LECTURE 11

Introduction to Econometrics

Autocorrelation
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ON PREVIOUS LECTURES

» We discussed the specification of a regression equation
» Specification consists of choosing:

1. correct independent variables
2. correct functional form

3. correct form of the stochastic error term

» We talked about the choice of independent variables and
their functional form

» We started to talk about the form of the error term - we
discussed heteroskedasticity



ON TODAY’S LECTURE

» We will finish the discussion of the form of the error term
by talking about autocorrelation (or serial correlation)

» We will learn

» what is the nature of the problem
» what are its consequences
» how it is diagnosed

» what are the remedies available
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NATURE OF AUTOCORRELATION

» Observations of the error term are correlated with each
other

Cov(ei,ej) #0 , i#]
» Violation of one of the classical assumptions

» Can exist in any data in which the order of the
observations has some meaning - most frequently in
time-series data

» Particular form of autocorrelation - AR(p) process:
€t = P1€4—1 + p2cr—2 + ... + PpEt—p + Ut

» u; is a classical (not autocorrelated) error term

» pi are autocorrelation coefficients (between -1 and 1)



EXAMPLES OF PURE AUTOCORRELATION

» Distribution of the error term has autocorrelation nature

» First order autocorrelation

€t = P1€¢—1 + Ut

» positive serial correlation: p; is positive
» negative serial correlation: p; is negative
» no serial correlation: p; is zero

» positive autocorrelation very common in time series data
» e.g.: a shock to GDP persists for more than one period

» Seasonal autocorrelation (in quarterly data)

Et = PAEL_4 + Uy

&
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EXAMPLES OF IMPURE AUTOCORRELATION
» Autocorrelation caused by specification error in the
equation:
» omitted variable
» incorrect functional form

» How can misspecification cause autocorrelation in the
error term?

» Recall that the error term includes the omitted variables,
nonlinearities, measurement error, and the classical error
term.

» If we omit a serially correlated variable, it is included in the
error term, causing the autocorrelation problem.

» Impure autocorrelation can be corrected by better choice of
specification (as opposed to pure autocorrelation).
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AUTOCORRELATION
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CONSEQUENCES OF AUTOCORRELATION

1. Estimated coefficients (B) remain unbiased and consistent

-~

2. Standard errors of coefficients (s.e.(3)) are biased
(inference is incorrect)

» serially correlated error term causes the dependent variable
to fluctuate in a way that the OLS estimation procedure
attributes to the independent variable

» Serial correlation typically makes OLS underestimate the
standard errors of coefficients

» therefore we find t scores that are incorrectly too high

= The same consequences as for the heteroskedasticity
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DURBIN-WATSON TEST FOR AUTOCORRELATION

» Used to determine if there is a first-order serial correlation
by examining the residuals of the equation

» Assumptions (criteria for using this test):

» The regression includes the intercept
» If autocorrelation is present, it is of AR(1) type:
€t = PEt—1 + Ut

» The regression does not include a lagged dependent
variable



DURBIN-WATSON TEST FOR AUTOCORRELATION

» Durbin-Watson d statistic (for T observations):

T

> (e —er-1)?

where p'is the autocorrelation coefficient

» Values:

1. Extreme positive serial correlation: d ~ 0
2. Extreme negative serial correlation: d ~ 4
3. No serial correlation: d ~ 2
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USING THE DURBIN-WATSON TEST

1.

2.

Estimate the equation by OLS, save the residuals

Calculate the d statistic

. Determine the sample size T and the number of

explanatory variables (excluding the intercept!) k’

Find the upper critical value di; and the lower critical
value d;, for T and k’ in statistical tables

. Evaluate the test as one-sided or two-sided (see next slides)
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ONE-SIDED DURBIN-WATSON TEST

» For cases when we consider only positive serial correlation
as an option

» Hypothesis:
Hp: p<0 (no positive serial correlation)
Hy: p>0 (positive serial correlation)
» Decision rule:
» ifd <dp reject Hy

» ifd > dy do not reject Hy
» ifd; <d<dy inconclusive
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DURBIN-WATSON CRITICAL VALUES FOR ONE-SIDED

TEST

Reject

Panel A

One Tail
U Fail to
n Reject

p=0te>—>p=0
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TWO-SIDED DURBIN-WATSON TEST

» For cases when
» Hypothesis:

Hy
Hp

» Decision rule:

» ifd <dp

» ifd>4-—d;
» ifd > dy

» ifd <4-—dy
» otherwise

we consider both signs of serial correlation

: p=0 (no serial correlation)
: p#0 (serial correlation)

reject Hy
reject Hy
do not reject Hy
do not reject Hy

inconclusive
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DURBIN-WATSON CRITICAL VALUES FOR TWO-SIDED
TEST

