LECTURE 5

Introduction to Econometrics

Hypothesis testing \& Goodness of fit

October 20, 2017

On the previous lecture

On THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing

On THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing
- Type I and Type II errors

ON THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing
- Type I and Type II errors
- Critical value and rejection region

ON THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing
- Type I and Type II errors
- Critical value and rejection region
- We derived the t-statistic $t=\frac{\widehat{\beta}-\beta}{\text { s.e. }(\widehat{\beta})}$

ON THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing
- Type I and Type II errors
- Critical value and rejection region
- We derived the t-statistic $t=\frac{\widehat{\beta}-\beta}{\text { s.e. }(\widehat{\beta})}$
- We defined the concept of the p-value

On THE PREVIOUS LECTURE

- We discussed the principle of hypothesis testing
- Type I and Type II errors
- Critical value and rejection region
- We derived the t-statistic $t=\frac{\widehat{\beta}-\beta}{\text { s.e. }(\widehat{\beta})}$
- We defined the concept of the p-value
- We explained what significance of a coefficient means

ON THE PREVIOUS LECTURE

- We studied the impact of years of education on wages:

ON THE PREVIOUS LECTURE

- We studied the impact of years of education on wages:

On today's lecture

On TODAY's LECTURE

- We will explain how multiple hypotheses are tested in a regression model

On TODAY's LECTURE

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression

On TODAY's LECTURE

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression
- We will introduce a measure of the goodness of fit of a regression $\left(R^{2}\right)$

On TODAY's LECTURE

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression
- We will introduce a measure of the goodness of fit of a regression $\left(R^{2}\right)$
- Readings for this week:
- Studenmund, Chapters 5.5 \& 2.4
- Wooldridge, Chapters 4 \& 3

TESTING MULTIPLE HYPOTHESES

- Suppose we have a model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

TESTING MULTIPLE HYPOTHESES

- Suppose we have a model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- Suppose we want to test multiple linear hypotheses in this model

TESTING MULTIPLE HYPOTHESES

- Suppose we have a model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- Suppose we want to test multiple linear hypotheses in this model
- For example, we want to see if the following restrictions on coefficients hold jointly:

$$
\beta_{1}+\beta_{2}=1 \quad \text { and } \quad \beta_{3}=0
$$

TESTING MULTIPLE HYPOTHESES

- Suppose we have a model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- Suppose we want to test multiple linear hypotheses in this model
- For example, we want to see if the following restrictions on coefficients hold jointly:

$$
\beta_{1}+\beta_{2}=1 \quad \text { and } \quad \beta_{3}=0
$$

- We cannot use a t-test in this case (t-test can be used only for one hypothesis at a time)

TESTING MULTIPLE HYPOTHESES

- Suppose we have a model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- Suppose we want to test multiple linear hypotheses in this model
- For example, we want to see if the following restrictions on coefficients hold jointly:

$$
\beta_{1}+\beta_{2}=1 \quad \text { and } \quad \beta_{3}=0
$$

- We cannot use a t-test in this case (t-test can be used only for one hypothesis at a time)
- We will use an F-test

Restricted vs. unrestricted model

Restricted vs. UnRESTRICTED MODEL

- We can reformulate the model by plugging the restrictions as if they were true (model under H_{0})

Restricted vs. UnRESTRICTED MODEL

- We can reformulate the model by plugging the restrictions as if they were true (model under H_{0})
- We call this model restricted model as opposed to the unrestricted model

Restricted vs. UnRESTRICTED MODEL

- We can reformulate the model by plugging the restrictions as if they were true (model under H_{0})
- We call this model restricted model as opposed to the unrestricted model
- The unrestricted model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

Restricted vs. UnRESTRICTED MODEL

- We can reformulate the model by plugging the restrictions as if they were true (model under H_{0})
- We call this model restricted model as opposed to the unrestricted model
- The unrestricted model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- We derive (on the lecture) the restricted model:

Restricted vs. UnRESTRICTED MODEL

- We can reformulate the model by plugging the restrictions as if they were true (model under H_{0})
- We call this model restricted model as opposed to the unrestricted model
- The unrestricted model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- We derive (on the lecture) the restricted model:

$$
y_{i}^{*}=\beta_{0}+\beta_{1} x_{i}^{*}+\varepsilon_{i}
$$

where $y_{i}^{*}=y_{i}-x_{i 2}$ and $x_{i}^{*}=x_{i 1}-x_{i 2}$

Idea of the F-TEST

IDEA OF THE F-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model

IDEA OF THE F-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
- residuals are nearly the same

IDEA OF THE F-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
- residuals are nearly the same
- If the restrictions are false, then the restricted model fits the data poorly

IDEA OF THE F-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
- residuals are nearly the same
- If the restrictions are false, then the restricted model fits the data poorly
- residuals from the restricted model are much larger than those from the unrestricted model

IDEA OF THE F-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
- residuals are nearly the same
- If the restrictions are false, then the restricted model fits the data poorly
- residuals from the restricted model are much larger than those from the unrestricted model
- The idea is thus to compare the residuals from the two models

Idea of the F-TEST

IDEA OF THE F-TEST

- How to compare residuals in the two models?

