Econometrics - Lecture 4

Heteroskedasticity

Contents

- Violations of V{ ϵ } = $\sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation
- Autocorrelation

Gauss-Markov Assumptions

Observation y_i is a linear function

$$y_i = x_i'\beta + \varepsilon_i$$

of observations x_{ik} , k = 1, ..., K, of the regressor variables and the error term ε_i

for
$$i = 1, ..., N$$
; $x_i' = (x_{i1}, ..., x_{iK})$; $X = (x_{ik})$

A1	$E\{\varepsilon_i\} = 0$ for all <i>i</i>
A2	all ε_i are independent of all x_i (exogeneous x_i)
A3	$V{\varepsilon_i} = \sigma^2$ for all <i>i</i> (homoskedasticity)
A4	Cov{ ε_i , ε_j } = 0 for all <i>i</i> and <i>j</i> with $i \neq j$ (no autocorrelation)

In matrix notation: $E\{\varepsilon\} = 0, V\{\varepsilon\} = \sigma^2 I_N$

OLS Estimator: Properties

Under assumptions (A1) and (A2):

1. The OLS estimator *b* is unbiased: $E\{b\} = \beta$

Under assumptions (A1), (A2), (A3) and (A4):

2. The variance of the OLS estimator is given by

 $V\{b\} = \sigma^2(\Sigma_i \, x_i \, x_i')^{-1} = \sigma^2(X' \, X)^{-1}$

3. The sampling variance s^2 of the error terms ε_i ,

 $s^2 = (N - K)^{-1} \Sigma_i e_i^2$ is unbiased for σ^2

4. The OLS estimator *b* is BLUE (best linear unbiased estimator)

Violations of V{ ϵ } = $\sigma^2 I_N$

Implications of the Gauss-Markov assumptions for ϵ :

$$V{\epsilon} = \sigma^2 I_N$$

Violations:

Heteroskedasticity

$$\begin{split} & V\{\epsilon\} = \text{diag}(\sigma_1^{\ 2}, \ \dots, \ \sigma_N^{\ 2}) \\ & \text{with } \sigma_i^2 \neq \sigma_j^2 \text{ for at least one pair } i \neq j, \text{ or using } \sigma_i^2 = \sigma^2 h_i^2, \\ & V\{\epsilon\} = \sigma^2 \Psi = \sigma^2 \text{ diag}(h_1^{\ 2}, \ \dots, \ h_N^{\ 2}) \end{split}$$

• Autocorrelation: $V{\epsilon_i, \epsilon_j} \neq 0$ for at least one pair $i \neq j$ or $V{\epsilon} = \sigma^2 \Psi$

with non-diagonal elements different from zero

Example: Household Income and Expenditures

Household Income and Expenditures, cont'd

Residuals $e = y - \hat{y}$ from

 $\hat{Y} = 44.18 + 0.17 X$

X: monthly HH-income Y: expenditures for durable goods

the larger the income, the more scattered are the residuals

Typical Situations for Heteroskedasticity

Heteroskedasticity is typically observed

- in data from cross-sectional surveys, e.g., surveys in households or regions
- in data with variance that depends of one or several explanatory variables, e.g., variance of the firms' turnover depends on firm size (in number of staff)
- in data from financial markets, e.g., exchange rates, stock returns

Example: Household Expenditures

Variation of expenditures for food, increasing with growing income; from Verbeek, Fig. 4.1

Autocorrelation of Economic Time-series

- Consumption in actual period is similar to that of the preceding period; the actual consumption "depends" on the consumption of the preceding period
- Consumption, production, investments, etc.: to be expected that successive observations of economic variables correlate positively
- Seasonal adjustment: application of smoothing and filtering algorithms induces correlation of the smoothed data

Example: Imports

Scatter-diagram of by one period lagged imports [MTR(-1)] against actual imports [MTR]

Correlation coefficient between MTR und MTR(-1): 0.9994

Example: Import Function

MTR: Imports FDD: Total Demand (from AWM-database)

Import function: MTR = -227320 + 0.36 FDD R² = 0.977, t_{FFD} = 74.8

Import Function: Residuals

RESID: $e_t = MTR - (-227320 + 0.36 FDD)$

Import Function: Residuals, cont'd

Scatter-diagram of by one period lagged residuals [Resid(-1)] against actual residuals [Resid]

Serial correlation!

