Econometrics - Lecture 3

Regression Models: Interpretation and Comparison

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Economic Models

Describe economic relationships (not only a set of observations), have an economic interpretation

Linear regression model:

$$y_i = \beta_1 + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \varepsilon_i = x_i'\beta + \varepsilon_i$$

- Variables $Y, X_2, ..., X_K$: observable
- Observations: y_i, x_{i2}, ..., x_{iK}, i = 1, ..., N
- Error term ε_i (disturbance term) contains all influences that are not included explicitly in the model; unobservable
- Assumption (A1), i.e., $E\{\epsilon_i \mid X\} = 0$ or $E\{\epsilon_i \mid x_i\} = 0$, gives $E\{y_i \mid x_i\} = x_i`\beta$

the model describes the expected value of y_i given x_i (conditional expectation)

Example: Wage Equation

Wage equation (Verbeek's dataset "wages1")

$$wage_i = \beta_1 + \beta_2 male_i + \beta_3 school_i + \beta_4 exper_i + \varepsilon_i$$

Answers questions like:

Expected wage p.h. of a female with 12 years of education and 10 years of experience

Wage equation fitted to all 3294 observations

 $wage_i = -3.38 + 1.34^* male_i + 0.64^* school_i + 0.12^* exper_i$

 Expected wage p.h. of a female with 12 years of education and 10 years of experience: 5.50 USD

 $wage_i = -3.38 + 1.34*0 + 0.64*12 + 0.12*10 = 5.50$

Regression Coefficients

Linear regression model:

$$y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_K x_{iK} + \varepsilon_i = x_i'\beta + \varepsilon_i$$

Coefficient β_k measures the change of Y if X_k changes by one unit

$$\frac{\Delta E\{y_i \mid x_i\}}{\Delta x_k} = \beta_k \text{ for } \Delta x_k = 1$$

For continuous regressors

$$\frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} = \beta_k$$

Marginal effect of changing X_k on Y

- Ceteris paribus condition: measuring the effect of a change of Y due to a change $\Delta x_k = 1$ by β_k implies
 - knowledge which other X_i , $i \neq k$, are in the model
 - that all other X_i , $i \neq k$, remain unchanged

Example: Coefficients of Wage Equation

Wage equation

 $wage_i = \beta_1 + \beta_2 male_i + \beta_3 school_i + \beta_4 exper_i + \varepsilon_i$

 β_3 measures the impact of one additional year at school upon a person's wage, keeping gender and years of experience fixed

$$\frac{\partial E\{wage_i | male_i, school_i, exper_i\}}{\partial school_i} = \beta$$

Wage equation fitted to all 3294 observations

 $wage_i = -3.38 + 1.34^* male_i + 0.64^* school_i + 0.12^* exper_i$

- One extra year at school, e.g., at the university, results in an increase of 64 cents; a 4-year study results in an increase of 2.56 USD of the wage p.h.
- This is true for otherwise (gender, experience) identical people

Regression Coefficients, cont'd

- The marginal effect of a changing regressor may depend on other variables
- Examples
- Wage equation: $wage_i = \beta_1 + \beta_2 male_i + \beta_3 age_i + \beta_4 age_i^2 + \varepsilon_i$ the impact of changing age depends on age:

$$\frac{\partial E\{y_i | x_i\}}{\partial age_i} = \beta_3 + 2\beta_4 age_i$$

Wage equation may contain β₃ age_i + β₄ age_i male_i: marginal effect of age depends upon gender

$$\frac{\partial E\{y_i | x_i\}}{\partial age_i} = \beta_3 + \beta_4 male_i$$

Elasticities

Elasticity: measures the *relative* change in the dependent variable Y due to a *relative* change in X_k

For a linear regression, the elasticity of Y with respect to X_k is $\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik}} = \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i | x_i\}} = \frac{x_{ik}}{x_i'\beta} \beta_k$

For a loglinear model with $(\log x_i)' = (1, \log x_{i2}, ..., \log x_{ik})$ $\log y_i = (\log x_i)' \beta + \varepsilon_i$ elasticities are the coefficients β (see slide 10) $\partial E\{y \mid x\} / E\{y \mid x\}$

$$\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \beta_k$$

Example: Wage Elasticity

Wage equation, fitted to all 3294 observations:

