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ON TODAY’S LECTURE

» We are going to discuss how hypotheses about coefficients
can be tested in regression models

» We will explain what significance of coefficients means

» We will learn how to read regression output

» Readings for this week:

» Studenmund, Chapter 5.1 - 5.4
» Wooldridge, Chapter 4

N
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QUESTIONS WE ASK

» What conclusions can we draw from our regression?
» What can we learn about the real world from a sample?

» Is it likely that our results could have been obtained by
chance?

» If our theory is correct, what are the odds that this
particular outcome would have been observed?
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HYPOTHESIS TESTING

» We cannot prove that a given hypothesis is “correct” using
hypothesis testing

» All that can be done is to state that a particular sample
conforms to a particular hypothesis

» We can often reject a given hypothesis with a certain
degree of confidence

» In such a case, we conclude that it is very unlikely the
sample result would have been observed if the
hypothesized theory were correct
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NULL AND ALTERNATIVE HYPOTHESES

» First step in hypothesis testing: state explicitly the
hypothesis to be tested

» Null hypothesis: statement of the range of values of the
regression coefficient that would be expected to occur if
the researcher’s theory were not correct

» Alternative hypothesis: specification of the range of values of
the coefficient that would be expected to occur if the
researcher’s theory were correct

» In other words: we define the null hypothesis as the result
we do not expect
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NULL AND ALTERNATIVE HYPOTHESES

» Notation:

» Hy ... null hypothesis

» H, ...alternative hypothesis

» Examples:

» One-sided test » Two-sided test
Ho: 8 < 0 Ho: 8 = 0
Hy: B > 0 Hya: B # 0
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TYPE I AND TYPE II ERRORS

» It would be unrealistic to think that conclusions drawn
from regression analysis will always be right

» There are two types of errors we can make

» Typel : We reject a true null hypothesis
» Type I : We do not reject a false null hypothesis

» Example:
> HO:B:O
> HAﬂ%O

» Type I error: it holds that 8 = 0, we conclude that 8 # 0
» Type Il error: it holds that 5 # 0, we conclude that 5 =0
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TYPE I AND TYPE II ERRORS

» Example:

» Hj : The defendant is innocent
» Hj, : The defendant is guilty

» Type I error = Sending an innocent person to jail

» Type Il error = Freeing a guilty person

» Obviously, lowering the probability of Type I error means
increasing the probability of Type II error

» In hypothesis testing, we focus on Type I error and we
ensure that its probability is not unreasonably large
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DECISION RULE

1. Calculate sample statistic

2. Compare sample statistic with the critical value (from the
statistical tables)

» The critical value divides the range of possible values of
the statistic into two regions: acceptance region and rejection
region

» If the sample statistic falls into the rejection region, we
reject Hy

» If the sample statistic falls into the acceptance region, we do
not reject Hy

» The idea is that if the value of the coefficient does not
support Hy, the sample statistic should fall into the
rejection region
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TWO-SIDED REJECTION REGION
» Hy: =0 wvs Hy: B#0

» Distribution of 3:

Probability of Type | error

Rejection region Acceptance region Rejection region
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THE t-TEST

» We use t-test to test hypothesis about individual regression
slope coefficients

» Test of more than one coefficient at a time (joint
hypotheses) are typically done with the F-test (see next
lecture)

» The t-test is appropriate to use when the stochastic error
term is normally distributed and when the variance of that
distribution is unknown

» These are the usual assumptions in regression analyses

» The t-test accounts for differences in the units of
measurement of the variables
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y= B0+ B1x1 + Boxo + ¢
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THE t-TEST
» Consider the model

y = Bo+ Bix1 + Paxa + ¢

» Suppose we want to test (b is some constant)

Ho: ﬁlzb \'% HAZ ﬁl#b

» We know that

51 b1

Bi~N <ﬁ17 Vﬂr(gl)) =
Var(ﬁl)

~N(0,1)
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THE t-TEST

2

7

» Problem: Var( 31) depends on the variance of error term o
which is unobservable and therefore unknown

» It has to be estimated as

k is the number of regression coefficients (here k = 3)
e is the vector of residuals

» We denote standard error of B (sample counterpart of

standard deviation 031) ass.e. (B1>
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B — B

e (3)

where Bl is the estimated coefficient and f; is the value of
the coefficient that is stated in our hypothesis

~ bk



THE t-TEST

» We define the t-statistic
B — B

e (3)

where Bl is the estimated coefficient and f; is the value of
the coefficient that is stated in our hypothesis

~ bk

» This statistic depends only on the estimate 51, our
hypothesis about 31, and it has a known distribution
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TWO-SIDED {-TEST

» Our hypothesis is

H(): ,Blzb VS HAZ Bl?’éb

» Hence, our t-statistic is
pr—b

ce. (1)

» where 31 is the estimated regression coefficient of 5;

b=

» bis the constant from our null hypothesis

> s.e. <Bl> is the estimated standard error of Bl
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TWO-SIDED {-TEST

How to determine the critical value for this test statistic?