Typical Situations for Autocorrelation

Autocorrelation is typically observed if

- a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
- the functional form of a regressor is incorrectly specified
- the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Warning! Omission of a relevant regressor with trend implies autocorrelation of the error terms; in econometric analyses, autocorrelation of the error terms is always to be suspected!
- Autocorrelation of the error terms indicates deficiencies of the model specification
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Some Import Functions

Regression of imports (MTR) on total demand (FDD) MTR = $-2.27 \times 10^9 + 0.357$ FDD, $t_{FDD} = 74.9$, R² = 0.977 Autocorrelation (of order 1) of residuals: $Corr(e_t, e_{t-1}) = 0.993$ Import function with trend (T) $MTR = -4.45 \times 10^9 + 0.653 FDD - 0.030 \times 10^9 T$ $t_{\text{FDD}} = 45.8, t_{\text{T}} = -21.0, R^2 = 0.995$ Multicollinearity? Corr(FDD, T) = 0.987! Import function with lagged imports as regressor $MTR = -0.124 \times 10^9 + 0.020 FDD + 0.956 MTR_{-1}$ $t_{\text{FDD}} = 2.89, t_{\text{MTR}(-1)} = 50.1, \text{R}^2 = 0.999$

Consequences of V{ ϵ } $\neq \sigma^2 I_N$ for OLS estimators

OLS estimators b for β

- are unbiased
- are consistent
- have the covariance-matrix

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator $s^2 = e'e/(N-K)$ for σ^2 is biased

Consequences of V{ ϵ } $\neq \sigma^2 I_N$ for Applications

- OLS estimators *b* for β are still unbiased
- Routinely computed standard errors are biased; the bias can be positive or negative
- t- and F-tests may be misleading

Remedies

- Alternative estimators
- Corrected standard errors
- Modification of the model
- Tests for identification of heteroskedasticity and for autocorrelation are important tools

Contents

- Violations of V{ ϵ } = $\sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation
- Autocorrelation

Example: Labor Demand

Verbeek's data set "labour2": Sample of 569 Belgian companies (data from 1996)

- Variables
 - Iabour: total employment (number of employees)
 - *capital*: total fixed assets
 - wage: total wage costs per employee (in 1000 EUR)
 - output: value added (in million EUR)
- Labour demand function

labour = $\beta_1 + \beta_2^*$ *wage* + β_3^* *output* + β_4^* *capital*

Labor Demand and Potential Regressors

Inference under Heteroskedasticity

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

with Ψ = diag(h_1^2 , ..., h_N^2)

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are homoskedastic

The Correct Variances

- $V{\epsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$, i = 1, ..., N: each observation has its own unknown parameter h_i
- *N* observation for estimating *N* unknown parameters?
- To estimate σ_{i}^{2} and V{*b*}
- Known form of the heteroskedasticity, specific correction
 - E.g., $h_i^2 = z_i' \alpha$ for some variables z_i
- White's heteroskedasticity-consistent covariance matrix estimator (HCCME)

 $\tilde{\mathbf{V}}\{b\} = \sigma^2(XX)^{-1}(\Sigma_{\mathbf{i}}\hat{h}_{\mathbf{i}}^2 x_{\mathbf{i}} x_{\mathbf{i}}') (XX)^{-1}$

with $\hat{h}_i^2 = e_i^2$

- Denoted as HC_0
- □ Inference based on HC_0 : "heteroskedasticity-robust inference"

White's Standard Errors

White's standard errors for *b*

- Square roots of diagonal elements of HCCME
- Underestimate the true standard errors
- Various refinements, e.g., $HC_1 = HC_0[N/(N-K)]$

In **GRETL**: HC_0 is the default HCCME, HC_1 and other modifications are available as options

Labor Demand Function

For Belgian companies, 1996; Verbeek's data set "labour2"

Table 4.1OLS results linear model

Dependent variable: *labour*

Variable	Estimate	Standard error	r <i>t</i> -ratio
constant	287.72	19.64	14.648
wage output	-6.742 15.40	0.501 0.356	-13.446 43.304
capital	-4.590	0.350	-17.067
s = 156.26	$R^2 = 0.9352$	$\bar{R}^2 = 0.9348$	F = 2716.02

labour = β_1 + β_2 **wage* + β_3 **output* + β_4 **capital*

Labor Demand Function: Residuals vs *output*

Can the error terms be assumed to be homoskedastic?

