LECTURE 5

Introduction to Econometrics

Hypothesis testing & Goodness of fit

October 20, 2017

► We discussed the principle of hypothesis testing

- ► We discussed the principle of hypothesis testing
 - ► Type I and Type II errors

- We discussed the principle of hypothesis testing
 - ► Type I and Type II errors
 - ► Critical value and rejection region

- We discussed the principle of hypothesis testing
 - ► Type I and Type II errors
 - Critical value and rejection region
- ▶ We derived the *t*-statistic $t = \frac{\widehat{\beta} \beta}{s.e.(\widehat{\beta})}$

- ► We discussed the principle of hypothesis testing
 - ► Type I and Type II errors
 - Critical value and rejection region
- ► We derived the *t*-statistic $t = \frac{\widehat{\beta} \beta}{s.e.(\widehat{\beta})}$
- ► We defined the concept of the *p*-value

- ► We discussed the principle of hypothesis testing
 - ► Type I and Type II errors
 - Critical value and rejection region
- ► We derived the *t*-statistic $t = \frac{\widehat{\beta} \beta}{s.e.(\widehat{\beta})}$
- ► We defined the concept of the *p*-value
- ► We explained what significance of a coefficient means

► We studied the impact of years of education on wages:

► We studied the impact of years of education on wages:

Model 3: OLS, using observations 1-526 Dependent variable: wage

coef	ficient	std.	error	t-ratio	р-	value	
const -3.3	9054	0.76	 6566	-4.423	1.	18e-05	***
educ 0.6	44272	0.05	38061	11.97	2.	28e-29	***
exper 0.0	700954	0.01	99776	6.385	3.	78e-10	***
Mean dependent va	r 5.896	103	S.D. d	ependent va	ar	3.6936	986
Sum squared resid	5548.	160	S.E. o	f regressio	n	3.2576	944
R-squared	0.225	162	Adjust	ed R-square	b	0.2221	199
F(2, 523)	75.98	998	P-valu	e(F)		1.07e-	-29
Log-likelihood	-1365.	969	Akaike	criterion		2737.9	937
Schwarz criterion	2750.	733	Hannan	-Ouinn		2742.9	948

► We will explain how multiple hypotheses are tested in a regression model

- ► We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression
- ▶ We will introduce a measure of the goodness of fit of a regression (R^2)

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression
- ▶ We will introduce a measure of the goodness of fit of a regression (R^2)
- Readings for this week:
 - ► Studenmund, Chapters 5.5 & 2.4
 - ► Wooldridge, Chapters 4 & 3

► Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

► Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

 Suppose we want to test multiple linear hypotheses in this model

► Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

- Suppose we want to test multiple linear hypotheses in this model
- ► For example, we want to see if the following restrictions on coefficients hold jointly:

$$\beta_1 + \beta_2 = 1$$
 and $\beta_3 = 0$

► Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

- Suppose we want to test multiple linear hypotheses in this model
- ► For example, we want to see if the following restrictions on coefficients hold jointly:

$$\beta_1 + \beta_2 = 1$$
 and $\beta_3 = 0$

► We cannot use a *t*-test in this case (*t*-test can be used only for one hypothesis at a time)

► Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

- Suppose we want to test multiple linear hypotheses in this model
- ► For example, we want to see if the following restrictions on coefficients hold jointly:

$$\beta_1 + \beta_2 = 1$$
 and $\beta_3 = 0$

- ► We cannot use a *t*-test in this case (*t*-test can be used only for one hypothesis at a time)
- ► We will use an F-test

▶ We can reformulate the model by plugging the restrictions as if they were true (model under H_0)

- ▶ We can reformulate the model by plugging the restrictions as if they were true (model under H_0)
- We call this model restricted model as opposed to the unrestricted model

- ▶ We can reformulate the model by plugging the restrictions as if they were true (model under H_0)
- ► We call this model *restricted model* as opposed to the *unrestricted model*
- ► The unrestricted model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