 $log(wage_i) = 1.09 + 0.20 male_i + 0.19 log(exper_i)$

- The coefficient of log(*exper*_i) measures the elasticity of wages with respect to experience:
- 100% more years of experience result in an increase of wage by 0.19 or a 19% higher wage
- 10% more years of experience result in a 1.9% higher wage

Elasticities, continues slide 8

This follows – for log $y_i = (\log x_i)$, $\beta + \varepsilon_i - from$ $\frac{\partial E\{\log y_i | x_i\}}{\partial x_{ik}} = \frac{\partial E\{\log y_i | x_i\}}{\partial E\{y_i | x_i\}} \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}}$ $\approx \frac{\partial \log E\{y_i | x_i\}}{\partial E\{y_i | x_i\}} \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} = \frac{1}{E\{y_i | x_i\}} \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}}$ $\frac{\partial E\{\log y_i | x_i\}}{\partial x_{ik}} = \frac{\beta_k}{x_{ik}}$

and

$$\frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i | x_i\}} = \frac{\partial E\{\log y_i | x_i\}}{\partial x_{ik}} E\{y_i | x_i\} \frac{x_{ik}}{E\{y_i | x_i\}}$$
$$= \frac{\beta_k}{x_{ik}} x_{ik} = \beta_k$$

Semi-Elasticities

Semi-elasticity: measures the *relative* change in the dependent variable Y due to an (absolute) one-unit-change in X_k

Linear regression for

$$\log y_i = x_i' \beta + \varepsilon_i$$

the elasticity of Y with respect to X_k is

$$\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \beta_k x_{ik}$$

 β_k measures the relative change in Y due to a change in X_k by one unit

β_k is called semi-elasticity of Y with respect to X_k

Example: Wage Differential

Wage equation, fitted to all 3294 observations:

 $log(wage_i) = 1.09 + 0.20 male_i + 0.19 log(exper_i)$

- The semi-elasticity of the wages with respect to gender, i.e., the relative wage differential between males and females, is the coefficient of *male*_i: 0.20 or 20%
- The wage differential between males ($male_i = 1$) and females is obtained from $wage_f = exp\{1.09 + 0.19 log(exper_i)\}$ and $wage_m = wage_f exp\{0.20\} = 1.22 wage_f$; the wage differential is 0.22 or 22%; the coefficient 0.20¹) is a good approximation.

¹⁾ For small x, $\exp\{x\} = \sum_k x^k / k! \approx 1 + x$

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Selection of Regressors

Specification errors:

- Omission of a relevant variable
- Inclusion of an irrelevant variable

Questions:

- What are the consequences of a specification error?
- How to avoid specification errors?
- How to detect an erroneous specification?

Example: Income and Consumption

Income and Consumption

Income and Consumption: Growth Rates

Consumption Function

- C: Private Consumption, real, yearly growth rate (PCR_D4)
- Y: Household's Disposable Income, real, yearly growth rate (PYR_D4)
- *T*: Trend ($T_i = i/1000$)

 $\hat{C} = 0.011 + 0.761Y, \quad adj R^2 = 0.717$

Consumption function with trend $T_i = i/1000$:

 $\hat{C} = 0.016 + 0.708 Y - 0.068T$, $adj R^2 = 0.741$

Consumption Function, cont'd

OLS estimated consumption function: Output from GRETL

Dependent variable : PCR_D4

	coefficient	std. error	t-ratio	p-value
const PYR_D4 T	0,0162489 0,707963 -0,0682847	0,00187868 0,0424086 0,0188182	8,649 16,69 -3,629	1,76e-014 *** 4,94e-034 *** 0,0004 ***
Mean depe Sum squar R- squared F(2, 129) Log-likeliho Schwarz cr rho	ed resid I Dod	0,024911 0,007726 0,745445 188,8830 455,9302 -897,2119 0,701126	S.D. dependent var S.E. of regression Adjusted R-squared P-value (F) Akaike criterion Hannan-Quinn Durbin-Watson	0,015222 0,007739 0,741498 4,71e-39 -905,8603 -902,3460 0,601668

Misspecification: Two Models

Two models:

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$$
 (A
 $y_i = x_i'\beta + v_i$ (B
with *J*-vector z_i

Misspecification: Omitted Regressor

Specified model is (B), but true model is (A)

$$y_{i} = x_{i}'\beta + z_{i}'\gamma + \varepsilon_{i}$$
(A)
$$y_{i} = x_{i}'\beta + v_{i}$$
(B)

OLS estimates b_B of β from (B) can be written with y_i from (A):

$$b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i$$

If (A) is the true model but (B) is specified, i.e., *J* relevant regressors z_i are omitted, b_B is biased by

$$E\left\{\left(\sum_{i} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i} x_{i} z_{i}^{\prime} \gamma\right\}$$

Omitted variable bias!

