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ON PREVIOUS LECTURES

I We discussed the specification of a regression equation

I Specification consists of choosing:

1. correct independent variables
2. correct functional form
3. correct form of the stochastic error term
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ON TODAY’S LECTURE

I We will finish the discussion of the choice of independent
variables by talking about multicollinearity

I We will start the discussion of the correct form of the error
term by talking about heteroskedasticity

I For both of these issues, we will learn

I what is the nature of the problem
I what are its consequences
I how it is diagnosed
I what are the remedies available
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Multicollinearity
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PERFECT MULTICOLLINEARITY

I Some explanatory variable is a perfect linear function of
one or more other explanatory variables

I Violation of one of the classical assumptions

I OLS estimate cannot be found

I Intuitively: the estimator cannot distinguish which of the
explanatory variables causes the change of the dependent
variable if they move together

I Technically: the matrix X′X is singular (not invertible)

I Rare and easy to detect
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EXAMPLES OF PERFECT MULTICOLLINEARITY

Dummy variable trap

I Inclusion of dummy variable for each category in the
model with intercept

I Example: wage equation for sample of individuals who
have high-school education or higher:

wagei = β1 + β2high schooli + β3universityi + β4phdi + ei

I Automatically detected by most statistical softwares
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IMPERFECT MULTICOLLINEARITY

I Two or more explanatory variables are highly correlated in
the particular data set

I OLS estimate can be found, but it may be very imprecise

I Intuitively: the estimator can hardly distinguish the effects
of the explanatory variables if they are highly correlated

I Technically: the matrix X′X is nearly singular and this
causes the variance of the estimator Var

(
β̂
)
= σ2

(
X′X

)−1

to be very large

I Usually referred to simply as “multicollinearity”
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CONSEQUENCES OF MULTICOLLINEARITY

1. Estimates remain unbiased and consistent (estimated
coefficients are not affected)

2. Standard deviations of coefficients increase

I Confidence intervals are very large - estimates are less
reliable

I t-statistics are smaller - variables may become insignificant
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DETECTION OF MULTICOLLINEARITY

I Some multicollinearity exists in every equation - the aim is
to recognize when it causes a severe problem

I Multicollinearity can be signaled by the underlying theory,
but it is very sample depending

I We judge the severity of multicollinearity based on the
properties of our sample and on the results we obtain

I One simple method: examine correlation coefficients
between explanatory variables

I if some of them is too high, we may suspect that the
coefficients of these variables can be affected by
multicollinearity
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REMEDIES FOR MULTICOLLINEARITY

I Drop a redundant variable
I when the variable is not needed to represent the effect on

the dependent variable
I in case of severe multicollinearity, it makes no statistical

difference which variable is dropped
I theoretical underpinnings of the model should be the basis

for such a decision

I Do nothing
I when multicollinearity does not cause insignificant t-scores

or unreliable estimated coefficients
I deletion of collinear variable can cause specification bias

I Increase the size of the sample
I the confidence intervals are narrower when we have more

observations
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EXAMPLE

I Estimating the demand for gasoline in the U.S.:

P̂CONi = 389.6 − 36.5(
13.2)

TAXi + 60.8(
10.3)

UHMi − 0.061(
0.043)

REGi

t = 5.92 − 2.77 − 1.43

R2 = 0.924 , n = 50 , Corr(UHM,REG) = 0.978

PCONi . . . petroleum consumption in the i-th state
TAXi . . . the gasoline tax rate in the i-th state
UHMi . . . urban highway miles within the i-th state
REGi . . . motor vehicle registrations in the i-the state

11 / 23



EXAMPLE

I We suspect a multicollinearity between urban highway
miles and motor vehicle registration across states, because
those states that have a lot of highways might also have a
lot of motor vehicles.

I Therefore, we might run into multicollinearity problems.
How do we detect multicollinearity?

I Look at correlation coefficient. It is indeed huge (0.978).
I Look at the coefficients of the two variables. Are they both

individually significant? UHM is significant, but REG is
not. This further suggests a presence of multicollinearity.