- ▶ We can reformulate the model by plugging the restrictions as if they were true (model under H_0)
- ► We call this model *restricted model* as opposed to the *unrestricted model*
- ► The unrestricted model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

► We derive (on the lecture) the restricted model:

- ▶ We can reformulate the model by plugging the restrictions as if they were true (model under H_0)
- ► We call this model *restricted model* as opposed to the *unrestricted model*
- ► The unrestricted model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

▶ We derive (on the lecture) the restricted model:

$$y_i^* = \beta_0 + \beta_1 x_i^* + \varepsilon_i ,$$

where
$$y_i^* = y_i - x_{i2}$$
 and $x_i^* = x_{i1} - x_{i2}$

Idea of the F-test

► If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model

- ► If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
 - residuals are nearly the same

- ► If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
 - residuals are nearly the same
- ► If the restrictions are false, then the restricted model fits the data poorly

- ► If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
 - residuals are nearly the same
- ► If the restrictions are false, then the restricted model fits the data poorly
 - ► residuals from the restricted model are much larger than those from the unrestricted model

- ► If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
 - ► residuals are nearly the same
- If the restrictions are false, then the restricted model fits the data poorly
 - ► residuals from the restricted model are much larger than those from the unrestricted model
- The idea is thus to compare the residuals from the two models

Idea of the F-test

Idea of the F-test

► How to compare residuals in the two models?

- How to compare residuals in the two models?
 - ► Calculate the sum of squared residuals in the two models
 - ► Test if the difference between the two sums is equal to zero (statistically)
 - ► *H*₀: the difference is zero (residuals in the two models are the same, restrictions hold)
 - ► *H*_A: the difference is positive (residuals in the restricted model are bigger, restrictions do not hold)

- ► How to compare residuals in the two models?
 - Calculate the sum of squared residuals in the two models
 - ► Test if the difference between the two sums is equal to zero (statistically)
 - ► *H*₀: the difference is zero (residuals in the two models are the same, restrictions hold)
 - ► *H*_A: the difference is positive (residuals in the restricted model are bigger, restrictions do not hold)
- ► Sum of squared residuals

•
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

► The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

▶ The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

where:

 SSE_R ... sum of squared residuals from the restricted model

▶ The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

where:

 SSE_R ... sum of squared residuals from the restricted model

 SSE_U ... sum of squared residuals from the unrestricted model

▶ The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

where:

 SSE_R ... sum of squared residuals from the restricted model

 SSE_U ... sum of squared residuals from the unrestricted model

J ... number of restrictions

▶ The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

where:

 SSE_R ... sum of squared residuals from the restricted model

 SSE_U ... sum of squared residuals from the unrestricted model

... number of restrictions

n ... number of observations

► The test statistic is defined as

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} ,$$

where:

 SSE_R ... sum of squared residuals from the restricted model

 SSE_U ... sum of squared residuals from the unrestricted model

J ... number of restrictions

n ... number of observations

k ... number of estimated coefficients (including intercept)

► We had the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

► We had the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

► We wanted to test

$$H_0: \left\{ \begin{array}{c} \beta_1 + \beta_2 = 1 \\ \beta_3 = 0 \end{array} \right. \text{ vs. } H_A: \left\{ \begin{array}{c} \beta_1 + \beta_2 \neq 1 \\ \beta_3 \neq 0 \end{array} \right.$$

► We had the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

► We wanted to test

$$H_0: \left\{ \begin{array}{c} \beta_1 + \beta_2 = 1 \\ \beta_3 = 0 \end{array} \right. \text{ vs. } H_A: \left\{ \begin{array}{c} \beta_1 + \beta_2 \neq 1 \\ \beta_3 \neq 0 \end{array} \right.$$

 \blacktriangleright Under H_0 , we obtained the restricted model

$$y_i^* = \beta_0 + \beta_1 x_i^* + \varepsilon_i ,$$

where
$$y_i^* = y_i - x_{i2}$$
 and $x_i^* = x_{i1} - x_{i2}$

▶ We run the regression on the unrestricted model, we obtain SSE_U

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ► We run the regression on the restricted model, we obtain SSE_R