- They may vary depending on the company size, measured by, e.g., size of output or capital
- Regression of squared residuals on appropriate regressors will indicate heteroskedasticity

Auxiliary regression of squared residuals, Verbeek

Table 4.	2 Auxiliary rea	gression Breusch-Pag	gan test
Dependent v	ariable: e_i^2		
Variable	Detimate	Ctondord owner	t matio

Variable	Estimate	Standard error	<i>t</i> -ratio
constant	-22719.51	11838.88	-1.919
wage	228.86	302.22	0.757
output	5362.21	214.35	25.015
capital	-3543.51	162.12	-21.858
s = 94182	$R^2 = 0.5818$	$\bar{R}^2 = 0.5796$ $F = 2$	262.05

Indicates dependence of error terms on output, capital, not on wage

With White standard errors: Output from GRETL

Dependent variable : LABOR Heteroskedastic-robust standard errors, variant HC0,

	coefficient	std. error	t-ratio	p-value
const	287,719	64,8770	4,435	1,11e-05 ***
WAGE	-6,7419	1,8516	-3,641	0,0003 ***
CAPITAL	-4,5905	1,7133	-2,679	0,0076 ***
OUTPUT	15,4005	2,4820	6,205	1,06e-09 ***
Mean depe	endent var	201,024911	S.D. dependent var	611,9959
Sum squar	ed resid	13795027	S.E. of regression	156,2561
R- squared	l	0,935155	Adjusted R-squared	0,934811
F(2, 129)		225,5597	P-value (F)	3,49e-96
Log-likeliho	bod	455,9302	Akaike criterion	7367,341
Schwarz cr	riterion	-3679,670	Hannan-Quinn	7374,121

Estimated function

$$labour = \beta_1 + \beta_2 * wage + \beta_3 * output + \beta_4 * capital$$

OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.) and GLS estimates with we arrow the standard errors with we are standard errors.

	β ₁	β ₂	β ₃	β4
Coeff OLS	287.19	-6.742	15.400	-4.590
s.e.	19.642	0.501	0.356	0.269
White s.e.	64.877	1.852	2.482	1.713
Coeff GLS	321.17	-7.404	15.585	-4.740
s.e.	20.328	0.506	0.349	0.255

The White standard errors are inflated by factors 3.7 (*wage*), 6.4 (*capital*), 7.0 (*output*) with respect to the OLS s.e.

An Alternative Estimator for b

Idea of the estimator

- 1. Transform the model so that it satisfies the Gauss-Markov assumptions
- 2. Apply OLS to the transformed model

Results in an (at least approximately) BLUE

- Transformation often depends upon unknown parameters that characterizing heteroskedasticity: two-step procedure
- 1. Estimate the parameters that characterize heteroskedasticity and transform the model
- 2. Estimate the transformed model

The procedure results in an approximately BLUE

An Example

Model:

$$y_i = x_i^{\beta} + \varepsilon_i$$
 with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$

Division by $h_{\rm i}$ results in

1

$$y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$$

with a homoskedastic error term

$$V\{\varepsilon_i / h_i\} = \sigma_i^2 / h_i^2 = \sigma^2$$

OLS applied to the transformed model gives

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

This estimator is an example of the "generalized least squares" (GLS) or "weighted least squares" (WLS) estimator

Weighted Least Squares Estimator

 A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor w_i > 0:

$$\hat{\boldsymbol{\beta}}_{w} = \left(\sum_{i} w_{i} x_{i}' x_{i}\right)^{-1} \sum_{i} w_{i} x_{i}' y_{i}$$

- Weights w_i proportional to the inverse of the error term variance σ²h_i²: Observations with a higher error term variance have a lower weight; they provide less accurate information on β
- Needs knowledge of the h_i
 - Is seldom available
 - Estimates of h_i can be based on assumptions on the form of h_i
 - E.g., $h_i^2 = z_i^2 \alpha$ or $h_i^2 = \exp(z_i^2 \alpha)$ for some variables z_i
- Analogous with general weights w_i
- White's HCCME uses $w_i = e_i^{-2}$

