LECTURE 5

Introduction to Econometrics

Hypothesis testing

October 20, 2017

► We are going to discuss how hypotheses about coefficients can be tested in regression models

► We are going to discuss how hypotheses about coefficients can be tested in regression models

► We will explain what significance of coefficients means

► We are going to discuss how hypotheses about coefficients can be tested in regression models

- ► We will explain what significance of coefficients means
- ► We will learn how to read regression output

► We are going to discuss how hypotheses about coefficients can be tested in regression models

We will explain what significance of coefficients means

► We will learn how to read regression output

- ► Readings for this week:
 - ► Studenmund, Chapter 5.1 5.4
 - ► Wooldridge, Chapter 4

► What conclusions can we draw from our regression?

- ► What conclusions can we draw from our regression?
- ► What can we learn about the real world from a sample?

- ► What conclusions can we draw from our regression?
- ▶ What can we learn about the real world from a sample?
- ► Is it likely that our results could have been obtained by chance?

- ► What conclusions can we draw from our regression?
- ▶ What can we learn about the real world from a sample?
- ► Is it likely that our results could have been obtained by chance?
- ► If our theory is correct, what are the odds that this particular outcome would have been observed?

► We cannot prove that a given hypothesis is "correct" using hypothesis testing

- ► We cannot prove that a given hypothesis is "correct" using hypothesis testing
- ► All that can be done is to state that a particular sample conforms to a particular hypothesis

- ► We cannot prove that a given hypothesis is "correct" using hypothesis testing
- ► All that can be done is to state that a particular sample conforms to a particular hypothesis
- We can often reject a given hypothesis with a certain degree of confidence

- ► We cannot prove that a given hypothesis is "correct" using hypothesis testing
- ► All that can be done is to state that a particular sample conforms to a particular hypothesis
- We can often reject a given hypothesis with a certain degree of confidence
- In such a case, we conclude that it is very unlikely the sample result would have been observed if the hypothesized theory were correct

► First step in hypothesis testing: state explicitly the hypothesis to be tested

- ► First step in hypothesis testing: state explicitly the hypothesis to be tested
- ► *Null hypothesis*: statement of the range of values of the regression coefficient that would be expected to occur if the researcher's theory were *not* correct

- ► First step in hypothesis testing: state explicitly the hypothesis to be tested
- ► *Null hypothesis*: statement of the range of values of the regression coefficient that would be expected to occur if the researcher's theory were *not* correct
- ► *Alternative hypothesis*: specification of the range of values of the coefficient that would be expected to occur if the researcher's theory were correct

- ► First step in hypothesis testing: state explicitly the hypothesis to be tested
- ► *Null hypothesis*: statement of the range of values of the regression coefficient that would be expected to occur if the researcher's theory were *not* correct
- ► *Alternative hypothesis*: specification of the range of values of the coefficient that would be expected to occur if the researcher's theory were correct
- ► In other words: we define the null hypothesis as the result we do not expect

- ► Notation:
 - ► H_0 ... null hypothesis
 - H_A ... alternative hypothesis

- ► Notation:
 - ▶ H_0 ... null hypothesis
 - H_A ... alternative hypothesis
- ► Examples:

- ► Notation:
 - ► H_0 ... null hypothesis
 - ► H_A ... alternative hypothesis
- ► Examples:
 - ▶ One-sided test

$$H_0: \beta \leq 0$$

$$H_A: \beta > 0$$

- ► Notation:
 - ► H_0 ... null hypothesis
 - ▶ H_A ... alternative hypothesis
- ► Examples:
 - ▶ One-sided test

$$H_0: \beta \leq 0$$

$$H_A: \beta > 0$$

► Two-sided test

$$H_0: \beta = 0$$

$$H_A: \beta \neq 0$$

Type I and type II errors

► It would be unrealistic to think that conclusions drawn from regression analysis will always be right

- ► It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make

- ► It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make
 - ► Type I : We reject a true null hypothesis

- ► It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make
 - ► Type I : We reject a true null hypothesis
 - ► Type II : We do not reject a false null hypothesis