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ▶ We run the regression on the restricted model, we obtain SSE_R
- ▶ We have k = 4 and J = 2

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ▶ We run the regression on the restricted model, we obtain SSE_R
- ► We have k = 4 and J = 2
- We construct the *F*-statistic $F = \frac{(SSE_R SSE_U)/2}{SSE_U/(n-4)}$

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ▶ We run the regression on the restricted model, we obtain SSE_R
- ► We have k = 4 and J = 2
- ► We construct the *F*-statistic $F = \frac{(SSE_R SSE_U)/2}{SSE_U/(n-4)}$
- ▶ We find the critical value of the F distribution with 2 and n-4 degrees of freedom at the 95% confidence level

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ▶ We run the regression on the restricted model, we obtain SSE_R
- ► We have k = 4 and J = 2
- ► We construct the *F*-statistic $F = \frac{(SSE_R SSE_U)/2}{SSE_U/(n-4)}$
- ▶ We find the critical value of the F distribution with 2 and n-4 degrees of freedom at the 95% confidence level
- ▶ If $F > F_{2,n-4,0.95}$, we reject the null hypothesis
 - ▶ we reject that the restrictions hold jointly

► Usually, we are interested in knowing if the model has some explanatory power, i.e. if the independent variables indeed "explain" the dependent variable

- ► Usually, we are interested in knowing if the model has some explanatory power, i.e. if the independent variables indeed "explain" the dependent variable
- ▶ We test this using the *F*-test of the joint significance of all (k-1) slope coefficients:

$$H_0: \left\{ \begin{array}{l} \beta_1 = 0 \\ \beta_2 = 0 \\ \vdots \\ \beta_{k-1} = 0 \end{array} \right. \quad \text{vs.} \quad H_A: \left\{ \begin{array}{l} \beta_j \neq 0 \\ \text{for at least one } j = 1, \dots, k-1 \end{array} \right.$$

► Unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{k-1} x_{ik-1} + \varepsilon_i$$

► Unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{k-1} x_{ik-1} + \varepsilon_i$$

► Restricted model:

$$y_i = \beta_0 + \varepsilon_i$$

► Unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{k-1} x_{ik-1} + \varepsilon_i$$

► Restricted model:

$$y_i = \beta_0 + \varepsilon_i$$

► *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/(k-1)}{SSE_U/(n-k)} \sim F_{k-1,n-k}$$

► Unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{k-1} x_{ik-1} + \varepsilon_i$$

► Restricted model:

$$y_i = \beta_0 + \varepsilon_i$$

► *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/(k-1)}{SSE_U/(n-k)} \sim F_{k-1,n-k}$$

- ▶ Number of restrictions = k-1
- ► This *F*-statistic and the corresponding *p*-value are part of the regression output

Model 3: OLS, using observations 1-526 Dependent variable: wage

	coeffic	ient	std.	error	t-ratio	p - v	/alue	
const educ exper	-3.3905 0.6442 0.0706	72		5566 38061 99776	-4.423 11.97 6.385	2.2	28e-29	*** ***
Mean depende Sum squared R-squared F(2, 523)		5.8961 5548.1 0.2251 75.989	L60 L62	S.E. of	ependent va f regressio ed R-square	n	3.6936 3.2576 0.2221 1.07e-)44 L99
r(2, 323) Log-likelihoo Schwarz crite		-1365.9 2750	969		criterion		2737.9	937

► We know that education and experience have a significant influence on wages

- We know that education and experience have a significant influence on wages
- ► But how important are they in determining wages?

- We know that education and experience have a significant influence on wages
- ► But how important are they in determining wages?
- ► How much of difference in wages between people is explained by differences in education and in experience?

- We know that education and experience have a significant influence on wages
- ▶ But how important are they in determining wages?
- ► How much of difference in wages between people is explained by differences in education and in experience?
- ► How well variation in the independent variable(s) explains variation in the dependent variable?