Regression of "I_usq1", i.e., $log(e_i^2)$, on *capital* and *output*

Dependent variable : I_usq1

coefficient	std. error	t-ratio	p-value
const 7,24526	17 0,00375036	73,37	2,68e-291 ***
CAPITAL -0,02104		-5,611	3,16e-08 ***
OUTPUT 0,035912		7,460	3,27e-013 ***
Mean dependent var	7,531559	S.D. dependent var	2,368701
Sum squared resid	2797,660	S.E. of regression	2,223255
R- squared	0,122138	Adjusted R-squared	0,119036
F(2, 129)	39,37427	P-value (F)	9,76e-17
Log-likelihood	-1260,487	Akaike criterion	2526,975
Schwarz criterion	2540,006	Hannan-Quinn	2532,060

Estimated function

 $labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$

OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); and GLS estimates with $w_i = e_i^{-2}$, with fitted values for e_i from the regression of $\log(e_i^2)$ on *capital* and *output*

	β ₁	wage	output	capital
OLS coeff	287.19	-6.742	15.400	-4.590
s.e.	19.642	0.501	0.356	0.269
White s.e.	64.877	1.852	2.482	1.713
FGLS coeff	321.17	-7.404	15.585	-4.740
s.e.	20.328	0.506	0.349	0.255

Contents

- Violations of V{ ϵ } = $\sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation
- Autocorrelation
Tests against Heteroskedasticity

Due to unbiasedness of *b*, residuals are expected to indicate heteroskedasticity

Graphical displays of residuals may give useful hints

Residual-based tests:

- Breusch-Pagan test
- Koenker test
- Goldfeld-Quandt test
- White test

Breusch-Pagan Test

For testing whether the error term variance is a function of Z_2 , ..., Z_p Model for heteroskedasticity

 $\sigma_i^2/\sigma^2 = h(z_i^{\cdot}\alpha)$

with function *h* with h(0)=1, *p*-vectors z_i und α , z_i containing an intercept and *p*-1 variables Z_2 , ..., Z_p

Null hypothesis

```
H<sub>0</sub>: \alpha = 0
implies \sigma_i^2 = \sigma^2 for all i, i.e., homoskedasticity
```

Breusch-Pagan Test, cont'd

Typical functions *h* for $h(z_i^{\cdot}\alpha)$

- Linear regression: $h(z_i^{\dagger}\alpha) = z_i^{\dagger}\alpha$
- Exponential function $h(z_i \alpha) = \exp\{z_i \alpha\}$
 - Auxiliary regression of the log (e_i^2) upon z_i
 - "Multiplicative heteroskedasticity"
 - Variances are non-negative

For $h(z_i^{\alpha}) = z_i^{\alpha}$

- Auxiliary regression of the "scaled" squared residuals $u_i^2 = e_i^2/s^2$ with $s^2 = e'e/N$ on z_i (and squares of z_i);
- Test statistic BP follows approximately the Chi-squared distribution with p -1 d.f.

Koenker Test

Koenker test: variant of the BP test which is robust against nonnormality of the error terms

- For testing whether the error term variance is a function of Z_2, \ldots, Z_p
- Auxiliary regression of the squared OLS residuals e_i^2 on z_i

$$e_i^2 = z_i^{\prime} \alpha + v_i$$

Test statistic: $N^*R_v^2$ with R_v^2 of the auxiliary regression; follows approximately the Chi-squared distribution with *p* -1 d.f.

- **GRETL**: The output window of OLS estimation allows the execution of the Breusch-Pagan test with $h(z_i \alpha) = z_i \alpha$
 - OLS output => Tests => Heteroskedasticity => Breusch-Pagan
 - Koenker test: OLS output => Tests => Heteroskedasticity => Koenker

Auxiliary regression of squared residuals, Verbeek

Tests of the null hypothesis of homoskedasticity

	Table 4.	.2 Auxiliary r	Auxiliary regression Breusch-Pagan test		
	Dependent variable: e_i^2				
	Variable Estimate Standard error				
	constant wage output capital	$\begin{array}{r} -22719.51\\ 228.86\\ 5362.21\\ -3543.51\end{array}$	11838.88 302.22 214.35 162.12	2 0.757 5 25.015	
	$s = 94182$ $R^2 = 0.5818$ $\bar{R}^2 = 0.5796$ $F = 262.05$				
Breusch-Pagan: BP = 5931.8, <i>p</i> -value = 0					
Koenker: <i>N</i> R ² = 569*0.5818 = 331.04, <i>p</i> -value = 2.17E-70					

Goldfeld-Quandt Test

For testing whether the error term variance has values σ_A^2 and σ_B^2 for observations from regime A and B, respectively, $\sigma_A^2 \neq \sigma_B^2$

Regimes can be urban vs rural area, economic prosperity vs stagnation, etc.