No bias if (a) $\gamma = 0$ or if (b) variables in x_i and z_i are orthogonal

Misspecification: Irrelevant Regressor

Specified model is (A), but true model is (B):

 $y_{i} = x_{i}'\beta + z_{i}'\gamma + \varepsilon_{i}$ (A) $y_{i} = x_{i}'\beta + v_{i}$ (B)

If (B) is the true model but (A) is specified, i.e., the model contains irrelevant regressors z_i

The OLS estimates b_A

- are unbiased
- have higher variances and standard errors than the OLS estimate
 b_B obtained from fitting model (B)

Consequences

Consequences of specification errors:

- Omission of a relevant variable
- Inclusion of a irrelevant variable

Specification Search

General-to-specific modeling:

- 1. List all potential regressors, based on, e.g.,
 - economic theory
 - empirical research
 - availability of data
- 2. Specify the most general model: include all potential regressors
- 3. Iteratively, test which variables have to be dropped, re-estimate
- 4. Stop if no more variable has to be dropped
- The procedure is known as the LSE (London School of Economics) method

Specification Search, cont'd

Alternative procedures

- Specific-to-general modeling: start with a small model and add variables as long as they contribute to explaining Y
- Stepwise regression
- Specification search can be subsumed under data mining

Practice of Specification Search

Applied research

- Starts with a in terms of economic theory plausible specification
- Tests whether imposed restrictions are correct, such as
 - Test for omitted regressors
 - Test for autocorrelation of residuals
 - Test for heteroskedasticity
- Tests whether further restrictions need to be imposed
 - Test for irrelevant regressors

Obstacles for good specification

- Complexity of economic theory
- Limited availability of data

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Regressor Selection Criteria

Criteria for adding and deleting regressors

- *t*-statistic, *F*-statistic
- Adjusted R²
- Information Criteria: penalty for increasing number of regressors
 - Akaike's Information Criterion

$$AIC = \log \frac{1}{N} \sum_{i} e_i^2 + \frac{2K}{N}$$

- Alternative criteria are
 - Schwarz's Bayesian Information Criterion (BIC)
 - Hannan-Quinn Information Criterion

model with smaller BIC (or AIC) is preferred

The corresponding probabilities for type I and type II errors can hardly be assessed

Information Criteria

The most popular information criteria are

Akaike's Information Criterion

$$AIC = \log \frac{1}{N} \sum_{i} e_i^2 + \frac{2K}{N}$$

Schwarz's Bayesian Information Criterion

 $BIC = \log_{\frac{1}{N}} \sum_{i} e_i^2 + \frac{K}{N} \log N$

Hannan-Quinn Information Criterion

$$HQIC = \log \frac{1}{N} \sum_{i} e_i^2 + 2K \log \log N$$

Decide in favour of the model with the *lowest* value of the information criterion

Information Criteria: Penalties

Akaike	N	log(N)	AIC	BIC	HQIC
Andre 2/N	2	0,69	1,00	0,35	-0,73
Schwarz	3	1,10	0,67	0,37	0,19
log(N)/N	4	1,39	0,50	0,35	0,65
Hannan-Quinn	6	1,79	0,33	0,30	1,17
$2\log(\log(N))$	8	2,08	0,25	0,26	1,46
5	10	2,30	0,20	0,23	1,67
4	30	3,40	0,07	0,11	2,45
3	50	3,91	0,04	0,08	2,73
2	100	4,61	0,02	0,05	3,05
1	200	5,30	0,01	0,03	3,33
0	500	6,21	0,00	0,01	3,65
0 2 4 6 log(N) 8	1000	6,91	0,00	0,01	3,87

Wages: Which Regressors?