- We know that education and experience have a significant influence on wages
- ▶ But how important are they in determining wages?
- ► How much of difference in wages between people is explained by differences in education and in experience?
- ► How well variation in the independent variable(s) explains variation in the dependent variable?
- ► This are the questions answered by the goodness of fit measure R²

► **Total variation** in the dependent variable:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2$$

► **Total variation** in the dependent variable:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2$$

► Predicted value of the dependent variable = part that is explained by independent variables:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

(case of regression line - for simplicity of notation)

► **Total variation** in the dependent variable:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2$$

► Predicted value of the dependent variable = part that is explained by independent variables:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

(case of regression line - for simplicity of notation)

Explained variation in the dependent variable:

$$\sum_{i=1}^{n} (\widehat{y}_i - \overline{y}_n)^2$$

► Denote:

- ► $SST = \sum_{i=1}^{n} (y_i \overline{y}_n)^2 \dots$ Total Sum of Squares
- ► $SSR = \sum_{i=1}^{n} (\widehat{y}_i \overline{y}_n)^2$... Regression Sum of Squares

- ► Denote:
 - $SST = \sum_{i=1}^{n} (y_i \overline{y}_n)^2 \dots$ Total Sum of Squares
 - ► $SSR = \sum_{i=1}^{n} (\widehat{y}_i \overline{y}_n)^2$... Regression Sum of Squares
- ► Define the measure of the goodness of fit:

$$R^2 = \frac{SSR}{SST} = \frac{\text{Explained variation in } y}{\text{Total variation in } y}$$

► In all models: $0 \le R^2 \le 1$

- ► In all models: $0 \le R^2 \le 1$
- ► *R*² tells us what percentage of the total variation in the dependent variable is explained by the variation in the independent variable(s)
 - $R^2 = 0.3$ means that the independent variables can explain 30% of the variation in the dependent variable

- ► In all models: $0 \le R^2 \le 1$
- ► *R*² tells us what percentage of the total variation in the dependent variable is explained by the variation in the independent variable(s)
 - $R^2 = 0.3$ means that the independent variables can explain 30% of the variation in the dependent variable
- ► Higher *R*² means better fit of the regression model (not necessarily a better model!)

- ► For models with intercept, R^2 can be rewritten using the decomposition of variance.
- ► Variance decomposition:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_n)^2 + \sum_{i=1}^{n} e_i^2$$

- ► For models with intercept, R^2 can be rewritten using the decomposition of variance.
- ► Variance decomposition:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_n)^2 + \sum_{i=1}^{n} e_i^2$$

►
$$SST = \sum_{i=1}^{n} (y_i - \overline{y}_n)^2$$
 ... Total Sum of Squares

- ► For models with intercept, R^2 can be rewritten using the decomposition of variance.
- ► Variance decomposition:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_n)^2 + \sum_{i=1}^{n} e_i^2$$

- $SST = \sum_{i=1}^{n} (y_i \overline{y}_n)^2 \dots$ Total Sum of Squares
- ► $SSR = \sum_{i=1}^{n} (\hat{y}_i \overline{y}_n)^2$... Regression Sum of Squares

- ► For models with intercept, R^2 can be rewritten using the decomposition of variance.
- ► Variance decomposition:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_n)^2 + \sum_{i=1}^{n} e_i^2$$

- $SST = \sum_{i=1}^{n} (y_i \overline{y}_n)^2 \dots$ Total Sum of Squares
- ► $SSR = \sum_{i=1}^{n} (\hat{y}_i \bar{y}_n)^2$... Regression Sum of Squares
- $SSE = \sum_{i=1}^{n} e_i^2$... Sum of Squared Residuals

Variance decomposition and R^2

Variance decomposition and R^2

▶ Variance decomposition: SST = SSR + SSE

VARIANCE DECOMPOSITION AND R^2

- ▶ Variance decomposition: SST = SSR + SSE
- ► Intuition: total variation can be divided between the explained variation and the unexplained variation
 - ► the true value y is a sum of estimated (explained) \hat{y} and the residual e_i (unexplained part)
 - $y_i = \widehat{y}_i + e_i$