Panel B
Two Tail
U U
o Failto 7
Reject & Reject & Reject
p=0=lrof==p =0 =<1} p =0
t t
a a
i i
| B g | LB ] |

dr du 2 4—-dy4—-d. 4
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EXAMPLE

v

Estimating housing prices in the UK

v

Quarterly time series data on prices of a representative
house in UK (in £)

v

Explanatory variable: GDP (in billions of £)

v

Time span: 1975 Q1 - 2011 Q2

v

All series are seasonally adjusted and in real prices (i.e.
adjusted for inflation)
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EXAMPLE
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EXAMPLE

Model 1: OLS, using observations 1975:1-2011:2 (T = 146)
Dependent variable: house price

coefficient std. error t-ratio p-value

const -38409.8 6675.01 -5.754 5.04e-08 ***
gdp 737.065 31.4846 23.41 6.09e-51 ***

Mean dependent var 113072.8 S.D. dependent var 43254.80
Sum squared resid 5.65e+10 S.E. of regression  19799.38

R-squared 0.791921 Adjusted R-squared 0.790476
F(1, 144) 548.0434  P-value(F) 6.09e-51
Log-likelihood -1650.595 Akaike criterion 3305.191
Schwarz criterion 3311.158 Hannan-Quinn 3307.615
rho 0.984890 Durbin-Watson 0.023930
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EXAMPLE

» We test for positive serial correlation:

Hp: p<0 (no positive serial correlation)
Hy: p>0 (positive serial correlation)

» One-sided DW critical values at 95% confidence for
T =146 and k' =1 are:

dp=172 and dy=174

» Decision rule:
» ifd <172 reject Hy
» ifd >174 do not reject Hy
» if1.72<d <1.74 inconclusive

» Since d = 0.02 < 1.72, we reject the null hypothesis of no
positive serial correlation
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ALTERNATIVE APPROACH TO AUTOCORRELATION
TESTING

» Suppose we suspect the stochastic error term to be AR(p)
€t = P1€4—1 + p2ct—2 + ... + PpEt—p + Ut

» Since OLS is consistent even under autocorrelation, the
residuals are consistent estimates of the stochastic error
term

» Hence, it is sufficient to:

1. Estimate the original model by OLS, save the residuals e;
2. Regress e; = p1et_1 + p2et—2 + ... + ppei—p + U
3. Testif p; = po = ... = p, = 0 using the standard F-test
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BACK TO EXAMPLE

Model 1: OLS, using observations 1975:1-2011:2 (T

Dependent variable: house price

146)

p-value

coefficient std.

const -38409.8 6675.

gdp 737.065 31.
Mean dependent var 113072.8
Sum squared resid 5.65e+10
R-squared 0.791921
F(1, 144) 548.0434
Log-likelihood -1650.595
Schwarz criterion 3311.158

rho 0.984890

error t-ratio
01 -5.754
4846 23.41

S.D. dependent var
S.E. of regression
Adjusted R-squared
P-value(F)

Akaike criterion
Hannan-Quinn
Durbin-Watson

5.04e-08 ***
6.09e-51 ***

43254.80
19799.38
0.790476
6.09e-51
3305.191
3307.615
0.023930



BACK TO EXAMPLE

Model 2: OLS, using observations 1976:1-2011:2 (T

Dependent variable: e

= 142)

p-value

* %k
* %k
* %k
* %

2.53e-44
3.79e-09
0.0053
0.0260

coefficient std. error t-ratio
el 1.75237 0.0843401 20.78
e 2 -1.05900 0.168179 -6.297
e 3 0.477195 0.168362 2.834
e 4 -0.190822 0.0848111 -2.250
Mean dependent var -443.8153 S.D. dependent var

Sum squared resid 7.22e+08 S.E. of regression
R-squared 0.986973  Adjusted R-squared
F(4, 138) 2613.852  P-value(F)
Log-likelihood -1297.869 Akaike criterion
Schwarz criterion 2615.562 Hannan-Quinn

rho 0.006283  Durbin-Watson

19823.71
2287.633
0.986690
5.8e-129
2603.739
2608.543
1.967108



REMEDY: WHITE ROBUST STANDARD ERRORS

» Note that autocorrelation does not lead to inconsistent
estimates, only to incorrect inference - similar to
heteroskedasticity problem

» We can keep the estimated coefficients, and only adjust the
standard errors

» The White robust standard errors solve not only
heteroskedasticity, but also serial correlation

» Note also that all derived results hold if the assumption
Cov(x,e) = 0is not violated

» First make sure the specification of the model is correct,
only then try to correct for the form of an error term!

N
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SUMMARY

» Autocorrelation does not lead to inconsistent estimates,
but it makes the inference wrong (estimated coefficients
are correct, but their standard errors are not)

» It can be diagnosed using

» Durbin-Watson test

» Analysis of residuals

» It can be remedied by

» White robust standard errors

» Readings:
» Studenmund, Chapter 9
» Wooldridge, Chapter 12
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