- It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make
 - ► Type I : We reject a true null hypothesis
 - ► Type II : We do not reject a false null hypothesis
- ► Example:
 - ► $H_0: \beta = 0$
 - $\vdash H_A: \beta \neq 0$

- It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make
 - ► Type I : We reject a true null hypothesis
 - ► Type II : We do not reject a false null hypothesis
- ► Example:
 - ► $H_0: \beta = 0$
 - $H_A: \beta \neq 0$
 - ▶ Type I error: it holds that $\beta = 0$, we conclude that $\beta \neq 0$

- It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- ► There are two types of errors we can make
 - ► Type I : We reject a true null hypothesis
 - ► Type II : We do not reject a false null hypothesis
- ► Example:
 - ► $H_0: \beta = 0$
 - $\vdash H_A: \beta \neq 0$
 - ▶ Type I error: it holds that $\beta = 0$, we conclude that $\beta \neq 0$
 - ▶ Type II error: it holds that $\beta \neq 0$, we conclude that $\beta = 0$

Type I and type II errors

- ► Example:
 - ► H_0 : The defendant is innocent

- ► Example:
 - $ightharpoonup H_0$: The defendant is innocent
 - ► H_A : The defendant is guilty

- ► Example:
 - $ightharpoonup H_0$: The defendant is innocent
 - $ightharpoonup H_A$: The defendant is guilty
 - ► Type I error = Sending an innocent person to jail

- ► Example:
 - $ightharpoonup H_0$: The defendant is innocent
 - $ightharpoonup H_A$: The defendant is guilty
 - ► Type I error = Sending an innocent person to jail
 - ► Type II error = Freeing a guilty person

- ► Example:
 - $ightharpoonup H_0$: The defendant is innocent
 - $ightharpoonup H_A$: The defendant is guilty
 - ► Type I error = Sending an innocent person to jail
 - ► Type II error = Freeing a guilty person
- Obviously, lowering the probability of Type I error means increasing the probability of Type II error

- ► Example:
 - $ightharpoonup H_0$: The defendant is innocent
 - $ightharpoonup H_A$: The defendant is guilty
 - ► Type I error = Sending an innocent person to jail
 - ► Type II error = Freeing a guilty person
- Obviously, lowering the probability of Type I error means increasing the probability of Type II error
- ► In hypothesis testing, we focus on Type I error and we ensure that its probability is not unreasonably large

DECISION RULE

DECISION RULE

- 1. Calculate sample statistic
- 2. Compare sample statistic with the *critical value* (from the statistical tables)
- ► The critical value divides the range of possible values of the statistic into two regions: *acceptance region* and *rejection region*
 - ► If the sample statistic falls into the rejection region, we reject *H*₀
 - ► If the sample statistic falls into the acceptance region, we do not reject *H*₀
- ▶ The idea is that if the value of the coefficient does not support H_0 , the sample statistic should fall into the rejection region

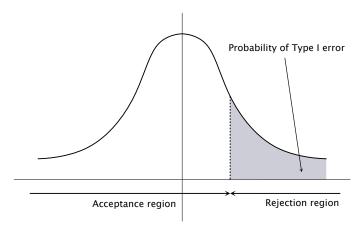
ONE-SIDED REJECTION REGION

ONE-SIDED REJECTION REGION

 $\blacktriangleright \ H_0: \ \beta \leq 0 \quad \text{vs} \quad H_A: \ \beta > 0$

ONE-SIDED REJECTION REGION

- ▶ $H_0: \beta \leq 0$ vs $H_A: \beta > 0$
- ▶ Distribution of $\widehat{\beta}$:



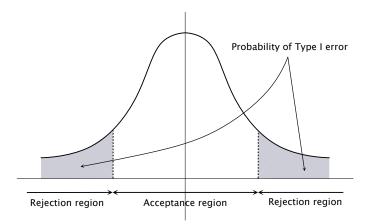
TWO-SIDED REJECTION REGION

TWO-SIDED REJECTION REGION

$$H_0: \ \beta = 0 \quad \text{vs} \quad H_A: \ \beta \neq 0$$

TWO-SIDED REJECTION REGION

- ► H_0 : $\beta = 0$ vs H_A : $\beta \neq 0$
- ▶ Distribution of $\widehat{\beta}$:



► We use *t*-test to test hypothesis about individual regression slope coefficients

- ► We use *t*-test to test hypothesis about individual regression slope coefficients
- ► Test of more than one coefficient at a time (joint hypotheses) are typically done with the *F*-test (see next lecture)

- ► We use *t*-test to test hypothesis about individual regression slope coefficients
- ► Test of more than one coefficient at a time (joint hypotheses) are typically done with the *F*-test (see next lecture)
- ► The *t*-test is appropriate to use when the stochastic error term is normally distributed and when the variance of that distribution is unknown

- ► We use *t*-test to test hypothesis about individual regression slope coefficients
- ► Test of more than one coefficient at a time (joint hypotheses) are typically done with the *F*-test (see next lecture)
- ► The *t*-test is appropriate to use when the stochastic error term is normally distributed and when the variance of that distribution is unknown
 - ► These are the usual assumptions in regression analyses

- ► We use *t*-test to test hypothesis about individual regression slope coefficients
- ► Test of more than one coefficient at a time (joint hypotheses) are typically done with the *F*-test (see next lecture)
- ► The *t*-test is appropriate to use when the stochastic error term is normally distributed and when the variance of that distribution is unknown
 - ► These are the usual assumptions in regression analyses
- ► The *t*-test accounts for differences in the units of measurement of the variables

► Consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

► Consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

► Suppose we want to test (*b* is some constant)

$$H_0: \beta_1 = b$$
 vs $H_A: \beta_1 \neq b$

► Consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

► Suppose we want to test (*b* is some constant)

$$H_0: \beta_1 = b$$
 vs $H_A: \beta_1 \neq b$

▶ We know that

$$\widehat{\beta}_1 \sim N\left(\beta_1, Var(\widehat{\beta}_1)\right) \quad \Rightarrow \quad \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{Var(\widehat{\beta}_1)}} \sim N(0, 1)$$

▶ Problem: $Var(\widehat{\beta}_1)$ depends on the variance of error term σ^2 , which is unobservable and therefore unknown

- ▶ Problem: $Var(\hat{\beta}_1)$ depends on the variance of error term σ^2 , which is unobservable and therefore unknown
- ▶ It has to be estimated as

$$\hat{\sigma}^2 := s^2 = \frac{\mathbf{e}'\mathbf{e}}{n-k} \ ,$$

k is the number of regression coefficients (here k = 3) **e** is the vector of residuals

- ▶ Problem: $Var(\widehat{\beta}_1)$ depends on the variance of error term σ^2 , which is unobservable and therefore unknown
- ▶ It has to be estimated as

$$\hat{\sigma}^2 := s^2 = \frac{\mathbf{e}'\mathbf{e}}{n-k} \ ,$$

k is the number of regression coefficients (here k = 3) **e** is the vector of residuals

▶ We denote *standard error* of $\widehat{\beta}_1$ (sample counterpart of standard deviation $\sigma_{\widehat{\beta}_1}$) as *s.e.* $(\widehat{\beta}_1)$

▶ We define the *t*-statistic

$$t := \frac{\widehat{\beta}_1 - \beta_1}{s.e.(\widehat{\beta}_1)} \sim t_{n-k}$$

where $\widehat{\beta}_1$ is the estimated coefficient and β_1 is the value of the coefficient that is stated in our hypothesis

▶ We define the *t*-statistic

$$t := \frac{\widehat{\beta}_1 - \beta_1}{s.e.(\widehat{\beta}_1)} \sim t_{n-k}$$

where $\widehat{\beta}_1$ is the estimated coefficient and β_1 is the value of the coefficient that is stated in our hypothesis

► This statistic depends only on the estimate $\widehat{\beta}_1$, our hypothesis about β_1 , and it has a known distribution

