Formulas II

The problem of interest period:

$$
F V=P V\left(1+\frac{r_{n}}{m}\right)^{m t}
$$

where $r_{n} \ldots$ nominal interest interest rate, $m \ldots \#$ of conversions (how many time interest is calculated to given nominal interest rate),
t...gives time over interest periods, mt...\#number of interest periods
if $m \rightarrow \infty \rightarrow$ concept of continues interest :

$$
F V=P V e^{f t}
$$

where $e \ldots$ Euler's number $(2,182781 \ldots), f \ldots$ interest intensity, $t .$. time (given to period of $f)$.

Effective interest rate:

An effective interest rate $\left(r_{e}\right)$ is an interest rate that satisfy:

$$
\left(\left(1+\frac{r_{n}}{m}\right)^{m}=e^{f}=\left(1+r_{e}\right)\right.
$$

Value of capital and taxes:

There are three different situations:

1. $I P=T P$,
2. $I P<T P$,
3. Tax is paid only once when the money is withdraw.
4. $I P=T P$ How much is the FV if the tax rate is 15% and tax is paid when interest is accrued. You save $7.000,00$. The bank promised you to pay monthly interest in the amount of 0.3%. The maturity of your account (when you withraw your money) is 6 years.

Solution:

$$
F V_{\operatorname{tax}}=7000(1+0.003 *(1-0.15))^{12 * 6}
$$

where $0.003 \ldots$ monthly interest rate, (1-0.15)...how much money left me after taxpaiment, $12 * 6 \ldots \#$ of interest periods (12 m in one year $/ 6$ years).

Note: We multiply exactly the interest rate.
2. $I P<T P$ How much is the FV if the tax rate is 15% and tax is paid once a year (after one year). You save $7.000,00$. The bank promised you to pay monthly interest in the amount of 0.3%. The maturity of your account (when you withraw your money) is 6 years.

Solution:

$$
F V_{t a x}=7000\left(\left((1+0.003)^{12}-1\right) *(1-0.15)+1\right)^{6}
$$

where we have to calculate interest first and after we have the amount of interest in one year we can pay the tax.

Here $12 \ldots \#$ of month (as well IPśin one tax period - year), 6...\# of tax periods.
Note that the expresion $\left((1+0.003)^{12}-1\right)$
is nothing, but the effective interest rate r_{e}, so
again you follow the logic
from 1 (interest rate multiply by ($1-$ tax).
3. Tax paid only once in T How much is the FV if the tax rate is 15% and tax is paid when you withdraw your money. You save $7.000,00$. The bank promised you to pay monthly interest in the amount of 0.3%. The maturity of your account (when you withraw your money) is 6 years.

Solution:

$$
\mathbf{F} \mathbf{V}_{t a x}=7000\left(\left((1+0.003)^{12 * 6}-1\right) *(1-0.15)+1\right)
$$

the magic here is that you calculate $F V$ using compound interest and then pay 15% tax.

Crucial moment you pay tax ALWAYS only from INTEREST!!!

Tax \& inflation

!!!Alway calculate the tax liability from nominal value. After you separate the tax from earned interest first then you can depreciate the money with inflation:

$$
F V_{t a x, \pi}=\frac{F V_{t a x}}{(1+\pi)^{n}}
$$