Example (in matrix notation):

 $y_{\rm A} = X_{\rm A}\beta_{\rm A} + \varepsilon_{\rm A}, \ V\{\varepsilon_{\rm A}\} = \sigma_{\rm A}^2 I_{\rm NA} \ (\text{regime A})$ $y_{\rm B} = X_{\rm B}\beta_{\rm B} + \varepsilon_{\rm B}, \ V\{\varepsilon_{\rm B}\} = \sigma_{\rm B}^2 I_{\rm NB} \ (\text{regime B})$

Null hypothesis:
$$\sigma_A^2 = \sigma_B^2$$

Test statistic:

$$F = \frac{S_A}{S_B} \frac{N_B - K}{N_A - K}$$

with S_i : sum of squared residuals for *i*-th regime; follows under H₀ exactly or approximately the *F*-distribution with N_A -*K* and N_B -*K* d.f.

Goldfeld-Quandt Test, cont'd

Test procedure in three steps:

- 1. Sort the observations with respect to the regimes A and B
- 2. Separate fittings of the model to the N_A and N_B observations; sum of squared residuals S_A and S_B
- 3. Calculate the test statistic *F*

White Test

For testing whether the error term variance is a function of the model regressors, their squares and their cross-products; generalizes the Breusch-Pagan test

- Auxiliary regression of the squared OLS residuals upon x_i 's, squares of x_i 's, and cross-products
- Test statistic: *N*R² with R² of the auxiliary regression; follows the Chi-squared distribution with the number of coefficients in the auxiliary regression as d.f.
- The number of coefficients in the auxiliary regression may become large, maybe conflicting with size of *N*, resulting in low power of the White test

White's test for heteroskedasticity OLS, using observations 1-569 Dependent variable: uhat^2

	coefficient	std. error	t-ratio	p-value
const	-260,910	18478,5	-0,01412	0,9887
WAGE	554,352	833,028	0,6655	0,5060
CAPITAL	2810,43	663,073	4,238	2,63e-05 ***
OUTPUT	-2573,29	512,179	-5,024	6,81e-07 ***
sq_WAGE	-10,0719	9,29022	-1,084	0,2788
X2_X3	-48,2457	14,0199	-3,441	0,0006 ***
X2_X4	58,5385	5 8,11748	7,211	1,81e-012 ***
sq_CAPITAL	14,4176	5 2,01005	7,173	2,34e-012 ***
X3_X4	-40,0294	3,74634	-10,68	2,24e-024 ***
sq_OUTPUT	27,5945	5 1,83633	15,03	4,09e-043 ***
Unadjusted R-square	ed = 0,818130	6		
Test statistic: $TR^2 = 465,519295$, with p-value = P(Chi-square(9) > 465,519295) = 0				

Contents

- Violations of V{ ϵ } = $\sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation
- Autocorrelation

Transformed Model Satisfying Gauss-Markov Assumptions

Model:

 $y_i = x_i'\beta + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$

Division by $h_{\rm i}$ results in

 $y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$

with a homoskedastic error term

 $V\{\epsilon_i / h_i\} = \sigma_i^2 / h_i^2 = \sigma^2$

OLS applied to the transformed model gives

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

This estimator is an example of the "generalized least squares" (GLS) or "weighted least squares" (WLS) estimator

Properties of GLS Estimators

The GLS estimator

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

is a least squares estimator; standard properties of OLS estimator apply

The covariance matrix of the GLS estimator is

$$V\left\{\hat{\beta}\right\} = \sigma^2 \left(\sum_i h_i^{-2} x_i x_i'\right)^{-1}$$

Unbiased estimator of the error term variance

$$\hat{\sigma}^{2} = \frac{1}{N-K} \sum_{i} h_{i}^{-2} \left(y_{i} - x_{i}' \hat{\beta} \right)^{2}$$

 Under the assumption of normality of errors, *t*- and *F*-tests can be used; for large *N*, these properties hold approximately without normality assumption

Generalized Least Squares Estimator

- A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor
- Example:

 $y_i = x_i'\beta + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$

- Division by h_i results in a model with homoskedastic error terms $V{\epsilon_i/h_i} = \sigma_i^2/h_i^2 = \sigma^2$
- OLS applied to the transformed model results in the weighted least squares (GLS) estimator with $w_i = h_i^{-2}$:

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

- Transformation corresponds to the multiplication of each observation with the non-negative factor h_i^{-1}
- The GLS estimator is a least squares estimator that weights the *i*-th observation with $w_i = h_i^{-2}$, so that the Gauss-Markov assumptions are satisfied

Feasible GLS Estimator

Is a GLS estimator with estimated weights $w_i = h_i^{-2}$

- Substitution of the weights $w_i = h_i^{-2}$ by estimates \hat{h}_i^{-2} $\hat{\beta}^* = \left(\sum_i \hat{h}_i^{-2} x_i x_i'\right)^{-1} \sum_i \hat{h}_i^{-2} x_i y_i$
- Feasible (or estimated) GLS or FGLS or EGLS estimator
- For consistent estimates \hat{h}_i , the FGLS and GLS estimators are asymptotically equivalent
- For small values of *N*, FGLS estimators are in general not BLUE
- For consistent estimates ĥ_i, the FGLS estimator is consistent and asymptotically efficient with covariance matrix (estimate for σ²: based on FGLS residuals)

$$V\left\{\hat{\boldsymbol{\beta}}^{*}\right\} = \hat{\boldsymbol{\sigma}}^{2} \left(\sum_{i} \hat{h}_{i}^{-2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\prime}\right)^{-1}$$

Warning: The transformed model is uncentered

Multiplicative Heteroskedasticity

Assume V{ ϵ_i } = $\sigma_i^2 = \sigma^2 h_i^2 = \sigma^2 \exp\{z_i^{\cdot}\alpha\}$

The auxiliary regression

 $\log e_i^2 = \log \sigma^2 + z_i^{\prime} \alpha + v_i$

provides a consistent estimator a for α

- Transform the model $y_i = x_i^{\beta} + \varepsilon_i$ with $V{\varepsilon_i} = \sigma_i^2 = \sigma^2 h_i^2$ by dividing through \hat{h}_i from $\hat{h}_i^2 = \exp{\{z_i^{\alpha}\}}$
- Error term in this model is (approximately) homoskedastic
- Applying OLS to the transformed model gives the FGLS estimator for β

FGLS Estimation

In the following steps $(y_i = x_i'\beta + \varepsilon_i)$:

- 1. Calculate the OLS estimates *b* for β
- 2. Compute the OLS residuals $e_i = y_i x_i$ 'b
- 3. Regress $\log(e_i^2)$ on z_i and a constant, obtaining estimates *a* for α log $e_i^2 = \log \sigma^2 + z_i^{\cdot} \alpha + v_i$
- 4. Compute $\hat{h}_i^2 = \exp\{z_i^a\}$, transform all variables and estimate the transformed model to obtain the FGLS estimators:

$$y_i / \hat{h}_i = (x_i / \hat{h}_i)'\beta + \varepsilon_i / \hat{h}_i$$

5. The consistent estimate s^2 for σ^2 , based on the FGLS-residuals, and the consistently estimated covariance matrix

$$\hat{V}\left\{\hat{\boldsymbol{\beta}}^{*}\right\} = s^{2}\left(\sum_{i}^{J}\hat{h}_{i}^{-2}\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{\prime}\right)$$

are part of the standard output when regressing the transformed model

FGLS Estimation in GRETL

Preparatory steps:

- 1. Calculate the OLS estimates *b* for β of $y_i = x_i^{\beta} + \varepsilon_i^{\beta}$
- 2. Under the assumption V{ ϵ_i } = $\sigma_i^2 = \sigma^2 h_i^2$, conduct an auxiliary regression for e_i^2 or log(e_i^2) that provides estimates \hat{h}_i^2
- 3. Define *wtvar* as weight variable with *wtvar* $_{i} = (\hat{h}_{i}^{2})^{-1}$

FGLS estimation:

- 4. Model => Other linear models => Weighted least squares
- Use of variable *wtvar* as "Weight variable": both the dependent and all independent variables are multiplied with the square roots (*wtvar*)^{1/2}

Labor Demand Function

For Belgian companies, 1996; Verbeek

 Table 4.5
 OLS results loglinear model with White standard errors

TT

Dependent variable: log(*labour*)

		Heteroskedasticity-consiste		
Variable	Estimate S	Standard error	t-ratio	
constant log(wage) log(output)		0.294 0.087 0.047	21.019 -10.706 21.159	
log(<i>capital</i>)	-0.004	0.038	-0.098	
s = 0.465	$R^2 = 0.8430$ $\bar{R}^2 = 0.8421$	F = 544.73		