► Our hypothesis is

$$H_0: \beta_1 = b$$
 vs $H_A: \beta_1 \neq b$

► Our hypothesis is

$$H_0: \beta_1 = b \quad \text{vs} \quad H_A: \beta_1 \neq b$$

► Hence, our *t*-statistic is

$$t = \frac{\widehat{\beta}_1 - b}{s.e.\left(\widehat{\beta}_1\right)}$$

► Our hypothesis is

$$H_0: \ \beta_1 = b \quad \text{vs} \quad H_A: \ \beta_1 \neq b$$

► Hence, our *t*-statistic is

$$t = \frac{\widehat{\beta}_1 - b}{s.e.\left(\widehat{\beta}_1\right)}$$

- where $\widehat{\beta}_1$ is the estimated regression coefficient of β_1
- ▶ *b* is the constant from our null hypothesis
- s.e. $(\widehat{\beta}_1)$ is the estimated standard error of $\widehat{\beta}_1$

How to determine the *critical value* for this test statistic?

► The critical value is the value that distinguishes the acceptance region from the rejection region

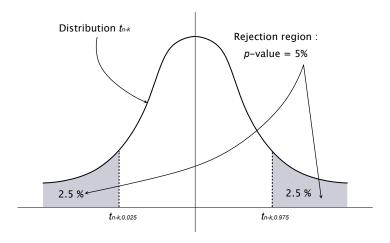
- ► The critical value is the value that distinguishes the acceptance region from the rejection region
- 1. We set the probability of Type I error

- ► The critical value is the value that distinguishes the acceptance region from the rejection region
- 1. We set the probability of Type I error
 - ► Let's set the Type I. error to 5%
 - ► We say the *p*-value of the test is 5% or that we have a test at 95% confidence level

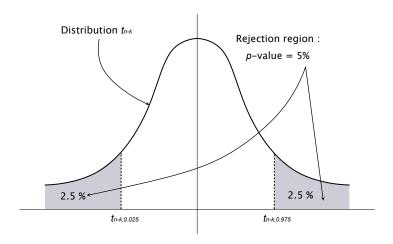
- ► The critical value is the value that distinguishes the acceptance region from the rejection region
- 1. We set the probability of Type I error
 - ► Let's set the Type I. error to 5%
 - ► We say the *p*-value of the test is 5% or that we have a test at 95% confidence level
- 2. We find the critical values in the statistical tables: $t_{n-k,0.975}$ and $t_{n-k,0.025}$

- ► The critical value is the value that distinguishes the acceptance region from the rejection region
- 1. We set the probability of Type I error
 - ► Let's set the Type I. error to 5%
 - ► We say the *p*-value of the test is 5% or that we have a test at 95% confidence level
- 2. We find the critical values in the statistical tables: $t_{n-k,0.975}$ and $t_{n-k,0.025}$
 - ► The critical value depends on the chosen level of Type I error and n − k
 - ► Note that $t_{n-k,0.975} = -t_{n-k,0.025}$

TWO-SIDED *t*-TEST



TWO-SIDED t-TEST



► We reject H_0 if $|t| > t_{n-k,0.975}$

► Suppose our hypothesis is

$$H_0: \beta_1 \leq b \quad \text{vs} \quad H_A: \beta_1 > b$$

► Suppose our hypothesis is

$$H_0: \beta_1 \leq b \quad \text{vs} \quad H_A: \beta_1 > b$$

► Our *t*-statistic still is

$$t = \frac{\widehat{\beta}_1 - b}{s.e.\left(\widehat{\beta}_1\right)}$$

► Suppose our hypothesis is

$$H_0: \beta_1 \leq b$$
 vs $H_A: \beta_1 > b$

▶ Our *t*-statistic still is

$$t = \frac{\widehat{\beta}_1 - b}{s.e.\left(\widehat{\beta}_1\right)}$$

► We set the probability of Type I error to 5%

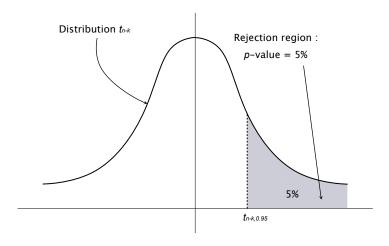
► Suppose our hypothesis is

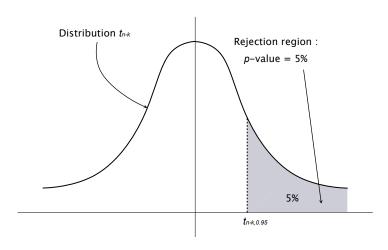
$$H_0: \beta_1 \leq b$$
 vs $H_A: \beta_1 > b$