Are school and exper relevant regressors in

$$wage_i = \beta_1 + \beta_2 male_i + \beta_3 school_i + \beta_4 exper_i + \varepsilon_i$$

or shall they be omitted?

- *t*-test: *p*-values are 4.62E-80 (*school*) and 1.59E-7 (*exper*)
- F-test: F = [(0.1326-0.0317)/2]/[(1-0.1326)/(3294-4)] = 191.24, with p-value 2.68E-79
- adj *R*²: 0.1318 for the wider model, much higher than 0.0315
- AIC: the wider model (AIC = 16690.2) is preferable; for the smaller model: AIC = 17048.5
- BIC: the wider model (BIC = 16714.6) is preferable; for the smaller model: BIC = 17060.7

All criteria suggest the wider model

Wages, cont'd

OLS estimated smaller wage equation (Table 2.1, Verbeek)

Dependent variable: wage					
Variable	Estimate	Standard error			
constant <i>male</i>	5.1469 1.1661	0.0812 0.1122			
s = 3.2174	$R^2 = 0.0317$	F = 107.93			

with AIC = 17048.46, BIC = 17060.66

	Wages, cont'd						
	OLS estimated wider wage equation (Table 2.2, Verbeek)						
		Table 2.2 OLS results wage equation					
		Dependent variable: wage					
		Variable	Estimate	Standard error	t-ratio		
		constant	-3.3800	0.4650	-7.2692		
		male school	$1.3444 \\ 0.6388$	$0.1077 \\ 0.0328$	12.4853 19.4780		
		exper	0.1248	0.0238	5.2530		
		s = 3.0462	$R^2 = 0.1326$	$\overline{R}^2 = 0.1318 R$	7 = 167.63		
_	with AIC = 16690.18, BIC = 16714.58						

The AIC Criterion

Various versions in literature

• Verbeek, also Greene:

$$AIC_{V} = \log \frac{1}{N} \sum_{i} e_{i}^{2} + \frac{2K}{N} = \log(s^{2}) + 2K / N$$

Akaike's original formula is

$$A/C_{A} = -2 I(b)/N + 2K/N = A/C_{V} + 1 + \log(2\pi)$$

with the log-likelihood function

$$\ell(b) = -\frac{N}{2} \left(1 + \log(2\pi) + \log(s^2) \right)$$

GRETL:

$$AIC_G = N\log(s^2) + 2K + N(1 + \log(2\pi)) = NAIC_A$$

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Nested Models: Comparison

Model (B), $y_i = x_i \beta + v_i$, see slide 21, is nested in model

 $y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$ (A)

i.e., (A) is extended by J additional regressors z_i

Do the *J* added regressors contribute to explaining *Y*?

• *F*-test (*t*-test when J = 1) for testing H₀: all coefficients of added regressors are zero

$$F = \frac{(R_A^2 - R_B^2) / J}{(1 - R_A^2) / (N - K)}$$

- R_B^2 and R_A^2 are the R^2 of the models without (B) and with (A) the *J* additional regressors, respectively
- Adjusted R^2 : adj $R_A^2 >$ adj R_B^2 equivalent to F > 1
- Information Criteria: choose the model with the smaller value of the information criterion
Comparison of Non-nested Models

Non-nested models:

$$y_i = x_i'\beta + \varepsilon_i$$
 (A)
 $y_i = z_i'\gamma + v_i$ (B)

at least one component in z_i that is not in x_i

 Non-nested or encompassing *F*-test: compares by *F*-tests artificially nested models

 $y_i = x_i'\beta + z_{2i}'\delta_B + \varepsilon_i^*$ with z_{2i} : regressors from z_i not in x_i

 $y_i = z_i'\gamma + x_{2i}'\delta_A + v_i^*$ with x_{2i} : regressors from x_i not in z_i

- Test validity of model A by testing H_0 : $\delta_B = 0$
- Analogously, test validity of model B by testing H_0 : $\delta_A = 0$
- Possible results: A or B is valid, both models are valid, none is valid
- Other procedures: *J*-test, PE-test (see below)

Wages: Which Model?