» The critical value is the value that distinguishes the
acceptance region from the rejection region

1. We set the probability of Type I error

» Let’s set the Type L. error to 5%
» We say the p-value of the test is 5% or that we have a test at
95% confidence level
2. We find the critical values in the statistical tables: t,_ 9975
and t,,_j 025

» The critical value depends on the chosen level of Type I
error and n — k

» Note that t,_y0.975 = —tu_k,0.025
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TWO-SIDED {-TEST

Distribution tr«

Rejection region :

p-value = 5%

2.5%

tn-k,0.025 tn-k,0.975

» We reject H if [t| > t,_k 0.975

18 /1
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ONE-SIDED {-TEST

» Suppose our hypothesis is

Hoiﬂlgb \& HA:61>Z7

» Our t-statistic still is
p1—0b

ey

» We set the probability of Type I error to 5%
» We compare our statistic to the critical value t,,_x .95

t:

19/1
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Distribution tr«
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ONE-SIDED {-TEST

Distribution tr«

Rejection region :

p-value = 5%

» Wereject Hy if t > t, .95

tn-k,0.95
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SIGNIFICANCE OF THE COEFFICIENT

» The most common test performed in regression is
Hop: =0 wvs Hy: B#0

with the t-statistic

~

B
e @

» If wereject Hy : 3 = 0, we say the coefficient 3 is
significant

» This t-statistic is displayed in most regression outputs

21/
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THE p-VALUE

» Classical approach to hypothesis testing: first choose the
significance level, then test the hypothesis at the given
level of significance (e.g. 5%)

» However, there is no “correct” significance level.

» Or we can ask a more informative question:

» What is the smallest significance level at which the null
hypothesis would still be rejected?

» This level of significance is known as the p-value.

» Remember that the significance level describes the
probability of type L error. The smaller the p-value, the
smaller the probability of rejecting the true null hypothesis
(the bigger the confidence the null hypothesis is indeed
correctly rejected).

» The p-value for Hy : § = 0 is displayed in most regression
outputs
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» Let us study the impact of years of education on wages:

wage = [y + Sreducation + Prexperience + €

» Output from Gretl:

Model 3: OLS, using observations 1-526

Dependent variable: wage

std. error

t-ratio

p-value

coefficient
const -3.39054
educ 0.644272
exper 0.0700954

Mean dependent var
Sum squared resid
R-squared

F(2, 523)
Log-likelihood
Schwarz criterion

0.766566
0.0538061 11.97
0.0109776 6.385

-4.423

S.D. dependent var
S.E. of regression
Adjusted R-squared
P-value(F)

Akaike criterion
Hannan-Quinn

1.18e-05 ***
2.28e-29 **x
3.78e-10 ***

3.693086
3.257044
0.222199
1.07e-29
2737.937
2742.948
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CONFIDENCE INTERVAL

» A 95% confidence interval of 3 is an interval centered
around § such that $ falls into this interval with
probability 95%
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CONFIDENCE INTERVAL

» A 95% confidence interval of 3 is an interval centered
around § such that $ falls into this interval with
probability 95%

P(E—C<B<B—|—c):

- (S.e.c@ ) B—(/f) ) (5)) -

» Since 222 ~ t,_x, we derive the confidence interval:

s.e.(ﬁ)

B+ Fn—k,0.975 * S-€. (3)

24/1
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CONFIDENCE INTERVAL

» Output from Gretl (wage regression):

Model 3: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value

const -3.39054 0.766566 -4.423 1.18e-05 ***
educ 0.644272 0.0538061 11.97 2.28e-29 ***
exper 0.0700954 0.0109776 6.385 3.78e-10 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 5548.160 S.E. of regression 3.257044

R-squared 0.225162 Adjusted R-squared 0.222199
F(2, 523) 75.98998  P-value(F) 1.07e-29
Log-likelihood -1365.969 Akaike criterion 2737.937
Schwarz criterion 2750.733  Hannan-Quinn 2742.948
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CONFIDENCE INTERVAL

» Output from Gretl (wage regression):

Model 3: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value

const -3.39054 0.766566 -4.423 1.18e-05 ***
educ 0.644272 0.0538061 11.97 2.28e-29 ***
exper 0.0700954 0.0109776 6.385 3.78e-10 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 5548.160 S.E. of regression 3.257044

R-squared 0.225162 Adjusted R-squared 0.222199
F(2, 523) 75.98998  P-value(F) 1.07e-29
Log-likelihood -1365.969 Akaike criterion 2737.937
Schwarz criterion 2750.733  Hannan-Quinn 2742.948

> (Ajonfidence interva}\for coefficient on education:
Bty roors-se. (ﬁ) — 0.644 + 1.960 - 0.054

» J € [0.538;0.750] with 95% probability
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SUMMARY

v

We discussed the principle of hypothesis testing

We derived the t-statistic

v

v

We defined the concept of the p-value

v

We explained what significance of a coefficient means

v

We observed a regression output on an example
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