IDEA OF THE F-TEST

- How to compare residuals in the two models?
- Calculate the sum of squared residuals in the two models
- Test if the difference between the two sums is equal to zero (statistically)
- H_{0} : the difference is zero (residuals in the two models are the same, restrictions hold)
- H_{A} : the difference is positive (residuals in the restricted model are bigger, restrictions do not hold)

IDEA OF THE F-TEST

- How to compare residuals in the two models?
- Calculate the sum of squared residuals in the two models
- Test if the difference between the two sums is equal to zero (statistically)
- H_{0} : the difference is zero (residuals in the two models are the same, restrictions hold)
- H_{A} : the difference is positive (residuals in the restricted model are bigger, restrictions do not hold)
- Sum of squared residuals
- $S S E=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}=\sum_{i=1}^{n} e_{i}^{2}$
F-TEST

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

where:
$S S E_{R} \quad \ldots$ sum of squared residuals from the restricted model

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

where:
$S S E_{R} \quad \ldots$ sum of squared residuals from the restricted model
$S S E_{U} \quad \ldots$ sum of squared residuals from the unrestricted model

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

where:
$S S E_{R} \quad \ldots$ sum of squared residuals from the restricted model
$S S E_{U} \quad \ldots$ sum of squared residuals from the unrestricted model
J ... number of restrictions

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

where:
$S S E_{R} \quad \ldots$ sum of squared residuals from the restricted model
$S S E_{U} \quad \ldots$ sum of squared residuals from the unrestricted model
J ... number of restrictions
n ... number of observations

F-TEST

- The test statistic is defined as

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

where:
$S S E_{R} \quad \ldots$ sum of squared residuals from the restricted model
$S S E_{U} \quad \ldots$ sum of squared residuals from the unrestricted model
J ... number of restrictions
n ... number of observations
$k \quad \ldots \quad$ number of estimated coefficients (including intercept)

F-TEST

EXAMPLE

EXAMPLE

- We had the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

EXAMPLE

- We had the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- We wanted to test

$$
H_{0}:\left\{\begin{array}{r}
\beta_{1}+\beta_{2}=1 \\
\beta_{3}=0
\end{array} \quad \text { vs. } \quad H_{A}:\left\{\begin{array}{r}
\beta_{1}+\beta_{2} \neq 1 \\
\beta_{3} \neq 0
\end{array}\right.\right.
$$

EXAMPLE

- We had the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

- We wanted to test

$$
H_{0}:\left\{\begin{array}{r}
\beta_{1}+\beta_{2}=1 \\
\beta_{3}=0
\end{array} \quad \text { vs. } \quad H_{A}:\left\{\begin{array}{r}
\beta_{1}+\beta_{2} \neq 1 \\
\beta_{3} \neq 0
\end{array}\right.\right.
$$

- Under H_{0}, we obtained the restricted model

$$
y_{i}^{*}=\beta_{0}+\beta_{1} x_{i}^{*}+\varepsilon_{i},
$$

where $y_{i}^{*}=y_{i}-x_{i 2}$ and $x_{i}^{*}=x_{i 1}-x_{i 2}$

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$
- We run the regression on the restricted model, we obtain $S S E_{R}$

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$
- We run the regression on the restricted model, we obtain $S S E_{R}$
- We have $k=4$ and $J=2$

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$
- We run the regression on the restricted model, we obtain $S S E_{R}$
- We have $k=4$ and $J=2$
- We construct the F-statistic $F=\frac{\left(S S E_{R}-S S E_{U}\right) / 2}{S S E_{U} /(n-4)}$

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$
- We run the regression on the restricted model, we obtain $S S E_{R}$
- We have $k=4$ and $J=2$
- We construct the F-statistic $F=\frac{\left(S S E_{R}-S S E_{U}\right) / 2}{S S E_{U} /(n-4)}$
- We find the critical value of the F distribution with 2 and $n-4$ degrees of freedom at the 95% confidence level

EXAMPLE

- We run the regression on the unrestricted model, we obtain $S S E_{U}$
- We run the regression on the restricted model, we obtain $S S E_{R}$
- We have $k=4$ and $J=2$
- We construct the F-statistic $F=\frac{\left(S S E_{R}-S S E_{U}\right) / 2}{S S E_{U} /(n-4)}$
- We find the critical value of the F distribution with 2 and $n-4$ degrees of freedom at the 95% confidence level
- If $F>F_{2, n-4,0.95}$, we reject the null hypothesis
- we reject that the restrictions hold jointly