Which of the models is adequate?

```
log(wage_i) = 0.119 + 0.260 male_i + 0.115 school_i (A)
```

```
adj R^2 = 0.121, BIC = 5824.90,
```

 $log(wage_i) = 0.119 + 0.064 age_i$

adj $R^2 = 0.069$, BIC = 6004.60

Artificially nested model

 $log(wage_i) =$

 $= -0.472 + 0.243 \text{ male}_{i} + 0.088 \text{ school}_{i} + 0.035 \text{ age}_{i}$

Test of model validity

```
model A: t-test for age, p-value 5.79E-15; model A is not adequate
```

model B: F-test for male and school: model B is not adequate

(B)

J-Test: Comparison of Nonnested Models

Non-nested models: (A) $y_i = x_i'\beta + \varepsilon_i$, (B) $y_i = z_i'\gamma + v_i$ with components of z_i that are not in x_i

Combined model

 $y_i = (1 - \delta) x_i'\beta + \delta z_i'\gamma + u_i$

with $0 < \delta < 1$; δ indicates model adequacy

Transformed model

 $y_{i} = x_{i}^{'}\beta^{*} + \delta z_{i}^{'}c + u_{i} = x_{i}^{'}\beta^{*} + \delta \hat{y}_{iB} + u_{i}^{*}$

with OLS estimate *c* for γ and predicted values $\hat{y}_{iB} = z_i$ 'c obtained from fitting model B; $\beta^* = (1-\delta)\beta$

- **J**-test for validity of model A by testing H_0 : δ = 0
- Less computational effort than the encompassing F-test

Wages: Which Model?

Which of the models is adequate?

```
log(wage_i) = 0.119 + 0.260 male_i + 0.115 school_i (A)
```

```
adj R^2 = 0.121, BIC = 5824.90,
```

 $log(wage_i) = 0.119 + 0.064 age_i$

adj R^2 = 0.069, BIC = 6004.60

Test the validity of model B by means of the J-test

Extend the model B to

 $log(wage_i) = -0.587 + 0.034 age_i + 0.826 \hat{y}_{iA}$

with values \hat{y}_{iA} predicted for log(wage_i) from model A

- Test of model validity: *t*-test for coefficient of \hat{y}_{iA} , *t* = 15.96, *p*-value 2.65E-55
- Model B is not a valid model

(B)

Linear vs. Loglinear Model

Choice between linear and loglinear functional form

$$y_{i} = x_{i}'\beta + \varepsilon_{i} \qquad (A)$$

log $y_{i} = (\log x_{i})'\beta + v_{i} \qquad (B)$

- In terms of economic interpretation: Are effects additive or multiplicative?
- Log-transformation stabilizes variance, particularly if the dependent variable has a skewed distribution (wages, income, production, firm size, sales,...)
- Loglinear models are easily interpretable in terms of elasticities

PE-Test: Linear vs. Loglinear Model

Choice between linear and loglinear functional form

Estimate both models

 $y_i = x_i'\beta + \varepsilon_i$ (A) log $y_i = (\log x_i)'\beta + v_i$ (B)

calculate the fitted values \hat{y} (from model A) and log \ddot{y} (from B)

• Test
$$H_0$$
: $\delta_{LIN} = 0$ in

 $y_i = x_i'\beta + \delta_{\text{LIN}} (\log (\hat{y}_i) - \log \ddot{y}_i) + u_i$

not rejecting H_0 : $\delta_{LIN} = 0$ favors the model A

• Test
$$H_0$$
: $\delta_{LOG} = 0$ in

 $\log y_i = (\log x_i)'\beta + \delta_{\text{LOG}} (\hat{y}_i - \exp\{\log y_i\}) + u_i$

not rejecting H_0 : $\delta_{LOG} = 0$ favors the model B

Both null hypotheses are rejected: find a more adequate model

Wages: Which Model?

Test of validity of models by means of the PE-test

```
The fitted models are (with l_x for log(x))
```

 $wage_i = -2.046 + 1.406 male_i + 0.608 school_i$ (A)

 $I_wage_i = 0.119 + 0.260 male_i + 0.115 I_school_i$ (B)

- x_f: predicted value of x: d_log = log(wage_f) l_wage_f, d_lin = wage_f exp(l_wage_f)
- Test of validity of model A:

*wage*_i = -1.708 + 1.379 *male*_i + 0.637 *school*_i – 4.731 *d_log*_i

with *p*-value 0.013 for *d_log*; validity of model A in doubt

```
Test of model validity, model B:
```