I Remedy: try dropping one of the correlated variables.
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EXAMPLE

P̂CONi = 551.7 − 53.6(
16.9)

TAXi + 0.186(
0.012)

REGi

t = −3.18 15.88

R2 = 0.866 , n = 50

P̂CONi = 410.0 − 39.6(
13.1)

TAXi + 46.4(
2.16)

UHMi

t = −3.02 21.40

R2 = 0.921 , n = 50
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Heteroskedasticity
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HETEROSKEDASTICITY

I Observations of the error term are drawn from a
distribution that has no longer a constant variance

Var(εi) = σ2
i , i = 1, 2, . . . ,n

Note: constant variance means: Var(εi) = σ2(i = 1, 2, . . . ,n)

I Often occurs in data sets in which there is a wide disparity
between the largest and smallest observed values

I Smaller values often connected to smaller variance and
larger values to larger variance (e.g. consumption of
households based on their income level)

I One particular form of heteroskedasticity (variance of the
error term is a function of some observable variable):

Var(εi) = h(xi) , i = 1, 2, . . . ,n
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HETEROSKEDASTICITY

X

Y
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CONSEQUENCES OF HETEROSKEDASTICITY

I Violation of one of the classical assumptions

1. Estimates remain unbiased and consistent (estimated
coefficients are not affected)

2. Estimated standard errors of the coefficients are biased

I heteroskedastic error term causes the dependent variable to
fluctuate in a way that the OLS estimation procedure
attributes to the independent variable

I heteroskedasticity biases t statistics, which leads to
unreliable hypothesis testing

I typically, we encounter underestimation of the standard
errors, so the t scores are incorrectly too high
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DETECTION OF HETEROSKEDASTICITY

I There is a battery of tests for heteroskedasticity
I Sometimes, simple visual analysis of residuals is sufficient

to detect heteroskedasticity

I We will derive a test for the model

yi = β0 + β1xi + β2zi + εi

I The test is based on analysis of residuals

ei = yi − ŷi = yi − (β̂0 + β̂1xi + β̂2zi)

I The null hypothesis for the test is no heteroskedasticity:
E(e2) = σ2

I Therefore, we will analyse the relationship between e2 and
explanatory variables
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WHITE TEST FOR HETEROSKEDASTICITY

1. Estimate the equation, get the residuals ei

2. Regress the residuals squared on all explanatory variables
and on squares and cross-products of all explanatory
variables:

e2
i = α0 + α1xi + α2zi + α3x2

i + α4z2
i + α5xizi + νi (1)

3. Get the R2 of this regression and the sample size n

4. Test the joint significance of (1): test statistic = nR2 ∼ χ2
k ,

where k is the number of slope coefficients in (1)

5. If nR2 is larger than the χ2
k critical value, then we have to

reject H0 of no heteroskedasticity
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REMEDIES FOR HETEROSKEDASTICITY

1. Redefing the variables

I in order to reduce the variance of observations with
extreme values

I e.g. by taking logarithms or by scaling some variables

2. Weighted Least Squares (WLS)

I consider the model yi = β0 + β1xi + β2zi + εi

I suppose Var(εi) = σ2z2
i

I we prove on the lecture that if we redefine the model as

yi

zi
= β0

1
zi

+ β1
xi

zi
+ β2 +

εi

zi
,

it becomes homoskedastic

3. Heteroskedasticity-corrected robust standard errors
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HETEROSKEDASTICITY-CORRECTED ROBUST ERRORS

I The logic behind:
I Since heteroskedasticity causes problems with the standard

errors of OLS but not with the coefficients, it makes sense to
improve the estimation of the standard errors in a way that
does not alter the estimate of the coefficients (White, 1980)

I Heteroskedasticity-corrected standard errors are typically
larger than OLS s.e., thus producing lower t scores

I In panel and cross-sectional data with group-level
variables, the method of clustering standard errors is the
answer to heteroskedasticity
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SUMMARY
I Multicollinearity

I does not lead to inconsistent estimates, but it makes them
lose significance

I if really necessary, can be remedied by dropping or
transforming variables, or by getting more data

I Heteroskedasticity

I does not lead to inconsistent estimates, but it makes the
inference wrong

I can be simply remedied by the use of robust standard
errors

I Readings:
I Studenmund Chapter 8 and 10
I Wooldridge Chapter 8
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