VARIANCE DECOMPOSITION AND R^2

- ▶ Variance decomposition: SST = SSR + SSE
- ► Intuition: total variation can be divided between the explained variation and the unexplained variation
 - ▶ the true value y is a sum of estimated (explained) \hat{y} and the residual e_i (unexplained part)
 - $y_i = \widehat{y}_i + e_i$
- We can rewrite R^2 :

$$R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

Adjusted \mathbb{R}^2

► The sum of squared residuals (*SSE*) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (*SST*) remains the same

- ► The sum of squared residuals (*SSE*) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (*SST*) remains the same
 - $R^2 = 1 \frac{SSE}{SST}$ increases if we add explanatory variables
 - ► Models with more variables automatically have better fit.

- ► The sum of squared residuals (*SSE*) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (*SST*) remains the same
 - $R^2 = 1 \frac{SSE}{SST}$ increases if we add explanatory variables
 - Models with more variables automatically have better fit.
- ▶ To deal with this problem, we define the *adjusted* R^2 :

$$R_{adj}^2 = 1 - \frac{\frac{SSE}{n-k}}{\frac{SST}{n-1}} \quad (\leq R^2)$$

(*k* is the number of coefficients including intercept)

- ► The sum of squared residuals (*SSE*) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (*SST*) remains the same
 - $R^2 = 1 \frac{SSE}{SST}$ increases if we add explanatory variables
 - Models with more variables automatically have better fit.
- ▶ To deal with this problem, we define the *adjusted* R^2 :

$$R_{adj}^2 = 1 - \frac{\frac{SSE}{n-k}}{\frac{SST}{n-1}} \quad (\leq R^2)$$

(*k* is the number of coefficients including intercept)

► This measure introduces a "punishment" for including more explanatory variables

EXAMPLE

Model 3: OLS, using observations 1-526 Dependent variable: wage

coeffi	cient	std.	error	t-ratio	p - '	value	
const -3.390 educ 0.644 exper 0.070	272		6566 38061 99776	-4.423 11.97 6.385	2.	18e-05 28e-29 78e-10	*** ***
Mean dependent var	5.896			lependent va		3.6936	
Sum squared resid R-squared	5548.2 0.2252			of regression ed R-square		3.2570 0.2221	
F(2, 523)	75.989		P-valu	- ()		1.07e-	
Log-likelihood	-1365.9		Akaike	criterion		2737.9	
Schwarz criterion	2750.	733	Hannar	ı-Ouinn		2742.0	948

F-TEST - REVISITED

F-TEST - REVISITED

▶ Let us recall the *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k}$$

F-TEST - REVISITED

► Let us recall the *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k}$$

► We can use the formula $R^2 = 1 - \frac{SSE}{SST}$ to rewrite the *F*-statistic in R^2 form:

$$F = \frac{(R_U^2 - R_R^2)/J}{(1 - R_U^2)/(n - k)} \sim F_{J,n-k}$$

▶ We can use this R^2 form of F-statistic under the condition that $SST_U = SST_R$ (the dependent variables in restricted and unrestricted models are the same)

 We showed how restrictions are incorporated in regression models

- ► We showed how restrictions are incorporated in regression models
- ▶ We explained the idea of the *F*-test

- ► We showed how restrictions are incorporated in regression models
- ► We explained the idea of the *F*-test
- We defined the notion of the overall significance of a regression

- ► We showed how restrictions are incorporated in regression models
- ► We explained the idea of the *F*-test
- We defined the notion of the overall significance of a regression
- ▶ We introduced the measure or the goodness of fit R^2

- ► We showed how restrictions are incorporated in regression models
- ► We explained the idea of the *F*-test
- We defined the notion of the overall significance of a regression
- ▶ We introduced the measure or the goodness of fit R^2
- We learned how total variation in the dependent variable can be decomposed