Overall significance of The regression

Overall significance of The regression

- Usually, we are interested in knowing if the model has some explanatory power, i.e. if the independent variables indeed "explain" the dependent variable

Overall significance of The regression

- Usually, we are interested in knowing if the model has some explanatory power, i.e. if the independent variables indeed "explain" the dependent variable
- We test this using the F-test of the joint significance of all $(k-1)$ slope coefficients:
$H_{0}:\left\{\begin{array}{c}\beta_{1}=0 \\ \beta_{2}=0 \\ \vdots \\ \beta_{k-1}=0\end{array} \quad\right.$ vs. $H_{A}:\{$

$$
\beta_{j} \neq 0
$$

for at least one $j=1, \ldots, k-1$

Overall significance of The regression

- Unrestricted model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k-1} x_{i k-1}+\varepsilon_{i}
$$

Overall significance of The regression

- Unrestricted model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k-1} x_{i k-1}+\varepsilon_{i}
$$

- Restricted model:

$$
y_{i}=\beta_{0}+\varepsilon_{i}
$$

Overall significance of The regression

- Unrestricted model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k-1} x_{i k-1}+\varepsilon_{i}
$$

- Restricted model:

$$
y_{i}=\beta_{0}+\varepsilon_{i}
$$

- F-statistic:

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) /(k-1)}{S S E_{U} /(n-k)} \sim F_{k-1, n-k}
$$

Overall significance of The regression

- Unrestricted model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k-1} x_{i k-1}+\varepsilon_{i}
$$

- Restricted model:

$$
y_{i}=\beta_{0}+\varepsilon_{i}
$$

- F-statistic:

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) /(k-1)}{S S E_{U} /(n-k)} \sim F_{k-1, n-k}
$$

- Number of restrictions $=k-1$
- This F-statistic and the corresponding p-value are part of the regression output

EXAMPLE

Goodness of fit measure

GOODNESS OF FIT MEASURE

- We know that education and experience have a significant influence on wages

GOODNESS OF FIT MEASURE

- We know that education and experience have a significant influence on wages
- But how important are they in determining wages?

Goodness of fit measure

- We know that education and experience have a significant influence on wages
- But how important are they in determining wages?
- How much of difference in wages between people is explained by differences in education and in experience?

Goodness of fit measure

- We know that education and experience have a significant influence on wages
- But how important are they in determining wages?
- How much of difference in wages between people is explained by differences in education and in experience?
- How well variation in the independent variable(s) explains variation in the dependent variable?

Goodness of fit measure

- We know that education and experience have a significant influence on wages
- But how important are they in determining wages?
- How much of difference in wages between people is explained by differences in education and in experience?
- How well variation in the independent variable(s) explains variation in the dependent variable?
- This are the questions answered by the goodness of fit measure - R^{2}

TOTAL AND EXPLAINED VARIATION

TOTAL AND EXPLAINED VARIATION

- Total variation in the dependent variable:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}
$$

TOTAL AND EXPLAINED VARIATION

- Total variation in the dependent variable:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}
$$

- Predicted value of the dependent variable = part that is explained by independent variables:

$$
\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}
$$

(case of regression line - for simplicity of notation)

TOTAL AND EXPLAINED VARIATION

- Total variation in the dependent variable:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}
$$

- Predicted value of the dependent variable = part that is explained by independent variables:

$$
\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}
$$

(case of regression line - for simplicity of notation)

- Explained variation in the dependent variable:

$$
\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2}
$$

Goodness of fit - R^{2}

GOODNESS OF FIT - R^{2}

- Denote:
- $\operatorname{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2} \ldots$ Total Sum of Squares
- $\operatorname{SSR}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2} \ldots$ Regression Sum of Squares

GOODNESS OF FIT - R^{2}

- Denote:
- $\operatorname{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2} \ldots$ Total Sum of Squares
- $S S R=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2} \ldots$ Regression Sum of Squares
- Define the measure of the goodness of fit:

$$
R^{2}=\frac{S S R}{S S T}=\frac{\text { Explained variation in } y}{\text { Total variation in } y}
$$

Goodness of fit - R^{2}

Goodness of fit - R^{2}

- In all models: $0 \leq R^{2} \leq 1$

Goodness of Fit - R^{2}

- In all models: $0 \leq R^{2} \leq 1$
- R^{2} tells us what percentage of the total variation in the dependent variable is explained by the variation in the independent variable(s)
- $R^{2}=0.3$ means that the independent variables can explain 30% of the variation in the dependent variable

Goodness of Fit - R^{2}

- In all models: $0 \leq R^{2} \leq 1$
- R^{2} tells us what percentage of the total variation in the dependent variable is explained by the variation in the independent variable(s)
- $R^{2}=0.3$ means that the independent variables can explain 30% of the variation in the dependent variable
- Higher R^{2} means better fit of the regression model (not necessarily a better model!)