► Our *t*-statistic still is

$$t = \frac{\widehat{\beta}_1 - b}{s.e.\left(\widehat{\beta}_1\right)}$$

- ► We set the probability of Type I error to 5%
- ▶ We compare our statistic to the critical value $t_{n-k,0.95}$





• We reject H_0 if $t > t_{n-k,0.95}$

► The most common test performed in regression is

$$H_0: \beta = 0$$
 vs $H_A: \beta \neq 0$

► The most common test performed in regression is

$$H_0: \beta = 0$$
 vs $H_A: \beta \neq 0$

with the *t*-statistic

$$t = \frac{\widehat{\beta}}{s.e.\left(\widehat{\beta}\right)} \sim t_{n-k}$$

► The most common test performed in regression is

$$H_0: \beta = 0$$
 vs $H_A: \beta \neq 0$

with the *t*-statistic

$$t = \frac{\widehat{\beta}}{s.e.\left(\widehat{\beta}\right)} \sim t_{n-k}$$

▶ If we reject H_0 : $\beta = 0$, we say the coefficient β is *significant*

► The most common test performed in regression is

$$H_0: \beta = 0$$
 vs $H_A: \beta \neq 0$

with the *t*-statistic

$$t = \frac{\widehat{\beta}}{s.e.\left(\widehat{\beta}\right)} \sim t_{n-k}$$

- ▶ If we reject H_0 : $\beta = 0$, we say the coefficient β is *significant*
- ► This *t*-statistic is displayed in most regression outputs

The p-value

THE *p*-VALUE

- ► Classical approach to hypothesis testing: first choose the significance level, then test the hypothesis at the given level of significance (e.g. 5%)
 - ► However, there is no "correct" significance level.

THE *p*-VALUE

- ► Classical approach to hypothesis testing: first choose the significance level, then test the hypothesis at the given level of significance (e.g. 5%)
 - ► However, there is no "correct" significance level.

The p-value

- ► Classical approach to hypothesis testing: first choose the significance level, then test the hypothesis at the given level of significance (e.g. 5%)
 - ► However, there is no "correct" significance level.
- ▶ Or we can ask a more informative question:
 - ► What is the smallest significance level at which the null hypothesis would still be rejected?
 - ► This level of significance is known as the *p*-value.
 - ▶ Remember that the significance level describes the probability of type I. error. The smaller the *p*-value, the smaller the probability of rejecting the true null hypothesis (the bigger the confidence the null hypothesis is indeed correctly rejected).
 - ► The *p*-value for H_0 : $\beta = 0$ is displayed in most regression outputs

► Let us study the impact of years of education on wages:

► Let us study the impact of years of education on wages:

$$wage = \beta_0 + \beta_1 education + \beta_2 experience + \varepsilon$$

► Let us study the impact of years of education on wages:

$$wage = \beta_0 + \beta_1 education + \beta_2 experience + \varepsilon$$

► Output from Gretl:

► Let us study the impact of years of education on wages:

$$wage = \beta_0 + \beta_1 education + \beta_2 experience + \varepsilon$$

► Output from Gretl:

Model 3: OLS, using observations 1-526 Dependent variable: wage

coe	fficient	std. erro	or t-ratio	p-value	
const -3.	39054	0.766566	-4.423	1.18e-05	***
educ 0.	644272	0.0538061	11.97	2.28e-29	***
exper 0.	0700954	0.0109776	6.385	3.78e-10	***
1ean dependent v	ar 5.8961	L03 S.D.	dependent v	ar 3.693	086
Sum squared resi	d 5548.1	L60 S.E.	of regressi	on 3.257	044
R-squared	0.2251	L62 Adjι	ısted R-squar	ed 0.222	199
F(2, 523)	75.989	998 P-va	alue(F)	1.07e	- 29
_og-likelihood	-1365.9	969 Akai	ke criterion	2737.	937
Schwarz criterio	n 2750.7	733 Hanr	nan-Quinn	2742.	948