Log-transformation is expected to reduce heteroskedasticity

Estimated function

log(*labour*) = $\beta_1 + \beta_2 \log(wage) + \beta_3 \log(output) + \beta_4 \log(capital)$ The table shows: OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); FGLS estimates and standard errors

	β ₁	wage	output	capital
OLS coeff	6.177	-0.928	0.990	-0.0037
s.e.	0.246	0.071	0.026	0.0188
White s.e.	0.293	0.086	0.047	0.0377
FGLS coeff	5.895	-0.856	1.035	-0.0569
s.e.	0.248	0.072	0.027	0.0216

For Belgian companies, 1996; Verbeek

 Table 4.6
 Auxiliary regression multiplicative heteroskedasticity

Dependent variable: $\log e_i^2$

Variable	Estimate	Standard error	<i>t</i> -ratio
constant	-3.254	1.185	-2.745
log(wage)	-0.061	0.344	-0.178
log(<i>output</i>)	0.267	0.127	2.099
log(<i>capital</i>)	-0.331	0.090	-3.659
s = 2.241	$R^2 = 0.0245$ $\bar{R}^2 =$	= 0.0193 $F = 4.73$	

Breusch-Pagan test: BP = 66.23, *p*-value: 1,42E-13

For Belgian companies, 1996; Verbeek

Weights estimated assuming multiplicative heteroskedasticity

 Table 4.7
 EGLS results loglinear model

Dependent variable: log(*labour*)

Variable Estimat		Standard e	error <i>t</i> -ratio
constant	5.895	0.248	23.806
log(<i>wage</i>)	-0.856	0.072	-11.903
log(<i>output</i>)	1.035	0.027	37.890
log(capital)	-0.057	0.022	-2.636
s = 2.509	$R^2 = 0.9903$	$\bar{R}^2 = 0.9902$	F = 14401.3

Estimated function

log(*labour*) = $\beta_1 + \beta_2 \log(wage) + \beta_3 \log(output) + \beta_4 \log(capital)$ The table shows: OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); FGLS estimates and standard errors

	β ₁	wage	output	capital
OLS coeff	6.177	-0.928	0.990	-0.0037
s.e.	0.246	0.071	0.026	0.0188
White s.e.	0.293	0.086	0.047	0.0377
FGLS coeff	5.895	-0.856	1.035	-0.0569
s.e.	0.248	0.072	0.027	0.0216

Some comments:

- Reduction of standard errors in FGLS estimation as compared to heteroskedasticity-robust estimation, efficiency gains
- Comparison with OLS estimation not appropriate
- FGLS estimates differ slightly from OLS estimates; effect of capital is indicated to be relevant (*p*-value: 0.0086)
- R² of FGLS estimation is misleading
 - Model has no intercept, is uncentered
 - Comparison with that of OLS estimation not appropriate, explained variables are different

Your Homework

1. Use the data set "labour2" of Verbeek for the following analyses:

- a) (i) Estimate (OLS) the model for log(*labor*) with regressors log(*output*) and log(*wage*); (ii) generate a display of the residuals which may indicate heteroskedasticity of the error term.
- b) Perform (i) the Koenker test with $h(z_i \cdot \alpha) = \exp\{z_i \cdot \alpha\}$ and the White test (ii) without and (iii) with interactions; explain the tests and compare the results; use $z_i = (\log(capital_i), \log(output_i), \log(wage_i))$.
- c) For the model of a): Compare (i) the OLS and (ii) the White standard errors with HC_0 of the estimated coefficients.
- d) Estimate (i) the model of a), using FGLS and weights obtained in the auxiliary regression of the Koenker test in b); (ii) comment on the estimates of the coefficients, the standard errors, and the R² of this model and those of c)(i) and (ii).

Your Homework, cont'd

2. Transform the variables of the model $y_i = x_i'\beta + \varepsilon_i$ with $E\{\varepsilon_i\} = 0$ and $V\{\varepsilon_i\} = \sigma_i^2 = \sigma^2 h_i^2$ for i = 1, ..., N, by dividing each variable through h_i : $y_i \rightarrow y_i / h_i$ and $(x_i)' \rightarrow (x_i / h_i)'$. Show that for the model in transformed variables,

 $y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$

the Gauss-Markov assumptions A3 and A4 are satisfied.