Decomposing the variance

DECOMPOSING THE VARIANCE

- For models with intercept, R^{2} can be rewritten using the decomposition of variance.
- Variance decomposition:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

DECOMPOSING THE VARIANCE

- For models with intercept, R^{2} can be rewritten using the decomposition of variance.
- Variance decomposition:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

- $S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2} \ldots$ Total Sum of Squares

DECOMPOSING THE VARIANCE

- For models with intercept, R^{2} can be rewritten using the decomposition of variance.
- Variance decomposition:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

- $S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2} \ldots$ Total Sum of Squares
- $\operatorname{SSR}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2} \ldots$ Regression Sum of Squares

DECOMPOSING THE VARIANCE

- For models with intercept, R^{2} can be rewritten using the decomposition of variance.
- Variance decomposition:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

- $S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2} \ldots$ Total Sum of Squares
- $\operatorname{SSR}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}_{n}\right)^{2} \ldots$ Regression Sum of Squares
- SSE $=\sum_{i=1}^{n} e_{i}^{2} \quad$... Sum of Squared Residuals

VARIANCE DECOMPOSITION AND R^{2}

VARIANCE DECOMPOSITION AND R^{2}

- Variance decomposition: $\quad S S T=S S R+S S E$

VARIANCE DECOMPOSITION AND R^{2}

- Variance decomposition: $\quad S S T=S S R+S S E$
- Intuition: total variation can be divided between the explained variation and the unexplained variation
- the true value y is a sum of estimated (explained) \widehat{y} and the residual e_{i} (unexplained part)
- $y_{i}=\widehat{y}_{i}+e_{i}$

VARIANCE DECOMPOSITION AND R^{2}

- Variance decomposition: $\quad S S T=S S R+S S E$
- Intuition: total variation can be divided between the explained variation and the unexplained variation
- the true value y is a sum of estimated (explained) \hat{y} and the residual e_{i} (unexplained part)
- $y_{i}=\widehat{y}_{i}+e_{i}$
- We can rewrite R^{2} :

$$
R^{2}=\frac{S S R}{S S T}=\frac{S S T-S S E}{S S T}=1-\frac{S S E}{S S T}
$$

Adjusted R^{2}

ADJUSTED R^{2}

- The sum of squared residuals (SSE) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (SST) remains the same

ADJUSTED R^{2}

- The sum of squared residuals (SSE) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (SST) remains the same
- $R^{2}=1-\frac{S S E}{S S T}$ increases if we add explanatory variables
- Models with more variables automatically have better fit.

ADJUSTED R^{2}

- The sum of squared residuals (SSE) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (SST) remains the same
- $R^{2}=1-\frac{S S E}{S S T}$ increases if we add explanatory variables
- Models with more variables automatically have better fit.
- To deal with this problem, we define the adjusted R^{2} :

$$
R_{a d j}^{2}=1-\frac{\frac{S S E}{n-k}}{\frac{S S T}{n-1}} \quad\left(\leq R^{2}\right)
$$

(k is the number of coefficients including intercept)

ADJUSTED R^{2}

- The sum of squared residuals (SSE) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (SST) remains the same
- $R^{2}=1-\frac{S S E}{S S T}$ increases if we add explanatory variables
- Models with more variables automatically have better fit.
- To deal with this problem, we define the adjusted R^{2} :

$$
R_{a d j}^{2}=1-\frac{\frac{S S E}{n-k}}{\frac{S S T}{n-1}} \quad\left(\leq R^{2}\right)
$$

(k is the number of coefficients including intercept)

- This measure introduces a "punishment" for including more explanatory variables

EXAMPLE

F-TEST - REVISITED

F-TEST - REVISITED

- Let us recall the F-statistic:

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

F-TEST - REVISITED

- Let us recall the F-statistic:

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(n-k)} \sim F_{J, n-k}
$$

- We can use the formula $R^{2}=1-\frac{S S E}{S S T}$ to rewrite the F-statistic in R^{2} form:

$$
F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) / J}{\left(1-R_{U}^{2}\right) /(n-k)} \sim F_{J, n-k}
$$

- We can use this R^{2} form of F-statistic under the condition that $S S T_{U}=S S T_{R}$ (the dependent variables in restricted and unrestricted models are the same)

SUMMARY

SUMMARY

- We showed how restrictions are incorporated in regression models

SUMMARY

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test

SUMMARY

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression

SUMMARY

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit - R^{2}

SUMMARY

- We showed how restrictions are incorporated in regression models
- We explained the idea of the F-test
- We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit - R^{2}
- We learned how total variation in the dependent variable can be decomposed

