

I Example: Analysis of household consumption patterns
I Households with lower incomes may indicate higher

consumption (because of shame)
I Negative correlation between X and error term

(measurement error higher for lower incomes)
I Leads to biased and inconsistent estimates

I We will solve this problem using IV approach
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6. LINEARLY INDEPENDENT VARIABLES

No explanatory variable is a perfect linear function of any other
explanatory variable(s).

I If this condition does not hold, we talk about
(multi)collinearity

I Multicollinearity can be perfect of imperfect
I Perfect multicollinearity: one explanatory variable is an

exact linear function of one or more other explanatory
variables

I In this case, the OLS model is incapable to distinguish one
variable from the other

I Technical consequence: (X′X)−1 does not exist
I OLS estimation cannot be conducted
I Example: we include dummy variables for men and

women together with the intercept
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6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:

I There is a linear relationship between the variables, but
there is some error in that relationship

I Example: we include two variables that proxy for
individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship

I Example: we include two variables that proxy for
individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship
I Example: we include two variables that proxy for

individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship
I Example: we include two variables that proxy for

individual health status

I Consequences of multicollinearity:

I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship
I Example: we include two variables that proxy for

individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased

I But the standard errors of estimates are inflated - making
the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship
I Example: we include two variables that proxy for

individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



6. LINEARLY INDEPENDENT VARIABLES

I Imperfect multicollinearity:
I There is a linear relationship between the variables, but

there is some error in that relationship
I Example: we include two variables that proxy for

individual health status

I Consequences of multicollinearity:
I Estimated coefficients remain unbiased
I But the standard errors of estimates are inflated - making

the variable insignificant even though they might be
significant

I Solution: drop one of the variables

28 / 38



EXERCISE

I Which of the following pairs of independent variables
would violate the Assumption of no multicollinearity?
(That is, which pairs of variables are perfect linear
functions of each other?)

I right shoe size and left shoe size (of students in the class)
I consumption and disposable income (in the United States

over the last 30 years)
I Xi and 2Xi

I Xi and (Xi)
2
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7. NORMALITY OF THE ERROR TERM

The error term is normally distributed.

I This assumption is optional, but usually it is invoked

I Normality of the error term is inherited by the estimate β̂

I Knowing the distribution of the estimate allows us to find
its confidence intervals and to test hypotheses about
coefficients
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PROPERTIES OF THE OLS ESTIMATE

I OLS estimate is defined by the formula

β̂ =
(
X′X

)−1 X′y ,

where y = Xβ + ε

I Hence, it is dependent on the random variable ε and thus
β̂ is a random variable itself

I The properties of β̂ are based on the properties of ε
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GAUSS-MARKOV THEOREM

Given Classical Assumptions 1. - 6., the OLS estimator of β is the
minimum variance estimator from among the set of all linear
unbiased estimators of β.

I Assumption 7., normality, is not needed for this theorem

I The theorem is also known as a stating: “OLS is BLUE”,
where BLUE stands for “Best Linear Unbiased Estimator”

I It means that:
I OLS is linear: β̂ = (X′X)−1 X′y = Ly ,

I OLS is unbiased (see next slide)
I OLS has the minimum variance of all unbiased estimators

(it is efficient)
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EXPECTED VALUE OF THE OLS ESTIMATE

I We show:

β̂ =
(
X′X

)−1 X′y =
(
X′X

)−1 X′ (Xβ + ε) =

=
(
X′X

)−1 X′X︸ ︷︷ ︸
I

β +
(
X′X

)−1 X′ε = β +
(
X′X

)−1 X′ε

E
[
β̂
]

= E
[
β+

(
X′X

)−1 X′ε
]
= E [β] + E

[(
X′X

)−1 X′ε
]
=

= β +
(
X′X

)−1 X′E [ε]︸︷︷︸
0

= β

I Since E
[
β̂
]
= β, OLS is unbiased
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VARIANCE OF THE OLS ESTIMATE

I We show:

β̂ =
(
X′X

)−1 X′y = β +
(
X′X

)−1 X′ε

Var
[
β̂
]

= Var
[
β +

(
X′X

)−1 X′ε
]
=

= Var(β) + Var
[
(X′X

)−1 X′ε] =

=
(
X′X

)−1 X′ · Var [ε] ·
[
(X′X

)−1 X′]′ =

=
(
X′X

)−1 X′ · Var [ε]︸ ︷︷ ︸
σ2I

· X
(
X′X

)−1
=

= σ2 (X′X)−1 X′X
(
X′X

)−1
= σ2 (X′X)−1
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NORMALITY OF THE OLS ESTIMATE

I When we assume that εi ∼ N(0, σ2), we can see that

β̂ =
(
X′X

)−1 X′y = β +
(
X′X

)−1 X′ε

is also normally distributed (it is a linear combination of
normally distributed variables)

I Hence, we say that β̂ is jointly normal:

β̂ ∼ N
(
β, σ2 (X′X)−1

)
I This will help us to test hypotheses about regression

coefficients (see next lecture)

I Note that the normality of errors is not required for large
samples, be-cause β̂ is asymptotically normal anyway
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CONSISTENCY OF THE OLS ESTIMATE

I When no explanatory variables are correlated with the
error term (Assumption 5.), OLS estimate is consistent:

E
[
X′ε
]
= 0 ⇒ β̂

n→∞−→ β

I In other words: as the number of observations increases,

the estimate converges to the true value of the coefficient

I Consistency is the most important property
of any estimate!!!
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CONSISTENCY OF THE OLS ESTIMATE

I As long as the OLS estimate of β̂ is consistent, the
residuals are consistent estimates of the error term

I If we have consistent estimates of the error term, we can
test if it satisfies the classical assumptions

I Moreover, possible deviations from the classical model can
be corrected

I As a consequence, the assumption of zero correlation
between explanatory variables and the error term

E
[
X′ε
]
= 0

is the most important one to satisfy in regression models
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SUMMARY
I We expressed the multivariate OLS model in matrix

notation y = Xβ + ε and we found the formula of the
estimate: β̂ =

(
X′X

)−1 X′y

I We listed the classical assumptions of regression models:
I model linear in parameters, explanatory variables linearly

independent
I (normally distributed) error term with zero mean and

constant variance, no serial autocorrelation
I no correlation between error term and explanatory

variables
I We showed that if these assumptions hold, OLS estimate is

I consistent (if no correlation between X and ε)
I unbiased (if no correlation between X and ε)
I efficient (if homoskedasticity and no autocorrelation of ε)
I normally distributed (if ε normally distributed)
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