▶ A 95% confidence interval of β is an interval centered around $\widehat{\beta}$ such that β falls into this interval with probability 95%

▶ A 95% confidence interval of β is an interval centered around $\hat{\beta}$ such that β falls into this interval with probability 95%

$$P\left(\widehat{\beta} - c < \beta < \widehat{\beta} + c\right) =$$

$$= P\left(-\frac{c}{s.e.\left(\widehat{\beta}\right)} < \frac{\widehat{\beta} - \beta}{s.e.\left(\widehat{\beta}\right)} < \frac{c}{s.e.\left(\widehat{\beta}\right)}\right) = 0.95$$

▶ A 95% confidence interval of β is an interval centered around $\widehat{\beta}$ such that β falls into this interval with probability 95%

$$P\left(\widehat{\beta} - c < \beta < \widehat{\beta} + c\right) =$$

$$= P\left(-\frac{c}{s.e.\left(\widehat{\beta}\right)} < \frac{\widehat{\beta} - \beta}{s.e.\left(\widehat{\beta}\right)} < \frac{c}{s.e.\left(\widehat{\beta}\right)}\right) = 0.95$$

► Since $\frac{\widehat{\beta}-\beta}{s.e.(\widehat{\beta})} \sim t_{n-k}$, we derive the confidence interval:

$$\widehat{\beta} \pm t_{n-k,0.975} \cdot s.e. \left(\widehat{\beta}\right)$$

► Output from Gretl (wage regression):

► Output from Gretl (wage regression):

Model 3: OLS, using observations 1-526 Dependent variable: wage

	coeffici	ent s	td. erro	r t-ratio	p-valı	ıe
const educ exper	-3.39054 0.64427 0.07009	2 0	.766566 .0538061 .0109776		1.18e 2.28e 3.78e	-29 ***
Mean depend Sum squared		5.896103 5548.160		dependent of regress		593086 257044
R-squared		0.225162	2 Adju	sted R-squa	red 0.2	222199
F(2, 523) Log-likelih	ood –	75.98998 1365.969	9 Akai	lue(F) ke criterio	n 273	97e-29 87.937
Schwarz cri	terion.	2750.73	3 Hann	an-Quinn	274	12.948

► Output from Gretl (wage regression):

Model 3: OLS, using observations 1-526 Dependent variable: wage

	coeffi	cient	std.	error	t-ratio	p-value	9
const educ exper	-3.390 0.644 0.070	272		6566 38061 09776	-4.423 11.97 6.385	1.18e-0 2.28e-2 3.78e-1	9 ***
Mean depend Sum squared R-squared F(2, 523) Log-likelih Schwarz cri	resid ood	5.896 5548. 0.225 75.98 -1365. 2750.	160 162 998 969	S.E. o Adjust P-valu Akaike	ependent varif regression ded R-square (F) criterion -Quinn	on 3.25 ed 0.22 1.07 2737	93086 57044 22199 7e-29 7.937 2.948

► Confidence interval for coefficient on education:

$$\hat{\beta} \pm t_{n-k,0.975} \cdot s.e. \left(\hat{\beta} \right) = 0.644 \pm 1.960 \cdot 0.054$$

• $\widehat{\beta} \in [0.538; 0.750]$ with 95% probability

► We discussed the principle of hypothesis testing

- ► We discussed the principle of hypothesis testing
- ▶ We derived the *t*-statistic

- ► We discussed the principle of hypothesis testing
- ▶ We derived the *t*-statistic
- ► We defined the concept of the *p*-value

- ► We discussed the principle of hypothesis testing
- ▶ We derived the *t*-statistic
- ► We defined the concept of the *p*-value
- ► We explained what significance of a coefficient means

- ► We discussed the principle of hypothesis testing
- ▶ We derived the *t*-statistic
- ► We defined the concept of the *p*-value
- ► We explained what significance of a coefficient means
- ► We observed a regression output on an example