 $I_wage_i = -1.132 + 0.240 male_i + 1.008 I_school_i + 0.171 d_lin_i$ with *p*-value 0.076 for *d_lin*; model B to be preferred

The PE-Test

Choice between linear and loglinear functional form

- The auxiliary regressions are estimated for testing purposes
- If the linear model is not rejected: accept the linear model
- If the loglinear model is not rejected: accept the loglinear model
- If both are rejected, neither model is appropriate, a more adequate model should be considered
- In case of the Individual Wages example:
 - Linear model (A): *t*-statistic is 4.731, *p*-value 0.013: the model is rejected
 - Loglinear model (B): t-statistic is 0.171, p-value 0.076 : the model is not rejected

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Non-linear Functional Forms

Model specification

 $y_i = g(x_i, \beta) + \varepsilon_i$

substitution of $g(x_i, \beta)$ for $x_i'\beta$: allows for two types on non-linearity

- **g**(x_i , β) non-linear in regressors (but linear in parameters)
 - Powers of regressors, e.g., $g(x_i, \beta) = \beta_1 + \beta_2 age_i + \beta_3 age_i^2$
 - Interactions of regressors, e.g., $g(x_i, \beta) = \beta_1 + \beta_2 age_i + \beta_3 age_i^* male_i$

OLS technique still works; *t*-test, *F*-test for specification check

- **g**(x_i , β) non-linear in regression coefficients, e.g.,
 - $\Box \quad g(x_{i}, \beta) = \beta_{1} x_{i1}^{\beta 2} x_{i2}^{\beta 3}$

logarithmic transformation: log g(x_i , β) = log β_1 + β_2 log x_{i1} + β_3 log x_{i2}

$$\Box \quad g(x_i, \beta) = \beta_1 + \beta_2 x_i^{\beta_3}$$

non-linear least squares estimation, numerical procedures

Various specification test procedures, e.g., RESET test, Chow test

Individual Wages: Effect of Gender and Education

- Effect of gender may be depending of education level
- Separate models for males and females
- Interaction terms between dummies for education level and male
- Example: Belgian Household Panel, 1994 ("bwages", N=1472)
- Five education levels
- Model for log(wage) with education dummies
- Model with interaction terms between education dummies and gender dummy
- *F*-statistic for interaction terms:

 $F(5, 1460) = \{(0.4032-0.3976)/5\}/\{(1-0.4032)/(1472-12)\}$ = 2.74

with a p-value of 0.018

Wages: Model with Education Dummies

Model with education dummies: Verbeek, Table 3.11

Table 3.11OLS results specification 5

Dependent variable: log(*wage*)

Variable	Estimate	Standard error	t-ratio
constantmaleeduc = 2	1.272 0.118 0.144	0.045 0.015 0.033	28.369 7.610 4.306
educ = 3 $educ = 4$	$0.305 \\ 0.474$	0.032 0.033	9.521 14.366
$educ = 5$ $\log(exper)$	0.639 0.230	0.033 0.011	19.237 21.804
s = 0.282	$R^2 = 0.3976$ $\bar{R}^2 = 0.3951$	F = 161.14 $S = 116.47$	7

Wages: Model with Gender Interactions

Wage equation with interactions educ*male

Table 3.12 OLS results specification 6						
Dependent variable: l	og(wage)					
Variable	Estimate	Standard error	<i>t</i> -ratio			
constant	1.216	0.078	15.653			
male	0.154	0.095	1.615			
educ = 2	0.224	0.068	3.310			
educ = 3	0.433	0.063	6.85			
educ = 4	0.602	0.063	9.58			
educ = 5	0.755	0.065	11.67			
log(<i>exper</i>)	0.207	0.017	12.53			
$educ = 2 \times male$	-0.097	0.078	-1.24			
$educ = 3 \times male$	-0.167	0.073	-2.27			
$educ = 4 \times male$	-0.172	0.074	-2.31°			
$educ = 5 \times male$	-0.146	0.076	-1.93			
$log(exper) \times male$	0.041	0.021	1.89			
$s = 0.281$ $R^2 = 0.403$	$2 \bar{R}^2 = 0.3988$	F = 89.69 $S = 115.$	37			

RESET Test

Test of the linear model $E\{y_i | x_i\} = x_i \beta$ against misspecification of the functional form:

- Null hypothesis: linear model is correct functional form
- Test of H₀: RESET test (Regression Specification Error Test), Ramsey (1969)
- Test idea: linear model is extended by adding ŷ²_i, ŷ³_i, ..., where ŷ_i is the fitted values from the linear model; extension does not improve model fit under H₀
 - □ \hat{y}_i^2 is a function of squares (and interactions) of the regressor variables; analogously for \hat{y}_i^3 , ...
 - If the *F*-test indicates that the additional regressor \hat{y}_i^2 contributes to explaining *Y*: the linear relation is not adequate, another functional form is more appropriate

The RESET Test Procedure

Test of the linear model $E\{y_i | x_i\} = x_i^{\beta}$ against misspecification of the functional form:

- Linear model extended by adding $\hat{y}_i^2, ..., \hat{y}_i^Q$
- *F* (or *t*-) test to decide whether \hat{y}_i^2 , ..., \hat{y}_i^Q contribute as additional regressors to explaining *Y*
- Maximal power Q of fitted values: typical choice is Q = 2 or Q = 3

In **GRETL**: Ordinary Least Squares... => Tests => Ramsey's RESET, input of Q

Wages: RESET Test

The fitted models are (with I_x for log(x))

 $wage_i = -2.046 + 1.406 male_i + 0.608 school_i$ (A)

 $I_wage_i = 0.119 + 0.260 male_i + 0.115 I_school_i$ (B)

Test of specification of the functional form with Q = 3

- Model A: Test statistic: F(2, 3288) = 10.23, p-value = 3.723e-005
- Model B: Test statistic: F(2, 3288) = 4.52, p-value = 0.011

For both models the adequacy of the functional form is in doubt

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Selection Criteria
- Comparison of Competing Models
- Specification of the Functional Form
- Structural Break

Structural Break: Chow Test

In time-series context, coefficients of a model may change due to a major policy change, e.g., the oil price shock

Modeling a process with structural break

 $\mathsf{E}\{y_i \mid x_i\} = x_i'\beta + g_i x_i' \gamma$

with dummy variable $g_i=0$ before the break, $g_i=1$ after the break

- **Regressors** x_i , coefficients β before, $\beta + \gamma$ after the break
- Null hypothesis: no structural break, γ=0
- Test procedure: fitting the extended model, F- (or t-) test of γ =0

$$F = \frac{S_r - S_u}{S_u} \frac{N - 2K}{K}$$

with $S_r(S_u)$: sum of squared residuals of the (un)restricted model

Chow test for structural break or structural change, Chow (1960)

Chow Test: The Practice

Test procedure is performed in the following steps

- Fit the restricted model: S_r
- Fit the extended model: S_u
- Calculate F and the p-value from the F-distribution with K and N-2K d.f.

Needs knowledge of break point

In **GRETL**: Ordinary Least Squares... => Tests => Chow test input of the first observation period after the break point

Your Homework

1. Use the data set "bwages" of Verbeek for the following analyses:

- a) Estimate the model where the log hourly wages (*Inwage*) are explained by *Inexper*, *male*, and *educ*; interpret the results.
- b) Repeat exercise a) using dummy variables for the education levels, e.g., *d1* for *educ* = 1, instead of the variable *educ*; compare the models from exercises a) and b) by using (i) the non-nested *F*-test and (ii) the *J*-test; interpret the results.
- c) Use the PE-test to decide whether the model in a) (where log hourly wages, *Inwage*, are explained) or the same model but with levels, *wage*, of hourly wages as explained variable is to be preferred; interpret the result.
- d) Estimate the model for log hourly wages (*Inwage*) with regressors exper, male, educ, and the interaction male*exper as additional regressor; interpret the result.

Your Homework, cont'd

- 2. OLS is used to estimate β from $y_i = x_i \beta + \varepsilon_i$, but a relevant regressor z_i is neglected: $y_i = x_i \beta + z_i \gamma + \varepsilon_i$. (a) Show that the estimate *b* is biased, and derive an expression for the bias; (b) what test statistic can be used for testing H₀: $\gamma = 0$?
- 3. The linear regression is specified as

 $\log y_i = x_i'\beta + \varepsilon_i$

Show that the elasticity of Y with respect to X_k is $\beta_k x_{ik}$.